1
|
Thomson L, Shah HP, Akinwotu Adewale V, Beise A, Bliayang C, Cioch Z, Craig M, Crump A, Durdan M, Espinosa M, Feda K, Feist J, Fragoso A, Haro G, Hoffman B, Horne P, Houha N, Hounnou S, Inman A, Jakobsze D, Juarez-Morales Y, Khan Y, Kohler J, Lawlor R, Lieser B, Loitz R, Martinez E, Martinez A, Martinez M, Maza B, Mendoza B, Miller S, Mngodo H, O'Shea S, Piane SN, Raivala E, Ruger S, Singer A, Strand JE, Traylor A, Wright A, McCabe S, Pandit SS, Bieser K, Croonquist P, Taylor EE, Wittke-Thompson J, Kagey JD, Devergne O. Genetic Mapping and Phenotypic Analysis of GstE14 E.4.1 on Eye and Antennae Development in Drosophila melanogaster. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001019. [PMID: 38681673 PMCID: PMC11056011 DOI: 10.17912/micropub.biology.001019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024]
Abstract
Genetic screens are valuable for identifying novel genes involved in the regulation of developmental processes. To identify genes associated with cell growth regulation in Drosophila melanogaster , a mutagenesis screen was performed. Undergraduate students participating in Fly-CURE phenotypically characterized the E.4.1 mutant which is associated with rough eyes and antennae overgrowth. Following complementation analysis and subsequent genomic sequencing, E.4.1 was identified as a novel mutant allele of GstE14 , a gene involved in ecdysone biosynthesis important for the timing of developmental events. The abnormal eye and antenna phenotypes observed resulting from the loss of GstE14 suggest its role in tissue growth.
Collapse
Affiliation(s)
- Lauren Thomson
- Northern Illinois University, DeKalb, Illinois, United States
| | - Hemin P Shah
- Northern Illinois University, DeKalb, Illinois, United States
| | | | - Alyssa Beise
- Anoka-Ramsey Community College, Coon Rapids, Minnesota, United States
| | - Camryn Bliayang
- Anoka-Ramsey Community College, Coon Rapids, Minnesota, United States
| | - Zuzanna Cioch
- Northern Illinois University, DeKalb, Illinois, United States
| | - Mason Craig
- University of St. Francis, Joliet, Illinois, United States
| | - Adell Crump
- Northern Illinois University, DeKalb, Illinois, United States
| | - Maya Durdan
- Northern Illinois University, DeKalb, Illinois, United States
| | | | - Kaitlin Feda
- Northern Illinois University, DeKalb, Illinois, United States
| | - Jami Feist
- Anoka-Ramsey Community College, Coon Rapids, Minnesota, United States
| | - Alexis Fragoso
- University of St. Francis, Joliet, Illinois, United States
| | - Genesys Haro
- University of St. Francis, Joliet, Illinois, United States
| | - Breanna Hoffman
- Anoka-Ramsey Community College, Coon Rapids, Minnesota, United States
| | - Paige Horne
- Northern Illinois University, DeKalb, Illinois, United States
| | - Nathan Houha
- Northern Illinois University, DeKalb, Illinois, United States
| | - Shirley Hounnou
- Northern Illinois University, DeKalb, Illinois, United States
| | - Annabel Inman
- Anoka-Ramsey Community College, Coon Rapids, Minnesota, United States
| | - Daniel Jakobsze
- Northern Illinois University, DeKalb, Illinois, United States
| | | | - Yousuf Khan
- Northern Illinois University, DeKalb, Illinois, United States
| | - Joshua Kohler
- Northern Illinois University, DeKalb, Illinois, United States
| | - Reece Lawlor
- Anoka-Ramsey Community College, Coon Rapids, Minnesota, United States
| | - Bethany Lieser
- Anoka-Ramsey Community College, Coon Rapids, Minnesota, United States
| | - Ryan Loitz
- Northern Illinois University, DeKalb, Illinois, United States
| | - Erik Martinez
- Northern Illinois University, DeKalb, Illinois, United States
| | - Alexis Martinez
- Northern Illinois University, DeKalb, Illinois, United States
| | - Michelle Martinez
- Anoka-Ramsey Community College, Coon Rapids, Minnesota, United States
| | - Brandyn Maza
- Northern Illinois University, DeKalb, Illinois, United States
| | - Brenda Mendoza
- Northern Illinois University, DeKalb, Illinois, United States
| | - Steven Miller
- Northern Illinois University, DeKalb, Illinois, United States
| | - Haniel Mngodo
- Northern Illinois University, DeKalb, Illinois, United States
| | - Sarah O'Shea
- Northern Illinois University, DeKalb, Illinois, United States
| | - Sarah N Piane
- University of St. Francis, Joliet, Illinois, United States
| | - Ethan Raivala
- Anoka-Ramsey Community College, Coon Rapids, Minnesota, United States
| | - Sophie Ruger
- Northern Illinois University, DeKalb, Illinois, United States
| | - Abigail Singer
- Northern Illinois University, DeKalb, Illinois, United States
| | - Jessica E Strand
- Anoka-Ramsey Community College, Coon Rapids, Minnesota, United States
| | - Alexis Traylor
- Northern Illinois University, DeKalb, Illinois, United States
| | - Asia Wright
- Northern Illinois University, DeKalb, Illinois, United States
| | - Shawn McCabe
- Anoka-Ramsey Community College, Coon Rapids, Minnesota, United States
| | | | - Kayla Bieser
- Nevada State University, Henderson, Nevada, United States
| | - Paula Croonquist
- Anoka-Ramsey Community College, Coon Rapids, Minnesota, United States
| | | | | | - Jacob D Kagey
- Universty of Detroit Mercy, Detroit, Michigan, United States
| | | |
Collapse
|
2
|
Zheng L, Liu Z, Yang Y, Shen HB. Accurate inference of gene regulatory interactions from spatial gene expression with deep contrastive learning. Bioinformatics 2022; 38:746-753. [PMID: 34664632 DOI: 10.1093/bioinformatics/btab718] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/19/2021] [Accepted: 10/15/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Reverse engineering of gene regulatory networks (GRNs) has long been an attractive research topic in system biology. Computational prediction of gene regulatory interactions has remained a challenging problem due to the complexity of gene expression and scarce information resources. The high-throughput spatial gene expression data, like in situ hybridization images that exhibit temporal and spatial expression patterns, has provided abundant and reliable information for the inference of GRNs. However, computational tools for analyzing the spatial gene expression data are highly underdeveloped. RESULTS In this study, we develop a new method for identifying gene regulatory interactions from gene expression images, called ConGRI. The method is featured by a contrastive learning scheme and deep Siamese convolutional neural network architecture, which automatically learns high-level feature embeddings for the expression images and then feeds the embeddings to an artificial neural network to determine whether or not the interaction exists. We apply the method to a Drosophila embryogenesis dataset and identify GRNs of eye development and mesoderm development. Experimental results show that ConGRI outperforms previous traditional and deep learning methods by a large margin, which achieves accuracies of 76.7% and 68.7% for the GRNs of early eye development and mesoderm development, respectively. It also reveals some master regulators for Drosophila eye development. AVAILABILITYAND IMPLEMENTATION https://github.com/lugimzheng/ConGRI. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Lujing Zheng
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- SJTU Paris Elite Institute of Technology (SPEIT), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhenhuan Liu
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Yang
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai 200240, China
| | - Hong-Bin Shen
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Image Processing and Pattern Recognition and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Texada MJ, Koyama T, Rewitz K. Regulation of Body Size and Growth Control. Genetics 2020; 216:269-313. [PMID: 33023929 PMCID: PMC7536854 DOI: 10.1534/genetics.120.303095] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
The control of body and organ growth is essential for the development of adults with proper size and proportions, which is important for survival and reproduction. In animals, adult body size is determined by the rate and duration of juvenile growth, which are influenced by the environment. In nutrient-scarce environments in which more time is needed for growth, the juvenile growth period can be extended by delaying maturation, whereas juvenile development is rapidly completed in nutrient-rich conditions. This flexibility requires the integration of environmental cues with developmental signals that govern internal checkpoints to ensure that maturation does not begin until sufficient tissue growth has occurred to reach a proper adult size. The Target of Rapamycin (TOR) pathway is the primary cell-autonomous nutrient sensor, while circulating hormones such as steroids and insulin-like growth factors are the main systemic regulators of growth and maturation in animals. We discuss recent findings in Drosophila melanogaster showing that cell-autonomous environment and growth-sensing mechanisms, involving TOR and other growth-regulatory pathways, that converge on insulin and steroid relay centers are responsible for adjusting systemic growth, and development, in response to external and internal conditions. In addition to this, proper organ growth is also monitored and coordinated with whole-body growth and the timing of maturation through modulation of steroid signaling. This coordination involves interorgan communication mediated by Drosophila insulin-like peptide 8 in response to tissue growth status. Together, these multiple nutritional and developmental cues feed into neuroendocrine hubs controlling insulin and steroid signaling, serving as checkpoints at which developmental progression toward maturation can be delayed. This review focuses on these mechanisms by which external and internal conditions can modulate developmental growth and ensure proper adult body size, and highlights the conserved architecture of this system, which has made Drosophila a prime model for understanding the coordination of growth and maturation in animals.
Collapse
Affiliation(s)
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, 2100, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100, Denmark
| |
Collapse
|
4
|
Lin X, Smagghe G. Roles of the insulin signaling pathway in insect development and organ growth. Peptides 2019; 122:169923. [PMID: 29458057 DOI: 10.1016/j.peptides.2018.02.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 12/16/2022]
Abstract
Organismal development is a complex process as it requires coordination of many aspects to grow into fit individuals, such as the control of body size and organ growth. Therefore, the mechanisms of precise control of growth are essential for ensuring the growth of organisms at a correct body size and proper organ proportions during development. The control of the growth rate and the duration of growth (or the cessation of growth) are required in size control. The insulin signaling pathway and the elements involved are essential in the control of growth. On the other hand, the ecdysteroid molting hormone determines the duration of growth. The secretion of these hormones is controlled by environmental factors such as nutrition. Moreover, the target of rapamycin (TOR) pathway is considered as a nutrient sensing pathway. Important cross-talks have been shown to exist among these pathways. In this review, we outline the control of body and organ growth by the insulin/TOR signaling pathway, and also the interaction between nutrition via insulin/TOR signaling and ecdysteroids at the coordination of organismal development and organ growth in insects, mainly focusing on the well-studied fruit fly Drosophila melanogaster.
Collapse
Affiliation(s)
- Xianyu Lin
- Department of Crop Protection, Ghent University, 9000 Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
5
|
Mortality and Effect on Growth of Artemia franciscana Exposed to Two Common Organic Pollutants. WATER 2019. [DOI: 10.3390/w11081614] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acute toxicity and inhibition on growth of Artemia franciscana nauplii (Instar I-II) after exposure to the reference toxicants bisphenol a (BPA) and sodium dodecyl sulfate (SDS) were studied. LC50 values were calculated and differences in body growth were recorded after 24, 48, and 72 h of exposure to the toxicants. The results indicated that BPA had lower toxicity than SDS. Development of the nauplii was clearly influenced by duration of exposure. Growth inhibition was detected for both toxicants. Abnormal growth of the central eye of several Artemia nauplii after 72 h of exposure to BPA was also detected. Our results indicate that growth inhibition could be used as a valid endpoint for toxicity studies.
Collapse
|
6
|
Ali S, Signor SA, Kozlov K, Nuzhdin SV. Novel approach to quantitative spatial gene expression uncovers genetic stochasticity in the developing Drosophila eye. Evol Dev 2019; 21:157-171. [PMID: 30756455 DOI: 10.1111/ede.12283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Robustness in development allows for the accumulation of genetically based variation in expression. However, this variation is usually examined in response to large perturbations, and examination of this variation has been limited to being spatial, or quantitative, but because of technical restrictions not both. Here we bridge these gaps by investigating replicated quantitative spatial gene expression using rigorous statistical models, in different genotypes, sexes, and species (Drosophila melanogaster and D. simulans). Using this type of quantitative approach with molecular developmental data allows for comparison among conditions, such as different genetic backgrounds. We apply this approach to the morphogenetic furrow, a wave of differentiation that patterns the developing eye disc. Within the morphogenetic furrow, we focus on four genes, hairy, atonal, hedgehog, and Delta. Hybridization chain reaction quantitatively measures spatial gene expression, co-staining for all four genes simultaneously. We find considerable variation in the spatial expression pattern of these genes in the eye between species, genotypes, and sexes. We also find that there has been evolution of the regulatory relationship between these genes, and that their spatial interrelationships have evolved between species. This variation has no phenotypic effect, and could be buffered by network thresholds or compensation from other genes. Both of these mechanisms could potentially be contributing to long term developmental systems drift.
Collapse
Affiliation(s)
- Sammi Ali
- Molecular and Computational Biology, University of Southern California, Los Angeles, California
| | - Sarah A Signor
- Molecular and Computational Biology, University of Southern California, Los Angeles, California
| | - Konstantin Kozlov
- Department of Applied Mathematics, St. Petersburg State Polytechnic University, St. Petersburg, Russia
| | - Sergey V Nuzhdin
- Molecular and Computational Biology, University of Southern California, Los Angeles, California.,Department of Applied Mathematics, St. Petersburg State Polytechnic University, St. Petersburg, Russia
| |
Collapse
|
7
|
Mirth CK, Shingleton AW. Coordinating Development: How Do Animals Integrate Plastic and Robust Developmental Processes? Front Cell Dev Biol 2019; 7:8. [PMID: 30788342 PMCID: PMC6372504 DOI: 10.3389/fcell.2019.00008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/16/2019] [Indexed: 02/02/2023] Open
Abstract
Our developmental environment significantly affects myriad aspects of our biology, including key life history traits, morphology, physiology, and our susceptibility to disease. This environmentally-induced variation in phenotype is known as plasticity. In many cases, plasticity results from alterations in the rate of synthesis of important developmental hormones. However, while developmental processes like organ growth are sensitive to environmental conditions, others like patterning - the process that generates distinct cell identities - remain robust to perturbation. This is particularly surprising given that the same hormones that regulate organ growth also regulate organ patterning. In this review, we revisit the current approaches that address how organs coordinate their growth and pattern, and outline our hypotheses for understanding how organs achieve correct pattern across a range of sizes.
Collapse
Affiliation(s)
- Christen K Mirth
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Alexander W Shingleton
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
8
|
Torres-Oliva M, Schneider J, Wiegleb G, Kaufholz F, Posnien N. Dynamic genome wide expression profiling of Drosophila head development reveals a novel role of Hunchback in retinal glia cell development and blood-brain barrier integrity. PLoS Genet 2018; 14:e1007180. [PMID: 29360820 PMCID: PMC5796731 DOI: 10.1371/journal.pgen.1007180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 02/02/2018] [Accepted: 01/01/2018] [Indexed: 01/01/2023] Open
Abstract
Drosophila melanogaster head development represents a valuable process to study the developmental control of various organs, such as the antennae, the dorsal ocelli and the compound eyes from a common precursor, the eye-antennal imaginal disc. While the gene regulatory network underlying compound eye development has been extensively studied, the key transcription factors regulating the formation of other head structures from the same imaginal disc are largely unknown. We obtained the developmental transcriptome of the eye-antennal discs covering late patterning processes at the late 2nd larval instar stage to the onset and progression of differentiation at the end of larval development. We revealed the expression profiles of all genes expressed during eye-antennal disc development and we determined temporally co-expressed genes by hierarchical clustering. Since co-expressed genes may be regulated by common transcriptional regulators, we combined our transcriptome dataset with publicly available ChIP-seq data to identify central transcription factors that co-regulate genes during head development. Besides the identification of already known and well-described transcription factors, we show that the transcription factor Hunchback (Hb) regulates a significant number of genes that are expressed during late differentiation stages. We confirm that hb is expressed in two polyploid subperineurial glia cells (carpet cells) and a thorough functional analysis shows that loss of Hb function results in a loss of carpet cells in the eye-antennal disc. Additionally, we provide for the first time functional data indicating that carpet cells are an integral part of the blood-brain barrier. Eventually, we combined our expression data with a de novo Hb motif search to reveal stage specific putative target genes of which we find a significant number indeed expressed in carpet cells. The development of different cell types must be tightly coordinated, and the eye-antennal imaginal discs of Drosophila melanogaster represent an excellent model to study the molecular mechanisms underlying this coordination. These imaginal discs contain the anlagen of nearly all adult head structures, such as the antennae, the head cuticle, the ocelli and the compound eyes. While large scale screens have been performed to unravel the gene regulatory network underlying compound eye development, a comprehensive understanding of genome wide expression dynamics throughout head development is still missing to date. We studied the genome wide gene expression dynamics during eye-antennal disc development in D. melanogaster to identify new central regulators of the underlying gene regulatory network. Expression based gene clustering and transcription factor motif enrichment analyses revealed a central regulatory role of the transcription factor Hunchback (Hb). We confirmed that hb is expressed in two polyploid retinal subperineurial glia cells (carpet cells). Our functional analysis shows that Hb is necessary for carpet cell development and we show for the first time that the carpet cells are an integral part of the blood-brain barrier.
Collapse
Affiliation(s)
- Montserrat Torres-Oliva
- Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung für Entwicklungsbiologie, GZMB Ernst-Caspari-Haus, Göttingen, Germany
| | - Julia Schneider
- Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung für Entwicklungsbiologie, GZMB Ernst-Caspari-Haus, Göttingen, Germany
| | - Gordon Wiegleb
- Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung für Entwicklungsbiologie, GZMB Ernst-Caspari-Haus, Göttingen, Germany
| | - Felix Kaufholz
- Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung für Entwicklungsbiologie, GZMB Ernst-Caspari-Haus, Göttingen, Germany
| | - Nico Posnien
- Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung für Entwicklungsbiologie, GZMB Ernst-Caspari-Haus, Göttingen, Germany
- * E-mail:
| |
Collapse
|
9
|
Dye NA, Popović M, Spannl S, Etournay R, Kainmüller D, Ghosh S, Myers EW, Jülicher F, Eaton S. Cell dynamics underlying oriented growth of the Drosophila wing imaginal disc. Development 2017; 144:4406-4421. [PMID: 29038308 DOI: 10.1242/dev.155069] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/05/2017] [Indexed: 12/30/2022]
Abstract
Quantitative analysis of the dynamic cellular mechanisms shaping the Drosophila wing during its larval growth phase has been limited, impeding our ability to understand how morphogen patterns regulate tissue shape. Such analysis requires explants to be imaged under conditions that maintain both growth and patterning, as well as methods to quantify how much cellular behaviors change tissue shape. Here, we demonstrate a key requirement for the steroid hormone 20-hydroxyecdysone (20E) in the maintenance of numerous patterning systems in vivo and in explant culture. We find that low concentrations of 20E support prolonged proliferation in explanted wing discs in the absence of insulin, incidentally providing novel insight into the hormonal regulation of imaginal growth. We use 20E-containing media to observe growth directly and to apply recently developed methods for quantitatively decomposing tissue shape changes into cellular contributions. We discover that whereas cell divisions drive tissue expansion along one axis, their contribution to expansion along the orthogonal axis is cancelled by cell rearrangements and cell shape changes. This finding raises the possibility that anisotropic mechanical constraints contribute to growth orientation in the wing disc.
Collapse
Affiliation(s)
- Natalie A Dye
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Marko Popović
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | - Stephanie Spannl
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Raphaël Etournay
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany.,Unité de Génétique et Physiologie de l'Audition UMRS 1120, Département de Neurosciences, Institut Pasteur, 75015 Paris, France
| | - Dagmar Kainmüller
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany.,Janelia Farm Research Campus, 19700 Helix Dr, Ashburn, VA 20147, USA
| | - Suhrid Ghosh
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Eugene W Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany.,Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany .,Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany .,Biotechnologisches Zentrum, Technische Universität Dresden, Tatzberg 47/49, 01309 Dresden, Germany
| |
Collapse
|
10
|
Neto M, Naval-Sánchez M, Potier D, Pereira PS, Geerts D, Aerts S, Casares F. Nuclear receptors connect progenitor transcription factors to cell cycle control. Sci Rep 2017; 7:4845. [PMID: 28687780 PMCID: PMC5501803 DOI: 10.1038/s41598-017-04936-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 05/23/2017] [Indexed: 01/31/2023] Open
Abstract
The specification and growth of organs is controlled simultaneously by networks of transcription factors. While the connection between these transcription factors with fate determinants is increasingly clear, how they establish the link with the cell cycle is far less understood. Here we investigate this link in the developing Drosophila eye, where two transcription factors, the MEIS1 homologue hth and the Zn-finger tsh, synergize to stimulate the proliferation of naïve eye progenitors. Experiments combining transcriptomics, open-chromatin profiling, motif analysis and functional assays indicate that these progenitor transcription factors exert a global regulation of the proliferation program. Rather than directly regulating cell cycle genes, they control proliferation through an intermediary layer of nuclear receptors of the ecdysone/estrogen-signaling pathway. This regulatory subnetwork between hth, tsh and nuclear receptors might be conserved from Drosophila to mammals, as we find a significant co-overexpression of their human homologues in specific cancer types.
Collapse
Affiliation(s)
- Marta Neto
- CABD, Andalusian Centre for Developmental Biology, CSIC-UPO-JA, 41013, Seville, Spain.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | | | - Delphine Potier
- School of Medicine, University of Leuven, box 602 3000, Leuven, Belgium
| | - Paulo S Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Dirk Geerts
- Department of Medical Biology L2-109, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Stein Aerts
- School of Medicine, University of Leuven, box 602 3000, Leuven, Belgium.
| | - Fernando Casares
- CABD, Andalusian Centre for Developmental Biology, CSIC-UPO-JA, 41013, Seville, Spain.
| |
Collapse
|
11
|
Guo Y, Flegel K, Kumar J, McKay DJ, Buttitta LA. Ecdysone signaling induces two phases of cell cycle exit in Drosophila cells. Biol Open 2016; 5:1648-1661. [PMID: 27737823 PMCID: PMC5155522 DOI: 10.1242/bio.017525] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
During development, cell proliferation and differentiation must be tightly coordinated to ensure proper tissue morphogenesis. Because steroid hormones are central regulators of developmental timing, understanding the links between steroid hormone signaling and cell proliferation is crucial to understanding the molecular basis of morphogenesis. Here we examined the mechanism by which the steroid hormone ecdysone regulates the cell cycle in Drosophila. We find that a cell cycle arrest induced by ecdysone in Drosophila cell culture is analogous to a G2 cell cycle arrest observed in the early pupa wing. We show that in the wing, ecdysone signaling at the larva-to-puparium transition induces Broad which in turn represses the cdc25c phosphatase String. The repression of String generates a temporary G2 arrest that synchronizes the cell cycle in the wing epithelium during early pupa wing elongation and flattening. As ecdysone levels decline after the larva-to-puparium pulse during early metamorphosis, Broad expression plummets, allowing String to become re-activated, which promotes rapid G2/M progression and a subsequent synchronized final cell cycle in the wing. In this manner, pulses of ecdysone can both synchronize the final cell cycle and promote the coordinated acquisition of terminal differentiation characteristics in the wing. Summary: Pulsed ecdysone signaling remodels cell cycle dynamics, causing distinct primary and secondary cell cycle arrests in Drosophila cells, analogous to those observed in the wing during metamorphosis.
Collapse
Affiliation(s)
- Yongfeng Guo
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kerry Flegel
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jayashree Kumar
- Biology Department and Genetics Department, Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniel J McKay
- Biology Department and Genetics Department, Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura A Buttitta
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Barron DA, Moberg K. Inverse regulation of two classic Hippo pathway target genes in Drosophila by the dimerization hub protein Ctp. Sci Rep 2016; 6:22726. [PMID: 26972460 PMCID: PMC4789802 DOI: 10.1038/srep22726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/17/2016] [Indexed: 12/21/2022] Open
Abstract
The LC8 family of small ~8 kD proteins are highly conserved and interact with multiple protein partners in eukaryotic cells. LC8-binding modulates target protein activity, often through induced dimerization via LC8:LC8 homodimers. Although many LC8-interactors have roles in signaling cascades, LC8’s role in developing epithelia is poorly understood. Using the Drosophila wing as a developmental model, we find that the LC8 family member Cut up (Ctp) is primarily required to promote epithelial growth, which correlates with effects on the pro-growth factor dMyc and two genes, diap1 and bantam, that are classic targets of the Hippo pathway coactivator Yorkie. Genetic tests confirm that Ctp supports Yorkie-driven tissue overgrowth and indicate that Ctp acts through Yorkie to control bantam (ban) and diap1 transcription. Quite unexpectedly however, Ctp loss has inverse effects on ban and diap1: it elevates ban expression but reduces diap1 expression. In both cases these transcriptional changes map to small segments of these promoters that recruit Yorkie. Although LC8 complexes with Yap1, a Yorkie homolog, in human cells, an orthologous interaction was not detected in Drosophila cells. Collectively these findings reveal that that Drosophila Ctp is a required regulator of Yorkie-target genes in vivo and suggest that Ctp may interact with a Hippo pathway protein(s) to exert inverse transcriptional effects on Yorkie-target genes.
Collapse
Affiliation(s)
- Daniel A Barron
- Department of Cell Biology, Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Cell Biology, Medical Scientist MD/PhD Training Program, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kenneth Moberg
- Department of Cell Biology, Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
13
|
Ligand-independent requirements of steroid receptors EcR and USP for cell survival. Cell Death Differ 2015; 23:405-16. [PMID: 26250909 DOI: 10.1038/cdd.2015.108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 02/07/2023] Open
Abstract
The active form of the Drosophila steroid hormone ecdysone, 20-hydroxyecdysone (20E), binds the heterodimer EcR/USP nuclear receptor to regulate target genes that elicit proliferation, cell death and differentiation during insect development. Although the 20E effects are relatively well known, the physiological relevance of its receptors remains poorly understood. We show here that the prothoracic gland (PG), the major steroid-producing organ of insect larvae, requires EcR and USP to survive in a critical period previous to metamorphosis, and that this requirement is 20E-independent. The cell death induced by the downregulation of these receptors involves the activation of the JNK-encoding basket gene and it can be rescued by upregulating EcR isoforms which are unable to respond to 20E. Also, while PG cell death prevents ecdysone production, blocking hormone synthesis or secretion in normal PG does not lead to cell death, demonstrating further the ecdysone-independent nature of the receptor-deprivation cell death. In contrast to PG cells, wing disc or salivary glands cells do not require these receptors for survival, revealing their cell and developmental time specificity. Exploring the potential use of this feature of steroid receptors in cancer, we assayed tumor overgrowth induced by altered yorkie signaling. This overgrowth is suppressed by EcR downregulation in PG, but not in wing disc, cells. The mechanism of all these cell death features is based on the transcriptional regulation of reaper. These novel and context-dependent functional properties for EcR and USP receptors may help to understand the heterogeneous responses to steroid-based therapies in human pathologies.
Collapse
|
14
|
Zhang C, Robinson BS, Xu W, Yang L, Yao B, Zhao H, Byun PK, Jin P, Veraksa A, Moberg KH. The ecdysone receptor coactivator Taiman links Yorkie to transcriptional control of germline stem cell factors in somatic tissue. Dev Cell 2015; 34:168-80. [PMID: 26143992 DOI: 10.1016/j.devcel.2015.05.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 04/25/2015] [Accepted: 05/14/2015] [Indexed: 12/16/2022]
Abstract
The Hippo pathway is a conserved signaling cascade that modulates tissue growth. Although its core elements are well defined, factors modulating Hippo transcriptional outputs remain elusive. Here we show that components of the steroid-responsive ecdysone (Ec) pathway modulate Hippo transcriptional effects in imaginal disc cells. The Ec receptor coactivator Taiman (Tai) interacts with the Hippo transcriptional coactivator Yorkie (Yki) and promotes expression of canonical Yki-responsive genes. Tai enhances Yki-driven growth, while Tai loss, or a form of Tai unable to bind Yki, suppresses Yki-driven tissue growth. This growth suppression is not correlated with impaired induction of canonical Hippo-responsive genes but with suppression of a distinct pro-growth program of Yki-induced/Tai-dependent genes, including the germline stem cell factors nanos and piwi. These data reveal Hippo/Ec pathway crosstalk in the form a Yki-Tai complex that collaboratively induces germline genes as part of a transcriptional program that is normally repressed in developing somatic epithelia.
Collapse
Affiliation(s)
- Can Zhang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Brian S Robinson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Wenjian Xu
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Liu Yang
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Heya Zhao
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Phil K Byun
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Graduate Program in Genetics and Molecular Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Alexey Veraksa
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Kenneth H Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
15
|
Nitric Oxide Synthase Regulates Growth Coordination During Drosophila melanogaster Imaginal Disc Regeneration. Genetics 2015; 200:1219-28. [PMID: 26081194 DOI: 10.1534/genetics.115.178053] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/15/2015] [Indexed: 11/18/2022] Open
Abstract
Mechanisms that coordinate growth during development are essential for producing animals with proper organ proportion. Here we describe a pathway through which tissues communicate to coordinate growth. During Drosophila melanogaster larval development, damage to imaginal discs activates a regeneration checkpoint through expression of Dilp8. This both produces a delay in developmental timing and slows the growth of undamaged tissues, coordinating regeneration of the damaged tissue with developmental progression and overall growth. Here we demonstrate that Dilp8-dependent growth coordination between regenerating and undamaged tissues, but not developmental delay, requires the activity of nitric oxide synthase (NOS) in the prothoracic gland. NOS limits the growth of undamaged tissues by reducing ecdysone biosynthesis, a requirement for imaginal disc growth during both the regenerative checkpoint and normal development. Therefore, NOS activity in the prothoracic gland coordinates tissue growth through regulation of endocrine signals.
Collapse
|
16
|
Oliveira MM, Shingleton AW, Mirth CK. Coordination of wing and whole-body development at developmental milestones ensures robustness against environmental and physiological perturbations. PLoS Genet 2014; 10:e1004408. [PMID: 24945255 PMCID: PMC4063698 DOI: 10.1371/journal.pgen.1004408] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/14/2014] [Indexed: 11/18/2022] Open
Abstract
Development produces correctly patterned tissues under a wide range of conditions that alter the rate of development in the whole body. We propose two hypotheses through which tissue patterning could be coordinated with whole-body development to generate this robustness. Our first hypothesis states that tissue patterning is tightly coordinated with whole-body development over time. The second hypothesis is that tissue patterning aligns at developmental milestones. To distinguish between our two hypotheses, we developed a staging scheme for the wing imaginal discs of Drosophila larvae using the expression of canonical patterning genes, linking our scheme to three whole-body developmental events: moulting, larval wandering and pupariation. We used our scheme to explore how the progression of pattern changes when developmental time is altered either by changing temperature or by altering the timing of hormone synthesis that drives developmental progression. We found the expression pattern in the wing disc always aligned at moulting and pupariation, indicating that these key developmental events represent milestones. Between these milestones, the progression of pattern showed greater variability in response to changes in temperature and alterations in physiology. Furthermore, our data showed that discs from wandering larvae showed greater variability in patterning stage. Thus for wing disc patterning, wandering does not appear to be a developmental milestone. Our findings reveal that tissue patterning remains robust against environmental and physiological perturbations by aligning at developmental milestones. Furthermore, our work provides an important glimpse into how the development of individual tissues is coordinated with the body as a whole.
Collapse
Affiliation(s)
- Marisa M. Oliveira
- Development, Evolution and the Environment Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Alexander W. Shingleton
- Dept. of Zoology, Michigan State University, East Lansing, Michigan, United States of America
- Dept. of Biology, Lake Forest College, Lake Forest, Illinois, United States of America
| | - Christen K. Mirth
- Development, Evolution and the Environment Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
17
|
Jusiak B, Karandikar UC, Kwak SJ, Wang F, Wang H, Chen R, Mardon G. Regulation of Drosophila eye development by the transcription factor Sine oculis. PLoS One 2014; 9:e89695. [PMID: 24586968 PMCID: PMC3934907 DOI: 10.1371/journal.pone.0089695] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/21/2014] [Indexed: 11/18/2022] Open
Abstract
Homeodomain transcription factors of the Sine oculis (SIX) family direct multiple regulatory processes throughout the metazoans. Sine oculis (So) was first characterized in the fruit fly Drosophila melanogaster, where it is both necessary and sufficient for eye development, regulating cell survival, proliferation, and differentiation. Despite its key role in development, only a few direct targets of So have been described previously. In the current study, we aim to expand our knowledge of So-mediated transcriptional regulation in the developing Drosophila eye using ChIP-seq to map So binding regions throughout the genome. We find 7,566 So enriched regions (peaks), estimated to map to 5,952 genes. Using overlap between the So ChIP-seq peak set and genes that are differentially regulated in response to loss or gain of so, we identify putative direct targets of So. We find So binding enrichment in genes not previously known to be regulated by So, including genes that encode cell junction proteins and signaling pathway components. In addition, we analyze a subset of So-bound novel genes in the eye, and find eight genes that have previously uncharacterized eye phenotypes and may be novel direct targets of So. Our study presents a greatly expanded list of candidate So targets and serves as basis for future studies of So-mediated gene regulation in the eye.
Collapse
Affiliation(s)
- Barbara Jusiak
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Umesh C. Karandikar
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Su-Jin Kwak
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Feng Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hui Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rui Chen
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Graeme Mardon
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
18
|
Nijhout HF, Riddiford LM, Mirth C, Shingleton AW, Suzuki Y, Callier V. The developmental control of size in insects. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2014; 3:113-34. [PMID: 24902837 PMCID: PMC4048863 DOI: 10.1002/wdev.124] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mechanisms that control the sizes of a body and its many parts remain among the great puzzles in developmental biology. Why do animals grow to a species-specific body size, and how is the relative growth of their body parts controlled to so they grow to the right size, and in the correct proportion with body size, giving an animal its species-characteristic shape? Control of size must involve mechanisms that somehow assess some aspect of size and are upstream of mechanisms that regulate growth. These mechanisms are now beginning to be understood in the insects, in particular in Manduca sexta and Drosophila melanogaster. The control of size requires control of the rate of growth and control of the cessation of growth. Growth is controlled by genetic and environmental factors. Insulin and ecdysone, their receptors, and intracellular signaling pathways are the principal genetic regulators of growth. The secretion of these growth hormones, in turn, is controlled by complex interactions of other endocrine and molecular mechanisms, by environmental factors such as nutrition, and by the physiological mechanisms that sense body size. Although the general mechanisms of growth regulation appear to be widely shared, the mechanisms that regulate final size can be quite diverse.
Collapse
|
19
|
Evans PD, Bayliss A, Reale V. GPCR-mediated rapid, non-genomic actions of steroids: comparisons between DmDopEcR and GPER1 (GPR30). Gen Comp Endocrinol 2014; 195:157-63. [PMID: 24188886 DOI: 10.1016/j.ygcen.2013.10.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/16/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
Abstract
Steroid hormones classically mediate their actions by binding to intracellular receptor proteins that migrate to the nucleus and act as transcription factors to change gene expression. However, evidence is now accumulating for rapid, non-genomic effects of steroids. There is considerable controversy over the mechanisms underlying such effects. In a number of cases evidence has been presented for the direct activation of G-protein coupled receptors (GPCRs) by steroids, either at the plasma membrane, or at intracellular locations. Here, we will focus on the non-genomic actions of ecdysteroids on a Drosophila GPCR, DopEcR (CG18314), which can be activated by both ecdysone and the catecholamine, dopamine. We will also point out parallels between this system and the activation of the vertebrate GPCR, GPER1 (GPR30), which is thought to be activated by 17β-estradiol. We propose that the cellular localization and signalling properties of both DopEcR and GPER1 may be cell specific and depend upon their interactions with both accessory molecules and signalling pathways.
Collapse
Affiliation(s)
- Peter D Evans
- The Inositide Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| | - Asha Bayliss
- The Inositide Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| | - Vincenzina Reale
- The Inositide Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
20
|
A targeted genetic modifier screen links the SWI2/SNF2 protein domino to growth and autophagy genes in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2013; 3:815-25. [PMID: 23550128 PMCID: PMC3656729 DOI: 10.1534/g3.112.005496] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Targeted genetic studies can facilitate phenotypic analyses and provide important insights into development and other complex processes. The SWI2/SNF2 DNA-dependent ATPase Domino (Dom) of Drosophila melanogaster, a component of the Tip60 acetyltransferase complex, has been associated with a wide spectrum of cellular processes at multiple developmental stages. These include hematopoiesis, cell proliferation, homeotic gene regulation, histone exchange during DNA repair, and Notch signaling. To explore the wider gene network associated with Dom action, we used RNAi directed against domino (dom) to mediate loss-of-function at the wing margin, a tissue that is readily scored for phenotypic changes. Dom RNAi driven through GAL4-UAS elicited dominant wing nicking that responded phenotypically to the dose of dom and other loci known to function with dom. We screened for phenotypic modifiers of this wing phenotype among 2500 transpositions of the EP P element and found both enhancers and suppressors. Several classes of modifier were obtained, including those encoding transcription factors, RNA regulatory proteins, and factors that regulate cell growth, proliferation and autophagy, a lysosomal degradation pathway that affects cell growth under conditions of starvation and stress. Our analysis is consistent with prior studies, suggesting that Dom acts pleiotropically as a positive effector of Notch signaling and a repressor of proliferation. This genetic system should facilitate screens for additional loci associated with Dom function, and complement biochemical approaches to their regulatory activity.
Collapse
|
21
|
Protection of neuronal diversity at the expense of neuronal numbers during nutrient restriction in the Drosophila visual system. Cell Rep 2013; 3:587-94. [PMID: 23478023 PMCID: PMC3617362 DOI: 10.1016/j.celrep.2013.02.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 01/22/2013] [Accepted: 02/05/2013] [Indexed: 12/17/2022] Open
Abstract
Systemic signals provided by nutrients and hormones are known to coordinate the growth and proliferation of different organs during development. However, within the brain, it is unclear how these signals influence neural progenitor divisions and neuronal diversity. Here, in the Drosophila visual system, we identify two developmental phases with different sensitivities to dietary nutrients. During early larval stages, nutrients regulate the size of the neural progenitor pool via insulin/PI3K/TOR-dependent symmetric neuroepithelial divisions. During late larval stages, neural proliferation becomes insensitive to dietary nutrients, and the steroid hormone ecdysone acts on Delta/Notch signaling to promote the switch from symmetric mitoses to asymmetric neurogenic divisions. This mechanism accounts for why sustained undernourishment during visual system development restricts neuronal numbers while protecting neuronal diversity. These studies reveal an adaptive mechanism that helps to retain a functional visual system over a range of different brain sizes in the face of suboptimal nutrition.
Collapse
|
22
|
The Drosophila ortholog of MLL3 and MLL4, trithorax related, functions as a negative regulator of tissue growth. Mol Cell Biol 2013; 33:1702-10. [PMID: 23459941 DOI: 10.1128/mcb.01585-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The human MLL genes (MLL1 to MLL4) and their Drosophila orthologs, trithorax (trx) and trithorax related (trr), encode proteins capable of methylating histone H3 on lysine 4. MLL1 and MLL2 are most similar to trx, while MLL3 and MLL4 are more closely related to trr. Several MLL genes are mutated in human cancers, but how these proteins regulate cell proliferation is not known. Here we show that trr mutant cells have a growth advantage over their wild-type neighbors and display changes in the levels of multiple proteins that regulate growth and cell division, including Notch, Capicua, and cyclin B. trr mutant clones display markedly reduced levels of H3K4 monomethylation without obvious changes in the levels of H3K4 di- and trimethylation. The trr mutant phenotype resembles that of Utx, which encodes a H3K27 demethylase, consistent with the observation that Trr and Utx are found in the same protein complex. In contrast to the overgrowth displayed by trr mutant tissue, trx clones are underrepresented, express low levels of the antiapoptotic protein Diap1, and exhibit only modest changes in global levels of H3K4 methylation. Thus, in Drosophila eye imaginal discs, Trr, likely functioning together with Utx, restricts tissue growth. In contrast, Trx appears to promote cell survival.
Collapse
|
23
|
Chauhan C, Zraly CB, Parilla M, Diaz MO, Dingwall AK. Histone recognition and nuclear receptor co-activator functions of Drosophila cara mitad, a homolog of the N-terminal portion of mammalian MLL2 and MLL3. Development 2012; 139:1997-2008. [PMID: 22569554 DOI: 10.1242/dev.076687] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
MLL2 and MLL3 histone lysine methyltransferases are conserved components of COMPASS-like co-activator complexes. In vertebrates, the paralogous MLL2 and MLL3 contain multiple domains required for epigenetic reading and writing of the histone code involved in hormone-stimulated gene programming, including receptor-binding motifs, SET methyltransferase, HMG and PHD domains. The genes encoding MLL2 and MLL3 arose from a common ancestor. Phylogenetic analyses reveal that the ancestral gene underwent a fission event in some Brachycera dipterans, including Drosophila species, creating two independent genes corresponding to the N- and C-terminal portions. In Drosophila, the C-terminal SET domain is encoded by trithorax-related (trr), which is required for hormone-dependent gene activation. We identified the cara mitad (cmi) gene, which encodes the previously undiscovered N-terminal region consisting of PHD and HMG domains and receptor-binding motifs. The cmi gene is essential and its functions are dosage sensitive. CMI associates with TRR, as well as the EcR-USP receptor, and is required for hormone-dependent transcription. Unexpectedly, although the CMI and MLL2 PHDf3 domains could bind histone H3, neither showed preference for trimethylated lysine 4. Genetic tests reveal that cmi is required for proper global trimethylation of H3K4 and that hormone-stimulated transcription requires chromatin binding by CMI, methylation of H3K4 by TRR and demethylation of H3K27 by the demethylase UTX. The evolutionary split of MLL2 into two distinct genes in Drosophila provides important insight into distinct epigenetic functions of conserved readers and writers of the histone code.
Collapse
Affiliation(s)
- Chhavi Chauhan
- Oncology Institute, Stritch School of Medicine, Loyola University of Chicago, Maywood, IL 60153, USA
| | | | | | | | | |
Collapse
|
24
|
Lin JI, Mitchell NC, Kalcina M, Tchoubrieva E, Stewart MJ, Marygold SJ, Walker CD, Thomas G, Leevers SJ, Pearson RB, Quinn LM, Hannan RD. Drosophila ribosomal protein mutants control tissue growth non-autonomously via effects on the prothoracic gland and ecdysone. PLoS Genet 2011; 7:e1002408. [PMID: 22194697 PMCID: PMC3240600 DOI: 10.1371/journal.pgen.1002408] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 10/20/2011] [Indexed: 11/30/2022] Open
Abstract
The ribosome is critical for all aspects of cell growth due to its essential role in protein synthesis. Paradoxically, many Ribosomal proteins (Rps) act as tumour suppressors in Drosophila and vertebrates. To examine how reductions in Rps could lead to tissue overgrowth, we took advantage of the observation that an RpS6 mutant dominantly suppresses the small rough eye phenotype in a cyclin E hypomorphic mutant (cycEJP). We demonstrated that the suppression of cycEJP by the RpS6 mutant is not a consequence of restoring CycE protein levels or activity in the eye imaginal tissue. Rather, the use of UAS-RpS6 RNAi transgenics revealed that the suppression of cycEJP is exerted via a mechanism extrinsic to the eye, whereby reduced Rp levels in the prothoracic gland decreases the activity of ecdysone, the steroid hormone, delaying developmental timing and hence allowing time for tissue and organ overgrowth. These data provide for the first time a rationale to explain the counter-intuitive organ overgrowth phenotypes observed for certain members of the Minute class of Drosophila Rp mutants. They also demonstrate how Rp mutants can affect growth and development cell non-autonomously. Ribosomes are required for protein synthesis, which is essential for cell growth and division, thus mutations that reduce Rp expression would be expected to limit cell growth. Paradoxically, heterozygous deletion or mutation of certain Rps can actually promote growth and proliferation and in some cases bestow predisposition to cancer. The underlying mechanism(s) behind these unexpected overgrowth phenotypes despite impairment of ribosome biogenesis has remained obscure. We have addressed this question using the power of Drosophila genetics, taking advantage of our observation that four different Rp mutants, or Minutes, are able to suppress a small rough eye phenotype associated with a mutation of the essential controller of cell proliferation cyclin E (cycEJP). Our findings demonstrate that suppression of cycEJP by the RpS6 mutant is exerted via a tissue non-autonomous mechanism whereby reduced Rp in the prothoracic gland decreases activity of the steroid hormone ecdysone, delaying development and hence allowing time for compensatory growth. These data provide for the first time a rationale to explain the counter-intuitive organ overgrowth phenotypes observed for certain Drosophila Minutes. Our findings also have implications for the effect of Rp mutants on endocrine related control of tissue growth in higher organisms.
Collapse
Affiliation(s)
- Jane I. Lin
- Peter MacCallum Cancer Centre, East Melbourne, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Australia
| | - Naomi C. Mitchell
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Australia
| | - Marina Kalcina
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Australia
| | | | - Mary J. Stewart
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - Steven J. Marygold
- Growth Regulation Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Cherryl D. Walker
- Growth Regulation Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - George Thomas
- University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Sally J. Leevers
- Growth Regulation Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Richard B. Pearson
- Peter MacCallum Cancer Centre, East Melbourne, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Australia
- Department of Biochemistry and Cell Biology, Monash University, Clayton, Australia
| | - Leonie M. Quinn
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Australia
- * E-mail: (LMQ); (RDH)
| | - Ross D. Hannan
- Peter MacCallum Cancer Centre, East Melbourne, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Australia
- Department of Biochemistry and Cell Biology, Monash University, Clayton, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
- * E-mail: (LMQ); (RDH)
| |
Collapse
|
25
|
Parker NF, Shingleton AW. The coordination of growth among Drosophila organs in response to localized growth-perturbation. Dev Biol 2011; 357:318-25. [PMID: 21777576 DOI: 10.1016/j.ydbio.2011.07.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 06/30/2011] [Accepted: 07/02/2011] [Indexed: 11/25/2022]
Abstract
The developmental mechanisms by which growth is coordinated among developing organs are largely unknown and yet are essential to generate a correctly proportioned adult. In particular, such coordinating mechanisms must be able to accommodate perturbations in the growth of individual organs caused by environmental or developmental stress. By autonomously slowing the growth of the developing wing discs within Drosophila larvae, we show that growing organs are able to signal localized growth perturbation to the other organs in the body and slow their growth also. Growth rate is so tightly coordinated among organs that they all show approximately the same reduction in growth rate as the developing wings, thereby maintaining their correct size relationship relative to one another throughout development. Further, we show that the systemic growth effects of localized growth-perturbation are mediated by ecdysone. Application of ecdysone to larvae with growth-perturbed wing discs rescues the growth rate of other organs in the body, indicating that ecdysone is limiting for their growth, and disrupts the coordination of their growth with growth of the wing discs. Collectively our data demonstrate the existence of a novel growth-coordinating mechanism in Drosophila that synchronizes growth among organs in response to localized growth perturbation.
Collapse
Affiliation(s)
- Nathan F Parker
- Department of Zoology, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
26
|
Lethality and developmental delay in Drosophila melanogaster larvae after ingestion of selected Pseudomonas fluorescens strains. PLoS One 2010; 5:e12504. [PMID: 20856932 PMCID: PMC2938339 DOI: 10.1371/journal.pone.0012504] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 07/23/2010] [Indexed: 11/19/2022] Open
Abstract
Background The fruit fly, Drosophila melanogaster, is a well-established model organism for probing the molecular and cellular basis of physiological and immune system responses of adults or late stage larvae to bacterial challenge. However, very little is known about the consequences of bacterial infections that occur in earlier stages of development. We have infected mid-second instar larvae with strains of Pseudomonas fluorescens to determine how infection alters the ability of larvae to survive and complete development. Methodology/Principal Findings We mimicked natural routes of infection using a non-invasive feeding procedure to study the toxicity of the three sequenced P. fluorescens strains (Pf0-1, SBW25, and Pf-5) to Drosophila melanogaster. Larvae fed with the three strains of P. fluorescens showed distinct differences in developmental trajectory and survival. Treatment with SBW25 caused a subset of insects to die concomitant with a systemic melanization reaction at larval, pupal or adult stages. Larvae fed with Pf-5 died in a dose-dependent manner with adult survivors showing eye and wing morphological defects. In addition, larvae in the Pf-5 treatment groups showed a dose-dependent delay in the onset of metamorphosis relative to control-, Pf0-1-, and SBW25-treated larvae. A functional gacA gene is required for the toxic properties of wild-type Pf-5 bacteria. Conclusions/Significance These experiments are the first to demonstrate that ingestion of P. fluorescens bacteria by D. melanogaster larvae causes both lethal and non-lethal phenotypes, including delay in the onset of metamorphosis and morphological defects in surviving adult flies, which can be decoupled.
Collapse
|
27
|
Delanoue R, Slaidina M, Léopold P. The steroid hormone ecdysone controls systemic growth by repressing dMyc function in Drosophila fat cells. Dev Cell 2010; 18:1012-21. [PMID: 20627082 DOI: 10.1016/j.devcel.2010.05.007] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 02/11/2010] [Accepted: 03/23/2010] [Indexed: 12/31/2022]
Abstract
How steroid hormones shape animal growth remains poorly understood. In Drosophila, the main steroid hormone, ecdysone, limits systemic growth during juvenile development. Here we show that ecdysone controls animal growth rate by specifically acting on the fat body, an organ that retains endocrine and storage functions of the vertebrate liver and fat. We demonstrate that fat body-targeted loss of function of the Ecdysone receptor (EcR) increases dMyc expression and its cellular functions such as ribosome biogenesis. Moreover, changing dMyc levels in this tissue is sufficient to affect animal growth rate. Finally, the growth increase induced by silencing EcR in the fat body is suppressed by cosilencing dMyc. In conclusion, the present work reveals an unexpected function of dMyc in the systemic control of growth in response to steroid hormone signaling.
Collapse
Affiliation(s)
- Rénald Delanoue
- Institute of Developmental Biology and Cancer, University of Nice-Sophia Antipolis, CNRS, Parc Valrose, 06108 Nice, France
| | | | | |
Collapse
|
28
|
Tissue-autonomous EcR functions are required for concurrent organ morphogenesis in the Drosophila embryo. Mech Dev 2010; 127:308-19. [DOI: 10.1016/j.mod.2010.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 01/13/2010] [Accepted: 01/14/2010] [Indexed: 12/14/2022]
|
29
|
Jones D, Jones G, Teal P, Hammac C, Messmer L, Osborne K, Belgacem YH, Martin JR. Suppressed production of methyl farnesoid hormones yields developmental defects and lethality in Drosophila larvae. Gen Comp Endocrinol 2010; 165:244-54. [PMID: 19595690 PMCID: PMC3277837 DOI: 10.1016/j.ygcen.2009.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 06/22/2009] [Accepted: 07/03/2009] [Indexed: 10/20/2022]
Abstract
A long-unresolved question in the developmental biology of Drosophila melanogaster has been whether methyl farnesoid hormones secreted by the ring gland are necessary for larval maturation and metamorphosis. In this study, we have used RNAi techniques to inhibit 3-Hydroxy-3-Methylglutaryl CoA Reductase (HMGCR) expression selectively in the corpora allatal cells that produce the circulating farnesoid hormones. The developing larvae manifest a number of developmental, metabolic and morphogenetic derangements. These defects included the exhibition of an "ultraspiracle" death phenotype at the 1st to 2nd instar larval molt, similar to that exhibited by animals that are null for the farnesoid receptor ultraspiracle. The few larvae surviving past a second lethal period at the 2nd to 3rd instar larval molt, again with "ultraspiracle" phenotype, often became developmentally arrested after either attaining a misformed puparium or after formation of the white pupa. Survival past the "ultraspiracle" lethal phenotype could be rescued by dietary provision of an endogenous dedicated precursor to the three naturally secreted methyl farnesoid hormones. In addition to these developmental and morphogenetic defects, most larvae that survived to the late second instar exhibited a posterior-originating melanization of the tracheal system. These results support the hypothesis that larval methyl farnesoid hormones are necessary for larval survival and morphogenetic transformation through the larval and pupal metamorphic processes.
Collapse
Affiliation(s)
- Davy Jones
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40506
| | - Grace Jones
- Dept. of Biology, University of Kentucky, Lexington, KY 40506
| | - Peter Teal
- U.S. Department of Agriculture, Agricultural Research Service, Chemistry Research Unit, Gainesville, FL 32608, USA
| | - Courey Hammac
- Dept. of Biology, University of Kentucky, Lexington, KY 40506
| | - Lexa Messmer
- Dept. of Biology, University of Kentucky, Lexington, KY 40506
| | - Kara Osborne
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40506
| | - Yasser Hadj Belgacem
- Laboratoire de Neurobiologie Cellulaire et Moleculaire (NBCM) CNRS, UOR-9040, Gif-sur-Yvette Cedex, France
| | - Jean-Rene Martin
- Laboratoire de Neurobiologie Cellulaire et Moleculaire (NBCM) CNRS, UOR-9040, Gif-sur-Yvette Cedex, France
| |
Collapse
|
30
|
Pierre W, Morra R, Lucchesi J, Yedvobnick B. A male-specific effect of dominant-negative Fos. Dev Dyn 2008; 237:3361-72. [PMID: 18924113 DOI: 10.1002/dvdy.21751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The transcription factor Fos contains a basic DNA binding domain combined with a leucine zipper (bZip). Expression of a truncated form of Fos in Drosophila that contains only the bZip region (Fos bZip) elicits phenotypes resembling fos mutations. These effects presumably derive from competition between wild-type and truncated forms for dimerization partners, with the truncation acting in a dominant-negative manner. We found that expression of Fos bZip elicits male-specific phenotypes. Moreover, genetic interactions occur between Fos bZip and mutations in loci encoding the X chromosome dosage compensation complex. Fos bZip effects are correlated with aberrant male X chromosome structure and depressed signaling through the X-linked Notch locus. Unexpectedly, the male-specific effects are not reproduced with Fos RNAi, suggesting that Fos bZip can be neomorphic in nature. These results provide insight into how mutations in bZip proteins can exhibit gain of function activity.
Collapse
Affiliation(s)
- Wooly Pierre
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
31
|
Trimarchi JM, Harpavat S, Billings NA, Cepko CL. Thyroid hormone components are expressed in three sequential waves during development of the chick retina. BMC DEVELOPMENTAL BIOLOGY 2008; 8:101. [PMID: 18854032 PMCID: PMC2579430 DOI: 10.1186/1471-213x-8-101] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 10/14/2008] [Indexed: 11/21/2022]
Abstract
BACKGROUND Thyroid hormone (TH) is an important developmental regulator in many tissues, including the retina. TH is activated locally via deiodinase 2 (Dio2), and it is destroyed by deiodinase 3 (Dio3). The TH receptors, TRa and TRb, mediate TH activity through hormone and DNA binding, and interactions with transcription regulators. RESULTS In the current work, the expression of these TH components was examined in the chick retina over time. Three waves of expression were characterized and found to be correlated with critical developmental events. The first wave occurred as progenitor cells began to make photoreceptors, the second as some cell types adopted a more mature location and differentiation state, and the third as Müller glia were generated. The cell types expressing the components, as well as the kinetics of expression within the cell cycle, were defined. TRb expression initiated during G2 in progenitor cells, concomitant with NeuroD and Otx2, which are expressed in early photoreceptor cells. TRb was expressed in photoreceptor cells for several days and then was reduced in expression level, as the expression of Crx, a later photoreceptor gene, became more evident. Dio3 was expressed throughout the cell cycle in progenitor cells. TRa was in most, if not all, retinal cells. Dio2 appeared transiently in a ventral (high) to dorsal gradient, likely in a subset of photoreceptor cells. CONCLUSION Multiple TH components were expressed in dynamic patterns in cycling progenitor cells and photoreceptors cells across the developing chick retina. These dynamic patterns suggest that TH is playing several roles in retinal development, both within the cycling progenitor cells and possibly with respect to the timing of differentiation of photoreceptor cells.
Collapse
Affiliation(s)
- Jeffrey M Trimarchi
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | - Nathan A Billings
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Constance L Cepko
- Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
32
|
Shingleton AW, Mirth CK, Bates PW. Developmental model of static allometry in holometabolous insects. Proc Biol Sci 2008; 275:1875-85. [PMID: 18460425 DOI: 10.1098/rspb.2008.0227] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The regulation of static allometry is a fundamental developmental process, yet little is understood of the mechanisms that ensure organs scale correctly across a range of body sizes. Recent studies have revealed the physiological and genetic mechanisms that control nutritional variation in the final body and organ size in holometabolous insects. The implications these mechanisms have for the regulation of static allometry is, however, unknown. Here, we formulate a mathematical description of the nutritional control of body and organ size in Drosophila melanogaster and use it to explore how the developmental regulators of size influence static allometry. The model suggests that the slope of nutritional static allometries, the 'allometric coefficient', is controlled by the relative sensitivity of an organ's growth rate to changes in nutrition, and the relative duration of development when nutrition affects an organ's final size. The model also predicts that, in order to maintain correct scaling, sensitivity to changes in nutrition varies among organs, and within organs through time. We present experimental data that support these predictions. By revealing how specific physiological and genetic regulators of size influence allometry, the model serves to identify developmental processes upon which evolution may act to alter scaling relationships.
Collapse
|
33
|
Costantino BFB, Bricker DK, Alexandre K, Shen K, Merriam JR, Antoniewski C, Callender JL, Henrich VC, Presente A, Andres AJ. A novel ecdysone receptor mediates steroid-regulated developmental events during the mid-third instar of Drosophila. PLoS Genet 2008; 4:e1000102. [PMID: 18566664 PMCID: PMC2413497 DOI: 10.1371/journal.pgen.1000102] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 05/20/2008] [Indexed: 11/18/2022] Open
Abstract
The larval salivary gland of Drosophila melanogaster synthesizes and secretes glue glycoproteins that cement developing animals to a solid surface during metamorphosis. The steroid hormone 20-hydroxyecdysone (20E) is an essential signaling molecule that modulates most of the physiological functions of the larval gland. At the end of larval development, it is known that 20E--signaling through a nuclear receptor heterodimer consisting of EcR and USP--induces the early and late puffing cascade of the polytene chromosomes and causes the exocytosis of stored glue granules into the lumen of the gland. It has also been reported that an earlier pulse of hormone induces the temporally and spatially specific transcriptional activation of the glue genes; however, the receptor responsible for triggering this response has not been characterized. Here we show that the coordinated expression of the glue genes midway through the third instar is mediated by 20E acting to induce genes of the Broad Complex (BRC) through a receptor that is not an EcR/USP heterodimer. This result is novel because it demonstrates for the first time that at least some 20E-mediated, mid-larval, developmental responses are controlled by an uncharacterized receptor that does not contain an RXR-like component.
Collapse
Affiliation(s)
- Benjamin F. B. Costantino
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Daniel K. Bricker
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Kelly Alexandre
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Kate Shen
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - John R. Merriam
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | | | - Jenna L. Callender
- Center for Biotechnology, Genomics, and Health Research, University of North Carolina Greensboro, Greensboro, North Carolina, United States of America
| | - Vincent C. Henrich
- Center for Biotechnology, Genomics, and Health Research, University of North Carolina Greensboro, Greensboro, North Carolina, United States of America
| | - Asaf Presente
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Andrew J. Andres
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| |
Collapse
|
34
|
Jones D, Jones G. Farnesoid secretions of dipteran ring glands: what we do know and what we can know. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:771-98. [PMID: 17628277 DOI: 10.1016/j.ibmb.2007.05.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 05/15/2007] [Accepted: 05/16/2007] [Indexed: 05/16/2023]
Abstract
Harnessing of the Drosophila genetic system toward ascertaining the molecular endocrinology of higher dipteran (cyclorrhaphan) larval development has been a goal for over 70 years, beginning with the data left to us by pioneer researchers from the classical endocrine era. The results of their experiments evidence numerous ring gland activities that are parsimoniously explained as arising from secretions of the larval corpora allatal cells. Utilization of those data toward an understanding of molecular endocrinology of cyclorrhaphan metamorphosis has not yet achieved its hoped for fruition, in part due to a perceived difficulty in identifying larval targets of the molecule "methyl epoxyfarnesoate" (=juvenile hormone III). However, as is reviewed here, it is important to maintain a conceptual distinction between "the target of JH III"Versus "the target(s) of products secreted by the larval corpora allatal cells of ring glands." Recent advances have been made on the identity, regulation and reception of ring gland farnesoid products. When these advances are evaluated together with the above data from the classical endocrine era, there is a new opportunity to frame experimental hypotheses so as to discern underlying mechanisms on cyclorrhaphan larval-pupal metamorphosis that have been heretofore intractable. This paper reconsiders a number of evidenced physiological targets of secretions of corpora allatal cells of the larval ring gland, and places them in the context of more recent biochemical and molecular advances in the field.
Collapse
Affiliation(s)
- Davy Jones
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40506, USA.
| | | |
Collapse
|
35
|
Lovato TL, Benjamin AR, Cripps RM. Transcription of Myocyte enhancer factor-2 in adult Drosophila myoblasts is induced by the steroid hormone ecdysone. Dev Biol 2005; 288:612-21. [PMID: 16325168 DOI: 10.1016/j.ydbio.2005.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2005] [Revised: 09/02/2005] [Accepted: 09/02/2005] [Indexed: 11/20/2022]
Abstract
The steroid hormone 20-hydroxyecdysone (ecdysone) activates a relatively small number of immediate-early genes during Drosophila pupal development, yet is able to orchestrate distinct differentiation events in a wide variety of tissues. Here, we demonstrate that expression of the muscle differentiation gene Myocyte enhancer factor-2 (Mef2) is normally delayed in twist-expressing adult myoblasts until the end of the third larval instar. The late up-regulation of Mef2 transcription in larval myoblasts is an ecdysone-dependent event which acts upon an identified Mef2 enhancer, and we identify enhancer sequences required for up-regulation. We also present evidence that the ecdysone-induced Broad Complex of zinc finger transcription factor genes is required for full activation of the myogenic program in these cells. Since forced early expression of Mef2 in adult myoblasts leads to premature muscle differentiation, our results explain how and why the adult muscle differentiation program is attenuated prior to pupal development. We propose a mechanism for the initiation of adult myogenesis, whereby twist expression in myoblasts provides a cellular context upon which an extrinsic signal builds to control muscle-specific differentiation events, and we discuss the general relevance of this model for gene regulation in animals.
Collapse
Affiliation(s)
- TyAnna L Lovato
- Department of Biology, University of New Mexico, Albuquerque, NM 87131-1091, USA
| | | | | |
Collapse
|
36
|
Reinking J, Lam MMS, Pardee K, Sampson HM, Liu S, Yang P, Williams S, White W, Lajoie G, Edwards A, Krause HM. The Drosophila nuclear receptor e75 contains heme and is gas responsive. Cell 2005; 122:195-207. [PMID: 16051145 DOI: 10.1016/j.cell.2005.07.005] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 03/16/2005] [Accepted: 07/06/2005] [Indexed: 11/19/2022]
Abstract
Nuclear receptors are a family of transcription factors with structurally conserved ligand binding domains that regulate their activity. Despite intensive efforts to identify ligands, most nuclear receptors are still "orphans." Here, we demonstrate that the ligand binding pocket of the Drosophila nuclear receptor E75 contains a heme prosthetic group. E75 absorption spectra, resistance to denaturants, and effects of site-directed mutagenesis indicate a single, coordinately bound heme molecule. A correlation between the levels of E75 expression and the levels of available heme suggest a possible role as a heme sensor. The oxidation state of the heme iron also determines whether E75 can interact with its heterodimer partner DHR3, suggesting an additional role as a redox sensor. Further, the E75-DHR3 interaction is also regulated by the binding of NO or CO to the heme center, suggesting that E75 may also function as a diatomic gas sensor. Possible mechanisms and roles for these interactions are discussed.
Collapse
Affiliation(s)
- Jeff Reinking
- Banting and Best Department of Medical Research, Charles H. Best Institute, 112 College Street, Toronto, Ontario, M5G 1L6, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kumar JP, Jamal T, Doetsch A, Turner FR, Duffy JB. CREB binding protein functions during successive stages of eye development in Drosophila. Genetics 2005; 168:877-93. [PMID: 15514061 PMCID: PMC1448854 DOI: 10.1534/genetics.104.029850] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During the development of the compound eye of Drosophila several signaling pathways exert both positive and inhibitory influences upon an array of nuclear transcription factors to produce a near-perfect lattice of unit eyes or ommatidia. Individual cells within the eye are exposed to many extracellular signals, express multiple surface receptors, and make use of a large complement of cell-subtype-specific DNA-binding transcription factors. Despite this enormous complexity, each cell will make the correct developmental choice and adopt the appropriate cell fate. How this process is managed remains a poorly understood paradigm. Members of the CREB binding protein (CBP)/p300 family have been shown to influence development by (1) acting as bridging molecules between the basal transcriptional machinery and specific DNA-binding transcription factors, (2) physically interacting with terminal members of signaling cascades, (3) acting as transcriptional coactivators of downstream target genes, and (4) playing a key role in chromatin remodeling. In a screen for new genes involved in eye development we have identified the Drosophila homolog of CBP as a key player in both eye specification and cell fate determination. We have used a variety of approaches to define the role of CBP in eye development on a cell-by-cell basis.
Collapse
Affiliation(s)
- Justin P Kumar
- Department of Biology, Indiana University, Bloomington, Indiana 47401, USA.
| | | | | | | | | |
Collapse
|
38
|
Berger EM, Dubrovsky EB. Juvenile hormone molecular actions and interactions during development of Drosophila melanogaster. VITAMINS AND HORMONES 2005; 73:175-215. [PMID: 16399411 DOI: 10.1016/s0083-6729(05)73006-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Edward M Berger
- Department Of Biology, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
39
|
Abstract
Sensory organs are specialized to receive different kinds of input from the outside world. However, common features of their development suggest that they could have a shared evolutionary origin. In a recent paper, Niwa et al. show that three Drosophila adult sensory organs all rely on the spatial signals Decapentaplegic and Wingless to specify their position, and the temporal signal ecdysone to initiate their development. The proneural gene atonal is an important site for integration of these regulatory inputs. These results suggest the existence of a primitive sensory organ precursor, which would differentiate according to the identity of its segment of origin. The authors argue that the eyeless gene controls eye disc identity, indirectly producing an eye from the sensory organ precursor within this disc.
Collapse
Affiliation(s)
- Jessica E Treisman
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
40
|
Niwa N, Hiromi Y, Okabe M. A conserved developmental program for sensory organ formation in Drosophila melanogaster. Nat Genet 2004; 36:293-7. [PMID: 14981517 DOI: 10.1038/ng1308] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Accepted: 01/23/2004] [Indexed: 11/10/2022]
Abstract
Different sensory organs, such the eye and ear, are widely thought to have separate origins, guided by distinct organ-specific factors that direct all aspects of their development. Previous studies of the D. melanogaster gene eyeless (ey) and its vertebrate homolog Pax6 suggested that this gene acts in such a manner and specifically drives eye development. But diverse sensory organs might instead arise by segment-specific modification of a developmental program that is involved more generally in sensory organ formation. In D. melanogaster, a common proneural gene called atonal (ato) functions in the initial process of development of a number of segment-specific organs, including the compound eye, the auditory organ and the stretch receptor, suggesting that these organs share an evolutionary origin. Here we show that D. melanogaster segment-specific sensory organs form through the integration of decapentaplegic (dpp), wingless (wg) and ecdysone signals into a single cis-regulatory element of ato. The induction of ectopic eyes by ey also depends on these signals for ato expression, and the ey mutant eye imaginal disc allows ato expression if cell death is blocked. These results imply that ey does not induce the entire eye morphogenetic program but rather modifies ato-dependent neuronal development. Our findings strongly suggest that various sensory organs evolved from an ato-dependent protosensory organ through segment specification by ey and Hox genes.
Collapse
Affiliation(s)
- Nao Niwa
- Division of Developmental Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | | | | |
Collapse
|
41
|
Sedkov Y, Cho E, Petruk S, Cherbas L, Smith ST, Jones RS, Cherbas P, Canaani E, Jaynes JB, Mazo A. Methylation at lysine 4 of histone H3 in ecdysone-dependent development of Drosophila. Nature 2003; 426:78-83. [PMID: 14603321 PMCID: PMC2743927 DOI: 10.1038/nature02080] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2003] [Accepted: 09/15/2003] [Indexed: 11/08/2022]
Abstract
Steroid hormones fulfil important functions in animal development. In Drosophila, ecdysone triggers moulting and metamorphosis through its effects on gene expression. Ecdysone works by binding to a nuclear receptor, EcR, which heterodimerizes with the retinoid X receptor homologue Ultraspiracle. Both partners are required for binding to ligand or DNA. Like most DNA-binding transcription factors, nuclear receptors activate or repress gene expression by recruiting co-regulators, some of which function as chromatin-modifying complexes. For example, p160 class coactivators associate with histone acetyltransferases and arginine histone methyltransferases. The Trithorax-related gene of Drosophila encodes the SET domain protein TRR. Here we report that TRR is a histone methyltransferases capable of trimethylating lysine 4 of histone H3 (H3-K4). trr acts upstream of hedgehog (hh) in progression of the morphogenetic furrow, and is required for retinal differentiation. Mutations in trr interact in eye development with EcR, and EcR and TRR can be co-immunoprecipitated on ecdysone treatment. TRR, EcR and trimethylated H3-K4 are detected at the ecdysone-inducible promoters of hh and BR-C in cultured cells, and H3-K4 trimethylation at these promoters is decreased in embryos lacking a functional copy of trr. We propose that TRR functions as a coactivator of EcR by altering the chromatin structure at ecdysone-responsive promoters.
Collapse
Affiliation(s)
- Yurii Sedkov
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Dong Y, Dinan L, Friedrich M. The effect of manipulating ecdysteroid signaling on embryonic eye development in the locust Schistocerca americana. Dev Genes Evol 2003; 213:587-600. [PMID: 14618403 DOI: 10.1007/s00427-003-0367-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2003] [Accepted: 10/08/2003] [Indexed: 10/26/2022]
Abstract
Adult body plan differentiation in holometabolous insects depends on global induction and control by ecdysteroid hormones during the final phase of postembryogenesis. Studies in Drosophila melanogaster and Manduca sexta have shown that this pertains also to the development of the compound eye retina. It is unclear whether the hormonal control of postembryonic eye development in holometabolous insects represents evolutionary novelty or heritage from hemimetabolous insects, which develop compound eyes during embryogenesis. We therefore investigated the effect of manipulating ecdysteroid signaling in cultured embryonic eye primordia of the American desert locust Schistocerca americana, in which ecdysteroid level changes are known to induce three rounds of embryonic molt. Although at a considerably reduced rate compared to in vivo development, early differentiation and terminal maturation of the embryonic retina was observed in culture even if challenged with the ecdysteroid antagonist cucurbitacin B. Supplementing cultures with 20-hydroxyecdysone (20E) accelerated differentiation and maturation, and enhanced cell proliferation. Considering these results, and the relation between retina differentiation and ecdysteroid level changes during locust embryogenesis, we conclude that ecdysteroids are not an essential but possibly a modulatory component of embryonic retina development in S. americana. We furthermore found evidence that 20E initiated precocious epithelial morphogenesis of the posterior retinal margin indicating a more general role of ecdysteroids in insect embryogenesis.
Collapse
Affiliation(s)
- Ying Dong
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| | | | | |
Collapse
|
43
|
Giesen K, Lammel U, Langehans D, Krukkert K, Bunse I, Klämbt C. Regulation of glial cell number and differentiation by ecdysone and Fos signaling. Mech Dev 2003; 120:401-13. [PMID: 12676319 DOI: 10.1016/s0925-4773(03)00009-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the midline glia of the embryonic ventral nerve cord of Drosophila, differentiation as well as the subsequent regulation of cell number is under the control of EGF-receptor signaling. During pupal stages apoptosis of all midline glial cells is initiated by ecdysone signaling. In a genetic screen we have identified mutations in disembodied, rippchen, spook, shade, shadow, shroud and tramtrack that all share a number of phenotypic traits, including defects in cuticle differentiation and nervous system development. Some of these genes were previously placed in the so-called 'Halloween-group' and were shown to affect ecdysone synthesis during embryogenesis. Here we demonstrate that the Halloween mutations not only affect glial differentiation but also lead to an increase in the number of midline glial cells, suggesting that during embryogenesis ecdysone signaling is required to adjust glial cell number similar to pupal stages. Finally we isolated a P-element-induced mutation of shroud, which controls the expression of ecdysone inducible genes. The P-element insertion occurs in one of the promoters of the Drosophila fos gene for which we present a yet undescribed complex genomic organization. The recently described kayak alleles affect only one of the six different Fos isoforms. This work for the first time links ecydsone signaling to Fos function and shows that during embryonic and pupal stages similar developmental mechanisms control midline glia survival.
Collapse
Affiliation(s)
- Kay Giesen
- Institut für Neurobiologie, Badestrasse 9, Universität Münster, 48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Ghbeish N, McKeown M. Analyzing the repressive function of ultraspiracle, the Drosophila RXR, in Drosophila eye development. Mech Dev 2002; 111:89-98. [PMID: 11804781 DOI: 10.1016/s0925-4773(01)00610-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Response to the insect hormone ecdysone is mediated by a nuclear receptor complex containing Ultraspiracle (USP) and the Ecdysone Receptor (EcR). Among other phenotypes, loss of functional USP in Drosophila eye development results in an accelerated morphogenetic furrow, although loss of ecdysone arrests the furrow. We have shown that USP both represses and activates a gene affecting furrow movement, the ecdysone-responsive Z1 isoform of Broad-Complex, and we report additional usp mutant phenotypes. Using targeted replacement of USP to rescue usp mutant clones in the eye, we have mapped various USP functions and tested whether the USP nuclear receptor has an activating as well as a repressive effect on furrow movement. Furrow movement and related phenotypes are rescued by the presence of USP in a limited domain near the furrow while other phenotypes are rescued by USP expression posterior to the furrow. Our data indicate roles for USP activity at multiple developmental stages and help explain why loss of functional USP leads to furrow advancement while loss of ecdysone stops furrow movement.
Collapse
Affiliation(s)
- Nora Ghbeish
- Molecular Biology and Virology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
45
|
Affiliation(s)
- Jeffrey D Lee
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, 540 First Avenue, New York, New York 10016, USA
| | | |
Collapse
|
46
|
Abstract
There is growing evidence that some members of the cytochrome P450 superfamily could be involved in the regulation of basic developmental processes such as pattern formation, morphogenesis, cell differentiation and growth. This development calls attention to the myriad small molecules metabolized by cytochrome P450s, some of which might function as the morphogens proposed by the Local Source-Dispersed Sink hypothesis. This new information also suggests a mechanism for the developmental toxicity of drugs and environmental pollutants: such compounds could interfere with normal development by altering the spatial and temporal expression patterns of cytochrome P450s required for normal development.
Collapse
Affiliation(s)
- I Stoilov
- Molecular Ophthalmic Genetics Laboratory, Surgical Research Center MC-1110, Dept of Surgery, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA.
| |
Collapse
|
47
|
Abstract
Drosophila imaginal discs (appendage primordia) have proved invaluable for deciphering cellular and molecular mechanisms of animal development. By combining the accessibility of the discs with the genetic tractability of the fruit fly, researchers have discovered key mechanisms of growth control, pattern formation and long-range signaling. One of the principal experimental attractions of discs is their anatomical simplicity - they have long been considered to be cellular monolayers. During larval stages, however, the growing discs are 2-sided sacs composed of a columnar epithelium on one side and a squamous 'peripodial' epithelium on the other. Recent studies suggest important roles for peripodial epithelia in processes previously assumed to be confined to columnar cell monolayers.
Collapse
Affiliation(s)
- M C Gibson
- Department of Zoology, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
48
|
Zhou B, Riddiford LM. Hormonal regulation and patterning of the broad-complex in the epidermis and wing discs of the tobacco hornworm, Manduca sexta. Dev Biol 2001; 231:125-37. [PMID: 11180957 DOI: 10.1006/dbio.2000.0143] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expression of Manduca Broad-Complex (BR-C) mRNA in the larval epidermis is under the dual control of ecdysone and juvenile hormone (JH). Immunocytochemistry with antibodies that recognize the core, Z2, and Z4 domains of Manduca BR-C proteins showed that BR-C appearance not only temporally correlates with pupal commitment of the epidermis on day 3 of the fifth (final) larval instar, but also occurs in a strict spatial pattern within the abdominal segment similar to that seen for the loss of sensitivity to JH. Levels of Z2 and Z4 BR-C proteins shift with Z2 predominating at pupal commitment and Z4 dominant during early pupal cuticle synthesis. Both induction of BR-C mRNA in the epidermis by 20-hydroxyecdysone (20E) and its suppression by JH were shown to be independent of new protein synthesis. For suppression JH must be present during the initial exposure to 20E. When JH was given 6 h after 20E, suppression was only seen in those regions that had not yet expressed BR-C. In the wing discs BR-C was first detected earlier 1.5 days after ecdysis, coincident with the pupal commitment of the wing. Our findings suggest that BR-C expression is one of the first molecular events underlying pupal commitment of both epidermis and wing discs.
Collapse
Affiliation(s)
- B Zhou
- Department of Zoology, University of Washington, Seattle, Washington 98195-1800, USA
| | | |
Collapse
|
49
|
Riddiford LM, Cherbas P, Truman JW. Ecdysone receptors and their biological actions. VITAMINS AND HORMONES 2001; 60:1-73. [PMID: 11037621 DOI: 10.1016/s0083-6729(00)60016-x] [Citation(s) in RCA: 383] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- L M Riddiford
- Department of Zoology, University of Washington, Seattle 98195-1800, USA
| | | | | |
Collapse
|
50
|
Affiliation(s)
- U Heberlein
- Department of Anatomy, University of California, San Francisco 94143-0452, USA
| | | |
Collapse
|