1
|
Moorwood K, Smith FM, Garfield AS, Ward A. Imprinted Grb10, encoding growth factor receptor bound protein 10, regulates fetal growth independently of the insulin-like growth factor type 1 receptor (Igf1r) and insulin receptor (Insr) genes. BMC Biol 2024; 22:127. [PMID: 38816743 PMCID: PMC11140863 DOI: 10.1186/s12915-024-01926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Optimal size at birth dictates perinatal survival and long-term risk of developing common disorders such as obesity, type 2 diabetes and cardiovascular disease. The imprinted Grb10 gene encodes a signalling adaptor protein capable of inhibiting receptor tyrosine kinases, including the insulin receptor (Insr) and insulin-like growth factor type 1 receptor (Igf1r). Grb10 restricts fetal growth such that Grb10 knockout (KO) mice are at birth some 25-35% larger than wild type. Using a mouse genetic approach, we test the widely held assumption that Grb10 influences growth through interaction with Igf1r, which has a highly conserved growth promoting role. RESULTS Should Grb10 interact with Igf1r to regulate growth Grb10:Igf1r double mutant mice should be indistinguishable from Igf1r KO single mutants, which are around half normal size at birth. Instead, Grb10:Igf1r double mutants were intermediate in size between Grb10 KO and Igf1r KO single mutants, indicating additive effects of the two signalling proteins having opposite actions in separate pathways. Some organs examined followed a similar pattern, though Grb10 KO neonates exhibited sparing of the brain and kidneys, whereas the influence of Igf1r extended to all organs. An interaction between Grb10 and Insr was similarly investigated. While there was no general evidence for a major interaction for fetal growth regulation, the liver was an exception. The liver in Grb10 KO mutants was disproportionately overgrown with evidence of excess lipid storage in hepatocytes, whereas Grb10:Insr double mutants were indistinguishable from Insr single mutants or wild types. CONCLUSIONS Grb10 acts largely independently of Igf1r or Insr to control fetal growth and has a more variable influence on individual organs. Only the disproportionate overgrowth and excess lipid storage seen in the Grb10 KO neonatal liver can be explained through an interaction between Grb10 and the Insr. Our findings are important for understanding how positive and negative influences on fetal growth dictate size and tissue proportions at birth.
Collapse
Affiliation(s)
- Kim Moorwood
- Department of Life Sciences, University of Bath, Building 4 South, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Florentia M Smith
- Department of Life Sciences, University of Bath, Building 4 South, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Alastair S Garfield
- Department of Life Sciences, University of Bath, Building 4 South, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Andrew Ward
- Department of Life Sciences, University of Bath, Building 4 South, Claverton Down, Bath, BA2 7AY, United Kingdom.
| |
Collapse
|
2
|
Pileggi S, Colombo EA, Ancona S, Quadri R, Bernardelli C, Colapietro P, Taiana M, Fontana L, Miozzo M, Lesma E, Sirchia SM. Dysfunction in IGF2R Pathway and Associated Perturbations in Autophagy and WNT Processes in Beckwith-Wiedemann Syndrome Cell Lines. Int J Mol Sci 2024; 25:3586. [PMID: 38612397 PMCID: PMC11011696 DOI: 10.3390/ijms25073586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Beckwith-Wiedemann Syndrome (BWS) is an imprinting disorder characterized by overgrowth, stemming from various genetic and epigenetic changes. This study delves into the role of IGF2 upregulation in BWS, focusing on insulin-like growth factor pathways, which are poorly known in this syndrome. We examined the IGF2R, the primary receptor of IGF2, WNT, and autophagy/lysosomal pathways in BWS patient-derived lymphoblastoid cell lines, showing different genetic and epigenetic defects. The findings reveal a decreased expression and mislocalization of IGF2R protein, suggesting receptor dysfunction. Additionally, our results point to a dysregulation in the AKT/GSK-3/mTOR pathway, along with imbalances in autophagy and the WNT pathway. In conclusion, BWS cells, regardless of the genetic/epigenetic profiles, are characterized by alteration of the IGF2R pathway that is associated with the perturbation of the autophagy and lysosome processes. These alterations seem to be a key point of the molecular pathogenesis of BWS and potentially contribute to BWS's characteristic overgrowth and cancer susceptibility. Our study also uncovers alterations in the WNT pathway across all BWS cell lines, consistent with its role in growth regulation and cancer development.
Collapse
Affiliation(s)
- Silvana Pileggi
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (S.P.)
| | - Elisa A. Colombo
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (S.P.)
| | - Silvia Ancona
- Pharmacology, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy (E.L.)
| | - Roberto Quadri
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Clara Bernardelli
- Pharmacology, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy (E.L.)
| | - Patrizia Colapietro
- Medical Genetics, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Michela Taiana
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Laura Fontana
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (S.P.)
- Unit of Medical Genetics, ASST Santi Paolo e Carlo, 20142 Milan, Italy
| | - Monica Miozzo
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (S.P.)
- Unit of Medical Genetics, ASST Santi Paolo e Carlo, 20142 Milan, Italy
| | - Elena Lesma
- Pharmacology, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy (E.L.)
| | - Silvia M. Sirchia
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (S.P.)
| |
Collapse
|
3
|
Lu L, Cheng Y, Wu W, Wang L, Li S, Li Q, Chen L, Zhang J, Chen R, Tan X, Hong Y, Yang L, Song Y. Paternal p,p'-DDE exposure and pre-pubertal high-fat diet increases the susceptibility to fertility impairment and sperm Igf2 DMR2 hypo-methylation in male offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115999. [PMID: 38262096 DOI: 10.1016/j.ecoenv.2024.115999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
The hypothesis of paternal origins of health and disease (POHaD) indicates that paternal exposure to adverse environment could alter the epigenetic modification in germ line, increasing the disease susceptibility in offspring or even in subsequent generations. p,p'-Dichlorodiphenyldichloroethylene (p,p'-DDE) is an anti-androgenic chemical and male reproductive toxicant. Gestational p,p'-DDE exposure could impair reproductive development and fertility in male offspring. However, the effect of paternal p,p'-DDE exposure on fertility in male offspring remains uncovered. From postnatal day (PND) 35 to 119, male rats (F0) were given 10 mg/body weight (b.w.) p,p'-DDE or corn oil by gavage. Male rats were then mated with the control females to generate male offspring. On PND35, the male offspring were divided into 4 groups according whether to be given the high-fat diet (HF): corn oil treatment with control diet (C-C), p,p'-DDE treatment with control diet (DDE-C), corn oil treatment with high-fat diet (C-HF) or p,p'-DDE treatment with high-fat diet (DDE-HF) for 35 days. Our results indicated that paternal p,p'-DDE exposure did not affect the male fertility of male offspring directly, but decreased sperm quality and induced testicular apoptosis after the high-fat diet treatment. Further analysis demonstrated that paternal exposure to p,p'-DDE and pre-pubertal high-fat diet decreased sperm Igf2 DMR2 methylation and gene expression in male offspring. Hence, paternal exposure to p,p'-DDE and pre-pubertal high-fat diet increases the susceptibility to male fertility impairment and sperm Igf2 DMR2 hypo-methylation in male offspring, posing a significant implication in the disease etiology.
Collapse
Affiliation(s)
- Liping Lu
- School of Public Health, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, China
| | - Yuzhou Cheng
- School of Public Health, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, China
| | - Wei Wu
- School of Public Health, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, China
| | - Lijun Wang
- School of Public Health, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, China
| | - Shuqi Li
- School of Public Health, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, China
| | - Qianyu Li
- School of Public Health, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, China
| | - Liangjing Chen
- School of Public Health, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, China
| | - Jianyun Zhang
- School of Public Health, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, China
| | - Rong Chen
- School of Public Health, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, China
| | - Xiaohua Tan
- School of Public Health, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, China
| | - Yu Hong
- School of Public Health, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, China
| | - Lei Yang
- School of Public Health, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, China
| | - Yang Song
- School of Public Health, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, China.
| |
Collapse
|
4
|
IGF2: A Role in Metastasis and Tumor Evasion from Immune Surveillance? Biomedicines 2023; 11:biomedicines11010229. [PMID: 36672737 PMCID: PMC9855361 DOI: 10.3390/biomedicines11010229] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Insulin-like growth factor 2 (IGF2) is upregulated in both childhood and adult malignancies. Its overexpression is associated with resistance to chemotherapy and worse prognosis. However, our understanding of its physiological and pathological role is lagging behind what we know about IGF1. Dysregulation of the expression and function of IGF2 receptors, insulin receptor isoform A (IR-A), insulin growth factor receptor 1 (IGF1R), and their downstream signaling effectors drive cancer initiation and progression. The involvement of IGF2 in carcinogenesis depends on its ability to link high energy intake, increase cell proliferation, and suppress apoptosis to cancer risk, and this is likely the key mechanism bridging insulin resistance to cancer. New aspects are emerging regarding the role of IGF2 in promoting cancer metastasis by promoting evasion from immune destruction. This review provides a perspective on IGF2 and an update on recent research findings. Specifically, we focus on studies providing compelling evidence that IGF2 is not only a major factor in primary tumor development, but it also plays a crucial role in cancer spread, immune evasion, and resistance to therapies. Further studies are needed in order to find new therapeutic approaches to target IGF2 action.
Collapse
|
5
|
Johnson C, Kiefer H, Chaulot-Talmon A, Dance A, Sellem E, Jouneau L, Jammes H, Kastelic J, Thundathil J. Prepubertal nutritional modulation in the bull and its impact on sperm DNA methylation. Cell Tissue Res 2022; 389:587-601. [PMID: 35779136 DOI: 10.1007/s00441-022-03659-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/21/2022] [Indexed: 11/28/2022]
Abstract
Enhanced pre-pubertal nutrition in Holstein bulls increased reproductive hormone production and sperm production potential with no negative effects on sperm quality. However, recent trends in human epigenetic research have identified pre-pubertal period to be critical for epigenetic reprogramming in males. Our objective was to evaluate the methylation changes in sperm of bulls exposed to different pre-pubertal diets. One-week-old Holstein bull calves (n = 9), randomly allocated to 3 groups, were fed either a high, medium or low diet (20%, 17% or 12.2% crude protein and 67.9%, 66% or 62.9% total digestible nutrients, respectively) from 2 to 32 weeks of age, followed by medium nutrition. Semen collected from bulls at two specific time points, i.e. 55-59 and 69-71 weeks, was diluted, cryopreserved and used for reduced representation bisulfite sequencing. Differential methylation was detected for dietary treatment, but minimal differences were detected with age. The gene ontology term, "regulation of Rho protein signal transduction", implicated in sperm motility and acrosome reaction, was enriched in both low-vs-high and low-vs-medium datasets. Furthermore, several genes implicated in early embryo and foetal development showed differential methylation for diet. Our results therefore suggest that sperm epigenome keeps the memory of diet during pre-pubertal period in genes important for spermatogenesis, sperm function and early embryo development.
Collapse
Affiliation(s)
- Chinju Johnson
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| | - Hélène Kiefer
- Université Paris-Saclay, INRAE, ENVA, BREED, 78350, Jouy-en-Josas, France
| | | | - Alysha Dance
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Eli Sellem
- R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France
| | - Luc Jouneau
- Université Paris-Saclay, INRAE, ENVA, BREED, 78350, Jouy-en-Josas, France
| | - Hélène Jammes
- Université Paris-Saclay, INRAE, ENVA, BREED, 78350, Jouy-en-Josas, France
| | - John Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Jacob Thundathil
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
6
|
Sandovici I, Georgopoulou A, Pérez-García V, Hufnagel A, López-Tello J, Lam BYH, Schiefer SN, Gaudreau C, Santos F, Hoelle K, Yeo GSH, Burling K, Reiterer M, Fowden AL, Burton GJ, Branco CM, Sferruzzi-Perri AN, Constância M. The imprinted Igf2-Igf2r axis is critical for matching placental microvasculature expansion to fetal growth. Dev Cell 2022; 57:63-79.e8. [PMID: 34963058 PMCID: PMC8751640 DOI: 10.1016/j.devcel.2021.12.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 09/30/2021] [Accepted: 12/03/2021] [Indexed: 11/21/2022]
Abstract
In all eutherian mammals, growth of the fetus is dependent upon a functional placenta, but whether and how the latter adapts to putative fetal signals is currently unknown. Here, we demonstrate, through fetal, endothelial, hematopoietic, and trophoblast-specific genetic manipulations in the mouse, that endothelial and fetus-derived IGF2 is required for the continuous expansion of the feto-placental microvasculature in late pregnancy. The angiocrine effects of IGF2 on placental microvasculature expansion are mediated, in part, through IGF2R and angiopoietin-Tie2/TEK signaling. Additionally, IGF2 exerts IGF2R-ERK1/2-dependent pro-proliferative and angiogenic effects on primary feto-placental endothelial cells ex vivo. Endothelial and fetus-derived IGF2 also plays an important role in trophoblast morphogenesis, acting through Gcm1 and Synb. Thus, our study reveals a direct role for the imprinted Igf2-Igf2r axis on matching placental development to fetal growth and establishes the principle that hormone-like signals from the fetus play important roles in controlling placental microvasculature and trophoblast morphogenesis.
Collapse
Affiliation(s)
- Ionel Sandovici
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0SW, UK; Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK.
| | - Aikaterini Georgopoulou
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0SW, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Vicente Pérez-García
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera, 46012 Valencia, Spain
| | - Antonia Hufnagel
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0SW, UK
| | - Jorge López-Tello
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Brian Y H Lam
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Samira N Schiefer
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0SW, UK
| | - Chelsea Gaudreau
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Fátima Santos
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Katharina Hoelle
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0SW, UK
| | - Giles S H Yeo
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Keith Burling
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Moritz Reiterer
- Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Center for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Abigail L Fowden
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Graham J Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Cristina M Branco
- Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Center for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Miguel Constância
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0SW, UK; Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK.
| |
Collapse
|
7
|
Muhammad T, Li M, Wang J, Huang T, Zhao S, Zhao H, Liu H, Chen ZJ. Roles of insulin-like growth factor II in regulating female reproductive physiology. SCIENCE CHINA-LIFE SCIENCES 2020; 63:849-865. [PMID: 32291558 DOI: 10.1007/s11427-019-1646-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/12/2020] [Indexed: 12/20/2022]
Abstract
The number of growth factors involved in female fertility has been extensively studied, but reluctance to add essential growth factors in culture media has limited progress in optimizing embryonic growth and implantation outcomes, a situation that has ultimately led to reduced pregnancy outcomes. Insulin-like growth factor II (IGF-II) is the most intricately regulated of all known reproduction-related growth factors characterized to date, and is perhaps the predominant growth factor in human ovarian follicles. This review aims to concisely summarize what is known about the role of IGF-II in follicular development, oocyte maturation, embryonic development, implantation success, placentation, fetal growth, and in reducing placental cell apoptosis, as well as present strategies that use growth factors in culture systems to improve the developmental potential of oocytes and embryos in different species. Synthesizing the present knowledge about the physiological roles of IGF-II in follicular development, oocyte maturation, and early embryonic development should, on the one hand, deepen our overall understanding of the potential beneficial effects of growth factors in female reproduction and on the other hand support development (optimization) of improved outcomes for assisted reproductive technologies.
Collapse
Affiliation(s)
- Tahir Muhammad
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China
| | - Mengjing Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China
| | - Jianfeng Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China
| | - Tao Huang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China
| | - Shigang Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China
| | - Han Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China. .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China. .,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China. .,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China.
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China. .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China. .,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China. .,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China. .,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200000, China. .,Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200000, China.
| |
Collapse
|
8
|
Li Q, Li Y, Yin Q, Huang S, Wang K, Zhuo L, Li W, Chang B, Li J. Temporal regulation of prenatal embryonic development by paternal imprinted loci. SCIENCE CHINA. LIFE SCIENCES 2020; 63:1-17. [PMID: 31564034 DOI: 10.1007/s11427-019-9817-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/09/2019] [Indexed: 01/05/2023]
Abstract
Paternal imprinted genes (H19 and Gtl2) are pivotal for prenatal embryonic development in mice. Nongrowing oocytes and sperm- or oocyte-originated haploid embryonic stem cells (haESCs) carrying both H19-DMR (differentially DNA-methylated region) and IG (intergenic)-DMR deletions that partially mimic paternal imprinting of H19-Igf2 and Dlk1-Dio3 can be employed as sperm replacement to efficiently support full-term embryonic development. However, how H19-DMR and IG-DMR act together to regulate embryonic development is still largely unknown. Here, using androgenetic haESC (AG-haESC)-mediated semi-cloned (SC) technology, we showed that paternal H19-DMR and IG-DMR are not essential for pre-implantation development of SC embryos generated through injection of AG-haESCs into oocytes. H19-DMR plays critical roles before 12.5 days of gestation while IG-DMR is essential for late-gestation of SC embryos. Interestingly, we found that combined deletions of H19 and H19-DMR can further improve the efficiency of normal development of SC embryos at mid-gestation compared to DKO SC embryos. Transcriptome and histology analyses revealed that H19 and H19-DMR combined deletions rescue the placental defects. Furthermore, we showed that H19, H19-DMR and IG-DMR deletions (TKO) give rise to better prenatal and postnatal embryonic development of SC embryos compared to DKO. Together, our results indicate the temporal regulation of paternal imprinted loci during embryonic development.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanyuan Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qi Yin
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shuo Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Kai Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Liangchai Zhuo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wei Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Boran Chang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
9
|
Zheng Y, Xu L, Hassan M, Zhou X, Zhou Q, Rakheja D, Skapek SX. Bayesian Modeling Identifies PLAG1 as a Key Regulator of Proliferation and Survival in Rhabdomyosarcoma Cells. Mol Cancer Res 2019; 18:364-374. [PMID: 31757836 DOI: 10.1158/1541-7786.mcr-19-0764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/18/2019] [Accepted: 11/20/2019] [Indexed: 12/22/2022]
Abstract
We recently developed a novel computational algorithm that incorporates Bayesian methodology to identify rhabdomyosarcoma disease genes whose expression level correlates with copy-number variations, and we identified PLAG1 as a candidate oncogenic driver. Although PLAG1 has been shown to contribute to other type of cancers, its role in rhabdomyosarcoma has not been elucidated. We observed that PLAG1 mRNA is highly expressed in rhabdomyosarcoma and is associated with PLAG1 gene copy-number gain. Knockdown of PLAG1 dramatically decreased cell accumulation and induced apoptosis in rhabdomyosarcoma cells, whereas its ectopic expression increased cell accumulation in vitro and as a xenograft and promoted G1 to S-phase cell-cycle progression. We found that PLAG1 regulates IGF2 expression and influences AKT and MAPK pathways in rhabdomyosarcoma, and IGF2 partially rescues cell death triggered by PLAG1 knockdown. The expression level of PLAG1 correlated with the IC50 of rhabdomyosarcoma cells to BMS754807, an IGF receptor inhibitor. IMPLICATIONS: Our data demonstrate that PLAG1 contributes to proliferation and survival of rhabdomyosarcoma cells at least partially by inducing IGF2, and this new understanding may have the potential for clinical translation.
Collapse
Affiliation(s)
- Yanbin Zheng
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, Texas. .,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Lin Xu
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, Texas.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Population & Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas.,Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mohammed Hassan
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Xiaoyun Zhou
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Qinbo Zhou
- Department of Population & Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas.,Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Dinesh Rakheja
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Stephen X Skapek
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, Texas. .,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Gill Center for Cancer and Blood Disorders, Children's Health Children's Medical Center, Dallas, Texas
| |
Collapse
|
10
|
Hughes J, Surakhy M, Can S, Ducker M, Davies N, Szele F, Bühnemann C, Carter E, Trikin R, Crump MP, Frago S, Hassan AB. Maternal transmission of an Igf2r domain 11: IGF2 binding mutant allele (Igf2r I1565A) results in partial lethality, overgrowth and intestinal adenoma progression. Sci Rep 2019; 9:11388. [PMID: 31388182 PMCID: PMC6684648 DOI: 10.1038/s41598-019-47827-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/19/2019] [Indexed: 11/25/2022] Open
Abstract
The cation-independent mannose 6-phosphate/insulin-like growth factor-2 receptor (M6P/IGF2R or IGF2R) traffics IGF2 and M6P ligands between pre-lysosomal and extra-cellular compartments. Specific IGF2 and M6P high-affinity binding occurs via domain-11 and domains-3-5-9, respectively. Mammalian maternal Igf2r allele expression exceeds the paternal allele due to imprinting (silencing). Igf2r null-allele maternal transmission results in placenta and heart over-growth and perinatal lethality (>90%) due to raised extra-cellular IGF2 secondary to impaired ligand clearance. It remains unknown if the phenotype is due to either ligand alone, or to both ligands. Here, we evaluate Igf2r specific loss-of-function of the domain-11 IGF2 binding site by replacing isoleucine with alanine in the CD loop (exon 34, I1565A), a mutation also detected in cancers. Igf2rI1565A/+p maternal transmission (heterozygote), resulted in placental and embryonic over-growth with reduced neonatal lethality (<60%), and long-term survival. The perinatal mortality (>80%) observed in homozygotes (Igf2rI1565A/I1565A) suggested that wild-type paternal allele expression attenuates the heterozygote phenotype. To evaluate Igf2r tumour suppressor function, we utilised intestinal adenoma models known to be Igf2 dependent. Bi-allelic Igf2r expression suppressed intestinal adenoma (ApcMin). Igf2rI1565A/+p in a conditional model (Lgr5-Cre, Apcloxp/loxp) resulted in worse survival and increased adenoma proliferation. Growth, survival and intestinal adenoma appear dependent on IGF2R-domain-11 IGF2 binding.
Collapse
Affiliation(s)
- Jennifer Hughes
- Tumour Growth Group, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, OX1 3RE, Oxford, United Kingdom
| | - Mirvat Surakhy
- Tumour Growth Group, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, OX1 3RE, Oxford, United Kingdom
| | - Sermet Can
- Tumour Growth Group, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, OX1 3RE, Oxford, United Kingdom
| | - Martin Ducker
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, United Kingdom
| | - Nick Davies
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, United Kingdom
| | - Francis Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, United Kingdom
| | - Claudia Bühnemann
- Tumour Growth Group, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, OX1 3RE, Oxford, United Kingdom
| | - Emma Carter
- Tumour Growth Group, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, OX1 3RE, Oxford, United Kingdom
| | - Roman Trikin
- Tumour Growth Group, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, OX1 3RE, Oxford, United Kingdom
| | - Matthew P Crump
- Department of Organic and Biological Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Susana Frago
- Tumour Growth Group, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, OX1 3RE, Oxford, United Kingdom
| | - A Bassim Hassan
- Tumour Growth Group, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, OX1 3RE, Oxford, United Kingdom.
| |
Collapse
|
11
|
Herrlinger S, Shao Q, Yang M, Chang Q, Liu Y, Pan X, Yin H, Xie LW, Chen JF. Lin28-mediated temporal promotion of protein synthesis is crucial for neural progenitor cell maintenance and brain development in mice. Development 2019; 146:dev.173765. [PMID: 31064784 DOI: 10.1242/dev.173765] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 04/29/2019] [Indexed: 12/13/2022]
Abstract
Neural progenitor cells (NPCs) undergo rapid proliferation during neurulation. This rapid growth generates a high demand for mRNA translation in a timing-dependent manner, but its underlying mechanism remains poorly understood. Lin28 is an RNA-binding protein with two paralogs, Lin28a and Lin28b, in mammals. Mice with Lin28b deletion exhibit no developmental defects, whereas we have previously reported that Lin28a deletion leads to microcephaly. Here, we find that Lin28a/b double knockout (dKO) mice display neural tube defects (NTDs) coupled with reduced proliferation and precocious differentiation of NPCs. Using ribosomal protein 24 hypomorphic mice (Rpl24Bst/+ ) as a genetic tool to dampen global protein synthesis, we found that Lin28a-/-;Rpl24Bst/+ compound mutants exhibited NTDs resembling those seen in Lin28a/b dKO mice. Increased NPC numbers and brain sizes in Lin28a-overexpressing mice were rescued by Rpl24Bst/+ heterozygosity. Mechanistically, polysome profiling revealed reduced translation of genes involved in the regulation of cell cycle, ribosome biogenesis and translation in dKO mutants. Ribosome biogenesis was reduced in dKO and increased in Lin28a-overexpressing NPCs. Therefore, Lin28-mediated promotion of protein synthesis is essential for NPC maintenance and early brain development.
Collapse
Affiliation(s)
- Stephanie Herrlinger
- Center for Craniofacial and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.,Biomedical and Health Sciences Institute, Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Qiang Shao
- Center for Craniofacial and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Mei Yang
- Center for Craniofacial and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Qing Chang
- Center for Craniofacial and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yang Liu
- Center for Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Xiaohan Pan
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, People's Republic of China
| | - Hang Yin
- Center for Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Li-Wei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, People's Republic of China
| | - Jian-Fu Chen
- Center for Craniofacial and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
12
|
Tu C, Fiandalo MV, Pop E, Stocking JJ, Azabdaftari G, Li J, Wei H, Ma D, Qu J, Mohler JL, Tang L, Wu Y. Proteomic Analysis of Charcoal-Stripped Fetal Bovine Serum Reveals Changes in the Insulin-like Growth Factor Signaling Pathway. J Proteome Res 2018; 17:2963-2977. [PMID: 30014700 DOI: 10.1021/acs.jproteome.8b00135] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Charcoal-stripped fetal bovine serum (CS-FBS) is commonly used to study androgen responsiveness and androgen metabolism in cultured prostate cancer (CaP) cells. Switching CaP cells from FBS to CS-FBS may reduce the activity of androgen receptor (AR), inhibit cell proliferation, or modulate intracellular androgen metabolism. The removal of proteins by charcoal stripping may cause changes in biological functions and has not yet been investigated. Here we profiled proteins in FBS and CS-FBS using an ion-current-based quantitative platform consisting of reproducible surfactant-aided precipitation/on-pellet digestion, long-column nanoliquid chromatography separation, and ion-current-based analysis. A total of 143 proteins were identified in FBS, among which 14 proteins including insulin-like growth factor 2 (IGF-2) and IGF binding protein (IGFBP)-2 and -6 were reduced in CS-FBS. IGF-1 receptor (IGF1R) and insulin receptor were sensitized to IGFs in CS-FBS. IGF-1 and IGF-2 stimulation fully compensated for the loss of AR activity to maintain cell growth in CS-FBS. Endogenous production of IGF and IGFBPs was verified in CaP cells and clinical CaP specimens. This study provided the most comprehensive protein profiles of FBS and CS-FBS and offered an opportunity to identify new protein regulators and signaling pathways that regulate AR activity, androgen metabolism, and proliferation of CaP cells.
Collapse
Affiliation(s)
- Chengjian Tu
- Department of Pharmaceutical Sciences , State University of New York at Buffalo , 285 Kapoor Hall , Buffalo , New York 14260 , United States.,New York State Center of Excellence in Bioinformatics and Life Sciences , 701 Ellicott Street , Buffalo , New York 14203 , United States
| | - Michael V Fiandalo
- Department of Urology, Roswell Park Comprehensive Cancer Center , Elm and Carlton Streets , Buffalo , New York 14263 , United States
| | - Elena Pop
- Department of Urology, Roswell Park Comprehensive Cancer Center , Elm and Carlton Streets , Buffalo , New York 14263 , United States
| | - John J Stocking
- Department of Urology, Roswell Park Comprehensive Cancer Center , Elm and Carlton Streets , Buffalo , New York 14263 , United States
| | - Gissou Azabdaftari
- Department of Pathology, Roswell Park Comprehensive Cancer Center , Elm and Carlton Streets , Buffalo , New York 14263 , United States
| | - Jun Li
- Department of Pharmaceutical Sciences , State University of New York at Buffalo , 285 Kapoor Hall , Buffalo , New York 14260 , United States.,New York State Center of Excellence in Bioinformatics and Life Sciences , 701 Ellicott Street , Buffalo , New York 14203 , United States
| | - Hua Wei
- Department of Pharmacy, Changzheng Hospital , Second Military Medical University , 415 Fengyang Road , Shanghai 200003 , China
| | - Danjun Ma
- College of Mechanical Engineering , Dongguan University of Technology , 1 Daxue Road , Dongguan , Guangdong 523808 , China
| | - Jun Qu
- Department of Pharmaceutical Sciences , State University of New York at Buffalo , 285 Kapoor Hall , Buffalo , New York 14260 , United States.,New York State Center of Excellence in Bioinformatics and Life Sciences , 701 Ellicott Street , Buffalo , New York 14203 , United States
| | - James L Mohler
- Department of Urology, Roswell Park Comprehensive Cancer Center , Elm and Carlton Streets , Buffalo , New York 14263 , United States
| | - Li Tang
- Department of Cancer Prevention and Control , Roswell Park Comprehensive Cancer Center , Elm and Carlton Streets , Buffalo , New York 14263 , United States
| | - Yue Wu
- Department of Urology, Roswell Park Comprehensive Cancer Center , Elm and Carlton Streets , Buffalo , New York 14263 , United States
| |
Collapse
|
13
|
Uchimura T, Hollander JM, Nakamura DS, Liu Z, Rosen CJ, Georgakoudi I, Zeng L. An essential role for IGF2 in cartilage development and glucose metabolism during postnatal long bone growth. Development 2017; 144:3533-3546. [PMID: 28974642 DOI: 10.1242/dev.155598] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/15/2017] [Indexed: 12/18/2022]
Abstract
Postnatal bone growth involves a dramatic increase in length and girth. Intriguingly, this period of growth is independent of growth hormone and the underlying mechanism is poorly understood. Recently, an IGF2 mutation was identified in humans with early postnatal growth restriction. Here, we show that IGF2 is essential for longitudinal and appositional murine postnatal bone development, which involves proper timing of chondrocyte maturation and perichondrial cell differentiation and survival. Importantly, the Igf2 null mouse model does not represent a simple delay of growth but instead uncoordinated growth plate development. Furthermore, biochemical and two-photon imaging analyses identified elevated and imbalanced glucose metabolism in the Igf2 null mouse. Attenuation of glycolysis rescued the mutant phenotype of premature cartilage maturation, thereby indicating that IGF2 controls bone growth by regulating glucose metabolism in chondrocytes. This work links glucose metabolism with cartilage development and provides insight into the fundamental understanding of human growth abnormalities.
Collapse
Affiliation(s)
- Tomoya Uchimura
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA.,Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Judith M Hollander
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA.,Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Daisy S Nakamura
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA.,Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Zhiyi Liu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Clifford J Rosen
- Center for Clinical & Translational Research, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Li Zeng
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA .,Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.,Department of Orthopedics, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| |
Collapse
|
14
|
Maternal Choline Supplementation Alters Fetal Growth Patterns in a Mouse Model of Placental Insufficiency. Nutrients 2017; 9:nu9070765. [PMID: 28718809 PMCID: PMC5537879 DOI: 10.3390/nu9070765] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/07/2017] [Accepted: 07/14/2017] [Indexed: 01/07/2023] Open
Abstract
Impairments in placental development can adversely affect pregnancy outcomes. The bioactive nutrient choline may mitigate some of these impairments, as suggested by data in humans, animals, and human trophoblasts. Herein, we investigated the effects of maternal choline supplementation (MCS) on parameters of fetal growth in a Dlx3+/− (distal-less homeobox 3) mouse model of placental insufficiency. Dlx3+/− female mice were assigned to 1X (control), 2X, or 4X choline intake levels during gestation. Dams were sacrificed at embryonic days E10.5, 12.5, 15.5, and 18.5. At E10.5, placental weight, embryo weight, and placental efficiency were higher in 4X versus 1X choline. Higher concentrations of hepatic and placental betaine were detected in 4X versus 1X choline, and placental betaine was positively associated with embryo weight. Placental mRNA expression of Igf1 was downregulated by 4X (versus 1X) choline at E10.5. No differences in fetal growth parameters were detected at E12.5 and 15.5, whereas a small but significant reduction in fetal weight was detected at E18.5 in 4X versus 1X choline. MCS improved fetal growth during early pregnancy in the Dlx3+/− mice with the compensatory downregulation of Igf1 to slow growth as gestation progressed. Placental betaine may be responsible for the growth-promoting effects of choline.
Collapse
|
15
|
Penny MK, Finco I, Hammer GD. Cell signaling pathways in the adrenal cortex: Links to stem/progenitor biology and neoplasia. Mol Cell Endocrinol 2017; 445:42-54. [PMID: 27940298 PMCID: PMC5508551 DOI: 10.1016/j.mce.2016.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/17/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023]
Abstract
The adrenal cortex is a dynamic tissue responsible for the synthesis of steroid hormones, including mineralocorticoids, glucocorticoids, and androgens in humans. Advances have been made in understanding the role of adrenocortical stem/progenitor cell populations in cortex homeostasis and self-renewal. Recently, large molecular profiling studies of adrenocortical carcinoma (ACC) have given insights into proteins and signaling pathways involved in normal tissue homeostasis that become dysregulated in cancer. These data provide an impetus to examine the cellular pathways implicated in adrenocortical disease and study connections, or lack thereof, between adrenal homeostasis and tumorigenesis, with a particular focus on stem and progenitor cell pathways. In this review, we discuss evidence for stem/progenitor cells in the adrenal cortex, proteins and signaling pathways that may regulate these cells, and the role these proteins play in pathologic and neoplastic conditions. In turn, we also examine common perturbations in adrenocortical tumors (ACT) and how these proteins and pathways may be involved in adrenal homeostasis.
Collapse
Affiliation(s)
- Morgan K Penny
- Cancer Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - Isabella Finco
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gary D Hammer
- Cancer Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA; Endocrine Oncology Program, Comprehensive Cancer Center, University of Michigan Health System, 109 Zina Pitcher Place, 1528 BSRB, Ann Arbor, MI 48109, USA.
| |
Collapse
|
16
|
Wang Y, Gan G, Wang B, Wu J, Cao Y, Zhu D, Xu Y, Wang X, Han H, Li X, Ye M, Zhao J, Mi J. Cancer-associated Fibroblasts Promote Irradiated Cancer Cell Recovery Through Autophagy. EBioMedicine 2017; 17:45-56. [PMID: 28258923 PMCID: PMC5360585 DOI: 10.1016/j.ebiom.2017.02.019] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 12/12/2022] Open
Abstract
Tumor relapse after radiotherapy is a significant challenge to oncologists, even after recent the advances in technologies. Here, we showed that cancer-associated fibroblasts (CAFs), a major component of cancer stromal cells, promoted irradiated cancer cell recovery and tumor relapse after radiotherapy. We provided evidence that CAFs-produced IGF1/2, CXCL12 and β-hydroxybutyrate were capable of inducing autophagy in cancer cells post-radiation and promoting cancer cell recovery from radiation-induced damage in vitro and in vivo in mice. These CAF-derived molecules increased the level of reactive oxygen species (ROS) post-radiation, which enhanced PP2A activity, repressing mTOR activation and increasing autophagy in cancer cells. Consistently, the IGF2 neutralizing antibody and the autophagy inhibitor 3-MA reduce the CAF-promoted tumor relapse in mice after radiotherapy. Taken together, our findings demonstrated that CAFs promoted irradiated cancer cell recovery and tumor regrowth post-radiation, suggesting that targeting the autophagy pathway in tumor cells may be a promising therapeutic strategy for radiotherapy sensitization.
Collapse
Affiliation(s)
- Yongbin Wang
- Department of Biochemistry & Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China
| | - Guifang Gan
- Department of Biochemistry & Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China
| | - Bocheng Wang
- 9th Affiliated Hospital of Shanghai Jiao Tong University School of Medicine, China
| | - Jinliang Wu
- 9th Affiliated Hospital of Shanghai Jiao Tong University School of Medicine, China
| | - Yuan Cao
- Department of Biochemistry & Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China
| | - Dan Zhu
- 9th Affiliated Hospital of Shanghai Jiao Tong University School of Medicine, China
| | - Yan Xu
- Department of Biochemistry & Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China
| | - Xiaona Wang
- Department of Biochemistry & Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China
| | - Hongxiu Han
- 9th Affiliated Hospital of Shanghai Jiao Tong University School of Medicine, China
| | - Xiaoling Li
- NIEHS, National Institute of Health, United States
| | - Ming Ye
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, China.
| | - Jiangmin Zhao
- 9th Affiliated Hospital of Shanghai Jiao Tong University School of Medicine, China.
| | - Jun Mi
- Department of Biochemistry & Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China.
| |
Collapse
|
17
|
Segerer G, Hadamek K, Zundler M, Fekete A, Seifried A, Mueller MJ, Koentgen F, Gessler M, Jeanclos E, Gohla A. An essential developmental function for murine phosphoglycolate phosphatase in safeguarding cell proliferation. Sci Rep 2016; 6:35160. [PMID: 27731369 PMCID: PMC5059750 DOI: 10.1038/srep35160] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/26/2016] [Indexed: 12/20/2022] Open
Abstract
Mammalian phosphoglycolate phosphatase (PGP) is thought to target phosphoglycolate, a 2-deoxyribose fragment derived from the repair of oxidative DNA lesions. However, the physiological role of this activity and the biological function of the DNA damage product phosphoglycolate is unknown. We now show that knockin replacement of murine Pgp with its phosphatase-inactive PgpD34N mutant is embryonically lethal due to intrauterine growth arrest and developmental delay in midgestation. PGP inactivation attenuated triosephosphate isomerase activity, increased triglyceride levels at the expense of the cellular phosphatidylcholine content, and inhibited cell proliferation. These effects were prevented under hypoxic conditions or by blocking phosphoglycolate release from damaged DNA. Thus, PGP is essential to sustain cell proliferation in the presence of oxygen. Collectively, our findings reveal a previously unknown mechanism coupling a DNA damage repair product to the control of intermediary metabolism and cell proliferation.
Collapse
Affiliation(s)
- Gabriela Segerer
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, D-97078 Würzburg, Germany.,Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| | - Kerstin Hadamek
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, D-97078 Würzburg, Germany.,Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| | - Matthias Zundler
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, D-97078 Würzburg, Germany.,Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| | - Agnes Fekete
- Institute of Pharmaceutical Biology, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Annegrit Seifried
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, D-97078 Würzburg, Germany.,Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| | - Martin J Mueller
- Institute of Pharmaceutical Biology, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Frank Koentgen
- Ozgene Pty Ltd, PO Box 1128, Bentley DC, WA 6983, Australia
| | - Manfred Gessler
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Am Hubland, University of Würzburg, D-97074 Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University of Würzburg, Josef-Schneider-Strasse 6, D-97080 Würzburg, Germany
| | - Elisabeth Jeanclos
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, D-97078 Würzburg, Germany.,Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| | - Antje Gohla
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, D-97078 Würzburg, Germany.,Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| |
Collapse
|
18
|
Terauchi A, Johnson-Venkatesh EM, Bullock B, Lehtinen MK, Umemori H. Retrograde fibroblast growth factor 22 (FGF22) signaling regulates insulin-like growth factor 2 (IGF2) expression for activity-dependent synapse stabilization in the mammalian brain. eLife 2016; 5. [PMID: 27083047 PMCID: PMC4868541 DOI: 10.7554/elife.12151] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 04/14/2016] [Indexed: 02/06/2023] Open
Abstract
Communication between pre- and postsynaptic cells promotes the initial organization of synaptic specializations, but subsequent synaptic stabilization requires transcriptional regulation. Here we show that fibroblast growth factor 22 (FGF22), a target-derived presynaptic organizer in the mouse hippocampus, induces the expression of insulin-like growth factor 2 (IGF2) for the stabilization of presynaptic terminals. FGF22 is released from CA3 pyramidal neurons and organizes the differentiation of excitatory nerve terminals formed onto them. Local application of FGF22 on the axons of dentate granule cells (DGCs), which are presynaptic to CA3 pyramidal neurons, induces IGF2 in the DGCs. IGF2, in turn, localizes to DGC presynaptic terminals and stabilizes them in an activity-dependent manner. IGF2 application rescues presynaptic defects of Fgf22(-/-) cultures. IGF2 is dispensable for the initial presynaptic differentiation, but is required for the following presynaptic stabilization both in vitro and in vivo. These results reveal a novel feedback signal that is critical for the activity-dependent stabilization of presynaptic terminals in the mammalian hippocampus.
Collapse
Affiliation(s)
- Akiko Terauchi
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, United States
| | - Erin M Johnson-Venkatesh
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, United States
| | - Brenna Bullock
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, United States
| | - Maria K Lehtinen
- Department of Pathology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, United States
| | - Hisashi Umemori
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, United States
| |
Collapse
|
19
|
Abstract
Neural stem cells (NSCs) are found in two regions in the adult brain: the subgranular zone (SGZ) in the hippocampal dentate gyrus and the subventricular zone (SVZ) adjacent to the lateral ventricles. Similarly to other somatic stem cells, adult NSCs are found within specialized niches that are organized to facilitate NSC self-renewal. Alterations in stem-cell homeostasis can contribute to the consequences of neurodegenerative diseases, healthy ageing and tissue repair after damage. Insulin and the insulin-like growth factors (IGFs) function in stem-cell homeostasis across species. Studies in the mammalian central nervous system support essential roles for IGF and/or insulin signalling in NSC self-renewal, neurogenesis, cognition and sensory function through distinct ligand-receptor interactions. IGF-II is of particular interest as a result of its production by the choroid plexus and presence in cerebrospinal fluid (CSF). CSF regulates and supports the development, division and migration of cells in the adult brain and is required for NSC maintenance. In this Review, we discuss emerging data on the functions of IGF-II and IGF and/or insulin receptor signalling in the context of NSC regulation in the SVZ and SGZ. We also propose a model for IGF-II in which the choroid plexus is a major component of the NSC niche.
Collapse
Affiliation(s)
- Amber N Ziegler
- Department of Neurology &Neuroscience, New Jersey Medical School, Rutgers Biomedical &Health Sciences, Cancer Centre, 205 South Orange Avenue, Newark, NJ 07101, USA
| | - Steven W Levison
- Department of Neurology &Neuroscience, New Jersey Medical School, Rutgers Biomedical &Health Sciences, Cancer Centre, 205 South Orange Avenue, Newark, NJ 07101, USA
| | - Teresa L Wood
- Department of Neurology &Neuroscience, New Jersey Medical School, Rutgers Biomedical &Health Sciences, Cancer Centre, 205 South Orange Avenue, Newark, NJ 07101, USA
| |
Collapse
|
20
|
Madon-Simon M, Cowley M, Garfield AS, Moorwood K, Bauer SR, Ward A. Antagonistic roles in fetal development and adult physiology for the oppositely imprinted Grb10 and Dlk1 genes. BMC Biol 2014; 12:771. [PMID: 25551289 PMCID: PMC4280702 DOI: 10.1186/s12915-014-0099-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/07/2014] [Indexed: 12/14/2022] Open
Abstract
Background Despite being a fundamental biological problem the control of body size and proportions during development remains poorly understood, although it is accepted that the insulin-like growth factor (IGF) pathway has a central role in growth regulation, probably in all animals. The involvement of imprinted genes has also attracted much attention, not least because two of the earliest discovered were shown to be oppositely imprinted and antagonistic in their regulation of growth. The Igf2 gene encodes a paternally expressed ligand that promotes growth, while maternally expressed Igf2r encodes a cell surface receptor that restricts growth by sequestering Igf2 and targeting it for lysosomal degradation. There are now over 150 imprinted genes known in mammals, but no other clear examples of antagonistic gene pairs have been identified. The delta-like 1 gene (Dlk1) encodes a putative ligand that promotes fetal growth and in adults restricts adipose deposition. Conversely, Grb10 encodes an intracellular signalling adaptor protein that, when expressed from the maternal allele, acts to restrict fetal growth and is permissive for adipose deposition in adulthood. Results Here, using knockout mice, we present genetic and physiological evidence that these two factors exert their opposite effects on growth and physiology through a common signalling pathway. The major effects are on body size (particularly growth during early life), lean:adipose proportions, glucose regulated metabolism and lipid storage in the liver. A biochemical pathway linking the two cell signalling factors remains to be defined. Conclusions We propose that Dlk1 and Grb10 define a mammalian growth axis that is separate from the IGF pathway, yet also features an antagonistic imprinted gene pair. Electronic supplementary material The online version of this article (doi:10.1186/s12915-014-0099-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrew Ward
- Department of Biology & Biochemistry and Centre for Regenerative Medicine, University of Bath, Building 4 South, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
21
|
Song Y, Wu N, Wang S, Gao M, Song P, Lou J, Tan Y, Liu K. Transgenerational impaired male fertility with an Igf2 epigenetic defect in the rat are induced by the endocrine disruptor p,p'-DDE. Hum Reprod 2014; 29:2512-21. [PMID: 25187598 DOI: 10.1093/humrep/deu208] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION What are the epigenetic mechanisms underlying the transgenerational effect of p,p'-DDE on male fertility? SUMMARY ANSWER Impaired male fertility with an Igf2 epigenetic defect is transgenerationally inherited upon exposure of p,p'-DDE. WHAT IS KNOWN ALREADY p,p'-Dichlorodiphenoxydichloroethylene (p,p'-DDE) is one of the primary metabolite products of the ancestral organochlorine pesticide dichlorodiphenoxytrichloroethane. As it is a known anti-androgen endocrine disruptor, it could cause harmful effects on the male reproductive system. STUDY DESIGN, SIZE, DURATION Pregnant rats (F0) were administered with p,p'-DDE or corn oil at the critical time of testis development, i.e. from gestation days 8 to 15. Male and female rats of the F1 generation were mated with each other to produce F2 progeny. To reveal whether the transgenerational phenotype is produced by the maternal or paternal line, F3 progeny were generated by intercrossing control (C) and treated (DDE) males and females of the F2 generation according to the following groups: (i) C♂-C♀, (ii) DDE♂-DDE♀, (iii) DDE♂-C♀ and (iv) C♂-DDE♀. PARTICIPANTS/MATERIALS, SETTING, METHODS Mature sperm and testes were collected from male offspring of the F1-F3 generations for the examination of male fertility parameters, i.e. sperm count and motility, testis histology and apoptosis. Expression of the imprinted genes, H19 and Igf2, was detected by real-time PCR. Igf2 DMR2 methylation was analyzed by bisulfite genomic sequencing. MAIN RESULTS AND THE ROLE OF CHANCE Upon exposure of p,p'-DDE, the male F1 generation showed impaired male fertility and altered imprinted gene expression caused by Igf2 DMR2 hypomethylation. These defects were transferred to the F3 generation through the male germline. LIMITATIONS, REASONS FOR CAUTION This study has examined the effect of p,p'-DDE only on the sperm number and motility and the possible mechanism of Igf2 DMR2 methylation in vivo and thus has some limitations. Further investigation is necessary to focus on the epigenetic effects of p,p'-DDE at the genome level and to include a more detailed semen quality analysis including sperm morphology assessment. WIDER IMPLICATIONS OF THE FINDINGS Impaired male fertility with epigenetic alterations is transgenerationally inherited after environmental exposure of p,p'-DDE, posing significant implications in the etiology of male infertility. STUDY FUNDING/COMPETING INTERESTS The present research was supported by National Natural Science Fund for Young Scholar (81102161), the Natural Science Fund of Zhejiang Province (LY14H260004) and funding from the Health Department of Zhejiang Province (201475777). No competing interests are declared.
Collapse
Affiliation(s)
- Yang Song
- Hygiene Institute in Zhejiang Academy of Medical Sciences, 182 Tianmushan Road, Hangzhou 310013, China
| | - Nanxiang Wu
- Hygiene Institute in Zhejiang Academy of Medical Sciences, 182 Tianmushan Road, Hangzhou 310013, China
| | - Simeng Wang
- Hygiene Institute in Zhejiang Academy of Medical Sciences, 182 Tianmushan Road, Hangzhou 310013, China
| | - Ming Gao
- Hygiene Institute in Zhejiang Academy of Medical Sciences, 182 Tianmushan Road, Hangzhou 310013, China
| | - Peng Song
- Hygiene Institute in Zhejiang Academy of Medical Sciences, 182 Tianmushan Road, Hangzhou 310013, China
| | - Jianlin Lou
- Hygiene Institute in Zhejiang Academy of Medical Sciences, 182 Tianmushan Road, Hangzhou 310013, China
| | - Yufeng Tan
- Hygiene Institute in Zhejiang Academy of Medical Sciences, 182 Tianmushan Road, Hangzhou 310013, China
| | - Kecheng Liu
- Hygiene Institute in Zhejiang Academy of Medical Sciences, 182 Tianmushan Road, Hangzhou 310013, China
| |
Collapse
|
22
|
Induced chondrogenic differentiation of parthenogenetic murine embryonic stem cells by insulin-like growth factor 2 treatment in a three-dimensional culture environment. Tissue Eng Regen Med 2013. [DOI: 10.1007/s13770-013-1100-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
23
|
Maternal transmission of a humanised Igf2r allele results in an Igf2 dependent hypomorphic and non-viable growth phenotype. PLoS One 2013; 8:e57270. [PMID: 23468951 PMCID: PMC3585325 DOI: 10.1371/journal.pone.0057270] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 01/21/2013] [Indexed: 01/07/2023] Open
Abstract
The cation independent mannose 6-phosphate/insulin-like growth factor 2 receptor (IGF2R) functions in the transportation and regulation of insulin-like growth factor 2 (IGF2) and mannose 6-phosphate modified proteins. The relative and specific titration of IGF2 by high affinity binding of IGF2R represents a mechanism that supports the parental conflict theory of genomic imprinting. Imprinting of Igf2 (paternal allele expressed) and Igf2r (maternal allele expressed) arose to regulate the relative supply of both proteins. Experiments in the mouse have established that loss of the maternal allele of Igf2r results in disproportionate growth and peri-natal lethality. In order to systematically investigate the consequences of loss of function and of hypomorphic alleles of Igf2r on growth functions, we introduced a conditional human IGF2R exon 3–48 cDNA into the intron 2 region of murine Igf2r. Here we show that the knock-in construct resulted in over-growth when the humanised Igf2r allele was maternally transmitted, a phenotype that was rescued by either paternal transmission of the humanised allele, expression of a wild-type paternal allele or loss of function of Igf2. We also show that expression of IGF2R protein was reduced to less than 50% overall in tissues previously known to be Igf2 growth dependent. This occurred despite the detection of mouse derived peptides, suggesting that trans-splicing of the knock-in human cDNA with the endogenous maternal mouse Igf2r allele. The phenotype following maternal transmission of the humanised allele resulted in overgrowth of the embryo, heart and placenta with partial peri-natal lethality, suggesting that further generation of hypomorphic Igf2r alleles are likely to be at the borderline of maintaining Igf2 dependent viability.
Collapse
|
24
|
Kjaer-Sorensen K, Engholm DH, Kamei H, Morch MG, Kristensen AO, Zhou J, Conover CA, Duan C, Oxvig C. Pregnancy-associated plasma protein A (PAPP-A) modulates the early developmental rate in zebrafish independently of its proteolytic activity. J Biol Chem 2013; 288:9982-9992. [PMID: 23430244 DOI: 10.1074/jbc.m112.426304] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pregnancy-associated plasma protein-A (PAPP-A) is a large metalloproteinase specifically cleaving insulin-like growth factor (IGF) binding proteins, causing increased IGF bioavailability and, hence, local regulation of IGF receptor activation. We have identified two highly conserved zebrafish homologs of the human PAPP-A gene. Expression of zebrafish Papp-a, one of the two paralogs, begins during gastrulation and persists throughout the first week of development, and analyses demonstrate highly conserved patterns of expression between adult zebrafish, humans, and mice. We show that the specific knockdown of zebrafish papp-a limits the developmental rate beginning during gastrulation without affecting the normal patterning of the embryo. This phenotype is different from those resulting from deficiency of Igf receptor or ligand in zebrafish, suggesting a function of Papp-a outside of the Igf system. Biochemical analysis of recombinant zebrafish Papp-a demonstrates conservation of proteolytic activity, specificity, and the intrinsic regulatory mechanism. However, in vitro transcribed mRNA, which encodes a proteolytically inactive Papp-a mutant, recues the papp-a knockdown phenotype as efficiently as wild-type Papp-a. Thus, the developmental phenotype of papp-a knockdown is not a consequence of lacking Papp-a proteolytic activity. We conclude that Papp-a possesses biological functions independent of its proteolytic activity. Our data represent the first evidence for a non-proteolytic function of PAPP-A.
Collapse
Affiliation(s)
- Kasper Kjaer-Sorensen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Ditte H Engholm
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Hiroyasu Kamei
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48105
| | - Maria G Morch
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Anisette O Kristensen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Jianfeng Zhou
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48105
| | - Cheryl A Conover
- Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota 55905
| | - Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48105
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark.
| |
Collapse
|
25
|
Ziegler AN, Schneider JS, Qin M, Tyler WA, Pintar JE, Fraidenraich D, Wood TL, Levison SW. IGF-II promotes stemness of neural restricted precursors. Stem Cells 2012; 30:1265-76. [PMID: 22593020 DOI: 10.1002/stem.1095] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Insulin-like growth factor (IGF)-I and IGF-II regulate brain development and growth through the IGF type 1 receptor (IGF-1R). Less appreciated is that IGF-II, but not IGF-I, activates a splice variant of the insulin receptor (IR) known as IR-A. We hypothesized that IGF-II exerts distinct effects from IGF-I on neural stem/progenitor cells (NSPs) via its interaction with IR-A. Immunofluorescence revealed high IGF-II in the medial region of the subventricular zone (SVZ) comprising the neural stem cell niche, with IGF-II mRNA predominant in the adjacent choroid plexus. The IGF-1R and the IR isoforms were differentially expressed with IR-A predominant in the medial SVZ, whereas the IGF-1R was more abundant laterally. Similarly, IR-A was more highly expressed by NSPs, whereas the IGF-1R was more highly expressed by lineage restricted cells. In vitro, IGF-II was more potent in promoting NSP expansion than either IGF-I or standard growth medium. Limiting dilution and differentiation assays revealed that IGF-II was superior to IGF-I in promoting stemness. In vivo, NSPs propagated in IGF-II migrated to and took up residence in periventricular niches while IGF-I-treated NSPs predominantly colonized white matter. Knockdown of IR or IGF-1R using shRNAs supported the conclusion that the IGF-1R promotes progenitor proliferation, whereas the IR is important for self-renewal. Q-PCR revealed that IGF-II increased Oct4, Sox1, and FABP7 mRNA levels in NSPs. Our data support the conclusion that IGF-II promotes the self-renewal of neural stem/progenitors via the IR. By contrast, IGF-1R functions as a mitogenic receptor to increase precursor abundance.
Collapse
Affiliation(s)
- Amber N Ziegler
- Department of Neurology and Neuroscience, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Gebeshuber CA, Martinez J. miR-100 suppresses IGF2 and inhibits breast tumorigenesis by interfering with proliferation and survival signaling. Oncogene 2012; 32:3306-10. [DOI: 10.1038/onc.2012.372] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 06/19/2012] [Accepted: 07/09/2012] [Indexed: 12/19/2022]
|
27
|
Haley VL, Barnes DJ, Sandovici I, Constancia M, Graham CF, Pezzella F, Bühnemann C, Carter EJ, Hassan AB. Igf2 pathway dependency of the Trp53 developmental and tumour phenotypes. EMBO Mol Med 2012; 4:705-18. [PMID: 22674894 PMCID: PMC3494071 DOI: 10.1002/emmm.201101105] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 04/24/2012] [Accepted: 04/27/2012] [Indexed: 01/22/2023] Open
Abstract
Insulin-like growth factor 2 (IGF2) and the transformation related protein 53 (Trp53) are potent regulators of cell growth and metabolism in development and cancer. In vitro evidence suggests several mechanistic pathway interactions. Here, we tested whether loss of function of p53 leads to IGF2 ligand pathway dependency in vivo. Developmental lethality occurred in p53 homozygote null mice that lacked the paternal expressed allele of imprinted Igf2. Further lethality due to post-natal lung haemorrhage occurred in female progeny with Igf2 paternal null allele only if derived from double heterozygote null fathers, and was associated with a specific gene expression signature. Conditional deletion of Igf2(fl/fl) attenuated the rapid tumour onset promoted by homozygous deletion of p53(fl/fl) . Accelerated carcinoma and sarcoma tumour formation in p53(+/-) females with bi-allelic Igf2 expression was associated with reductions in p53 loss of heterozygosity and apoptosis. Igf2 genetic dependency of the p53 null phenotype during development and tumour formation suggests that targeting the IGF2 pathway may be useful in the prevention and treatment of human tumours with a disrupted Trp53 pathway.
Collapse
Affiliation(s)
- Victoria L Haley
- CR-UK Tumour Growth Group, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of OxfordOxford, UK
| | - David J Barnes
- CR-UK Tumour Growth Group, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of OxfordOxford, UK
| | - Ionel Sandovici
- University of Cambridge Metabolic Research Laboratories, Department of Obstetrics & Gynaecology, The Rosie HospitalRobinson Way, Cambridge, UK
- Centre for Trophoblast Research, University of CambridgeCambridge, UK
- National Institute of Health Research, Cambridge Biomedical Research CentreCambridge, UK
| | - Miguel Constancia
- University of Cambridge Metabolic Research Laboratories, Department of Obstetrics & Gynaecology, The Rosie HospitalRobinson Way, Cambridge, UK
- Centre for Trophoblast Research, University of CambridgeCambridge, UK
- National Institute of Health Research, Cambridge Biomedical Research CentreCambridge, UK
| | | | - Francesco Pezzella
- Nuffield Department of Clinical Laboratory Sciences, John Radcliffe HospitalOxford, UK
| | - Claudia Bühnemann
- CR-UK Tumour Growth Group, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of OxfordOxford, UK
| | - Emma J Carter
- CR-UK Tumour Growth Group, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of OxfordOxford, UK
| | - A Bassim Hassan
- CR-UK Tumour Growth Group, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of OxfordOxford, UK
| |
Collapse
|
28
|
Kang H, Sung J, Jung HM, Woo KM, Hong SD, Roh S. Insulin-Like Growth Factor 2 Promotes Osteogenic Cell Differentiation in the Parthenogenetic Murine Embryonic Stem Cells. Tissue Eng Part A 2012; 18:331-41. [DOI: 10.1089/ten.tea.2011.0074] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Hoin Kang
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute and CLS21, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Jihye Sung
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute and CLS21, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Hong-Moon Jung
- Department of Cell and Developmental Biology, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Kyung Mi Woo
- Department of Cell and Developmental Biology, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Seong-Doo Hong
- Department of Oral Pathology, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Sangho Roh
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute and CLS21, Seoul National University School of Dentistry, Seoul, Republic of Korea
| |
Collapse
|
29
|
Church DN, Phillips BR, Stuckey DJ, Barnes DJ, Buffa FM, Manek S, Clarke K, Harris AL, Carter EJ, Hassan AB. Igf2 ligand dependency of Pten(+/-) developmental and tumour phenotypes in the mouse. Oncogene 2011; 31:3635-46. [PMID: 22120709 PMCID: PMC3419984 DOI: 10.1038/onc.2011.526] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The tumour suppressor PTEN is a key negative regulator of the PI3K-Akt pathway, and is frequently either reduced or lost in human tumours. Murine genetic studies have confirmed that reduction of Pten promotes tumourigenesis in multiple organs, and demonstrated dependency of tumour development on the activation of downstream components such as Akt. Insulin-like growth factors (IGFs) act via IGF1R to activate the PI3K-Akt pathway, and are commonly upregulated in cancer. A context-dependent interplay between IGFs and PTEN exists in normal tissue and tumours; increased IGF2 ligand supply induces Pten expression creating an autoregulatory negative feedback loop, whereas complete loss of PTEN may either cooperate with IGF overexpression in tumour promotion, or result in desensitisation to IGF ligand. However, it remains unknown whether neoplasia associated with Pten loss is dependent on upstream IGF ligand supply in vivo. We evaluated this by generation of Pten+/− mice with differing allelic dosage of Igf2, an imprinted gene encoding the potent embryonic and tumour growth factor Igf2. We show that biallelic Igf2 supply potentiates a previously unreported Pten+/− placental phenotype and results in strain-dependent cardiac hyperplasia and neonatal lethality. Importantly, we also show that the effects of Pten loss in vivo are modified by Igf2 supply, as lack of Igf2 results in extended survival and delayed tumour development while biallelic supply is associated with reduced lifespan and accelerated neoplasia in females. Furthermore, we demonstrate that reduction of PTEN protein to heterozygote levels in human MCF7 cells is associated with increased proliferation in response to IGF2, and does not result in desensitisation to IGF2 signalling. These data indicate that the effects of Pten loss at heterozygote levels commonly observed in human tumours are modified by Igf2 ligand, and emphasise the importance of the evaluation of upstream pathways in tumours with Pten loss.
Collapse
Affiliation(s)
- D N Church
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Weyer K, Glerup S. Placental Regulation of Peptide Hormone and Growth Factor Activity by proMBP1. Biol Reprod 2011; 84:1077-86. [DOI: 10.1095/biolreprod.110.090209] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
31
|
Aberrant expression of imprinted genes in post-implantation rat embryos. Life Sci 2011; 88:634-43. [DOI: 10.1016/j.lfs.2011.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 01/06/2011] [Accepted: 01/20/2011] [Indexed: 11/19/2022]
|
32
|
Hardouin SN, Guo R, Romeo PH, Nagy A, Aubin JE. Impaired mesenchymal stem cell differentiation and osteoclastogenesis in mice deficient for Igf2-P2 transcripts. Development 2010; 138:203-13. [PMID: 21148188 DOI: 10.1242/dev.054916] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During embryonic development, Igf2 gene transcription is highly regulated through the use of several promoters whose specific roles are not defined. Here, we show that loss-of-function of one of these promoters, Igf2-P2, results in growth defects that are temporally and quantitatively different from those seen in Igf2-null mutants. In particular, Igf2-P2 mutants exhibit skeletal abnormalities characterized by thin and short bones with reduced mineralization and medullar cavity and with altered bone remodeling. These abnormalities are associated with decreased numbers of embryonic mesenchymal chondroprogenitors, adult mesenchymal stem cells and osteoprogenitors. Differentiation of osteoprogenitors into osteoblasts is impaired in the Igf2-P2 mutant mice in a cell-autonomous manner, and osteopontin is a target of the IGF2 signaling pathway during this differentiation. Igf2-P2 mutant mice also display impaired formation of giant osteoclasts owing to a defective micro-environment. These results support a model wherein transcriptional activity of the Igf2-P2 promoter regulates the fate of mesenchymal progenitors during bone development and remodeling in the adult, and regulates osteogenesis in a cell-autonomous and non-autonomous manner.
Collapse
|
33
|
Expression of Insulin-like Growth Factors in a Mouse Model of Salicylate Ototoxicity. Clin Exp Otorhinolaryngol 2010; 3:115-21. [PMID: 20978631 PMCID: PMC2958504 DOI: 10.3342/ceo.2010.3.3.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 07/17/2010] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVES Insulin-like growth factors (IGFs) are known to be neurotrophic factors, and they efficiently signal to cells to grow, differentiate and survive. The purpose of study was to identify the expressions of IGFs in mice with salicylate ototoxicity, which is a typical reversible hearing loss model. METHODS The mice were given intraperitoneal injections of salicylate (400 mg/kg) and about a 30 dB threshold shift was achieved at 3 hours. The expressions of IGF-1 and 2 were confirmed by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) and Western blotting. Localization of IGFs was confirmed using confocal immunofluorescence imaging. For in-vitro study on the HEI-OC1 auditory cells, the cell viability was calculated and the apoptotic features of the nuclei were observed with Hoechst staining. RESULTS The expressions of the IGFs mRNA and protein were significantly increased in the salicylate ototoxicity groups compared with that of the normal control group. Salicylate induced apoptosis and decreased viability of the HEI-OC1 auditory cells in a time- and dose-dependent manner. The expressions of IGFs were localized in the stria vascularis, and these IGFs play a protective role in the in-vivo condition of salicylate ototoxicity. CONCLUSION IGFs were highly expressed in the mice with salicylate ototoxicity, and this expression was mainly focused in the stria vascularis in the salicylate intoxicated mice. The systemic action of IGFs, which were expressed in the vascular-rich stria vascularis, can act as a major protective mechanism in a mouse model of salicylate ototoxicity.
Collapse
|
34
|
Pathak S, Saxena M, D'Souza R, Balasinor NH. Disrupted imprinting status at the H19 differentially methylated region is associated with the resorbed embryo phenotype in rats. Reprod Fertil Dev 2010; 22:939-48. [DOI: 10.1071/rd09154] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 01/20/2010] [Indexed: 12/17/2022] Open
Abstract
Igf2, an imprinted gene that is paternally expressed in embryos, encodes an embryonic growth factor. An important regulator of Igf2 expression is methylation of the H19 differentially methylated region (DMR). A significant association has been observed between sperm methylation status at the H19 DMR and post-implantation loss. In addition, tamoxifen treatment has been shown to increase post-implantation loss and reduce DNA methylation at the H19 DMR in rat spermatozoa. Because this DMR is a primary DMR transmitting epigenetic imprint information from the gametes to the embryo, the aim of the present study was to determine the imprinting status of H19 DMR in post-implantation normal and resorbed embryos (F1) and to compare it with the H19 DMR in the spermatozoa of the respective sires. Analysis of the H19 DMR revealed methylation errors in resorbed embryo that were also observed in their sires' spermatozoa in the control and tamoxifen-treated groups. Expression analysis of the reciprocally imprinted genes Igf2 and H19 showed significant downregulation of Igf2 protein without any effect on H19 transcript levels in the resorbed embryos. The results indicate an association between disrupted imprinting status at the H19 DMR in resorbed embryos and the spermatozoa from their respective sires regardless of treatment, implying a common mechanism of resorption. The results demonstrate transmission of methylation errors at the Igf2–H19 locus through the paternal germline to the subsequent generation, emphasising the role of paternal factors during embryogenesis.
Collapse
|
35
|
Tzouanacou E, Wegener A, Wymeersch FJ, Wilson V, Nicolas JF. Redefining the progression of lineage segregations during mammalian embryogenesis by clonal analysis. Dev Cell 2009; 17:365-76. [PMID: 19758561 DOI: 10.1016/j.devcel.2009.08.002] [Citation(s) in RCA: 313] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 06/24/2009] [Accepted: 08/11/2009] [Indexed: 10/20/2022]
Abstract
Clonal lineage information is fundamental in revealing cell fate choices. Using genetic single-cell labeling in utero, we investigated lineage segregations during anteroposterior axis formation in mouse. We show that while endoderm and surface ectoderm segregate during gastrulation, neural ectoderm and mesoderm share a common progenitor persisting through all stages of axis elongation. These data challenge the paradigm that the three germ layers, formed by gastrulation, constitute the primary branchpoints in differentiation of the pluripotent epiblast toward tissue-specific precursors. Bipotent neuromesodermal progenitors show self-renewing characteristics and may represent the cellular substrate coupling sustained axial elongation and coordinated differentiation of these tissues. These findings have important implications for the interpretation of the phenotypic defects of several mouse mutants and the directed differentiation of embryonic stem (ES) cells in vitro.
Collapse
Affiliation(s)
- Elena Tzouanacou
- Institut Pasteur, Département de Biologie du Développement, CNRS URA 2578, 25 rue du Dr. Roux, 75724 Paris cedex 15, France.
| | | | | | | | | |
Collapse
|
36
|
White YAR, Kyle JT, Wood AW. Targeted gene knockdown in zebrafish reveals distinct intraembryonic functions for insulin-like growth factor II signaling. Endocrinology 2009; 150:4366-75. [PMID: 19443571 DOI: 10.1210/en.2009-0356] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IGF-II is the predominant IGF ligand regulating prenatal growth in all vertebrates, including humans, but its central role in placental development has confounded efforts to fully elucidate its functions within the embryo. Here we use a nonplacental model vertebrate (zebrafish) to interrogate the intraembryonic functions of IGF-II signaling. The zebrafish genome contains two coorthologs of mammalian IGF2 (igf2a, igf2b), which exhibit distinct patterns of expression during embryogenesis. Expression of igf2a mRNA is restricted to the notochord, primarily during segmentation/neurulation. By contrast, igf2b mRNA is expressed in midline tissues adjacent to the notochord, with additional sites of expression in the ventral forebrain, and the pronephros. To identify their intraembryonic functions, we suppressed the expression of each gene with morpholino oligonucleotides. Knockdown of igf2a led to defects in dorsal midline development, characterized by delayed segmentation, notochord undulations, and ventral curvature. Similarly, suppression of igf2b led to defects in dorsal midline development but also induced ectopic fusion of the nephron primordia, and defects in ventral forebrain development. Subsequent onset of severe body edema in igf2b, but not igf2a morphants, further suggested a distinct role for igf2b in development of the embryonic kidney. Simultaneous knockdown of both genes increased the severity of dorsal midline defects, confirming a conserved role for both genes in dorsal midline development. Collectively, these data provide evidence that the zebrafish orthologs of IGF2 function in dorsal midline development during segmentation/neurulation, whereas one paralog, igf2b, has evolved additional, distinct functions during subsequent organogenesis.
Collapse
Affiliation(s)
- Yvonne A R White
- Vincent Center for Reproductive Biology, Vincent Obstetrics and Gynecology Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
37
|
Pravtcheva DD, Wise TL. Igf2r improves the survival and transmission ratio of Igf2 transgenic mice. Mol Reprod Dev 2008; 75:1678-87. [PMID: 18361416 DOI: 10.1002/mrd.20909] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mammals with excess insulin-like growth factor 2 (IGFII) during embryogenesis have developmental defects that can lead to perinatal lethality. In adults, higher levels of IGFII increase the risk of cancer and may accelerate the development of atherosclerosis. IGFII can be increased as a consequence of genetic abnormalities and polymorphisms, and through epigenetic mechanisms. Decreasing IGFII levels thus can benefit human health. Degradation of IGFII is mediated by the insulin-like growth factor type 2 receptor (IGF2R). The growth-stimulatory effects of IGFII, and their attenuation by the IGF2R, are considered important for the evolution of IGFII/IGF2R interaction and imprinting. The IGFII/IGF2R interactions during development have been previously examined in mice carrying knock-out alleles of these genes or their regulators. Here we tested the ability of the IGF2R to ameliorate the negative effects of IGFII on development and survival in crosses between Igf2 and Igf2r transgenic mice, which may be a better model for natural variations in the levels of these genes' products. A fraction of hemizygous Igf2 transgenic mice die in the perinatal period, some with cleft palates, with an ensuing reduction in the frequency of transgenic mice among the surviving offspring. The Igf2r transgene lowers the frequency of cleft palate and increases the percentage of Igf2 transgenic mice among the live offspring. These findings draw attention to the fact that Igf2-associated lethality selects for the retention of IGFII/IGF2R binding in present day mammals; it may have played a similar role in the acquisition of IGFII/IGF2R binding in ancient mammals.
Collapse
Affiliation(s)
- Dimitrina D Pravtcheva
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314, USA.
| | | |
Collapse
|
38
|
Coan PM, Fowden AL, Constancia M, Ferguson-Smith AC, Burton GJ, Sibley CP. Disproportional effects of Igf2 knockout on placental morphology and diffusional exchange characteristics in the mouse. J Physiol 2008; 586:5023-32. [PMID: 18755750 PMCID: PMC2614051 DOI: 10.1113/jphysiol.2008.157313] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 08/22/2008] [Indexed: 11/08/2022] Open
Abstract
Both complete knockout of the Igf2 gene (Igf2null(+/-)) and knockout of its placental specific transcript alone (Igf2P0(+/-)) lead to fetal growth restriction in mice. However, in the Igf2null(+/-) this growth restriction occurs concurrently in gestation with placental growth restriction, whereas, placental growth restriction precedes fetal growth restriction in the Igf2P0(+/-) mouse. Previous studies have shown that the Igf2P0(+/-) placenta has proportionate reductions in its cellular compartments and its diffusional exchange characteristics. Yet, nothing is known about the structural development or diffusional exchange characteristics of the Igf2null(+/-) mouse. Hence, this study compares the structural properties (using stereology) and diffusional exchange characteristics (using measurement of permeability-surface area product, P.S, of three inert hydrophilic tracers) of the Igf2null(+/-) and the Igf2P0(+/-) placenta to identify the role of Igf2 in the development of the labyrinthine exchange membrane and its functional consequences. Our data show disproportionate effects of complete Igf2 ablation on the compartments of the placenta, not seen when the placental-specific transcript alone is deleted. Furthermore, although the theoretical diffusing capacity (calculated from the stereological data) of the Igf2null(+/-) placenta was reduced relative to control, there was no effect of the complete knockout on permeability surface area available for small hydrophilic tracers. This is in contrast to the Igf2P0(+/-) placenta, where theoretical diffusion capacity and P.S values were reduced similarly. Total ablation of the Igf2 gene from the fetoplacental unit in the mouse therefore results in a disproportionate growth of placental compartments whereas, deleting the placental specific transcript of Igf2 alone results in proportional placental growth restriction. Thus, placental phenotype depends on the degree of Igf2 gene ablation and the interplay between placental and fetal Igf2 in the mouse.
Collapse
Affiliation(s)
- P M Coan
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK.
| | | | | | | | | | | |
Collapse
|
39
|
Pathak S, Kedia-Mokashi N, Saxena M, D'Souza R, Maitra A, Parte P, Gill-Sharma M, Balasinor N. Effect of tamoxifen treatment on global and insulin-like growth factor 2-H19 locus-specific DNA methylation in rat spermatozoa and its association with embryo loss. Fertil Steril 2008; 91:2253-63. [PMID: 18778817 DOI: 10.1016/j.fertnstert.2008.07.1709] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 06/13/2008] [Accepted: 07/09/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To determine the effect of tamoxifen treatment on global and insulin-like growth factor 2-H19 imprinting control region (Igf2-H19 ICR)-specific DNA methylation in rat spermatozoa and analyze its association with postimplantation loss. DESIGN Experimental prospective study. SETTING Animal research and academic research facility. SUBJECT(S) Male and female 75-day-old Holtzman rats. INTERVENTION(S) Global and Igf2-H19 ICR-specific DNA methylation was analyzed in an epididymal sperm sample in control and tamoxifen-treated rats at a dose of 0.4 mg tamoxifen/kg/day. DNA methylation status was correlated to postimplantation loss in females mated with tamoxifen-treated males. MAIN OUTCOME MEASURE(S) Global sperm DNA methylation level, methylation status of Igf2-H19 ICR in sperm, postimplantation loss. RESULT(S) Tamoxifen treatment significantly reduced methylation at Igf2-H19 ICR in epididymal sperm. However, the global methylation level was not altered. A mating experiment confirmed a significant increase in postimplantation loss upon tamoxifen treatment and showed significant correlation with methylation at Igf2-H19 ICR. CONCLUSION(S) Reduced DNA methylation at Igf2-H19 ICR in rat spermatozoa upon tamoxifen treatment indicated a role of estrogen-associated signaling in the acquisition of paternal-specific imprints during spermatogenesis. In addition, association between DNA methylation and postimplantation loss suggests that errors in paternal imprints at Igf2-H19 ICR could affect embryo development.
Collapse
Affiliation(s)
- Shilpa Pathak
- National Institute for Research in Reproductive Health, Indian Council for Medical Research, Mumbai, India
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Jacobs CI. A review of the role of insulin-like growth factor 2 in malignancy and its potential as a modifier of radiation sensitivity. Clin Oncol (R Coll Radiol) 2008; 20:345-52. [PMID: 18359210 DOI: 10.1016/j.clon.2008.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 01/31/2008] [Accepted: 02/04/2008] [Indexed: 11/28/2022]
Abstract
The insulin-like growth factor system is known to be associated with malignancy and represents a potential therapeutic target. This review discusses the evidence associating ligand and signalling receptor expression with malignancy and radioresistance, which may be relevant to tumour predisposition, growth and resistance to treatment. In particular, evidence relating to the less evaluated ligand insulin-like growth factor 2 is considered.
Collapse
Affiliation(s)
- C I Jacobs
- Department of Cellular and Molecular Medicine, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK. <>
| |
Collapse
|
41
|
Ager EI, Pask AJ, Shaw G, Renfree MB. Expression and protein localisation of IGF2 in the marsupial placenta. BMC DEVELOPMENTAL BIOLOGY 2008; 8:17. [PMID: 18284703 PMCID: PMC2276195 DOI: 10.1186/1471-213x-8-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 02/20/2008] [Indexed: 01/02/2023]
Abstract
Background In eutherian mammals, genomic imprinting is critical for normal placentation and embryo survival. Insulin-like growth factor 2 (IGF2) is imprinted in the placenta of both eutherians and marsupials, but its function, or that of any imprinted gene, has not been investigated in any marsupial. This study examines the role of IGF2 in the yolk sac placenta of the tammar wallaby, Macropus eugenii. Results IGF2 mRNA and protein were produced in the marsupial placenta. Both IGF2 receptors were present in the placenta, and presumably mediate IGF2 mitogenic actions. IGF2 mRNA levels were highest in the vascular region of the yolk sac placenta. IGF2 increased vascular endothelial growth factor expression in placental explant cultures, suggesting that IGF2 promotes vascularisation of the yolk sac. Conclusion This is the first demonstration of a physiological role for any imprinted gene in marsupial placentation. The conserved imprinting of IGF2 in this marsupial and in all eutherian species so far investigated, but not in monotremes, suggests that imprinting of this gene may have originated in the placenta of the therian ancestor.
Collapse
Affiliation(s)
- Eleanor I Ager
- Department of Zoology, The University of Melbourne, Melbourne, Victoria, 3010, Australia.
| | | | | | | |
Collapse
|
42
|
Kawahara M, Wu Q, Ferguson-Smith AC, Kono T. Appropriate expression of imprinted genes on mouse chromosome 12 extends development of bi-maternal embryos to term. FEBS Lett 2007; 581:5178-84. [PMID: 17959172 DOI: 10.1016/j.febslet.2007.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 09/25/2007] [Accepted: 10/01/2007] [Indexed: 11/17/2022]
Abstract
Recently, we reported that the restored regulation of imprinted gene expression from two regions -H19 differentially methylated region (H19-DMR) and intergenic germline-derived DMR (IG-DMR) - is sufficient for accomplishing full-term development in mice. In the present study, we determined the developmental ability of the bi-maternal embryos (BMEs) containing the non-growing oocyte genome with the IG-DMR deletion (ng(Deltach12)) and fully-grown (fg) oocyte genome. Foetuses derived from ng(Deltach12)/fg BMEs were alive at E19.5 but could not survive further. Comparison with BMEs derived from Igf2+/- ng/fg genomes suggests that bi-allelic H19 expression might be involved in foetal development.
Collapse
Affiliation(s)
- Manabu Kawahara
- Department of BioScience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | | | | | | |
Collapse
|
43
|
Burns JL, Soothill P, Hassan AB. Allometric growth ratios are independent of Igf2 gene dosage during development. Evol Dev 2007; 9:155-64. [PMID: 17371398 DOI: 10.1111/j.1525-142x.2007.00146.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the mouse, allelic dosage of the paternally expressed gene coding for insulin-like growth factor II (Igf2), from null to bi-allelic, results in dose-dependent growth, an effect which appears to be fully established during a discrete period of embryogenesis that then persists throughout life. Here, we specifically quantify the influence of Igf2 allelic dosage on the proportionality of regional embryonic growth rather than overall growth. Remarkably, preservation of allometric growth ratios between head and body regions were observed throughout development, irrespective of the range of overall growth phenotype (60-130% of wild type). Evaluation of log-log plots suggests that each allele of Igf2 expressed corresponds to the equivalent of 2-4 days of relative growth. Igf2 is predominantly expressed in extra-embryonic mesoderm (E7.5-E8.25), 24 h before alterations in cell number are known to occur in embryos with disruption of the paternally expressed allele. We hypothesized that the preservation of proportionality may result from modification of extra-embryonic development and subsequent alteration of systemic nutritional supply. Morphological analyses of chorio-allantoic and placental development between E9 and E9.5 appeared Igf2 independent. This suggests either an intrinsic but systemic Igf2-dependent activity within the embryo or a more complex developmental mechanism accounts for the proportional phenotype. Allelic IGF2 expression is subject to stochastic variation in humans, with 10% of the population estimated to be functionally bi-allelic. Evaluation of allometric growth of normal and pathological human embryos, suggest intra-uterine growth phenotypes associated with altered IGF2 imprinting are also likely to be proportionate.
Collapse
Affiliation(s)
- Jason L Burns
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 905, UK
| | | | | |
Collapse
|
44
|
Boldt HB, Conover CA. Pregnancy-associated plasma protein-A (PAPP-A): a local regulator of IGF bioavailability through cleavage of IGFBPs. Growth Horm IGF Res 2007; 17:10-18. [PMID: 17218136 DOI: 10.1016/j.ghir.2006.11.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pregnancy-associated plasma protein-A (PAPP-A) was originally isolated in 1974, as one of four proteins of placental origin found in high concentrations in the blood of pregnant women. In the early 1990s several laboratories reported novel protease activity against insulin-like growth factor binding protein-4 (IGFBP-4) in media conditioned by several cell types. This activity was unique, as it appeared to require the presence of IGF to cleave IGFBP-4. In 1999, this IGF-dependent IGFBP-4 protease activity was isolated from human fibroblast conditioned media and identified as PAPP-A. Subsequently, PAPP-A was shown to be expressed by a variety of cell types, and thus no longer could be considered to be just "pregnancy-associated". This review will describe what is currently known about the structure of PAPP-A and about its function as an IGFBP protease, with a focus on new insights obtained through study of a PAPP-A knock-out mouse model and on potential clinical applications.
Collapse
Affiliation(s)
- Henning B Boldt
- Division of Endocrinology, Metabolism, and Nutrition, Department of Internal Medicine, Mayo Clinic College of Medicine, 200 First Street SW, 5-194 Joseph, Rochester, MN 55905, USA
| | | |
Collapse
|
45
|
Abstract
Breast cancer may originate in utero. We reviewed the available evidence on the association between birthweight and the risk of breast cancer. To date, 26 research papers addressing this issue have been published. The majority of studies identified a positive link between birthweight and premenopausal, but not postmenopausal, breast cancer. The relative risk estimate for breast cancer comparing women with high birthweight to women with low birthweight combining all studies including both pre- and postmenopausal breast cancer was 1.23 (95% confidence interval 1.13-1.34). The mechanisms underlying this association likely include elevated levels of growth factors that may increase the number of susceptible stem cells in the mammary gland or initiate tumors through DNA mutations. Loss of imprinting (LOI) of growth hormone genes relevant for intrauterine growth, such as insulin-like growth factor 2 (IGF2), leads to abnormally high levels of these hormones evidenced by high birthweight. LOI of IGF2 has also been found in mammary tumor tissue. The role of environmental factors that stimulate such epigenetic regulation of gene expression remains to be elucidated.
Collapse
Affiliation(s)
- Karin B Michels
- Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
46
|
Brown D, Yu BD, Joza N, Bénit P, Meneses J, Firpo M, Rustin P, Penninger JM, Martin GR. Loss of Aif function causes cell death in the mouse embryo, but the temporal progression of patterning is normal. Proc Natl Acad Sci U S A 2006; 103:9918-23. [PMID: 16788063 PMCID: PMC1502554 DOI: 10.1073/pnas.0603950103] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Apoptosis-inducing factor (AIF) is an evolutionarily conserved, ubiquitously expressed flavoprotein with NADH oxidase activity that is normally confined to mitochondria. In mammalian cells, AIF is released from mitochondria in response to apoptotic stimuli and translocates to the nucleus where it is thought to bind DNA and contribute to chromatinolysis and cell death in a caspase-independent manner. Here we describe the consequences of inactivating Aif in the early mouse embryo. Unexpectedly, we found that both the apoptosis-dependent process of cavitation in embryoid bodies and apoptosis associated with embryonic neural tube closure occur in the absence of AIF, indicating that Aif function is not required for apoptotic cell death in early mouse embryos. By embryonic day 9 (E9), loss of Aif function causes abnormal cell death, presumably because of reduced mitochondrial respiratory chain complex I activity. Because of this cell death, Aif null embryos fail to increase significantly in size after E9. Remarkably, patterning processes continue on an essentially normal schedule, such that E10 Aif null embryos with only approximately 1/10 the normal number of cells have the same somite number as their wild-type littermates. These observations show that pattern formation in the mouse can occur independent of embryo size and cell number.
Collapse
Affiliation(s)
| | | | - Nicholas Joza
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
- Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, ON, Canada M5S 3G3
| | - Paule Bénit
- Institut National de la Santé et de la Recherche Médicale, U676, F-75019 Paris, France; and
- **Faculté de Médecine Denis Diderot, Université Paris, IFR02, F-75005 Paris, France
| | - Juanito Meneses
- Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143
| | - Meri Firpo
- Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 94143
| | - Pierre Rustin
- Institut National de la Santé et de la Recherche Médicale, U676, F-75019 Paris, France; and
- **Faculté de Médecine Denis Diderot, Université Paris, IFR02, F-75005 Paris, France
| | - Josef M. Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
- Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, ON, Canada M5S 3G3
| | | |
Collapse
|
47
|
Zaccheo OJ, Prince SN, Miller DM, Williams C, Kemp CF, Brown J, Jones EY, Catto LE, Crump MP, Hassan AB. Kinetics of Insulin-like Growth Factor II (IGF-II) Interaction with Domain 11 of the Human IGF-II/Mannose 6-phosphate Receptor: Function of CD and AB Loop Solvent-exposed Residues. J Mol Biol 2006; 359:403-21. [PMID: 16631789 DOI: 10.1016/j.jmb.2006.03.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 03/08/2006] [Accepted: 03/21/2006] [Indexed: 01/01/2023]
Abstract
Ligands of the IGF-II/mannose 6-phosphate receptor (IGF2R) include IGF-II and mannose 6-phosphate modified proteins. Disruption of the negative regulatory effects of IGF2R on IGF-II-induced growth can lead to embryonic lethality and cancer promotion. Of the 15 IGF2R extracellular domains, domains 1-3 and 11 are known to have a conserved beta-barrel structure similar to that of avidin and the cation-dependent mannose 6-phosphate receptor, yet only domain 11 binds IGF-II with high specificity and affinity. In order to define the functional basis of this critical biological interaction, we performed alanine mutagenesis of structurally determined solvent-exposed loop residues of the IGF-II-binding site of human domain 11, expressed these mutant forms in Pichia pastoris, and determined binding kinetics with human IGF-II using isothermal calorimetry and surface plasmon resonance with transition state thermodynamics. Two hydrophobic residues in the CD loop (F1567 and I1572) were essential for binding, with a further non-hydrophobic residue (T1570) that slows the dissociation rate. Aside from alanine mutations of AB loop residues that decrease affinity by modifying dissociation rates (e.g. Y1542), a novel mutation (E1544A) of the AB loop enhanced affinity by threefold compared to wild-type. Conversion from an acidic to a basic residue at this site (E1544K) results in a sixfold enhancement of affinity via modification principally of the association rate, with enhanced salt-dependence, decreased entropic barrier and retained specificity. These data suggest that a functional hydrophobic binding site core is formed by I1572 and F1567 located in the CD loop, which initially anchors IGF-II. Within the AB loop, residues normally act to either stabilise or function as negative regulators of the interaction. These findings have implications for the molecular architecture and evolution of the domain 11 IGF-II-binding site, and the potential interactions with other domains of IGF2R.
Collapse
Affiliation(s)
- Oliver J Zaccheo
- Cancer Research UK Molecular Oncology and Growth Factor Research Group, Department of Cellular and Molecular Medicine, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Harper J, Burns JL, Foulstone EJ, Pignatelli M, Zaina S, Hassan AB. Soluble IGF2 receptor rescues Apc(Min/+) intestinal adenoma progression induced by Igf2 loss of imprinting. Cancer Res 2006; 66:1940-8. [PMID: 16488992 DOI: 10.1158/0008-5472.can-05-2036] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The potent growth-promoting activity of insulin-like growth factor-II (IGF-II) is highly regulated during development but frequently up-regulated in tumors. Increased expression of the normally monoallelic (paternally expressed) mouse (Igf2) and human (IGF2) genes modify progression of intestinal adenoma in the Apc(Min/+) mouse and correlate with a high relative risk of human colorectal cancer susceptibility, respectively. We examined the functional consequence of Igf2 allelic dosage (null, monoallelic, and biallelic) on intestinal adenoma development in the Apc(Min/+) by breeding with mice with either disruption of Igf2 paternal allele or H19 maternal allele and used these models to evaluate an IGF-II-specific therapeutic intervention. Increased allelic Igf2 expression led to elongation of intestinal crypts, increased adenoma growth independent of systemic growth, and increased adenoma nuclear beta-catenin staining. By introducing a transgene expressing a soluble form of the full-length IGF-II/mannose 6-phosphate receptor (sIGF2R) in the intestine, which acts as a specific inhibitor of IGF-II ligand bioavailability (ligand trap), we show rescue of the Igf2-dependent intestinal and adenoma phenotype. This evidence shows the functional potency of allelic dosage of an epigenetically regulated gene in cancer and supports the application of an IGF-II ligand-specific therapeutic intervention in colorectal cancer.
Collapse
Affiliation(s)
- James Harper
- Department of Cellular and Molecular Medicine, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
| | | | | | | | | | | |
Collapse
|
49
|
Smith FM, Garfield AS, Ward A. Regulation of growth and metabolism by imprinted genes. Cytogenet Genome Res 2006; 113:279-91. [PMID: 16575191 DOI: 10.1159/000090843] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Accepted: 07/21/2005] [Indexed: 01/05/2023] Open
Abstract
A small sub-set of mammalian genes are subject to regulation by genomic imprinting such that only one parental allele is active in at least some sites of expression. Imprinted genes have diverse functions, notably including the regulation of growth. Much attention has been devoted to the insulin-like growth factor signalling pathway that has a major influence on fetal size and contains two components encoded by the oppositely imprinted genes, Igf2 (a growth promoting factor expressed from the paternal allele) and Igf2r (a growth inhibitory factor expressed from the maternal allele). These genes fit the parent-offspring conflict hypothesis for the evolution of genomic imprinting. Accumulated evidence indicates that at least one other fetal growth pathway exists that has also fallen under the influence of imprinting. It is clear that not all components of growth regulatory pathways are encoded by imprinted genes and instead it may be that within a pathway the influence of a single gene by each of the parental genomes may be sufficient for parent-offspring conflict to be enacted. A number of imprinted genes have been found to influence energy homeostasis and some, including Igf2 and Grb10, may coordinate growth with glucose-regulated metabolism. Since perturbation of fetal growth can be correlated with metabolic disorders in adulthood these imprinted genes are considered as candidates for involvement in this phenomenon of fetal programming.
Collapse
Affiliation(s)
- F M Smith
- Centre for Regenerative Medicine and Developmental Biology Programme, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | | | | |
Collapse
|
50
|
Ahmad AM, Burns J, Gardner R, Graham C. Delayed and disturbed morphogenesis of the umbilical blood vessels in insulin-like growth factor-II deficient conceptuses (Igf2m+/p-). Dev Dyn 2005; 233:88-94. [PMID: 15765507 DOI: 10.1002/dvdy.20320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Insulin-like growth factor-II (IGF-II) deficiency occurs when a conceptus inherits an inactive gene from the father (Igf2m+/p-): fetal wet weight is reduced to 60% of wild-type, with the decline starting at E11. The umbilical cord vessels of mutant and wild-type were compared. At E8.0-E8.5, the timing of somite formation and chorioallantoic fusion was not altered. At E14.5-E16.5, the left umbilical artery degenerated approximately 1 day later in Igf2m+/p- conceptuses when compared with the wild-type. In the common umbilical artery at E15.5, muscle volume was reduced by one third in IGF-II deficiency. Treating the umbilical arteries as ideal tubes, the values of radius(4)/length suggest that blood flow through the placenta may be reduced by more than half in the Igf2m+/p- conceptuses.
Collapse
|