1
|
Li E, Wen B, Gao D, Kalin TR, Wang G, Kalin TV, Kalinichenko VV. The bone marrow of mouse-rat chimeras contains progenitors of multiple pulmonary cell lineages. Front Cell Dev Biol 2024; 12:1394098. [PMID: 38694819 PMCID: PMC11061410 DOI: 10.3389/fcell.2024.1394098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/08/2024] [Indexed: 05/04/2024] Open
Abstract
Radiation-induced lung injury (RILI) is a common complication of anti-cancer treatments for thoracic and hematologic malignancies. Bone marrow (BM) transplantation restores hematopoietic cell lineages in cancer patients. However, it is ineffective in improving lung repair after RILI due to the paucity of respiratory progenitors in BM transplants. In the present study, we used blastocyst injection to create mouse-rat chimeras, these are artificial animals in which BM is enriched with mouse-derived progenitor cells. FACS-sorted mouse BM cells from mouse-rat chimeras were transplanted into lethally irradiated syngeneic mice, and the contribution of donor cells to the lung tissue was examined using immunostaining and flow cytometry. Donor BM cells provided long-term contributions to all lung-resident hematopoietic cells which includes alveolar macrophages and dendritic cells. Surprisingly, donor BM cells also contributed up to 8% in pulmonary endothelial cells and stromal cells after RILI. To identify respiratory progenitors in donor BM, we performed single-cell RNA sequencing (scRNAseq). Compared to normal mouse BM, increased numbers of hematopoietic progenitors were found in the BM of mouse-rat chimeras. We also identified unique populations of hemangioblast-like progenitor cells expressing Hes1, Dntt and Ebf1, along with mesenchymal stromal cells expressing Cpox, Blvrb and Ermap that were absent or ultra-rare in the normal mouse BM. In summary, by using rats as "bioreactors", we created a unique mouse BM cell transplant that contributes to multiple respiratory cell types after RILI. Interspecies chimeras have promise for future generations of BM transplants enriched in respiratory progenitor cells.
Collapse
Affiliation(s)
- Enhong Li
- Phoenix Children’s Research Institute, Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Bingqiang Wen
- Phoenix Children’s Research Institute, Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Dengfeng Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Timothy R. Kalin
- College of Arts and Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Guolun Wang
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Tanya V. Kalin
- Phoenix Children’s Research Institute, Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
- Center for Cancer and Blood Diseases, Phoenix Children’s Hospital, Phoenix, AZ, United States
| | - Vladimir V. Kalinichenko
- Phoenix Children’s Research Institute, Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
- Division of Neonatology, Phoenix Children’s Hospital, Phoenix, AZ, United States
| |
Collapse
|
2
|
Payne S, Neal A, De Val S. Transcription factors regulating vasculogenesis and angiogenesis. Dev Dyn 2024; 253:28-58. [PMID: 36795082 PMCID: PMC10952167 DOI: 10.1002/dvdy.575] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Transcription factors (TFs) play a crucial role in regulating the dynamic and precise patterns of gene expression required for the initial specification of endothelial cells (ECs), and during endothelial growth and differentiation. While sharing many core features, ECs can be highly heterogeneous. Differential gene expression between ECs is essential to pattern the hierarchical vascular network into arteries, veins and capillaries, to drive angiogenic growth of new vessels, and to direct specialization in response to local signals. Unlike many other cell types, ECs have no single master regulator, instead relying on differing combinations of a necessarily limited repertoire of TFs to achieve tight spatial and temporal activation and repression of gene expression. Here, we will discuss the cohort of TFs known to be involved in directing gene expression during different stages of mammalian vasculogenesis and angiogenesis, with a primary focus on development.
Collapse
Affiliation(s)
- Sophie Payne
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| | - Alice Neal
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| | - Sarah De Val
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| |
Collapse
|
3
|
Mo S, Qu K, Huang J, Li Q, Zhang W, Yen K. Cross-species transcriptomics reveals bifurcation point during the arterial-to-hemogenic transition. Commun Biol 2023; 6:827. [PMID: 37558796 PMCID: PMC10412572 DOI: 10.1038/s42003-023-05190-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023] Open
Abstract
Hemogenic endothelium (HE) with hematopoietic stem cell (HSC)-forming potential emerge from specialized arterial endothelial cells (AECs) undergoing the endothelial-to-hematopoietic transition (EHT) in the aorta-gonad-mesonephros (AGM) region. Characterization of this AECs subpopulation and whether this phenomenon is conserved across species remains unclear. Here we introduce HomologySeeker, a cross-species method that leverages refined mouse information to explore under-studied human EHT. Utilizing single-cell transcriptomic ensembles of EHT, HomologySeeker reveals a parallel developmental relationship between these two species, with minimal pre-HSC signals observed in human cells. The pre-HE stage contains a conserved bifurcation point between the two species, where cells progress towards HE or late AECs. By harnessing human spatial transcriptomics, we identify ligand modules that contribute to the bifurcation choice and validate CXCL12 in promoting hemogenic choice using a human in vitro differentiation system. Our findings advance human arterial-to-hemogenic transition understanding and offer valuable insights for manipulating HSC generation using in vitro models.
Collapse
Affiliation(s)
- Shaokang Mo
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Kengyuan Qu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Junfeng Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Qiwei Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Kuangyu Yen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
4
|
Jezierski A, Huang J, Haqqani AS, Haukenfrers J, Liu Z, Baumann E, Sodja C, Charlebois C, Delaney CE, Star AT, Liu Q, Stanimirovic DB. Mouse embryonic stem cell-derived blood-brain barrier model: applicability to studying antibody triggered receptor mediated transcytosis. Fluids Barriers CNS 2023; 20:36. [PMID: 37237379 DOI: 10.1186/s12987-023-00437-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Blood brain barrier (BBB) models in vitro are an important tool to aid in the pre-clinical evaluation and selection of BBB-crossing therapeutics. Stem cell derived BBB models have recently demonstrated a substantial advantage over primary and immortalized brain endothelial cells (BECs) for BBB modeling. Coupled with recent discoveries highlighting significant species differences in the expression and function of key BBB transporters, the field is in need of robust, species-specific BBB models for improved translational predictability. We have developed a mouse BBB model, composed of mouse embryonic stem cell (mESC-D3)-derived brain endothelial-like cells (mBECs), employing a directed monolayer differentiation strategy. Although the mBECs showed a mixed endothelial-epithelial phenotype, they exhibited high transendothelial electrical resistance, inducible by retinoic acid treatment up to 400 Ω cm2. This tight cell barrier resulted in restricted sodium fluorescein permeability (1.7 × 10-5 cm/min), significantly lower than that of bEnd.3 cells (1.02 × 10-3 cm/min) and comparable to human induced pluripotent stem cell (iPSC)-derived BECs (2.0 × 10-5 cm/min). The mBECs expressed tight junction proteins, polarized and functional P-gp efflux transporter and receptor mediated transcytosis (RMT) receptors; collectively important criteria for studying barrier regulation and drug delivery applications in the CNS. In this study, we compared transport of a panel of antibodies binding species selective or cross-reactive epitopes on BBB RMT receptors in both the mBEC and human iPSC-derived BEC model, to demonstrate discrimination of species-specific BBB transport mechanisms.
Collapse
Affiliation(s)
- Anna Jezierski
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada.
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| | - Jez Huang
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Arsalan S Haqqani
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Julie Haukenfrers
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Ziying Liu
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Ewa Baumann
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Caroline Sodja
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Claudie Charlebois
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Christie E Delaney
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Alexandra T Star
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Qing Liu
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Danica B Stanimirovic
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| |
Collapse
|
5
|
Zhu M, Wang Q, Gu T, Han Y, Zeng X, Li J, Dong J, Huang H, Qian P. Hydrogel-based microenvironment engineering of haematopoietic stem cells. Cell Mol Life Sci 2023; 80:49. [PMID: 36690903 PMCID: PMC11073069 DOI: 10.1007/s00018-023-04696-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/06/2022] [Accepted: 01/08/2023] [Indexed: 01/25/2023]
Abstract
Haematopoietic Stem cells (HSCs) have the potential for self-renewal and multilineage differentiation, and their behaviours are finely tuned by the microenvironment. HSC transplantation (HSCT) is widely used in the treatment of haematologic malignancies while limited by the quantity of available HSCs. With the development of tissue engineering, hydrogels have been deployed to mimic the HSC microenvironment in vitro. Engineered hydrogels influence HSC behaviour by regulating mechanical strength, extracellular matrix microstructure, cellular ligands and cytokines, cell-cell interaction, and oxygen concentration, which ultimately facilitate the acquisition of sufficient HSCs. Here, we review recent advances in the application of hydrogel-based microenvironment engineering of HSCs, and provide future perspectives on challenges in basic research and clinical practice.
Collapse
Affiliation(s)
- Meng Zhu
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Qiwei Wang
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Tianning Gu
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yingli Han
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Xin Zeng
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Jinxin Li
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Jian Dong
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - He Huang
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Pengxu Qian
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Wu M, Xu J, Zhang Y, Wen Z. Learning from Zebrafish Hematopoiesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:137-157. [PMID: 38228963 DOI: 10.1007/978-981-99-7471-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Hematopoiesis is a complex process that tightly regulates the generation, proliferation, differentiation, and maintenance of hematopoietic cells. Disruptions in hematopoiesis can lead to various diseases affecting both hematopoietic and non-hematopoietic systems, such as leukemia, anemia, thrombocytopenia, rheumatoid arthritis, and chronic granuloma. The zebrafish serves as a powerful vertebrate model for studying hematopoiesis, offering valuable insights into both hematopoietic regulation and hematopoietic diseases. In this chapter, we present a comprehensive overview of zebrafish hematopoiesis, highlighting its distinctive characteristics in hematopoietic processes. We discuss the ontogeny and modulation of both primitive and definitive hematopoiesis, as well as the microenvironment that supports hematopoietic stem/progenitor cells. Additionally, we explore the utility of zebrafish as a disease model and its potential in drug discovery, which not only advances our understanding of the regulatory mechanisms underlying hematopoiesis but also facilitates the exploration of novel therapeutic strategies for hematopoietic diseases.
Collapse
Affiliation(s)
- Mei Wu
- Affiliated Hospital of Guangdong Medical University and Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jin Xu
- South China University of Technology, School of Medicine, Guangzhou, Guangdong, China.
| | - Yiyue Zhang
- South China University of Technology, School of Medicine, Guangzhou, Guangdong, China.
| | - Zilong Wen
- Southern University of Science and Technology, School of Life Sciences, Shenzhen, Guangdong, China.
| |
Collapse
|
7
|
Chandrakanthan V, Rorimpandey P, Zanini F, Chacon D, Olivier J, Joshi S, Kang YC, Knezevic K, Huang Y, Qiao Q, Oliver RA, Unnikrishnan A, Carter DR, Lee B, Brownlee C, Power C, Brink R, Mendez-Ferrer S, Enikolopov G, Walsh W, Göttgens B, Taoudi S, Beck D, Pimanda JE. Mesoderm-derived PDGFRA + cells regulate the emergence of hematopoietic stem cells in the dorsal aorta. Nat Cell Biol 2022; 24:1211-1225. [PMID: 35902769 PMCID: PMC9359911 DOI: 10.1038/s41556-022-00955-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 06/06/2022] [Indexed: 12/13/2022]
Abstract
Mouse haematopoietic stem cells (HSCs) first emerge at embryonic day 10.5 (E10.5), on the ventral surface of the dorsal aorta, by endothelial-to-haematopoietic transition. We investigated whether mesenchymal stem cells, which provide an essential niche for long-term HSCs (LT-HSCs) in the bone marrow, reside in the aorta-gonad-mesonephros and contribute to the development of the dorsal aorta and endothelial-to-haematopoietic transition. Here we show that mesoderm-derived PDGFRA+ stromal cells (Mesp1der PSCs) contribute to the haemogenic endothelium of the dorsal aorta and populate the E10.5-E11.5 aorta-gonad-mesonephros but by E13.5 were replaced by neural-crest-derived PSCs (Wnt1der PSCs). Co-aggregating non-haemogenic endothelial cells with Mesp1der PSCs but not Wnt1der PSCs resulted in activation of a haematopoietic transcriptional programme in endothelial cells and generation of LT-HSCs. Dose-dependent inhibition of PDGFRA or BMP, WNT and NOTCH signalling interrupted this reprogramming event. Together, aorta-gonad-mesonephros Mesp1der PSCs could potentially be harnessed to manufacture LT-HSCs from endothelium.
Collapse
Affiliation(s)
- Vashe Chandrakanthan
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia. .,Department of Pathology, School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia.
| | - Prunella Rorimpandey
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.,Department of Pathology, School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Fabio Zanini
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.,School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia.,Garvan-Weizmann Centre for Cellular Genomics, Sydney, Australia.,UNSW Futures Institute for Cellular Genomics, Sydney, Australia
| | - Diego Chacon
- Centre for Health Technologies and the School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Jake Olivier
- School of Mathematics and Statistics, UNSW Sydney, Sydney, NSW, Australia
| | - Swapna Joshi
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.,Department of Pathology, School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Young Chan Kang
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.,Department of Pathology, School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Kathy Knezevic
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.,Department of Pathology, School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Yizhou Huang
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia.,School of Mathematics and Statistics, UNSW Sydney, Sydney, NSW, Australia.,Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Qiao Qiao
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Rema A Oliver
- Surgical & Orthopaedic Research Laboratories, Prince of Wales Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - Ashwin Unnikrishnan
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.,School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Daniel R Carter
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia.,School of Mathematics and Statistics, UNSW Sydney, Sydney, NSW, Australia.,Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Brendan Lee
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Chris Brownlee
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Carl Power
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Robert Brink
- Garvan Institute of Medical Research, Sydney, NSW, Australia.,UNSW Sydney, Sydney, NSW, Australia
| | - Simon Mendez-Ferrer
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, UK
| | - Grigori Enikolopov
- Center for Developmental Genetics and Department of Anesthesiology, Stony Brook University, Stony Brook, NY, USA
| | - William Walsh
- Surgical & Orthopaedic Research Laboratories, Prince of Wales Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - Berthold Göttgens
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, UK
| | - Samir Taoudi
- Epigenetics and development division, Walter and Eliza Hall Institute, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Dominik Beck
- Centre for Health Technologies and the School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - John E Pimanda
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia. .,Department of Pathology, School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia. .,Department of Haematology, The Prince of Wales Hospital, Sydney, NSW, Australia.
| |
Collapse
|
8
|
Abstract
Formation of the vasculature is a critical step within the developing embryo and its disruption causes early embryonic lethality. This complex process is driven by a cascade of signaling events that controls differentiation of mesodermal progenitors into primordial endothelial cells and their further specification into distinct subtypes (arterial, venous, hemogenic) that are needed to generate a blood circulatory network. Hemogenic endothelial cells give rise to hematopoietic stem and progenitor cells that generate all blood cells in the body during embryogenesis and postnatally. We focus our discussion on the regulation of endothelial cell differentiation, and subsequent hemogenic specification, and highlight many of the signaling pathways involved in these processes, which are conserved across vertebrates. Gaining a better understanding of the regulation of these processes will yield insights needed to optimize the treatment of vascular and hematopoietic disease and generate human stem cell-derived vascular and hematopoietic cells for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jordon W Aragon
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22903, USA
- Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Karen K Hirschi
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22903, USA
- Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
- Departments of Medicine and Genetics, Yale University School of Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut 06520, USA
| |
Collapse
|
9
|
Vargas-Valderrama A, Ponsen AC, Le Gall M, Clay D, Jacques S, Manoliu T, Rouffiac V, Ser-le-Roux K, Quivoron C, Louache F, Uzan G, Mitjavila-Garcia MT, Oberlin E, Guenou H. Endothelial and hematopoietic hPSCs differentiation via a hematoendothelial progenitor. Stem Cell Res Ther 2022; 13:254. [PMID: 35715824 PMCID: PMC9205076 DOI: 10.1186/s13287-022-02925-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/29/2022] [Indexed: 11/10/2022] Open
Abstract
Background hPSC-derived endothelial and hematopoietic cells (ECs and HCs) are an interesting source of cells for tissue engineering. Despite their close spatial and temporal embryonic development, current hPSC differentiation protocols are specialized in only one of these lineages. In this study, we generated a hematoendothelial population that could be further differentiated in vitro to both lineages.
Methods Two hESCs and one hiPSC lines were differentiated into a hematoendothelial population, hPSC-ECs and blast colonies (hPSC-BCs) via CD144+-embryoid bodies (hPSC-EBs). hPSC-ECs were characterized by endothelial colony-forming assay, LDL uptake assay, endothelial activation by TNF-α, nitric oxide detection and Matrigel-based tube formation. Hematopoietic colony-forming cell assay was performed from hPSC-BCs. Interestingly, we identified a hPSC-BC population characterized by the expression of both CD144 and CD45. hPSC-ECs and hPSC-BCs were analyzed by flow cytometry and RT-qPCR; in vivo experiments have been realized by ischemic tissue injury model on a mouse dorsal skinfold chamber and hematopoietic reconstitution in irradiated immunosuppressed mouse from hPSC-ECs and hPSC-EB-CD144+, respectively. Transcriptomic analyses were performed to confirm the endothelial and hematopoietic identity of hESC-derived cell populations by comparing them against undifferentiated hESC, among each other’s (e.g. hPSC-ECs vs. hPSC-EB-CD144+) and against human embryonic liver (EL) endothelial, hematoendothelial and hematopoietic cell subpopulations.
Results A hematoendothelial population was obtained after 84 h of hPSC-EBs formation under serum-free conditions and isolated based on CD144 expression. Intrafemorally injection of hPSC-EB-CD144+ contributed to the generation of CD45+ human cells in immunodeficient mice suggesting the existence of hemogenic ECs within hPSC-EB-CD144+. Endothelial differentiation of hPSC-EB-CD144+ yields a population of > 95% functional ECs in vitro. hPSC-ECs derived through this protocol participated at the formation of new vessels in vivo in a mouse ischemia model. In vitro, hematopoietic differentiation of hPSC-EB-CD144+ generated an intermediate population of > 90% CD43+ hPSC-BCs capable to generate myeloid and erythroid colonies. Finally, the transcriptomic analyses confirmed the hematoendothelial, endothelial and hematopoietic identity of hPSC-EB-CD144+, hPSC-ECs and hPSC-BCs, respectively, and the similarities between hPSC-BC-CD144+CD45+, a subpopulation of hPSC-BCs, and human EL hematopoietic stem cells/hematopoietic progenitors.
Conclusion The present work reports a hPSC differentiation protocol into functional hematopoietic and endothelial cells through a hematoendothelial population. Both lineages were proven to display characteristics of physiological human cells, and therefore, they represent an interesting rapid source of cells for future cell therapy and tissue engineering. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02925-w.
Collapse
Affiliation(s)
| | - Anne-Charlotte Ponsen
- INSERM UMRS-MD 1197, Hôpital Paul Brousse, Université Paris-Saclay, 94807, Villejuif, France
| | - Morgane Le Gall
- Plateforme Protéomique 3P5-Proteom'IC, Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, 75014, Paris, France
| | - Denis Clay
- INSERM UMS-44, Hôpital Paul Brousse, Université Paris Sud-Université Paris-Saclay, 94807, Villejuif, France
| | - Sébastien Jacques
- Plateforme de Génomique- GENOM'IC, Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, 75014, Paris, France
| | - Tudor Manoliu
- Plate-forme Imagerie et Cytométrie, UMS AMMICa, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - Valérie Rouffiac
- Plate-forme Imagerie et Cytométrie, UMS AMMICa, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - Karine Ser-le-Roux
- INSERM, UMS AMMICa, Plate-forme d'Evaluation Préclinique, Gustave Roussy, 94807, Villejuif, France
| | - Cyril Quivoron
- Laboratoire d'Hématologie Translationnelle, Gustave Roussy, 94805, Villejuif, France
| | - Fawzia Louache
- INSERM UMRS-MD 1197, Hôpital Paul Brousse, Université Paris-Saclay, 94807, Villejuif, France
| | - Georges Uzan
- INSERM UMRS-MD 1197, Hôpital Paul Brousse, Université Paris-Saclay, 94807, Villejuif, France
| | | | - Estelle Oberlin
- INSERM UMRS-MD 1197, Hôpital Paul Brousse, Université Paris-Saclay, 94807, Villejuif, France
| | - Hind Guenou
- INSERM UMRS-MD 1197, Hôpital Paul Brousse, Université Paris-Saclay, 94807, Villejuif, France. .,Université d'Evry-Val-d'Essonne, Université Paris-Saclay, 91000, Evry, France.
| |
Collapse
|
10
|
Challenges in Cell Fate Acquisition to Scid-Repopulating Activity from Hemogenic Endothelium of hiPSCs Derived from AML Patients Using Forced Transcription Factor Expression. Cells 2022; 11:cells11121915. [PMID: 35741044 PMCID: PMC9221973 DOI: 10.3390/cells11121915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 12/10/2022] Open
Abstract
The generation of human hematopoietic stem cells (HSCs) from human pluripotent stem cells (hPSCs) represents a major goal in regenerative medicine and is believed would follow principles of early development. HSCs arise from a type of endothelial cell called a “hemogenic endothelium” (HE), and human HSCs are experimentally detected by transplantation into SCID or other immune-deficient mouse recipients, termed SCID-Repopulating Cells (SRC). Recently, SRCs were detected by forced expression of seven transcription factors (TF) (ERG, HOXA5, HOXA9, HOXA10, LCOR, RUNX1, and SPI1) in hPSC-derived HE, suggesting these factors are deficient in hPSC differentiation to HEs required to generate HSCs. Here we derived PECAM-1-, Flk-1-, and VE-cadherin-positive endothelial cells that also lack CD45 expression (PFVCD45−) which are solely responsible for hematopoietic output from iPSC lines reprogrammed from AML patients. Using HEs derived from AML patient iPSCs devoid of somatic leukemic aberrations, we sought to generate putative SRCs by the forced expression of 7TFs to model autologous HSC transplantation. The expression of 7TFs in hPSC-derived HE cells from an enhanced hematopoietic progenitor capacity was present in vitro, but failed to acquire SRC activity in vivo. Our findings emphasize the benefits of forced TF expression, along with the continued challenges in developing HSCs for autologous-based therapies from hPSC sources.
Collapse
|
11
|
Antonyshyn JA, McFadden MJ, Gramolini AO, Hofer SO, Santerre JP. Vascular tissue engineering from human adipose tissue: fundamental phenotype of its resident microvascular endothelial cells and stromal/stem cells. BIOMATERIALS AND BIOSYSTEMS 2022; 6:100049. [PMID: 36824164 PMCID: PMC9934493 DOI: 10.1016/j.bbiosy.2022.100049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/19/2022] [Accepted: 04/10/2022] [Indexed: 12/09/2022] Open
Abstract
Adipose tissue is an abundant, accessible, and uniquely dispensable source of cells for vascular tissue engineering. Despite its intrinsic endothelial cells, considerable effort is directed at deriving endothelium from its resident stem and progenitor cells. Here, we investigate the composition of human adipose tissue and characterize the phenotypes of its constituent cells in order to help ascertain their potential utility for vascular tissue engineering. Unsupervised clustering based on cell-surface protein signatures failed to detect CD45-CD31-VEGFR2+ endothelial progenitor cells within adipose tissue, but supported further investigation of its resident CD45-CD31+ microvascular endothelial cells (HAMVECs) and CD45-CD31- stromal/stem cells (ASCs). The endothelial differentiation of ASCs altered their proteome, but it remained distinct from that of primary endothelial cell controls - as well as HAMVECs - regardless of their arterial-venous specification or macrovascular-microvascular origin. Rather, ASCs retained a proteome indicative of a perivascular phenotype, which was supported by their ability to facilitate the capillary morphogenesis of HAMVECs. This study supports the use of HAMVECs for the generation of endothelium. It suggests that the utility of ASCs for vascular tissue engineering lies in their capacity to remodel the extracellular matrix and to function as mural cells.
Collapse
Affiliation(s)
- Jeremy A. Antonyshyn
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada
| | - Meghan J. McFadden
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada
| | - Anthony O. Gramolini
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada,Department of Physiology, University of Toronto, Toronto, Canada
| | - Stefan O.P. Hofer
- Division of Plastic, Reconstructive, and Aesthetic Surgery, University of Toronto, Toronto, Canada,Departments of Surgery and Surgical Oncology, University Health Network, Toronto, Canada
| | - J. Paul Santerre
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada,Faculty of Dentistry, University of Toronto, Toronto, Canada,Corresponding author.
| |
Collapse
|
12
|
Isthmin 1 is Expressed by Progenitor-Like Cells in the Lung: Phenotypical Analysis of Isthmin 1+ Hematopoietic Stem-Like Cells in Homeostasis and during Infection. J Immunol Res 2022; 2022:2909487. [PMID: 35402623 PMCID: PMC8993550 DOI: 10.1155/2022/2909487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/27/2022] [Accepted: 02/11/2022] [Indexed: 01/22/2023] Open
Abstract
The process by which blood cells are generated has been widely studied in homeostasis and during pathogen-triggered inflammatory response. Recently, murine lungs have been shown to be a significant source of hematopoietic progenitors in a process known as extramedullary hematopoiesis. Using multiparametric flow cytometry, we have identified mesenchymal, endothelial, and hematopoietic progenitor cells that express the secreted small protein Isthmin 1 (ISM1). Further characterization of hematopoietic progenitor cells indicated that ISM1+ Lineage− Sca-1+ c-kit+ (ISM1+ LSK) cells are enriched in short-term hematopoietic stem cells (ST-HSCs). Moreover, most Sca-1+ ISM1+ cells express the residence marker CD49a, and this correlated with their localization in the extravascular region of the lung, indicating that ISM1+ cells are lung-resident cells. We also observed that ISM1+ cells express TLR4, TLR5, and TLR9, and, in a mouse model of sepsis induced by P. aeruginosa, we observed that all the LSK and ISM1+LSK cells were affected. We conclude that ISM1 is a novel biomarker associated with progenitor-like cells. ISM1+ cells are involved in the response to a bacterial challenge, suggesting an association between ISM1-producing cells and dangerous inflammatory responses like sepsis.
Collapse
|
13
|
Tian Y, Zhan Y, Jiang Q, Lu W, Li X. Expression and function of PDGF-C in development and stem cells. Open Biol 2021; 11:210268. [PMID: 34847773 PMCID: PMC8633783 DOI: 10.1098/rsob.210268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Platelet-derived growth factor C (PDGF-C) is a relatively new member of the PDGF family, discovered nearly 20 years after the finding of platelet-derived growth factor A (PDGF-A) and platelet-derived growth factor B (PDGF-B). PDGF-C is generally expressed in most organs and cell types. Studies from the past 20 years have demonstrated critical roles of PDGF-C in numerous biological, physiological and pathological processes, such as development, angiogenesis, tumour growth, tissue remodelling, wound healing, atherosclerosis, fibrosis, stem/progenitor cell regulation and metabolism. Understanding PDGF-C expression and activities thus will be of great importance to various research disciplines. In this review, however, we mainly discuss the expression and functions of PDGF-C and its receptors in development and stem cells.
Collapse
Affiliation(s)
- Yi Tian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| | - Ying Zhan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| | - Qin Jiang
- Ophthalmic Department, Affiliated Eye Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Weisi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| |
Collapse
|
14
|
Antonyshyn JA, Mazzoli V, McFadden MJ, Gramolini AO, Hofer SOP, Simmons CA, Santerre JP. Mitigating the non-specific uptake of immunomagnetic microparticles enables the extraction of endothelium from human fat. Commun Biol 2021; 4:1205. [PMID: 34671074 PMCID: PMC8528810 DOI: 10.1038/s42003-021-02732-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/27/2021] [Indexed: 12/16/2022] Open
Abstract
Endothelial cells are among the fundamental building blocks for vascular tissue engineering. However, a clinically viable source of endothelium has continued to elude the field. Here, we demonstrate the feasibility of sourcing autologous endothelium from human fat – an abundant and uniquely dispensable tissue that can be readily harvested with minimally invasive procedures. We investigate the challenges underlying the overgrowth of human adipose tissue-derived microvascular endothelial cells by stromal cells to facilitate the development of a reliable method for their acquisition. Magnet-assisted cell sorting strategies are established to mitigate the non-specific uptake of immunomagnetic microparticles, enabling the enrichment of endothelial cells to purities that prevent their overgrowth by stromal cells. This work delineates a reliable method for acquiring human adipose tissue-derived microvascular endothelial cells in large quantities with high purities that can be readily applied in future vascular tissue engineering applications. Antonyshyn et al. establish a methodology for acquiring human adipose tissue-derived microvascular endothelial cells that can be readily applied in future vascular tissue engineering applications. The authors developed strategies to mitigate the non-specific uptake of immunomagnetic microparticles to facilitate the immunoselection of endothelial cells by magnet-assisted cell sorting.
Collapse
Affiliation(s)
- Jeremy A Antonyshyn
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Vienna Mazzoli
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Meghan J McFadden
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Anthony O Gramolini
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Stefan O P Hofer
- Division of Plastic, Reconstructive, and Aesthetic Surgery, University of Toronto, Toronto, ON, Canada.,Departments of Surgery and Surgical Oncology, University Health Network, Toronto, ON, Canada
| | - Craig A Simmons
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - J Paul Santerre
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada. .,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada. .,Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
15
|
Li YQ, Gong Y, Hou S, Huang T, Wang H, Liu D, Ni Y, Wang C, Wang J, Hou J, Yang R, Yan J, Zhang G, Liu B, Lan Y. Spatiotemporal and Functional Heterogeneity of Hematopoietic Stem Cell-Competent Hemogenic Endothelial Cells in Mouse Embryos. Front Cell Dev Biol 2021; 9:699263. [PMID: 34458261 PMCID: PMC8385538 DOI: 10.3389/fcell.2021.699263] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are derived from hemogenic endothelial cells (HECs) during embryogenesis. The HSC-primed HECs increased to the peak at embryonic day (E) 10 and have been efficiently captured by the marker combination CD41-CD43-CD45-CD31+CD201+Kit+CD44+ (PK44) in the aorta-gonad-mesonephros (AGM) region of mouse embryos most recently. In the present study, we investigated the spatiotemporal and functional heterogeneity of PK44 cells around the time of emergence of HSCs. First, PK44 cells in the E10.0 AGM region could be further divided into three molecularly different populations showing endothelial- or hematopoietic-biased characteristics. Specifically, with the combination of Kit, the expression of CD93 or CD146 could divide PK44 cells into endothelial- and hematopoietic-feature biased populations, which was further functionally validated at the single-cell level. Next, the PK44 population could also be detected in the yolk sac, showing similar developmental dynamics and functional diversification with those in the AGM region. Importantly, PK44 cells in the yolk sac demonstrated an unambiguous multilineage reconstitution capacity after in vitro incubation. Regardless of the functional similarity, PK44 cells in the yolk sac displayed transcriptional features different from those in the AGM region. Taken together, our work delineates the spatiotemporal characteristics of HECs represented by PK44 and reveals a previously unknown HSC competence of HECs in the yolk sac. These findings provide a fundamental basis for in-depth study of the different origins and molecular programs of HSC generation in the future.
Collapse
Affiliation(s)
- Yun-Qiao Li
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Yandong Gong
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Institute of Hematology, Beijing, China
| | - Siyuan Hou
- Key Laboratory for Regenerative Medicine of Ministry of Education, School of Medicine, Institute of Hematology, Jinan University, Guangzhou, China
| | - Tao Huang
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Haizhen Wang
- Key Laboratory for Regenerative Medicine of Ministry of Education, School of Medicine, Institute of Hematology, Jinan University, Guangzhou, China
| | - Di Liu
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yanli Ni
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Institute of Hematology, Beijing, China
| | - Chaojie Wang
- Key Laboratory for Regenerative Medicine of Ministry of Education, School of Medicine, Institute of Hematology, Jinan University, Guangzhou, China
| | - Junliang Wang
- Department of Radiotherapy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jun Hou
- The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ruichuang Yang
- The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jing Yan
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Guangyu Zhang
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Bing Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China.,State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Institute of Hematology, Beijing, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, School of Medicine, Institute of Hematology, Jinan University, Guangzhou, China
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, School of Medicine, Institute of Hematology, Jinan University, Guangzhou, China
| |
Collapse
|
16
|
Tuysuz EC, Ozbey U, Gulluoglu S, Kuskucu A, Sahin F, Bayrak OF. miRNAs as cell fate determinants of lateral and paraxial mesoderm differentiation from embryonic stem cells. Dev Biol 2021; 478:212-221. [PMID: 34245726 DOI: 10.1016/j.ydbio.2021.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
To date, the role of miRNAs on pluripotency and differentiation of ESCs into specific lineages has been studied extensively. However, the specific role of miRNAs during lateral and paraxial mesoderm cell fate decision is still unclear. To address this, we firstly determined miRNA profile of mouse ESCs differentiating towards lateral and paraxial lineages which were detected using Flk1 and PDGFαR antibodies, and of myogenic and hematopoietic differentiation potential of purified paraxial and lateral mesodermal cells within these populations. miRNAs associated with lateral and paraxial mesoderm, and their targets were identified using bioinformatics tools. The targets of the corresponding miRNAs were validated after transfection into mouse ESCs. The roles of the selected miRNAs in lateral, and paraxial mesoderm formation were assessed along with hematopoietic and myogenic differentiation capacity. Among the miRNAs, mmu-miR-126a-3p, mmu-miR-335-5p and mmu-miR-672-5p, upregulated in lateral mesoderm cells, and mmu-miR-10b-5p, mmu-miR-196a-5p and mmu-miR-615-3p, upregulated in paraxial mesoderm cells. While transient co-transfection of mmu-miR-126a-3p, mmu-miR-335-5p and mmu-miR-672-5p increased the number of lateral mesodermal cells, co-transfection of mmu-miR-10b-5p, mmu-miR-196a-5p and mmu-miR-615-3p increased the number of paraxial mesodermal cells. Moreover, differentiation potential of the lateral mesodermal cells into hematopoietic cell lineage increased upon co-transfection of mmu-miR-126a-3p, mmu-miR-335-5p and mmu-miR-672-5p and differentiation potential of the paraxial mesodermal cells into skeletal muscle lineage were increased upon co-transfection of mmu-miR-10b-5p, mmu-miR-196a-5p and mmu-miR-615-3p. In conclusion, we determined the miRNA profile of lateral and paraxial mesodermal cells and co-transfection of miRNAs increased differentiation potential of both lateral and paraxial mesodermal cells transiently.
Collapse
Affiliation(s)
- Emre Can Tuysuz
- Department of Medical Genetics, Yeditepe University Medical School, 34755, Istanbul, Turkey; Department of Genetics and Bioengineering, Yeditepe University, 34755, Istanbul, Turkey
| | - Utku Ozbey
- Department of Medical Genetics, Yeditepe University Medical School, 34755, Istanbul, Turkey; Department of Genetics and Bioengineering, Yeditepe University, 34755, Istanbul, Turkey
| | - Sukru Gulluoglu
- Department of Immunology, School of Medicine, Marmara University, 34854, Istanbul, Turkey
| | - Aysegul Kuskucu
- Department of Medical Genetics, Yeditepe University Medical School, 34755, Istanbul, Turkey
| | - Fikrettin Sahin
- Department of Genetics and Bioengineering, Yeditepe University, 34755, Istanbul, Turkey
| | - Omer Faruk Bayrak
- Department of Medical Genetics, Yeditepe University Medical School, 34755, Istanbul, Turkey.
| |
Collapse
|
17
|
Running the full human developmental clock in interspecies chimeras using alternative human stem cells with expanded embryonic potential. NPJ Regen Med 2021; 6:25. [PMID: 34001907 PMCID: PMC8128894 DOI: 10.1038/s41536-021-00135-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/20/2021] [Indexed: 02/08/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) can generate specialized cell lineages that have great potential for regenerative therapies and disease modeling. However, the developmental stage of the lineages generated from conventional hPSC cultures in vitro are embryonic in phenotype, and may not possess the cellular maturity necessary for corrective regenerative function in vivo in adult recipients. Here, we present the scientific evidence for how adult human tissues could generate human–animal interspecific chimeras to solve this problem. First, we review the phenotypes of the embryonic lineages differentiated from conventional hPSC in vitro and through organoid technologies and compare their functional relevance to the tissues generated during normal human in utero fetal and adult development. We hypothesize that the developmental incongruence of embryo-stage hPSC-differentiated cells transplanted into a recipient adult host niche is an important mechanism ultimately limiting their utility in cell therapies and adult disease modeling. We propose that this developmental obstacle can be overcome with optimized interspecies chimeras that permit the generation of adult-staged, patient-specific whole organs within animal hosts with human-compatible gestational time-frames. We suggest that achieving this goal may ultimately have to await the derivation of alternative, primitive totipotent-like stem cells with improved embryonic chimera capacities. We review the scientific challenges of deriving alternative human stem cell states with expanded embryonic potential, outline a path forward for conducting this emerging research with appropriate ethical and regulatory oversight, and defend the case of why current federal funding restrictions on this important category of biomedical research should be liberalized.
Collapse
|
18
|
Collagen IV differentially regulates planarian stem cell potency and lineage progression. Proc Natl Acad Sci U S A 2021; 118:2021251118. [PMID: 33859045 PMCID: PMC8072372 DOI: 10.1073/pnas.2021251118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Comprehensive assessment of matrisome genes identified collagen IV as one of the many extracellular matrix (ECM) proteins regulating the stem cell pool in planarian tissue homeostasis and regeneration. While collagen IV has been shown to be involved in stem cell biology, our finding links it to pluripotent stem cells in vivo, including self-renewal and differentiation into tissue-specific progenitors. We show a link between the ECM niches in the parenchyma/gut region and EGF/neuregulin-secreting neurons, thus providing mechanistic insight into interactions between cell niches. The conservation of basement membranes between planarian and mammalian gut niches suggests a similar interplay may exist in the mammalian systems, worthy of further investigation. The extracellular matrix (ECM) provides a precise physical and molecular environment for cell maintenance, self-renewal, and differentiation in the stem cell niche. However, the nature and organization of the ECM niche is not well understood. The adult freshwater planarian Schmidtea mediterranea maintains a large population of multipotent stem cells (neoblasts), presenting an ideal model to study the role of the ECM niche in stem cell regulation. Here we tested the function of 165 planarian homologs of ECM and ECM-related genes in neoblast regulation. We identified the collagen gene family as one with differential effects in promoting or suppressing proliferation of neoblasts. col4-1, encoding a type IV collagen α-chain, had the strongest effect. RNA interference (RNAi) of col4-1 impaired tissue maintenance and regeneration, causing tissue regression. Finally, we provide evidence for an interaction between type IV collagen, the discoidin domain receptor, and neuregulin-7 (NRG-7), which constitutes a mechanism to regulate the balance of symmetric and asymmetric division of neoblasts via the NRG-7/EGFR pathway.
Collapse
|
19
|
Abstract
Embryonic definitive hematopoiesis generates hematopoietic stem and progenitor cells (HSPCs) essential for establishment and maintenance of the adult blood system. This process requires the specification of a subset of vascular endothelial cells to become blood-forming, or hemogenic, and the subsequent endothelial-to-hematopoietic transition to generate HSPCs therefrom. The mechanisms that regulate these processes are under intensive investigation, as their recapitulation in vitro from human pluripotent stem cells has the potential to generate autologous HSPCs for clinical applications. In this review, we provide an overview of hemogenic endothelial cell development and highlight the molecular events that govern hemogenic specification of vascular endothelial cells and the generation of multilineage HSPCs from hemogenic endothelium. We also discuss the impact of hemogenic endothelial cell development on adult hematopoiesis.
Collapse
Affiliation(s)
- Yinyu Wu
- Departments of Medicine and Genetics, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA;
| | - Karen K Hirschi
- Departments of Medicine and Genetics, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA; .,Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA;
| |
Collapse
|
20
|
Hamabata T, Umeda K, Kouzuki K, Tanaka T, Daifu T, Nodomi S, Saida S, Kato I, Baba S, Hiramatsu H, Osawa M, Niwa A, Saito MK, Kamikubo Y, Adachi S, Hashii Y, Shimada A, Watanabe H, Osafune K, Okita K, Nakahata T, Watanabe K, Takita J, Heike T. Pluripotent stem cell model of Shwachman-Diamond syndrome reveals apoptotic predisposition of hemoangiogenic progenitors. Sci Rep 2020; 10:14859. [PMID: 32908229 PMCID: PMC7481313 DOI: 10.1038/s41598-020-71844-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/11/2020] [Indexed: 11/09/2022] Open
Abstract
Shwachman-Diamond syndrome (SDS), an autosomal recessive disorder characterized by bone marrow failure, exocrine pancreatic insufficiency, and skeletal abnormalities, is caused by mutations in the Shwachman-Bodian-Diamond syndrome (SBDS) gene, which plays a role in ribosome biogenesis. Although the causative genes of congenital disorders frequently involve regulation of embryogenesis, the role of the SBDS gene in early hematopoiesis remains unclear, primarily due to the lack of a suitable experimental model for this syndrome. In this study, we established induced pluripotent stem cells (iPSCs) from patients with SDS (SDS-iPSCs) and analyzed their in vitro hematopoietic and endothelial differentiation potentials. SDS-iPSCs generated hematopoietic and endothelial cells less efficiently than iPSCs derived from healthy donors, principally due to the apoptotic predisposition of KDR+CD34+ common hemoangiogenic progenitors. By contrast, forced expression of SBDS gene in SDS-iPSCs or treatment with a caspase inhibitor reversed the deficiency in hematopoietic and endothelial development, and decreased apoptosis of their progenitors, mainly via p53-independent mechanisms. Patient-derived iPSCs exhibited the hematological abnormalities associated with SDS even at the earliest hematopoietic stages. These findings will enable us to dissect the pathogenesis of multiple disorders associated with ribosomal dysfunction.
Collapse
Affiliation(s)
- Takayuki Hamabata
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Katsutsugu Umeda
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Kagehiro Kouzuki
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takayuki Tanaka
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tomoo Daifu
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Seishiro Nodomi
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Satoshi Saida
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Itaru Kato
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shiro Baba
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hidefumi Hiramatsu
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Mitsujiro Osawa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Akira Niwa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Megumu K Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Yasuhiko Kamikubo
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Souichi Adachi
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yoshiko Hashii
- Department of Cancer Immunotherapy, Osaka University School of Medicine, Suita, 565-0871, Japan
| | - Akira Shimada
- Department of Pediatric Hematology/Oncology, Okayama University, Okayama, 700-8558, Japan
| | - Hiroyoshi Watanabe
- Department of Pediatrics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8501, Japan
| | - Kenji Osafune
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Keisuke Okita
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Tatsutoshi Nakahata
- Drug Discovery Technology Development Office, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Kenichiro Watanabe
- Department of Hematology and Oncology, Shizuoka Children's Hospital, Shizuoka, 420-8660, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Toshio Heike
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
21
|
Zhang M, Zou Y, Xu X, Zhang X, Gao M, Song J, Huang P, Chen Q, Zhu Z, Lin W, Zare RN, Yang C. Highly parallel and efficient single cell mRNA sequencing with paired picoliter chambers. Nat Commun 2020; 11:2118. [PMID: 32355211 PMCID: PMC7193604 DOI: 10.1038/s41467-020-15765-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/25/2020] [Indexed: 12/14/2022] Open
Abstract
ScRNA-seq has the ability to reveal accurate and precise cell types and states. Existing scRNA-seq platforms utilize bead-based technologies uniquely barcoding individual cells, facing practical challenges for precious samples with limited cell number. Here, we present a scRNA-seq platform, named Paired-seq, with high cells/beads utilization efficiency, cell-free RNAs removal capability, high gene detection ability and low cost. We utilize the differential flow resistance principle to achieve single cell/barcoded bead pairing with high cell utilization efficiency (95%). The integration of valves and pumps enables the complete removal of cell-free RNAs, efficient cell lysis and mRNA capture, achieving highest mRNA detection accuracy (R = 0.955) and comparable sensitivity. Lower reaction volume and higher mRNA capture and barcoding efficiency significantly reduce the cost of reagents and sequencing. The single-cell expression profile of mES and drug treated cells reveal cell heterogeneity, demonstrating the enormous potential of Paired-seq for cell biology, developmental biology and precision medicine. Single-cell RNA-seq can reveal accurate and precise cell types and states. Here the authors present an scRNA-seq platform, Paired-seq, which uses differential flow resistance to achieve 95% cell utilisation efficiency for improved cell-free RNA removal and gene detection.
Collapse
Affiliation(s)
- Mingxia Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yuan Zou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.,Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Xing Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xuebing Zhang
- Hangzhou Weizhu Biological Technology Co., Ltd, Hangzhou, China
| | - Mingxuan Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jia Song
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Peifeng Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Qin Chen
- Hangzhou Weizhu Biological Technology Co., Ltd, Hangzhou, China
| | - Zhi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Wei Lin
- Translational Genomics Research Institute, Molecular Medicine Division, Phoenix, AZ, USA.,Hunan Provincial Key Lab of Emergency and Critical Care, Hunan People's Hospital, Changsha, China
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Chaoyong Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China. .,Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
22
|
Park SY, Lee H, Kwon YW, Park MR, Kim JH, Kim JB. Etv2- and Fli1-Induced Vascular Progenitor Cells Enhance Functional Recovery in Ischemic Vascular Disease Model-Brief Report. Arterioscler Thromb Vasc Biol 2020; 40:e105-e113. [PMID: 32075417 DOI: 10.1161/atvbaha.119.313684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Vascular progenitor cells (VPCs), which are able to differentiate into both endothelial cells and smooth muscle cells, have the potential for treatment of ischemic diseases. Generated by pluripotent stem cells, VPCs carry the risk of tumorigenicity in clinical application. This issue could be resolved by direct lineage conversion, the induction of functional cells from another lineage by using only lineage-restricted transcription factors. Here, we show that induced VPCs (iVPCs) can be generated from fibroblasts by ETS (E-twenty six) transcription factors, Etv2 and Fli1. Approach and Results: Mouse fibroblasts were infected with lentivirus encoding Etv2 and Fli1. Cell colonies appeared in Fli1- and Etv2/Fli1-infected groups and were mechanically picked. The identity of cell colonies was confirmed by proliferation assay and reverse-transcription polymerase chain reaction with vascular markers. Etv2/Fli1- infected cell colonies were sorted by CD144 (also known as CDH5, VE-cadherin). We defined that CD144-positive iVPCs maintained its own population and expanded stably at multiple passages. iVPCs could differentiate into functional endothelial cells and smooth muscle cells by a defined medium. The functionalities of iVPC-derived endothelial cells and smooth muscle cells were confirmed by analyzing LDL (low-density lipoprotein) uptake, carbachol-induced contraction, and tube formation in vitro. Transplantation of iVPCs into the ischemic hindlimb model enhanced blood flow without tumor formation in vivo. Human iVPCs were generated by human ETS transcription factors ETV2 and FLI1. CONCLUSIONS We demonstrate that ischemic disease curable iVPCs, which have self-renewal and bipotency, can be generated from mouse fibroblasts by enforced ETS family transcription factors, Etv2 and Fli1 expression. Our simple strategy opens insights into stem cell-based ischemic disease therapy.
Collapse
Affiliation(s)
- Soo Yong Park
- From the Hans Schöler Stem Cell Research Center, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), South Korea (S.Y.P., H.L., M.R.P., J.B.K.)
| | - Hyunah Lee
- From the Hans Schöler Stem Cell Research Center, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), South Korea (S.Y.P., H.L., M.R.P., J.B.K.)
| | - Yang Woo Kwon
- Department of Physiology, Pusan National University School of Medicine, Yangsan, South Korea (Y.W.K., J.H.K.)
| | - Myung Rae Park
- From the Hans Schöler Stem Cell Research Center, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), South Korea (S.Y.P., H.L., M.R.P., J.B.K.)
| | - Jae Ho Kim
- Department of Physiology, Pusan National University School of Medicine, Yangsan, South Korea (Y.W.K., J.H.K.)
| | - Jeong Beom Kim
- From the Hans Schöler Stem Cell Research Center, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), South Korea (S.Y.P., H.L., M.R.P., J.B.K.)
| |
Collapse
|
23
|
Abstract
Mouse embryonic stem cells (mESC) have the ability to self-renew due to their rapid proliferation and high telomerase activity while maintaining their pluripotency. Depending on the environment, mESC can differentiate into a broad range of cell types. These characteristics have established mESC as a tool for modeling human disease, genetic engineering, lineage specificity, stem cell-based therapies, and tissue regeneration. Here we describe a protocol for mESC expansion and differentiation.
Collapse
Affiliation(s)
- Chrissa Kioussi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
24
|
Moon KR, van Dijk D, Wang Z, Gigante S, Burkhardt DB, Chen WS, Yim K, Elzen AVD, Hirn MJ, Coifman RR, Ivanova NB, Wolf G, Krishnaswamy S. Visualizing structure and transitions in high-dimensional biological data. Nat Biotechnol 2019; 37:1482-1492. [PMID: 31796933 PMCID: PMC7073148 DOI: 10.1038/s41587-019-0336-3] [Citation(s) in RCA: 492] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/29/2019] [Indexed: 01/12/2023]
Abstract
The high-dimensional data created by high-throughput technologies require visualization tools that reveal data structure and patterns in an intuitive form. We present PHATE, a visualization method that captures both local and global nonlinear structure using an information-geometric distance between data points. We compare PHATE to other tools on a variety of artificial and biological datasets, and find that it consistently preserves a range of patterns in data, including continual progressions, branches and clusters, better than other tools. We define a manifold preservation metric, which we call denoised embedding manifold preservation (DEMaP), and show that PHATE produces lower-dimensional embeddings that are quantitatively better denoised as compared to existing visualization methods. An analysis of a newly generated single-cell RNA sequencing dataset on human germ-layer differentiation demonstrates how PHATE reveals unique biological insight into the main developmental branches, including identification of three previously undescribed subpopulations. We also show that PHATE is applicable to a wide variety of data types, including mass cytometry, single-cell RNA sequencing, Hi-C and gut microbiome data.
Collapse
Affiliation(s)
- Kevin R Moon
- Department of Mathematics and Statistics, Utah State University, Logan, UT, USA
| | - David van Dijk
- Cardiovascular Research Center, section Cardiology, Department of Internal Medicine, Yale University, New Haven, CT, USA
- Department of Computer Science, Yale University, New Haven, CT, USA
| | - Zheng Wang
- School of Basic Medicine, Qingdao University, Qingdao, China
- Yale Stem Cell Center, Department of Genetics, Yale University, New Haven, CT, USA
| | - Scott Gigante
- Computational Biology and Bioinformatics Program, Yale University, New Haven, CT, USA
| | | | - William S Chen
- Department of Genetics, Yale University, New Haven, CT, USA
| | - Kristina Yim
- Department of Genetics, Yale University, New Haven, CT, USA
| | | | - Matthew J Hirn
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Mathematics, Michigan State University, East Lansing, MI, USA
| | - Ronald R Coifman
- Applied Mathematics Program, Yale University, New Haven, CT, USA
| | - Natalia B Ivanova
- Department of Genetics, Center for Molecular Medicine, University of Georgia, Athens, GA, USA.
| | - Guy Wolf
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Quebec, Canada.
- Mila-Quebec Artificial Intelligence Institute, Montréal, Quebec, Canada.
| | - Smita Krishnaswamy
- Department of Computer Science, Yale University, New Haven, CT, USA.
- Department of Genetics, Yale University, New Haven, CT, USA.
| |
Collapse
|
25
|
Aragón E, Wang Q, Zou Y, Morgani SM, Ruiz L, Kaczmarska Z, Su J, Torner C, Tian L, Hu J, Shu W, Agrawal S, Gomes T, Márquez JA, Hadjantonakis AK, Macias MJ, Massagué J. Structural basis for distinct roles of SMAD2 and SMAD3 in FOXH1 pioneer-directed TGF-β signaling. Genes Dev 2019; 33:1506-1524. [PMID: 31582430 PMCID: PMC6824466 DOI: 10.1101/gad.330837.119] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/03/2019] [Indexed: 01/08/2023]
Abstract
TGF-β receptors phosphorylate SMAD2 and SMAD3 transcription factors, which then form heterotrimeric complexes with SMAD4 and cooperate with context-specific transcription factors to activate target genes. Here we provide biochemical and structural evidence showing that binding of SMAD2 to DNA depends on the conformation of the E3 insert, a structural element unique to SMAD2 and previously thought to render SMAD2 unable to bind DNA. Based on this finding, we further delineate TGF-β signal transduction by defining distinct roles for SMAD2 and SMAD3 with the forkhead pioneer factor FOXH1 as a partner in the regulation of differentiation genes in mouse mesendoderm precursors. FOXH1 is prebound to target sites in these loci and recruits SMAD3 independently of TGF-β signals, whereas SMAD2 remains predominantly cytoplasmic in the basal state and set to bind SMAD4 and join SMAD3:FOXH1 at target promoters in response to Nodal TGF-β signals. The results support a model in which signal-independent binding of SMAD3 and FOXH1 prime mesendoderm differentiation gene promoters for activation, and signal-driven SMAD2:SMAD4 binds to promoters that are preloaded with SMAD3:FOXH1 to activate transcription.
Collapse
Affiliation(s)
- Eric Aragón
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Qiong Wang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Yilong Zou
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Sophie M Morgani
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Lidia Ruiz
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | | | - Jie Su
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Carles Torner
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Lin Tian
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Jing Hu
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Weiping Shu
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Saloni Agrawal
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Tiago Gomes
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | | | | | - Maria J Macias
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain.,ICREA, 08010 Barcelona, Spain
| | - Joan Massagué
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
26
|
Abstract
The ability to generate new microvessels in desired numbers and at desired locations has been a long-sought goal in vascular medicine, engineering, and biology. Historically, the need to revascularize ischemic tissues nonsurgically (so-called therapeutic vascularization) served as the main driving force for the development of new methods of vascular growth. More recently, vascularization of engineered tissues and the generation of vascularized microphysiological systems have provided additional targets for these methods, and have required adaptation of therapeutic vascularization to biomaterial scaffolds and to microscale devices. Three complementary strategies have been investigated to engineer microvasculature: angiogenesis (the sprouting of existing vessels), vasculogenesis (the coalescence of adult or progenitor cells into vessels), and microfluidics (the vascularization of scaffolds that possess the open geometry of microvascular networks). Over the past several decades, vascularization techniques have grown tremendously in sophistication, from the crude implantation of arteries into myocardial tunnels by Vineberg in the 1940s, to the current use of micropatterning techniques to control the exact shape and placement of vessels within a scaffold. This review provides a broad historical view of methods to engineer the microvasculature, and offers a common framework for organizing and analyzing the numerous studies in this area of tissue engineering and regenerative medicine. © 2019 American Physiological Society. Compr Physiol 9:1155-1212, 2019.
Collapse
Affiliation(s)
- Joe Tien
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Division of Materials Science and Engineering, Boston University, Brookline, Massachusetts, USA
| |
Collapse
|
27
|
Understanding the Journey of Human Hematopoietic Stem Cell Development. Stem Cells Int 2019; 2019:2141475. [PMID: 31198425 PMCID: PMC6526542 DOI: 10.1155/2019/2141475] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
Hematopoietic stem cells (HSCs) surface during embryogenesis leading to the genesis of the hematopoietic system, which is vital for immune function, homeostasis balance, and inflammatory responses in the human body. Hematopoiesis is the process of blood cell formation, which initiates from hematopoietic stem/progenitor cells (HSPCs) and is responsible for the generation of all adult blood cells. With their self-renewing and pluripotent properties, human pluripotent stem cells (hPSCs) provide an unprecedented opportunity to create in vitro models of differentiation that will revolutionize our understanding of human development, especially of the human blood system. The utilization of hPSCs provides newfound approaches for studying the origins of human blood cell diseases and generating progenitor populations for cell-based treatments. Current shortages in our knowledge of adult HSCs and the molecular mechanisms that control hematopoietic development in physiological and pathological conditions can be resolved with better understanding of the regulatory networks involved in hematopoiesis, their impact on gene expression, and further enhance our ability to develop novel strategies of clinical importance. In this review, we delve into the recent advances in the understanding of the various cellular and molecular pathways that lead to blood development from hPSCs and examine the current knowledge of human hematopoietic development. We also review how in vitro differentiation of hPSCs can undergo hematopoietic transition and specification, including major subtypes, and consider techniques and protocols that facilitate the generation of hematopoietic stem cells.
Collapse
|
28
|
Phakdeedindan P, Setthawong P, Tiptanavattana N, Rungarunlert S, Ingrungruanglert P, Israsena N, Techakumphu M, Tharasanit T. Rabbit induced pluripotent stem cells retain capability of in vitro cardiac differentiation. Exp Anim 2019; 68:35-47. [PMID: 30089733 PMCID: PMC6389514 DOI: 10.1538/expanim.18-0074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022] Open
Abstract
Stem cells are promising cell source for treatment of multiple diseases as well as myocardial infarction. Rabbit model has essentially used for cardiovascular diseases and regeneration but information on establishment of induced pluripotent stem cells (iPSCs) and differentiation potential is fairly limited. In addition, there is no report of cardiac differentiation from iPSCs in the rabbit model. In this study, we generated rabbit iPSCs by reprogramming rabbit fibroblasts using the 4 transcription factors (OCT3/4, SOX2, KLF4, and c-Myc). Three iPSC lines were established. The iPSCs from all cell lines expressed genes (OCT3/4, SOX2, KLF4 and NANOG) and proteins (alkaline phosphatase, OCT-3/4 and SSEA-4) essentially described for pluripotency (in vivo and in vitro differentiation). Furthermore, they also had ability to form embryoid body (EB) resulting in three-germ layer differentiation. However, ability of particular cell lines and cell numbers at seeding markedly influenced on EB formation and also their diameters. The cell density at 20,000 cells per EB was selected for cardiac differentiation. After plating, the EBs attached and cardiac-like beating areas were seen as soon as 11 days of culture. The differentiated cells expressed cardiac progenitor marker FLK1 (51 ± 1.48%) on day 5 and cardiac troponin-T protein (10.29 ± 1.37%) on day 14. Other cardiac marker genes (cardiac ryanodine receptors (RYR2), α-actinin and PECAM1) were also expressed. This study concluded that rabbit iPSCs remained their in vitro pluripotency with capability of differentiation into mature-phenotype cardiomyocytes. However, the efficiency of cardiac differentiation is still restricted.
Collapse
Affiliation(s)
- Praopilas Phakdeedindan
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, 39 Henri-Dunant Rd., Pathumwan, Bangkok 10330, Thailand
| | - Piyathip Setthawong
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, 39 Henri-Dunant Rd., Pathumwan, Bangkok 10330, Thailand
| | - Narong Tiptanavattana
- Faculty of Veterinary Science, Prince of Songkla University, 15 Kanjanavanich Road, Hat Yai Songkhla 90110, Thailand
| | - Sasitorn Rungarunlert
- Faculty of Veterinary Science, Mahidol University, 999 Phutthamonthon Sai 4 Road, Nakhonpathom, 73170, Thailand
| | - Praewphan Ingrungruanglert
- Stem Cells and Cell Therapy Research Unit, Faculty of Medicine, Chulalongkorn University, 1873 Henri-Dunant Rd., Pathumwan, Bangkok 10330, Thailand
| | - Nipan Israsena
- Stem Cells and Cell Therapy Research Unit, Faculty of Medicine, Chulalongkorn University, 1873 Henri-Dunant Rd., Pathumwan, Bangkok 10330, Thailand
| | - Mongkol Techakumphu
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, 39 Henri-Dunant Rd., Pathumwan, Bangkok 10330, Thailand
| | - Theerawat Tharasanit
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, 39 Henri-Dunant Rd., Pathumwan, Bangkok 10330, Thailand
- The Research and Development Center for Livestock Production Technology at the Faculty of Veterinary Science, Chulalongkorn University, Thailand
| |
Collapse
|
29
|
Christaki EE, Politou M, Antonelou M, Athanasopoulos A, Simantirakis E, Seghatchian J, Vassilopoulos G. Ex vivo generation of transfusable red blood cells from various stem cell sources: A concise revisit of where we are now. Transfus Apher Sci 2019; 58:108-112. [DOI: 10.1016/j.transci.2018.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Zhang Y, Clay D, Mitjavila-Garcia MT, Alama A, Mennesson B, Berseneff H, Louache F, Bennaceur-Griscelli A, Oberlin E. VE-Cadherin and ACE Co-Expression Marks Highly Proliferative Hematopoietic Stem Cells in Human Embryonic Liver. Stem Cells Dev 2019; 28:165-185. [PMID: 30426841 DOI: 10.1089/scd.2018.0154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Despite advances to engineer transplantable hematopoietic stem and progenitor cells (HSPCs) for research and therapy, an in-depth characterization of the developing human hematopoietic system is still lacking. The human embryonic liver is at the crossroad of several hematopoietic sites and harbors a complex hematopoietic hierarchy, including the first actively dividing HSPCs that will further seed the definitive hematopoietic organs. However, few are known about the phenotypic and functional HSPC organization operating at these stages of development. In this study, using a combination of four endothelial and hematopoietic surface markers, that is, the endothelial-specific marker vascular endothelial-cadherin (Cdh5, CD144), the pan-leukocyte antigen CD45, the hemato-endothelial marker CD34, and the angiotensin-converting enzyme (ACE, CD143), we identified distinct HSPC subsets, and among them, a population co-expressing the four markers that uniquely harbored an outstanding proliferation potential both ex vivo and in vivo. Moreover, we traced back this population to the yolk sac (YS) and aorta-gonad-mesonephros (AGM) sites of hematopoietic emergence. Taken together, our data will help to identify human HSPC self-renewal and amplification mechanisms for future cell therapies.
Collapse
Affiliation(s)
- Yanyan Zhang
- 1 Inserm, UMR 1170, Villejuif, France.,2 Paris-Saclay University, Villejuif, France.,3 Gustave Roussy, Villejuif, France
| | - Denis Clay
- 4 Inserm UMS 33, Villejuif, France.,5 André Lwoff Institute (IFR89), Villejuif, France.,6 Paris-Saclay University, Villejuif, France
| | - Maria Teresa Mitjavila-Garcia
- 5 André Lwoff Institute (IFR89), Villejuif, France.,6 Paris-Saclay University, Villejuif, France.,7 Inserm UMR 935, Villejuif, France
| | - Aurélie Alama
- 5 André Lwoff Institute (IFR89), Villejuif, France.,6 Paris-Saclay University, Villejuif, France.,7 Inserm UMR 935, Villejuif, France
| | - Benoit Mennesson
- 8 Obstetrics and Gynecology Department, René-Dubos Hospital, Pontoise, France
| | - Helene Berseneff
- 8 Obstetrics and Gynecology Department, René-Dubos Hospital, Pontoise, France
| | - Fawzia Louache
- 1 Inserm, UMR 1170, Villejuif, France.,2 Paris-Saclay University, Villejuif, France.,3 Gustave Roussy, Villejuif, France
| | - Annelise Bennaceur-Griscelli
- 5 André Lwoff Institute (IFR89), Villejuif, France.,6 Paris-Saclay University, Villejuif, France.,7 Inserm UMR 935, Villejuif, France
| | - Estelle Oberlin
- 5 André Lwoff Institute (IFR89), Villejuif, France.,6 Paris-Saclay University, Villejuif, France.,7 Inserm UMR 935, Villejuif, France
| |
Collapse
|
31
|
Chagraoui H, Kristiansen MS, Ruiz JP, Serra-Barros A, Richter J, Hall-Ponselé E, Gray N, Waithe D, Clark K, Hublitz P, Repapi E, Otto G, Sopp P, Taylor S, Thongjuea S, Vyas P, Porcher C. SCL/TAL1 cooperates with Polycomb RYBP-PRC1 to suppress alternative lineages in blood-fated cells. Nat Commun 2018; 9:5375. [PMID: 30560907 PMCID: PMC6299140 DOI: 10.1038/s41467-018-07787-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 11/23/2018] [Indexed: 01/03/2023] Open
Abstract
During development, it is unclear if lineage-fated cells derive from multilineage-primed progenitors and whether active mechanisms operate to restrict cell fate. Here we investigate how mesoderm specifies into blood-fated cells. We document temporally restricted co-expression of blood (Scl/Tal1), cardiac (Mesp1) and paraxial (Tbx6) lineage-affiliated transcription factors in single cells, at the onset of blood specification, supporting the existence of common progenitors. At the same time-restricted stage, absence of SCL results in expansion of cardiac/paraxial cell populations and increased cardiac/paraxial gene expression, suggesting active suppression of alternative fates. Indeed, SCL normally activates expression of co-repressor ETO2 and Polycomb-PRC1 subunits (RYBP, PCGF5) and maintains levels of Polycomb-associated histone marks (H2AK119ub/H3K27me3). Genome-wide analyses reveal ETO2 and RYBP co-occupy most SCL target genes, including cardiac/paraxial loci. Reduction of Eto2 or Rybp expression mimics Scl-null cardiac phenotype. Therefore, SCL-mediated transcriptional repression prevents mis-specification of blood-fated cells, establishing active repression as central to fate determination processes.
Collapse
Affiliation(s)
- Hedia Chagraoui
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Maiken S Kristiansen
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Medimmune, Granta Park, CB21 6GH, Cambridge, UK
| | - Juan Pablo Ruiz
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Haematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ana Serra-Barros
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Johanna Richter
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Elisa Hall-Ponselé
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- MRC Centre for Regenerative Medicine, SCRM Building, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Nicki Gray
- Computational Biology Research Group, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Dominic Waithe
- Wolfson Imaging Centre, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Kevin Clark
- FACS Facility, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Philip Hublitz
- Genome Engineering Facility, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Emmanouela Repapi
- Computational Biology Research Group, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Georg Otto
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Oxford National Institute for Health Research, Biomedical Research Centre, Haematology Theme, Oxford University Hospital, Oxford, OX3 9DU, UK
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Paul Sopp
- FACS Facility, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Stephen Taylor
- Computational Biology Research Group, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Supat Thongjuea
- Computational Biology Research Group, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Oxford National Institute for Health Research, Biomedical Research Centre, Haematology Theme, Oxford University Hospital, Oxford, OX3 9DU, UK
| | - Paresh Vyas
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Oxford National Institute for Health Research, Biomedical Research Centre, Haematology Theme, Oxford University Hospital, Oxford, OX3 9DU, UK
| | - Catherine Porcher
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK.
| |
Collapse
|
32
|
Insights into Endothelial Progenitor Cells: Origin, Classification, Potentials, and Prospects. Stem Cells Int 2018; 2018:9847015. [PMID: 30581475 PMCID: PMC6276490 DOI: 10.1155/2018/9847015] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/27/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023] Open
Abstract
With the discovery of endothelial progenitor cells (EPCs) in the late 1990s, a paradigm shift in the concept of neoangiogenesis occurred. The identification of circulating EPCs in peripheral blood marked the beginning of a new era with enormous potential in the rapidly transforming regenerative field. Overwhelmed with the revelation, researchers across the globe focused on isolating, defining, and interpreting the role of EPCs in various physiological and pathological conditions. Consequently, controversies emerged regarding the isolation techniques and classification of EPCs. Nevertheless, the potential of using EPCs in tissue engineering as an angiogenic source has been extensively explored. Concomitantly, the impact of EPCs on various diseases, such as diabetes, cancer, and cardiovascular diseases, has been studied. Within the limitations of the current knowledge, this review attempts to delineate the concept of EPCs in a sequential manner from the speculative history to a definitive presence (origin, sources of EPCs, isolation, and identification) and significance of these EPCs. Additionally, this review is aimed at serving as a guide for investigators, identifying potential research gaps, and summarizing our current and future prospects regarding EPCs.
Collapse
|
33
|
Hoeffel G, Ginhoux F. Fetal monocytes and the origins of tissue-resident macrophages. Cell Immunol 2018; 330:5-15. [DOI: 10.1016/j.cellimm.2018.01.001] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/01/2018] [Indexed: 02/07/2023]
|
34
|
Diepstraten ST, Hart AH. Modelling human haemoglobin switching. Blood Rev 2018; 33:11-23. [PMID: 30616747 DOI: 10.1016/j.blre.2018.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/11/2018] [Accepted: 06/14/2018] [Indexed: 12/22/2022]
Abstract
Genetic lesions of the β-globin gene result in haemoglobinopathies such as β-thalassemia and sickle cell disease. To discover and test new molecular medicines for β-haemoglobinopathies, cell-based and animal models are now being widely utilised. However, multiple in vitro and in vivo models are required due to the complex structure and regulatory mechanisms of the human globin gene locus, subtle species-specific differences in blood cell development, and the influence of epigenetic factors. Advances in genome sequencing, gene editing, and precision medicine have enabled the first generation of molecular therapies aimed at reactivating, repairing, or replacing silenced or damaged globin genes. Here we compare and contrast current animal and cell-based models, highlighting their complementary strengths, reflecting on how they have informed the scope and direction of the field, and describing some of the novel molecular and precision medicines currently under development or in clinical trial.
Collapse
Affiliation(s)
- Sarah T Diepstraten
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia.
| | - Adam H Hart
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia.
| |
Collapse
|
35
|
Koyano-Nakagawa N, Garry DJ. Etv2 as an essential regulator of mesodermal lineage development. Cardiovasc Res 2018; 113:1294-1306. [PMID: 28859300 DOI: 10.1093/cvr/cvx133] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/24/2017] [Indexed: 11/14/2022] Open
Abstract
The 'master regulatory factors' that position at the top of the genetic hierarchy of lineage determination have been a focus of intense interest, and have been investigated in various systems. Etv2/Etsrp71/ER71 is such a factor that is both necessary and sufficient for the development of haematopoietic and endothelial lineages. As such, genetic ablation of Etv2 leads to complete loss of blood and vessels, and overexpression can convert non-endothelial cells to the endothelial lineage. Understanding such master regulatory role of a lineage is not only a fundamental quest in developmental biology, but also holds immense possibilities in regenerative medicine. To harness its activity and utility for therapeutic interventions, it is essential to understand the regulatory mechanisms, molecular function, and networks that surround Etv2. In this review, we provide a comprehensive overview of Etv2 biology focused on mouse and human systems.
Collapse
Affiliation(s)
- Naoko Koyano-Nakagawa
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 2231 6th st. SE, Minneapolis, MN 55455, USA
| | - Daniel J Garry
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 2231 6th st. SE, Minneapolis, MN 55455, USA
| |
Collapse
|
36
|
Chal J, Al Tanoury Z, Oginuma M, Moncuquet P, Gobert B, Miyanari A, Tassy O, Guevara G, Hubaud A, Bera A, Sumara O, Garnier JM, Kennedy L, Knockaert M, Gayraud-Morel B, Tajbakhsh S, Pourquié O. Recapitulating early development of mouse musculoskeletal precursors of the paraxial mesoderm in vitro. Development 2018; 145:145/6/dev157339. [DOI: 10.1242/dev.157339] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 02/06/2018] [Indexed: 12/13/2022]
Abstract
ABSTRACT
Body skeletal muscles derive from the paraxial mesoderm, which forms in the posterior region of the embryo. Using microarrays, we characterize novel mouse presomitic mesoderm (PSM) markers and show that, unlike the abrupt transcriptome reorganization of the PSM, neural tube differentiation is accompanied by progressive transcriptome changes. The early paraxial mesoderm differentiation stages can be efficiently recapitulated in vitro using mouse and human pluripotent stem cells. While Wnt activation alone can induce posterior PSM markers, acquisition of a committed PSM fate and efficient differentiation into anterior PSM Pax3+ identity further requires BMP inhibition to prevent progenitors from drifting to a lateral plate mesoderm fate. When transplanted into injured adult muscle, these precursors generated large numbers of immature muscle fibers. Furthermore, exposing these mouse PSM-like cells to a brief FGF inhibition step followed by culture in horse serum-containing medium allows efficient recapitulation of the myogenic program to generate myotubes and associated Pax7+ cells. This protocol results in improved in vitro differentiation and maturation of mouse muscle fibers over serum-free protocols and enables the study of myogenic cell fusion and satellite cell differentiation.
Collapse
Affiliation(s)
- Jérome Chal
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Ziad Al Tanoury
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Masayuki Oginuma
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Philippe Moncuquet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
| | - Bénédicte Gobert
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
- Anagenesis Biotechnologies, Parc d'innovation, Illkirch Graffenstaden 67400, France
| | - Ayako Miyanari
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
| | - Olivier Tassy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
| | - Getzabel Guevara
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Alexis Hubaud
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Agata Bera
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
| | - Olga Sumara
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
| | - Jean-Marie Garnier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
| | - Leif Kennedy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
| | - Marie Knockaert
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Barbara Gayraud-Morel
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris 75015, France
- CNRS UMR 3738, Institut Pasteur, Paris 75015, France
| | - Shahragim Tajbakhsh
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris 75015, France
- CNRS UMR 3738, Institut Pasteur, Paris 75015, France
| | - Olivier Pourquié
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch Graffenstaden 67400, France
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02115, USA
| |
Collapse
|
37
|
Teichweyde N, Kasperidus L, Carotta S, Kouskoff V, Lacaud G, Horn PA, Heinrichs S, Klump H. HOXB4 Promotes Hemogenic Endothelium Formation without Perturbing Endothelial Cell Development. Stem Cell Reports 2018; 10:875-889. [PMID: 29456178 PMCID: PMC5919293 DOI: 10.1016/j.stemcr.2018.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 12/25/2022] Open
Abstract
Generation of hematopoietic stem cells (HSCs) from pluripotent stem cells, in vitro, holds great promise for regenerative therapies. Primarily, this has been achieved in mouse cells by overexpression of the homeotic selector protein HOXB4. The exact cellular stage at which HOXB4 promotes hematopoietic development, in vitro, is not yet known. However, its identification is a prerequisite to unambiguously identify the molecular circuits controlling hematopoiesis, since the activity of HOX proteins is highly cell and context dependent. To identify that stage, we retrovirally expressed HOXB4 in differentiating mouse embryonic stem cells (ESCs). Through the use of Runx1(-/-) ESCs containing a doxycycline-inducible Runx1 coding sequence, we uncovered that HOXB4 promoted the formation of hemogenic endothelium cells without altering endothelial cell development. Whole-transcriptome analysis revealed that its expression mediated the upregulation of transcription of core transcription factors necessary for hematopoiesis, culminating in the formation of blood progenitors upon initiation of Runx1 expression.
Collapse
Affiliation(s)
- Nadine Teichweyde
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany
| | - Lara Kasperidus
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany; Department of Bone Marrow Transplantation, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Sebastian Carotta
- Cancer Cell Signaling, Boehringer Ingelheim RCV, Dr Boehringer-Gasse, 1120 Vienna, Austria
| | - Valerie Kouskoff
- Cancer Research UK Stem Cell Haematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany
| | - Stefan Heinrichs
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany
| | - Hannes Klump
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany.
| |
Collapse
|
38
|
Doğan A. Embryonic Stem Cells in Development and Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1079:1-15. [PMID: 29464659 DOI: 10.1007/5584_2018_175] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
After progressive improvement in embryonic stem (ES) cell field, several studies have been conducted to explore the usage of ES cells in regenerative medicine. Unlimited self renewal and pluripoteny properties, combined with encouraging preclinical trials, remark that ES cell technology might be promising for clinical practice. ES cells, which can form three germ layers in vitro, are potential candidates to study development at the cellular and molecular level. Understanding the cell fate decision and differentiation processes during development might enable generating functional progenitor cells for tissue restoration. Progression in gene modifications and tissue engineering technology has facilitated the derivation of desired cells for therapy. Success in differentiation protocols and identification the regulatory pathways simplify the research for clinical applications. Although there are established protocols for cell differentiation in vitro and promising preclinical studies in vivo, many challenges need to be adressed before clinical translation. In this review, ES cells are discussed as a model of development in vitro and as a potential candidate for regenerative medicine. This review also dissusses current challenges for ES cell based therapy.
Collapse
Affiliation(s)
- Ayşegül Doğan
- National Cancer Institute, CDBL, NIH, Frederick, MD, USA.
| |
Collapse
|
39
|
Metabolic shift in density-dependent stem cell differentiation. Cell Commun Signal 2017; 15:44. [PMID: 29052507 PMCID: PMC5649068 DOI: 10.1186/s12964-017-0173-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 05/02/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Vascular progenitor cells (VPCs) derived from embryonic stem cells (ESCs) are a valuable source for cell- and tissue-based therapeutic strategies. During the optimization of endothelial cell (EC) inductions from mouse ESCs using our staged and chemically-defined induction methods, we found that cell seeding density but not VEGF treatment between 10 ng/mL and 40 ng/mL was a significant variable directing ESCs into FLK1+ VPCs during stage 1 induction. Here, we examine potential contributions from cell-to-cell signaling or cellular metabolism in the production of VPCs from ESCs seeded at different cell densities. METHODS Using 1D 1H-NMR spectroscopy, transcriptomic arrays, and flow cytometry, we observed that the density-dependent differentiation of ESCs into FLK1+ VPCs positively correlated with a shift in metabolism and cellular growth. RESULTS Specifically, cell differentiation correlated with an earlier plateauing of exhaustive glycolysis, decreased lactate production, lower metabolite consumption, decreased cellular proliferation and an increase in cell size. In contrast, cells seeded at a lower density of 1,000 cells/cm2 exhibited increased rates of glycolysis, lactate secretion, metabolite utilization, and proliferation over the same induction period. Gene expression analysis indicated that high cell seeding density correlated with up-regulation of several genes including cell adhesion molecules of the notch family (NOTCH1 and NOTCH4) and cadherin family (CDH5) related to vascular development. CONCLUSIONS These results confirm that a distinct metabolic phenotype correlates with cell differentiation of VPCs.
Collapse
|
40
|
Abstract
Skeletal muscle is the largest tissue in the body and loss of its function or its regenerative properties results in debilitating musculoskeletal disorders. Understanding the mechanisms that drive skeletal muscle formation will not only help to unravel the molecular basis of skeletal muscle diseases, but also provide a roadmap for recapitulating skeletal myogenesis in vitro from pluripotent stem cells (PSCs). PSCs have become an important tool for probing developmental questions, while differentiated cell types allow the development of novel therapeutic strategies. In this Review, we provide a comprehensive overview of skeletal myogenesis from the earliest premyogenic progenitor stage to terminally differentiated myofibers, and discuss how this knowledge has been applied to differentiate PSCs into muscle fibers and their progenitors in vitro.
Collapse
Affiliation(s)
- Jérome Chal
- Department of Pathology, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Harvard Stem Cell Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Olivier Pourquié
- Department of Pathology, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Boston, MA 02115, USA .,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Harvard Stem Cell Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
41
|
Nakamura Y, Shimizu Y, Horibata Y, Tei R, Koike R, Masawa M, Watanabe T, Shiobara T, Arai R, Chibana K, Takemasa A, Sugimoto H, Ishii Y. Changes of plasmalogen phospholipid levels during differentiation of induced pluripotent stem cells 409B2 to endothelial phenotype cells. Sci Rep 2017; 7:9377. [PMID: 28839272 PMCID: PMC5571164 DOI: 10.1038/s41598-017-09980-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/02/2017] [Indexed: 01/07/2023] Open
Abstract
Endothelial cells (EC) are involved in regulating several aspects of lipid metabolism, with recent research revealing the clinicopathological significance of interactions between EC and lipids. Induced pluripotent stem cells (iPSC) have various possible medical uses, so understanding the metabolism of these cells is important. In this study, endothelial phenotype cells generated from human iPSC formed cell networks in co-culture with fibroblasts. Changes of plasmalogen lipids and sphingomyelins in endothelial phenotype cells generated from human iPSC were investigated by reverse-phase ultra-high-pressure liquid chromatography mass spectrometry (UHPLC-MS/MS) analysis. The levels of plasmalogen phosphatidylethanolamines (38:5) and (38:4) increased during differentiation of EC, while sphingomyelin levels decreased transiently. These changes of plasmalogen lipids and sphingomyelins may have physiological significance for EC and could be used as markers of differentiation.
Collapse
Affiliation(s)
- Yusuke Nakamura
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Yasuo Shimizu
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan.
| | - Yasuhiro Horibata
- Department of Biochemistry, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Rinna Tei
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Ryosuke Koike
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Meitetsu Masawa
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Taiji Watanabe
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Taichi Shiobara
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Ryo Arai
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Kazuyuki Chibana
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Akihiro Takemasa
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Hiroyuki Sugimoto
- Department of Biochemistry, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Yoshiki Ishii
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| |
Collapse
|
42
|
Stefanska M, Batta K, Patel R, Florkowska M, Kouskoff V, Lacaud G. Primitive erythrocytes are generated from hemogenic endothelial cells. Sci Rep 2017; 7:6401. [PMID: 28743905 PMCID: PMC5526883 DOI: 10.1038/s41598-017-06627-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 06/15/2017] [Indexed: 12/22/2022] Open
Abstract
Primitive erythroblasts are the first blood cells generated during embryonic hematopoiesis. Tracking their emergence both in vivo and in vitro has remained challenging due to the lack of specific cell surface markers. To selectively investigate primitive erythropoiesis, we have engineered a new transgenic embryonic stem (ES) cell line, where eGFP expression is driven by the regulatory sequences of the embryonic βH1 hemoglobin gene expressed specifically in primitive erythroid cells. Using this ES cell line, we observed that the first primitive erythroblasts are detected in vitro around day 1.5 of blast colony differentiation, within the cell population positive for the early hematopoietic progenitor marker CD41. Moreover, we establish that these eGFP+ cells emerge from a hemogenic endothelial cell population similarly to their definitive hematopoietic counterparts. We further generated a corresponding βH1-eGFP transgenic mouse model and demonstrated the presence of a primitive erythroid primed hemogenic endothelial cell population in the developing embryo. Taken together, our findings demonstrate that both in vivo and in vitro primitive erythrocytes are generated from hemogenic endothelial cells.
Collapse
Affiliation(s)
- Monika Stefanska
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow road, Manchester, M20 4BX, UK
| | - Kiran Batta
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow road, Manchester, M20 4BX, UK
| | - Rahima Patel
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow road, Manchester, M20 4BX, UK
| | - Magdalena Florkowska
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow road, Manchester, M20 4BX, UK
| | - Valerie Kouskoff
- Division of Developmental Biology & Medicine, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow road, Manchester, M20 4BX, UK.
| |
Collapse
|
43
|
Mulas C, Kalkan T, Smith A. NODAL Secures Pluripotency upon Embryonic Stem Cell Progression from the Ground State. Stem Cell Reports 2017; 9:77-91. [PMID: 28669603 PMCID: PMC5511111 DOI: 10.1016/j.stemcr.2017.05.033] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 02/02/2023] Open
Abstract
Naive mouse embryonic stem cells (ESCs) can develop multiple fates, but the cellular and molecular processes that enable lineage competence are poorly characterized. Here, we investigated progression from the ESC ground state in defined culture. We utilized downregulation of Rex1::GFPd2 to track the loss of ESC identity. We found that cells that have newly downregulated this reporter have acquired capacity for germline induction. They can also be efficiently specified for different somatic lineages, responding more rapidly than naive cells to inductive cues. Inhibition of autocrine NODAL signaling did not alter kinetics of exit from the ESC state but compromised both germline and somatic lineage specification. Transient inhibition prior to loss of ESC identity was sufficient for this effect. Genetic ablation of Nodal reduced viability during early differentiation, consistent with defective lineage specification. These results suggest that NODAL promotes acquisition of multi-lineage competence in cells departing naive pluripotency.
Collapse
Affiliation(s)
- Carla Mulas
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK,Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Tüzer Kalkan
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Austin Smith
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK,Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK,Corresponding author
| |
Collapse
|
44
|
Delayed Mesoderm and Erythroid Differentiation of Murine Embryonic Stem Cells in the Absence of the Transcriptional Regulator FUBP1. Stem Cells Int 2017; 2017:5762301. [PMID: 28588622 PMCID: PMC5447289 DOI: 10.1155/2017/5762301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/02/2017] [Accepted: 03/19/2017] [Indexed: 11/18/2022] Open
Abstract
The transcriptional regulator far upstream binding protein 1 (FUBP1) is essential for fetal and adult hematopoietic stem cell (HSC) self-renewal, and the constitutive absence of FUBP1 activity during early development leads to embryonic lethality in homozygous mutant mice. To investigate the role of FUBP1 in murine embryonic stem cells (ESCs) and in particular during differentiation into hematopoietic lineages, we generated Fubp1 knockout (KO) ESC clones using CRISPR/Cas9 technology. Although FUBP1 is expressed in undifferentiated ESCs and during spontaneous differentiation following aggregation into embryoid bodies (EBs), absence of FUBP1 did not affect ESC maintenance. Interestingly, we observed a delayed differentiation of FUBP1-deficient ESCs into the mesoderm germ layer, as indicated by impaired expression of several mesoderm markers including Brachyury at an early time point of ESC differentiation upon aggregation to EBs. Coculture experiments with OP9 cells in the presence of erythropoietin revealed a diminished differentiation capacity of Fubp1 KO ESCs into the erythroid lineage. Our data showed that FUBP1 is important for the onset of mesoderm differentiation and maturation of hematopoietic progenitor cells into the erythroid lineage, a finding that is supported by the phenotype of FUBP1-deficient mice.
Collapse
|
45
|
Wei D, Sun J, Bolderson J, Zhong M, Dalby MJ, Cusack M, Yin H, Fan H, Zhang X. Continuous Fabrication and Assembly of Spatial Cell-Laden Fibers for a Tissue-Like Construct via a Photolithographic-Based Microfluidic Chip. ACS APPLIED MATERIALS & INTERFACES 2017; 9:14606-14617. [PMID: 28157291 DOI: 10.1021/acsami.7b00078] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Engineering three-dimensional (3D) scaffolds with in vivo like architecture and function has shown great potential for tissue regeneration. Here we developed a facile microfluidic-based strategy for the continuous fabrication of cell-laden microfibers with hierarchically organized architecture. We show that photolithographically fabricated microfluidic devices offer a simple and reliable way to create anatomically inspired complex structures. Furthermore, the use of photo-cross-linkable methacrylated alginate allows modulation of both the mechanical properties and biological activity of the hydrogels for targeted applications. Via this approach, multilayered hollow microfibers were continuously fabricated, which can be easily assembled in situ, using 3D printing, into a larger, tissue-like construct. Importantly, this biomimetic approach promoted the development of phenotypical functions of the target tissue. As a model to engineer a complex tissue construct, osteon-like fiber was biomimetically engineered, and enhanced vasculogenic and osteogenic expression were observed in the encapsulated human umbilical cord vein endothelial cells and osteoblast-like MG63 cells respectively within the osteon fibers. The capability of this approach to create functional building blocks will be advantageous for bottom-up regeneration of complex, large tissue defects and, more broadly, will benefit a variety of applications in tissue engineering and biomedical research.
Collapse
Affiliation(s)
- Dan Wei
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, Sichuan, China
| | - Jing Sun
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, Sichuan, China
| | - Jason Bolderson
- Division of Biomedical Engineering, School of Engineering, University of Glasgow , Glasgow G12 8LT, U.K
| | - Meiling Zhong
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, Sichuan, China
| | | | | | - Huabing Yin
- Division of Biomedical Engineering, School of Engineering, University of Glasgow , Glasgow G12 8LT, U.K
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, Sichuan, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, Sichuan, China
| |
Collapse
|
46
|
Lacaud G, Kouskoff V. Hemangioblast, hemogenic endothelium, and primitive versus definitive hematopoiesis. Exp Hematol 2017; 49:19-24. [PMID: 28043822 DOI: 10.1016/j.exphem.2016.12.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 01/27/2023]
Abstract
The types of progenitors generated during the successive stages of embryonic blood development are now fairly well characterized. The terminology used to describe these waves, however, can still be confusing. What is truly primitive? What is uniquely definitive? These questions become even more challenging to answer when blood progenitors are derived in vitro upon the differentiation of embryonic stem cells or induced pluripotent stem cells. Similarly, the cellular origin of these blood progenitors can be controversial. Are all blood cells, including the primitive wave, derived from hemogenic endothelium? Is the hemangioblast an in vitro artifact or is this mesoderm entity also present in the developing embryo? Here, we discuss the latest findings and propose some consensus relating to these controversial issues.
Collapse
Affiliation(s)
- Georges Lacaud
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, United Kingdom.
| | - Valerie Kouskoff
- Division of Developmental Biology and Medicine, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
47
|
Ganuza M, Hadland B, Chabot A, Li C, Kang G, Bernstein I, McKinney-Freeman S. Murine hemogenic endothelial precursors display heterogeneous hematopoietic potential ex vivo. Exp Hematol 2017; 51:25-35.e6. [PMID: 28450163 DOI: 10.1016/j.exphem.2017.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/27/2017] [Accepted: 04/17/2017] [Indexed: 10/19/2022]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) sustain life-long hematopoiesis and are first detected in the embryo by transplantation at embryonic day 10.5 (E10.5). HSPCs are mesodermal in origin and ultimately emerge from a subset of arterial endothelium (i.e., hemogenic endothelium [HE]), which is highly concentrated in the aorta-gonad-mesonephros region of the midgestation embryo. Here, we used clonal ex vivo assays, in which endothelial cells isolated from the midgestation aorta and vitelline and umbilical arteries are co-cultured on supportive stroma, to show that only about 0.1%, 1.3%, and 0.29% of E9.5, E10.5, and E11.5 endothelium are functional HE, respectively. We further show high phenotypic and functional variability in the hematopoietic potential of individual hemogenic endothelial precursors. Using unique niche stroma capable of providing the signals necessary for definitive hematopoietic stem cell (dHSC) induction, we demonstrate that this variability in HE includes their potential to support phenotypic dHSCs. These data suggest the presence of a continuum of maturing HE with distinct hematopoietic potential or HE representative of a heterogeneous pool of precursors that give rise to HSPCs with disparate hematopoietic potential.
Collapse
Affiliation(s)
- Miguel Ganuza
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Brandon Hadland
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
| | - Ashley Chabot
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Chen Li
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Guolian Kang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Irwin Bernstein
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
| | | |
Collapse
|
48
|
Yumine A, Fraser ST, Sugiyama D. Regulation of the embryonic erythropoietic niche: a future perspective. Blood Res 2017; 52:10-17. [PMID: 28401096 PMCID: PMC5383581 DOI: 10.5045/br.2017.52.1.10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 12/12/2022] Open
Abstract
The production of red blood cells, termed erythropoiesis, occurs in two waves in the developing mouse embryo: first primitive erythropoiesis followed by definitive erythropoiesis. In the mouse embryo, both primitive and definitive erythropoiesis originates in the extra-embryonic yolk sac. The definitive wave then migrates to the fetal liver, fetal spleen and fetal bone marrow as these organs form. The fetal liver serves as the major organ for hematopoietic cell expansion and erythroid maturation after mid-gestation. The erythropoietic niche, which expresses critical cytokines such as stem cell factor (SCF), thrombopoietin (TPO) and the insulin-like growth factors IGF1 and IGF2, supports hematopoietic expansion in the fetal liver. Previously, our group demonstrated that DLK1+ hepatoblasts support fetal liver hematopoiesis through erythropoietin and SCF release as well as extracellular matrix deposition. Loss of DLK1+ hepatoblasts in Map2k4−/− mouse embryos resulted in decreased numbers of hematopoietic cells in fetal liver. Genes encoding proteinases and peptidases were found to be highly expressed in DLK1+ hepatoblasts. Capitalizing on this knowledge, and working on the assumption that these proteinases and peptidases are generating small, potentially biologically active peptides, we assessed a range of peptides for their ability to support erythropoiesis in vitro. We identified KS-13 (PCT/JP2010/067011) as an erythropoietic peptide-a peptide which enhances the production of red blood cells from progenitor cells. Here, we discuss the elements regulating embryonic erythropoiesis with special attention to niche cells, and demonstrate how this knowledge can be applied in the identification of niche-derived peptides with potential therapeutic capability.
Collapse
Affiliation(s)
- Ayako Yumine
- Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Stuart T Fraser
- Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.; Disciplines of Physiology, Anatomy and Histology, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Daisuke Sugiyama
- Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
49
|
Sugiyama D, Joshi A, Kulkeaw K, Tan KS, Yokoo-Inoue T, Mizuochi-Yanagi C, Yasuda K, Doi A, Iino T, Itoh M, Nagao-Sato S, Tani K, Akashi K, Hayashizaki Y, Suzuki H, Kawaji H, Carninci P, Forrest ARR. A Transcriptional Switch Point During Hematopoietic Stem and Progenitor Cell Ontogeny. Stem Cells Dev 2017; 26:314-327. [PMID: 27848279 DOI: 10.1089/scd.2016.0194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
During mammalian embryogenesis, hematopoietic stem and progenitor cells (HSPCs) originate from mesoderm-derived endothelial cells in the aorta-gonad-mesonephros (AGM) region and placenta (PL). Later, HSPCs expand in fetal liver (FL) and migrate to bone marrow (BM) shortly before birth. Understanding global transcriptional regulation governing HSPC emergence from embryonic stem/induced pluripotent stem cells is necessary to devise clinical applications, such as novel transplantation approaches. In this study, to assess transcriptional dynamics during development, we performed cap analysis of gene expression on 10 developmental murine HSPC populations isolated from the AGM region, PL, FL, and BM and identified 15,681 transcripts across HSPC ontogeny. We performed microarray analysis of AGM-derived HSPCs at 9.5 and 10.5 days postcoitum (dpc) and identified 40 differentially expressed genes, 23 confirmed as significantly changed by real-time polymerase chain reaction. We conclude that a transcriptional switch point occurs in HSPC ontogeny between 9.5 and 10.5 dpc in the AGM region.
Collapse
Affiliation(s)
- Daisuke Sugiyama
- 1 Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University , Fukuoka, Japan .,2 Center for Clinical and Translational Research, Kyushu University , Fukuoka, Japan .,3 Department of Clinical Study, Center for Advanced Medical Innovation, Kyushu University , Fukuoka, Japan
| | - Anagha Joshi
- 4 The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh , Easter Bush Campus, Midlothian, United Kingdom
| | - Kasem Kulkeaw
- 1 Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University , Fukuoka, Japan
| | - Keai Sinn Tan
- 1 Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University , Fukuoka, Japan
| | - Tomoko Yokoo-Inoue
- 1 Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University , Fukuoka, Japan
| | - Chiyo Mizuochi-Yanagi
- 1 Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University , Fukuoka, Japan
| | | | | | - Tadafumi Iino
- 3 Department of Clinical Study, Center for Advanced Medical Innovation, Kyushu University , Fukuoka, Japan
| | - Masayoshi Itoh
- 6 RIKEN Preventive Medicine and Diagnosis Innovation Program , Yokohama, Japan .,7 RIKEN Center for Life Science Technologies , Division of Genomic Technologies, Yokohama, Japan .,8 RIKEN Yokohama Institute , Omics Science Center, Yokohama, Kanagawa, Japan
| | - Sayaka Nagao-Sato
- 8 RIKEN Yokohama Institute , Omics Science Center, Yokohama, Kanagawa, Japan
| | - Kenzaburo Tani
- 9 Division of Molecular and Clinical Genetics, Medical Institute of Bioregulation, Kyushu University , Fukuoka, Japan
| | - Koichi Akashi
- 10 Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences , Fukuoka, Japan
| | - Yoshihide Hayashizaki
- 6 RIKEN Preventive Medicine and Diagnosis Innovation Program , Yokohama, Japan .,7 RIKEN Center for Life Science Technologies , Division of Genomic Technologies, Yokohama, Japan
| | - Harukazu Suzuki
- 7 RIKEN Center for Life Science Technologies , Division of Genomic Technologies, Yokohama, Japan
| | - Hideya Kawaji
- 6 RIKEN Preventive Medicine and Diagnosis Innovation Program , Yokohama, Japan .,7 RIKEN Center for Life Science Technologies , Division of Genomic Technologies, Yokohama, Japan .,8 RIKEN Yokohama Institute , Omics Science Center, Yokohama, Kanagawa, Japan
| | - Piero Carninci
- 6 RIKEN Preventive Medicine and Diagnosis Innovation Program , Yokohama, Japan .,7 RIKEN Center for Life Science Technologies , Division of Genomic Technologies, Yokohama, Japan .,8 RIKEN Yokohama Institute , Omics Science Center, Yokohama, Kanagawa, Japan
| | - Alistair R R Forrest
- 7 RIKEN Center for Life Science Technologies , Division of Genomic Technologies, Yokohama, Japan
| |
Collapse
|
50
|
Glaser DE, Turner WS, Madfis N, Wong L, Zamora J, White N, Reyes S, Burns AB, Gopinathan A, McCloskey KE. Multifactorial Optimizations for Directing Endothelial Fate from Stem Cells. PLoS One 2016; 11:e0166663. [PMID: 27907001 PMCID: PMC5131944 DOI: 10.1371/journal.pone.0166663] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/01/2016] [Indexed: 01/08/2023] Open
Abstract
Embryonic stem cells (ESC) and induced pluripotent stem (iPS) cells are attractive in vitro models of vascular development, therapeutic angiogenesis, and tissue engineering. However, distinct ESC and iPS cell lines respond differentially to the same microenvironmental factors. Developing improved/optimized differentiation methodologies tailored/applicable in a number of distinct iPS and ESC lines remains a challenge in the field. Currently published methods for deriving endothelial cells (EC) robustly generate high numbers of endothlelial progenitor cells (EPC) within a week, but their maturation to definitive EC is much more difficult, taking up to 2 months and requiring additional purification. Therefore, we set out to examine combinations/levels of putative EC induction factors—utilizing our stage-specific chemically-defined derivation methodology in 4 ESC lines including: kinetics, cell seeding density, matrix signaling, as well as medium treatment with vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF). The results indicate that temporal development in both early and late stages is the most significant factor generating the desired cells. The generation of early Flk-1+/KDR+ vascular progenitor cells (VPC) from pluripotent ESC is directed predominantly by high cell seeding density and matrix signaling from fibronectin, while VEGF supplementation was NOT statistically significant in more than one cell line, especially with fibronectin matrix which sequesters autocrine VEGF production by the differentiating stem cells. Although some groups have shown that the GSK3-kinase inhibitor (CHIR) can facilitate EPC fate, it hindered the generation of KDR+ cells in our preoptimized medium formulations. The methods summarized here significantly increased the production of mature vascular endothelial (VE)-cadherin+ EC, with up to 93% and 57% purity from mouse and human ESC, respectively, before VE-cadherin+ EC purification.
Collapse
Affiliation(s)
- Drew E. Glaser
- School of Engineering, University of California, Merced, United States of America
- Graduate Program in Biological Engineering and Small-scale Technologies, University of California, Merced, United States of America
| | - William S. Turner
- School of Engineering, University of California, Merced, United States of America
| | - Nicole Madfis
- Graduate Program in Quantitative and Systems Biology, University of California, Merced, United States of America
| | - Lian Wong
- School of Engineering, University of California, Merced, United States of America
- Graduate Program in Biological Engineering and Small-scale Technologies, University of California, Merced, United States of America
| | - Jose Zamora
- Department of Physics, University of California, Merced, United States of America
- Department of Molecular and Cellular Biology, University of California, Merced, United States of America
| | - Nicholas White
- School of Engineering, University of California, Merced, United States of America
| | - Samuel Reyes
- School of Engineering, University of California, Merced, United States of America
| | - Andrew B. Burns
- Department of Molecular and Cellular Biology, University of California, Merced, United States of America
| | - Ajay Gopinathan
- Department of Physics, University of California, Merced, United States of America
| | - Kara E. McCloskey
- School of Engineering, University of California, Merced, United States of America
- Graduate Program in Biological Engineering and Small-scale Technologies, University of California, Merced, United States of America
- * E-mail:
| |
Collapse
|