1
|
Yamamoto KK, Wan M, Penkar RS, Savage-Dunn C. BMP-Dependent Mobilization of Fatty Acid Metabolism Promotes Caenorhabditis elegans Survival on a Bacterial Pathogen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.13.643118. [PMID: 40161651 PMCID: PMC11952492 DOI: 10.1101/2025.03.13.643118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The Bone Morphogenetic Proteins (BMPs) are secreted peptide ligands of the Transforming Growth Factor beta (TGF-β) family, initially identified for their roles in development and differentiation across animal species. They are now increasingly recognized for their roles in physiology and infectious disease. In the nematode Caenorhabditis elegans, the BMP ligand DBL-1 controls fat metabolism and immune response, in addition to its roles in body size regulation and development. DBL-1 regulates classical aspects of innate immunity, including the induction of anti-microbial peptides. We theorized that BMP-dependent regulation of fat metabolism could also promote resilience against microbial pathogens. We found that exposure to a bacterial pathogen alters total fat stores, lipid droplet dynamics, and lipid metabolism gene expression in a BMP-dependent manner. We further showed that fatty acid desaturation plays a major role in survival on a bacterial pathogen, while fatty acid β-oxidation plays a more minor role. We conclude that C. elegans mobilizes fatty acid metabolism in response to pathogen exposure to promote survival. Our investigation provides a framework to study potential metabolic interventions that could support therapeutics that are complementary to antibiotic strategies.
Collapse
Affiliation(s)
- Katerina K Yamamoto
- Department of Biology, Queens College, CUNY, NY, USA
- PhD Program in Biology, the Graduate Center, CUNY, NY, USA
| | - Margaret Wan
- Department of Biology, Queens College, CUNY, NY, USA
| | | | - Cathy Savage-Dunn
- Department of Biology, Queens College, CUNY, NY, USA
- PhD Program in Biology, the Graduate Center, CUNY, NY, USA
| |
Collapse
|
2
|
Wang Z, Zhang Q, Jiang Y, Zhou J, Tian Y. ASI-RIM neuronal axis regulates systemic mitochondrial stress response via TGF-β signaling cascade. Nat Commun 2024; 15:8997. [PMID: 39426950 PMCID: PMC11490647 DOI: 10.1038/s41467-024-53093-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024] Open
Abstract
Morphogens play a critical role in coordinating stress adaptation and aging across tissues, yet their involvement in neuronal mitochondrial stress responses and systemic effects remains unclear. In this study, we reveal that the transforming growth factor beta (TGF-β) DAF-7 is pivotal in mediating the intestinal mitochondrial unfolded protein response (UPRmt) in Caenorhabditis elegans under neuronal mitochondrial stress. Two ASI sensory neurons produce DAF-7, which targets DAF-1/TGF-β receptors on RIM interneurons to orchestrate a systemic UPRmt response. Remarkably, inducing mitochondrial stress specifically in ASI neurons activates intestinal UPRmt, extends lifespan, enhances pathogen resistance, and reduces both brood size and body fat levels. Furthermore, dopamine positively regulates this UPRmt activation, while GABA acts as a systemic suppressor. This study uncovers the intricate mechanisms of systemic mitochondrial stress regulation, emphasizing the vital role of TGF-β in metabolic adaptations that are crucial for organismal fitness and aging during neuronal mitochondrial stress.
Collapse
Affiliation(s)
- Zihao Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100093, Beijing, China
| | - Qian Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yayun Jiang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100093, Beijing, China
| | - Jun Zhou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100093, Beijing, China
| | - Ye Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100093, Beijing, China.
| |
Collapse
|
3
|
Woodruff GC, Willis JH, Johnson E, Phillips PC. Widespread changes in gene expression accompany body size evolution in nematodes. G3 (BETHESDA, MD.) 2024; 14:jkae110. [PMID: 38775657 PMCID: PMC11304970 DOI: 10.1093/g3journal/jkae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 10/27/2023] [Accepted: 05/06/2024] [Indexed: 06/04/2024]
Abstract
Body size is a fundamental trait that drives multiple evolutionary and ecological patterns. Caenorhabditis inopinata is a fig-associated nematode that is exceptionally large relative to other members of the genus, including Caenorhabditis elegans. We previously showed that C. inopinata is large primarily due to postembryonic cell size expansion that occurs during the larval-to-adult transition. Here, we describe gene expression patterns in C. elegans and C. inopinata throughout this developmental period to understand the transcriptional basis of body size change. We performed RNA-seq in both species across the L3, L4, and adult stages. Most genes are differentially expressed across all developmental stages, consistent with C. inopinata's divergent ecology and morphology. We also used a model comparison approach to identify orthologues with divergent dynamics across this developmental period between the 2 species. This included genes connected to neurons, behavior, stress response, developmental timing, and small RNA/chromatin regulation. Multiple hypodermal collagens were also observed to harbor divergent developmental dynamics across this period, and genes important for molting and body morphology were also detected. Genes associated with transforming growth factor β signaling revealed idiosyncratic and unexpected transcriptional patterns given their role in body size regulation in C. elegans. This widespread transcriptional divergence between these species is unexpected and maybe a signature of the ecological and morphological divergence of C. inopinata. Alternatively, transcriptional turnover may be the rule in the Caenorhabditis genus, indicative of widespread developmental system drift among species. This work lays the foundation for future functional genetic studies interrogating the bases of body size evolution in this group.
Collapse
Affiliation(s)
- Gavin C Woodruff
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA
| | - John H Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Erik Johnson
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
4
|
Hashizume O, Kawabe T, Funato Y, Miki H. Intestinal Mg 2+ accumulation induced by cnnm mutations decreases the body size by suppressing TORC2 signaling in Caenorhabditis elegans. Dev Biol 2024; 509:59-69. [PMID: 38373693 DOI: 10.1016/j.ydbio.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Mg2+ is a vital ion involved in diverse cellular functions by forming complexes with ATP. Intracellular Mg2+ levels are tightly regulated by the coordinated actions of multiple Mg2+ transporters, such as the Mg2+ efflux transporter, cyclin M (CNNM). Caenorhabditis elegans (C. elegans) worms with mutations in both cnnm-1 and cnnm-3 exhibit excessive Mg2+ accumulation in intestinal cells, leading to various phenotypic abnormalities. In this study, we investigated the mechanism underlying the reduction in body size in cnnm-1; cnnm-3 mutant worms. RNA interference (RNAi) of gtl-1, which encodes a Mg2+-intake channel in intestinal cells, restored the worm body size, confirming that this phenotype is due to excessive Mg2+ accumulation. Moreover, RNAi experiments targeting body size-related genes and analyses of mutant worms revealed that the suppression of the target of rapamycin complex 2 (TORC2) signaling pathway was involved in body size reduction, resulting in downregulated DAF-7 expression in head ASI neurons. As the DAF-7 signaling pathway suppresses dauer formation under stress, cnnm-1; cnnm-3 mutant worms exhibited a greater tendency to form dauer upon induction. Collectively, our results revealed that excessive accumulation of Mg2+ repressed the TORC2 signaling pathway in C. elegans worms and suggest the novel role of the DAF-7 signaling pathway in the regulation of their body size.
Collapse
Affiliation(s)
- Osamu Hashizume
- Laboratory of Biorecognition Chemistry, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan; Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tomofumi Kawabe
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yosuke Funato
- Laboratory of Biorecognition Chemistry, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan; Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hiroaki Miki
- Laboratory of Biorecognition Chemistry, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan; Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
5
|
Schön JL, Groß VE, Post WB, Daum A, Matúš D, Pilz J, Schnorr R, Horn S, Bäumers M, Weidtkamp-Peters S, Hughes S, Schöneberg T, Prömel S. The adhesion GPCR and PCP component flamingo (FMI-1) alters body size and regulates the composition of the extracellular matrix. Matrix Biol 2024; 128:1-10. [PMID: 38378098 DOI: 10.1016/j.matbio.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
The extracellular matrix (ECM) is a network of macromolecules that presents a vital scaffold for cells and enables multiple ways of cellular communication. Thus, it is essential for many physiological processes such as development, tissue morphogenesis, homeostasis, the shape and partially the size of the body and its organs. To ensure these, the composition of the ECM is tissue-specific and highly dynamic. ECM homeostasis is therefore tightly controlled by several mechanisms. Here, we show that FMI-1, the homolog of the Adhesion GPCR Flamingo/CELSR/ADGRC in the nematode Caenorhabditis elegans, modulates the composition of the ECM by controlling the production both of ECM molecules such as collagens and also of ECM modifying enzymes. Thereby, FMI-1 affects the morphology and functionality of the nematode´s cuticle, which is mainly composed of ECM, and also modulates the body size. Mechanistic analyses highlight the fact that FMI-1 exerts its function from neurons non-cell autonomously (trans) solely via its extracellular N terminus. Our data support a model, by which the activity of the receptor, which has a well-described role in the planar cell polarity (PCP) pathway, involves the PCP molecule VANG-1, but seems to be independent of the DBL-1/BMP pathway.
Collapse
Affiliation(s)
- Johanna Lena Schön
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany; Department of Dermatology, Venereology and Allergology, Leipzig University Medical Center, Leipzig University, Leipzig, Germany
| | - Victoria Elisabeth Groß
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Willem Berend Post
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alexandra Daum
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel Matúš
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany; Department of Molecular and Cellular Physiology, Stanford University, Stanford, USA
| | - Johanna Pilz
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Rene Schnorr
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Susanne Horn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Miriam Bäumers
- Center for Advanced Imaging, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Samantha Hughes
- A-LIFE, Section Environmental Health and Toxicology, Free University Amsterdam, Amsterdam, the Netherlands
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany; School of Medicine, University of Global Health Equity, Kigali, Rwanda
| | - Simone Prömel
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
6
|
Wu D, Kong X, Zhang W, Di W. Reconstruction of the TGF-β signaling pathway of Fasciola gigantica. Parasitol Res 2023; 123:51. [PMID: 38095703 DOI: 10.1007/s00436-023-08064-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023]
Abstract
In the present study, we reconstructed the transforming growth factor beta (TGF-β) signaling pathway for Fasciola gigantica, which is a neglected tropical pathogen. We defined the components involved in the TGF-β signaling pathway and investigated the transcription profiles of these genes for all developmental stages of F. gigantica. In addition, the presence of these components in excretory and secretory products (FgESP) was predicted via signal peptide annotation. The core components of the TGF-β signaling pathway have been detected in F. gigantica; classical and nonclassical single transduction pathways were constructed. Four ligands have been detected, which may mediate the TGF-β signaling pathway and BMP signaling pathway. Two ligand-binding type II receptors were detected, and inhibitory Smad7 was not detected. TLP, BMP-3, BMP-1, and ActRIb showed higher transcription in 42-day juvenile and 70-day juvenile, while ActRIIa, Smad1, ActRIIb, Smad8, KAT2B, and PP2A showed higher transcription in egg. TLM, Ski, Smad6, BMPRI, p70S6K, Smad2, Smad3, TgfβRI, Smad4, and p300 showed higher transcription in metacercariae. Four ligands, 2 receptors and 3 Smads are predicted to be present in the FgESP, suggesting their potential extrinsic function. This study should help to understand signal transduction in the TGF-β signaling pathway in F. gigantica. In addition, this study helps to illustrate the complex mechanisms involved in developmental processes and F. gigantica - host interaction and paves the way for further characterization of the signaling pathway in trematodes.
Collapse
Affiliation(s)
- Dongqi Wu
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Guangxi University, Nanning, Guangxi, China
| | - Xinping Kong
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Guangxi University, Nanning, Guangxi, China
| | - Weiyu Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Guangxi University, Nanning, Guangxi, China
| | - Wenda Di
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China.
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Guangxi University, Nanning, Guangxi, China.
| |
Collapse
|
7
|
Woodruff GC, Willis JH, Johnson E, Phillips PC. Widespread changes in gene expression accompany body size evolution in nematodes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564729. [PMID: 37961435 PMCID: PMC10635002 DOI: 10.1101/2023.10.30.564729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Body size is a fundamental trait that drives multiple evolutionary and ecological patterns. Caenorhabditis inopinata is a fig-associated nematode that is exceptionally large relative to other members of the genus, including C. elegans. We previously showed that C. inopinata is large primarily due to postembryonic cell size expansion that occurs during the larval-to-adult transition. Here, we describe gene expression patterns in C. elegans and C. inopinata throughout this developmental period to understand the transcriptional basis of body size change. We performed RNA-seq in both species across the L3, L4, and adult stages. Most genes are differentially expressed across all developmental stages, consistent with C. inopinata's divergent ecology and morphology. We also used a model comparison approach to identify orthologs with divergent dynamics across this developmental period between the two species. This included genes connected to neurons, behavior, stress response, developmental timing, and small RNA/chromatin regulation. Multiple hypodermal collagens were also observed to harbor divergent developmental dynamics across this period, and genes important for molting and body morphology were also detected. Genes associated with TGF-β signaling revealed idiosyncratic and unexpected transcriptional patterns given their role in body size regulation in C. elegans. Widespread transcriptional divergence between these species is unexpected and may be a signature of the ecological and morphological divergence of C. inopinata. Alternatively, transcriptional turnover may be the rule in the Caenorhabditis genus, indicative of widespread developmental system drift among species. This work lays the foundation for future functional genetic studies interrogating the bases of body size evolution in this group.
Collapse
Affiliation(s)
- Gavin C Woodruff
- University of Oregon, Eugene, Oregon, USA
- Current institution: University of Oklahoma, Norman, Oklahoma, USA
| | | | | | | |
Collapse
|
8
|
Madhu B, Lakdawala MF, Gumienny TL. The DBL-1/TGF-β signaling pathway tailors behavioral and molecular host responses to a variety of bacteria in Caenorhabditis elegans. eLife 2023; 12:e75831. [PMID: 37750680 PMCID: PMC10567113 DOI: 10.7554/elife.75831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 09/25/2023] [Indexed: 09/27/2023] Open
Abstract
Generating specific, robust protective responses to different bacteria is vital for animal survival. Here, we address the role of transforming growth factor β (TGF-β) member DBL-1 in regulating signature host defense responses in Caenorhabditis elegans to human opportunistic Gram-negative and Gram-positive pathogens. Canonical DBL-1 signaling is required to suppress avoidance behavior in response to Gram-negative, but not Gram-positive bacteria. We propose that in the absence of DBL-1, animals perceive some bacteria as more harmful. Animals activate DBL-1 pathway activity in response to Gram-negative bacteria and strongly repress it in response to select Gram-positive bacteria, demonstrating bacteria-responsive regulation of DBL-1 signaling. DBL-1 signaling differentially regulates expression of target innate immunity genes depending on the bacterial exposure. These findings highlight a central role for TGF-β in tailoring a suite of bacteria-specific host defenses.
Collapse
Affiliation(s)
- Bhoomi Madhu
- Department of Biology, Texas Woman’s UniversityDentonUnited States
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Mohammed Farhan Lakdawala
- Department of Biology, Texas Woman’s UniversityDentonUnited States
- AbbVie (United States)WorcesterUnited States
| | - Tina L Gumienny
- Department of Biology, Texas Woman’s UniversityDentonUnited States
| |
Collapse
|
9
|
Yamamoto KK, Savage-Dunn C. TGF-β pathways in aging and immunity: lessons from Caenorhabditis elegans. Front Genet 2023; 14:1220068. [PMID: 37732316 PMCID: PMC10507863 DOI: 10.3389/fgene.2023.1220068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023] Open
Abstract
The Transforming Growth Factor-β (TGF-β) superfamily of signaling molecules plays critical roles in development, differentiation, homeostasis, and disease. Due to the conservation of these ligands and their signaling pathways, genetic studies in invertebrate systems including the nematode Caenorhabditis elegans have been instrumental in identifying signaling mechanisms. C. elegans is also a premier organism for research in longevity and healthy aging. Here we summarize current knowledge on the roles of TGF-β signaling in aging and immunity.
Collapse
Affiliation(s)
| | - Cathy Savage-Dunn
- Department of Biology, Queens College, and PhD Program in Biology, The Graduate Center, City University of New York, New York City, NY, United States
| |
Collapse
|
10
|
Schvarzstein M, Alam F, Toure M, Yanowitz JL. An Emerging Animal Model for Querying the Role of Whole Genome Duplication in Development, Evolution, and Disease. J Dev Biol 2023; 11:26. [PMID: 37367480 PMCID: PMC10299280 DOI: 10.3390/jdb11020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Whole genome duplication (WGD) or polyploidization can occur at the cellular, tissue, and organismal levels. At the cellular level, tetraploidization has been proposed as a driver of aneuploidy and genome instability and correlates strongly with cancer progression, metastasis, and the development of drug resistance. WGD is also a key developmental strategy for regulating cell size, metabolism, and cellular function. In specific tissues, WGD is involved in normal development (e.g., organogenesis), tissue homeostasis, wound healing, and regeneration. At the organismal level, WGD propels evolutionary processes such as adaptation, speciation, and crop domestication. An essential strategy to further our understanding of the mechanisms promoting WGD and its effects is to compare isogenic strains that differ only in their ploidy. Caenorhabditis elegans (C. elegans) is emerging as an animal model for these comparisons, in part because relatively stable and fertile tetraploid strains can be produced rapidly from nearly any diploid strain. Here, we review the use of Caenorhabditis polyploids as tools to understand important developmental processes (e.g., sex determination, dosage compensation, and allometric relationships) and cellular processes (e.g., cell cycle regulation and chromosome dynamics during meiosis). We also discuss how the unique characteristics of the C. elegans WGD model will enable significant advances in our understanding of the mechanisms of polyploidization and its role in development and disease.
Collapse
Affiliation(s)
- Mara Schvarzstein
- Biology Department, Brooklyn College at the City University of New York, Brooklyn, NY 11210, USA
- Biology Department, The Graduate Center at the City University of New York, New York, NY 10016, USA
- Biochemistry Department, The Graduate Center at the City University of New York, New York, NY 10016, USA
| | - Fatema Alam
- Biology Department, Brooklyn College at the City University of New York, Brooklyn, NY 11210, USA
| | - Muhammad Toure
- Biology Department, Brooklyn College at the City University of New York, Brooklyn, NY 11210, USA
| | - Judith L. Yanowitz
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA;
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
11
|
Seese SE, Muheisen S, Gath N, Gross JM, Semina EV. Identification of HSPA8 as an interacting partner of MAB21L2 and an important factor in eye development. Dev Dyn 2023; 252:510-526. [PMID: 36576422 PMCID: PMC10947772 DOI: 10.1002/dvdy.560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Pathogenic variants in human MAB21L2 result in microphthalmia, anophthalmia, and coloboma. The exact molecular function of MAB21L2 is currently unknown. We conducted a series of yeast two-hybrid (Y2H) experiments to determine protein interactomes of normal human and zebrafish MAB21L2/mab21l2 as well as human disease-associated variant MAB21L2-p.(Arg51Gly) using human adult retina and zebrafish embryo libraries. RESULTS These screens identified klhl31, tnpo1, TNPO2/tnpo2, KLC2/klc2, and SPTBN1/sptbn1 as co-factors of MAB21L2/mab21l2. Several factors, including hspa8 and hspa5, were found to interact with MAB21L2-p.Arg51Gly but not wild-type MAB21L2/mab21l2 in Y2H screens. Further analyses via 1-by-1 Y2H assays, co-immunoprecipitation, and mass spectrometry revealed that both normal and variant MAB21L2 interact with HSPA5 and HSPA8. In situ hybridization detected co-expression of hspa5 and hspa8 with mab21l2 during eye development in zebrafish. Examination of zebrafish mutant hspa8hi138Tg identified reduced hspa8 expression associated with severe ocular developmental defects, including small eye, coloboma, and anterior segment dysgenesis. To investigate the effects of hspa8 deficiency on the mab21l2Arg51_Phe52del allele, corresponding zebrafish double mutants were generated and found to be more severely affected than single mutant lines. CONCLUSION This study identifies heat shock proteins as interacting partners of MAB21L2/mab21l2 and suggests a role for this interaction in vertebrate eye development.
Collapse
Affiliation(s)
- Sarah E. Seese
- Department of Pediatrics The Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cell Biology, Neurobiology and Anatomy, The Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sanaa Muheisen
- Department of Pediatrics The Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Natalie Gath
- University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jeffrey M. Gross
- University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Elena V. Semina
- Department of Pediatrics The Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cell Biology, Neurobiology and Anatomy, The Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Children’s of Wisconsin, Milwaukee, WI 53226, USA
- Children’s Research Institute, Medical College of Wisconsin, Children’s of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
12
|
Wang M, Rivenbark KJ, Phillips TD. Adsorption and detoxification of glyphosate and aminomethylphosphonic acid by montmorillonite clays. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11417-11430. [PMID: 36097303 PMCID: PMC10022482 DOI: 10.1007/s11356-022-22927-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/03/2022] [Indexed: 06/03/2023]
Abstract
The co-occurrence of mixtures of glyphosate (GLP) and aminomethylphosphonic acid (AMPA) in contaminated water, soil, sediment, and plants is a cause for concern due to potential threats to the ecosystem and human health. Major routes of exposure include contact with contaminated water and soil and through consumption of crops containing GLP and AMPA residues. Calcium montmorillonite (CM) and acid-processed montmorillonite (APM) clays were investigated for their ability to tightly sorb and detoxify GLP and AMPA mixtures. In vitro adsorption and desorption isotherms and thermodynamic analysis indicated saturable Langmuir binding of both chemicals with high capacities, affinities, enthalpies, and free energies of sorption and low desorption rates. In silico computational modeling indicated that both GLP and AMPA can be readily absorbed onto clay surfaces through electrostatic interactions and hydrogen bonding. The safety and efficacy of the clays were confirmed using well-established living organisms, including an aquatic cnidarian (Hydra vulgaris), a soil nematode (Caenorhabditis elegans), and a floating plant (Lemna minor). Low levels of clay inclusion (0.05% and 0.2%) in the culture medium resulted in increased growth and protection against chemical mixtures based on multiple endpoints. Results indicated that montmorillonite clays may be used to bind mixtures of GLP and AMPA in water, soil, and plants.
Collapse
Affiliation(s)
- Meichen Wang
- Veterinary Integrative Biosciences Department, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4458, USA
| | - Kelly J Rivenbark
- Veterinary Integrative Biosciences Department, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4458, USA
| | - Timothy D Phillips
- Veterinary Integrative Biosciences Department, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4458, USA.
| |
Collapse
|
13
|
Lo WS, Roca M, Dardiry M, Mackie M, Eberhardt G, Witte H, Hong R, Sommer RJ, Lightfoot JW. Evolution and Diversity of TGF-β Pathways are Linked with Novel Developmental and Behavioral Traits. Mol Biol Evol 2022; 39:msac252. [PMID: 36469861 PMCID: PMC9733428 DOI: 10.1093/molbev/msac252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/19/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
Transforming growth factor-β (TGF-β) signaling is essential for numerous biologic functions. It is a highly conserved pathway found in all metazoans including the nematode Caenorhabditis elegans, which has also been pivotal in identifying many components. Utilizing a comparative evolutionary approach, we explored TGF-β signaling in nine nematode species and revealed striking variability in TGF-β gene frequency across the lineage. Of the species analyzed, gene duplications in the DAF-7 pathway appear common with the greatest disparity observed in Pristionchus pacificus. Specifically, multiple paralogues of daf-3, daf-4 and daf-7 were detected. To investigate this additional diversity, we induced mutations in 22 TGF-β components and generated corresponding double, triple, and quadruple mutants revealing both conservation and diversification in function. Although the DBL-1 pathway regulating body morphology appears highly conserved, the DAF-7 pathway exhibits functional divergence, notably in some aspects of dauer formation. Furthermore, the formation of the phenotypically plastic mouth in P. pacificus is partially influenced through TGF-β with the strongest effect in Ppa-tag-68. This appears important for numerous processes in P. pacificus but has no known function in C. elegans. Finally, we observe behavioral differences in TGF-β mutants including in chemosensation and the establishment of the P. pacificus kin-recognition signal. Thus, TGF-β signaling in nematodes represents a stochastic genetic network capable of generating novel functions through the duplication and deletion of associated genes.
Collapse
Affiliation(s)
- Wen-Sui Lo
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology Tübingen, Max-Planck Ring 9, 72076 Tübingen, Germany
| | - Marianne Roca
- Max Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior—Caesar, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Mohannad Dardiry
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology Tübingen, Max-Planck Ring 9, 72076 Tübingen, Germany
| | - Marisa Mackie
- Department of Biology, California State University, Northridge, CA
| | - Gabi Eberhardt
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology Tübingen, Max-Planck Ring 9, 72076 Tübingen, Germany
| | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology Tübingen, Max-Planck Ring 9, 72076 Tübingen, Germany
| | - Ray Hong
- Department of Biology, California State University, Northridge, CA
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology Tübingen, Max-Planck Ring 9, 72076 Tübingen, Germany
| | - James W Lightfoot
- Max Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior—Caesar, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| |
Collapse
|
14
|
Arneaud SLB, McClendon J, Tatge L, Watterson A, Zuurbier KR, Madhu B, Gumienny TL, Douglas PM. Reduced bone morphogenic protein signaling along the gut-neuron axis by heat shock factor promotes longevity. Aging Cell 2022; 21:e13693. [PMID: 35977034 PMCID: PMC9470895 DOI: 10.1111/acel.13693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/24/2022] [Accepted: 07/27/2022] [Indexed: 01/25/2023] Open
Abstract
Aging is a complex and highly regulated process of interwoven signaling mechanisms. As an ancient transcriptional regulator of thermal adaptation and protein homeostasis, the Heat Shock Factor, HSF-1, has evolved functions within the nervous system to control age progression; however, the molecular details and signaling dynamics by which HSF-1 modulates age across tissues remain unclear. Herein, we report a nonautonomous mode of age regulation by HSF-1 in the Caenorhabditis elegans nervous system that works through the bone morphogenic protein, BMP, signaling pathway to modulate membrane trafficking in peripheral tissues. In particular, HSF-1 represses the expression of the neuron-specific BMP ligand, DBL-1, and initiates a complementary negative feedback loop within the intestine. By reducing receipt of DBL-1 in the periphery, the SMAD transcriptional coactivator, SMA-3, represses the expression of critical membrane trafficking regulators including Rab GTPases involved in early (RAB-5), late (RAB-7), and recycling (RAB-11.1) endosomal dynamics and the BMP receptor binding protein, SMA-10. This reduces cell surface residency and steady-state levels of the type I BMP receptor, SMA-6, in the intestine and further dampens signal transmission to the periphery. Thus, the ability of HSF-1 to coordinate BMP signaling along the gut-brain axis is an important determinate in age progression.
Collapse
Affiliation(s)
| | - Jacob McClendon
- Department of Molecular BiologyUT Southwestern Medical CenterDallasTexasUSA
| | - Lexus Tatge
- Department of Molecular BiologyUT Southwestern Medical CenterDallasTexasUSA
| | - Abigail Watterson
- Department of Molecular BiologyUT Southwestern Medical CenterDallasTexasUSA
| | - Kielen R. Zuurbier
- Department of Molecular BiologyUT Southwestern Medical CenterDallasTexasUSA
| | - Bhoomi Madhu
- Department of BiologyTexas Woman's UniversityDentonTexasUSA
| | | | - Peter M. Douglas
- Department of Molecular BiologyUT Southwestern Medical CenterDallasTexasUSA,Hamon Center for Regenerative Science and MedicineUT Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
15
|
Jofré DM, Hoffman DK, Cervino AS, Hahn GM, Grundy M, Yun S, Amrit FRG, Stolz DB, Godoy LF, Salvatore E, Rossi FA, Ghazi A, Cirio MC, Yanowitz JL, Hochbaum D. The CHARGE syndrome ortholog CHD-7 regulates TGF-β pathways in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2022; 119:e2109508119. [PMID: 35394881 PMCID: PMC9169646 DOI: 10.1073/pnas.2109508119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
CHARGE syndrome is a complex developmental disorder caused by mutations in the chromodomain helicase DNA-binding protein-7 (CHD7) and characterized by retarded growth and malformations in the heart and nervous system. Despite the public health relevance of this disorder, relevant cellular pathways and targets of CHD7 that relate to disease pathology are still poorly understood. Here we report that chd-7, the nematode ortholog of Chd7, is required for dauer morphogenesis, lifespan determination, stress response, and body size determination. Consistent with our discoveries, we found chd-7 to be allelic to scd-3, a previously identified dauer suppressor from the DAF-7/ tumor growth factor-β (TGF-β) pathway. Epistatic analysis places CHD-7 at the level of the DAF-3/DAF-5 complex, but we found that CHD-7 also directly impacts the expression of multiple components of this pathway. Transcriptomic analysis revealed that chd-7 mutants fail to repress daf-9 for execution of the dauer program. In addition, CHD-7 regulates the DBL-1/BMP pathway components and shares roles in male tail development and cuticle synthesis. To explore a potential conserved function for chd-7 in vertebrates, we used Xenopus laevis embryos, an established model to study craniofacial development. Morpholino-mediated knockdown of Chd7 led to a reduction in col2a1 messenger RNA (mRNA) levels, a collagen whose expression depends on TGF-β signaling. Both embryonic lethality and craniofacial defects in Chd7-depleted tadpoles were partially rescued by overexpression of col2a1 mRNA. We suggest that Chd7 has conserved roles in regulation of the TGF-β signaling pathway and pathogenic Chd7 could lead to a defective extracellular matrix deposition.
Collapse
Affiliation(s)
- Diego M. Jofré
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1053 Buenos Aires, Argentina
| | | | - Ailen S. Cervino
- Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1053 Buenos Aires, Argentina
| | - Gabriella M. Hahn
- Interdisciplinary Biomedical Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | | | - Sijung Yun
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20814
| | - Francis R. G. Amrit
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Donna B. Stolz
- Center for Biologic Imaging, University of Pittsburgh Medical School, Pittsburgh, PA 15213
| | - Luciana F. Godoy
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1053 Buenos Aires, Argentina
| | - Esteban Salvatore
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1053 Buenos Aires, Argentina
| | - Fabiana A. Rossi
- Instituto de Investigaciones en Medicina Traslacional, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Universidad Austral, B1630 Pilar, Argentina
| | - Arjumand Ghazi
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Department of Cell Biology & Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - M. Cecilia Cirio
- Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1053 Buenos Aires, Argentina
| | - Judith L. Yanowitz
- Magee-Womens Research Institute, Pittsburgh, PA 15213
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213
| | - Daniel Hochbaum
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1053 Buenos Aires, Argentina
| |
Collapse
|
16
|
Ruiling Z, Wenjuan L, Kexin Z, Xuejun W, Zhong Z. Developmental transcriptomics throughout the embryonic developmental process of Rhipicephalus turanicus reveals stage-specific gene expression profiles. Parasit Vectors 2022; 15:89. [PMID: 35292089 PMCID: PMC8922761 DOI: 10.1186/s13071-022-05214-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/20/2022] [Indexed: 11/10/2022] Open
Abstract
Background Ticks are important vectors and transmit diverse pathogens, including protozoa, viruses, and bacteria. Tick-borne diseases can cause damage to both human health and the livestock industries. The control and prevention of ticks and tick-borne diseases has relied heavily on acaricides. Methods In the present study, using a high-throughput RNA sequencing (RNA-Seq) technique, we performed a comprehensive time-series transcriptomic analysis throughout the embryogenesis period of Rhipicephalus turanicus. Results Altogether, 127,157 unigenes were assembled and clustered. Gene expression differences among the embryonic stages demonstrated that the most differentially expressed genes (DEGs) were observed in the comparisons of early embryonic stages (RTE5 vs. RTE10, 9726 genes), and there were far fewer DEGs in later stages (RTE25 vs. RTE30, 2751 genes). Furthermore, 16 distinct gene modules were identified according to weighted gene co-expression network analysis (WGCNA), and genes in different modules displayed stage-specific characteristics. Gene Ontology (GO) annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment suggested that some genes involved in organ and tissue formation were significantly upregulated in the early embryonic developmental stages, whereas metabolism-related pathways were more enriched in the later embryonic developmental stages. Conclusions These transcriptome studies revealed gene expression profiles at different stages of embryonic development, which would be useful for interrupting the embryonic development of ticks and disrupting the transmission of tick-borne diseases. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05214-w.
Collapse
Affiliation(s)
- Zhang Ruiling
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China. .,School of Basic Medical Sciences, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.
| | - Liu Wenjuan
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.,School of Basic Medical Sciences, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China
| | - Zhang Kexin
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.,School of Basic Medical Sciences, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China
| | - Wang Xuejun
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China. .,Shandong Provincial Center for Disease Control and Prevention, Jinan, China.
| | - Zhang Zhong
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China. .,School of Basic Medical Sciences, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.
| |
Collapse
|
17
|
Chauve L, Hodge F, Murdoch S, Masoudzadeh F, Mann HJ, Lopez-Clavijo AF, Okkenhaug H, West G, Sousa BC, Segonds-Pichon A, Li C, Wingett SW, Kienberger H, Kleigrewe K, de Bono M, Wakelam MJO, Casanueva O. Neuronal HSF-1 coordinates the propagation of fat desaturation across tissues to enable adaptation to high temperatures in C. elegans. PLoS Biol 2021; 19:e3001431. [PMID: 34723964 PMCID: PMC8585009 DOI: 10.1371/journal.pbio.3001431] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 11/11/2021] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
To survive elevated temperatures, ectotherms adjust the fluidity of membranes by fine-tuning lipid desaturation levels in a process previously described to be cell autonomous. We have discovered that, in Caenorhabditis elegans, neuronal heat shock factor 1 (HSF-1), the conserved master regulator of the heat shock response (HSR), causes extensive fat remodeling in peripheral tissues. These changes include a decrease in fat desaturase and acid lipase expression in the intestine and a global shift in the saturation levels of plasma membrane's phospholipids. The observed remodeling of plasma membrane is in line with ectothermic adaptive responses and gives worms a cumulative advantage to warm temperatures. We have determined that at least 6 TAX-2/TAX-4 cyclic guanosine monophosphate (cGMP) gated channel expressing sensory neurons, and transforming growth factor ß (TGF-β)/bone morphogenetic protein (BMP) are required for signaling across tissues to modulate fat desaturation. We also find neuronal hsf-1 is not only sufficient but also partially necessary to control the fat remodeling response and for survival at warm temperatures. This is the first study to show that a thermostat-based mechanism can cell nonautonomously coordinate membrane saturation and composition across tissues in a multicellular animal.
Collapse
Affiliation(s)
- Laetitia Chauve
- Epigenetics Department, Babraham Institute, Cambridge, United Kingdom
| | - Francesca Hodge
- Epigenetics Department, Babraham Institute, Cambridge, United Kingdom
| | - Sharlene Murdoch
- Epigenetics Department, Babraham Institute, Cambridge, United Kingdom
| | | | | | | | | | - Greg West
- Babraham Institute, Cambridge, United Kingdom
| | | | | | - Cheryl Li
- Epigenetics Department, Babraham Institute, Cambridge, United Kingdom
| | | | | | - Karin Kleigrewe
- Bavarian Centre for Biomolecular Mass Spectrometry, Freising, Germany
| | - Mario de Bono
- Institute of Science and Technology, Klosterneuburg, Austria
| | | | - Olivia Casanueva
- Epigenetics Department, Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
18
|
Wang M, Rivenbark K, Gong J, Wright FA, Phillips TD. Application of Edible Montmorillonite Clays for the Adsorption and Detoxification of Microcystin. ACS APPLIED BIO MATERIALS 2021; 4:7254-7265. [PMID: 34746680 PMCID: PMC8570584 DOI: 10.1021/acsabm.1c00779] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Exposure to microcystins (MCs) in humans and animals commonly occurs through the consumption of drinking water and food contaminated with cyanobacteria. Although studies have focused on developing water filtration treatments for MCs using activated carbon, dietary sorbents to reduce the bioavailability of MCs from the stomach and intestines have not been reported. To address this need, edible calcium and sodium montmorillonite clays were characterized for their ability to bind MC containing leucine and arginine (MC-LR) under conditions simulating the gastrointestinal tract and compared with a medical-grade activated carbon. Results of in vitro adsorption isotherms and thermodynamics showed that binding plots for MC-LR on montmorillonites fit the Langmuir model with high binding capacity, affinity, Gibbs free energy, and enthalpy. The in silico results from molecular modeling predicted that the major binding mechanisms involved electrostatics and hydrogen bonds, and that interlayers were important binding sites. The safety and detoxification efficacy of the sorbents against MC-LR were validated in a battery of living organisms, including Hydra vulgaris, Lemna minor, and Caenorhabditis elegans. The inclusion of 0.05% and 0.1% montmorillonite clays in hydra media significantly reduced MC-LR toxicity and protected hydra by 60-80%, whereas only slight protection was shown with the heat-collapsed clay. In the Lemna minor assay, montmorillonites significantly enhanced the growth of lemna, as supported by the increase in frond number, surface area, chlorophyll content, and growth rate, as well as the decrease in inhibition rate. Similar results were shown in the C. elegans assay, where montmorillonite clays reduced MC-LR effects on body length and brood size. All 3 bioassays confirmed dose-dependent protection from MC-LR, validated the in vitro and in silico findings, and suggested that edible montmorillonites are safe and efficacious binders for MC-LR. Moreover, their inclusion in diets during algal blooming seasons could protect vulnerable populations of humans and animals.
Collapse
Affiliation(s)
- Meichen Wang
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Kelly Rivenbark
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Joonho Gong
- Departments of Biological Sciences and Statistics and Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Fred A. Wright
- Departments of Biological Sciences and Statistics and Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Timothy D. Phillips
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
19
|
Park K, Li C, Tsiropoulou S, Gonçalves J, Kondratev C, Pelletier L, Blacque OE, Leroux MR. CDKL kinase regulates the length of the ciliary proximal segment. Curr Biol 2021; 31:2359-2373.e7. [PMID: 33857430 DOI: 10.1016/j.cub.2021.03.068] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/25/2021] [Accepted: 03/19/2021] [Indexed: 11/16/2022]
Abstract
Cilia are organelles found throughout most unicellular eukaryotes and different metazoan cell types. To accomplish their essential roles in cell motility, fluid flow, and signaling, cilia are divided into subcompartments with variable structures, compositions, and functions. How these specific subcompartments are built remains almost completely unexplored. Here, we show that C. elegans CDKL-1, related to the human CDKL kinase family (CDKL1/CDKL2/CDKL3/CDKL4/CDKL5), specifically controls the length of the proximal segment, a ciliary subdomain conserved in evolution from Tetrahymena motile cilia to C. elegans chemosensory, mammalian olfactory, and photoreceptor non-motile cilia. CDKL-1 associates with intraflagellar transport (IFT), influences the distribution of the IFT anterograde motors heterotrimeric kinesin-II and homodimeric OSM-3-kinesin/KIF17 in the proximal segment, and shifts the boundary between the proximal and distal segments (PS/DS boundary). CDKL-1 appears to function independently from several factors that influence cilium length, namely the kinases DYF-5 (mammalian CILK1/MAK) and NEKL-1 (NEK9), as well as the depolymerizing kinesins KLP-13 (KIF19) and KLP-7 (KIF2). However, a different kinase, DYF-18 (CCRK), is needed for the correct localization and function of CDKL-1 and similarly influences the length of the proximal segment. Loss of CDKL-1, which affects proximal segment length without impairing overall ciliary microtubule structural integrity, also impairs cilium-dependent processes, namely cGMP-signaling-dependent body length control and CO2 avoidance. Collectively, our findings suggest that cilium length is regulated by various pathways and that the IFT-associated kinase CDKL-1 is essential for the construction of a specific ciliary compartment and contributes to development and sensory physiology.
Collapse
Affiliation(s)
- Kwangjin Park
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Chunmei Li
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Sofia Tsiropoulou
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - João Gonçalves
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Christine Kondratev
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michel R Leroux
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
20
|
Zhou L, Ma X, Zhu N, Zou Q, Guo K, Bai L, Yu H, Hu J. The role of mab-3 in spermatogenesis and ontogenesis of pinewood nematode, Bursaphelenchus xylophilus. PEST MANAGEMENT SCIENCE 2021; 77:138-147. [PMID: 32652887 DOI: 10.1002/ps.6001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/21/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Bursaphelenchus xylophilus is one of the most destructive invasive species, causing extensive economic losses worldwide. The sex ratio of female to male of B. xylophilus plays an important role in the nematode infestation. However, little is known about the processes of its sex determination. The double sex/mab-3-related family of transcription factors are highly conserved in animals, playing crucial roles in sex determination, spermatogenesis and ontogenesis. We therefore investigated its orthologue, Bxy-mab-3, in B. xylophilus. RESULTS Bxy-mab-3 has two typical conserved DNA-binding domains. It was observed in J2 (the second-stage of juveniles), J3, J4 and male adults (specifically on the spicules), but not in eggs or female adults via mRNA in situ hybridization. RNA-Seq indicated significantly higher expression in males. RNAi showed that the body size and sperm size of male adults were markedly smaller than those of the controls. Meanwhile, almost all the RNAi-treated males failed to mate with the normal females, even 26.34% of interfered males did not produce sperm. However, RNAi of Bxy-mab-3 had no effect on the sex ratio of B. xylophilus. CONCLUSION Bxy-mab-3 is indispensable for spermatogenesis, ontogenesis and mating behavior. It is a typical sex-determination gene with differential expression in males and females. However, knocking down Bxy-mab-3 expression could not alter the sex ratio as seen in other species. Our findings contribute towards a better understanding of the molecular events of Bxy-mab-3 in B. xylophilus, which provides promising hints for control of pine wilt disease by blocking ontogenesis and decreasing nematode fecundity.
Collapse
Affiliation(s)
- Lifeng Zhou
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang Agricultural & Forestry University, Hangzhou, China
| | - Xinxin Ma
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang Agricultural & Forestry University, Hangzhou, China
| | - Najie Zhu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang Agricultural & Forestry University, Hangzhou, China
| | - Qingchi Zou
- Natural Forest Protection Center, Liaoning Forestry and Grassland Bureau, Shenyang, China
| | - Kai Guo
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang Agricultural & Forestry University, Hangzhou, China
| | - Liqun Bai
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang Agricultural & Forestry University, Hangzhou, China
| | - Hongshi Yu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang Agricultural & Forestry University, Hangzhou, China
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Jiafu Hu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang Agricultural & Forestry University, Hangzhou, China
| |
Collapse
|
21
|
Bosch PJ, Peek SL, Smolikove S, Weiner JA. Akirin proteins in development and disease: critical roles and mechanisms of action. Cell Mol Life Sci 2020; 77:4237-4254. [PMID: 32361777 PMCID: PMC7606436 DOI: 10.1007/s00018-020-03531-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/05/2020] [Accepted: 04/15/2020] [Indexed: 12/15/2022]
Abstract
The Akirin genes, which encode small, nuclear proteins, were first characterized in 2008 in Drosophila and rodents. Early studies demonstrated important roles in immune responses and tumorigenesis, which subsequent work found to be highly conserved. More recently, a multiplicity of Akirin functions, and the associated molecular mechanisms involved, have been uncovered. Here, we comprehensively review what is known about invertebrate Akirin and its two vertebrate homologues Akirin1 and Akirin2, highlighting their role in regulating gene expression changes across a number of biological systems. We detail essential roles for Akirin family proteins in the development of the brain, limb, and muscle, in meiosis, and in tumorigenesis, emphasizing associated signaling pathways. We describe data supporting the hypothesis that Akirins act as a "bridge" between a variety of transcription factors and major chromatin remodeling complexes, and discuss several important questions remaining to be addressed. In little more than a decade, Akirin proteins have gone from being completely unknown to being increasingly recognized as evolutionarily conserved mediators of gene expression programs essential for the formation and function of animals.
Collapse
Affiliation(s)
- Peter J Bosch
- Department of Biology and Iowa Neuroscience Institute, University of Iowa, 143 Biology Building, Iowa City, IA, 52242, USA
| | - Stacey L Peek
- Interdisciplinary Graduate Program in Neuroscience, Department of Biology and Iowa Neuroscience Institute, University of Iowa, 143 Biology Building, Iowa City, IA, 52242, USA
| | - Sarit Smolikove
- Department of Biology, University of Iowa, 143 Biology Building, Iowa City, IA, 52242, USA
| | - Joshua A Weiner
- Department of Biology and Iowa Neuroscience Institute, University of Iowa, 143 Biology Building, Iowa City, IA, 52242, USA.
| |
Collapse
|
22
|
He L, Liu H, Zhang BY, Li FF, Di WD, Wang CQ, Zhou CX, Liu L, Li TT, Zhang T, Fang R, Hu M. A daf-7-related TGF-β ligand (Hc-tgh-2) shows important regulations on the development of Haemonchus contortus. Parasit Vectors 2020; 13:326. [PMID: 32586367 PMCID: PMC7318536 DOI: 10.1186/s13071-020-04196-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In most multicellular organisms, the transforming growth factor-β (TGF-β) signalling pathway is involved in regulating the growth and stem cell differentiation. Previous studies have demonstrated the importance of three key molecules in this pathway in the parasitic nematode Haemonchus contortus, including one TGF-β type I receptor (Hc-tgfbr1), one TGF-β type II receptor (Hc-tgfbr2), and one co-Smad (Hc-daf-3), which regulated the developmental transition from the free-living to the parasitic stages of this parasite. However, almost nothing is known about the function of the TGF-β ligand (Hc-tgh-2) of H. contortus. METHODS Here, the temporal transcription profiles of Hc-tgh-2 at eight different developmental stages and spatial expression patterns of Hc-TGH-2 in adult female and male worms of H. contortus have been examined by real-time PCR and immunohistochemistry, respectively. In addition, RNA interference (RNAi) by soaking was employed to assess the importance of Hc-tgh-2 in the development from exsheathed third-stage larvae (xL3s) to fourth-stage larvae (L4s) in H. contortus. RESULTS Hc-tgh-2 was continuously transcribed in all eight developmental stages of H. contortus studied with the highest level in the infective third-stage larvae (iL3) and Hc-TGH-2 was located in the muscle of the body wall, intestine, ovary of adult females and testes of adult males. Silencing Hc-tgh-2 by the specific double-stranded RNA (dsRNA), decreased the transcript level of Hc-tgh-2 and resulted in fewer xL3s developing to L4s in vitro. CONCLUSIONS These results suggested that the TGF-β ligand, Hc-TGH-2, could play important roles in the developmental transition from the free-living (L3s) to the parasitic stage (L4s). Furthermore, it may also take part in the processes such as digestion, absorption, host immune response and reproductive development in H. contortus adults.
Collapse
Affiliation(s)
- Li He
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Hui Liu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Bi-Ying Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Fang-Fang Li
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Wen-Da Di
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chun-Qun Wang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Cai-Xian Zhou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lu Liu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ting-Ting Li
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ting Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
23
|
Gath N, Gross JM. Zebrafish mab21l2 mutants possess severe defects in optic cup morphogenesis, lens and cornea development. Dev Dyn 2019; 248:514-529. [PMID: 31037784 DOI: 10.1002/dvdy.44] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/09/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mutations in MAB21L2 result in severe ocular defects including microphthalmia, anophthalmia, coloboma, microcornea, and cataracts. The molecular and cellular underpinnings of these defects are unknown, as is the normal cellular function of MAB21L2. Zebrafish mab21l2 au10 mutants possess ocular defects resembling those in humans with MAB21L2 mutations, providing an excellent model to characterize mab21l2 functions during eye development. RESULTS mab21l2 -/- mutants possessed a host of ocular defects including microphthalmia and colobomas as well as small, disorganized lenses and cornea dysgenesis. Decreased proliferation, increased cell death, and defects in marker gene expression were detected in the lens. Cell death in the optic stalk was elevated in mab21l2 -/- mutants and the basement membrane between the edges of the choroid fissure failed to break down. Neuronal differentiation in the retina was normal, however. mab21l2 -/- mutant corneas were disorganized, possessed an increased number of cells, some of which proliferated ectopically, and failed to differentiate the corneal stroma. CONCLUSIONS mab21l2 function is required for morphogenesis and cell survival in the lens and optic cup, and basement membrane breakdown in the choroid fissure. mab21l2 function also regulates proliferation in the lens and cornea; in its absence, the lens is small and mispatterned, and corneal morphogenesis and patterning are also disrupted.
Collapse
Affiliation(s)
- Natalie Gath
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas.,Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jeffrey M Gross
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas.,Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
24
|
DeGroot MS, Shi H, Eastman A, McKillop AN, Liu J. The Caenorhabditis elegans SMOC-1 Protein Acts Cell Nonautonomously To Promote Bone Morphogenetic Protein Signaling. Genetics 2019; 211:683-702. [PMID: 30518528 PMCID: PMC6366928 DOI: 10.1534/genetics.118.301805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 12/04/2018] [Indexed: 01/20/2023] Open
Abstract
Bone morphogenetic protein (BMP) signaling regulates many different developmental and homeostatic processes in metazoans. The BMP pathway is conserved in Caenorhabditis elegans, and is known to regulate body size and mesoderm development. We have identified the C. elegans smoc-1 (Secreted MOdular Calcium-binding protein-1) gene as a new player in the BMP pathway. smoc-1(0) mutants have a small body size, while overexpression of smoc-1 leads to a long body size and increased expression of the RAD-SMAD (reporter acting downstream of SMAD) BMP reporter, suggesting that SMOC-1 acts as a positive modulator of BMP signaling. Using double-mutant analysis, we showed that SMOC-1 antagonizes the function of the glypican LON-2 and acts through the BMP ligand DBL-1 to regulate BMP signaling. Moreover, SMOC-1 appears to specifically regulate BMP signaling without significant involvement in a TGFβ-like pathway that regulates dauer development. We found that smoc-1 is expressed in multiple tissues, including cells of the pharynx, intestine, and posterior hypodermis, and that the expression of smoc-1 in the intestine is positively regulated by BMP signaling. We further established that SMOC-1 functions cell nonautonomously to regulate body size. Human SMOC1 and SMOC2 can each partially rescue the smoc-1(0) mutant phenotype, suggesting that SMOC-1's function in modulating BMP signaling is evolutionarily conserved. Together, our findings highlight a conserved role of SMOC proteins in modulating BMP signaling in metazoans.
Collapse
Affiliation(s)
- Melisa S DeGroot
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Herong Shi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Alice Eastman
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Alexandra N McKillop
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| |
Collapse
|
25
|
Tsang SW, Guo Y, Chan LH, Huang Y, Chow KL. Generation and characterization of pathogenic Mab21l2(R51C) mouse model. Genesis 2018; 56:e23261. [PMID: 30375740 DOI: 10.1002/dvg.23261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/18/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022]
Abstract
MAB21L2(R51C) is one of the five documented MAB21L2 mutations in human patients with bilateral eye malformations identified via whole exome sequencing. In addition to the eye abnormality, patients with MAB21L2 R51C/+ mutation also have skeletal dysplasia and intellectual disability. To evaluate the pathology of this mutant allele systematically in understanding the functional role of MAB21L2 in human development, we introduce the R51C mutation into the mouse genome by CRISPR/Cas9 system to generate a mouse model for detailed characterization. The Mab21l2 R51C/+ mice have eyeless phenotype and skeletal abnormalities. Micro-computed tomography (micro-CT) analysis showed the Mab21l2 R51C/+ mice have no eye balls but with two abnormal tissues underneath the brain. Histological analysis revealed that the early eye development in the mutant embryos is interrupted. In addition, Mab21l2 R51C/+ mice also have joint fusion phenotype; the humerus is fused with radius, whereas femur is fused with tibia. Limbs in the mutant animals are distinctly shorter than the wild type; and deltoid tuberosities in humeri are absent in these Mab21l2 R51C/+ mice. In summary, we showed that our Mab21l2 R51C/+ mutant mice have recapitulated the pathological features in eye and bone of human patients. Further analyses of the mutant phenotype with molecular markers will provide insight on how MAB21L2 guides the optic differentiation and skeletogenesis, revealing specific underlying pathogenic mechanism of the MAB21L2(R51C) mutation.
Collapse
Affiliation(s)
- Shun-Wa Tsang
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Yanjiang Guo
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Long-Hei Chan
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Yingyu Huang
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - King L Chow
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong.,Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| |
Collapse
|
26
|
Rad A, Altunoglu U, Miller R, Maroofian R, James KN, Çağlayan AO, Najafi M, Stanley V, Boustany RM, Yeşil G, Sahebzamani A, Ercan-Sencicek G, Saeidi K, Wu K, Bauer P, Bakey Z, Gleeson JG, Hauser N, Gunel M, Kayserili H, Schmidts M. MAB21L1 loss of function causes a syndromic neurodevelopmental disorder with distinctive cerebellar, ocular, cranio facial and genital features (COFG syndrome). J Med Genet 2018; 56:332-339. [PMID: 30487245 PMCID: PMC6581149 DOI: 10.1136/jmedgenet-2018-105623] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/29/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Putative nucleotidyltransferase MAB21L1 is a member of an evolutionarily well-conserved family of the male abnormal 21 (MAB21)-like proteins. Little is known about the biochemical function of the protein; however, prior studies have shown essential roles for several aspects of embryonic development including the eye, midbrain, neural tube and reproductive organs. OBJECTIVE A homozygous truncating variant in MAB21L1 has recently been described in a male affected by intellectual disability, scrotal agenesis, ophthalmological anomalies, cerebellar hypoplasia and facial dysmorphism. We employed a combination of exome sequencing and homozygosity mapping to identify the underlying genetic cause in subjects with similar phenotypic features descending from five unrelated consanguineous families. RESULTS We identified four homozygous MAB21L1 loss of function variants (p.Glu281fs*20, p.Arg287Glufs*14 p.Tyr280* and p.Ser93Serfs*48) and one missense variant (p.Gln233Pro) in 10 affected individuals from 5 consanguineous families with a distinctive autosomal recessive neurodevelopmental syndrome. Cardinal features of this syndrome include a characteristic facial gestalt, corneal dystrophy, hairy nipples, underdeveloped labioscrotal folds and scrotum/scrotal agenesis as well as cerebellar hypoplasia with ataxia and variable microcephaly. CONCLUSION This report defines an ultrarare but clinically recognisable Cerebello-Oculo-Facio-Genital syndrome associated with recessive MAB21L1 variants. Additionally, our findings further support the critical role of MAB21L1 in cerebellum, lens, genitalia and as craniofacial morphogenesis.
Collapse
Affiliation(s)
- Abolfazl Rad
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, Nijmegen, The Netherlands.,Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Umut Altunoglu
- Medical Genetics Department, İstanbul Medical Faculty, İstanbul University, Istanbul, Turkey
| | - Rebecca Miller
- Inova Cardiovascular Genomics Clinic, Inova Translational Medicine Institute, Falls Church, Virginia, USA
| | - Reza Maroofian
- Genetics and Molecular Cell Sciences Research Centre, St George's, University of London, London, UK
| | - Kiely N James
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, Rady Children's Institute for Genomic Medicine, University of California, San Diego, California, USA
| | - Ahmet Okay Çağlayan
- Department of Neurosurgery, Program on Neurogenetics, Yale School of Medicine, Yale University, New Haven, Connecticut, USA.,Medical Genetics Department, Bilim University School of Medicine, İstanbul, Turkey
| | - Maryam Najafi
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Valentina Stanley
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, Rady Children's Institute for Genomic Medicine, University of California, San Diego, California, USA
| | - Rose-Mary Boustany
- Department of Pediatrics and Adolescent Medicine, Neurogenetics Program and Division of Pediatric Neurology, American University of Beirut Medical Center Special Kids Clinic, Beirut, Lebanon.,Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Gözde Yeşil
- Medical Genetics Department, Bezmi Alem University School of Medicine, Istanbul, Turkey
| | - Afsaneh Sahebzamani
- Paediatric and Genetic Counselling Center, Kerman Welfare Organization, Kerman, Iran
| | - Gülhan Ercan-Sencicek
- Department of Neurosurgery, Program on Neurogenetics, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Kolsoum Saeidi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Medical Genetics, Kerman University of Medical Sciences, Kerman, Iran
| | - Kaman Wu
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Zeineb Bakey
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, Nijmegen, The Netherlands.,Pediatrics Genetics Division, Center for Pediatrics and Adolescent Medicine, Faculty of Medicine, Freiburg University, Freiburg, Germany
| | - Joseph G Gleeson
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, Rady Children's Institute for Genomic Medicine, University of California, San Diego, California, USA
| | - Natalie Hauser
- Inova Cardiovascular Genomics Clinic, Inova Translational Medicine Institute, Falls Church, Virginia, USA
| | - Murat Gunel
- Department of Neurosurgery, Program on Neurogenetics, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Hulya Kayserili
- Medical Genetics Department, İstanbul Medical Faculty, İstanbul University, Istanbul, Turkey.,Medical Genetics Department, Koç University School of Medicine (KUSoM), İstanbul, Turkey
| | - Miriam Schmidts
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, Nijmegen, The Netherlands.,Pediatrics Genetics Division, Center for Pediatrics and Adolescent Medicine, Faculty of Medicine, Freiburg University, Freiburg, Germany
| |
Collapse
|
27
|
Haag ES, Fitch DHA, Delattre M. From "the Worm" to "the Worms" and Back Again: The Evolutionary Developmental Biology of Nematodes. Genetics 2018; 210:397-433. [PMID: 30287515 PMCID: PMC6216592 DOI: 10.1534/genetics.118.300243] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 08/03/2018] [Indexed: 12/13/2022] Open
Abstract
Since the earliest days of research on nematodes, scientists have noted the developmental and morphological variation that exists within and between species. As various cellular and developmental processes were revealed through intense focus on Caenorhabditis elegans, these comparative studies have expanded. Within the genus Caenorhabditis, they include characterization of intraspecific polymorphisms and comparisons of distinct species, all generally amenable to the same laboratory culture methods and supported by robust genomic and experimental tools. The C. elegans paradigm has also motivated studies with more distantly related nematodes and animals. Combined with improved phylogenies, this work has led to important insights about the evolution of nematode development. First, while many aspects of C. elegans development are representative of Caenorhabditis, and of terrestrial nematodes more generally, others vary in ways both obvious and cryptic. Second, the system has revealed several clear examples of developmental flexibility in achieving a particular trait. This includes developmental system drift, in which the developmental control of homologous traits has diverged in different lineages, and cases of convergent evolution. Overall, the wealth of information and experimental techniques developed in C. elegans is being leveraged to make nematodes a powerful system for evolutionary cellular and developmental biology.
Collapse
Affiliation(s)
- Eric S Haag
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | | | - Marie Delattre
- Laboratoire de Biologie Moléculaire de la Cellule, CNRS, INSERM, Ecole Normale Supérieure de Lyon, 69007, France
| |
Collapse
|
28
|
Shen Q, Toulabi LB, Shi H, Nicklow EE, Liu J. The forkhead transcription factor UNC-130/FOXD integrates both BMP and Notch signaling to regulate dorsoventral patterning of the C. elegans postembryonic mesoderm. Dev Biol 2018; 433:75-83. [PMID: 29155044 PMCID: PMC5722696 DOI: 10.1016/j.ydbio.2017.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 11/17/2022]
Abstract
The proper development of a multicellular organism requires precise spatial and temporal coordination of cell intrinsic and cell extrinsic regulatory mechanisms. Both Notch signaling and bone morphogenetic protein (BMP) signaling function to regulate the proper development of the C. elegans postembryonic mesoderm. We have identified the C. elegans FOXD transcription factor UNC-130 as a major target functioning downstream of both BMP signaling and Notch signaling to regulate dorsoventral patterning of the postembryonic mesoderm. We showed that unc-130 expression in the postembryonic M lineage is asymmetric: its absence of expression in the dorsal side of the M lineage requires the antagonism of BMP signaling by the zinc finger transcription factor SMA-9, while its expression in the ventral side of the M lineage is activated by LIN-12/Notch signaling. We further showed that the regulation of UNC-130 expression by BMP signaling and Notch signaling is specific to the M lineage, as the ventral expression of UNC-130 in the embryonically-derived bodywall muscles was not affected in either BMP pathway or Notch pathway mutants. Finally, we showed that the function of UNC-130 in the M lineage is independent of UNC-129, a gene previously shown to function downstream of and be repressed by UNC-130 for axon guidance. Our studies uncovered a new function of UNC-130/FOXD in the C. elegans postembryonic mesoderm, and identify UNC-130 as a critical factor that integrates two independent spatial cues for the proper patterning and fate specification of the C. elegans postembryonic mesoderm.
Collapse
Affiliation(s)
- Qinfang Shen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, United States
| | - Leila B Toulabi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, United States
| | - Herong Shi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, United States
| | - Erin E Nicklow
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, United States
| | - Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
29
|
Inter-organ signalling by HRG-7 promotes systemic haem homeostasis. Nat Cell Biol 2017; 19:799-807. [PMID: 28581477 PMCID: PMC5594749 DOI: 10.1038/ncb3539] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 04/27/2017] [Indexed: 12/17/2022]
|
30
|
Evolutionarily conserved TRH neuropeptide pathway regulates growth in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2017; 114:E4065-E4074. [PMID: 28461507 DOI: 10.1073/pnas.1617392114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In vertebrates thyrotropin-releasing hormone (TRH) is a highly conserved neuropeptide that exerts the hormonal control of thyroid-stimulating hormone (TSH) levels as well as neuromodulatory functions. However, a functional equivalent in protostomian animals remains unknown, although TRH receptors are conserved in proto- and deuterostomians. Here we identify a TRH-like neuropeptide precursor in Caenorhabditis elegans that belongs to a bilaterian family of TRH precursors. Using CRISPR/Cas9 and RNAi reverse genetics, we show that TRH-like neuropeptides, through the activation of their receptor TRHR-1, promote growth in Celegans TRH-like peptides from pharyngeal motor neurons are required for normal body size, and knockdown of their receptor in pharyngeal muscle cells reduces growth. Mutants deficient for TRH signaling have no defects in pharyngeal pumping or isthmus peristalsis rates, but their growth defect depends on the bacterial diet. In addition to the decrease in growth, trh-1 mutants have a reduced number of offspring. Our study suggests that TRH is an evolutionarily ancient neuropeptide, having its origin before the divergence of protostomes and deuterostomes, and may ancestrally have been involved in the control of postembryonic growth and reproduction.
Collapse
|
31
|
Svensk E, Biermann J, Hammarsten S, Magnusson F, Pilon M. Leveraging the withered tail tip phenotype in C. elegans to identify proteins that influence membrane properties. WORM 2016; 5:e1206171. [PMID: 27695656 PMCID: PMC5022664 DOI: 10.1080/21624054.2016.1206171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/13/2016] [Accepted: 06/20/2016] [Indexed: 11/11/2022]
Abstract
The properties of cellular membranes are critical for most cellular functions and are influenced by several parameters including phospholipid composition, integral and peripheral membrane proteins, and environmental conditions such as temperature. We previously showed that the C. elegans paqr-2 and iglr-2 mutants have a defect in membrane homeostasis and exhibit several distinct phenotypes, including a characteristic tail tip defect and cold intolerance. In the present study we report that screening for novel mutants with these 2 defects can lead to the identification of genes that are important contributors to membrane properties. In particular we isolated 3 novel alleles of sma-1, the C. elegans homolog of βH spectrin, and 2 novel alleles of dpy-23, which encodes the C. elegans homolog of the AP2 μ subunit. We also show that sma-1 and dpy-23 act on membrane properties in pathways distinct from that of paqr-2 and iglr-2.
Collapse
Affiliation(s)
- Emma Svensk
- Department of Chemistry and Molecular Biology, University of Gothenburg , Gothenburg, Sweden
| | - Jana Biermann
- Department of Chemistry and Molecular Biology, University of Gothenburg , Gothenburg, Sweden
| | - Sofia Hammarsten
- Department of Chemistry and Molecular Biology, University of Gothenburg , Gothenburg, Sweden
| | - Fredrik Magnusson
- Department of Chemistry and Molecular Biology, University of Gothenburg , Gothenburg, Sweden
| | - Marc Pilon
- Department of Chemistry and Molecular Biology, University of Gothenburg , Gothenburg, Sweden
| |
Collapse
|
32
|
de Oliveira Mann CC, Kiefersauer R, Witte G, Hopfner KP. Structural and biochemical characterization of the cell fate determining nucleotidyltransferase fold protein MAB21L1. Sci Rep 2016; 6:27498. [PMID: 27271801 PMCID: PMC4897736 DOI: 10.1038/srep27498] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/20/2016] [Indexed: 12/19/2022] Open
Abstract
The exceptionally conserved metazoan MAB21 proteins are implicated in cell fate decisions and share considerable sequence homology with the cyclic GMP-AMP synthase. cGAS is the major innate immune sensor for cytosolic DNA and produces the second messenger 2′-5′, 3′-5′ cyclic GMP-AMP. Little is known about the structure and biochemical function of other proteins of the cGAS-MAB21 subfamily, such as MAB21L1, MAB21L2 and MAB21L3. We have determined the crystal structure of human full-length MAB21L1. Our analysis reveals high structural conservation between MAB21L1 and cGAS but also uncovers important differences. Although monomeric in solution, MAB21L1 forms a highly symmetric double-pentameric oligomer in the crystal, raising the possibility that oligomerization could be a feature of MAB21L1. In the crystal, MAB21L1 is in an inactive conformation requiring a conformational change - similar to cGAS - to develop any nucleotidyltransferase activity. Co-crystallization with NTP identified a putative ligand binding site of MAB21 proteins that corresponds to the DNA binding site of cGAS. Finally, we offer a structure-based explanation for the effects of MAB21L2 mutations in patients with eye malformations. The underlying residues participate in fold-stabilizing interaction networks and mutations destabilize the protein. In summary, we provide a first structural framework for MAB21 proteins.
Collapse
Affiliation(s)
- Carina C de Oliveira Mann
- Ludwig-Maximilians-Universität München, Gene Center and Dept. of Biochemistry, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Reiner Kiefersauer
- Proteros Biostructures GmbH, Bunsenstraße 7a, 82152 Martinsried, Germany
| | - Gregor Witte
- Ludwig-Maximilians-Universität München, Gene Center and Dept. of Biochemistry, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Karl-Peter Hopfner
- Ludwig-Maximilians-Universität München, Gene Center and Dept. of Biochemistry, Feodor-Lynen-Str. 25, 81377 Munich, Germany.,Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians Universität München, Feodor-Lynen Str. 25, 81377 Munich, Germany
| |
Collapse
|
33
|
Fluid dynamics alter Caenorhabditis elegans body length via TGF-β/DBL-1 neuromuscular signaling. NPJ Microgravity 2016; 2:16006. [PMID: 28725724 PMCID: PMC5515535 DOI: 10.1038/npjmgrav.2016.6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 12/14/2015] [Accepted: 01/10/2016] [Indexed: 01/12/2023] Open
Abstract
Skeletal muscle wasting is a major obstacle for long-term space exploration. Similar to astronauts, the nematode Caenorhabditis elegans displays negative muscular and physical effects when in microgravity in space. It remains unclear what signaling molecules and behavior(s) cause these negative alterations. Here we studied key signaling molecules involved in alterations of C. elegans physique in response to fluid dynamics in ground-based experiments. Placing worms in space on a 1G accelerator increased a myosin heavy chain, myo-3, and a transforming growth factor-β (TGF-β), dbl-1, gene expression. These changes also occurred when the fluid dynamic parameters viscosity/drag resistance or depth of liquid culture were increased on the ground. In addition, body length increased in wild type and body wall cuticle collagen mutants, rol-6 and dpy-5, grown in liquid culture. In contrast, body length did not increase in TGF-β, dbl-1, or downstream signaling pathway, sma-4/Smad, mutants. Similarly, a D1-like dopamine receptor, DOP-4, and a mechanosensory channel, UNC-8, were required for increased dbl-1 expression and altered physique in liquid culture. As C. elegans contraction rates are much higher when swimming in liquid than when crawling on an agar surface, we also examined the relationship between body length enhancement and rate of contraction. Mutants with significantly reduced contraction rates were typically smaller. However, in dop-4, dbl-1, and sma-4 mutants, contraction rates still increased in liquid. These results suggest that neuromuscular signaling via TGF-β/DBL-1 acts to alter body physique in response to environmental conditions including fluid dynamics.
Collapse
|
34
|
Dopamine regulates body size in Caenorhabditis elegans. Dev Biol 2016; 412:128-138. [DOI: 10.1016/j.ydbio.2016.02.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 01/08/2016] [Accepted: 02/23/2016] [Indexed: 12/31/2022]
|
35
|
Kaplan REW, Chen Y, Moore BT, Jordan JM, Maxwell CS, Schindler AJ, Baugh LR. dbl-1/TGF-β and daf-12/NHR Signaling Mediate Cell-Nonautonomous Effects of daf-16/FOXO on Starvation-Induced Developmental Arrest. PLoS Genet 2015; 11:e1005731. [PMID: 26656736 PMCID: PMC4676721 DOI: 10.1371/journal.pgen.1005731] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 11/18/2015] [Indexed: 11/23/2022] Open
Abstract
Nutrient availability has profound influence on development. In the nematode C. elegans, nutrient availability governs post-embryonic development. L1-stage larvae remain in a state of developmental arrest after hatching until they feed. This “L1 arrest” (or "L1 diapause") is associated with increased stress resistance, supporting starvation survival. Loss of the transcription factor daf-16/FOXO, an effector of insulin/IGF signaling, results in arrest-defective and starvation-sensitive phenotypes. We show that daf-16/FOXO regulates L1 arrest cell-nonautonomously, suggesting that insulin/IGF signaling regulates at least one additional signaling pathway. We used mRNA-seq to identify candidate signaling molecules affected by daf-16/FOXO during L1 arrest. dbl-1/TGF-β, a ligand for the Sma/Mab pathway, daf-12/NHR and daf-36/oxygenase, an upstream component of the daf-12 steroid hormone signaling pathway, were up-regulated during L1 arrest in a daf-16/FOXO mutant. Using genetic epistasis analysis, we show that dbl-1/TGF-β and daf-12/NHR steroid hormone signaling pathways are required for the daf-16/FOXO arrest-defective phenotype, suggesting that daf-16/FOXO represses dbl-1/TGF-β, daf-12/NHR and daf-36/oxygenase. The dbl-1/TGF-β and daf-12/NHR pathways have not previously been shown to affect L1 development, but we found that disruption of these pathways delayed L1 development in fed larvae, consistent with these pathways promoting development in starved daf-16/FOXO mutants. Though the dbl-1/TGF-β and daf-12/NHR pathways are epistatic to daf-16/FOXO for the arrest-defective phenotype, disruption of these pathways does not suppress starvation sensitivity of daf-16/FOXO mutants. This observation uncouples starvation survival from developmental arrest, indicating that DAF-16/FOXO targets distinct effectors for each phenotype and revealing that inappropriate development during starvation does not cause the early demise of daf-16/FOXO mutants. Overall, this study shows that daf-16/FOXO promotes developmental arrest cell-nonautonomously by repressing pathways that promote larval development. Animals must cope with feast and famine in the wild. Environmental fluctuations require a balancing act between development in favorable conditions and survival during starvation. Disruption of the pathways that govern this balance can lead to cancer, where cells proliferate when they should not, and metabolic diseases, where nutrient sensing is impaired. In the roundworm Caenorhabditis elegans, larval development is controlled by nutrient availability. Larvae are able to survive starvation by stopping development and starting again after feeding. Stopping and starting development in this multicellular animal requires signaling to coordinate development across tissues and organs. How such coordination is accomplished is poorly understood. Insulin/insulin-like growth factor (IGF) signaling governs larval development in response to nutrient availability. Here we show that insulin/IGF signaling activity in one tissue can affect the development of other tissues, suggesting regulation of additional signaling pathways. We identified two pathways that promote development in fed larvae and are repressed by lack of insulin/IGF signaling in starved larvae. Repression of these pathways is crucial to stopping development throughout the animal during starvation. These three pathways are widely conserved and associated with disease, suggesting the nutrient-dependent regulatory network they comprise is important to human health.
Collapse
Affiliation(s)
- Rebecca E. W. Kaplan
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Yutao Chen
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Brad T. Moore
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - James M. Jordan
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Colin S. Maxwell
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Adam J. Schindler
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - L. Ryan Baugh
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
36
|
de Lucas MP, Sáez AG, Lozano E. miR-58 family and TGF-β pathways regulate each other in Caenorhabditis elegans. Nucleic Acids Res 2015; 43:9978-93. [PMID: 26400166 PMCID: PMC4783514 DOI: 10.1093/nar/gkv923] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 08/14/2015] [Accepted: 09/07/2015] [Indexed: 12/19/2022] Open
Abstract
Despite the fact that microRNAs (miRNAs) modulate the expression of around 60% of protein-coding genes, it is often hard to elucidate their precise role and target genes. Studying miRNA families as opposed to single miRNAs alone increases our chances of observing not only mutant phenotypes but also changes in the expression of target genes. Here we ask whether the TGF-β signalling pathways, which control many animal processes, might be modulated by miRNAs in Caenorhabditis elegans. Using a mutant for four members of the mir-58 family, we show that both TGF-β Sma/Mab (controlling body size) and TGF-β Dauer (regulating dauer, a stress-resistant larval stage) are upregulated. Thus, mir-58 family directly inhibits the expression of dbl-1 (ligand), daf-1, daf-4 and sma-6 (receptors) of TGF-β pathways. Epistasis experiments reveal that whereas the small body phenotype of the mir-58 family mutant must invoke unknown targets independent from TGF-β Sma/Mab, its dauer defectiveness can be rescued by DAF-1 depletion. Additionally, we found a negative feedback loop between TGF-β Sma/Mab and mir-58 and the related mir-80. Our results suggest that the interaction between mir-58 family and TGF-β genes is key on decisions about animal growth and stress resistance in C. elegans and perhaps other organisms.
Collapse
Affiliation(s)
- María Pilar de Lucas
- Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Alberto G Sáez
- Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Encarnación Lozano
- Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| |
Collapse
|
37
|
Saul N, Stürzenbaum SR, Chakrabarti S, Baberschke N, Lieke T, Putschew A, Kochan C, Menzel R, Steinberg CEW. Adsorbable organic bromine compounds (AOBr) in aquatic samples: a nematode-based toxicogenomic assessment of the exposure hazard. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:14862-14873. [PMID: 25994267 DOI: 10.1007/s11356-015-4694-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/11/2015] [Indexed: 06/04/2023]
Abstract
Elevated levels of adsorbable organic bromine compounds (AOBr) have been detected in German lakes, and cyanobacteria like Microcystis, which are known for the synthesis of microcystins, are one of the main producers of natural organobromines. However, very little is known about how environmental realistic concentrations of organobromines impact invertebrates. Here, the nematode Caenorhabditis elegans was exposed to AOBr-containing surface water samples and to a Microcystis aeruginosa-enriched batch culture (MC-BA) and compared to single organobromines and microcystin-LR exposures. Stimulatory effects were observed in certain life trait variables, which were particularly pronounced in nematodes exposed to MC-BA. A whole genome DNA-microarray revealed that MC-BA led to the differential expression of more than 2000 genes, many of which are known to be involved in metabolic, neurologic, and morphologic processes. Moreover, the upregulation of cyp- and the downregulation of abu-genes suggested the presence of chronic stress. However, the nematodes were not marked by negative phenotypic responses. The observed difference in MC-BA and microcystin-LR (which impacted lifespan, growth, and reproduction) exposed nematodes was hypothesized to be likely due to other compounds within the batch culture. Most likely, the exposure to low concentrations of organobromines appears to buffer the effects of toxic substances, like microcystin-LR.
Collapse
Affiliation(s)
- Nadine Saul
- Department of Biology, Freshwater and Stress Ecology, Humboldt-Universität zu Berlin, Späthstr. 80/81, 12437, Berlin, Germany.
| | - Stephen R Stürzenbaum
- School of Biomedical Sciences, Analytical and Environmental Sciences Division, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Shumon Chakrabarti
- Department of Biology, Freshwater and Stress Ecology, Humboldt-Universität zu Berlin, Späthstr. 80/81, 12437, Berlin, Germany
| | - Nora Baberschke
- Department of Biology, Freshwater and Stress Ecology, Humboldt-Universität zu Berlin, Späthstr. 80/81, 12437, Berlin, Germany
| | - Thora Lieke
- Department of Biology, Freshwater and Stress Ecology, Humboldt-Universität zu Berlin, Späthstr. 80/81, 12437, Berlin, Germany
| | - Anke Putschew
- Chair of Water Quality Control, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Cindy Kochan
- Chair of Water Quality Control, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Ralph Menzel
- Department of Biology, Freshwater and Stress Ecology, Humboldt-Universität zu Berlin, Späthstr. 80/81, 12437, Berlin, Germany
| | - Christian E W Steinberg
- Department of Biology, Freshwater and Stress Ecology, Humboldt-Universität zu Berlin, Späthstr. 80/81, 12437, Berlin, Germany
| |
Collapse
|
38
|
Japa O, Hodgkinson JE, Emes RD, Flynn RJ. TGF-β superfamily members from the helminth Fasciola hepatica show intrinsic effects on viability and development. Vet Res 2015; 46:29. [PMID: 25879787 PMCID: PMC4354977 DOI: 10.1186/s13567-015-0167-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/25/2015] [Indexed: 12/31/2022] Open
Abstract
The helminth Fasciola hepatica causes fasciolosis throughout the world, a major disease of livestock and an emerging zoonotic disease in humans. Sustainable control mechanisms such as vaccination are urgently required. To discover potential vaccine targets we undertook a genome screen to identify members of the transforming growth factor (TGF) family of proteins. Herein we describe the discovery of three ligands belonging to this superfamily and the cloning and characterisation of an activin/TGF like molecule we term FhTLM. FhTLM has a limited expression pattern both temporally across the parasite stages but also spatially within the worm. Furthermore, a recombinant form of this protein is able to enhance the rate (or magnitude) of multiple developmental processes of the parasite indicating a conserved role for this protein superfamily in the developmental biology of a major trematode parasite. Our study demonstrates for the first time the existence of this protein superfamily within F. hepatica and assigns a function to one of the three identified ligands. Moreover further exploration of this superfamily may yield future targets for diagnostic or vaccination purposes due to its stage restricted expression and functional role.
Collapse
Affiliation(s)
- Ornampai Japa
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK.
| | - Jane E Hodgkinson
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L3 5RF, UK.
| | - Richard D Emes
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK.
- Advanced Data Analysis Centre, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK.
| | - Robin J Flynn
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK.
| |
Collapse
|
39
|
Wang L, Du H, Guo X, Wang X, Wang M, Wang Y, Wang M, Chen S, Wu L, Xu A. Developmental abnormality induced by strong static magnetic field inCaenorhabditis elegans. Bioelectromagnetics 2015; 36:178-89. [DOI: 10.1002/bem.21906] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 02/11/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Lei Wang
- Key Laboratory of Ion Beam Bioengineering; Institute of Technical Biology and Agricultural Engineering; Hefei Institutes of Physical Science; Chinese Academy of Science; Hefei Anhui People's Republic of China
| | - Hua Du
- Key Laboratory of Ion Beam Bioengineering; Institute of Technical Biology and Agricultural Engineering; Hefei Institutes of Physical Science; Chinese Academy of Science; Hefei Anhui People's Republic of China
| | - Xiaoying Guo
- Key Laboratory of Ion Beam Bioengineering; Institute of Technical Biology and Agricultural Engineering; Hefei Institutes of Physical Science; Chinese Academy of Science; Hefei Anhui People's Republic of China
| | - Xinan Wang
- Key Laboratory of Ion Beam Bioengineering; Institute of Technical Biology and Agricultural Engineering; Hefei Institutes of Physical Science; Chinese Academy of Science; Hefei Anhui People's Republic of China
| | - Meimei Wang
- Key Laboratory of Ion Beam Bioengineering; Institute of Technical Biology and Agricultural Engineering; Hefei Institutes of Physical Science; Chinese Academy of Science; Hefei Anhui People's Republic of China
| | - Yichen Wang
- Key Laboratory of Ion Beam Bioengineering; Institute of Technical Biology and Agricultural Engineering; Hefei Institutes of Physical Science; Chinese Academy of Science; Hefei Anhui People's Republic of China
| | - Min Wang
- Key Laboratory of Ion Beam Bioengineering; Institute of Technical Biology and Agricultural Engineering; Hefei Institutes of Physical Science; Chinese Academy of Science; Hefei Anhui People's Republic of China
| | - Shaopeng Chen
- Key Laboratory of Ion Beam Bioengineering; Institute of Technical Biology and Agricultural Engineering; Hefei Institutes of Physical Science; Chinese Academy of Science; Hefei Anhui People's Republic of China
| | - Lijun Wu
- Key Laboratory of Ion Beam Bioengineering; Institute of Technical Biology and Agricultural Engineering; Hefei Institutes of Physical Science; Chinese Academy of Science; Hefei Anhui People's Republic of China
| | - An Xu
- Key Laboratory of Ion Beam Bioengineering; Institute of Technical Biology and Agricultural Engineering; Hefei Institutes of Physical Science; Chinese Academy of Science; Hefei Anhui People's Republic of China
| |
Collapse
|
40
|
Deml B, Kariminejad A, Borujerdi RHR, Muheisen S, Reis LM, Semina EV. Mutations in MAB21L2 result in ocular Coloboma, microcornea and cataracts. PLoS Genet 2015; 11:e1005002. [PMID: 25719200 PMCID: PMC4342166 DOI: 10.1371/journal.pgen.1005002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 01/14/2015] [Indexed: 12/12/2022] Open
Abstract
Ocular coloboma results from abnormal embryonic development and is often associated with additional ocular and systemic features. Coloboma is a highly heterogeneous disorder with many cases remaining unexplained. Whole exome sequencing from two cousins affected with dominant coloboma with microcornea, cataracts, and skeletal dysplasia identified a novel heterozygous allele in MAB21L2, c.151 C>G, p.(Arg51Gly); the mutation was present in all five family members with the disease and appeared de novo in the first affected generation of the three-generational pedigree. MAB21L2 encodes a protein similar to C. elegans mab-21 cell fate-determining factor; the molecular function of MAB21L2 is largely unknown. To further evaluate the role of MAB21L2, zebrafish mutants carrying a p.(Gln48Serfs*5) frameshift truncation (mab21l2Q48Sfs*5) and a p.(Arg51_Phe52del) in-frame deletion (mab21l2R51_F52del) were developed with TALEN technology. Homozygous zebrafish embryos from both lines developed variable lens and coloboma phenotypes: mab21l2Q48Sfs*5 embryos demonstrated severe lens and retinal defects with complete lethality while mab21l2R51_F52del mutants displayed a milder lens phenotype and severe coloboma with a small number of fish surviving to adulthood. Protein studies showed decreased stability for the human p.(Arg51Gly) and zebrafish p.(Arg51_Phe52del) mutant proteins and predicted a complete loss-of-function for the zebrafish p.(Gln48Serfs*5) frameshift truncation. Additionally, in contrast to wild-type human MAB21L2 transcript, mutant p.(Arg51Gly) mRNA failed to efficiently rescue the ocular phenotype when injected into mab21l2Q48Sfs*5 embryos, suggesting this allele is functionally deficient. Histology, immunohistochemistry, and in situ hybridization experiments identified retinal invagination defects, an increase in cell death, abnormal proliferation patterns, and altered expression of several ocular markers in the mab21l2 mutants. These findings support the identification of MAB21L2 as a novel factor involved in human coloboma and highlight the power of genome editing manipulation in model organisms for analysis of the effects of whole exome variation in humans.
Collapse
Affiliation(s)
- Brett Deml
- Department of Pediatrics and Children’s Research Institute at the Medical College of Wisconsin and Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | | | | | - Sanaa Muheisen
- Department of Pediatrics and Children’s Research Institute at the Medical College of Wisconsin and Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Linda M. Reis
- Department of Pediatrics and Children’s Research Institute at the Medical College of Wisconsin and Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Elena V. Semina
- Department of Pediatrics and Children’s Research Institute at the Medical College of Wisconsin and Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
41
|
Dineen A, Gaudet J. TGF-β signaling can act from multiple tissues to regulate C. elegans body size. BMC DEVELOPMENTAL BIOLOGY 2014; 14:43. [PMID: 25480452 PMCID: PMC4278669 DOI: 10.1186/s12861-014-0043-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 11/25/2014] [Indexed: 11/23/2022]
Abstract
Background Regulation of organ and body size is a fundamental biological phenomenon, requiring tight coordination between multiple tissues to ensure accurate proportional growth. In C. elegans, a TGF-β pathway is the major regulator of body size and also plays a role in the development of the male tail, and is thus referred to as the TGF-β/Sma/Mab (for small and male abnormal) pathway. Mutations in components of this pathway result in decreased growth of animals during larval stages, with Sma mutant adults of the core pathway as small as ~60-70% the length of normal animals. The currently accepted model suggests that TGF-β/Sma/Mab pathway signaling in the C. elegans hypodermis is both necessary and sufficient to control body length. However, components of this signaling pathway are expressed in other organs, such as the intestine and pharynx, raising the question of what the function of the pathway is in these organs. Results Here we show that TGF-β/Sma/Mab signaling is required for the normal growth of the pharynx. We further extend the current model and show that the TGF-β/Sma/Mab pathway can function in multiple tissues to regulate body and organ length. Specifically, we find that pharyngeal expression of the SMAD protein SMA-3 partially rescues both pharynx length and body length of sma-3 mutants. Conclusions Overall, our results support a model in which the TGF-β/Sma/Mab signaling pathway can act in multiple tissues, activating one or more downstream secreted signals that act non cell-autonomously to regulate overall body length in C. elegans. Electronic supplementary material The online version of this article (doi:10.1186/s12861-014-0043-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aidan Dineen
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, T2N 4 N1, Alberta, Canada.
| | - Jeb Gaudet
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, T2N 4 N1, Alberta, Canada.
| |
Collapse
|
42
|
Schultz RD, Bennett EE, Ellis EA, Gumienny TL. Regulation of extracellular matrix organization by BMP signaling in Caenorhabditis elegans. PLoS One 2014; 9:e101929. [PMID: 25013968 PMCID: PMC4094471 DOI: 10.1371/journal.pone.0101929] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 06/13/2014] [Indexed: 12/22/2022] Open
Abstract
In mammals, Bone Morphogenetic Protein (BMP) pathway signaling is important for the growth and homeostasis of extracellular matrix, including basement membrane remodeling, scarring, and bone growth. A conserved BMP member in Caenorhabditis elegans, DBL-1, regulates body length in a dose-sensitive manner. Loss of DBL-1 pathway signaling also results in increased anesthetic sensitivity. However, the physiological basis of these pleiotropic phenotypes is largely unknown. We created a DBL-1 over-expressing strain and show that sensitivity to anesthetics is inversely related to the dose of DBL-1. Using pharmacological, genetic analyses, and a novel dye permeability assay for live, microwave-treated animals, we confirm that DBL-1 is required for the barrier function of the cuticle, a specialized extracellular matrix. We show that DBL-1 signaling is required to prevent animals from forming tail-entangled aggregates in liquid. Stripping lipids off the surface of wild-type animals recapitulates this phenotype. Finally, we find that DBL-1 signaling affects ultrastructure of the nematode cuticle in a dose-dependent manner, as surface lipid content and cuticular organization are disrupted in animals with genetically altered DBL-1 levels. We propose that the lipid layer coating the nematode cuticle normally prevents tail entanglement, and that reduction of this layer by loss of DBL-1 signaling promotes aggregation. This work provides a physiological mechanism that unites the DBL-1 signaling pathway roles of not only body size regulation and drug responsiveness, but also the novel Hoechst 33342 staining and aggregation phenotypes, through barrier function, content, and organization of the cuticle.
Collapse
Affiliation(s)
- Robbie D. Schultz
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, United States of America
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, United States of America
| | - Emily E. Bennett
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, United States of America
| | - E. Ann Ellis
- Microscopy & Imaging Center, Texas A&M University, College Station, Texas, United States of America
| | - Tina L. Gumienny
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, United States of America
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
43
|
Ramakrishnan K, Ray P, Okkema PG. CEH-28 activates dbl-1 expression and TGF-β signaling in the C. elegans M4 neuron. Dev Biol 2014; 390:149-59. [PMID: 24690231 PMCID: PMC4023489 DOI: 10.1016/j.ydbio.2014.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/22/2014] [Accepted: 03/24/2014] [Indexed: 02/07/2023]
Abstract
M4 is a multifunctional neuron in the Caenorhabditis elegans pharynx that can both stimulate peristaltic contractions of the muscles in the pharyngeal isthmus and function systemically to regulate an enhanced sensory response under hypoxic conditions. Here we identify a third function for M4 that depends on activation of the TGF-β family gene dbl-1 by the homeodomain transcription factor CEH-28. dbl-1 is expressed in M4 and a subset of other neurons, and we show CEH-28 specifically activates dbl-1 expression in M4. Characterization of the dbl-1 promoter indicates that CEH-28 targets an M4-specific enhancer within the dbl-1 promoter region, while expression in other neurons is mediated by separate regulatory sequences. Unlike ceh-28 mutants, dbl-1 mutants do not exhibit M4 synaptic and signaling defects. Instead, both ceh-28 and dbl-1 mutants exhibit morphological defects in the g1 gland cells located adjacent to M4 in the pharynx, and these defects can be partially rescued by M4-specific expression of dbl-1 in these mutants. Identical gland cell defects are observed in sma-6 and daf-4 mutants defective in the receptor for DBL-1, but they are not observed in sma-2 and sma-3 mutants lacking the R-Smads functioning downstream of this receptor. Together these results identify a novel neuroendocrine function for M4 and provide evidence for an R-Smad-independent mechanism for DBL-1 signaling in C. elegans.
Collapse
Affiliation(s)
- Kalpana Ramakrishnan
- Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Avenue (MC567), Chicago, IL 60607, USA
| | - Paramita Ray
- Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Avenue (MC567), Chicago, IL 60607, USA
| | - Peter G Okkema
- Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Avenue (MC567), Chicago, IL 60607, USA.
| |
Collapse
|
44
|
Tuck S. The control of cell growth and body size in Caenorhabditis elegans. Exp Cell Res 2013; 321:71-6. [PMID: 24262077 DOI: 10.1016/j.yexcr.2013.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 01/02/2023]
Abstract
One of the most important ways in which animal species vary is in their size. Individuals of the largest animal ever thought to have lived, the blue whale (Balaenoptera musculus), can reach a weight of 190 t and a length of over 30 m. At the other extreme, among the smallest multicellular animals are males of the parasitic wasp, Dicopomorpha echmepterygis, which even as adults are just 140 μm in length. In terms of volume, these species differ by more than 14 orders of magnitude. Since size has such profound effects on an organism's ecology, anatomy and physiology, an important task for evolutionary biology and ecology is to account for why organisms grow to their characteristic sizes. Equally, a full description of an organism's development must include an explanation of how its growth and body size are regulated. Here I review research on how these processes are controlled in the nematode, Caenorhabditis elegans. Analyses of small and long mutants have revealed that in the worm, DBL-1, a ligand in the TGFβ superfamily family, promotes growth in a dose-dependent manner. DBL-1 signaling affects body size by stimulating the growth of syncytial hypodermal cells rather than controlling cell division. Signals from chemosensory neurons and from the gonad also modulate body size, in part, independently of DBL-1-mediated signaling. Organismal size and morphology is heavily influenced by the cuticle, which acts as the exoskeleton. Finally, I summarize research on several genes that appear to regulate body size by cell autonomously regulating cell growth throughout the worm.
Collapse
Affiliation(s)
- Simon Tuck
- Umeå Center for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden.
| |
Collapse
|
45
|
Taneja-Bageshwar S, Gumienny TL. Regulation of TGFβ superfamily signaling by two separable domains of glypican LON-2 in C. elegans. WORM 2013; 2:e23843. [PMID: 24778932 PMCID: PMC3875644 DOI: 10.4161/worm.23843] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 01/31/2013] [Indexed: 12/30/2022]
Abstract
Regulated intercellular signaling is critical for the normal development and maintenance of multicellular organisms. Glypicans have been shown to regulate signaling by TGFβs, hedgehogs and Wnts, in several cellular contexts. Glypicans comprise a conserved family of heparan sulfated, glycosylphosphatidylinositol (GPI)-linked extracellular proteins. The structural complexity of glypicans may underlie their functional complexity. In a recent study31, we built on previous findings that one of the two C. elegans glypicans, LON-2, specifically inhibits signaling by the TGFβ superfamily member DBL-1. We tested the functional requirements of LON-2 protein core components and post-translational modifications for LON-2 activity. We provide the first evidence that two parts of a glypican can independently regulate TGFβ superfamily signaling in vivo: the N-terminal furin protease product and a C-terminal region containing heparan sulfate attachment sites. Furthermore, we show a protein-protein interaction motif is crucial for LON-2 activity in the N-terminal protein core, suggesting that LON-2 acts by serving as a scaffold for DBL-1 and an RGD-binding protein. In addition, we demonstrate specificity of glypican function by showing C. elegans GPN-1 does not functionally substitute for LON-2. This work reveals a molecular foundation for understanding the complexity and specificity of glypican function.
Collapse
Affiliation(s)
- Suparna Taneja-Bageshwar
- Department of Molecular and Cellular Medicine; College of Medicine; Texas A&M Health Science Center; College Station, TX USA
| | - Tina L Gumienny
- Department of Molecular and Cellular Medicine; College of Medicine; Texas A&M Health Science Center; College Station, TX USA
| |
Collapse
|
46
|
Tian C, Shi H, Xiong S, Hu F, Xiong WC, Liu J. The neogenin/DCC homolog UNC-40 promotes BMP signaling via the RGM protein DRAG-1 in C. elegans. Development 2013; 140:4070-80. [PMID: 24004951 DOI: 10.1242/dev.099838] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The deleted in colorectal cancer (DCC) homolog neogenin functions in both netrin- and repulsive guidance molecule (RGM)-mediated axon guidance and in bone morphogenetic protein (BMP) signaling. How neogenin functions in mediating BMP signaling is not well understood. We show that the sole C. elegans DCC/neogenin homolog UNC-40 positively modulates a BMP-like pathway by functioning in the signal-receiving cells at the ligand/receptor level. This function of UNC-40 is independent of its role in netrin-mediated axon guidance, but requires its association with the RGM protein DRAG-1. We have identified the key residues in the extracellular domain of UNC-40 that are crucial for UNC-40-DRAG-1 interaction and UNC-40 function. Surprisingly, the extracellular domain of UNC-40 is sufficient to promote BMP signaling, in clear contrast to the requirement of its intracellular domain in mediating axon guidance. Mouse neogenin lacking the intracellular domain is also capable of mediating BMP signaling. These findings reveal an unexpected mode of action for neogenin regulation of BMP signaling.
Collapse
Affiliation(s)
- Chenxi Tian
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
47
|
Stoltzfus JD, Minot S, Berriman M, Nolan TJ, Lok JB. RNAseq analysis of the parasitic nematode Strongyloides stercoralis reveals divergent regulation of canonical dauer pathways. PLoS Negl Trop Dis 2012; 6:e1854. [PMID: 23145190 PMCID: PMC3493385 DOI: 10.1371/journal.pntd.0001854] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 08/26/2012] [Indexed: 01/25/2023] Open
Abstract
The infectious form of many parasitic nematodes, which afflict over one billion people globally, is a developmentally arrested third-stage larva (L3i). The parasitic nematode Strongyloides stercoralis differs from other nematode species that infect humans, in that its life cycle includes both parasitic and free-living forms, which can be leveraged to investigate the mechanisms of L3i arrest and activation. The free-living nematode Caenorhabditis elegans has a similar developmentally arrested larval form, the dauer, whose formation is controlled by four pathways: cyclic GMP (cGMP) signaling, insulin/IGF-1-like signaling (IIS), transforming growth factor β (TGFβ) signaling, and biosynthesis of dafachronic acid (DA) ligands that regulate a nuclear hormone receptor. We hypothesized that homologous pathways are present in S. stercoralis, have similar developmental regulation, and are involved in L3i arrest and activation. To test this, we undertook a deep-sequencing study of the polyadenylated transcriptome, generating over 2.3 billion paired-end reads from seven developmental stages. We constructed developmental expression profiles for S. stercoralis homologs of C. elegans dauer genes identified by BLAST searches of the S. stercoralis genome as well as de novo assembled transcripts. Intriguingly, genes encoding cGMP pathway components were coordinately up-regulated in L3i. In comparison to C. elegans, S. stercoralis has a paucity of genes encoding IIS ligands, several of which have abundance profiles suggesting involvement in L3i development. We also identified seven S. stercoralis genes encoding homologs of the single C. elegans dauer regulatory TGFβ ligand, three of which are only expressed in L3i. Putative DA biosynthetic genes did not appear to be coordinately regulated in L3i development. Our data suggest that while dauer pathway genes are present in S. stercoralis and may play a role in L3i development, there are significant differences between the two species. Understanding the mechanisms governing L3i development may lead to novel treatment and control strategies. Parasitic nematodes infect over one billion people worldwide and cause many diseases, including strongyloidiasis, filariasis, and hookworm disease. For many of these parasites, including Strongyloides stercoralis, the infectious form is a developmentally arrested and long-lived thirdstage larva (L3i). Upon encountering a host, L3i quickly resume development and mature into parasitic adults. In the free-living nematode Caenorhabditis elegans, a similar developmentally arrested third-stage larva, known as the dauer, is regulated by four key cellular mechanisms. We hypothesized that similar cellular mechanisms control L3i arrest and activation. Therefore, we used deep-sequencing technology to characterize the S. stercoralis transcriptome (RNAseq), which allowed us to identify S. stercoralis homologs of components of these four mechanisms and examine their temporal regulation. We found similar temporal regulation between S. stercoralis and C. elegans for components of two mechanisms, but dissimilar temporal regulation for two others, suggesting conserved as well as novel modes of developmental regulation for L3i. Understanding L3i development may lead to novel control strategies as well as new treatments for strongyloidiasis and other diseases caused by parasitic nematodes.
Collapse
Affiliation(s)
- Jonathan D. Stoltzfus
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Samuel Minot
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Thomas J. Nolan
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - James B. Lok
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
48
|
DBL-1, a TGF-β, is essential for Caenorhabditis elegans aversive olfactory learning. Proc Natl Acad Sci U S A 2012; 109:17081-6. [PMID: 23019581 DOI: 10.1073/pnas.1205982109] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The TGF-β superfamily is conserved throughout metazoan, and its members play essential roles in development and disease. TGF-β has also been implicated in adult neural plasticity. However, the underlying mechanisms are not well understood. Here we report that DBL-1, a Caenorhabditis elegans TGF-β homolog known to control body morphology and immunity, is essential for aversive olfactory learning of potentially harmful bacteria food. We show that DBL-1 generated by the AVA command interneurons, which are critical for sensorimotor responses, regulates aversive olfactory learning, and that the activity of the type I TGF-β receptor SMA-6 in the hypodermis is needed during adulthood to generate olfactory plasticity. These spatial and temporal mechanisms are critical for the DBL-1 signaling to achieve its diverse functions in development and adult neural plasticity. Interestingly, aversive training decreases AVA calcium response, leading to an increase in the DBL-1 signal secreted from AVA, revealing an experience-dependent change that can underlie the role of TGF-β signaling in mediating plasticity.
Collapse
|
49
|
Taneja-Bageshwar S, Gumienny TL. Two functional domains in C. elegans glypican LON-2 can independently inhibit BMP-like signaling. Dev Biol 2012; 371:66-76. [PMID: 22922164 DOI: 10.1016/j.ydbio.2012.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 07/25/2012] [Accepted: 08/12/2012] [Indexed: 12/21/2022]
Abstract
Glypicans are multifunctional proteoglycans with regulatory roles in several intercellular signaling pathways. Here, we examine the functional requirements for glypican regulation of bone morphogenetic protein (BMP)-mediated body length in C. elegans. We provide evidence that two parts of C. elegans glypican LON-2 can independently inhibit BMP signaling in vivo: the N-terminal furin protease product and the C-terminal region containing heparan sulfate attachment sequences. While the C-terminal protease product is dispensable for LON-2 minimal core protein activity, it does affect the localization of LON-2. Cleavage of LON-2 into two parts at the conserved furin protease site is not required for LON-2 to inhibit BMP-like signaling. The glycosyl-phosphatidylinositol (GPI) membrane anchor is also not absolutely required for LON-2 activity. Finally, we show that an RGD protein-protein interaction motif in the LON-2 N-terminal domain is necessary for LON-2 core protein activity, suggesting that LON-2 inhibits BMP signaling by acting as a scaffold for BMP and an RGD-binding protein.
Collapse
Affiliation(s)
- Suparna Taneja-Bageshwar
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA
| | | |
Collapse
|
50
|
Xmab21l3 mediates dorsoventral patterning in Xenopus laevis. Mech Dev 2012; 129:136-46. [PMID: 22609272 DOI: 10.1016/j.mod.2012.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/04/2012] [Accepted: 05/07/2012] [Indexed: 02/05/2023]
Abstract
Specification of the dorsoventral (DV) axis is critical for the subsequent differentiation of regional fate in the primary germ layers of the vertebrate embryo. We have identified a novel factor that is essential for dorsal development in embryos of the frog Xenopus laevis. Misexpression of Xenopus mab21-like 3 (Xmab21l3) dorsalizes gastrula-stage mesoderm and neurula-stage ectoderm, while morpholino-mediated knockdown of Xmab21l3 inhibits dorsal differentiation of these embryonic germ layers. Xmab21l3 is a member of a chordate-specific subclass of a recently characterized gene family, all members of which contain a conserved, but as yet ill-defined, Mab21 domain. Our studies suggest that Xmab21l3 functions to repress ventralizing activity in the early vertebrate embryo, via regulation of BMP/Smad and Ras/ERK signaling.
Collapse
|