1
|
Montero-Herradón S, García-Ceca J, Zapata AG. Thymus Ontogeny and Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1471:21-49. [PMID: 40067583 DOI: 10.1007/978-3-031-77921-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
The thymus is a primary lymphoid organ composed of a three-dimensional (3D) epithelial network that provides a specialized microenvironment for the phenotypical and functional maturation of lymphoid progenitors. The specification of the pharyngeal endoderm to thymus fate occurs during the early stages of thymic organogenesis, independent of the expression of the transcription factor Foxn1. However, Foxn1 governs the later organogenesis of thymus together with the colonizing lymphoid cells. In the present chapter, we will review recent evidence on the topic covered in our original chapter (Muñoz and Zapata 2019). It described the early development of thymus and its resemblance to the development of endoderm-derived epithelial organs based on tubulogenesis and branching morphogenesis as well as the molecules known to be involved in these processes.
Collapse
Affiliation(s)
- Sara Montero-Herradón
- Department of Cell Biology. Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
- Health Research Institute, Madrid, Spain
| | - Javier García-Ceca
- Department of Cell Biology. Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
- Health Research Institute, Madrid, Spain
| | - Agustín G Zapata
- Department of Cell Biology. Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain.
- Health Research Institute, Madrid, Spain.
| |
Collapse
|
2
|
Xiong W, Shu XL, Huang L, He SQ, Liu LH, Li S, Shao ZC, Wang J, Cheng L. Bioinformatics Analysis and Experimental Validation of Differential Genes and Pathways in Bone Nonunions. Biochem Genet 2024; 62:4494-4517. [PMID: 38324134 DOI: 10.1007/s10528-023-10633-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/12/2023] [Indexed: 02/08/2024]
Abstract
Non-union fractures pose a significant clinical challenge, often leading to prolonged pain and disability. Understanding the molecular mechanisms underlying non-union fractures is crucial for developing effective therapeutic interventions. This study integrates bioinformatics analysis and experimental validation to unravel key genes and pathways associated with non-union fractures. We identified differentially expressed genes (DEGs) between non-union and fracture healing tissues using bioinformatics techniques. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were employed to elucidate the biological processes and pathways involved. Common DEGs were identified, and a protein-protein interaction (PPI) network was constructed. Fibronectin-1 (FN1), Thrombospondin-1 (THBS1), and Biglycan (BGN) were pinpointed as critical target genes for non-union fracture treatment. Experimental validation involved alkaline phosphatase (ALP) and Alizarin Red staining to confirm osteogenic differentiation. Our analysis revealed significant alterations in pathways related to cell behavior, tissue regeneration, wound healing, infection, and immune responses in non-union fracture tissues. FN1, THBS1, and BGN were identified as key genes, with their upregulation indicating potential disruptions in the bone remodeling process. Experimental validation confirmed the induction of osteogenic differentiation. The study provides comprehensive insights into the molecular mechanisms of non-union fractures, emphasizing the pivotal roles of FN1, THBS1, and BGN in extracellular matrix dynamics and bone regeneration. The findings highlight potential therapeutic targets and pathways for further investigation. Future research should explore interactions between these genes, validate results using in vivo fracture models, and develop tailored treatment strategies for non-union fractures, promising significant advances in clinical management.
Collapse
Affiliation(s)
- Wei Xiong
- Rehabilitation Medicine Department, Nanchang Hongdu Hospital of Traditional Chinese Medicine, No. 264, Minde Road, Donghu District, Nanchang City, 330008, Jiangxi, China
| | - Xing-Li Shu
- Rehabilitation Medicine Department, Nanchang Hongdu Hospital of Traditional Chinese Medicine, No. 264, Minde Road, Donghu District, Nanchang City, 330008, Jiangxi, China
| | - Lv Huang
- Rehabilitation Medicine Department, Nanchang Hongdu Hospital of Traditional Chinese Medicine, No. 264, Minde Road, Donghu District, Nanchang City, 330008, Jiangxi, China
| | - Su-Qi He
- Clinical Medical College, Jiangxi University of Chinese Medicine, Nanchang City, 330004, Jiangxi, China
| | - Lang-Hui Liu
- Rehabilitation Medicine Department, Nanchang Hongdu Hospital of Traditional Chinese Medicine, No. 264, Minde Road, Donghu District, Nanchang City, 330008, Jiangxi, China
| | - Song Li
- Rehabilitation Medicine Department, Nanchang Hongdu Hospital of Traditional Chinese Medicine, No. 264, Minde Road, Donghu District, Nanchang City, 330008, Jiangxi, China
| | - Zi-Chen Shao
- Clinical Medical College, Jiangxi University of Chinese Medicine, Nanchang City, 330004, Jiangxi, China.
| | - Jun Wang
- General Surgery Department of Trauma Center, The First Hospital of Nanchang, Nanchang City, 330008, Jiangxi, China.
| | - Ling Cheng
- Rehabilitation Medicine Department, Nanchang Hongdu Hospital of Traditional Chinese Medicine, No. 264, Minde Road, Donghu District, Nanchang City, 330008, Jiangxi, China.
| |
Collapse
|
3
|
Zhang Y, Dong X, Zhang J, Zhao M, Wang J, Chu J, Yang Z, Ma S, Lin K, Sun H, Luo Z. FLT4 gene polymorphisms influence isolated ventricular septal defect predisposition in a Southwest China population. BMC Med Genomics 2024; 17:197. [PMID: 39107825 PMCID: PMC11302092 DOI: 10.1186/s12920-024-01971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Ventricular septal defect (VSD) is the most common congenital heart disease. Although a small number of genes associated with VSD have been found, the genetic factors of VSD remain unclear. In this study, we evaluated the association of 10 candidate single nucleotide polymorphisms (SNPs) with isolated VSD in a population from Southwest China. METHODS Based on the results of 34 congenital heart disease whole-exome sequencing and 1000 Genomes databases, 10 candidate SNPs were selected. A total of 618 samples were collected from the population of Southwest China, including 285 VSD samples and 333 normal samples. Ten SNPs in the case group and the control group were identified by SNaPshot genotyping. The chi-square (χ2) test was used to evaluate the relationship between VSD and each candidate SNP. The SNPs that had significant P value in the initial stage were further analysed using linkage disequilibrium, and haplotypes were assessed in 34 congenital heart disease whole-exome sequencing samples using Haploview software. The bins of SNPs that were in very strong linkage disequilibrium were further used to predict haplotypes by Arlequin software. ViennaRNA v2.5.1 predicted the haplotype mRNA secondary structure. We evaluated the correlation between mRNA secondary structure changes and ventricular septal defects. RESULTS The χ2 results showed that the allele frequency of FLT4 rs383985 (P = 0.040) was different between the control group and the case group (P < 0.05). FLT4 rs3736061 (r2 = 1), rs3736062 (r2 = 0.84), rs3736063 (r2 = 0.84) and FLT4 rs383985 were in high linkage disequilibrium (r2 > 0.8). Among them, rs3736061 and rs3736062 SNPs in the FLT4 gene led to synonymous variations of amino acids, but predicting the secondary structure of mRNA might change the secondary structure of mRNA and reduce the free energy. CONCLUSIONS These findings suggest a possible molecular pathogenesis associated with isolated VSD, which warrants investigation in future studies.
Collapse
Affiliation(s)
- Yunhan Zhang
- The Department of Ultrasound Imaging, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, Yunnan, China
- The Department of Ultrasound Imaging, Fuwai Yunnan Cardiovascular Hospital, Chinese Academy of Medical Sciences, 528 Shahe Road, Kunming, Yunnan, 650032, China
| | - Xiaoli Dong
- The Department of Ultrasound Imaging, Fuwai Yunnan Cardiovascular Hospital, Chinese Academy of Medical Sciences, 528 Shahe Road, Kunming, Yunnan, 650032, China
| | - Jun Zhang
- The Department of Ultrasound Imaging, Fuwai Yunnan Cardiovascular Hospital, Chinese Academy of Medical Sciences, 528 Shahe Road, Kunming, Yunnan, 650032, China
| | - Miao Zhao
- The Department of Ultrasound Imaging, Fuwai Yunnan Cardiovascular Hospital, Chinese Academy of Medical Sciences, 528 Shahe Road, Kunming, Yunnan, 650032, China
| | - Jiang Wang
- The Department of Ultrasound Imaging, Fuwai Yunnan Cardiovascular Hospital, Chinese Academy of Medical Sciences, 528 Shahe Road, Kunming, Yunnan, 650032, China
| | - Jiayou Chu
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Zhaoqing Yang
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Shaohui Ma
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Keqin Lin
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, Yunnan, 650118, China
| | - Hao Sun
- The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, Yunnan, 650118, China.
| | - Zhiling Luo
- The Department of Ultrasound Imaging, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, Yunnan, China.
- The Department of Ultrasound Imaging, Fuwai Yunnan Cardiovascular Hospital, Chinese Academy of Medical Sciences, 528 Shahe Road, Kunming, Yunnan, 650032, China.
| |
Collapse
|
4
|
Alexander BE, Zhao H, Astrof S. SMAD4: A critical regulator of cardiac neural crest cell fate and vascular smooth muscle development. Dev Dyn 2024; 253:119-143. [PMID: 37650555 PMCID: PMC10842824 DOI: 10.1002/dvdy.652] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/07/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND During embryogenesis, cardiac neural crest-derived cells (NCs) migrate into the pharyngeal arches and give rise to the vascular smooth muscle cells (vSMCs) of the pharyngeal arch arteries (PAAs). vSMCs are critical for the remodeling of the PAAs into their final adult configuration, giving rise to the aortic arch and its arteries (AAAs). RESULTS We investigated the role of SMAD4 in NC-to-vSMC differentiation using lineage-specific inducible mouse strains. We found that the expression of SMAD4 in the NC is indelible for regulating the survival of cardiac NCs. Although the ablation of SMAD4 at E9.5 in the NC lineage led to a near-complete absence of NCs in the pharyngeal arches, PAAs became invested with vSMCs derived from a compensatory source. Analysis of AAA development at E16.5 showed that the alternative vSMC source compensated for the lack of NC-derived vSMCs and rescued AAA morphogenesis. CONCLUSIONS Our studies uncovered the requisite role of SMAD4 in the contribution of the NC to the pharyngeal arch mesenchyme. We found that in the absence of SMAD4+ NCs, vSMCs around the PAAs arose from a different progenitor source, rescuing AAA morphogenesis. These findings shed light on the remarkable plasticity of developmental mechanisms governing AAA development.
Collapse
Affiliation(s)
- Brianna E. Alexander
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Cell Biology, Neuroscience and Physiology Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
| | - Huaning Zhao
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
| | - Sophie Astrof
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Cell Biology, Neuroscience and Physiology Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Molecular Biology, Genetics, and Cancer Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
| |
Collapse
|
5
|
Gill E, Bamforth SD. Molecular Pathways and Animal Models of Semilunar Valve and Aortic Arch Anomalies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:777-796. [PMID: 38884748 DOI: 10.1007/978-3-031-44087-8_46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The great arteries of the vertebrate carry blood from the heart to the systemic circulation and are derived from the pharyngeal arch arteries. In higher vertebrates, the pharyngeal arch arteries are a symmetrical series of blood vessels that rapidly remodel during development to become the asymmetric aortic arch arteries carrying oxygenated blood from the left ventricle via the outflow tract. At the base of the aorta, as well as the pulmonary trunk, are the semilunar valves. These valves each have three leaflets and prevent the backflow of blood into the heart. During development, the process of aortic arch and valve formation may go wrong, resulting in cardiovascular defects, and these may, at least in part, be caused by genetic mutations. In this chapter, we will review models harboring genetic mutations that result in cardiovascular defects affecting the great arteries and the semilunar valves.
Collapse
Affiliation(s)
- Eleanor Gill
- Newcastle University Biosciences Institute, Newcastle upon Tyne, UK
| | - Simon D Bamforth
- Newcastle University Biosciences Institute, Newcastle upon Tyne, UK.
| |
Collapse
|
6
|
Chen Y, Jiang W, Wang J, Ma X, Wu D, Liu L, Ji M, Qu X, Liu C, Liu H, Qin X, Xiang Y. Conditional knockout of ITGB4 in bronchial epithelial cells directs bronchopulmonary dysplasia. J Cell Mol Med 2023; 27:3760-3772. [PMID: 37698050 PMCID: PMC10718146 DOI: 10.1111/jcmm.17948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023] Open
Abstract
Neonatal respiratory system disease is closely associated with embryonic lung development. Our group found that integrin β4 (ITGB4) is downregulated in the airway epithelium of asthma patients. Asthma is the most common chronic respiratory illness in childhood. Therefore, we suspect whether the deletion of ITGB4 would affect fetal lung development. In this study, we characterized the role of ITGB4 deficiency in bronchopulmonary dysplasia (BPD). ITGB4 was conditionally knocked out in CCSP-rtTA, Tet-O-Cre and ITGB4f/f triple transgenic mice. Lung tissues at different developmental stages were collected for experimental detection and transcriptome sequencing. The effects of ITGB4 deficiency on lung branching morphogenesis were observed by fetal mouse lung explant culture. Deleting ITGB4 from the airway epithelial cells results in enlargement of alveolar airspaces, inhibition of branching, the abnormal structure of epithelium cells and the impairment of cilia growth during lung development. Scanning electron microscopy showed that the airway epithelial cilia of the β4ccsp.cre group appear to be sparse, shortened and lodging. Lung-development-relevant factors such as SftpC and SOX2 significantly decreased both mRNA and protein levels. KEGG pathway analysis indicated that multiple ontogenesis-regulating-relevant pathways converge to FAK. Accordingly, ITGB4 deletion decreased phospho-FAK, phospho-GSK3β and SOX2 levels, and the correspondingly contrary consequence was detected after treatment with GSK3β agonist (wortmannin). Airway branching defect of β4ccsp.cre mice lung explants was also partly recovered after wortmannin treatment. Airway epithelial-specific deletion of ITGB4 contributes to lung developmental defect, which could be achieved through the FAK/GSK3β/SOX2 signal pathway.
Collapse
Affiliation(s)
- Yu Chen
- School of Basic MedicineCentral South UniversityChangshaChina
- Department of Medical Laboratory, School of MedicineHunan Normal UniversityChangshaChina
| | - Wang Jiang
- School of Basic MedicineCentral South UniversityChangshaChina
| | - Jin‐Mei Wang
- School of Basic MedicineCentral South UniversityChangshaChina
| | - Xiao‐Di Ma
- School of Basic MedicineCentral South UniversityChangshaChina
| | - Di Wu
- School of Basic MedicineCentral South UniversityChangshaChina
- School of MedicineFoshan UniversityFoshanChina
| | - Le‐Xin Liu
- School of Basic MedicineCentral South UniversityChangshaChina
| | - Ming Ji
- School of Basic MedicineCentral South UniversityChangshaChina
| | - Xiang‐Ping Qu
- School of Basic MedicineCentral South UniversityChangshaChina
| | - Chi Liu
- School of Basic MedicineCentral South UniversityChangshaChina
| | - Hui‐Jun Liu
- School of Basic MedicineCentral South UniversityChangshaChina
| | - Xiao‐Qun Qin
- School of Basic MedicineCentral South UniversityChangshaChina
| | - Yang Xiang
- School of Basic MedicineCentral South UniversityChangshaChina
| |
Collapse
|
7
|
Alexander BE, Zhao H, Astrof S. SMAD4: A Critical Regulator of Cardiac Neural Crest Cell Fate and Vascular Smooth Muscle Differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532676. [PMID: 36993156 PMCID: PMC10055180 DOI: 10.1101/2023.03.14.532676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background The pharyngeal arch arteries (PAAs) are precursor vessels which remodel into the aortic arch arteries (AAAs) during embryonic cardiovascular development. Cardiac neural crest cells (NCs) populate the PAAs and differentiate into vascular smooth muscle cells (vSMCs), which is critical for successful PAA-to-AAA remodeling. SMAD4, the central mediator of canonical TGFβ signaling, has been implicated in NC-to-vSMC differentiation; however, its distinct roles in vSMC differentiation and NC survival are unclear. Results Here, we investigated the role of SMAD4 in cardiac NC differentiation to vSMCs using lineage-specific inducible mouse strains in an attempt to avoid early embryonic lethality and NC cell death. We found that with global SMAD4 loss, its role in smooth muscle differentiation could be uncoupled from its role in the survival of the cardiac NC in vivo . Moreover, we found that SMAD4 may regulate the induction of fibronectin, a known mediator of NC-to-vSMC differentiation. Finally, we found that SMAD4 is required in NCs cell-autonomously for NC-to-vSMC differentiation and for NC contribution to and persistence in the pharyngeal arch mesenchyme. Conclusions Overall, this study demonstrates the critical role of SMAD4 in the survival of cardiac NCs, their differentiation to vSMCs, and their contribution to the developing pharyngeal arches.
Collapse
|
8
|
Hermawan A, Putri H, Hanif N, Fatimah N, Prasetio HH. Identification of potential target genes of honokiol in overcoming breast cancer resistance to tamoxifen. Front Oncol 2022; 12:1019025. [PMID: 36601474 PMCID: PMC9806337 DOI: 10.3389/fonc.2022.1019025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background Honokiol (HON) inhibits epidermal growth factor receptor (EGFR) signaling and increases the activity of erlotinib, an EGFR inhibitor, in human head and neck cancers. In this study, using a bioinformatics approach and in vitro experiments, we assessed the target genes of HON against breast cancer resistance to tamoxifen (TAM). Materials and methods Microarray data were obtained from GSE67916 and GSE85871 datasets to identify differentially expressed genes (DEGs). DEGs common between HON-treated and TAM-resistant cells were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses and protein-protein interaction (PPI) networks were constructed. Selected genes were analyzed for genetic alterations, expression, prognostic value, and receiver operating characteristics (ROC). TAM-resistant MCF-7 (MCF-7 TAM-R) cells were generated and characterized for their resistance toward TAM. A combination of HON and TAM was used for cytotoxicity and gene expression analyses. Molecular docking was performed using the Molecular Operating Environment software. Results PPI network analysis revealed that FN1, FGFR2, and RET were the top three genes with the highest scores. A genetic alteration study of potential target genes revealed MMP16 and ERBB4 as the genes with the highest alterations among the breast cancer samples. Pathway enrichment analysis of FGFR2, RET, ERBB4, SOX2, FN1, and MMP16 showed that the genetic alterations herein were likely to impact the RTK-Ras pathway. The expression levels of RET, MMP16, and SOX2 were strongly correlated with prognostic power, with areas under the ROC curves (AUC) of 1, 0.8, and 0.8, respectively. The HON and TAM combination increased TAM cytotoxicity in MCF-7 TAM-R cells by regulating the expression of potential target genes ret, ERBB4, SOX2, and FN1, as well as the TAM resistance regulatory genes including HES1, VIM, PCNA, TP53, and CASP7. Molecular docking results indicated that HON tended to bind RET, ErbB4, and the receptor protein Notch1 ankyrin domain more robustly than its native ligand. Conclusion HON could overcome breast cancer resistance to TAM, potentially by targeting FGFR2, RET, ERBB4, MMP16, FN1, and SOX2. However, further studies are required to validate these results.
Collapse
Affiliation(s)
- Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
- Laboratory of Advanced Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
| | - Herwandhani Putri
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
| | - Naufa Hanif
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
| | - Nurul Fatimah
- Laboratory of Advanced Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
| | - Heri Himawan Prasetio
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
| |
Collapse
|
9
|
Wang X, Liang Y, Zhu Z, Li W, Shi B, Deng Y, Li C, Sha O. Fn1 Regulates the Third Pharyngeal Pouch Patterning and Morphogenesis. J Dent Res 2022; 101:1082-1091. [PMID: 35259939 DOI: 10.1177/00220345221078775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The parathyroid and thymus are derived from the common primordia, the third pharyngeal pouch. During their development, endodermal cells actively interact with surrounding mesenchymal cells, mainly derived from neural crest cells (NCCs). However, the mechanism by which NCCs regulate the development of the third pharyngeal pouch remains largely unknown. In this study, we showed that fibronectin 1 (Fn1), which is synthesized by NCCs, modulates the functions of NCCs in the third pharyngeal pouch patterning and in the morphogenesis of the thymus/parathyroid. Loss of Fn1 in NCCs leads to decreased Foxn1 expression in the presumptive thymus domain at E11.5. In the mutant, we detected upregulation of the Hedgehog signaling activity in the presumptive parathyroid domain and downregulation of Bmp4 in the presumptive thymus domain. Tbx1, a Hedgehog signaling target gene in endoderm development, was ectopically expanded to the presumptive mutant thymus domain at E11.5. Fgf10, an important gene regulating the proliferation of endoderm development, was downregulated in the mutant NCCs. At later organogenesis stages, derivatives of the third pharyngeal pouch endoderm of mutant embryos were abnormal, showing conditions such as hypoparathyroidism, hypoplastic thymus, and ectopic thymus and parathyroid. These data support that Fn1 plays an important role in NCCs by regulating the patterning of the third pharyngeal pouch and morphogenesis of the thymus/parathyroid.
Collapse
Affiliation(s)
- X Wang
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen, China
| | - Y Liang
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen, China
| | - Z Zhu
- School of Dentistry, Shenzhen University Health Science Center, Shenzhen, China
| | - W Li
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen, China
| | - B Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Deng
- Department of Somatology, Shenzhen University General Hospital, Shenzhen, China
| | - C Li
- Department of Anatomy, Shantou University Medical College, Shantou, China
| | - O Sha
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen, China
- School of Dentistry, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
10
|
Ye S, Yang N, Lu T, Wu T, Wang L, Pan YH, Cao X, Yuan X, Wisniewski T, Dang S, Zhang W. Adamts18 modulates the development of the aortic arch and common carotid artery. iScience 2021; 24:102672. [PMID: 34189436 PMCID: PMC8215225 DOI: 10.1016/j.isci.2021.102672] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/04/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023] Open
Abstract
Members of a disintegrin and metalloproteinases with thrombospondin motif (ADAMTS) family have been implicated in various vascular diseases. However, their functional roles in early embryonic vascular development are unknown. In this study, we showed that Adamts18 is highly expressed at E11.5-E14.5 in cells surrounding the embryonic aortic arch (AOAR) and the common carotid artery (CCA) during branchial arch artery development in mice. Adamts18 deficiency was found to cause abnormal development of AOAR, CCA, and the third and fourth branchial arch appendages, leading to hypoplastic carotid body, thymus, and variation of middle cerebral artery. Adamts18 was shown to affect the accumulation of extracellular matrix (ECM) components, in particular fibronectin (Fn), around AOAR and CCA. As a result of increased Fn accumulation, the Notch3 signaling pathway was activated to promote the differentiation of cranial neural crest cells (CNCCs) to vascular smooth muscle cells. These data indicate that Adamts18-mediated ECM homeostasis is crucial for the differentiation of CNCCs.
Collapse
Affiliation(s)
- Shuai Ye
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Ning Yang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Tiantian Lu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Taojing Wu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Liya Wang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Xiaohua Cao
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Xiaobing Yuan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Thomas Wisniewski
- Departments of Neurology, Pathology and Psychiatry, New York University Langone Health, New York, NY, USA
| | - Suying Dang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Wei Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
11
|
Schussler O, Gharibeh L, Mootoosamy P, Murith N, Tien V, Rougemont AL, Sologashvili T, Suuronen E, Lecarpentier Y, Ruel M. Cardiac Neural Crest Cells: Their Rhombomeric Specification, Migration, and Association with Heart and Great Vessel Anomalies. Cell Mol Neurobiol 2021; 41:403-429. [PMID: 32405705 PMCID: PMC11448677 DOI: 10.1007/s10571-020-00863-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
Outflow tract abnormalities are the most frequent congenital heart defects. These are due to the absence or dysfunction of the two main cell types, i.e., neural crest cells and secondary heart field cells that migrate in opposite directions at the same stage of development. These cells directly govern aortic arch patterning and development, ascending aorta dilatation, semi-valvular and coronary artery development, aortopulmonary septation abnormalities, persistence of the ductus arteriosus, trunk and proximal pulmonary arteries, sub-valvular conal ventricular septal/rotational defects, and non-compaction of the left ventricle. In some cases, depending on the functional defects of these cells, additional malformations are found in the expected spatial migratory area of the cells, namely in the pharyngeal arch derivatives and cervico-facial structures. Associated non-cardiovascular anomalies are often underestimated, since the multipotency and functional alteration of these cells can result in the modification of multiple neural, epidermal, and cervical structures at different levels. In most cases, patients do not display the full phenotype of abnormalities, but congenital cardiac defects involving the ventricular outflow tract, ascending aorta, aortic arch and supra-aortic trunks should be considered as markers for possible impaired function of these cells. Neural crest cells should not be considered as a unique cell population but on the basis of their cervical rhombomere origins R3-R5 or R6-R7-R8 and specific migration patterns: R3-R4 towards arch II, R5-R6 arch III and R7-R8 arch IV and VI. A better understanding of their development may lead to the discovery of unknown associated abnormalities, thereby enabling potential improvements to be made to the therapeutic approach.
Collapse
Affiliation(s)
- Olivier Schussler
- Department of Cardiovascular Surgery Adult and Pediatric, Geneva University Hospital, Geneva, Switzerland.
- Cardiovascular Research Laboratory, Faculty of Medicine of the University of Geneva, Rue Michel Servet 1, 1211, Geneva 4, Switzerland.
| | - Lara Gharibeh
- Molecular Genetics and Cardiac Regeneration Laboratory, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Parmeseeven Mootoosamy
- Department of Cardiovascular Surgery Adult and Pediatric, Geneva University Hospital, Geneva, Switzerland
| | - Nicolas Murith
- Department of Cardiovascular Surgery Adult and Pediatric, Geneva University Hospital, Geneva, Switzerland
| | - Vannary Tien
- Department of Pathology and Immunology, Faculty of Medicine of the University of Geneva, Geneva, Switzerland
| | | | - Tornike Sologashvili
- Department of Cardiovascular Surgery Adult and Pediatric, Geneva University Hospital, Geneva, Switzerland
| | - Erik Suuronen
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Cardiovascular Surgery, University of Ottawa Heart Institute and School of Epidemiology, Ottawa, ON, Canada
| | | | - Marc Ruel
- Department of Cardiovascular Surgery, University of Ottawa Heart Institute and School of Epidemiology, Ottawa, ON, Canada
| |
Collapse
|
12
|
Warkala M, Chen D, Ramirez A, Jubran A, Schonning M, Wang X, Zhao H, Astrof S. Cell-Extracellular Matrix Interactions Play Multiple Essential Roles in Aortic Arch Development. Circ Res 2021; 128:e27-e44. [PMID: 33249995 PMCID: PMC7864893 DOI: 10.1161/circresaha.120.318200] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/25/2020] [Indexed: 12/25/2022]
Abstract
RATIONALE Defects in the morphogenesis of the fourth pharyngeal arch arteries (PAAs) give rise to lethal birth defects. Understanding genes and mechanisms regulating PAA formation will provide important insights into the etiology and treatments for congenital heart disease. OBJECTIVE Cell-ECM (extracellular matrix) interactions play essential roles in the morphogenesis of PAAs and their derivatives, the aortic arch artery and its major branches; however, their specific functions are not well-understood. Previously, we demonstrated that integrin α5β1 and Fn1 (fibronectin) expressed in the Isl1 lineages regulate PAA formation. The objective of the current studies was to investigate cellular mechanisms by which integrin α5β1 and Fn1 regulate aortic arch artery morphogenesis. METHODS AND RESULTS Using temporal lineage tracing, whole-mount confocal imaging, and quantitative analysis of the second heart field (SHF) and endothelial cell (EC) dynamics, we show that the majority of PAA EC progenitors arise by E7.5 in the SHF and contribute to pharyngeal arch endothelium between E7.5 and E9.5. Consequently, SHF-derived ECs in the pharyngeal arches form a plexus of small blood vessels, which remodels into the PAAs by 35 somites. The remodeling of the vascular plexus is orchestrated by signals dependent on the pharyngeal ECM microenvironment, extrinsic to the endothelium. Conditional ablation of integrin α5β1 or Fn1 in the Isl1 lineages showed that signaling by the ECM regulates aortic arch artery morphogenesis at multiple steps: (1) accumulation of SHF-derived ECs in the pharyngeal arches, (2) remodeling of the EC plexus in the fourth arches into the PAAs, and (3) differentiation of neural crest-derived cells adjacent to the PAA endothelium into vascular smooth muscle cells. CONCLUSIONS PAA formation is a multistep process entailing dynamic contribution of SHF-derived ECs to pharyngeal arches, the remodeling of endothelial plexus into the PAAs, and the remodeling of the PAAs into the aortic arch artery and its major branches. Cell-ECM interactions regulated by integrin α5β1 and Fn1 play essential roles at each of these developmental stages.
Collapse
Affiliation(s)
- Michael Warkala
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Molecular Biology, Genetics, and Cancer Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Dongying Chen
- Graduate Program in Cell & Developmental Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - AnnJosette Ramirez
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Cell Biology, Neuroscience and Physiology Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Ali Jubran
- Graduate Program in Cell & Developmental Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael Schonning
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Cell Biology, Neuroscience and Physiology Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | | | - Huaning Zhao
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Sophie Astrof
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Molecular Biology, Genetics, and Cancer Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Cell Biology, Neuroscience and Physiology Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| |
Collapse
|
13
|
Bustos F, Segarra-Fas A, Nardocci G, Cassidy A, Antico O, Davidson L, Brandenburg L, Macartney TJ, Toth R, Hastie CJ, Moran J, Gourlay R, Varghese J, Soares RF, Montecino M, Findlay GM. Functional Diversification of SRSF Protein Kinase to Control Ubiquitin-Dependent Neurodevelopmental Signaling. Dev Cell 2020; 55:629-647.e7. [PMID: 33080171 PMCID: PMC7725506 DOI: 10.1016/j.devcel.2020.09.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/17/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
Conserved protein kinases with core cellular functions have been frequently redeployed during metazoan evolution to regulate specialized developmental processes. The Ser/Arg (SR)-rich splicing factor (SRSF) protein kinase (SRPK), which is implicated in splicing regulation, is one such conserved eukaryotic kinase. Surprisingly, we show that SRPK has acquired the capacity to control a neurodevelopmental ubiquitin signaling pathway. In mammalian embryonic stem cells and cultured neurons, SRPK phosphorylates Ser-Arg motifs in RNF12/RLIM, a key developmental E3 ubiquitin ligase that is mutated in an intellectual disability syndrome. Processive phosphorylation by SRPK stimulates RNF12-dependent ubiquitylation of nuclear transcription factor substrates, thereby acting to restrain a neural gene expression program that is aberrantly expressed in intellectual disability. SRPK family genes are also mutated in intellectual disability disorders, and patient-derived SRPK point mutations impair RNF12 phosphorylation. Our data reveal unappreciated functional diversification of SRPK to regulate ubiquitin signaling that ensures correct regulation of neurodevelopmental gene expression.
Collapse
Affiliation(s)
- Francisco Bustos
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Anna Segarra-Fas
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Gino Nardocci
- Institute of Biomedical Sciences and FONDAP Center for Genome Regulation, Universidad Andrés Bello, Santiago, Chile
| | - Andrew Cassidy
- Tayside Centre for Genomic Analysis, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Odetta Antico
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Lindsay Davidson
- School of Life Sciences, The University of Dundee, Dundee DD1 5EH, UK
| | - Lennart Brandenburg
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Thomas J Macartney
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Rachel Toth
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - C James Hastie
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Jennifer Moran
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Robert Gourlay
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Joby Varghese
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Renata F Soares
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Martin Montecino
- Institute of Biomedical Sciences and FONDAP Center for Genome Regulation, Universidad Andrés Bello, Santiago, Chile
| | - Greg M Findlay
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
14
|
CHD7 regulates cardiovascular development through ATP-dependent and -independent activities. Proc Natl Acad Sci U S A 2020; 117:28847-28858. [PMID: 33127760 DOI: 10.1073/pnas.2005222117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
CHD7 encodes an ATP-dependent chromatin remodeling factor. Mutation of this gene causes multiple developmental disorders, including CHARGE (Coloboma of the eye, Heart defects, Atresia of the choanae, Retardation of growth/development, Genital abnormalities, and Ear anomalies) syndrome, in which conotruncal anomalies are the most prevalent form of heart defects. How CHD7 regulates conotruncal development remains unclear. In this study, we establish that deletion of Chd7 in neural crest cells (NCCs) causes severe conotruncal defects and perinatal lethality, thus providing mouse genetic evidence demonstrating that CHD7 cell-autonomously regulates cardiac NCC development, thereby clarifying a long-standing controversy in the literature. Using transcriptomic analyses, we show that CHD7 fine-tunes the expression of a gene network that is critical for cardiac NCC development. To gain further molecular insights into gene regulation by CHD7, we performed a protein-protein interaction screen by incubating recombinant CHD7 on a protein array. We find that CHD7 directly interacts with several developmental disorder-mutated proteins including WDR5, a core component of H3K4 methyltransferase complexes. This direct interaction suggested that CHD7 may recruit histone-modifying enzymes to target loci independently of its remodeling functions. We therefore generated a mouse model that harbors an ATPase-deficient allele and demonstrates that mutant CHD7 retains the ability to recruit H3K4 methyltransferase activity to its targets. Thus, our data uncover that CHD7 regulates cardiovascular development through ATP-dependent and -independent activities, shedding light on the etiology of CHD7-related congenital disorders. Importantly, our data also imply that patients carrying a premature stop codon versus missense mutations will likely display different molecular alterations; these patients might therefore require personalized therapeutic interventions.
Collapse
|
15
|
Barqué A, Jan K, De La Fuente E, Nicholas CL, Hynes RO, Naba A. Knockout of the gene encoding the extracellular matrix protein SNED1 results in early neonatal lethality and craniofacial malformations. Dev Dyn 2020; 250:274-294. [PMID: 33012048 DOI: 10.1002/dvdy.258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/10/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The extracellular matrix (ECM) is a fundamental component of multicellular organisms that orchestrates developmental processes and controls cell and tissue organization. We previously identified the novel ECM protein SNED1 as a promoter of breast cancer metastasis and showed that its level of expression negatively correlated with breast cancer patient survival. Here, we sought to identify the roles of SNED1 during murine development. RESULTS We generated two novel Sned1 knockout mouse strains and showed that Sned1 is essential since homozygous ablation of the gene led to early neonatal lethality. Phenotypic analysis of the surviving knockout mice revealed a role for SNED1 in the development of craniofacial and skeletal structures since Sned1 knockout resulted in growth defects, nasal cavity occlusion, and craniofacial malformations. Sned1 is widely expressed in embryos, notably by cell populations undergoing epithelial-to-mesenchymal transition, such as the neural crest cells. We further show that mice with a neural-crest-cell-specific deletion of Sned1 survive, but display facial anomalies partly phenocopying the global knockout mice. CONCLUSIONS Our results demonstrate requisite roles for SNED1 during development and neonatal survival. Importantly, the deletion of 2q37.3 in humans, a region that includes the SNED1 locus, has been associated with facial dysmorphism and short stature.
Collapse
Affiliation(s)
- Anna Barqué
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kyleen Jan
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Emanuel De La Fuente
- Department of Orthodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Christina L Nicholas
- Department of Orthodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Anthropology, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Richard O Hynes
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
16
|
Johnson AL, Schneider JE, Mohun TJ, Williams T, Bhattacharya S, Henderson DJ, Phillips HM, Bamforth SD. Early Embryonic Expression of AP-2α Is Critical for Cardiovascular Development. J Cardiovasc Dev Dis 2020; 7:jcdd7030027. [PMID: 32717817 PMCID: PMC7570199 DOI: 10.3390/jcdd7030027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022] Open
Abstract
Congenital cardiovascular malformation is a common birth defect incorporating abnormalities of the outflow tract and aortic arch arteries, and mice deficient in the transcription factor AP-2α (Tcfap2a) present with complex defects affecting these structures. AP-2α is expressed in the pharyngeal surface ectoderm and neural crest at mid-embryogenesis in the mouse, but the precise tissue compartment in which AP-2α is required for cardiovascular development has not been identified. In this study we describe the fully penetrant AP-2α deficient cardiovascular phenotype on a C57Bl/6J genetic background and show that this is associated with increased apoptosis in the pharyngeal ectoderm. Neural crest cell migration into the pharyngeal arches was not affected. Cre-expressing transgenic mice were used in conjunction with an AP-2α conditional allele to examine the effect of deleting AP-2α from the pharyngeal surface ectoderm and the neural crest, either individually or in combination, as well as the second heart field. This, surprisingly, was unable to fully recapitulate the global AP-2α deficient cardiovascular phenotype. The outflow tract and arch artery phenotype was, however, recapitulated through early embryonic Cre-mediated recombination. These findings indicate that AP-2α has a complex influence on cardiovascular development either being required very early in embryogenesis and/or having a redundant function in many tissue layers.
Collapse
Affiliation(s)
- Amy-Leigh Johnson
- Newcastle University Biosciences Institute, Centre for Life, Newcastle NE1 3BZ, UK; (A.-L.J.); (D.J.H.); (H.M.P.)
| | | | | | - Trevor Williams
- Department of Craniofacial Biology, University of Colorado Anshutz Medical Campus, Aurora, CO 80045, USA;
| | - Shoumo Bhattacharya
- Department of Cardiovascular Medicine, University of Oxford, Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, UK;
| | - Deborah J. Henderson
- Newcastle University Biosciences Institute, Centre for Life, Newcastle NE1 3BZ, UK; (A.-L.J.); (D.J.H.); (H.M.P.)
| | - Helen M. Phillips
- Newcastle University Biosciences Institute, Centre for Life, Newcastle NE1 3BZ, UK; (A.-L.J.); (D.J.H.); (H.M.P.)
| | - Simon D. Bamforth
- Newcastle University Biosciences Institute, Centre for Life, Newcastle NE1 3BZ, UK; (A.-L.J.); (D.J.H.); (H.M.P.)
- Correspondence: ; Tel.: +44-191-241-8764
| |
Collapse
|
17
|
Leonard CE, Taneyhill LA. The road best traveled: Neural crest migration upon the extracellular matrix. Semin Cell Dev Biol 2020; 100:177-185. [PMID: 31727473 PMCID: PMC7071992 DOI: 10.1016/j.semcdb.2019.10.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/29/2019] [Accepted: 10/30/2019] [Indexed: 12/22/2022]
Abstract
Neural crest cells have the extraordinary task of building much of the vertebrate body plan, including the craniofacial cartilage and skeleton, melanocytes, portions of the heart, and the peripheral nervous system. To execute these developmental programs, stationary premigratory neural crest cells first acquire the capacity to migrate through an extensive process known as the epithelial-to-mesenchymal transition. Once motile, neural crest cells must traverse a complex environment consisting of other cells and the protein-rich extracellular matrix in order to get to their final destinations. Herein, we will highlight some of the main molecular machinery that allow neural crest cells to first exit the neuroepithelium and then later successfully navigate this intricate in vivo milieu. Collectively, these extracellular and intracellular factors mediate the appropriate migration of neural crest cells and allow for the proper development of the vertebrate embryo.
Collapse
Affiliation(s)
- Carrie E Leonard
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA.
| | - Lisa A Taneyhill
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA.
| |
Collapse
|
18
|
Abstract
The morphogenesis of the mammalian secondary plate is a series of highly dynamic developmental process, including the palate shelves vertical outgrowth, elevation to the horizontal plane and complete fusion in the midline. Extracellular matrix (ECM) proteins not only form the basic infrastructure for palatal mesenchymal cells to adhere via integrins but also interact with cells to regulate their functions such as proliferation and differentiation. ECM remodeling is essential for palatal outgrowth, expansion, elevation, and fusion. Multiple signaling pathways important for palatogenesis such as FGF, TGF β, BMP, and SHH remodels ECM dynamics. Dysregulation of ECM such as HA synthesis or ECM breakdown enzymes MMPs or ADAMTS causes cleft palate in mouse models. A better understanding of ECM remodeling will contribute to revealing the pathogenesis of cleft palate.
Collapse
Affiliation(s)
- Xia Wang
- Health Science Center, Shenzhen University , Shenzhen, China
| | - Chunman Li
- Health Science Center, Shenzhen University , Shenzhen, China
| | - Zeyao Zhu
- Health Science Center, Shenzhen University , Shenzhen, China
| | - Li Yuan
- Department of Stomatology, Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University , Shenzhen, China
| | - Wood Yee Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong , Hong Kong, China
| | - Ou Sha
- Health Science Center, Shenzhen University , Shenzhen, China
| |
Collapse
|
19
|
Zhang L, Chen S, Zeng X, Lin D, Li Y, Gui L, Lin MJ. Revealing the pathogenic changes of PAH based on multiomics characteristics. J Transl Med 2019; 17:231. [PMID: 31331330 PMCID: PMC6647123 DOI: 10.1186/s12967-019-1981-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 07/12/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Pulmonary artery hypertension (PAH), which is characterized by an increase in pulmonary circulation blood pressure, is a fatal disease, and its pathogenesis remains unclear. METHODS In this study, RNA sequencing (RNA-seq), tandem mass tags (TMT) and reduced representation bisulfite sequencing (RRBS) were performed to detect the levels of mRNA, protein, and DNA methylation in pulmonary arteries (PAs), respectively. To screen the possible pathways and proteins related to PAH, pathway enrichment analysis and protein-protein interaction (PPI) network analysis were performed. For selected genes, differential expression levels were confirmed at both the transcriptional and translational levels by real-time PCR and Western blot analyses, respectively. RESULTS A total of 362 differentially expressed genes (|Fold-change| > 1.5 and p < 0.05), 811 differentially expressed proteins (|Fold-change| > 1.2 and p < 0.05) and 76,562 differentially methylated regions (1000 bp slide windows, 500 bp overlap, p < 0.05, and |Fold-change| > 1.2) were identified when the PAH group (n = 15) was compared with the control group (n = 15). Through an integrated analysis of the characteristics of the three omic analyses, a multiomics table was constructed. Additionally, pathway enrichment analysis showed that the differentially expressed proteins were significantly enriched in five Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathways and ten Gene Ontology (GO) terms for the PAH group compared with the control group. Moreover, protein-protein interaction (PPI) networks were constructed to identify hub genes. Finally, according to the genes identified in the PPI and the protein expression fold-change, nine key genes and their associated proteins were verified by real-time PCR and Western blot analyses, including Col4a1, Itga5, Col2a1, Gstt1, Gstm3, Thbd, Mgst2, Kng1 and Fgg. CONCLUSIONS This study conducted multiomic characteristic profiling to identify genes that contribute to the hypoxia-induced PAH model, identifying new avenues for basic PAH research.
Collapse
Affiliation(s)
- Li Zhang
- Department of Physiology & Pathophysiology, Fujian Medical University, Fuzhou, China.,The Key Laboratory of Fujian Province University on Ion Channel and Signal Transduction in Cardiovascular Disease, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Shaokun Chen
- Department of Physiology & Pathophysiology, Fujian Medical University, Fuzhou, China.,The Key Laboratory of Fujian Province University on Ion Channel and Signal Transduction in Cardiovascular Disease, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xixi Zeng
- Department of Physiology & Pathophysiology, Fujian Medical University, Fuzhou, China.,The Key Laboratory of Fujian Province University on Ion Channel and Signal Transduction in Cardiovascular Disease, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Dacen Lin
- Department of Physiology & Pathophysiology, Fujian Medical University, Fuzhou, China.,The Key Laboratory of Fujian Province University on Ion Channel and Signal Transduction in Cardiovascular Disease, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yumei Li
- The Key Laboratory of Fujian Province University on Ion Channel and Signal Transduction in Cardiovascular Disease, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Fujian Center for Safety Evaluation of New Drug, Fujian Medical University, Fuzhou, China
| | - Longxin Gui
- The Key Laboratory of Fujian Province University on Ion Channel and Signal Transduction in Cardiovascular Disease, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Mo-Jun Lin
- Department of Physiology & Pathophysiology, Fujian Medical University, Fuzhou, China. .,The Key Laboratory of Fujian Province University on Ion Channel and Signal Transduction in Cardiovascular Disease, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
20
|
Crawford M, Leclerc V, Barr K, Dagnino L. Essential Role for Integrin-Linked Kinase in Melanoblast Colonization of the Skin. J Invest Dermatol 2019; 140:425-434.e10. [PMID: 31330146 DOI: 10.1016/j.jid.2019.07.681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 01/16/2023]
Abstract
Melanocytes are pigment-producing cells found in the skin and other tissues. Alterations in the melanocyte lineage give rise to a plethora of human diseases, from neurocristopathies and pigmentation disorders to melanoma. During embryogenesis, neural crest cell subsets give rise to two waves of melanoblasts, which migrate dorsolaterally, hone to the skin, and differentiate into melanocytes. However, the mechanisms that govern colonization of the skin by the first wave of melanoblasts are poorly understood. Here we report that targeted inactivation of the integrin-linked kinase gene in first wave melanoblasts causes defects in the ability of these cells to form long pseudopods, to migrate, and to proliferate in vivo. As a result, integrin-linked kinase-deficient melanoblasts fail to populate normally the developing epidermis and hair follicles. We also show that defects in motility and dendricity occur upon integrin-linked kinase gene inactivation in mature melanocytes, causing abnormalities in cell responses to the extracellular matrix substrates collagen I and laminin 332. Significantly, the ability to form long protrusions in mutant cells in response to collagen is restored in the presence of constitutively active Rac1, suggesting that an integrin-linked kinase-Rac1 nexus is likely implicated in melanocytic cell establishment, dendricity, and functions in the skin.
Collapse
Affiliation(s)
- Melissa Crawford
- Department of Physiology and Pharmacology, Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Valerie Leclerc
- Department of Physiology and Pharmacology, Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Kevin Barr
- Department of Physiology and Pharmacology, Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Lina Dagnino
- Department of Physiology and Pharmacology, Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
21
|
Cibi DM, Mia MM, Guna Shekeran S, Yun LS, Sandireddy R, Gupta P, Hota M, Sun L, Ghosh S, Singh MK. Neural crest-specific deletion of Rbfox2 in mice leads to craniofacial abnormalities including cleft palate. eLife 2019; 8:45418. [PMID: 31241461 PMCID: PMC6663295 DOI: 10.7554/elife.45418] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022] Open
Abstract
Alternative splicing (AS) creates proteomic diversity from a limited size genome by generating numerous transcripts from a single protein-coding gene. Tissue-specific regulators of AS are essential components of the gene regulatory network, required for normal cellular function, tissue patterning, and embryonic development. However, their cell-autonomous function in neural crest development has not been explored. Here, we demonstrate that splicing factor Rbfox2 is expressed in the neural crest cells (NCCs), and deletion of Rbfox2 in NCCs leads to cleft palate and defects in craniofacial bone development. RNA-Seq analysis revealed that Rbfox2 regulates splicing and expression of numerous genes essential for neural crest/craniofacial development. We demonstrate that Rbfox2-TGF-β-Tak1 signaling axis is deregulated by Rbfox2 deletion. Furthermore, restoration of TGF-β signaling by Tak1 overexpression can rescue the proliferation defect seen in Rbfox2 mutants. We also identified a positive feedback loop in which TGF-β signaling promotes expression of Rbfox2 in NCCs. Abnormalities affecting the head and face – such as a cleft lip or palate – are among the most common of all birth defects. These tissues normally develop from cells in the embryo known as the neural crest cells, and specifically a subset of these cells called the cranial neural crest cells. Most cases of cleft lip or palate are linked back to genes that affect the biology of this group of cells. The list of genes implicated in the impaired development of cranial neural crest cells code for proteins with a wide range of different activities. Some encode transcription factors – proteins that switch genes on or off. Others code for chromatin remodeling factors, which control how the DNA is packed inside cells. However, the role of another group of proteins – the splicing factors – remains unclear and warrants further investigation. When a gene is switched on its genetic code is first copied into a short-lived molecule called a transcript. These transcripts are then edited to form templates to build proteins. Splicing is one way that a transcript can be edited, which involves different pieces of the transcript being cut out and the remaining pieces being pasted together to form alternative versions of the final template. Splicing factors control this process. Cibi et al. now show that neural crest cells from mice make a splicing factor called Rbfox2 and that deleting this gene for this protein from only these cells leads to mice with a cleft palate and defects in the bones of their head and face. Further analysis helped to identify the transcripts that are spliced by Rbfox2, and the effects that these splicing events have on gene activity in mouse tissues that develop from cranial neural crest cells. Cibi et al. went on to find a signaling pathway that was impaired in the mutant cells that lacked Rbfox2. Forcing the mutant cells to over-produce one of the proteins involved in this signaling pathway (a protein named Tak1) was enough to compensate for the some of the defects caused by a lack of Rbfox2, suggesting it acts downstream of the splicing regulator. Lastly, Cibi et al. showed that another protein in this signaling pathway, called TGF-β, acted to increase how much Rbfox2 was made by neural crest cells. Together these findings may be relevant in human disease studies, given that altered TGF-β signaling is a common feature in many birth defects seen in humans.
Collapse
Affiliation(s)
- Dasan Mary Cibi
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Masum M Mia
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Shamini Guna Shekeran
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Lim Sze Yun
- National Heart Research Institute, National Heart Center, Singapore, Singapore
| | - Reddemma Sandireddy
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Priyanka Gupta
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Monalisa Hota
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Lei Sun
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Sujoy Ghosh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Manvendra K Singh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore.,National Heart Research Institute, National Heart Center, Singapore, Singapore
| |
Collapse
|
22
|
Kahn CI, MacNeil M, Fanola CL, Whitney ER. Complex arterial patterning in an anatomical donor. TRANSLATIONAL RESEARCH IN ANATOMY 2018. [DOI: 10.1016/j.tria.2018.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
23
|
Debbache J, Parfejevs V, Sommer L. Cre-driver lines used for genetic fate mapping of neural crest cells in the mouse: An overview. Genesis 2018; 56:e23105. [PMID: 29673028 PMCID: PMC6099459 DOI: 10.1002/dvg.23105] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 01/01/2023]
Abstract
The neural crest is one of the embryonic structures with the broadest developmental potential in vertebrates. Morphologically, neural crest cells emerge during neurulation in the dorsal folds of the neural tube before undergoing an epithelial‐to‐mesenchymal transition (EMT), delaminating from the neural tube, and migrating to multiple sites in the growing embryo. Neural crest cells generate cell types as diverse as peripheral neurons and glia, melanocytes, and so‐called mesectodermal derivatives that include craniofacial bone and cartilage and smooth muscle cells in cardiovascular structures. In mice, the fate of neural crest cells has been determined mainly by means of transgenesis and genome editing technologies. The most frequently used method relies on the Cre‐loxP system, in which expression of Cre‐recombinase in neural crest cells or their derivatives genetically enables the expression of a Cre‐reporter allele, thus permanently marking neural crest‐derived cells. Here, we provide an overview of the Cre‐driver lines used in the field and discuss to what extent these lines allow precise neural crest stage and lineage‐specific fate mapping.
Collapse
Affiliation(s)
- Julien Debbache
- Stem Cell Biology, Institute of Anatomy, University of Zurich, Zurich, CH-8057, Switzerland
| | - Vadims Parfejevs
- Stem Cell Biology, Institute of Anatomy, University of Zurich, Zurich, CH-8057, Switzerland
| | - Lukas Sommer
- Stem Cell Biology, Institute of Anatomy, University of Zurich, Zurich, CH-8057, Switzerland
| |
Collapse
|
24
|
Integrated analysis of microarray data to identify the genes critical for the rupture of intracranial aneurysm. Oncol Lett 2018; 15:4951-4957. [PMID: 29552131 PMCID: PMC5840557 DOI: 10.3892/ol.2018.7935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/24/2017] [Indexed: 12/21/2022] Open
Abstract
Intracranial aneurysm (IA) is a localized dilation of the blood vessel. The present study was designed to explore the mechanisms of rupture of IA. GSE13353 (including 11 ruptured and 8 unruptured IA samples) and GSE15629 (including 8 ruptured and 6 unruptured IA samples) were downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) identified using limma and MetaDE packages were merged, and a protein-protein interaction (PPI) network analysis was performed using Cytoscape software. Pathway enrichment analysis was performed for the nodes of the PPI network using the fisher algorithm. The 100 most prominent genes in the network were designated candidate genes and a hierarchical clustering analysis was performed. The tune.svm function of e1071 package was used to construct a support vector machine (SVM) classifier, and the Candidate Cancer Gene Database was applied to analyze the characterization of gene-associated cancer. Furthermore, the genes involved in the SVM classifier were assessed via principal component analysis (PCA). In the ruptured samples, 1,292 DEGs and 1,029 DEGs separately were identified by limma and MetaDE packages. The 100 most prominent genes in the network included fibronectin 1 (FN1), amyloid β (A4) precursor protein (APP), nuclear RNA export factor 1 (NXF1) and signal transducer and activator of transcription 3 (STAT3). Pathway enrichment analysis identified that toll-like receptor 3 (TLR3) was enriched in the Toll-like receptor signaling pathway. A total of 15 genes (including FN1) were used to construct the SVM classifier. NXF1 was identified to be associated with Nervous System Cancer. PCA revealed that APP, NXF1 and STAT3 were the 3 principal components. TLR3, FN1, APP, NXF1 and STAT3 may affect the rupture of IA.
Collapse
|
25
|
Decellularized Swine Dental Pulp as a Bioscaffold for Pulp Regeneration. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9342714. [PMID: 29387727 PMCID: PMC5745671 DOI: 10.1155/2017/9342714] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/30/2017] [Accepted: 11/15/2017] [Indexed: 01/09/2023]
Abstract
Endodontic regeneration shows promise in treating dental pulp diseases; however, no suitable scaffolds exist for pulp regeneration. Acellular natural extracellular matrix (ECM) is a favorable scaffold for tissue regeneration since the anatomical structure and ECM of the natural tissues or organs are well-preserved. Xenogeneic ECM is superior to autologous or allogeneic ECM in tissue engineering for its unlimited resources. This study investigated the characteristics of decellularized dental pulp ECM from swine and evaluated whether it could mediate pulp regeneration. Dental pulps were acquired from the mandible anterior teeth of swine 12 months of age and decellularized with 10% sodium dodecyl sulfate (SDS) combined with Triton X-100. Pulp regeneration was conducted by seeding human dental pulp stem cells into decellularized pulp and transplanted subcutaneously into nude mice for 8 weeks. The decellularized pulp demonstrated preserved natural shape and structure without any cellular components. Histological analysis showed excellent ECM preservation and pulp-like tissue, and newly formed mineralized tissues were regenerated after being transplanted in vivo. In conclusion, decellularized swine dental pulp maintains ECM components favoring stem cell proliferation and differentiation, thus representing a suitable scaffold for improving clinical outcomes and functions of teeth with dental pulp diseases.
Collapse
|
26
|
Turner CJ, Badu-Nkansah K, Hynes RO. Endothelium-derived fibronectin regulates neonatal vascular morphogenesis in an autocrine fashion. Angiogenesis 2017; 20:519-531. [PMID: 28667352 PMCID: PMC5660148 DOI: 10.1007/s10456-017-9563-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/21/2017] [Indexed: 12/02/2022]
Abstract
Fibronectin containing alternatively spliced EIIIA and EIIIB domains is largely absent from mature quiescent vessels in adults, but is highly expressed around blood vessels during developmental and pathological angiogenesis. The precise functions of fibronectin and its splice variants during developmental angiogenesis however remain unclear due to the presence of cardiac, somitic, mesodermal and neural defects in existing global fibronectin KO mouse models. Using a rare family of surviving EIIIA EIIIB double KO mice, as well as inducible endothelial-specific fibronectin-deficient mutant mice, we show that vascular development in the neonatal retina is regulated in an autocrine manner by endothelium-derived fibronectin, and requires both EIIIA and EIIIB domains and the RGD-binding α5 and αv integrins for its function. Exogenous sources of fibronectin do not fully substitute for the autocrine function of endothelial fibronectin, demonstrating that fibronectins from different sources contribute differentially to specific aspects of angiogenesis.
Collapse
Affiliation(s)
- Christopher J Turner
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Ave, 76-361, Cambridge, MA, 02139, USA
- University of Suffolk, James Hehir Building, University Avenue, Ipswich, Suffolk, IP3 0FS, UK
| | - Kwabena Badu-Nkansah
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Ave, 76-361, Cambridge, MA, 02139, USA
- Duke University Medical Center, 307 Research Drive, Durham, NC, 27710, USA
| | - Richard O Hynes
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Ave, 76-361, Cambridge, MA, 02139, USA.
| |
Collapse
|
27
|
Wang X, Astrof S. Isolation of Mouse Cardiac Neural Crest Cells and Their Differentiation into Smooth Muscle Cells. Bio Protoc 2017; 7:e2530. [PMID: 28979923 DOI: 10.21769/bioprotoc.2530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cardiac neural crest cells (CNCCs) originate at the dorsal edge of the neural tube between the otic pit and the caudal edge of the 3rd somite, and migrate into the pharyngeal arches and the heart. We have shown that fibronectin (Fn1) plays an important role in the development of the CNCC by regulating the differentiation of CNCCs into vascular smooth muscle cells around pharyngeal arch arteries (Wang and Astrof, 2016). This protocol describes the isolation of CNCCs from the neural tube and from the caudal pharyngeal arches, and the differentiation of neural crest-derived cells into smooth muscle cells. This protocol was adapted from (Newgreen and Murphy, 2000; Pfaltzgraff et al., 2012).
Collapse
Affiliation(s)
- Xia Wang
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA
| | - Sophie Astrof
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
28
|
Joo E, Lombaert I, Yamada K. Hyperacetylation of Microtubules in Mesenchymal Cells Increases Cytokeratin 14-Positive Epithelial Progenitors in Developing Salivary Glands. J Dent Res 2016; 95:1518-1527. [PMID: 27542391 PMCID: PMC5119680 DOI: 10.1177/0022034516662450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cells engage in bidirectional communication with their surroundings. This reciprocal dialogue between cells and their cellular microenvironments often governs the maintenance and differentiation of stem/progenitor cells. Here, the authors present evidence that in developing salivary gland explants, a single posttranslational change in microtubules in mesenchymal cells alters the mesenchymal microenvironment and promotes the maintenance and differentiation of a subset of epithelial progenitor cells that impairs branching morphogenesis. Specifically, the authors report that hyperacetylation of microtubules in mesenchymal cells increased cytokeratin 14-positive (K14+) progenitors and their differentiated progeny, myoepithelial cells, in epithelial basal and suprabasal layers in the distal endbud region of developing salivary glands. Mechanistically, this process engages the transforming growth factor β1 protein and Notch signaling pathways. This report establishes that a simple posttranslational change in the cytoskeletal system of mesenchyme dictates the maintenance and differentiation of adjacent epithelial progenitor cells to alter branching morphogenesis of the epithelium.
Collapse
Affiliation(s)
- E.E. Joo
- Laboratory of Cell and Developmental Biology, Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - I.M.A. Lombaert
- Laboratory of Cell and Developmental Biology, Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - K.M. Yamada
- Laboratory of Cell and Developmental Biology, Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
29
|
Vega ME, Schwarzbauer JE. Collaboration of fibronectin matrix with other extracellular signals in morphogenesis and differentiation. Curr Opin Cell Biol 2016; 42:1-6. [PMID: 27062478 DOI: 10.1016/j.ceb.2016.03.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 03/22/2016] [Indexed: 10/22/2022]
Abstract
Tissue formation and cell differentiation depend on a properly assembled extracellular matrix (ECM). Fibronectin is a key constituent of the pericellular ECM, forming essential connections between cell surface integrin receptors and structural components of the ECM. Recent studies using vertebrate models, conditional gene knockouts, tissue explants, and cell culture systems have identified developmental processes that depend on fibronectin and its receptor α5β1 integrin. We describe requirements for fibronectin matrix in the cardiovascular system, somite and precartilage development, and epithelial-mesenchymal transition. Information about molecular mechanisms shows the importance of fibronectin and integrins during tissue morphogenesis and cell differentiation, as well as their cooperation with growth factors to mediate changes in cell behaviors.
Collapse
Affiliation(s)
- Maria E Vega
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, United States
| | - Jean E Schwarzbauer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, United States.
| |
Collapse
|