1
|
Deshpande P, Chen CY, Chimata AV, Li JC, Sarkar A, Yeates C, Chen CH, Kango-Singh M, Singh A. miR-277 targets the proapoptotic gene-hid to ameliorate Aβ42-mediated neurodegeneration in Alzheimer's model. Cell Death Dis 2024; 15:71. [PMID: 38238337 PMCID: PMC10796706 DOI: 10.1038/s41419-023-06361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024]
Abstract
Alzheimer's disease (AD), an age-related progressive neurodegenerative disorder, exhibits reduced cognitive function with no cure to date. One of the reasons for AD is the accumulation of Amyloid-beta 42 (Aβ42) plaque(s) that trigger aberrant gene expression and signaling, which results in neuronal cell death by an unknown mechanism(s). Misexpression of human Aβ42 in the developing retina of Drosophila exhibits AD-like neuropathology. Small non-coding RNAs, microRNAs (miRNAs), post-transcriptionally regulate the expression of their target genes and thereby regulate different signaling pathways. In a forward genetic screen, we identified miR-277 (human ortholog is hsa-miR-3660) as a genetic modifier of Aβ42-mediated neurodegeneration. Loss-of-function of miR-277 enhances the Aβ42-mediated neurodegeneration. Whereas gain-of-function of miR-277 in the GMR > Aβ42 background downregulates cell death to maintain the number of neurons and thereby restores the retinal axonal targeting defects indicating the functional rescue. In addition, gain-of-function of miR-277 rescues the eclosion- and climbing assays defects observed in GMR > Aβ42 background. Thus, gain-of-function of miR-277 rescues both structurally as well as functionally the Aβ42-mediated neurodegeneration. Furthermore, we identified head involution defective (hid), an evolutionarily conserved proapoptotic gene, as one of the targets of miR-277 and validated these results using luciferase- and qPCR -assays. In the GMR > Aβ42 background, the gain-of-function of miR-277 results in the reduction of hid transcript levels to one-third of its levels as compared to GMR > Aβ42 background alone. Here, we provide a novel molecular mechanism where miR-277 targets and downregulates proapoptotic gene, hid, transcript levels to rescue Aβ42-mediated neurodegeneration by blocking cell death. These studies shed light on molecular mechanism(s) that mediate cell death response following Aβ42 accumulation seen in neurodegenerative disorders in humans and provide new therapeutic targets for neurodegeneration.
Collapse
Affiliation(s)
| | - Chao-Yi Chen
- Institution of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | | | - Jian-Chiuan Li
- Institution of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Ankita Sarkar
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA
| | - Catherine Yeates
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA
| | - Chun-Hong Chen
- Institution of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan.
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.
| | - Madhuri Kango-Singh
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA.
- Premedical Program, University of Dayton, Dayton, OH, USA.
- Integrative Science and Engineering (ISE), University of Dayton, Dayton, OH, USA.
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA.
- Premedical Program, University of Dayton, Dayton, OH, USA.
- Integrative Science and Engineering (ISE), University of Dayton, Dayton, OH, USA.
- Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA.
| |
Collapse
|
2
|
Yost PP, Al-Nouman A, Curtiss J. The Rap1 small GTPase affects cell fate or survival and morphogenetic patterning during Drosophila melanogaster eye development. Differentiation 2023; 133:12-24. [PMID: 37437447 PMCID: PMC10528170 DOI: 10.1016/j.diff.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/14/2023]
Abstract
The Drosophila melanogaster eye has been instrumental for determining both how cells communicate with one another to determine cell fate, as well as cell morphogenesis and patterning. Here, we describe the effects of the small GTPase Rap1 on the development of multiple cell types in the D. melanogaster eye. Although Rap1 has previously been linked to RTK-Ras-MAPK signaling in eye development, we demonstrate that manipulation of Rap1 activity is modified by increase or decrease of Delta/Notch signaling during several events of cell fate specification in eye development. In addition, we demonstrate that manipulating Rap1 function either in primary pigment cells or in interommatidial cells affects cone cell contact switching, primary pigment cell enwrapment of the ommatidial cluster, and sorting of secondary and tertiary pigment cells. These data suggest that Rap1 has roles in both ommatidial cell recruitment/survival and in ommatidial morphogenesis in the pupal stage. They lay groundwork for future experiments on the role of Rap1 in these events.
Collapse
Affiliation(s)
- Philip P Yost
- New Mexico State University, 1780 E University Ave, Las Cruces, NM, 88003, USA
| | | | - Jennifer Curtiss
- New Mexico State University, 1780 E University Ave, Las Cruces, NM, 88003, USA.
| |
Collapse
|
3
|
Bernasek SM, Hur SSJ, Peláez-Restrepo N, Boisclair Lachance JF, Bakker R, Navarro HT, Sanchez-Luege N, Amaral LAN, Bagheri N, Rebay I, Carthew RW. Ratiometric sensing of Pnt and Yan transcription factor levels confers ultrasensitivity to photoreceptor fate transitions in Drosophila. Development 2023; 150:dev201467. [PMID: 36942737 PMCID: PMC10163347 DOI: 10.1242/dev.201467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/13/2023] [Indexed: 03/23/2023]
Abstract
Cell state transitions are often triggered by large changes in the concentrations of transcription factors and therefore large differences in their stoichiometric ratios. Whether cells can elicit transitions using modest changes in the ratios of co-expressed factors is unclear. Here, we investigate how cells in the Drosophila eye resolve state transitions by quantifying the expression dynamics of the ETS transcription factors Pnt and Yan. Eye progenitor cells maintain a relatively constant ratio of Pnt/Yan protein, despite expressing both proteins with pulsatile dynamics. A rapid and sustained twofold increase in the Pnt/Yan ratio accompanies transitions to photoreceptor fates. Genetic perturbations that modestly disrupt the Pnt/Yan ratio produce fate transition defects consistent with the hypothesis that transitions are normally driven by a twofold shift in the ratio. A biophysical model based on cooperative Yan-DNA binding coupled with non-cooperative Pnt-DNA binding illustrates how twofold ratio changes could generate ultrasensitive changes in target gene transcription to drive fate transitions. Thus, coupling cell state transitions to the Pnt/Yan ratio sensitizes the system to modest fold-changes, conferring robustness and ultrasensitivity to the developmental program.
Collapse
Affiliation(s)
- Sebastian M. Bernasek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Suzy S. J. Hur
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Nicolás Peláez-Restrepo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Howard Hughes Medical Institute (HHMI), Hanna H. Gray Fellows Program
| | | | - Rachael Bakker
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | | | - Nicelio Sanchez-Luege
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Luís A. N. Amaral
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL 60208, USA
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
| | - Neda Bagheri
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes, Northwestern University, Evanston, IL 60208, USA
| | - Ilaria Rebay
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Richard W. Carthew
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University, Evanston, IL 60611, USA
| |
Collapse
|
4
|
Lavin R, Rathore S, Bauer B, Disalvo J, Mosley N, Shearer E, Elia Z, Cook TA, Buschbeck EK. EyeVolve, a modular PYTHON based model for simulating developmental eye type diversification. Front Cell Dev Biol 2022; 10:964746. [PMID: 36092740 PMCID: PMC9459020 DOI: 10.3389/fcell.2022.964746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Vision is among the oldest and arguably most important sensory modalities for animals to interact with their external environment. Although many different eye types exist within the animal kingdom, mounting evidence indicates that the genetic networks required for visual system formation and function are relatively well conserved between species. This raises the question as to how common developmental programs are modified in functionally different eye types. Here, we approached this issue through EyeVolve, an open-source PYTHON-based model that recapitulates eye development based on developmental principles originally identified in Drosophila melanogaster. Proof-of-principle experiments showed that this program’s animated timeline successfully simulates early eye tissue expansion, neurogenesis, and pigment cell formation, sequentially transitioning from a disorganized pool of progenitor cells to a highly organized lattice of photoreceptor clusters wrapped with support cells. Further, tweaking just five parameters (precursor pool size, founder cell distance and placement from edge, photoreceptor subtype number, and cell death decisions) predicted a multitude of visual system layouts, reminiscent of the varied eye types found in larval and adult arthropods. This suggests that there are universal underlying mechanisms that can explain much of the existing arthropod eye diversity. Thus, EyeVolve sheds light on common principles of eye development and provides a new computational system for generating specific testable predictions about how development gives rise to diverse visual systems from a commonly specified neuroepithelial ground plan.
Collapse
Affiliation(s)
- Ryan Lavin
- Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Shubham Rathore
- Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Brian Bauer
- Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Joe Disalvo
- Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Nick Mosley
- Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Evan Shearer
- Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Zachary Elia
- Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Tiffany A. Cook
- Center of Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Elke K. Buschbeck
- Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Elke K. Buschbeck,
| |
Collapse
|
5
|
Pichaud F, Casares F. Shaping an optical dome: The size and shape of the insect compound eye. Semin Cell Dev Biol 2021; 130:37-44. [PMID: 34810110 DOI: 10.1016/j.semcdb.2021.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
The insect compound eye is the most abundant eye architecture on earth. It comes in a wide variety of shapes and sizes, which are exquisitely adapted to specific ecosystems. Here, we explore the organisational principles and pathways, from molecular to tissular, that underpin the building of this organ and highlight why it is an excellent model system to investigate the relationship between genes and tissue form. The compound eye offers wide fields of view, high sensitivity in motion detection and infinite depth of field. It is made of an array of visual units called ommatidia, which are precisely tiled in 3D to shape the retinal tissue as a dome-like structure. The eye starts off as a 2D epithelium, and it acquires its 3D organisation as ommatidia get into shape. Each ommatidium is made of a complement of retinal cells, including light-detecting photoreceptors and lens-secreting cells. The lens cells generate the typical hexagonal facet lens that lies atop the photoreceptors so that the eye surface consists of a quasi-crystalline array of these hexagonal facet-lenses. This array is curved to various degree, depending on the size and shape of the eye, and on the region of the retina. This curvature sets the resolution and visual field of the eye and is determined by i) the number and size of the facet lens - large ommatidial lenses can be used to generate flat, higher resolution areas, while smaller facets allow for stronger curvature of the eye, and ii) precise control of the inter facet-lens angle, which determines the optical axis of the each ommatidium. In this review we discuss how combinatorial variation in eye primordium shape, ommatidial number, facet lens size and inter facet-lens angle underpins the wide variety of insect eye shapes, and we explore what is known about the mechanisms that might control these parameters.
Collapse
Affiliation(s)
- Franck Pichaud
- MRC Laboratory for Molecular Cell Biology (LMCB), University College London, WC1E 6BT London, United Kingdom.
| | - Fernando Casares
- CABD-Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide, ES-41013 Seville, Spain.
| |
Collapse
|
6
|
Charlton-Perkins MA, Friedrich M, Cook TA. Semper's cells in the insect compound eye: Insights into ocular form and function. Dev Biol 2021; 479:126-138. [PMID: 34343526 PMCID: PMC8410683 DOI: 10.1016/j.ydbio.2021.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/28/2022]
Abstract
The arthropod compound eye represents one of two major eye types in the animal kingdom and has served as an essential experimental paradigm for defining fundamental mechanisms underlying sensory organ formation, function, and maintenance. One of the most distinguishing features of the compound eye is the highly regular array of lens facets that define individual eye (ommatidial) units. These lens facets are produced by a deeply conserved quartet of cuticle-secreting cells, called Semper cells (SCs). Also widely known as cone cells, SCs were originally identified for their secretion of the dioptric system, i.e. the corneal lens and underlying crystalline cones. Additionally, SCs are now known to execute a diversity of patterning and glial functions in compound eye development and maintenance. Here, we present an integrated account of our current knowledge of SC multifunctionality in the Drosophila compound eye, highlighting emerging gene regulatory modules that may drive the diverse roles for these cells. Drawing comparisons with other deeply conserved retinal glia in the vertebrate single lens eye, this discussion speaks to glial cell origins and opens new avenues for understanding sensory system support programs.
Collapse
Affiliation(s)
- Mark A Charlton-Perkins
- Department of Paediatrics, Wellcome-MRC Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, United Kingdom
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA; Department of Ophthalmological, Visual, and Anatomical Sciences, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201, USA
| | - Tiffany A Cook
- Department of Ophthalmological, Visual, and Anatomical Sciences, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201, USA; Center of Molecular Medicine and Genetics, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201, USA.
| |
Collapse
|
7
|
Johnson RI. Hexagonal patterning of the Drosophila eye. Dev Biol 2021; 478:173-182. [PMID: 34245727 DOI: 10.1016/j.ydbio.2021.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 10/24/2022]
Abstract
A complex network of transcription factor interactions propagates across the larval eye disc to establish columns of evenly-spaced R8 precursor cells, the founding cells of Drosophila ommatidia. After the recruitment of additional photoreceptors to each ommatidium, the surrounding cells are organized into their stereotypical pattern during pupal development. These support cells - comprised of pigment and cone cells - are patterned to encapsulate the photoreceptors and separate ommatidia with an hexagonal honeycomb lattice. Since the proteins and processes essential for correct eye patterning are conserved, elucidating how these function and change during Drosophila eye patterning can substantially advance our understanding of transcription factor and signaling networks, cytoskeletal structures, adhesion complexes, and the biophysical properties of complex tissues during their morphogenesis. Our understanding of many of these aspects of Drosophila eye patterning is largely descriptive. Many important questions, especially relating to the regulation and integration of cellular events, remain.
Collapse
Affiliation(s)
- Ruth I Johnson
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA.
| |
Collapse
|
8
|
Ingles-Prieto A, Furthmann N, Crossman SH, Tichy AM, Hoyer N, Petersen M, Zheden V, Biebl J, Reichhart E, Gyoergy A, Siekhaus DE, Soba P, Winklhofer KF, Janovjak H. Optogenetic delivery of trophic signals in a genetic model of Parkinson's disease. PLoS Genet 2021; 17:e1009479. [PMID: 33857132 PMCID: PMC8049241 DOI: 10.1371/journal.pgen.1009479] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/10/2021] [Indexed: 12/19/2022] Open
Abstract
Optogenetics has been harnessed to shed new mechanistic light on current and future therapeutic strategies. This has been to date achieved by the regulation of ion flow and electrical signals in neuronal cells and neural circuits that are known to be affected by disease. In contrast, the optogenetic delivery of trophic biochemical signals, which support cell survival and are implicated in degenerative disorders, has never been demonstrated in an animal model of disease. Here, we reengineered the human and Drosophila melanogaster REarranged during Transfection (hRET and dRET) receptors to be activated by light, creating one-component optogenetic tools termed Opto-hRET and Opto-dRET. Upon blue light stimulation, these receptors robustly induced the MAPK/ERK proliferative signaling pathway in cultured cells. In PINK1B9 flies that exhibit loss of PTEN-induced putative kinase 1 (PINK1), a kinase associated with familial Parkinson's disease (PD), light activation of Opto-dRET suppressed mitochondrial defects, tissue degeneration and behavioral deficits. In human cells with PINK1 loss-of-function, mitochondrial fragmentation was rescued using Opto-dRET via the PI3K/NF-кB pathway. Our results demonstrate that a light-activated receptor can ameliorate disease hallmarks in a genetic model of PD. The optogenetic delivery of trophic signals is cell type-specific and reversible and thus has the potential to inspire novel strategies towards a spatio-temporal regulation of tissue repair.
Collapse
Affiliation(s)
- Alvaro Ingles-Prieto
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Nikolas Furthmann
- Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Samuel H. Crossman
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, Australia
- European Molecular Biology Laboratory Australia (EMBL Australia), Monash University, Clayton/Melbourne, Australia
| | - Alexandra-Madelaine Tichy
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, Australia
- European Molecular Biology Laboratory Australia (EMBL Australia), Monash University, Clayton/Melbourne, Australia
| | - Nina Hoyer
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Meike Petersen
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vanessa Zheden
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Julia Biebl
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Eva Reichhart
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, Australia
- European Molecular Biology Laboratory Australia (EMBL Australia), Monash University, Clayton/Melbourne, Australia
| | - Attila Gyoergy
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Daria E. Siekhaus
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Peter Soba
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Konstanze F. Winklhofer
- Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Harald Janovjak
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, Australia
- European Molecular Biology Laboratory Australia (EMBL Australia), Monash University, Clayton/Melbourne, Australia
- * E-mail:
| |
Collapse
|
9
|
Interplay between sex determination cascade and major signaling pathways during Drosophila eye development: Perspectives for future research. Dev Biol 2021; 476:41-52. [PMID: 33745943 DOI: 10.1016/j.ydbio.2021.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/07/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022]
Abstract
Understanding molecular mechanisms of sexually dimorphic organ growth is a fundamental problem of developmental biology. Recent quantitative studies showed that the Drosophila compound eye is a convenient model to study the determination of the final organ size. In Drosophila, females have larger eyes than males and this is evident even after correction for the larger body size. Moreover, female eyes include more ommatidia (photosensitive units) than male eyes and this difference is specified at the third larval instar in the eye primordia called eye imaginal discs. This may result in different visual capabilities between the two sexes and have behavioral consequences. Despite growing evidence on the genetic bases of eye size variation between different Drosophila species and strains, mechanisms responsible for within-species sexual dimorphism still remain elusive. Here, we discuss a presumptive crosstalk between the sex determination cascade and major signaling pathways during dimorphic eye development. Male- and female-specific isoforms of Doublesex (Dsx) protein are known to control sex-specific differentiation in the somatic tissues. However, no data on Dsx function during eye disc growth and patterning are currently available. Remarkably, Sex lethal (Sxl), the sex determination switch protein, was shown to directly affect Hedgehog (Hh) and Notch (N) signaling in the Drosophila wing disc. The similarity of signaling pathways involved in the wing and eye disc growth suggests that Sxl might be integrated into regulation of eye development. Dsx role in the eye disc requires further investigation. We discuss currently available data on sex-biased gene expression in the Drosophila eye and highlight perspectives for future studies.
Collapse
|
10
|
DeAngelis MW, Coolon JD, Johnson RI. Comparative transcriptome analyses of the Drosophila pupal eye. G3-GENES GENOMES GENETICS 2021; 11:5995320. [PMID: 33561221 PMCID: PMC8043229 DOI: 10.1093/g3journal/jkaa003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/08/2020] [Indexed: 12/04/2022]
Abstract
Tissue function is dependent on correct cellular organization and behavior. As a result, the identification and study of genes that contribute to tissue morphogenesis is of paramount importance to the fields of cell and developmental biology. Many of the genes required for tissue patterning and organization are highly conserved between phyla. This has led to the emergence of several model organisms and developmental systems that are used to study tissue morphogenesis. One such model is the Drosophila melanogaster pupal eye that has a highly stereotyped arrangement of cells. In addition, the pupal eye is postmitotic that allows for the study of tissue morphogenesis independent from any effects of proliferation. While the changes in cell morphology and organization that occur throughout pupal eye development are well documented, less is known about the corresponding transcriptional changes that choreograph these processes. To identify these transcriptional changes, we dissected wild-type Canton S pupal eyes and performed RNA-sequencing. Our analyses identified differential expression of many loci that are documented regulators of pupal eye morphogenesis and contribute to multiple biological processes including signaling, axon projection, adhesion, and cell survival. We also identified differential expression of genes not previously implicated in pupal eye morphogenesis such as components of the Toll pathway, several non-classical cadherins, and components of the muscle sarcomere, which could suggest these loci function as novel patterning factors.
Collapse
Affiliation(s)
- Miles W DeAngelis
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| | - Joseph D Coolon
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| | - Ruth I Johnson
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| |
Collapse
|
11
|
Moreno E, Valon L, Levillayer F, Levayer R. Competition for Space Induces Cell Elimination through Compaction-Driven ERK Downregulation. Curr Biol 2018; 29:23-34.e8. [PMID: 30554899 PMCID: PMC6331351 DOI: 10.1016/j.cub.2018.11.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/01/2018] [Accepted: 11/01/2018] [Indexed: 12/18/2022]
Abstract
The plasticity of developing tissues relies on the adjustment of cell survival and growth rate to environmental cues. This includes the effect of mechanical cues on cell survival. Accordingly, compaction of an epithelium can lead to cell extrusion and cell death. This process was proposed to contribute to tissue homeostasis but also to facilitate the expansion of pretumoral cells through the compaction and elimination of the neighboring healthy cells. However, we know very little about the pathways that can trigger apoptosis upon tissue deformation, and the contribution of compaction-driven death to clone expansion has never been assessed in vivo. Using the Drosophila pupal notum and a new live sensor of ERK, we show first that tissue compaction induces cell elimination through the downregulation of epidermal growth factor receptor/extracellular signal regulated kinase (EGFR/ERK) pathway and the upregulation of the pro-apoptotic protein Hid. Those results suggest that the sensitivity of EGFR/ERK pathway to mechanics could play a more general role in the fine tuning of cell elimination during morphogenesis and tissue homeostasis. Second, we assessed in vivo the contribution of compaction-driven death to pretumoral cell expansion. We found that the activation of the oncogene Ras in clones can downregulate ERK and activate apoptosis in the neighboring cells through their compaction, which eventually contributes to Ras clone expansion. The mechanical modulation of EGFR/ERK during growth-mediated competition for space may contribute to tumor progression. Caspase activity in Drosophila pupal notum is regulated by EGFR/ERK and hid EGFR/ERK can be activated or downregulated by tissue stretching or compaction Cell compaction near fast-growing clones downregulates ERK and triggers cell death Compaction-driven ERK downregulation promotes fast-growing clone expansion
Collapse
Affiliation(s)
- Eduardo Moreno
- Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - Léo Valon
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Dr. Roux, 75015 Paris, France
| | - Florence Levillayer
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Dr. Roux, 75015 Paris, France
| | - Romain Levayer
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Dr. Roux, 75015 Paris, France.
| |
Collapse
|
12
|
Van Den Brink DM, Cubizolle A, Chatelain G, Davoust N, Girard V, Johansen S, Napoletano F, Dourlen P, Guillou L, Angebault-Prouteau C, Bernoud-Hubac N, Guichardant M, Brabet P, Mollereau B. Physiological and pathological roles of FATP-mediated lipid droplets in Drosophila and mice retina. PLoS Genet 2018; 14:e1007627. [PMID: 30199545 PMCID: PMC6147681 DOI: 10.1371/journal.pgen.1007627] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 09/20/2018] [Accepted: 08/13/2018] [Indexed: 11/18/2022] Open
Abstract
Increasing evidence suggests that dysregulation of lipid metabolism is associated with neurodegeneration in retinal diseases such as age-related macular degeneration and in brain disorders such as Alzheimer’s and Parkinson’s diseases. Lipid storage organelles (lipid droplets, LDs), accumulate in many cell types in response to stress, and it is now clear that LDs function not only as lipid stores but also as dynamic regulators of the stress response. However, whether these LDs are always protective or can also be deleterious to the cell is unknown. Here, we investigated the consequences of LD accumulation on retinal cell homeostasis under physiological and stress conditions in Drosophila and in mice. In wild-type Drosophila, we show that dFatp is required and sufficient for expansion of LD size in retinal pigment cells (RPCs) and that LDs in RPCs are required for photoreceptor survival during aging. Similarly, in mice, LD accumulation induced by RPC-specific expression of human FATP1 was non-toxic and promoted mitochondrial energy metabolism in RPCs and non-autonomously in photoreceptor cells. In contrast, the inhibition of LD accumulation by dFatp knockdown suppressed neurodegeneration in Aats-metFBDrosophila mutants, which carry elevated levels of reactive oxygen species (ROS). This suggests that abnormal turnover of LD may be toxic for photoreceptors cells of the retina under oxidative stress. Collectively, these findings indicate that FATP-mediated LD formation in RPCs promotes RPC and neuronal homeostasis under physiological conditions but could be deleterious for the photoreceptors under pathological conditions. Lipids are major cell constituents and are present in the membranes, as free lipids in the cytoplasm, or stored in vesicles called lipid droplets (LDs). Under conditions of stress, lipids stored in LDs can be released to serve as substrates for energy metabolism by mitochondria. However, lipid storage is dysregulated in many degenerative disorders such as age-related macular degeneration, Parkinson’s and Alzheimer’s diseases. Thus, it is unclear whether accumulation of LDs is protective or toxic for neuronal cells. To address this question, we examined the consequences of removal or enforced LD accumulation on the health of retinal cells in flies and mice. Like humans, fly and mouse retinas contain retinal pigment cells (RPC) that support the functions of neighboring photoreceptor cells. We found that overexpression of the fatty acid transport protein (FATP) in RPCs induced accumulation of LDs in both transgenic flies and mice. Moreover, LD accumulation in RPCs was not harmful for juxtaposed photoreceptors during aging, but was toxic under stress conditions. We propose that lipid storage promotes cellular communication that affects photoreceptor health.
Collapse
Affiliation(s)
- Daan M. Van Den Brink
- Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland, Lyon, France
| | - Aurélie Cubizolle
- Institut des Neurosciences de Montpellier, INSERM U1051, CHU St Eloi, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Gilles Chatelain
- Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland, Lyon, France
| | - Nathalie Davoust
- Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland, Lyon, France
| | - Victor Girard
- Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland, Lyon, France
| | - Simone Johansen
- Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland, Lyon, France
| | - Francesco Napoletano
- Molecular Oncology Unit, Department of Life Sciences, University of Trieste c/o Laboratorio Nazionale CIB, Area Science Park, Trieste, Italy
| | - Pierre Dourlen
- Institut Pasteur de Lille; Inserm, U1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases; University Lille, U1167-Excellence Laboratory LabEx DISTALZ, Lille, France
| | - Laurent Guillou
- Institut des Neurosciences de Montpellier, INSERM U1051, CHU St Eloi, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Claire Angebault-Prouteau
- Institut des Neurosciences de Montpellier, INSERM U1051, CHU St Eloi, Montpellier, France
- INSERM U1046, UMR CNRS 9214, Université de Montpellier, CHRU de Montpellier, Montpellier, France
| | - Nathalie Bernoud-Hubac
- Univ Lyon, CarMeN laboratory, INSA Lyon, INSERM U1060, INRA U1397, Université Claude Bernard Lyon 1, F-69621, Villeurbanne, France
| | - Michel Guichardant
- Univ Lyon, CarMeN laboratory, INSA Lyon, INSERM U1060, INRA U1397, Université Claude Bernard Lyon 1, F-69621, Villeurbanne, France
| | - Philippe Brabet
- Institut des Neurosciences de Montpellier, INSERM U1051, CHU St Eloi, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Bertrand Mollereau
- Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland, Lyon, France
- * E-mail:
| |
Collapse
|
13
|
Kumar A, Tiwari AK. Molecular Chaperone Hsp70 and Its Constitutively Active Form Hsc70 Play an Indispensable Role During Eye Development of Drosophila melanogaster. Mol Neurobiol 2018; 55:4345-4361. [PMID: 28634860 DOI: 10.1007/s12035-017-0650-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/07/2017] [Indexed: 10/19/2022]
Abstract
In the present study, we demonstrate that molecular chaperone Hsp70 and Hsc70 is essential for normal organization and development of ommatidial cells in Drosophila melanogaster eye. An exogenously expressed dominant negative mutant of Hsp70 (K71E) and Hsc70.4 (K71S and D206S) in an eye-specific manner resulted in eye degeneration that includes loss of eye pigment, disorganized ommatidia, abnormality in bristle cell arrangement and reduction in the eye size. The developmental organization of ommatidial cells (cone, photoreceptor, pigment, and bristle cell complex) was disturbed in Hsp70 and Hsc70 mutants. Acridine orange (AO) and caspase 3 staining showed an increased cell death in Hsp70 and Hsc70 mutant eyes. Genetic interaction study of Hsp70 and Hsc70 mutants with candidate genes of JNK signaling pathway and immunocytochemistry study using phospho-JNK antibody suggested that mutation in Hsp70 and Hsc70 results in ectopic activation of JNK signaling in fly eye. Further, anti-PH3 staining in Hsp70 and Hsc70 mutant eyes revealed a reduced number of mitotic cells in second mitotic wave (SMW) of developing eye and anti-Rh1 staining showed reduced Rh1 expression, accumulation of Rh1 in the cytoplasm, and rhabdomere degeneration. Thus, on the basis of results, it was concluded that molecular chaperone Hsp70 and Hsc70 play an indispensable role during Drosophila eye development.
Collapse
Affiliation(s)
- Ajay Kumar
- Genetics & Developmental Biology Laboratory, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research/IAR, Koba Institutional Area, Gandhinagar, Gujarat, 382007, India
| | - Anand K Tiwari
- Genetics & Developmental Biology Laboratory, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research/IAR, Koba Institutional Area, Gandhinagar, Gujarat, 382007, India.
| |
Collapse
|
14
|
Morrison CA, Chen H, Cook T, Brown S, Treisman JE. Glass promotes the differentiation of neuronal and non-neuronal cell types in the Drosophila eye. PLoS Genet 2018; 14:e1007173. [PMID: 29324767 PMCID: PMC5783423 DOI: 10.1371/journal.pgen.1007173] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 01/24/2018] [Accepted: 12/29/2017] [Indexed: 11/18/2022] Open
Abstract
Transcriptional regulators can specify different cell types from a pool of equivalent progenitors by activating distinct developmental programs. The Glass transcription factor is expressed in all progenitors in the developing Drosophila eye, and is maintained in both neuronal and non-neuronal cell types. Glass is required for neuronal progenitors to differentiate as photoreceptors, but its role in non-neuronal cone and pigment cells is unknown. To determine whether Glass activity is limited to neuronal lineages, we compared the effects of misexpressing it in neuroblasts of the larval brain and in epithelial cells of the wing disc. Glass activated overlapping but distinct sets of genes in these neuronal and non-neuronal contexts, including markers of photoreceptors, cone cells and pigment cells. Coexpression of other transcription factors such as Pax2, Eyes absent, Lozenge and Escargot enabled Glass to induce additional genes characteristic of the non-neuronal cell types. Cell type-specific glass mutations generated in cone or pigment cells using somatic CRISPR revealed autonomous developmental defects, and expressing Glass specifically in these cells partially rescued glass mutant phenotypes. These results indicate that Glass is a determinant of organ identity that acts in both neuronal and non-neuronal cells to promote their differentiation into functional components of the eye.
Collapse
Affiliation(s)
- Carolyn A. Morrison
- Skirball Institute for Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, New York, NY, United States of America
| | - Hao Chen
- Department of Cell Biology, NYU School of Medicine, New York, NY, United States of America
| | - Tiffany Cook
- Center of Molecular Medicine and Genomics and Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Stuart Brown
- Department of Cell Biology, NYU School of Medicine, New York, NY, United States of America
| | - Jessica E. Treisman
- Skirball Institute for Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
15
|
Bushnell HL, Feiler CE, Ketosugbo KF, Hellerman MB, Nazzaro VL, Johnson RI. JNK is antagonized to ensure the correct number of interommatidial cells pattern the Drosophila retina. Dev Biol 2018; 433:94-107. [PMID: 29133184 PMCID: PMC6010229 DOI: 10.1016/j.ydbio.2017.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/29/2017] [Accepted: 11/04/2017] [Indexed: 11/25/2022]
Abstract
Apoptosis is crucial during the morphogenesis of most organs and tissues, and is utilized for tissues to achieve their proper size, shape and patterning. Many signaling pathways contribute to the precise regulation of apoptosis. Here we show that Jun N-terminal Kinase (JNK) activity contributes to the coordinated removal of interommatidial cells via apoptosis in the Drosophila pupal retina. This is consistent with previous findings that JNK activity promotes apoptosis in other epithelia. However, we found that JNK activity is repressed by Cindr (the CIN85 and CD2AP ortholog) in order to promote cell survival. Reducing the amount of Cindr resulted in ectopic cell death. Increased expression of the Drosophila JNK basket in the setting of reduced cindr expression was found to result in even more severe apoptosis, whilst ectopic death was found to be reduced if retinas were heterozygous for basket. Hence Cindr is required to properly restrict JNK-mediated apoptosis in the pupal eye, resulting in the correct number of interommatidial cells. A lack of precise control over developmental apoptosis can lead to improper tissue morphogenesis.
Collapse
Affiliation(s)
- Henry L Bushnell
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA
| | - Christina E Feiler
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA
| | - Kwami F Ketosugbo
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA
| | - Mark B Hellerman
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA
| | - Valerie L Nazzaro
- Quantitative Analysis Center, Wesleyan University, 222 Church Street, Middletown, CT, USA
| | - Ruth I Johnson
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA.
| |
Collapse
|
16
|
Regulation of Notch Signaling by the Heterogeneous Nuclear Ribonucleoprotein Hrp48 and Deltex in Drosophila melanogaster. Genetics 2017; 206:905-918. [PMID: 28396507 DOI: 10.1534/genetics.116.198879] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 04/03/2017] [Indexed: 01/03/2023] Open
Abstract
Notch signaling is an evolutionarily conserved pathway that is found to be involved in a number of cellular events throughout development. The deployment of the Notch signaling pathway in numerous cellular contexts is possible due to its regulation at multiple levels. In an effort to identify the novel components integrated into the molecular circuitry affecting Notch signaling, we carried out a protein-protein interaction screen based on the identification of cellular protein complexes using co-immunoprecipitation followed by mass-spectrometry. We identified Hrp48, a heterogeneous nuclear ribonucleoprotein in Drosophila, as a novel interacting partner of Deltex (Dx), a cytoplasmic modulator of Notch signaling. Immunocytochemical analysis revealed that Dx and Hrp48 colocalize in cytoplasmic vesicles. The dx mutant also showed strong genetic interactions with hrp48 mutant alleles. The coexpression of Dx and Hrp48 resulted in the depletion of cytoplasmic Notch in larval wing imaginal discs and downregulation of Notch targets cut and wingless Previously, it has been shown that Sex-lethal (Sxl), on binding with Notch mRNA, negatively regulates Notch signaling. The overexpression of Hrp48 was found to inhibit Sxl expression and consequently rescued Notch signaling activity. In the present study, we observed that Dx together with Hrp48 can regulate Notch signaling in an Sxl-independent manner. In addition, Dx and Hrp48 displayed a synergistic effect on caspase-mediated cell death. Our results suggest that Dx and Hrp48 together negatively regulate Notch signaling in Drosophila melanogaster.
Collapse
|
17
|
Kamber Kaya HE, Ditzel M, Meier P, Bergmann A. An inhibitory mono-ubiquitylation of the Drosophila initiator caspase Dronc functions in both apoptotic and non-apoptotic pathways. PLoS Genet 2017; 13:e1006438. [PMID: 28207763 PMCID: PMC5313150 DOI: 10.1371/journal.pgen.1006438] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 10/21/2016] [Indexed: 11/19/2022] Open
Abstract
Apoptosis is an evolutionary conserved cell death mechanism, which requires activation of initiator and effector caspases. The Drosophila initiator caspase Dronc, the ortholog of mammalian Caspase-2 and Caspase-9, has an N-terminal CARD domain that recruits Dronc into the apoptosome for activation. In addition to its role in apoptosis, Dronc also has non-apoptotic functions such as compensatory proliferation. One mechanism to control the activation of Dronc is ubiquitylation. However, the mechanistic details of ubiquitylation of Dronc are less clear. For example, monomeric inactive Dronc is subject to non-degradative ubiquitylation in living cells, while ubiquitylation of active apoptosome-bound Dronc triggers its proteolytic degradation in apoptotic cells. Here, we examined the role of non-degradative ubiquitylation of Dronc in living cells in vivo, i.e. in the context of a multi-cellular organism. Our in vivo data suggest that in living cells Dronc is mono-ubiquitylated on Lys78 (K78) in its CARD domain. This ubiquitylation prevents activation of Dronc in the apoptosome and protects cells from apoptosis. Furthermore, K78 ubiquitylation plays an inhibitory role for non-apoptotic functions of Dronc. We provide evidence that not all of the non-apoptotic functions of Dronc require its catalytic activity. In conclusion, we demonstrate a mechanism whereby Dronc’s apoptotic and non-apoptotic activities can be kept silenced in a non-degradative manner through a single ubiquitylation event in living cells. Apoptosis is a programmed cell death mechanism which is conserved from flies to humans. Apoptosis is mediated by proteases, termed caspases that cleave cellular proteins and trigger the death of the cell. Activation of caspases is regulated at various levels such as protein-protein interaction for initiator caspases and ubiquitylation. Caspase 9 in mammals and its Drosophila ortholog Dronc carry a protein-protein interaction domain (CARD) in their prodomain which interacts with scaffolding proteins to form the apoptosome, a cell-death platform. Here, we show that Dronc is mono-ubiquitylated at Lysine 78 in its CARD domain. This ubiquitylation interferes with the formation of the apoptosome, causing inhibition of apoptosis. In addition to its apoptotic function, Dronc also participates in events where caspase activity is not required for cell killing, but for regulating other functions, so-called non-apoptotic functions of caspases such as apoptosis-induced proliferation. We found that mono-ubiquitylation of Lysine 78 plays an inhibitory role for these non-apoptotic functions of Dronc. Interestingly, we demonstrate that the catalytic activity of Dronc is not strictly required in these processes. Our in vivo study sheds light on how a single mono-ubiquitylation event could inhibit both apoptotic and non-apoptotic functions of a caspase.
Collapse
Affiliation(s)
- Hatem Elif Kamber Kaya
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Mark Ditzel
- Institute for Genetics and Molecular Medicine, Edinburgh Cancer Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, London, United Kingdom
| | - Andreas Bergmann
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
18
|
Malartre M. Regulatory mechanisms of EGFR signalling during Drosophila eye development. Cell Mol Life Sci 2016; 73:1825-43. [PMID: 26935860 PMCID: PMC11108404 DOI: 10.1007/s00018-016-2153-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/20/2016] [Accepted: 02/01/2016] [Indexed: 01/14/2023]
Abstract
EGFR signalling is a well-conserved signalling pathway playing major roles during development and cancers. This review explores what studying the EGFR pathway during Drosophila eye development has taught us in terms of the diversity of its regulatory mechanisms. This model system has allowed the identification of numerous positive and negative regulators acting at specific time and place, thus participating to the tight control of signalling. EGFR signalling regulation is achieved by a variety of mechanisms, including the control of ligand processing, the availability of the receptor itself and the transduction of the cascade in the cytoplasm. Ultimately, the transcriptional responses contribute to the establishment of positive and negative feedback loops. The combination of these multiple mechanisms employed to regulate the EGFR pathway leads to specific cellular outcomes involved in functions as diverse as the acquisition of cell fate, proliferation, survival, adherens junction remodelling and morphogenesis.
Collapse
Affiliation(s)
- Marianne Malartre
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
19
|
Huu NT, Yoshida H, Yamaguchi M. Tumor suppressor gene OSCP1/NOR1 regulates apoptosis, proliferation, differentiation, and ROS generation during eye development of Drosophila melanogaster. FEBS J 2015; 282:4727-46. [PMID: 26411401 DOI: 10.1111/febs.13528] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/09/2015] [Accepted: 09/23/2015] [Indexed: 12/15/2022]
Abstract
OSCP1/NOR1 (organic solute carrier partner 1/oxidored nitrodomain-containing protein 1) is a known tumor suppressor protein. OSCP1 has been reported to mediate transport of various organic solutes into cells; however, its role during development has not yet been addressed. Here we report the results of studies on dOSCP1 (the Drosophila ortholog of hOSCP1) to elucidate the role of OSCP1/NOR1 during development. Knockdown of dOSCP1 in the eye imaginal discs induced a rough-eye phenotype in adult flies. This phenotype resulted from induction of caspase-dependent apoptosis followed by a compensatory cell proliferation and generation of reactive oxygen species in eye imaginal discs. The induction of apoptosis appears to be associated with down-regulation of the anti-apoptotic Buffy gene and up-regulation of the pro-apoptotic Debcl gene. These effects of knockdown of dOSCP1 lead to mitochondrial fragmentation, degradation, and a shortfall in ATP production. We also found that knockdown of dOSCP1 causes a defect in cone cell and pigment cell differentiation in pupal retinae. Moreover, mutations in epidermal growth factor receptor pathway-related genes, such as Spitz and Drk, enhanced the rough-eye phenotype induced by dOSCP1 knockdown. These results suggest that dOSCP1 positively regulates the epidermal growth factor receptor signaling pathway. Overall, our findings indicate that dOSCP1 plays multiple roles during eye development in Drosophila.
Collapse
Affiliation(s)
- Nguyen Tho Huu
- Department of Applied Biology and Insect Biomedical Research Center, Kyoto Institute of Technology, Japan
| | - Hideki Yoshida
- Department of Applied Biology and Insect Biomedical Research Center, Kyoto Institute of Technology, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology and Insect Biomedical Research Center, Kyoto Institute of Technology, Japan
| |
Collapse
|
20
|
Tousled-like kinase mediated a new type of cell death pathway in Drosophila. Cell Death Differ 2015; 23:146-57. [PMID: 26088162 DOI: 10.1038/cdd.2015.77] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 04/21/2015] [Accepted: 05/05/2015] [Indexed: 01/09/2023] Open
Abstract
Programmed cell death (PCD) has an important role in sculpting organisms during development. However, much remains to be learned about the molecular mechanism of PCD. We found that ectopic expression of tousled-like kinase (tlk) in Drosophila initiated a new type of cell death. Furthermore, the TLK-induced cell death is likely to be independent of the canonical caspase pathway and other known caspase-independent pathways. Genetically, atg2 RNAi could rescue the TLK-induced cell death, and this function of atg2 was likely distinct from its role in autophagy. In the developing retina, loss of tlk resulted in reduced PCD in the interommatidial cells (IOCs). Similarly, an increased number of IOCs was present in the atg2 deletion mutant clones. However, double knockdown of tlk and atg2 by RNAi did not have a synergistic effect. These results suggested that ATG2 may function downstream of TLK. In addition to a role in development, tlk and atg2 RNAi could rescue calcium overload-induced cell death. Together, our results suggest that TLK mediates a new type of cell death pathway that occurs in both development and calcium cytotoxicity.
Collapse
|
21
|
Abstract
The canonical role of p53 in preserving genome integrity and limiting carcinogenesis has been well established. In the presence of acute DNA-damage, oncogene deregulation and other forms of cellular stress, p53 orchestrates a myriad of pleiotropic processes to repair cellular damages and maintain homeostasis. Beside these well-studied functions of p53, recent studies in Drosophila have unraveled intriguing roles of Dmp53 in promoting cell division in apoptosis-induced proliferation, enhancing fitness and proliferation of the winner cell in cell competition and coordinating growth at the organ and organismal level in the presence of stress. In this review, we describe these new functions of Dmp53 and discuss their relevance in the context of carcinogenesis.
Collapse
Affiliation(s)
- Bertrand Mollereau
- Laboratory of Molecular Biology of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, UMS 3444 Biosciences Lyon Gerland, University of Lyon, Lyon, France,
| | | |
Collapse
|
22
|
Querenet M, Goubard V, Chatelain G, Davoust N, Mollereau B. Spen is required for pigment cell survival during pupal development in Drosophila. Dev Biol 2015; 402:208-15. [PMID: 25872184 DOI: 10.1016/j.ydbio.2015.03.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 03/19/2015] [Accepted: 03/22/2015] [Indexed: 01/25/2023]
Abstract
Apoptosis is required during development to eliminate superfluous cells and sculpt tissues; spatial and timed control of apoptosis ensures that the necessary number of cells is eliminated at a precise time in a given tissue. The elimination of supernumerary pigment or inter-ommatidial cells (IOCs) depends on cell-cell communication and is necessary for the formation of the honeycomb-like structure of the Drosophila eye. However, the mechanisms occurring during pupal development and controlling apoptosis of superfluous IOC in space and time remain unclear. Here, we found that split-ends (spen) is required for IOC survival at the time of removal of superfluous IOCs. Loss of spen function leads to abnormal removal of IOCs by apoptosis. We show that spen is required non-autonomously in cone cells for the survival of IOCs by positively regulating the Spitz/EGFR pathway. We propose that Spen is an important survival factor that ensures spatial control of the apoptotic wave that is necessary for the correct patterning and formation of the Drosophila eye.
Collapse
Affiliation(s)
- Matthieu Querenet
- Laboratory of Molecular Biology of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | - Valerie Goubard
- Laboratory of Molecular Biology of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | - Gilles Chatelain
- Laboratory of Molecular Biology of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | - Nathalie Davoust
- Laboratory of Molecular Biology of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France.
| | - Bertrand Mollereau
- Laboratory of Molecular Biology of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France.
| |
Collapse
|
23
|
Cell death in development: Signaling pathways and core mechanisms. Semin Cell Dev Biol 2015; 39:12-9. [PMID: 25668151 DOI: 10.1016/j.semcdb.2015.02.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/22/2015] [Accepted: 02/02/2015] [Indexed: 11/20/2022]
Abstract
Programmed cell death eliminates unneeded and dangerous cells in a timely and effective manner during development. In this review, we examine the role cell death plays during development in worms, flies and mammals. We discuss signaling pathways that regulate developmental cell death, and describe how they communicate with the core cell death pathways. In most organisms, the majority of developmental cell death is seen in the nervous system. Therefore we focus on what is known about the regulation of developmental cell death in this tissue. Understanding how the cell death is regulated during development may provide insight into how this process can be manipulated in the treatment of disease.
Collapse
|
24
|
|
25
|
|
26
|
Saxena A, Denholm B, Bunt S, Bischoff M, VijayRaghavan K, Skaer H. Epidermal growth factor signalling controls myosin II planar polarity to orchestrate convergent extension movements during Drosophila tubulogenesis. PLoS Biol 2014; 12:e1002013. [PMID: 25460353 PMCID: PMC4251826 DOI: 10.1371/journal.pbio.1002013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/21/2014] [Indexed: 12/30/2022] Open
Abstract
A study in fruit flies shows that during the elongation of embryonic renal tubules, graded signalling provides axial information for polarized myosin pulses that shorten cells circumferentially, driving intercalation of the cells and elongation of the tubule. Most epithelial tubes arise as small buds and elongate by regulated morphogenetic processes including oriented cell division, cell rearrangements, and changes in cell shape. Through live analysis of Drosophila renal tubule morphogenesis we show that tissue elongation results from polarised cell intercalations around the tubule circumference, producing convergent-extension tissue movements. Using genetic techniques, we demonstrate that the vector of cell movement is regulated by localised epidermal growth factor (EGF) signalling from the distally placed tip cell lineage, which sets up a distal-to-proximal gradient of pathway activation to planar polarise cells, without the involvement for PCP gene activity. Time-lapse imaging at subcellular resolution shows that the acquisition of planar polarity leads to asymmetric pulsatile Myosin II accumulation in the basal, proximal cortex of tubule cells, resulting in repeated, transient shortening of their circumferential length. This repeated bias in the polarity of cell contraction allows cells to move relative to each other, leading to a reduction in cell number around the lumen and an increase in tubule length. Physiological analysis demonstrates that animals whose tubules fail to elongate exhibit abnormal excretory function, defective osmoregulation, and lethality. Many of the tissues in our bodies are built up around complex arrays of elongated cellular tubes, which permit the entry, exit, and transport of essential molecules such as oxygen, glucose, and water. These tubes often arise as short buds, which elongate dramatically as the organ grows. We sought to understand the mechanisms that govern such transformations of shape using the fly renal tubule as a model. We find that elongation of this tissue is predominantly driven by cell rearrangement. Cells move around the circumference of the tubule, intercalating with each other so that the cell number around the lumen reduces, while increasing along the length of the tube. Our next question was how cells sense the direction in which they should move. We show that cells orient their position in the tissue by reading a signal sent out by a specific pair of cells at the tip of each tube. Cells use this directional information to make polarised movements through the asymmetric activity of the cell's contractile machinery. We find that the activity of myosin—the motor protein that regulates contraction—is pulsatile and polarised within the cell. This activity shortens the cells' circumferential lengths, so that cells move past each other around the tube circumference, thereby intercalating and producing tube elongation. We go on to show that excretory physiology is severely impaired when elongation fails, underlining the importance of sculpting organs with appropriate dimensions.
Collapse
Affiliation(s)
- Aditya Saxena
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Barry Denholm
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Stephanie Bunt
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Marcus Bischoff
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom; School of Biology, St Andrews, Scotland, United Kingdom
| | | | - Helen Skaer
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
27
|
Hassel C, Zhang B, Dixon M, Calvi BR. Induction of endocycles represses apoptosis independently of differentiation and predisposes cells to genome instability. Development 2013; 141:112-23. [PMID: 24284207 DOI: 10.1242/dev.098871] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The endocycle is a common developmental cell cycle variation wherein cells become polyploid through repeated genome duplication without mitosis. We previously showed that Drosophila endocycling cells repress the apoptotic cell death response to genotoxic stress. Here, we investigate whether it is differentiation or endocycle remodeling that promotes apoptotic repression. We find that when nurse and follicle cells switch into endocycles during oogenesis they repress the apoptotic response to DNA damage caused by ionizing radiation, and that this repression has been conserved in the genus Drosophila over 40 million years of evolution. Follicle cells defective for Notch signaling failed to switch into endocycles or differentiate and remained apoptotic competent. However, genetic ablation of mitosis by knockdown of Cyclin A or overexpression of fzr/Cdh1 induced follicle cell endocycles and repressed apoptosis independently of Notch signaling and differentiation. Cells recovering from these induced endocycles regained apoptotic competence, showing that repression is reversible. Recovery from fzr/Cdh1 overexpression also resulted in an error-prone mitosis with amplified centrosomes and high levels of chromosome loss and fragmentation. Our results reveal an unanticipated link between endocycles and the repression of apoptosis, with broader implications for how endocycles may contribute to genome instability and oncogenesis.
Collapse
Affiliation(s)
- Christiane Hassel
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
28
|
Maier D, Praxenthaler H, Schulz A, Preiss A. Gain of function notch phenotypes associated with ectopic expression of the Su(H) C-terminal domain illustrate separability of Notch and hairless-mediated activities. PLoS One 2013; 8:e81578. [PMID: 24282610 PMCID: PMC3839874 DOI: 10.1371/journal.pone.0081578] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 10/15/2013] [Indexed: 12/23/2022] Open
Abstract
The Notch signaling pathway is instrumental for cell fate decisions. Signals from the Notch receptor are transduced by CSL-type DNA-binding proteins. In Drosophila, this protein is named Suppressor of Hairless [Su(H)]. Together with the intracellular domain of the activated Notch receptor ICN, Su(H) assembles a transcriptional activator complex on Notch target genes. Hairless acts as the major antagonist of the Notch signaling pathway in Drosophila by means of the formation of a repressor complex together with Su(H) and several co-repressors. Su(H) is characterized by three domains, the N-terminal domain NTD, the beta-trefoil domain BTD and the C-terminal domain CTD. NTD and BTD bind to the DNA, whereas BTD and CTD bind to ICN. Hairless binds to the CTD, however, to sites different from ICN. In this work, we have addressed the question of competition and availability of Su(H) for ICN and Hairless binding in vivo. To this end, we overexpressed the CTD during fly development. We observed a strong activation of Notch signaling processes in various tissues, which may be explained by an interference of CTD with Hairless corepressor activity. Accordingly, a combined overexpression of CTD together with Hairless ameliorated the effects, unlike Su(H) which strongly enhances repression when overexpressed concomitantly with Hairless. Interestingly, in the combined overexpression CTD accumulated in the nucleus together with Hairless, whereas it is predominantly cytoplasmic on its own.
Collapse
Affiliation(s)
- Dieter Maier
- Universität Hohenheim, Institut für Genetik (240), Stuttgart, Germany
- * E-mail:
| | | | - Adriana Schulz
- Universität Hohenheim, Institut für Genetik (240), Stuttgart, Germany
| | - Anette Preiss
- Universität Hohenheim, Institut für Genetik (240), Stuttgart, Germany
| |
Collapse
|
29
|
Das S, Chen QB, Saucier JD, Drescher B, Zong Y, Morgan S, Forstall J, Meriwether A, Toranzo R, Leal SM. The Drosophila T-box transcription factor Midline functions within the Notch-Delta signaling pathway to specify sensory organ precursor cell fates and regulates cell survival within the eye imaginal disc. Mech Dev 2013; 130:577-601. [PMID: 23962751 DOI: 10.1016/j.mod.2013.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 07/30/2013] [Accepted: 08/03/2013] [Indexed: 12/20/2022]
Abstract
We report that the T-box transcription factor Midline (Mid), an evolutionary conserved homolog of the vertebrate Tbx20 protein, functions within the Notch-Delta signaling pathway essential for specifying the fates of sensory organ precursor (SOP) cells. These findings complement an established history of research showing that Mid regulates the cell-fate specification of diverse cell types within the developing heart, epidermis and central nervous system. Tbx20 has been detected in unique neuronal and epithelial cells of embryonic eye tissues in both mice and humans. However, the mechanisms by which either Mid or Tbx20 function to regulate cell-fate specification or other critical aspects of eye development including cell survival have not yet been elucidated. We have also gathered preliminary evidence suggesting that Mid may play an indirect, but vital role in selecting SOP cells within the third-instar larval eye disc by regulating the expression of the proneural gene atonal. During subsequent pupal stages, Mid specifies SOP cell fates as a member of the Notch-Delta signaling hierarchy and is essential for maintaining cell viability by inhibiting apoptotic pathways. We present several new hypotheses that seek to understand the role of Mid in regulating developmental processes downstream of the Notch receptor that are critical for specifying unique cell fates, patterning the adult eye and maintaining cellular homeostasis during eye disc morphogenesis.
Collapse
Affiliation(s)
- Sudeshna Das
- The Department of Biological Sciences, University of Southern Mississippi, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Since the discovery of a single white-eyed male in a population of red eyed flies over 100 years ago (Morgan, 1910), the compound eye of the fruit fly, Drosophila melanogaster, has been a favorite experimental system for identifying genes that regulate various aspects of development. For example, a fair amount of what we know today about enzymatic pathways and vesicular transport is due to the discovery and subsequent characterization of eye color mutants such as white. Likewise, our present day understanding of organogenesis has been aided considerably by studies of mutations, such as eyeless, that either reduce or eliminate the compound eyes. But by far the phenotype that has provided levers into the greatest number of experimental fields has been the humble "rough" eye. The fly eye is composed of several hundred unit-eyes that are also called ommatidia. These unit eyes are packed into a hexagonal array of remarkable precision. The structure of the eye is so precise that it has been compared with that of a crystal (Ready et al., 1976). Even the slightest perturbations to the structure of the ommatidium can be visually detected by light or electron microscopy. The cause for this is two-fold: (1) any defect that affects the hexagonal geometry of a single ommatidium can and will disrupt the positioning of surrounding unit eyes thereby propagating structural flaws and (2) disruptions in genes that govern the development of even a single cell within an ommatidium will affect all unit eyes. In both cases, the effect is the visual magnification of even the smallest imperfection. Studies of rough eye mutants have provided key insights into the areas of cell fate specification, lateral inhibition, signal transduction, transcription factor networks, planar cell polarity, cell proliferation, and programmed cell death just to name a few. This review will attempt to summarize the key steps that are required to assemble each ommatidium.
Collapse
Affiliation(s)
- Justin P Kumar
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| |
Collapse
|
31
|
Savost’yanov GA. The origin of elementary units of multicellularity and development of a spatial organization of cell layers. BIOL BULL+ 2012. [DOI: 10.1134/s1062359012020100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Khoa DB, Trang LTD, Takeda M. Expression analyses of caspase-1 and related activities in the midgut of Galleria mellonella during metamorphosis. INSECT MOLECULAR BIOLOGY 2012; 21:247-256. [PMID: 22229544 DOI: 10.1111/j.1365-2583.2011.01131.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The cDNA encoding caspase-1, a main protease involved in apoptosis, was cloned and sequenced from the midgut of the greater wax moth, Galleria mellonella. The open reading frame contains 879 nucleotides, encodes 293 amino acids, and was registered as Gmcaspase-1. The sequence comparison showed a high homology to lepidopteran caspase-1, human caspase-3, and ced-3 of Caenorhabditis elegans. Gmcaspase-1 is predicted to contain a short prodomain, large subunit, and small subunit domain. It also exhibits all characteristics of caspase, including three conserved cleavage sites after Asp-25, Asp-192, and Asp-181, three active site residues including a highly conserved QACQG pentapeptide active-site motif, and four substrate binding sites. The expression profiles during development showed that the transcript of Gmcaspase-1 and its protein products appeared in two or more waves in the midgut during metamorphosis. Immunohistochemistry, in situ hybridization, and TUNEL analyses revealed that apoptosis occurred first at the basal, then middle and then apical regions in the midgut epithelium and the yellow body is formed in the lumen. At least three waves of mitosis and differentiation follow the apoptosis waves from the basal and middle to apical parts to form the adult epithelium.
Collapse
Affiliation(s)
- D B Khoa
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Japan
| | | | | |
Collapse
|
33
|
Chan CC, Epstein D, Hiesinger PR. Intracellular trafficking in Drosophila visual system development: a basis for pattern formation through simple mechanisms. Dev Neurobiol 2012; 71:1227-45. [PMID: 21714102 DOI: 10.1002/dneu.20940] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Intracellular trafficking underlies cellular functions ranging from membrane remodeling to receptor activation. During multicellular organ development, these basic cell biological functions are required as both passive machinery and active signaling regulators. Exocytosis, endocytosis, and recycling of several key signaling receptors have long been known to actively regulate morphogenesis and pattern formation during Drosophila eye development. Hence, intracellular membrane trafficking not only sets the cell biological stage for receptor-mediated signaling but also actively controls signaling through spatiotemporally regulated receptor localization. In contrast to eye development, the role of intracellular trafficking for the establishment of the eye-to-brain connectivity map has only recently received more attention. It is still poorly understood how guidance receptors are spatiotemporally regulated to serve as meaningful synapse formation signals. Yet, the Drosophila visual system provides some of the most striking examples for the regulatory role of intracellular trafficking during multicellular organ development. In this review we will first highlight the experimental and conceptual advances that motivate the study of intracellular trafficking during Drosophila visual system development. We will then illuminate the development of the eye, the eye-to-brain connectivity map and the optic lobe from the perspective of cell biological dynamics. Finally, we provide a conceptual framework that seeks to explain how the interplay of simple genetically encoded intracellular trafficking events governs the seemingly complex cellular behaviors, which in turn determine the developmental product.
Collapse
Affiliation(s)
- Chih-Chiang Chan
- Department of Physiology and Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| | | | | |
Collapse
|
34
|
Katanaev VL, Kryuchkov MV. The eye of Drosophila as a model system for studying intracellular signaling in ontogenesis and pathogenesis. BIOCHEMISTRY (MOSCOW) 2012; 76:1556-81. [DOI: 10.1134/s0006297911130116] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
35
|
Johnson RI, Sedgwick A, D'Souza-Schorey C, Cagan RL. Role for a Cindr-Arf6 axis in patterning emerging epithelia. Mol Biol Cell 2011; 22:4513-26. [PMID: 21976699 PMCID: PMC3226471 DOI: 10.1091/mbc.e11-04-0305] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The fly pupal eye is used to explore dArf6 activity regulated by the Arf GTPase–activating proteins (ArfGAPs) dAsap and dArfGAP3 and Arf GTP exchange factors Schizo and dPsd, which promote cellular extensions that presage cell rearrangements. The adaptor protein Cindr bound to dArfGAP3 and dAsap to sequester ArfGAP function to Neph1/nephrin adhesion complexes, liberating active dArf6 elsewhere. Patterning of the Drosophila pupal eye is characterized by precise cell movements. In this paper, we demonstrate that these movements require an Arf regulatory cycle that connects surface receptors to actin-based movement. dArf6 activity—regulated by the Arf GTPase–activating proteins (ArfGAPs) dAsap and dArfGAP3 and the Arf GTP exchange factors Schizo and dPsd—promoted large cellular extensions; time-lapse microscopy indicated that these extensions presage cell rearrangements into correct epithelial niches. During this process, the Drosophila eye also requires interactions between surface Neph1/nephrin adhesion receptors Roughest and Hibris, which bind the adaptor protein Cindr (CD2AP). We provide evidence that Cindr forms a physical complex with dArfGAP3 and dAsap. Our data suggest this interaction sequesters ArfGAP function to liberate active dArf6 elsewhere in the cell. We propose that a Neph1/nephrin–Cindr/ArfGAP complex accumulates to limit local Arf6 activity and stabilize adherens junctions. Our model therefore links surface adhesion via an Arf6 regulatory cascade to dynamic modeling of the cytoskeleton, accounting for precise cell movements that organize the functional retinal field. Further, we demonstrate a similar relationship between the mammalian Cindr orthologue CD2AP and Arf6 activity in cell motility assays. We propose that this Cindr/CD2AP-mediated regulation of Arf6 is a widely used mechanism in emerging epithelia.
Collapse
Affiliation(s)
- Ruth I Johnson
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
36
|
Raafat A, Goldhar AS, Klauzinska M, Xu K, Amirjazil I, McCurdy D, Lashin K, Salomon D, Vonderhaar BK, Egan S, Callahan R. Expression of Notch receptors, ligands, and target genes during development of the mouse mammary gland. J Cell Physiol 2011; 226:1940-52. [PMID: 21506125 PMCID: PMC3073161 DOI: 10.1002/jcp.22526] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Notch genes play a critical role in mammary gland growth, development and tumorigenesis. In the present study, we have quantitatively determined the levels and mRNA expression patterns of the Notch receptor genes, their ligands and target genes in the postnatal mouse mammary gland. The steady state levels of Notch3 mRNA are the highest among receptor genes, Jagged1 and Dll3 mRNA levels are the highest among ligand genes and Hey2 mRNA levels are highest among expressed Hes/Hey target genes analyzed during different stages of postnatal mammary gland development. Using an immunohistochemical approach with antibodies specific for each Notch receptor, we show that Notch proteins are temporally regulated in mammary epithelial cells during normal mammary gland development in the FVB/N mouse. The loss of ovarian hormones is associated with changes in the levels of Notch receptor mRNAs (Notch2 higher and Notch3 lower) and ligand mRNAs (Dll1 and Dll4 are higher, whereas Dll3 and Jagged1 are lower) in the mammary gland of ovariectomized mice compared to intact mice. These data define expression of the Notch ligand/receptor system throughout development of the mouse mammary gland and help set the stage for genetic analysis of Notch in this context.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Calcium-Binding Proteins/genetics
- Cell Line
- Female
- Gene Expression Regulation, Developmental
- Gonadal Steroid Hormones/metabolism
- Immunohistochemistry
- Intercellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/genetics
- Jagged-1 Protein
- Lactation/genetics
- Ligands
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/metabolism
- Membrane Proteins/genetics
- Mice
- Mice, Knockout
- Ovariectomy
- Pregnancy
- RNA Interference
- RNA, Messenger/metabolism
- Receptor, Notch2/genetics
- Receptor, Notch3
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Repressor Proteins/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Serrate-Jagged Proteins
- Transfection
Collapse
Affiliation(s)
- Ahmed Raafat
- Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute; National Institutes of Health; Bethesda, MD 20892
| | - Anita S. Goldhar
- Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute; National Institutes of Health; Bethesda, MD 20892
| | - Malgorzata Klauzinska
- Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute; National Institutes of Health; Bethesda, MD 20892
| | - Keli Xu
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children. 101 College Street, TMDT East Tower, Toronto, Ontario, Canada M5G 1L7
| | - Idean Amirjazil
- Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute; National Institutes of Health; Bethesda, MD 20892
| | - David McCurdy
- Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute; National Institutes of Health; Bethesda, MD 20892
| | - Karim Lashin
- Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute; National Institutes of Health; Bethesda, MD 20892
| | - David Salomon
- Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute; National Institutes of Health; Bethesda, MD 20892
| | - Barbara K. Vonderhaar
- Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute; National Institutes of Health; Bethesda, MD 20892
| | - Sean Egan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children. 101 College Street, TMDT East Tower, Toronto, Ontario, Canada M5G 1L7
| | - Robert Callahan
- Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute; National Institutes of Health; Bethesda, MD 20892
| |
Collapse
|
37
|
Lee SF, Srinivasan B, Sephton CF, Dries DR, Wang B, Yu C, Wang Y, Dewey CM, Shah S, Jiang J, Yu G. Gamma-secretase-regulated proteolysis of the Notch receptor by mitochondrial intermediate peptidase. J Biol Chem 2011; 286:27447-53. [PMID: 21685396 DOI: 10.1074/jbc.m111.243154] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Notch is a transmembrane receptor that controls a diverse array of cellular processes including cell proliferation, differentiation, survival, and migration. The cellular outcome of Notch signaling is dependent on extracellular and intracellular signals, but the complexities of its regulation are not well understood. Canonical Notch signaling involves ligand association that triggers sequential and regulated proteolysis of Notch at several sites. Ligand-dependent proteolysis at the S2 site removes the bulk of the extracellular domain of Notch. Subsequent γ-secretase-mediated intramembrane proteolysis of the remaining membrane-tethered Notch fragment at the S3 site produces a nuclear-destined Notch intracellular domain (NICD). Here we show that following γ-secretase cleavage, Notch is proteolyzed at a novel S5 site. We have identified this S5 site to be eight amino acids downstream of the S3 site. Biochemical fractionation and purification resulted in the identification of the S5 site protease as the mitochondrial intermediate peptidase (MIPEP). Expression of the MIPEP-cleaved NICD (ΔNICD) results in a decrease in cell viability and mitochondria membrane potential. The sequential and regulated proteolysis by γ-secretase and MIPEP suggests a new means by which Notch function can be modulated.
Collapse
Affiliation(s)
- Sheu-Fen Lee
- Department of Neuroscience, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Nagel AC, Preiss A. Fine tuning of Notch signaling by differential co-repressor recruitment during eye development of Drosophila. Hereditas 2011; 148:77-84. [PMID: 21756252 DOI: 10.1111/j.1601-5223.2011.02221.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Notch signaling is fundamental to the regulation of cellular differentiation, cell growth and cell death in mammals as well as in invertebrates like Drosophila. Upon activation, the Notch receptor is cleaved and the intracellular part ICN assembles an activator complex around Suppressor of Hairless [Su(H)] that activates Notch target genes. Hairless (H) is the major antagonist of the Notch signaling pathway in Drosophila. In the absence of Notch signal, H binds to Su(H) and recruits two general co-repressors, Groucho (Gro) and C-terminal Binding Protein (CtBP); this repression complex downregulates Notch target genes. Previously we have shown that Gro and CtBP are recruited simultaneously to H and that they act in concert during wing and embryonic development. However, Gro and CtBP are utilized context-dependently by other transcription factors. Hence differential co-repressor recruitment by the Su(H)-H repressor complex is likewise conceivable. Here, we investigated the requirement for the co-repressors Gro and CtBP in H mediated Notch repression during several phases of eye development. Whereas both co-repressors appear likewise important during the specification of photoreceptor cells, we find differential requirement for the regulation of proliferation and cell death, respectively. During the early proliferative phase, H preferentially recruits Gro to inhibit Notch mediated growth of the eye disc. Elimination of superfluous interommatidial pigment cells, which depends on a late Notch signal, is antagonized by H and predominantly CtBP. In summary, differential recruitment of the co-repressors Gro and CtBP by H in a context-dependent manner ensures fine tuning of Notch signaling activity during eye development.
Collapse
Affiliation(s)
- Anja C Nagel
- Institut für Genetik, Universität Hohenheim, Stuttgart, Germany.
| | | |
Collapse
|
39
|
Charlton-Perkins M, Whitaker SL, Fei Y, Xie B, Li-Kroeger D, Gebelein B, Cook T. Prospero and Pax2 combinatorially control neural cell fate decisions by modulating Ras- and Notch-dependent signaling. Neural Dev 2011; 6:20. [PMID: 21539742 PMCID: PMC3123624 DOI: 10.1186/1749-8104-6-20] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 05/03/2011] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The concept of an equivalence group, a cluster of cells with equal potential to adopt the same specific fate, has served as a useful paradigm to understand neural cell type specification. In the Drosophila eye, a set of five cells, called the 'R7 equivalence group', generates a single photoreceptor neuron and four lens-secreting epithelial cells. This choice between neuronal versus non-neuronal cell fates rests on differential requirements for, and cross-talk between, Notch/Delta- and Ras/mitogen-activated protein kinase (MAPK)-dependent signaling pathways. However, many questions remain unanswered related to how downstream events of these two signaling pathways mediate distinct cell fate decisions. RESULTS Here, we demonstrate that two direct downstream targets of Ras and Notch signaling, the transcription factors Prospero and dPax2, are essential regulators of neuronal versus non-neuronal cell fate decisions in the R7 equivalence group. Prospero controls high activated MAPK levels required for neuronal fate, whereas dPax2 represses Delta expression to prevent neuronal fate. Importantly, activity from both factors is required for proper cell fate decisions to occur. CONCLUSIONS These data demonstrate that Ras and Notch signaling are integrated during cell fate decisions within the R7 equivalence group through the combinatorial and opposing activities of Pros and dPax2. Our study provides one of the first examples of how the differential expression and synergistic roles of two independent transcription factors determine cell fate within an equivalence group. Since the integration of Ras and Notch signaling is associated with many developmental and cancer models, these findings should provide new insights into how cell specificity is achieved by ubiquitously used signaling pathways in diverse biological contexts.
Collapse
Affiliation(s)
- Mark Charlton-Perkins
- Department of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Koto A, Kuranaga E, Miura M. Apoptosis Ensures Spacing Pattern Formation of Drosophila Sensory Organs. Curr Biol 2011; 21:278-87. [PMID: 21276725 DOI: 10.1016/j.cub.2011.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/03/2010] [Accepted: 01/06/2011] [Indexed: 10/18/2022]
|
41
|
Larson DE, Johnson RI, Swat M, Cordero JB, Glazier JA, Cagan RL. Computer simulation of cellular patterning within the Drosophila pupal eye. PLoS Comput Biol 2010; 6:e1000841. [PMID: 20617161 PMCID: PMC2895643 DOI: 10.1371/journal.pcbi.1000841] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 05/28/2010] [Indexed: 01/28/2023] Open
Abstract
We present a computer simulation and associated experimental validation of assembly of glial-like support cells into the interweaving hexagonal lattice that spans the Drosophila pupal eye. This process of cell movements organizes the ommatidial array into a functional pattern. Unlike earlier simulations that focused on the arrangements of cells within individual ommatidia, here we examine the local movements that lead to large-scale organization of the emerging eye field. Simulations based on our experimental observations of cell adhesion, cell death, and cell movement successfully patterned a tracing of an emerging wild-type pupal eye. Surprisingly, altering cell adhesion had only a mild effect on patterning, contradicting our previous hypothesis that the patterning was primarily the result of preferential adhesion between IRM-class surface proteins. Instead, our simulations highlighted the importance of programmed cell death (PCD) as well as a previously unappreciated variable: the expansion of cells' apical surface areas, which promoted rearrangement of neighboring cells. We tested this prediction experimentally by preventing expansion in the apical area of individual cells: patterning was disrupted in a manner predicted by our simulations. Our work demonstrates the value of combining computer simulation with in vivo experiments to uncover novel mechanisms that are perpetuated throughout the eye field. It also demonstrates the utility of the Glazier-Graner-Hogeweg model (GGH) for modeling the links between local cellular interactions and emergent properties of developing epithelia as well as predicting unanticipated results in vivo.
Collapse
Affiliation(s)
- David E. Larson
- The Genome Center at Washington University, St. Louis, Missouri, United States of America
| | - Ruth I. Johnson
- Department of Developmental and Regenerative Biology, Mount Sinai Medical School, New York, New York, United States of America
| | - Maciej Swat
- Biocomplexity Institute and Department of Physics, Indiana University, Bloomington, Indiana, United States of America
| | - Julia B. Cordero
- The Beatson Institute for Cancer Research, Colorectal Cancer and Wnt Signaling Group, Glasgow, United Kingdom
| | - James A. Glazier
- Biocomplexity Institute and Department of Physics, Indiana University, Bloomington, Indiana, United States of America
| | - Ross L. Cagan
- Department of Developmental and Regenerative Biology, Mount Sinai Medical School, New York, New York, United States of America
| |
Collapse
|
42
|
Cordero JB, Cagan RL. Canonical wingless signaling regulates cone cell specification in the Drosophila retina. Dev Dyn 2010; 239:875-84. [PMID: 20140910 PMCID: PMC2892184 DOI: 10.1002/dvdy.22235] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Correct tissue patterning during development involves multiple morphogenetic events that include specification of different cell fates, cell proliferation, cell death, and coordinated changes in cell shape, position, and adhesion. Here, we use the Drosophila retina to explore the molecular mechanisms that regulate and integrate these various events. In a previous report, we found that wingless (wg) was required to induce a previously unknown surge of cell death ("early death") in the pupal retina. Here, we show that wg is also required to induce the more widely studied mid-pupal cell death ("late death") in a process that involves regulation of DIAP1. Furthermore, our data suggest that wg has a previously unreported role in specifying the glial-like cone cells. This activity requires canonical Wg signaling and is linked with Notch pathway activity. Our work broadens the role of canonical Wg signaling to encompass multiple patterning steps in the emerging Drosophila retina.
Collapse
Affiliation(s)
| | - Ross L. Cagan
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York
| |
Collapse
|
43
|
Abstract
Cells are sequentially recruited during formation of the Drosophila compound eye. A few simple rules are reiteratively utilized to control successive steps of eye assembly. Two themes emerge: the interplay between cell signaling and competence determines diversity of cell types and selective cell adhesion determines spatial patterns of cells. Cell signaling through competence creates signaling relays, which sequentially trigger differentiation of all cell types. Selective cell adhesion, on the other hand, provides forces to drive cells into energy-favored spatial configurations. Organ formation is nevertheless a complex process. The complexity lies in the spatial, temporal, and quantitative precision of gene expression. Many challenging questions remain.
Collapse
Affiliation(s)
- Sujin Bao
- Department of Pediatrics, Mount Sinai School of Medicine, New York, USA
| |
Collapse
|
44
|
Charlton-Perkins M, Cook TA. Building a fly eye: terminal differentiation events of the retina, corneal lens, and pigmented epithelia. Curr Top Dev Biol 2010; 93:129-73. [PMID: 20959165 DOI: 10.1016/b978-0-12-385044-7.00005-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the past, vast differences in ocular structure, development, and physiology throughout the animal kingdom led to the widely accepted notion that eyes are polyphyletic, that is, they have independently arisen multiple times during evolution. Despite the dissimilarity between vertebrate and invertebrate eyes, it is becoming increasingly evident that the development of the eye in both groups shares more similarity at the genetic level than was previously assumed, forcing a reexamination of eye evolution. Understanding the molecular underpinnings of cell type specification during Drosophila eye development has been a focus of research for many labs over the past 25 years, and many of these findings are nicely reviewed in Chapters 1 and 4. A somewhat less explored area of research, however, considers how these cells, once specified, develop into functional ocular structures. This review aims to summarize the current knowledge related to the terminal differentiation events of the retina, corneal lens, and pigmented epithelia in the fly eye. In addition, we discuss emerging evidence that the different functional components of the fly eye share developmental pathways and functions with the vertebrate eye.
Collapse
Affiliation(s)
- Mark Charlton-Perkins
- Department of Pediatric Ophthalmology, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | | |
Collapse
|
45
|
Eun B, Cho B, Moon Y, Kim SY, Kim K, Kim H, Sun W. Induction of neuronal apoptosis by expression of Hes6 via p53-dependent pathway. Brain Res 2009; 1313:1-8. [PMID: 19968968 DOI: 10.1016/j.brainres.2009.11.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Revised: 11/23/2009] [Accepted: 11/30/2009] [Indexed: 01/22/2023]
Abstract
Hes6 is a member of hairy/enhancer of split (Hes) family that plays a role in the cell proliferation and differentiation. Recently, we found that Hes6 is involved in the regulation of cell proliferation via p53-dependent pathway. In addition to the proliferating regions, brain regions where early post-mitotic neurons are enriched also exhibited Hes6 and p53 mRNA expression. Because p53 is involved in the post-mitotic neuronal apoptosis, here we investigated whether Hes6 can influence the neuronal survival/death. Overexpression of wild-type Hes6 and its mutants induced the apoptosis of primary cultured cortical neurons. In addition, neuronal apoptosis by Hes6 overexpression was markedly blunted in p53(-/-) or Bax(-/-) cortical neurons, suggesting that these pro-apoptotic effects are mediated by p53- and Bax-dependent pathway. However, transactivation-defective mutants of Hes6 also enhanced neuronal apoptosis, suggesting that apoptogenic activity of Hes6 is not directly related to its role in the transcriptional regulation. We propose that Hes6 may play a significant role in the neuronal cell death and/or pathological neurodegeneration via activation of p53 signaling.
Collapse
Affiliation(s)
- Bokkee Eun
- Department of Anatomy, Brain Korea 21, Korea University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Key decisions one makes in a lifetime include whether and how often to reproduce, what role to play in the community and, under certain conditions, whether to live or die. Similar decisions are also made at the level of cells: whether to divide, what fate to assume in the multicellular context of metazoan development and, under certain conditions, whether to live or to die. The pro-apoptotic gene hid plays an important role in the execution of cell death in Drosophila. Here, we review the various levels of control that exist to regulate Hid according to the life-or-death choice of a cell.
Collapse
|
47
|
Baker NE, Bhattacharya A, Firth LC. Regulation of Hh signal transduction as Drosophila eye differentiation progresses. Dev Biol 2009; 335:356-66. [PMID: 19761763 DOI: 10.1016/j.ydbio.2009.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 09/01/2009] [Accepted: 09/07/2009] [Indexed: 11/16/2022]
Abstract
Differentiation of the Drosophila retina occurs as a morphogenetic furrow sweeps anteriorly across the eye imaginal disc, driven by Hedgehog secretion from photoreceptor precursors differentiating behind the furrow. A BTB protein, Roadkill, is expressed posterior to the furrow and targets the Hedgehog signal transduction component Cubitus interruptus for degradation by Cullin-3 and the proteosome. Clonal analysis and conditional mutant studies establish that roadkill transcription is activated by the EGF receptor and Ras pathway in most differentiating retinal cells, and by both EGF receptor/Ras and by Hedgehog signaling in cells that remain unspecified. These findings outline a circuit by which Hedgehog signal transduction is modified as Hedgehog signaling initiates retinal differentiation. A model is presented for regulation of the Cullin-3 and Cullin-1 pathways that modifies Hedgehog signaling as the morphogenetic furrow moves and the responses of retinal cells change.
Collapse
Affiliation(s)
- Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
48
|
Peralta S, Gómez Y, González-Gaitán MA, Moya F, Vinós J. Notch down-regulation by endocytosis is essential for pigment cell determination and survival in the Drosophila retina. Mech Dev 2009; 126:256-69. [DOI: 10.1016/j.mod.2008.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 10/22/2008] [Accepted: 10/23/2008] [Indexed: 11/28/2022]
|
49
|
Tanaka-Matakatsu M, Xu J, Cheng L, Du W. Regulation of apoptosis of rbf mutant cells during Drosophila development. Dev Biol 2009; 326:347-56. [PMID: 19100727 PMCID: PMC2634822 DOI: 10.1016/j.ydbio.2008.11.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 11/19/2008] [Indexed: 12/19/2022]
Abstract
Inactivation of the retinoblastoma gene Rb leads to defects in cell proliferation, differentiation, or apoptosis, depending on specific cell or tissue types. To gain insights into the genes that can modulate the consequences of Rb inactivation, we carried out a genetic screen in Drosophila to identify mutations that affected apoptosis induced by inactivation of the Retinoblastoma-family protein (rbf) and identified a mutation that blocked apoptosis induced by rbf. We found this mutation to be a new allele of head involution defective (hid) and showed that hid expression is deregulated in rbf mutant cells in larval imaginal discs. We identified an enhancer that regulates hid expression in response to developmental cues as well as to radiation and demonstrated that this hid enhancer is directly repressed by RBF through an E2F binding site. These observations indicate that apoptosis of rbf mutant cells is mediated by an upregulation of hid. Finally, we showed that bantam, a miRNA that regulates hid translation, is expressed in the interommatidial cells in the larval eye discs and modulates the survival of rbf mutant cells.
Collapse
Affiliation(s)
- Miho Tanaka-Matakatsu
- Ben May Department for Cancer Research, the University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA
| | - Jinhua Xu
- Ben May Department for Cancer Research, the University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA
| | - Leping Cheng
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, CHINA
| | - Wei Du
- Ben May Department for Cancer Research, the University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
50
|
Krejcí A, Bernard F, Housden BE, Collins S, Bray SJ. Direct response to Notch activation: signaling crosstalk and incoherent logic. Sci Signal 2009; 2:ra1. [PMID: 19176515 DOI: 10.1126/scisignal.2000140] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Notch is the receptor in one of a small group of conserved signaling pathways that are essential at multiple stages in development. Although the mechanism of transduction impinges directly on the nucleus to regulate transcription through the CSL [CBF-1/Su(H)/LAG-1] [corrected] DNA binding protein, there are few known direct target genes. Thus, relatively little is known about the immediate cellular consequences of Notch activation. We therefore set out to determine the genome-wide response to Notch activation by analyzing the changes in messenger RNA (mRNA) expression and the sites of CSL occupancy within 30 minutes of activating Notch in Drosophila cells. Through combining these data, we identify high-confidence direct targets of Notch that are implicated in the maintenance of adult muscle progenitors in vivo. These targets are enriched in cell morphogenesis genes and in components of other cell signaling pathways, especially the epidermal growth factor receptor (EGFR) pathway. Also evident are examples of incoherent network logic, where Notch stimulates the expression of both a gene and the repressor of that gene, which may result in a transient window of competence after Notch activation. Furthermore, because targets comprise both positive and negative regulators, cells become poised for both outcomes, suggesting one mechanism through which Notch activation can lead to opposite effects in different contexts.
Collapse
Affiliation(s)
- Alena Krejcí
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | | | | | | | | |
Collapse
|