1
|
Lin GW, Chung CY, Cook CE, Lin MD, Lee WC, Chang CC. Germline specification and axis determination in viviparous and oviparous pea aphids: conserved and divergent features. Dev Genes Evol 2022; 232:51-65. [PMID: 35678925 PMCID: PMC9329388 DOI: 10.1007/s00427-022-00690-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/19/2022] [Indexed: 01/06/2023]
Abstract
Aphids are hemimetabolous insects that undergo incomplete metamorphosis without pupation. The annual life cycle of most aphids includes both an asexual (viviparous) and a sexual (oviparous) phase. Sexual reproduction only occurs once per year and is followed by many generations of asexual reproduction, during which aphids propagate exponentially with telescopic development. Here, we discuss the potential links between viviparous embryogenesis and derived developmental features in the pea aphid Acyrthosiphon pisum, particularly focusing on germline specification and axis determination, both of which are key events of early development in insects. We also discuss potential evolutionary paths through which both viviparous and oviparous females might have come to utilize maternal germ plasm to drive germline specification. This developmental strategy, as defined by germline markers, has not been reported in other hemimetabolous insects. In viviparous females, furthermore, we discuss whether molecules that in other insects characterize germ plasm, like Vasa, also participate in posterior determination and how the anterior localization of the hunchback orthologue Ap-hb establishes the anterior-posterior axis. We propose that the linked chain of developing oocytes and embryos within each ovariole and the special morphology of early embryos might have driven the formation of evolutionary novelties in germline specification and axis determination in the viviparous aphids. Moreover, based upon the finding that the endosymbiont Buchnera aphidicola is closely associated with germ cells throughout embryogenesis, we propose presumptive roles for B. aphidicola in aphid development, discussing how it might regulate germline migration in both reproductive modes of pea aphids. In summary, we expect that this review will shed light on viviparous as well as oviparous development in aphids.
Collapse
Affiliation(s)
- Gee-Way Lin
- Laboratory for Genomics and Development, College of Bio-Resources and Agriculture, Department of Entomology, National Taiwan University (NTU), No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chen-Yo Chung
- Laboratory for Genomics and Development, College of Bio-Resources and Agriculture, Department of Entomology, National Taiwan University (NTU), No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, NTU, Taipei, Taiwan
| | - Charles E Cook
- Laboratory for Genomics and Development, College of Bio-Resources and Agriculture, Department of Entomology, National Taiwan University (NTU), No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Ming-Der Lin
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Wen-Chih Lee
- Research Center for Global SDGs Challenges, Office of Research and Development, Tzu Chi University, Hualien, Taiwan
| | - Chun-Che Chang
- Laboratory for Genomics and Development, College of Bio-Resources and Agriculture, Department of Entomology, National Taiwan University (NTU), No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan.
- Research Center for Developmental Biology and Regenerative Medicine, NTU, Taipei, Taiwan.
- Institute of Biotechnology, College of Bio-Resources and Agriculture, NTU, Taipei, Taiwan.
- Genome and Systems Biology Degree Program, NTU, Taipei, Taiwan.
- International Graduate Program of Molecular Science and Technology, NTU, Taipei, Taiwan.
| |
Collapse
|
2
|
Nakao H. Early embryonic development of Bombyx. Dev Genes Evol 2021; 231:95-107. [PMID: 34296338 DOI: 10.1007/s00427-021-00679-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/09/2021] [Indexed: 11/25/2022]
Abstract
Decades have passed since the early molecular embryogenesis of Drosophila melanogaster was outlined. During this period, the molecular mechanisms underlying early embryonic development in other insects, particularly the flour beetle, Tribolium castaneum, have been described in more detail. The information clearly demonstrated that Drosophila embryogenesis is not representative of other insects and has highly distinctive characteristics. At the same time, this new data has been gradually clarifying ancestral operating mechanisms. The silk moth, Bombyx mori, is a lepidopteran insect and, as a representative of the order, has many unique characteristics found in early embryonic development that have not been identified in other insect groups. Herein, some of these characteristics are introduced and discussed in the context of recent information obtained from other insects.
Collapse
Affiliation(s)
- Hajime Nakao
- Insect Genome Research and Engineering Unit, Division of Applied Genetics, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Oowashi, Tsukuba, Ibaraki, 305-8634, Japan.
| |
Collapse
|
3
|
He F, Wu H, Cheung D, Ma J. Detection and Quantification of the Bicoid Concentration Gradient in Drosophila Embryos. Methods Mol Biol 2019; 1863:19-27. [PMID: 30324590 DOI: 10.1007/978-1-4939-8772-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
We describe methods for detecting and quantifying the concentration gradient of the morphogenetic protein Bicoid through fluorescent immunostaining in fixed Drosophila embryos. We introduce image-processing steps using MATLAB functions, and discuss how the measured signal intensities can be analyzed to extract quantitative information. The described procedures permit robust detection of the endogenous Bicoid concentration gradient at a cellular resolution.
Collapse
Affiliation(s)
- Feng He
- Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Honggang Wu
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - David Cheung
- Division of Developmental Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Jun Ma
- Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Division of Developmental Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, USA.
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, OH, USA.
- Laboratory of Systems Developmental Biology, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Spirov AV, Myasnikova EM. Evolutionary Stability of Gene Regulatory Networks That Define the Temporal Identity of Neuroblasts. Mol Biol 2019. [DOI: 10.1134/s0026893319020158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Rudolf H, Zellner C, El-Sherif E. Speeding up anterior-posterior patterning of insects by differential initialization of the gap gene cascade. Dev Biol 2019; 460:20-31. [PMID: 31075221 DOI: 10.1016/j.ydbio.2019.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 01/28/2023]
Abstract
Recently, it was shown that anterior-posterior patterning genes in the red flour beetle Tribolium castaneum are expressed sequentially in waves. However, in the fruit fly Drosophila melanogaster, an insect with a derived mode of embryogenesis compared to Tribolium, anterior-posterior patterning genes quickly and simultaneously arise as mature gene expression domains that, afterwards, undergo slight posterior-to-anterior shifts. This raises the question of how a fast and simultaneous mode of patterning, like that of Drosophila, could have evolved from a rather slow sequential mode of patterning, like that of Tribolium. In this paper, we propose a mechanism for this evolutionary transition based on a switch from a uniform to a gradient-mediated initialization of the gap gene cascade by maternal Hb. The model is supported by computational analyses and experiments.
Collapse
Affiliation(s)
- Heike Rudolf
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, Erlangen, 91058, Germany
| | - Christine Zellner
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, Erlangen, 91058, Germany
| | - Ezzat El-Sherif
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, Erlangen, 91058, Germany.
| |
Collapse
|
6
|
Chung CY, Hsiao YM, Huang TY, Chang TH, Chang CC. Germline expression of the hunchback orthologues in the asexual viviparous aphids: a conserved feature within the Aphididae. INSECT MOLECULAR BIOLOGY 2018; 27:752-765. [PMID: 29892979 DOI: 10.1111/imb.12514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In animals, differentiation of germline from soma usually takes place during embryogenesis. Genes and their products that are preferentially expressed in the embryonic germ cells are regarded as candidates for maintaining germline fate or promoting germline identity. In Drosophila, for example, the protein encoded by the germline gene vasa is specifically restricted to the germ cells, while products of the gap gene hunchback (hb), a somatic gene, are preferentially expressed in the neuroblasts. In this study, we report the expression of both messenger RNA and protein encoded by Aphb, an hb orthologue in the asexual viviparous pea aphid Acyrthosiphon pisum, in germ cells as well as in neuroblasts. We infer that expression of Aphb messenger RNA in the germ cells during the formation of germaria is required for the anterior localization of Aphb in the protruding oocytes. Germarial expression and anterior localization of ApKrüppel was also identified but, unlike Aphb, its expression was not detected in the migrating germ cells. Very similar patterns of hb expression were also identified in the green peach aphid Myzus persicae, suggesting that germline expression of hb is conserved within the Aphididae. To date, this pattern of hb germline expression has not been reported in other insects.
Collapse
Affiliation(s)
- C-Y Chung
- Laboratory for Genetics and Development, Department of Entomology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Y-M Hsiao
- Laboratory for Genetics and Development, Department of Entomology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - T-Y Huang
- Laboratory for Genetics and Development, Department of Entomology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - T-H Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
| | - C-C Chang
- Laboratory for Genetics and Development, Department of Entomology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
7
|
Speed regulation of genetic cascades allows for evolvability in the body plan specification of insects. Proc Natl Acad Sci U S A 2017; 114:E8646-E8655. [PMID: 28973882 DOI: 10.1073/pnas.1702478114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During the anterior-posterior fate specification of insects, anterior fates arise in a nonelongating tissue (called the "blastoderm"), and posterior fates arise in an elongating tissue (called the "germband"). However, insects differ widely in the extent to which anterior-posterior fates are specified in the blastoderm versus the germband. Here we present a model in which patterning in both the blastoderm and germband of the beetle Tribolium castaneum is based on the same flexible mechanism: a gradient that modulates the speed of a genetic cascade of gap genes, resulting in the induction of sequential kinematic waves of gap gene expression. The mechanism is flexible and capable of patterning both elongating and nonelongating tissues, and hence converting blastodermal to germband fates and vice versa. Using RNAi perturbations, we found that blastodermal fates could be shifted to the germband, and germband fates could be generated in a blastoderm-like morphology. We also suggest a molecular mechanism underlying our model, in which gradient levels regulate the switch between two enhancers: One enhancer is responsible for sequential gene activation, and the other is responsible for freezing temporal rhythms into spatial patterns. This model is consistent with findings in Drosophila melanogaster, where gap genes were found to be regulated by two nonredundant "shadow" enhancers.
Collapse
|
8
|
Nakao H. Hunchback knockdown induces supernumerary segment formation in Bombyx. Dev Biol 2016; 413:207-16. [DOI: 10.1016/j.ydbio.2016.03.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/17/2016] [Accepted: 03/20/2016] [Indexed: 12/13/2022]
|
9
|
Carter JM, Gibbs M, Breuker CJ. Divergent RNA Localisation Patterns of Maternal Genes Regulating Embryonic Patterning in the Butterfly Pararge aegeria. PLoS One 2015; 10:e0144471. [PMID: 26633019 PMCID: PMC4669120 DOI: 10.1371/journal.pone.0144471] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/18/2015] [Indexed: 12/19/2022] Open
Abstract
The maternal effect genes responsible for patterning the embryo along the antero-posterior (AP) axis are broadly conserved in insects. The precise function of these maternal effect genes is the result of the localisation of their mRNA in the oocyte. The main developmental mechanisms involved have been elucidated in Drosophila melanogaster, but recent studies have shown that other insect orders often diverge in RNA localisation patterns. A recent study has shown that in the butterfly Pararge aegeria the distinction between blastodermal embryonic (i.e. germ band) and extra-embryonic tissue (i.e. serosa) is already specified in the oocyte during oogenesis in the ovariole, long before blastoderm cellularisation. To examine the extent by which a female butterfly specifies and patterns the AP axis within the region fated to be the germ band, and whether she specifies a germ plasm, we performed in situ hybridisation experiments on oocytes in P. aegeria ovarioles and on early embryos. RNA localisation of the following key maternal effect genes were investigated: caudal (cad), orthodenticle (otd), hunchback (hb) and four nanos (nos) paralogs, as well as TDRD7 a gene containing a key functional domain (OST-HTH/LOTUS) shared with oskar. TDRD7 was mainly confined to the follicle cells, whilst hb was exclusively zygotically transcribed. RNA of some of the nos paralogs, otd and cad revealed complex localisation patterns within the cortical region prefiguring the germ band (i.e. germ cortex). Rather interestingly, otd was localised within and outside the anterior of the germ cortex. Transcripts of nos-O formed a distinct granular ring in the middle of the germ cortex possibly prefiguring the region where germline stem cells form. These butterfly RNA localisation patterns are highly divergent with respect to other insects, highlighting the diverse ways in which different insect orders maternally regulate early embryogenesis of their offspring.
Collapse
Affiliation(s)
- Jean-Michel Carter
- Evolutionary Developmental Biology Research Group, Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, United Kingdom
| | - Melanie Gibbs
- NERC Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, United Kingdom
| | - Casper J. Breuker
- Evolutionary Developmental Biology Research Group, Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Khajuria C, Vélez AM, Rangasamy M, Wang H, Fishilevich E, Frey MLF, Carneiro NP, Gandra P, Narva KE, Siegfried BD. Parental RNA interference of genes involved in embryonic development of the western corn rootworm, Diabrotica virgifera virgifera LeConte. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 63:54-62. [PMID: 26005118 DOI: 10.1016/j.ibmb.2015.05.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/09/2015] [Accepted: 05/16/2015] [Indexed: 06/04/2023]
Abstract
RNA interference (RNAi) is being developed as a potential tool for insect pest management and one of the most likely target pest species for transgenic plants that express double stranded RNA (dsRNA) is the western corn rootworm. Thus far, most genes proposed as targets for RNAi in rootworm cause lethality in the larval stage. In this study, we describe RNAi-mediated knockdown of two developmental genes, hunchback (hb) and brahma (brm), in the western corn rootworm delivered via dsRNA fed to adult females. dsRNA feeding caused a significant decrease in hb and brm transcripts in the adult females. Although total oviposition was not significantly affected, there was almost complete absence of hatching in the eggs collected from females exposed to dsRNA for either gene. These results confirm that RNAi is systemic in nature for western corn rootworms. These results also indicate that hunchback and brahma play important roles in rootworm embryonic development and could provide useful RNAi targets in adult rootworms to prevent crop injury by impacting the population of larval progeny of exposed adults. The ability to deliver dsRNA in a trans-generational manner by feeding to adult rootworms may offer an additional approach to utilizing RNAi for rootworm pest management. The potential to develop parental RNAi technology targeting progeny of adult rootworms in combination with Bt proteins or dsRNA lethal to larvae may increase opportunities to develop sustainable approaches to rootworm management involving RNAi technologies for rootworm control.
Collapse
Affiliation(s)
- Chitvan Khajuria
- University of Nebraska, Department of Entomology, 103 Entomology Hall, Lincoln, NE 68583-0816, United States
| | - Ana M Vélez
- University of Nebraska, Department of Entomology, 103 Entomology Hall, Lincoln, NE 68583-0816, United States
| | - Murugesan Rangasamy
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN 46268, United States
| | - Haichuan Wang
- University of Nebraska, Department of Entomology, 103 Entomology Hall, Lincoln, NE 68583-0816, United States
| | - Elane Fishilevich
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN 46268, United States
| | - Meghan L F Frey
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN 46268, United States
| | | | - Premchand Gandra
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN 46268, United States
| | - Kenneth E Narva
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN 46268, United States
| | - Blair D Siegfried
- University of Nebraska, Department of Entomology, 103 Entomology Hall, Lincoln, NE 68583-0816, United States.
| |
Collapse
|
11
|
Franke FA, Mayer G. Expression study of the hunchback ortholog in embryos of the onychophoran Euperipatoides rowelli. Dev Genes Evol 2015; 225:207-19. [PMID: 26093940 DOI: 10.1007/s00427-015-0505-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/02/2015] [Indexed: 10/23/2022]
Abstract
Zinc finger transcription factors encoded by hunchback homologs play different roles in arthropods, including maternally mediated control, segmentation, and mesoderm and neural development. Knockdown experiments in spider and insect embryos have also revealed homeotic effects and gap phenotypes, the latter indicating a function of hunchback as a "gap gene". Although the expression pattern of hunchback has been analysed in representatives of all four major arthropod groups (chelicerates, myriapods, crustaceans and insects), nothing is known about its expression in one of the closest arthropod relatives, the Onychophora (velvet worms). We therefore examined the expression pattern of hunchback in embryos of the onychophoran Euperipatoides rowelli. Our transcriptomic and phylogenetic analyses revealed only one hunchback ortholog in this species. The putative Hunchback protein contains all nine zinc finger domains known from other protostomes. We found no indication of maternally contributed transcripts of hunchback in early embryos of E. rowelli. Its initial expression occurs in the ectodermal tissue of the antennal segment, followed by the jaw, slime papilla and trunk segments in an anterior-to-posterior progression. Later, hunchback expression is seen in the mesoderm of the developing limbs. A second "wave" of expression commences later in development in the antennal segment and continues posteriorly along each developing nerve cord. This expression is restricted to the neural tissues and does not show any segmental pattern. These findings are in line with the ancestral roles of hunchback in mesoderm and neural development, whereas we find no evidence for a putative function of hunchback as a "gap gene" in Onychophora.
Collapse
Affiliation(s)
- Franziska Anni Franke
- Animal Evolution & Development, Institute of Biology, University of Leipzig, Talstraße 33, D-04103, Leipzig, Germany,
| | | |
Collapse
|
12
|
Wotton KR, Jiménez-Guri E, Jaeger J. Maternal co-ordinate gene regulation and axis polarity in the scuttle fly Megaselia abdita. PLoS Genet 2015; 11:e1005042. [PMID: 25757102 PMCID: PMC4355411 DOI: 10.1371/journal.pgen.1005042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 01/30/2015] [Indexed: 02/01/2023] Open
Abstract
Axis specification and segment determination in dipteran insects are an excellent model system for comparative analyses of gene network evolution. Antero-posterior polarity of the embryo is established through systems of maternal morphogen gradients. In Drosophila melanogaster, the anterior system acts through opposing gradients of Bicoid (Bcd) and Caudal (Cad), while the posterior system involves Nanos (Nos) and Hunchback (Hb) protein. These systems act redundantly. Both Bcd and Hb need to be eliminated to cause a complete loss of polarity resulting in mirror-duplicated abdomens, so-called bicaudal phenotypes. In contrast, knock-down of bcd alone is sufficient to induce double abdomens in non-drosophilid cyclorrhaphan dipterans such as the hoverfly Episyrphus balteatus or the scuttle fly Megaselia abdita. We investigate conserved and divergent aspects of axis specification in the cyclorrhaphan lineage through a detailed study of the establishment and regulatory effect of maternal gradients in M. abdita. Our results show that the function of the anterior maternal system is highly conserved in this species, despite the loss of maternal cad expression. In contrast, hb does not activate gap genes in this species. The absence of this activatory role provides a precise genetic explanation for the loss of polarity upon bcd knock-down in M. abdita, and suggests a general scenario in which the posterior maternal system is increasingly replaced by the anterior one during the evolution of the cyclorrhaphan dipteran lineage. The basic head-to-tail polarity of an animal is established very early in development. In dipteran insects (flies, midges, and mosquitoes), polarity is established with the help of so-called morphogen gradients. Morphogens are regulatory proteins that are distributed as a concentration gradient, often involving diffusion from a localised source. This graded distribution then leads to the concentration-dependent activation of different target genes along the embryo’s axis. We examine this process, which differs to a surprising extent between dipteran species, in the scuttle fly Megaselia abdita, and compare our results to the model organism Drosophila melanogaster. In this way, we not only gain insights into how the mechanisms that establish polarity function differently in different species, but also how the system has evolved since these two flies shared a common ancestor. Specifically, we pin down the main difference between Drosophila and Megaselia in the altered function of the maternal Hunchback morphogen gradient, which activates target genes in the former, but not the latter species, where it has been completely replaced by the Bicoid morphogen during evolution.
Collapse
Affiliation(s)
- Karl R. Wotton
- EMBL/CRG Research Unit in Systems Biology, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- * E-mail: (KW); (JJ)
| | - Eva Jiménez-Guri
- EMBL/CRG Research Unit in Systems Biology, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Johannes Jaeger
- EMBL/CRG Research Unit in Systems Biology, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- * E-mail: (KW); (JJ)
| |
Collapse
|
13
|
Green JE, Akam M. Germ cells of the centipede Strigamia maritima are specified early in embryonic development. Dev Biol 2014; 392:419-30. [PMID: 24930702 PMCID: PMC4111900 DOI: 10.1016/j.ydbio.2014.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 11/17/2022]
Abstract
We provide the first systematic description of germ cell development with molecular markers in a myriapod, the centipede Strigamia maritima. By examining the expression of Strigamia vasa and nanos orthologues, we find that the primordial germ cells are specified from at least the blastoderm stage. This is a much earlier embryonic stage than previously described for centipedes, or any other member of the Myriapoda. Using these genes as markers, and taking advantage of the developmental synchrony of Strigamia embryos within single clutches, we are able to track the development of the germ cells throughout embryogenesis. We find that the germ cells accumulate at the blastopore; that the cells do not internalize through the hindgut, but rather through the closing blastopore; and that the cells undergo a long-range migration to the embryonic gonad. This is the first evidence for primordial germ cells displaying these behaviours in any myriapod. The myriapods are a phylogenetically important group in the arthropod radiation for which relatively little developmental data is currently available. Our study provides valuable comparative data that complements the growing number of studies in insects, crustaceans and chelicerates, and is important for the correct reconstruction of ancestral states and a fuller understanding of how germ cell development has evolved in different arthropod lineages.
Collapse
Affiliation(s)
- Jack E Green
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
| | - Michael Akam
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
14
|
Mao J, Zeng F. Plant-mediated RNAi of a gap gene-enhanced tobacco tolerance against the Myzus persicae. Transgenic Res 2014; 23:145-52. [PMID: 23949691 DOI: 10.1007/s11248-013-9739-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 07/30/2013] [Indexed: 12/21/2022]
Abstract
Plant-mediated RNAi has been developed as a powerful weapon in the fight against agricultural insect pests. The gap gene hunchback (hb) is of crucial importance in insect axial patterning and knockdown of hb is deforming and lethal to the next generation. The peach potato aphid, Myzus persicae (Sulzer), has many host plants and can be found throughout the world. To investigate the effect of plant-mediated RNAi on control of this insect, the hb gene in M. persicae was cloned, plant RNAi vector was constructed, and transgenic tobacco expressing Mphb dsRNA was developed. Transgenic tobacco had a different integration pattern of the transgene. Bioassays were performed by applying neonate aphids to homozygous transgenic plants in the T2 generation. Results revealed that continuous feeding of transgenic diet reduced Mphb mRNA level in the fed aphids and inhibited insect reproduction, indicating successful knockdown of the target gene in M. persicae by plant-mediated RNAi.
Collapse
Affiliation(s)
- Jianjun Mao
- The Key Laboratory of Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | | |
Collapse
|
15
|
Mao J, Liu C, Zeng F. Hunchback is required for abdominal identity suppression and germband growth in the parthenogenetic embryogenesis of the pea aphid, Acyrthosiphon pisum. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 84:209-221. [PMID: 24222010 DOI: 10.1002/arch.21137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Aphid, a short germband insect, displays an embryogenesis different from that of long germband insect species. Furthermore, the development of its parthenogenetic and viviparous embryo is different from that of the embryo resulting from sexual reproduction. To better understand the genetic regulation of this type of embryogenesis, the functions of hunchback in asexual Acyrthosiphon pisum were investigated by parental RNAi. Microinjection of Aphb double-stranded RNA yielded several defective phenotypes. Quantitative real-time PCR analysis revealed that these defects resulted from reduction of Aphb mRNA level in injected aphids. All these results suggested that the hb gene in parthenogenetic and viviparous Acyrthosiphon pisum was involved in abdominal identity suppression and germband growth as its homologue does in sexual insects.
Collapse
Affiliation(s)
- Jianjun Mao
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | | | | |
Collapse
|
16
|
Duncan EJ, Leask MP, Dearden PK. The pea aphid (Acyrthosiphon pisum) genome encodes two divergent early developmental programs. Dev Biol 2013; 377:262-74. [PMID: 23416037 DOI: 10.1016/j.ydbio.2013.01.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/18/2013] [Accepted: 01/29/2013] [Indexed: 12/28/2022]
Abstract
The pea aphid (Acyrthosiphon pisum) can reproduce either sexually or asexually (parthenogenetically), giving rise, in each case, to almost identical adults. These two modes of reproduction are accompanied by differences in ovarian morphology and the developmental environment of the offspring, with sexual forms producing eggs that are laid, whereas asexual development occurs within the mother. Here we examine the effect each mode of reproduction has on the expression of key maternal and axis patterning genes; orthodenticle (otd), hunchback (hb), caudal (cad) and nanos (nos). We show that three of these genes (Ap-hb, Ap-otd and Ap-cad) are expressed differently between the sexually and asexually produced oocytes and embryos of the pea aphid. We also show, using immunohistochemistry and cytoskeletal inhibitors, that Ap-hb RNA is localized differently between sexually and asexually produced oocytes, and that this is likely due to differences in the 3' untranslated regions of the RNA. Furthermore, Ap-hb and Ap-otd have extensive expression domains in early sexually produced embryos, but are not expressed at equivalent stages in asexually produced embryos. These differences in expression likely correspond with substantial changes in the gene regulatory networks controlling early development in the pea aphid. These data imply that in the evolution of parthenogenesis a new program has evolved to control the development of asexually produced embryos, whilst retaining the existing, sexual, developmental program. The patterns of modification of these developmental processes mirror the changes that we see in developmental processes between species, in that early acting pathways in development are less constrained, and evolve faster, than later ones. We suggest that the evolution of the novel asexual development pathway in aphids is not a simple modification of an ancestral system, but the evolution of two very different developmental mechanisms occurring within a single species.
Collapse
Affiliation(s)
- Elizabeth J Duncan
- Laboratory for Evolution and Development, Genetics Otago & Gravida, National Centre for Growth and Development, Department of Biochemistry, University of Otago, 56, Dunedin 9054, Aotearoa, New Zealand.
| | | | | |
Collapse
|
17
|
Carter JM, Baker SC, Pink R, Carter DRF, Collins A, Tomlin J, Gibbs M, Breuker CJ. Unscrambling butterfly oogenesis. BMC Genomics 2013; 14:283. [PMID: 23622113 PMCID: PMC3654919 DOI: 10.1186/1471-2164-14-283] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/05/2013] [Indexed: 12/16/2022] Open
Abstract
Background Butterflies are popular model organisms to study physiological mechanisms
underlying variability in oogenesis and egg provisioning in response to
environmental conditions. Nothing is known, however, about; the
developmental mechanisms governing butterfly oogenesis, how polarity in the
oocyte is established, or which particular maternal effect genes regulate
early embryogenesis. To gain insights into these developmental mechanisms
and to identify the conserved and divergent aspects of butterfly oogenesis,
we analysed a de novo ovarian transcriptome of the Speckled Wood
butterfly Pararge aegeria (L.), and compared the results with known
model organisms such as Drosophila melanogaster and Bombyx
mori. Results A total of 17306 contigs were annotated, with 30% possibly novel or highly
divergent sequences observed. Pararge aegeria females expressed
74.5% of the genes that are known to be essential for D.
melanogaster oogenesis. We discuss the genes involved in all
aspects of oogenesis, including vitellogenesis and choriogenesis, plus those
implicated in hormonal control of oogenesis and transgenerational hormonal
effects in great detail. Compared to other insects, a number of significant
differences were observed in; the genes involved in stem cell maintenance
and differentiation in the germarium, establishment of oocyte polarity, and
in several aspects of maternal regulation of zygotic development. Conclusions This study provides valuable resources to investigate a number of divergent
aspects of butterfly oogenesis requiring further research. In order to fully
unscramble butterfly oogenesis, we also now also have the resources to
investigate expression patterns of oogenesis genes under a range of
environmental conditions, and to establish their function.
Collapse
Affiliation(s)
- Jean-Michel Carter
- Evolutionary Developmental Biology Research Group, Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, UK
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Feeding-based RNA interference of a gap gene is lethal to the pea aphid, Acyrthosiphon pisum. PLoS One 2012; 7:e48718. [PMID: 23144942 PMCID: PMC3492414 DOI: 10.1371/journal.pone.0048718] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 09/28/2012] [Indexed: 01/26/2023] Open
Abstract
The gap gene hunchback (hb) is a key regulator in the anteroposterior patterning of insects. Loss-of-function of hb resulted in segmentation defects in the next generation. In this paper, hb expression level was investigated at different developmental stages of the pea aphid, Acyrthosiphon pisum (Ap). Aphb mRNA was most early detected at the first instar stage and showed an incontinuous increase in the whole life cycle. Ingested RNA interference was performed at the second instar stage to knockdown the Aphb expression. Continuous feeding of Aphb double-stranded RNA mixed in artificial diet led to reduction of Aphb transcripts and rise of insect lethality. These results indicated that hunchback was a good RNAi target in the management of insect pests.
Collapse
|
19
|
El-Sherif E, Lynch JA, Brown SJ. Comparisons of the embryonic development of Drosophila, Nasonia, and Tribolium. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2012; 1:16-39. [PMID: 23801665 PMCID: PMC5323069 DOI: 10.1002/wdev.3] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Studying the embryogenesis of diverse insect species is crucial to understanding insect evolution. Here, we review current advances in understanding the development of two emerging model organisms: the wasp Nasonia vitripennis and the beetle Tribolium castaneum in comparison with the well-studied fruit fly Drosophila melanogaster. Although Nasonia represents the most basally branching order of holometabolous insects, it employs a derived long germband mode of embryogenesis, more like that of Drosophila, whereas Tribolium undergoes an intermediate germband mode of embryogenesis, which is more similar to the ancestral mechanism. Comparing the embryonic development and genetic regulation of early patterning events in these three insects has given invaluable insights into insect evolution. The similar mode of embryogenesis of Drosophila and Nasonia is reflected in their reliance on maternal morphogenetic gradients. However, they employ different genes as maternal factors, reflecting the evolutionary distance separating them. Tribolium, on the other hand, relies heavily on self-regulatory mechanisms other than maternal cues, reflecting its sequential nature of segmentation and the need for reiterated patterning.
Collapse
Affiliation(s)
- Ezzat El-Sherif
- Program of Genetics, Kansas State University, Manhattan, Kansas
| | - Jeremy A Lynch
- Institute for Developmental Biology, University of Cologne, Cologne, Germany
| | - Susan J Brown
- Division of Biology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
20
|
Janssen R, Budd GE, Damen WG. Gene expression suggests conserved mechanisms patterning the heads of insects and myriapods. Dev Biol 2011; 357:64-72. [DOI: 10.1016/j.ydbio.2011.05.670] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/20/2011] [Accepted: 05/25/2011] [Indexed: 01/31/2023]
|
21
|
Wilson MJ, Dearden PK. Diversity in insect axis formation: two orthodenticle genes and hunchback act in anterior patterning and influence dorsoventral organization in the honeybee (Apis mellifera). Development 2011; 138:3497-507. [DOI: 10.1242/dev.067926] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Axis formation is a key step in development, but studies indicate that genes involved in insect axis formation are relatively fast evolving. Orthodenticle genes have conserved roles, often with hunchback, in maternal anterior patterning in several insect species. We show that two orthodenticle genes, otd1 and otd2, and hunchback act as maternal anterior patterning genes in the honeybee (Apis mellifera) but, unlike other insects, act to pattern the majority of the anteroposterior axis. These genes regulate the expression domains of anterior, central and posterior gap genes and may directly regulate the anterior gap gene giant. We show otd1 and hunchback also influence dorsoventral patterning by regulating zerknült (zen) as they do in Tribolium, but that zen does not regulate the expression of honeybee gap genes. This suggests that interactions between anteroposterior and dorsal-ventral patterning are ancestral in holometabolous insects. Honeybee axis formation, and the function of the conserved anterior patterning gene orthodenticle, displays unique characters that indicate that, even when conserved genes pattern the axis, their regulatory interactions differ within orders of insects, consistent with relatively fast evolution in axis formation pathways.
Collapse
Affiliation(s)
- Megan J. Wilson
- Laboratory for Evolution and Development, National Research Centre for Growth and Development and Genetics Otago, Biochemistry Department, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Peter K. Dearden
- Laboratory for Evolution and Development, National Research Centre for Growth and Development and Genetics Otago, Biochemistry Department, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
22
|
Cheung D, Miles C, Kreitman M, Ma J. Scaling of the Bicoid morphogen gradient by a volume-dependent production rate. Development 2011; 138:2741-9. [PMID: 21613328 DOI: 10.1242/dev.064402] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An important feature of development is the formation of patterns that are proportional to the overall size of the embryo. But how such proportionality, or scaling, is achieved mechanistically remains poorly understood. Furthermore, it is currently unclear whether organisms utilize similar or distinct mechanisms to achieve scaling within a species and between species. Here we investigate within-species scaling mechanisms for anterior-posterior (A-P) patterning in Drosophila melanogaster, focusing specifically on the properties of the Bicoid (Bcd) morphogen gradient. Using embryos from lines artificially selected for large and small egg volume, we show that large embryos have higher nuclear Bcd concentrations in the anterior than small embryos. This anterior difference leads to scaling properties of the Bcd gradient profiles: in broad regions of the large and small embryos along the A-P axis, normalizing their positions to embryo length reduces the differences in both the nuclear Bcd concentrations and Bcd-encoded positional information. We further trace the origin of Bcd gradient scaling by showing directly that large embryos have more maternally deposited bcd mRNA than small embryos. Our results suggest a simple model for how within-species Bcd gradient scaling can be achieved. In this model, the Bcd production rate, which is dependent on the total number of bcd mRNA molecules in the anterior, is scaled with embryo volume.
Collapse
Affiliation(s)
- David Cheung
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | |
Collapse
|
23
|
He Z, Cao Y, Chen B, Li T. Expression of hunchback during oogenesis and embryogenesis in Locusta migratoria manilensis (Meyen). SCIENCE CHINA. LIFE SCIENCES 2011; 54:146-151. [PMID: 21318484 DOI: 10.1007/s11427-010-4128-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 01/11/2010] [Indexed: 05/30/2023]
Abstract
hb (hunchback) is a contributing factor in anteroposterior axial patterning of insects. Although the hb function in Locusta migratoria manilensis has been investigated, its expression pattern remains unknown. Here, the mouse polyclonal antibody was produced against Hb fusion protein, and then its expression pattern during oogenesis and embryogenesis of L. migratoria manilensis was examined by immunohistochemical staining. Hb protein was detected in the oocyte nucleus which was positioned centrally within the developing oocyte. The oocyte nucleus gradually moved to the posterior end of the egg along with the oocyte maturing. In freshly laid eggs, Hb formed gradient at the posterior end of the egg, and then hb was expressed as a band in the middle of the blastodisc. As the blastodisc differentiated into the head and trunk, the expression region became wide, which would develop into spatial gnathal and thoracic segments. With abdominal segmentation, the expression domain in the gnathal and thoracic region became faint and eventually faded out, while the Hb expression domain appeared at the posterior growth zone in a discontinuous expression manner. The hb expression pattern of L. migratoria manilensis is greatly similar to that of other locusts, such as Schistocerca americana and another L. migratoria. Compared with other insects, hb expression is conserved in the gnathal and thoracic domains, while divergent in oogenesis and abdomen.
Collapse
Affiliation(s)
- ZhengBo He
- Institute of Insect & Molecular Biology, Chongqing Normal University, Chongqing 400047, China.
| | | | | | | |
Collapse
|
24
|
Abstract
Gap genes are involved in segment determination during the early development of the fruit fly Drosophila melanogaster as well as in other insects. This review attempts to synthesize the current knowledge of the gap gene network through a comprehensive survey of the experimental literature. I focus on genetic and molecular evidence, which provides us with an almost-complete picture of the regulatory interactions responsible for trunk gap gene expression. I discuss the regulatory mechanisms involved, and highlight the remaining ambiguities and gaps in the evidence. This is followed by a brief discussion of molecular regulatory mechanisms for transcriptional regulation, as well as precision and size-regulation provided by the system. Finally, I discuss evidence on the evolution of gap gene expression from species other than Drosophila. My survey concludes that studies of the gap gene system continue to reveal interesting and important new insights into the role of gene regulatory networks in development and evolution.
Collapse
Affiliation(s)
- Johannes Jaeger
- Centre de Regulació Genòmica, Universtitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
25
|
Lynch JA, Desplan C. Novel modes of localization and function of nanos in the wasp Nasonia. Development 2010; 137:3813-21. [PMID: 20929949 PMCID: PMC3049278 DOI: 10.1242/dev.054213] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2010] [Indexed: 01/19/2023]
Abstract
Abdominal patterning in Drosophila requires the function of nanos (nos) to prevent translation of hunchback (hb) mRNA in the posterior of the embryo. nos function is restricted to the posterior by the translational repression of mRNA that is not incorporated into the posteriorly localized germ plasm during oogenesis. The wasp Nasonia vitripennis (Nv) undergoes a long germ mode of development very similar to Drosophila, although the molecular patterning mechanisms employed in these two organisms have diverged significantly, reflecting the independent evolution of this mode of development. Here, we report that although Nv nanos (Nv-nos) has a conserved function in embryonic patterning through translational repression of hb, the timing and mechanisms of this repression are significantly delayed in the wasp compared with the fly. This delay in Nv-nos function appears to be related to the dynamic behavior of the germ plasm in Nasonia, as well as to the maternal provision of Nv-Hb protein during oogenesis. Unlike in flies, there appears to be two functional populations of Nv-nos mRNA: one that is concentrated in the oosome and is taken up into the pole cells before evidence of Nv-hb repression is observed; another that forms a gradient at the posterior and plays a role in Nv-hb translational repression. Altogether, our results show that, although the embryonic patterning function of nos orthologs is broadly conserved, the mechanisms employed to achieve this function are distinct.
Collapse
Affiliation(s)
- Jeremy A Lynch
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA.
| | | |
Collapse
|
26
|
Haugen M, Tomchaney M, Kast K, Flannery E, Clemons A, Jacowski C, Holland WS, Le C, Severson D, Duman-Scheel M. Whole-mount in situ hybridization for analysis of gene expression during Aedes aegypti development. Cold Spring Harb Protoc 2010; 2010:pdb.prot5509. [PMID: 20889706 PMCID: PMC3076929 DOI: 10.1101/pdb.prot5509] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Blood-feeding mosquitoes, including the dengue and yellow fever vector Aedes aegypti, transmit many of the world's deadliest diseases. Such diseases have resurged in developing countries and pose clear threats for epidemic outbreaks in developed countries. Recent mosquito genome projects have stimulated interest in the potential for arthropod-borne disease control by genetic manipulation of vector insects, and genes that regulate development are of particular interest. This protocol for whole-mount in situ hybridization can be used to analyze gene expression in Ae. aegypti embryos and larvae, a critical aspect of understanding developmental gene function in this vector mosquito.
Collapse
Affiliation(s)
- Morgan Haugen
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617
| | - Michael Tomchaney
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - Kristopher Kast
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - Ellen Flannery
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - Anthony Clemons
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - Caitlin Jacowski
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - Wendy Simanton Holland
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617
| | - Christy Le
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - David Severson
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - Molly Duman-Scheel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
27
|
Döffinger C, Stollewerk A. How can conserved gene expression allow for variation? Lessons from the dorso-ventral patterning gene muscle segment homeobox. Dev Biol 2010; 345:105-16. [DOI: 10.1016/j.ydbio.2010.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/03/2010] [Accepted: 06/08/2010] [Indexed: 10/19/2022]
|
28
|
Mrkusich EM, Osman ZB, Bates KE, Marchingo JM, Duman-Scheel M, Whitington PM. Netrin-guided accessory cell morphogenesis dictates the dendrite orientation and migration of a Drosophila sensory neuron. Development 2010; 137:2227-35. [PMID: 20530550 PMCID: PMC2882139 DOI: 10.1242/dev.047795] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2010] [Indexed: 11/20/2022]
Abstract
Accessory cells, which include glia and other cell types that develop in close association with neurons, have been shown to play key roles in regulating neuron development. However, the underlying molecular and cellular mechanisms remain poorly understood. A particularly intimate association between accessory cells and neurons is found in insect chordotonal organs. We have found that the cap cell, one of two accessory cells of v'ch1, a chordotonal organ in the Drosophila embryo, strongly influences the development of its associated neuron. As it projects a long dorsally directed cellular extension, the cap cell reorients the dendrite of the v'ch1 neuron and tows its cell body dorsally. Cap cell morphogenesis is regulated by Netrin-A, which is produced by epidermal cells at the destination of the cap cell process. In Netrin-A mutant embryos, the cap cell forms an aberrant, ventrally directed process. As the cap cell maintains a close physical connection with the tip of the dendrite, the latter is dragged into an abnormal position and orientation, and the neuron fails to undergo its normal dorsal migration. Misexpression of Netrin-A in oenocytes, secretory cells that lie ventral to the cap cell, leads to aberrant cap cell morphogenesis, suggesting that Netrin-A acts as an instructive cue to direct the growth of the cap cell process. The netrin receptor Frazzled is required for normal cap cell morphogenesis, and mutant rescue experiments indicate that it acts in a cell-autonomous fashion.
Collapse
Affiliation(s)
- Eli M. Mrkusich
- Department of Anatomy and Cell Biology, University of Melbourne, VIC 3010, Australia
| | - Zalina B. Osman
- Department of Anatomy and Cell Biology, University of Melbourne, VIC 3010, Australia
| | - Karen E. Bates
- Department of Anatomy and Cell Biology, University of Melbourne, VIC 3010, Australia
- Department of Zoology, University of Hawaii, Honolulu, HI 96822, USA
| | - Julia M. Marchingo
- Department of Anatomy and Cell Biology, University of Melbourne, VIC 3010, Australia
| | - Molly Duman-Scheel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine-South Bend and Department of Biological Sciences, University of Notre Dame, Raclin-Carmichael Hall, 1234 Notre Dame Avenue, South Bend, IN 45517, USA
| | - Paul M. Whitington
- Department of Anatomy and Cell Biology, University of Melbourne, VIC 3010, Australia
| |
Collapse
|
29
|
Wilson MJ, Havler M, Dearden PK. Giant, Krüppel, and caudal act as gap genes with extensive roles in patterning the honeybee embryo. Dev Biol 2010; 339:200-11. [DOI: 10.1016/j.ydbio.2009.12.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 12/08/2009] [Accepted: 12/10/2009] [Indexed: 01/26/2023]
|
30
|
Huang TY, Cook CE, Davis GK, Shigenobu S, Chen RPY, Chang CC. Anterior development in the parthenogenetic and viviparous form of the pea aphid, Acyrthosiphon pisum: hunchback and orthodenticle expression. INSECT MOLECULAR BIOLOGY 2010; 19 Suppl 2:75-85. [PMID: 20482641 DOI: 10.1111/j.1365-2583.2009.00940.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In the dipteran Drosophila, the genes bicoid and hunchback work synergistically to pattern the anterior blastoderm during embryogenesis. bicoid, however, appears to be an innovation of the higher Diptera. Hence, in some non-dipteran insects, anterior specification instead relies on a synergistic interaction between maternally transcribed hunchback and orthodenticle. Here we describe how orthologues of hunchback and orthodenticle are expressed during oogenesis and embryogenesis in the parthenogenetic and viviparous form of the pea aphid, Acyrthosiphon pisum. A. pisum hunchback (Aphb) mRNA is localized to the anterior pole in developing oocytes and early embryos prior to blastoderm formation - a pattern strongly reminiscent of bicoid localization in Drosophila. A. pisum orthodenticle (Apotd), on the other hand, is not expressed prior to gastrulation, suggesting that it is the asymmetric localization of Aphb, rather than synergy between Aphb and Apotd, that regulates anterior specification in asexual pea aphids.
Collapse
Affiliation(s)
- T-Y Huang
- Department of Entomology/Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
31
|
Large EE, Mathies LD. hunchback and Ikaros-like zinc finger genes control reproductive system development in Caenorhabditis elegans. Dev Biol 2009; 339:51-64. [PMID: 20026024 DOI: 10.1016/j.ydbio.2009.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 11/30/2009] [Accepted: 12/09/2009] [Indexed: 01/29/2023]
Abstract
Here we provide evidence for a C2H2 zinc finger gene family with similarity to Ikaros and hunchback. The founding member of this family is Caenorhabditis elegans ehn-3, which has important and poorly understood functions in somatic gonad development. We examined the expression and function of four additional hunchback/Ikaros-like (HIL) genes in C. elegans reproductive system development. Two genes, ehn-3 and R08E3.4, are expressed in somatic gonadal precursors (SGPs) and have overlapping functions in their development. In ehn-3; R08E3.4 double mutants, we find defects in the generation of distal tip cells, anchor cells, and spermatheca; three of the five tissues derived from the SGPs. We provide in vivo evidence that C. elegans HIL proteins have functionally distinct zinc finger domains, with specificity residing in the N-terminal set of four zinc fingers and a likely protein-protein interaction domain provided by the C-terminal pair of zinc fingers. In addition, we find that a chimeric human Ikaros protein containing the N-terminal zinc fingers of EHN-3 functions in C. elegans. Together, these results lend support to the idea that the C. elegans HIL genes and Ikaros have similar functional domains. We propose that hunchback, Ikaros, and the HIL genes arose from a common ancestor that was present prior to the divergence of protostomes and deuterostomes.
Collapse
Affiliation(s)
- Edward E Large
- Department of Genetics, North Carolina State University, 3510 Thomas Hall, Raleigh, NC 27695-7614, USA
| | | |
Collapse
|
32
|
Erezyilmaz DF, Rynerson MR, Truman JW, Riddiford LM. The role of the pupal determinant broad during embryonic development of a direct-developing insect. Dev Genes Evol 2009; 219:535-44. [PMID: 20127251 PMCID: PMC2884998 DOI: 10.1007/s00427-009-0315-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 12/17/2009] [Indexed: 01/22/2023]
Abstract
Metamorphosis is one of the most common, yet dramatic of life history strategies. In insects, complete metamorphosis with morphologically distinct larval stages arose from hemimetabolous ancestors that were more direct developing. Over the past century, several ideas have emerged that suggest the holometabolous pupa is developmentally homologous to the embryonic stages of the hemimetabolous ancestor. Other theories consider the pupal stage to be a modification of a hemimetabolous nymph. To address this question, we have isolated an ortholog of the pupal determinant, broad (br), from the hemimetabolous milkweed bug and examined its role during embryonic development. We show that Oncopeltus fasciatus br (Of'br) is expressed in two phases. The first occurs during germ band invagination and segmentation when Of'br is expressed ubiquitously in the embryonic tissues. The second phase of Of'br expression appears during the pronymphal phase of embryogenesis and persists through nymphal differentiation to decline just before hatching. Knock-down of Of'br transcripts results in defects that range from posterior truncations in the least-affected phenotypes to completely fragmented embryonic tissues in the most severe cases. Analysis of the patterning genes engrailed and hunchback reveal loss of segments and a failure in neural differentiation after Of'br depletion. Finally, we show that br is constitutively expressed during embyrogenesis of the ametabolous firebrat, Thermobia domestica. This suggests that br expression is prominent during embryonic development of ametabolous and hemimetabolous insects but was lost with the emergence of the completely metamorphosing insects.
Collapse
Affiliation(s)
- Deniz F Erezyilmaz
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA.
| | | | | | | |
Collapse
|
33
|
Dean D, Himes CM, Behrman E, Savage RM. Hunchback-like protein is expressed in cleavage blastomeres, gastrula epithelium, and ciliary structures in gastropods. THE BIOLOGICAL BULLETIN 2009; 217:189-201. [PMID: 19875823 DOI: 10.1086/bblv217n2p189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We report the expression of Hunchback (Hb)-like protein during embryonic and larval development in two caenogastropods, Crepidula fornicata and Ilyanassa obsoleta. During the cleavage stages of these species, Hb-like protein is uniformly expressed in micromere and macromere nuclei. At gastrulation, gastropod Hb-like protein is expressed in the surface epithelium that undergoes epiboly. During organogenesis, gastropod Hb-like protein is expressed in the developing ciliated structures associated with feeding and locomotion. We find no detectable gradient or regionalization of Hb-like protein in gastropod embryos or larvae that resembles the graded Hb pattern of expression observed in dipteran insect embryos. Rather we found that the spatiotemporal expression profile of gastropod Hb-like protein is nearly identical to the Hb-like patterns obtained from the polychaete Capitella sp. I and is highly similar to those reported for clitellate annelids. Based upon the comparative data collected from both ecdysozoans and lophotrochozoan lineages, our results support the hypothesis that the role of Hb in anteroposterior patterning is a derived trait specific to arthropods, and that the ancestral function of lophotrochozoan Hb-like protein played a role in the formation of the cleavage-stage blastomeres and the gastrula epithelium and in structures associated with larval feeding and locomotion.
Collapse
Affiliation(s)
- Derek Dean
- Williams College, Biology Department, Williamstown, Massachusetts 01267, USA
| | | | | | | |
Collapse
|
34
|
Schwager EE, Pechmann M, Feitosa NM, McGregor AP, Damen WG. hunchback Functions as a Segmentation Gene in the Spider Achaearanea tepidariorum. Curr Biol 2009; 19:1333-40. [DOI: 10.1016/j.cub.2009.06.061] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 05/18/2009] [Accepted: 06/19/2009] [Indexed: 11/30/2022]
|
35
|
Rosenberg M, Lynch J, Desplan C. Heads and tails: evolution of antero-posterior patterning in insects. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1789:333-42. [PMID: 18976722 PMCID: PMC2700975 DOI: 10.1016/j.bbagrm.2008.09.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 09/23/2008] [Accepted: 09/30/2008] [Indexed: 01/30/2023]
Abstract
In spite of their varied appearances, insects share a common body plan whose layout is established by patterning genes during embryogenesis. We understand in great molecular detail how the Drosophila embryo patterns its segments. However, Drosophila has a type of embryogenesis that is highly derived and varies extensively as compared to most insects. Therefore, the study of other insects is invaluable for piecing together how the ancestor of all insects established its segmented body plan, and how this process can be plastic during evolution. In this review, we discuss the evolution of Antero-Posterior (A-P) patterning mechanisms in insects. We first describe two distinct modes of insect development - long and short germ development - and how these two modes of patterning are achieved. We then summarize how A-P patterning occurs in the long-germ Drosophila, where most of our knowledge comes from, and in the well-studied short-germ insect, Tribolium. Finally, using examples from other insects, we highlight differences in patterns of expression, which suggest foci of evolutionary change.
Collapse
Affiliation(s)
- Miriam Rosenberg
- Center for Developmental Genetics, Department of Biology, New York University. 1009 Silver Center, 100 Washington Square East, New York, NY 10003, USA
| | - Jeremy Lynch
- Institut für Entwicklungsbiologie, Universität zu Köln, Gyrhofstrasse 17, 50923 Köln, Germany
| | - Claude Desplan
- Center for Developmental Genetics, Department of Biology, New York University. 1009 Silver Center, 100 Washington Square East, New York, NY 10003, USA
| |
Collapse
|
36
|
He F, Wen Y, Deng J, Lin X, Lu LJ, Jiao R, Ma J. Probing intrinsic properties of a robust morphogen gradient in Drosophila. Dev Cell 2008; 15:558-67. [PMID: 18854140 PMCID: PMC2629455 DOI: 10.1016/j.devcel.2008.09.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 08/19/2008] [Accepted: 09/08/2008] [Indexed: 10/21/2022]
Abstract
A remarkable feature of development is its reproducibility, the ability to correct embryo-to-embryo variations and instruct precise patterning. In Drosophila, embryonic patterning along the anterior-posterior axis is controlled by the morphogen gradient Bicoid (Bcd). In this article, we describe quantitative studies of the native Bcd gradient and its target Hunchback (Hb). We show that the native Bcd gradient is highly reproducible and is itself scaled with embryo length. While a precise Bcd gradient is necessary for precise Hb expression, it still has positional errors greater than Hb expression. We describe analyses further probing mechanisms for Bcd gradient scaling and correction of its residual positional errors. Our results suggest a simple model of a robust Bcd gradient sufficient to achieve scaled and precise activation of its targets. The robustness of this gradient is conferred by its intrinsic properties of "self-correcting" the inevitable input variations to achieve a precise and reproducible output.
Collapse
Affiliation(s)
- Feng He
- Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Ying Wen
- Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Jingyuan Deng
- Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Xiaodong Lin
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Long Jason Lu
- Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Renjie Jiao
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Jun Ma
- Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
37
|
Damen WGM. Evolutionary conservation and divergence of the segmentation process in arthropods. Dev Dyn 2007; 236:1379-91. [PMID: 17440988 DOI: 10.1002/dvdy.21157] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A fundamental characteristic of the arthropod body plan is its organization in metameric units along the anterior-posterior axis. The segmental organization is laid down during early embryogenesis. Our view on arthropod segmentation is still strongly influenced by the huge amount of data available from the fruit fly Drosophila melanogaster (the Drosophila paradigm). However, the simultaneous formation of the segments in Drosophila is a derived mode of segmentation. Successive terminal addition of segments from a posteriorly localized presegmental zone is the ancestral mode of arthropod segmentation. This review focuses on the evolutionary conservation and divergence of the genetic mechanisms of segmentation within arthropods. The more downstream levels of the segmentation gene network (e.g., segment polarity genes) appear to be more conserved than the more upstream levels (gap genes, Notch/Delta signaling). Surprisingly, the basally branched arthropod groups also show similarities to mechanisms used in vertebrate somitogenesis. Furthermore, it has become clear that the activation of pair rule gene orthologs is a key step in the segmentation of all arthropods. Important findings of conserved and diverged aspects of segmentation from the last few years now allow us to draw an evolutionary scenario on how the mechanisms of segmentation could have evolved and led to the present mechanisms seen in various insect groups including dipterans like Drosophila.
Collapse
Affiliation(s)
- Wim G M Damen
- Institut für Genetik der Universität zu Köln, Zülpicher Str. 47, 50674 Köln, Germany.
| |
Collapse
|
38
|
Kerner P, Zelada González F, Le Gouar M, Ledent V, Arendt D, Vervoort M. The expression of a hunchback ortholog in the polychaete annelid Platynereis dumerilii suggests an ancestral role in mesoderm development and neurogenesis. Dev Genes Evol 2006; 216:821-8. [PMID: 16983541 DOI: 10.1007/s00427-006-0100-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 07/05/2006] [Indexed: 11/29/2022]
Abstract
Orthologs of the Drosophila gap gene hunchback have been isolated so far only in protostomes. Phylogenetic analysis of recently available genomic data allowed us to confirm that hunchback genes are widely found in protostomes (both lophotrochozoans and ecdysozoans). In contrast, no unequivocal hunchback gene can be found in the genomes of deuterostomes and non-bilaterians. We cloned hunchback in the marine polychaete annelid Platynereis dumerilii and analysed its expression during development. In this species, hunchback displays an expression pattern indicative of a role in mesoderm formation and neurogenesis, and similar to the expression found for hunchback genes in arthropods. These data suggest altogether that these functions are ancestral to protostomes.
Collapse
Affiliation(s)
- Pierre Kerner
- Laboratoire Evolution et Développement des protostomiens, Centre de Génétique Moléculaire-CNRS UPR 2167, 1 avenue de la terrasse, 91198 Gif-sur-Yvette cedex, France
| | | | | | | | | | | |
Collapse
|
39
|
Choe CP, Brown SJ. Evolutionary flexibility of pair-rule patterning revealed by functional analysis of secondary pair-rule genes, paired and sloppy-paired in the short-germ insect, Tribolium castaneum. Dev Biol 2006; 302:281-94. [PMID: 17054935 PMCID: PMC1800430 DOI: 10.1016/j.ydbio.2006.09.037] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 09/07/2006] [Accepted: 09/20/2006] [Indexed: 11/29/2022]
Abstract
In the Drosophila segmentation hierarchy, periodic expression of pair-rule genes translates gradients of regional information from maternal and gap genes into the segmental expression of segment polarity genes. In Tribolium, homologs of almost all the eight canonical Drosophila pair-rule genes are expressed in pair-rule domains, but only five have pair-rule functions. even-skipped, runt and odd-skipped act as primary pair-rule genes, while the functions of paired (prd) and sloppy-paired (slp) are secondary. Since secondary pair-rule genes directly regulate segment polarity genes in Drosophila, we analyzed Tc-prd and Tc-slp to determine the extent to which this paradigm is conserved in Tribolium. We found that the role of prd is conserved between Drosophila and Tribolium; it is required in both insects to activate engrailed in odd-numbered parasegments and wingless (wg) in even-numbered parasegments. Similarly, slp is required to activate wg in alternate parasegments and to maintain the remaining wg stripes in both insects. However, the parasegmental register for Tc-slp is opposite that of Drosophila slp1. Thus, while prd is functionally conserved, the fact that the register of slp function has evolved differently in the lineages leading to Drosophila and Tribolium reveals an unprecedented flexibility in pair-rule patterning.
Collapse
Affiliation(s)
| | - Susan J Brown
- *Corresponding author: Susan J Brown, Division of Biology, Kansas State University, Manhattan, KS 66506, USA, , Phone: (785) 532-3935, Fax: (785) 532-6653
| |
Collapse
|
40
|
He ZB, Cao YQ, Yin YP, Wang ZK, Chen B, Peng GX, Xia YX. Role of hunchback in segment patterning of Locusta migratoria manilensis revealed by parental RNAi. Dev Growth Differ 2006; 48:439-45. [PMID: 16961591 DOI: 10.1111/j.1440-169x.2006.00881.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In long germ embryos, all body segments are specified simultaneously during the blastoderm stage. In contrast, in short germ embryos, only the anterior segments are specified during the blastoderm stage, leaving the rest of the body plan to be specified later. The striking embryological differences between short and long germ segmentation imply fundamental differences in patterning at the molecular level. To gain insights into the segmentation mechanisms of short germ insects, we have investigated the role of the homologue of the Drosophila gap gene hunchback (hb) in a short germ insect Locusta migratoria manilensi by paternal RNA interference (RNAi). Phenotypes resulting from hb knockdown were categorized into three classes based on severity. In the most extreme case, embryos developed the most anterior structures only, including the labrum, antennae and eyes. The following conclusions were drawn: (i) L. migratoria manilensis hb (Lmm'hb) controls germ band morphogenesis and segmentation in the anterior region; (ii) Lmm'hb may function as a gap gene in a wide domain including the entire gnathum and thorax; and (iii) Lmm'hb is required for proper growth of the posterior germ band. These findings suggest a more extensive role for L. migratoria manilensis hunchback in anterior patterning than those described in Drosophila.
Collapse
Affiliation(s)
- Zheng-Bo He
- Genetic Engineering Research Center, Chongqing University, Chongqing Engineering and Technology Center of Fungal Insecticide, Chongqing 400044, China
| | | | | | | | | | | | | |
Collapse
|
41
|
LeComte M, Wesley UV, Mok LP, Shepherd A, Wesley C. Evidence for the involvement of dominant-negative Notch molecules in the normal course of Drosophila development. Dev Dyn 2006; 235:411-26. [PMID: 16331645 DOI: 10.1002/dvdy.20650] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Notch signaling is used to specify cell types during animal development. A high level specifies one cell type, whereas a low level specifies the alternate type. The effector of Notch signaling is the Notch intracellular domain. Upon its release from the plasma membrane in response to Delta binding the Notch extracellular domain, the Notch intracellular domain combines with the transcription factor Suppressor of Hairless and promotes the expression of target genes. Using a panel of antibodies made against different extracellular and intracellular regions of Notch, we show that cell types and tissues with low levels of Notch signaling are enriched for Notch molecules detected only by the extracellular domain antibodies. This enrichment often follows enrichment for Notch molecules detected only by antibodies made against the Suppressor of Hairless binding region. Notch molecules lacking most of the intracellular domain or containing only the Suppressor of Hairless binding region are produced during development. Such molecules are known to suppress Notch signaling, possibly by taking away Delta or Suppressor of Hairless from the full-length Notch. Thus, it is possible that dominant-negative Notch molecules are produced in the normal course of tissue differentiation in Drosophila as part of an auto-down-regulation mechanism.
Collapse
Affiliation(s)
- Matthew LeComte
- Department of Microbiology and Molecular Genetics, The University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | | | |
Collapse
|
42
|
Liu PZ, Kaufman TC. Short and long germ segmentation: unanswered questions in the evolution of a developmental mode. Evol Dev 2006; 7:629-46. [PMID: 16336416 DOI: 10.1111/j.1525-142x.2005.05066.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The insect body plan is very well conserved, yet the developmental mechanisms of segmentation are surprisingly varied. Less evolutionarily derived insects undergo short germ segmentation where only the anterior segments are specified before gastrulation whereas the remaining posterior segments are formed during a later secondary growth phase. In contrast, derived long germ insects such as Drosophila specify their entire bodies essentially simultaneously. These fundamental embryological differences imply potentially divergent molecular patterning events. Numerous studies have focused on comparing the expression and function of the homologs of Drosophila segmentation genes between Drosophila and different short and long germ insects. Here we review these comparative data with special emphasis on understanding how short germ insects generate segments and how this ancestral mechanism may have been modified in derived long germ insects such as Drosophila. We break down the larger issue of short versus long germ segmentation into its component developmental problems and structure our discussion in order to highlight the unanswered questions in the evolution of insect segmentation.
Collapse
Affiliation(s)
- Paul Z Liu
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | |
Collapse
|
43
|
Panfilio KA, Liu PZ, Akam M, Kaufman TC. Oncopeltus fasciatus zen is essential for serosal tissue function in katatrepsis. Dev Biol 2006; 292:226-43. [PMID: 16460723 DOI: 10.1016/j.ydbio.2005.12.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Accepted: 12/01/2005] [Indexed: 11/18/2022]
Abstract
Unlike most Hox cluster genes, with their canonical role in anterior-posterior patterning of the embryo, the Hox3 orthologue of insects has diverged. Here, we investigate the zen orthologue in Oncopeltus fasciatus (Hemiptera:Heteroptera). As in other insects, the Of-zen gene is expressed extraembryonically, and RNA interference (RNAi) experiments demonstrate that it is functionally required in this domain for the proper occurrence of katatrepsis, the phase of embryonic movements by which the embryo emerges from the yolk and adjusts its orientation within the egg. After RNAi knockdown of Of-zen, katatrepsis does not occur, causing embryos to complete development inside out. However, not all aspects of expression and function are conserved compared to grasshopper, beetle, and fly orthologues. Of-zen is not expressed in the extraembryonic tissue until relatively late, suggesting it is not involved in tissue specification. Within the extraembryonic domain, Of-zen is expressed in the outer serosal membrane, but unlike orthologues, it is not detectable in the inner extraembryonic membrane, the amnion. Thus, the role of zen in the interaction of serosa, amnion, and embryo may differ between species. Of-zen is also expressed in the blastoderm, although this early expression shows no apparent correlation with defects seen by RNAi knockdown.
Collapse
Affiliation(s)
- Kristen A Panfilio
- University Museum of Zoology, Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK.
| | | | | | | |
Collapse
|
44
|
Chipman AD, Stollewerk A. Specification of neural precursor identity in the geophilomorph centipede Strigamia maritima. Dev Biol 2006; 290:337-50. [PMID: 16380110 DOI: 10.1016/j.ydbio.2005.11.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 11/14/2005] [Accepted: 11/15/2005] [Indexed: 11/27/2022]
Abstract
Despite differences in the formation of neural precursors, all arthropod species analyzed so far generate about 30 single precursors (insects/crustaceans) or precursor groups (chelicerates/myriapods) per hemi-segment. In Drosophila, each precursor has a distinct identity conferred by segment polarity and dorso-ventral patterning genes that subdivide the ventral neuroectoderm into a grid-like structure. Temporal patterning mechanisms generate additional diversity after delamination from the neuroectoderm. Previous work shows that the genetic network involved in recruitment and specification of neural precursors is conserved in arthropods. However, comparative studies on generation of precursor diversity are few and partial. Here, we test whether aspects of the Drosophila model may apply in the geophilomorph centipede Strigamia maritima. We describe precursor formation, based on morphology and on Delta and Notch expression. We then show that in S. maritima, hunchback and Krüppel are expressed in subsets of neural precursors generating distinct temporal expression domains within the plane of the neuroectoderm. This expression pattern suggests that temporal changes in spatial patterning cues may result in the ordered production of different neural identities. We suggest that temporal patterning mechanisms were present in the last common ancestor of arthropods, although the regulatory interactions of transcription factors might have diverged in the lineage leading to insects.
Collapse
Affiliation(s)
- Ariel D Chipman
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | | |
Collapse
|
45
|
Abstract
Recent papers investigating the genes regulating early embryogenesis in the wasp Nasonia vitripennis and the beetle Tribolium castaneum have provided us with important clues as to how early development is controlled in insects other than higher dipterans such as Drosophila melanogaster. The results of these studies demonstrate that in insects that do not have bicoid, anterior patterning is regulated by a combination of maternal orthodenticle and hunchback. Furthermore, during the evolution of long-germ-band development, Nasonia and Drosophila may have evolved different mechanisms to pattern posterior segments, marginalising the important role of the terminal system in short-germ-band embryos.
Collapse
Affiliation(s)
- Alistair P McGregor
- Department of Ecology and Evolutionary Biology, Guyot Hall, Princeton University, Princeton, New Jersey 08540, USA.
| |
Collapse
|
46
|
Abstract
Most of our knowledge about the mechanisms of segmentation in arthropods comes from work on Drosophila melanogaster. In recent years it has become clear that this mechanism is far from universal, and different arthropod groups have distinct modes of segmentation that operate through divergent genetic mechanisms. We review recent data from a range of arthropods, identifying which features of the D. melanogaster segmentation cascade are present in the different groups, and discuss the evolutionary implications of their conserved and divergent aspects. A model is emerging, although slowly, for the way that arthropod segmentation mechanisms have evolved.
Collapse
Affiliation(s)
- Andrew D Peel
- University Museum of Zoology, Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK
| | | | | |
Collapse
|
47
|
Kontarakis Z, Copf T, Averof M. Expression of hunchback during trunk segmentation in the branchiopod crustacean Artemia franciscana. Dev Genes Evol 2005; 216:89-93. [PMID: 16244886 DOI: 10.1007/s00427-005-0030-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Accepted: 09/11/2005] [Indexed: 12/01/2022]
Abstract
Comparative studies have shown that some aspects of segmentation are widely conserved among arthropods. Yet, it is still unclear whether the molecular prepatterns that are required for segmentation in Drosophila are likely to be similarly conserved in other arthropod groups. Homologues of the Drosophila gap genes, like hunchback, show regionally restricted expression patterns during the early phases of segmentation in diverse insects, but their expression patterns in other arthropod groups are not yet known. Here, we report the cloning of a hunchback orthologue from the crustacean Artemia franciscana and its expression during the formation of trunk segments. Artemia hunchback is expressed in a series of segmental stripes that correspond to individual thoracic/trunk, genital, and postgenital segments. However, this expression is not associated with the segmenting ectoderm but is restricted to mesodermal cells that associate with the ectoderm in a regular metameric pattern. All cells in the early segmental mesoderm appear to express hunchback. Later, mesodermal expression fades, and a complex expression pattern appears in the central nervous system (CNS), which is comparable to hunchback expression in the CNS of insects. No regionally restricted expression, reminiscent of gap gene expression, is observed during trunk segmentation. These patterns suggest that the expression patterns of hunchback in the mesoderm and in the CNS are likely to be ancient and conserved among crustaceans and insects. In contrast, we find no evidence for a conserved role of hunchback in axial patterning in the trunk ectoderm.
Collapse
|
48
|
Dong Y, Friedrich M. Nymphal RNAi: systemic RNAi mediated gene knockdown in juvenile grasshopper. BMC Biotechnol 2005; 5:25. [PMID: 16202143 PMCID: PMC1266053 DOI: 10.1186/1472-6750-5-25] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 10/03/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Grasshopper serves as important model system in neuroscience, development and evolution. Representatives of this primitive insect group are also highly relevant targets of pest control efforts. Unfortunately, the lack of genetics or gene specific molecular manipulation imposes major limitations to the study of grasshopper biology. RESULTS We investigated whether juvenile instars of the grasshopper species Schistocerca americana are conducive to gene silencing via the systemic RNAi pathway. Injection of dsRNA corresponding to the eye colour gene vermilion into first instar nymphs triggered suppression of ommochrome formation in the eye lasting through two instars equivalent to 10-14 days in absolute time. QRT-PCR analysis revealed a two fold decrease of target transcript levels in affected animals. Control injections of EGFP dsRNA did not result in detectable phenotypic changes. RT-PCR and in situ hybridization detected ubiquitous expression of the grasshopper homolog of the dsRNA channel protein gene sid-1 in embryos, nymphs and adults. CONCLUSION Our results demonstrate that systemic dsRNA application elicits specific and long-term gene silencing in juvenile grasshopper instars. The conservation of systemic RNAi in the grasshopper suggests that this pathway can be exploited for gene specific manipulation of juvenile and adult instars in a wide range of primitive insects.
Collapse
Affiliation(s)
- Ying Dong
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
- Center of Developmental Biology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| |
Collapse
|
49
|
Goltsev Y, Hsiong W, Lanzaro G, Levine M. Different combinations of gap repressors for common stripes in Anopheles and Drosophila embryos. Dev Biol 2005; 275:435-46. [PMID: 15501229 DOI: 10.1016/j.ydbio.2004.08.021] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 08/17/2004] [Accepted: 08/17/2004] [Indexed: 11/20/2022]
Abstract
Drosophila segmentation is governed by a well-defined gene regulation network. The evolution of this network was investigated by examining the expression profiles of a complete set of segmentation genes in the early embryos of the mosquito, Anopheles gambiae. There are numerous differences in the expression profiles as compared with Drosophila. The germline determinant Oskar is expressed in both the anterior and posterior poles of Anopheles embryos but is strictly localized within the posterior plasm of Drosophila. The gap genes hunchback and giant display inverted patterns of expression in posterior regions of Anopheles embryos, while tailless exhibits an expanded pattern as compared with Drosophila. These observations suggest that the segmentation network has undergone considerable evolutionary change in the dipterans and that similar patterns of pair-rule gene expression can be obtained with different combinations of gap repressors. We discuss the evolution of separate stripe enhancers in the eve loci of different dipterans.
Collapse
Affiliation(s)
- Yury Goltsev
- Department of Molecular and Cellular Biology, Division of Genetics and Development, University of California, Berkeley, CA 94720, USA.
| | | | | | | |
Collapse
|
50
|
Abstract
In Drosophila, a Bcd protein gradient orchestrates patterning along the anteroposterior embryonic axis. However, studies of basal flies and other insects have revealed that bcd is a derived Hox3 gene found only in higher dipterans. To understand how bcd acquired its role in flies and how anteroposterior patterning mechanisms have evolved, I first review key features of bcd function in Drosophila: anterior localization and transcriptional and translation control of gene expression. I then discuss investigations of bcd in other higher dipterans that have provided insight into the evolution of regulatory interactions and the Bcd gradient. Finally, I review studies of Drosophila and other insects that address the evolution of bcd function and integration of bcd into ancestral regulatory mechanisms. I suggest further comparative studies may allow us to identify the intermediate steps in bcd evolution. This will make bcd a paradigm for the origin and evolution of genes and regulatory networks.
Collapse
Affiliation(s)
- Alistair P McGregor
- Department of Ecology and Evolutionary Biology, Princeton University, New Jersey 08540, USA.
| |
Collapse
|