1
|
Peláez JN, Gloss AD, Ray JF, Chaturvedi S, Haji D, Charboneau JLM, Verster KI, Whiteman NK. Evolution and genomic basis of the plant-penetrating ovipositor: a key morphological trait in herbivorous Drosophilidae. Proc Biol Sci 2022; 289:20221938. [PMID: 36350206 PMCID: PMC9653217 DOI: 10.1098/rspb.2022.1938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Herbivorous insects are extraordinarily diverse, yet are found in only one-third of insect orders. This skew may result from barriers to plant colonization, coupled with phylogenetic constraint on plant-colonizing adaptations. The plant-penetrating ovipositor, however, is one trait that surmounts host plant physical defences and may be evolutionarily labile. Ovipositors densely lined with hard bristles have evolved repeatedly in herbivorous lineages, including within the Drosophilidae. However, the evolution and genetic basis of this innovation has not been well studied. Here, we focused on the evolution of this trait in Scaptomyza, a genus sister to Hawaiian Drosophila, that contains a herbivorous clade. Our phylogenetic approach revealed that ovipositor bristle number increased as herbivory evolved in the Scaptomyza lineage. Through a genome-wide association study, we then dissected the genomic architecture of variation in ovipositor bristle number within S. flava. Top-associated variants were enriched for transcriptional repressors, and the strongest associations included genes contributing to peripheral nervous system development. Individual genotyping supported the association at a variant upstream of Gαi, a neural development gene, contributing to a gain of 0.58 bristles/major allele. These results suggest that regulatory variation involving conserved developmental genes contributes to this key morphological trait involved in plant colonization.
Collapse
Affiliation(s)
- Julianne N. Peláez
- Department of Integrative Biology, University of California, Berkeley, 94720 CA, USA
| | - Andrew D. Gloss
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, NY 10012, USA,Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Julianne F. Ray
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Samridhi Chaturvedi
- Department of Integrative Biology, University of California, Berkeley, 94720 CA, USA
| | - Diler Haji
- Department of Integrative Biology, University of California, Berkeley, 94720 CA, USA
| | | | - Kirsten I. Verster
- Department of Integrative Biology, University of California, Berkeley, 94720 CA, USA
| | - Noah K. Whiteman
- Department of Integrative Biology, University of California, Berkeley, 94720 CA, USA,Department of Molecular and Cell Biology, University of California, Berkeley, 94720 CA, USA
| |
Collapse
|
2
|
Schweisguth F. Asymmetric cell division in the Drosophila bristle lineage: from the polarization of sensory organ precursor cells to Notch-mediated binary fate decision. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:299-309. [PMID: 25619594 PMCID: PMC4671255 DOI: 10.1002/wdev.175] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 12/11/2014] [Accepted: 12/19/2014] [Indexed: 12/26/2022]
Abstract
Asymmetric cell division (ACD) is a simple and evolutionary conserved process whereby a mother divides to generate two daughter cells with distinct developmental potentials. This process can generate cell fate diversity during development. Fate asymmetry may result from the unequal segregation of molecules and/or organelles between the two daughter cells. Here, I will review how fate asymmetry is regulated in the sensory bristle lineage in Drosophila and focus on the molecular mechanisms underlying ACD of the sensory organ precursor cells (SOPs). WIREs Dev Biol 2015, 4:299–309. doi: 10.1002/wdev.175 For further resources related to this article, please visit theWIREs website. Conflict of interest: The author has declared no conflicts of interest for this article.
Collapse
|
3
|
Jiang Y, Boll W, Noll M. Pox neuro control of cell lineages that give rise to larval poly-innervated external sensory organs in Drosophila. Dev Biol 2014; 397:162-74. [PMID: 25446278 DOI: 10.1016/j.ydbio.2014.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 12/23/2022]
Abstract
The Pox neuro (Poxn) gene of Drosophila plays a crucial role in the development of poly-innervated external sensory (p-es) organs. However, how Poxn exerts this role has remained elusive. In this study, we have analyzed the cell lineages of all larval p-es organs, namely of the kölbchen, papilla 6, and hair 3. Surprisingly, these lineages are distinct from any previously reported cell lineages of sensory organs. Unlike the well-established lineage of mono-innervated external sensory (m-es) organs and a previously proposed model of the p-es lineage, we demonstrate that all wild-type p-es lineages exhibit the following features: the secondary precursor, pIIa, gives rise to all three support cells-socket, shaft, and sheath, whereas the other secondary precursor, pIIb, is neuronal and gives rise to all neurons. We further show that in one of the p-es lineages, that of papilla 6, one cell undergoes apoptosis. By contrast in Poxn null mutants, all p-es lineages have a reduced number of cells and their pattern of cell divisions is changed to that of an m-es organ, with the exception of a lineage in a minority of mutant kölbchen that retains a second bipolar neuron. Indeed, the role of Poxn in p-es lineages is consistent with the specification of the developmental potential of secondary precursors and the regulation of cell division but not apoptosis.
Collapse
Affiliation(s)
- Yanrui Jiang
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Werner Boll
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Markus Noll
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland.
| |
Collapse
|
4
|
Singhania A, Grueber WB. Development of the embryonic and larval peripheral nervous system of Drosophila. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 3:193-210. [PMID: 24896657 DOI: 10.1002/wdev.135] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/19/2014] [Accepted: 03/05/2014] [Indexed: 01/01/2023]
Abstract
The peripheral nervous system (PNS) of embryonic and larval stage Drosophila consists of diverse types of sensory neurons positioned along the body wall. Sensory neurons, and associated end organs, show highly stereotyped locations and morphologies. Many powerful genetic tools for gene manipulation available in Drosophila make the PNS an advantageous system for elucidating basic principles of neural development. Studies of the Drosophila PNS have provided key insights into molecular mechanisms of cell fate specification, asymmetric cell division, and dendritic morphogenesis. A canonical lineage gives rise to sensory neurons and associated organs, and cells within this lineage are diversified through asymmetric cell divisions. Newly specified sensory neurons develop specific dendritic patterns, which are controlled by numerous factors including transcriptional regulators, interactions with neighboring neurons, and intracellular trafficking systems. In addition, sensory axons show modality specific terminations in the central nervous system, which are patterned by secreted ligands and their receptors expressed by sensory axons. Modality-specific axon projections are critical for coordinated larval behaviors. We review the molecular basis for PNS development and address some of the instances in which the mechanisms and molecules identified are conserved in vertebrate development.
Collapse
Affiliation(s)
- Aditi Singhania
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
| | | |
Collapse
|
5
|
Culurgioni S, Mapelli M. Going vertical: functional role and working principles of the protein Inscuteable in asymmetric cell divisions. Cell Mol Life Sci 2013; 70:4039-46. [PMID: 23516018 PMCID: PMC11113624 DOI: 10.1007/s00018-013-1319-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 02/27/2013] [Accepted: 03/04/2013] [Indexed: 11/30/2022]
Abstract
Coordinating mitotic spindle dynamics with cortical polarity is essential for stem cell asymmetric divisions. Over the years, the protein Inscuteable (Insc) has emerged as a key element determining the spindle orientation in asymmetric mitoses. Its overexpression increases differentiative divisions in systems as diverse as mouse keratinocytes and radial glial cells. To date, the molecular explanation to account for this phenotype envisioned Insc as an adaptor molecule bridging between the polarity proteins Par3:Par6:aPKC and the spindle pulling machines assembled on NuMA:LGN:Gαi. However, recent biochemical and structural data revealed that Insc and NuMA are competitive interactors of LGN, challenging the simplistic idea of a single apical macromolecular complex, and demanding a revision of the actual working principles of Insc.
Collapse
Affiliation(s)
- Simone Culurgioni
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Marina Mapelli
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| |
Collapse
|
6
|
Sun J, Spradling AC. NR5A nuclear receptor Hr39 controls three-cell secretory unit formation in Drosophila female reproductive glands. Curr Biol 2012; 22:862-71. [PMID: 22560612 PMCID: PMC3397175 DOI: 10.1016/j.cub.2012.03.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 03/11/2012] [Accepted: 03/13/2012] [Indexed: 12/31/2022]
Abstract
BACKGROUND Secretions within the adult female reproductive tract mediate sperm survival, storage, activation, and selection. Drosophila female reproductive gland secretory cells reside within the adult spermathecae and parovaria, but their development remains poorly characterized. RESULTS With cell-lineage tracing, we found that precursor cells downregulate lozenge and divide stereotypically to generate three-cell secretory units during pupal development. The NR5A-class nuclear hormone receptor Hr39 is essential for precursor cell division and secretory unit formation. Moreover, ectopic Hr39 in multiple tissues generates reproductive gland-like primordia. Rarely, in male genital discs these primordia can develop into sperm-filled testicular spermathecae. CONCLUSION Drosophila spermathecae provide a powerful model for studying gland development. Hr39 functions as a master regulator of a program that may have been conserved throughout animal evolution for the production of female reproductive glands and other secretory tissues.
Collapse
Affiliation(s)
| | - Allan C. Spradling
- Corresponding Author: Dr. Allan C. Spradling, Tel. 410-246-3015, Fax. 410-243-6311,
| |
Collapse
|
7
|
Crozatier M, Vincent A. Control of multidendritic neuron differentiation in Drosophila: The role of Collier. Dev Biol 2008; 315:232-42. [DOI: 10.1016/j.ydbio.2007.12.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 12/20/2007] [Accepted: 12/21/2007] [Indexed: 10/22/2022]
|
8
|
O'Farrell F, Kylsten P. Drosophila Anillin is unequally required during asymmetric cell divisions of the PNS. Biochem Biophys Res Commun 2008; 369:407-13. [PMID: 18295597 DOI: 10.1016/j.bbrc.2008.02.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 02/08/2008] [Indexed: 10/22/2022]
Abstract
During Drosophila embryogenesis, timely and orderly asymmetric cell divisions ensure the correct number of each cell type that make up the sensory organs of the larval PNS. We report a role of scraps, Drosophila Anillin, during these divisions. Anillin, a constitutive member of the contractile ring is essential for cytokinesis in Drosophila and vertebrates. During embryogenesis we find that zygotically transcribed scraps is required specifically for the unequal cell divisions, those in which cytokinesis occurs in an "off-centred" manner, of the pIIb and pIIIb neuronal precursor cells, but not the equal cell divisions of the lineage related precursor cells. Complementation and genetic rescue studies demonstrate this effect results from zygotic scraps and leads to polyploidy, ectopic mitosis, and loss of the neuronal precursor daughter cells. The net result of which is the formation of incomplete sense organs and embryonic lethality.
Collapse
Affiliation(s)
- Fergal O'Farrell
- Biosciences and Nutrition, Karolinska Institute, Alfred Nobels Alle 3, Stockholm, Sweden; Natural Science, Södertörns Högskola, Stockholm, Sweden
| | | |
Collapse
|
9
|
Kernan MJ. Mechanotransduction and auditory transduction in Drosophila. Pflugers Arch 2007; 454:703-20. [PMID: 17436012 DOI: 10.1007/s00424-007-0263-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 03/22/2007] [Indexed: 11/28/2022]
Abstract
Insects are utterly reliant on sensory mechanotransduction, the process of converting physical stimuli into neuronal receptor potentials. The senses of proprioception, touch, and hearing are involved in almost every aspect of an adult insect's complex behavioral repertoire and are mediated by a diverse array of specialized sensilla and sensory neurons. The physiology and morphology of several of these have been described in detail; genetic approaches in Drosophila, combining behavioral screens and sensory electrophysiology with forward and reverse genetic techniques, have now revealed specific proteins involved in their differentiation and operation. These include three different TRP superfamily ion channels that are required for transduction in tactile bristles, chordotonal stretch receptors, and polymodal nociceptors. Transduction also depends on the normal differentiation and mechanical integrity of the modified cilia that form the neuronal sensory endings, the accessory structures that transmit stimuli to them and, in bristles, a specialized receptor lymph and transepithelial potential. Flies hear near-field sounds with a vibration-sensitive, antennal chordotonal organ. Biomechanical analyses of wild-type antennae reveal non-linear, active mechanical properties that increase their sensitivity to weak stimuli. The effects of mechanosensory and ciliary mutations on antennal mechanics show that the sensory cilia are the active motor elements and indicate distinct roles for TRPN and TRPV channels in auditory transduction and amplification.
Collapse
Affiliation(s)
- Maurice J Kernan
- Department of Neurobiology and Behavior and Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5230, USA.
| |
Collapse
|
10
|
Kuzin A, Brody T, Moore AW, Odenwald WF. Nerfin-1 is required for early axon guidance decisions in the developing Drosophila CNS. Dev Biol 2005; 277:347-65. [PMID: 15617679 DOI: 10.1016/j.ydbio.2004.09.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 09/15/2004] [Accepted: 09/20/2004] [Indexed: 11/25/2022]
Abstract
Many studies have focused on the mechanisms of axon guidance; however, little is known about the transcriptional control of the navigational components that carryout these decisions. This report describes the functional analysis of Nerfin-1, a nuclear regulator of axon guidance required for a subset of early pathfinding events in the developing Drosophila CNS. Nerfin-1 belongs to a highly conserved subfamily of Zn-finger proteins with cognates identified in nematodes and man. We show that the neural precursor gene prospero is essential for nerfin-1 expression. Unlike nerfin-1 mRNA, which is expressed in many neural precursor cells, the encoded Nerfin-1 protein is only detected in the nuclei of neuronal precursors that will divide just once and then transiently in their nascent neurons. Although nerfin-1 null embryos have no discernible alterations in neural lineage development nor in neuronal or glial identities, CNS pioneering neurons require nerfin-1 function for early axon guidance decisions. Furthermore, nerfin-1 is required for the proper development of commissural and connective axon fascicles. Our studies also show that Nerfin-1 is essential for the proper expression of robo2, wnt5, derailed, G-oalpha47A, Lar, and futsch, genes whose encoded proteins participate in these early navigational events.
Collapse
Affiliation(s)
- Alexander Kuzin
- Neural Cell-Fate Determinants Section, NINDS, NIH, Bethesda MD 20892-4160, USA.
| | | | | | | |
Collapse
|
11
|
Abstract
Sensory organs are specialized to receive different kinds of input from the outside world. However, common features of their development suggest that they could have a shared evolutionary origin. In a recent paper, Niwa et al. show that three Drosophila adult sensory organs all rely on the spatial signals Decapentaplegic and Wingless to specify their position, and the temporal signal ecdysone to initiate their development. The proneural gene atonal is an important site for integration of these regulatory inputs. These results suggest the existence of a primitive sensory organ precursor, which would differentiate according to the identity of its segment of origin. The authors argue that the eyeless gene controls eye disc identity, indirectly producing an eye from the sensory organ precursor within this disc.
Collapse
Affiliation(s)
- Jessica E Treisman
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
12
|
Orgogozo V, Schweisguth F. Evolution of the larval peripheral nervous system in Drosophila species has involved a change in sensory cell lineage. Dev Genes Evol 2004; 214:442-52. [PMID: 15293048 DOI: 10.1007/s00427-004-0422-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 06/15/2004] [Indexed: 10/26/2022]
Abstract
A key challenge in evolutionary biology is to identify developmental events responsible for morphological changes. To determine the cellular basis that underlies changes in the larval peripheral nervous system (PNS) of flies, we first described the PNS pattern of the abdominal segments A1-A7 in late embryos of several fly species using antibody staining. In contrast to the many variations reported previously for the adult PNS pattern, we found that the larval PNS pattern has remained very stable during evolution. Indeed, our observation that most of the analysed Drosophilinae species exhibit exactly the same pattern as Drosophila melanogaster reveals that the pattern observed in D. melanogaster embryos has remained constant for at least 40 million years. Furthermore, we observed that the PNS pattern in more distantly related flies (Calliphoridae and Phoridae) is only slightly different from the one in D. melanogaster. A single difference relative to D. melanogaster was identified in the PNS pattern of the Drosophilinae fly D. busckii, the absence of a specific external sensory organ. Our analysis of sensory organ development in D. busckii suggests that this specific loss resulted from a transformation in cell lineage, from a multidendritic-neuron-external-sensory-organ lineage to a multidendritic-neuron-solo lineage.
Collapse
Affiliation(s)
- Virginie Orgogozo
- Ecole Normale Supérieure, UMR 8542, 46 rue d'Ulm, 75005 Paris, France.
| | | |
Collapse
|
13
|
Lai EC, Orgogozo V. A hidden program in Drosophila peripheral neurogenesis revealed: fundamental principles underlying sensory organ diversity. Dev Biol 2004; 269:1-17. [PMID: 15081353 DOI: 10.1016/j.ydbio.2004.01.032] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2003] [Revised: 01/22/2004] [Accepted: 01/26/2004] [Indexed: 11/19/2022]
Abstract
How is cell fate diversity reliably achieved during development? Insect sensory organs have been a favorable model system for investigating this question for over 100 years. They are constructed using defined cell lineages that generate a maximum of cell diversity with a minimum number of cell divisions, and display tremendous variety in their morphologies, constituent cell types, and functions. An unexpected realization of the past 5 years is that very diverse sensory organs in Drosophila are produced by astonishingly similar cell lineages, and that their diversity can be largely attributed to only a small repertoire of developmental processes. These include changes in terminal cell differentiation, cell death, cell proliferation, cell recruitment, cell-cell interactions, and asymmetric segregation of cell fate determinants during mitosis. We propose that most Drosophila sensory organs are built from an archetypal lineage, and we speculate about how this stereotyped pattern of cell divisions may have been built during evolution.
Collapse
Affiliation(s)
- Eric C Lai
- Howard Hughes Medical Institute, 545 Life Sciences Addition, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA
| | | |
Collapse
|
14
|
Xu K, Bogert BA, Li W, Su K, Lee A, Gao FB. The fragile X-related Gene Affects the Crawling Behavior of Drosophila Larvae by Regulating the mRNA Level of the DEG/ENaC Protein Pickpocket1. Curr Biol 2004; 14:1025-34. [PMID: 15202995 DOI: 10.1016/j.cub.2004.05.055] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 04/07/2004] [Accepted: 04/07/2004] [Indexed: 11/19/2022]
Abstract
BACKGROUND Fragile X syndrome is caused by loss-of-function mutations in the fragile X mental retardation 1 (FMR1) gene. How FMR1 affects the function of the central and peripheral nervous systems is still unclear. FMR1 is an RNA binding protein that associates with a small percentage of total mRNAs in vivo. It remains largely unknown what proteins encoded by mRNAs in the FMR1-messenger ribonuclear protein (mRNP) complex are most relevant to the affected physiological processes. RESULTS Loss-of-function mutations in the Drosophila fragile X-related (dfmr1) gene, which is highly homologous to the human fmr1 gene, decrease the duration and percentage of time that crawling larvae spend on linear locomotion. Overexpression of DFMR1 in multiple dendritic (MD) sensory neurons increases the time percentage and duration of linear locomotion; this phenotype is similar to that caused by reduced expression of the MD neuron subtype-specific degenerin/epithelial sodium channel (DEG/ENaC) family protein Pickpocket1 (PPK1). Genetic analyses indicate that PPK1 is a key component downstream of DFMR1 in controlling the crawling behavior of Drosophila larvae. DFMR1 and ppk1 mRNA are present in the same mRNP complex in vivo and can directly bind to each other in vitro. DFMR1 downregulates the level of ppk1 mRNA in vivo, and this regulatory process also involves Argonaute2 (Ago2), a key component in the RNA interference pathway. CONCLUSIONS These studies identify ppk1 mRNA as a physiologically relevant in vivo target of DFMR1. Our finding that the level of ppk1 mRNA is regulated by DFMR1 and Ago2 reveals a genetic pathway that controls sensory input-modulated locomotion behavior.
Collapse
Affiliation(s)
- Kanyan Xu
- Gladstone Institute of Neurological Disease, University of California, San Francisco, San Francisco, CA 94103 USA
| | | | | | | | | | | |
Collapse
|
15
|
Moore AW, Roegiers F, Jan LY, Jan YN. Conversion of neurons and glia to external-cell fates in the external sensory organs of Drosophila hamlet mutants by a cousin-cousin cell-type respecification. Genes Dev 2004; 18:623-8. [PMID: 15075290 PMCID: PMC387238 DOI: 10.1101/gad.1170904] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Drosophila external sensory organ forms in a lineage elaborating from a single precursor cell via a stereotypical series of asymmetric divisions. HAMLET transcription factor expression demarcates the lineage branch that generates two internal cell types, the external sensory neuron and thecogen. In HAMLET mutant organs, these internal cells are converted to external cells via an unprecedented cousin-cousin cell-fate respecification event. Conversely, ectopic HAMLET expression in the external cell branch leads to internal cell production. The fate-determining signals NOTCH and PAX2 act at multiple stages of lineage elaboration and HAMLET acts to modulate their activity in a branch-specific manner.
Collapse
Affiliation(s)
- Adrian W Moore
- Howard Hughes Medical Institute, Department of Physiology, University of California at San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
16
|
Orgogozo V, Schweisguth F, Bellaïche Y. Slit-Robo signalling prevents sensory cells from crossing the midline in Drosophila. Mech Dev 2004; 121:427-36. [PMID: 15147761 DOI: 10.1016/j.mod.2004.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Revised: 03/22/2004] [Accepted: 04/01/2004] [Indexed: 11/20/2022]
Abstract
Maintenance of bilateral symmetry throughout animal development requires that both left and right halves of the body follow nearly identical patterns of cell proliferation, differentiation, death and migration. During formation of the perfectly bilateral Drosophila larval peripheral nervous system (PNS), the sensory precursor cells of the ventral multidendritic neuron vmd1a originating from each hemisegment migrate away from the ventral midline. Our observations indicate that in slit mutant embryos, as well as in robo, robo2 double mutants, sensory precursor cells of the left and right vmd1a neurons aberrantly cluster at the midline and then the pair of vmd1a neurons migrate to their final position on the same side of the embryo. This results in disruption of PNS bilateral symmetry. Expression of slit at the midline rescues the slit mutant vmd1a phenotype, suggesting that midline-secreted Slit activates Robo/Robo2 signalling to control the migration of the vmd1a sensory precursor cells. Our study indicates that midline-secreted Slit prevents vmd1a sensory cells from crossing the midline and thereby maintains PNS bilateral symmetry during development.
Collapse
Affiliation(s)
- Virginie Orgogozo
- Ecole Normale Supérieure, UMR 8542, 46 rue d'Ulm, 75005 Paris, France.
| | | | | |
Collapse
|
17
|
Abstract
How the dendritic branching patterns of different neurons are specified is a fascinating question in developmental neurobiology. This question can now be addressed in detail in Drosophila, owing to technological advances that allow in vivo labeling of the dendrites of identifiable neurons. Recent genetic analyses in flies have uncovered several molecules, including transcription factors, cytoskeleton-associated proteins and membrane receptor-like molecules, that provide a glimpse into the complex regulatory network that controls dendritic morphogenesis.
Collapse
Affiliation(s)
- Fen-Biao Gao
- Gladstone Institute of Neurological Disease, Neuroscience Graduate Program, University of California, San Francisco, CA 94141-9100, USA.
| | | |
Collapse
|
18
|
Moore AW, Jan LY, Jan YN. hamlet, a binary genetic switch between single- and multiple- dendrite neuron morphology. Science 2002; 297:1355-8. [PMID: 12193790 DOI: 10.1126/science.1072387] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The dendritic morphology of neurons determines the number and type of inputs they receive. In the Drosophila peripheral nervous system (PNS), the external sensory (ES) neurons have a single nonbranched dendrite, whereas the lineally related multidendritic (MD) neurons have extensively branched dendritic arbors. We report that hamlet is a binary genetic switch between these contrasting morphological types. In hamlet mutants, ES neurons are converted to an MD fate, whereas ectopic hamlet expression in MD precursors results in transformation of MD neurons into ES neurons. Moreover, hamlet expression induced in MD neurons undergoing dendrite outgrowth drastically reduces arbor branching.
Collapse
Affiliation(s)
- Adrian W Moore
- Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
19
|
Sweeney NT, Li W, Gao FB. Genetic manipulation of single neurons in vivo reveals specific roles of flamingo in neuronal morphogenesis. Dev Biol 2002; 247:76-88. [PMID: 12074553 DOI: 10.1006/dbio.2002.0702] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To study the roles of intracellular factors in neuronal morphogenesis, we used the mosaic analysis with a repressible cell marker (MARCM) technique to visualize identifiable single multiple dendritic (MD) neurons in living Drosophila larvae. We found that individual neurons in the peripheral nervous system (PNS) developed clear morphological polarity and diverse dendritic branching patterns in larval stages. Each MD neuron in the same dorsal cluster developed a unique dendritic field, suggesting that they have specific physiological functions. Single-neuron analysis revealed that Flamingo did not affect the general dendritic branching patterns in postmitotic neurons. Instead, Flamingo limited the extension of one or more dorsal dendrites without grossly affecting lateral branches. The dendritic overextension phenotype was partially conferred by the precocious initiation of dorsal dendrites in flamingo mutant embryos. In addition, Flamingo is required cell autonomously to promote axonal growth and to prevent premature axonal branching of PNS neurons. Our molecular analysis also indicated that the amino acid sequence near the first EGF motif is important for the proper localization and function of Flamingo. These results demonstrate that Flamingo plays a role in early neuronal differentiation and exerts specific effects on dendrites and axons.
Collapse
Affiliation(s)
- Neal T Sweeney
- Gladstone Institute of Neurological Disease, University of California, San Francisco, 94141-9100, USA
| | | | | |
Collapse
|
20
|
Van De Bor V, Heitzler P, Leger S, Plessy C, Giangrande A. Precocious expression of the Glide/Gcm glial-promoting factor in Drosophila induces neurogenesis. Genetics 2002; 160:1095-106. [PMID: 11901125 PMCID: PMC1462002 DOI: 10.1093/genetics/160.3.1095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurons and glial cells depend on similar developmental pathways and often originate from common precursors; however, the differentiation of one or the other cell type depends on the activation of cell-specific pathways. In Drosophila, the differentiation of glial cells depends on a transcription factor, Glide/Gcm. This glial-promoting factor is both necessary and sufficient to induce the central and peripheral glial fates at the expense of the neuronal fate. In a screen for mutations affecting the adult peripheral nervous system, we have found a dominant mutation inducing supernumerary sensory organs. Surprisingly, this mutation is allelic to glide/gcm and induces precocious glide/gcm expression, which, in turn, activates the proneural genes. As a consequence, sensory organs are induced. Thus, temporal misregulation of the Glide/Gcm glial-promoting factor reveals a novel potential for this cell fate determinant. At the molecular level, this implies unpredicted features of the glide/gcm pathway. These findings also emphasize the requirement for both spatial and temporal glide/gcm regulation to achieve proper cell specification within the nervous system.
Collapse
Affiliation(s)
- Véronique Van De Bor
- Institut de Génétique et Biologie Moléculaire et Cellulaire IGBMC/CNRS/ULP/INSERM-BP 163 67404 Illkirch, c.u. de Strasbourg, France
| | | | | | | | | |
Collapse
|
21
|
Le Borgne R, Bellaïche Y, Schweisguth F. Drosophila E-cadherin regulates the orientation of asymmetric cell division in the sensory organ lineage. Curr Biol 2002; 12:95-104. [PMID: 11818059 DOI: 10.1016/s0960-9822(01)00648-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Generation of cell-fate diversity in Metazoan depends in part on asymmetric cell divisions in which cell-fate determinants are asymmetrically distributed in the mother cell and unequally partitioned between daughter cells. The polarization of the mother cell is a prerequisite to the unequal segregation of cell-fate determinants. In the Drosophila bristle lineage, two distinct mechanisms are known to define the axis of polarity of the pI and pIIb cells. Frizzled (Fz) signaling regulates the planar orientation of the pI division, while Inscuteable (Insc) directs the apical-basal polarity of the pIIb cell. The orientation of the asymmetric division of the pIIa cell is identical to the one of its mother cell, the pI cell, but, in contrast, is regulated by an unknown Insc- and Fz-independent mechanism. RESULTS DE-Cadherin-Catenin complexes are shown to localize at the cell contact between the two cells born from the asymmetric division of the pI cell. The mitotic spindle of the dividing pIIa cell rotates to line up with asymmetrically localized DE-Cadherin-Catenin complexes. While a complete loss of DE-Cadherin function disrupts the apical-basal polarity of the epithelium, both a partial loss of DE-Cadherin function and expression of a dominant-negative form of DE-Cadherin affect the orientation of the pIIa division. Furthermore, expression of dominant-negative DE-Cadherin also affects the position of Partner of Inscuteable (Pins) and Bazooka, two asymmetrically localized proteins known to regulate cell polarity. These results show that asymmetrically distributed Cad regulates the orientation of asymmetric cell division. CONCLUSIONS We describe a novel mechanism involving a specialized Cad-containing cortical region by which a daughter cell divides with the same orientation as its mother cell.
Collapse
Affiliation(s)
- Roland Le Borgne
- Ecole Normale Supérieure, CNRS UMR 8544, 46, rue d'Ulm, 75230 Cedex 05, Paris, France
| | | | | |
Collapse
|
22
|
Roegiers F, Younger-Shepherd S, Jan LY, Jan YN. Bazooka is required for localization of determinants and controlling proliferation in the sensory organ precursor cell lineage in Drosophila. Proc Natl Acad Sci U S A 2001; 98:14469-74. [PMID: 11734647 PMCID: PMC64705 DOI: 10.1073/pnas.261555598] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Asymmetric divisions with two different division orientations follow different polarity cues for the asymmetric segregation of determinants in the sensory organ precursor (SOP) lineage. The first asymmetric division depends on frizzled function and has the mitotic spindle of the pI cell in the epithelium oriented along the anterior-posterior axis, giving rise to pIIa and pIIb, which divide in different orientations. Only the pIIb division resembles neuroblast division in daughter-size asymmetry, spindle orientation along the apical-basal axis, basal Numb localization, and requirement for inscuteable function. Because the PDZ domain protein Bazooka is required for spindle orientation and basal localization of Numb in neuroblasts, we wondered whether Bazooka plays a similar role in the pIIb in the SOP lineage. Surprisingly, Bazooka controls asymmetric localization of the Numb-anchoring protein Pon, but not spindle orientation, in pI and all subsequent divisions. Bazooka also regulates cell proliferation in the SOP lineage; loss of bazooka function results in supernumerary cell divisions and apoptotic cell death.
Collapse
Affiliation(s)
- F Roegiers
- Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco, CA 94143-0725, USA
| | | | | | | |
Collapse
|
23
|
Grueber WB, Graubard K, Truman JW. Tiling of the body wall by multidendritic sensory neurons in Manduca sexta. J Comp Neurol 2001; 440:271-83. [PMID: 11745623 DOI: 10.1002/cne.1385] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A plexus of multidendritic sensory neurons, the dendritic arborization (da) neurons, innervates the epidermis of soft-bodied insects. Previous studies have indicated that the plexus may comprise distinct subtypes of da neurons, which utilize diverse cyclic 3',5'-guanosine monophosphate signaling pathways and could serve several functions. Here, we identify three distinct classes of da neurons in Manduca, which we term the alpha, beta, and gamma classes. These three classes differ in their sensory responses, branch complexity, peripheral dendritic fields, and axonal projections. The two identified alpha neurons branch over defined regions of the body wall, which in some cases correspond to specific natural folds of the cuticle. These cells project to an intermediate region of the neuropil and appear to function as proprioceptors. Three beta neurons are characterized by long, sinuous dendritic branches and axons that terminate in the ventral neuropil. The function of this group of neurons is unknown. Four neurons belonging to the gamma class have the most complex peripheral dendrites. A representative gamma neuron responds to forceful touch of the cuticle. Although the dendrites of da neurons of different classes may overlap extensively, cells belonging to the same class show minimal dendritic overlap. As a result, the body wall is independently tiled by the beta and gamma da neurons and partially innervated by the alpha neurons. These properties of the da system likely allow insects to discriminate the quality and location of several types of stimuli acting on the cuticle.
Collapse
Affiliation(s)
- W B Grueber
- Department of Zoology, University of Washington, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
24
|
Brenman JE, Gao FB, Jan LY, Jan YN. Sequoia, a tramtrack-related zinc finger protein, functions as a pan-neural regulator for dendrite and axon morphogenesis in Drosophila. Dev Cell 2001; 1:667-77. [PMID: 11709187 DOI: 10.1016/s1534-5807(01)00072-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Morphological complexity of neurons contributes to their functional complexity. How neurons generate different dendritic patterns is not known. We identified the sequoia mutant from a previous screen for dendrite mutants. Here we report that Sequoia is a pan-neural nuclear protein containing two putative zinc fingers homologous to the DNA binding domain of Tramtrack. sequoia mutants affect the cell fate decision of a small subset of neurons but have global effects on axon and dendrite morphologies of most and possibly all neurons. In support of sequoia as a specific regulator of neuronal morphogenesis, microarray experiments indicate that sequoia may regulate downstream genes that are important for executing neurite development rather than altering a variety of molecules that specify cell fates.
Collapse
Affiliation(s)
- J E Brenman
- Howard Hughes Medical Institute, Departments of Physiology and Biochemistry, University of California, San Francisco 94143, USA
| | | | | | | |
Collapse
|
25
|
Affiliation(s)
- Y N Jan
- Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco, California 94143-0725, USA.
| | | |
Collapse
|
26
|
Dubois L, Vincent A. The COE--Collier/Olf1/EBF--transcription factors: structural conservation and diversity of developmental functions. Mech Dev 2001; 108:3-12. [PMID: 11578857 DOI: 10.1016/s0925-4773(01)00486-5] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
One major conclusion of studies in Developmental Biology during the last two decades is that, despite profound anatomical differences, the building of vertebrate and arthropod bodies relies on the same fundamental molecular networks, including conserved cell signalling and transcription-regulatory cascades. Rodent Early B-Cell Factor/Olfactory-1 and Drosophila Collier belong to a recently defined, novel family of transcription factors, the Collier/Olf1/EBF (COE) proteins which have a unique DNA-binding domain. Early investigations revealed that, despite their high degree of sequence identity, the different vertebrate and invertebrate COE proteins play a variety of developmental roles. We review here the current evidence for this diversity of COE functions, including in the specification and differentiation of various neuronal populations. We also discuss the existence of an evolutionarily conserved pathway linking Notch signalling and COE regulatory functions in various developmental decisions.
Collapse
Affiliation(s)
- L Dubois
- Centre de Biologie du Développement, UMR 5547, CNRS/Université Paul Sabatier, 118 route de Narbonne 31062 Toulouse cedex 04, France.
| | | |
Collapse
|
27
|
Abstract
The detailed descriptions of cellular lineages in the Drosophila nervous system have provided the foundations for an in-depth genetic analysis of the mechanisms that regulate fate decisions at every cell cycle.
Collapse
Affiliation(s)
- Y Bellaïche
- Ecole Normale Supérieure, UMR 8544, 46, rue d'Ulm, 75230 Cedex 05, Paris, France.
| | | |
Collapse
|
28
|
Brewster R, Hardiman K, Deo M, Khan S, Bodmer R. The selector gene cut represses a neural cell fate that is specified independently of the Achaete-Scute-Complex and atonal. Mech Dev 2001; 105:57-68. [PMID: 11429282 DOI: 10.1016/s0925-4773(01)00375-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The peripheral nervous system (PNS) of Drosophila offers a powerful system to precisely identify individual cells and dissect their genetic pathways of development. The mode of specification of a subset of larval PNS cells, the multiple dendritic (md) neurons (or type II neurons), is complex and still poorly understood. Within the dorsal thoracic and abdominal segments, two md neurons, dbd and dda1, apparently require the proneural gene amos but not atonal (ato) or Achaete-Scute-Complex (ASC) genes. ASC normally acts via the neural selector gene cut to specify appropriate sensory organ identities. Here, we show that dbd- and dda1-type differentiation is suppressed by cut in dorsal ASC-dependent md neurons. Thus, cut is not only required to promote an ASC-dependent mode of differentiation, but also represses an ASC- and ato-independent fate that leads to dbd and dda1 differentiation.
Collapse
Affiliation(s)
- R Brewster
- Department of Biology, The University of Michigan, 830 North University, 48109-1048, Ann Arbor, MI, USA
| | | | | | | | | |
Collapse
|