1
|
Hasan MR, Kump AJ, Stepaniak EC, Panta M, Shashidhar K, Katariya R, Sabbir MK, Schwab KR, Inlow MH, Chen Y, Ahmad SM. Genome-Wide Expression Profiling and Phenotypic Analysis of Downstream Targets Identify the Fox Transcription Factor Jumeau as a Master Regulator of Cardiac Progenitor Cell Division. Int J Mol Sci 2024; 25:12933. [PMID: 39684645 DOI: 10.3390/ijms252312933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Forkhead box (Fox) transcription factors (TFs) mediate multiple conserved cardiogenic processes in both mammals and Drosophila. Our prior work identified the roles of two Drosophila Fox genes, jumeau (jumu) and Checkpoint suppressor 1-like (CHES-1-like), in cardiac progenitor cell specification and division, and in the proper positioning of cardiac cell subtypes. Fox TF binding sites are also significantly enriched in the enhancers of genes expressed in the heart, suggesting that these genes may play a core regulatory role in one or more of these cardiogenic processes. We identified downstream targets of Jumu by comparing transcriptional expression profiles of flow cytometry-sorted mesodermal cells from wild-type embryos and embryos completely lacking the jumu gene and found that genes with functional annotation and ontological features suggesting roles in cell division were overrepresented among Jumu targets. Phenotypic analysis of a subset of these targets identified 21 jumu-regulated genes that mediate cardiac progenitor cell division, one of which, Retinal Homeobox (Rx), was characterized in more detail. Finally, the observation that many of these 21 genes and/or their orthologs exhibit genetic or physical interactions among themselves indicates that Jumu is a master regulator acting as a hub of a cardiac progenitor cell division-mediating network.
Collapse
Affiliation(s)
- M Rezaul Hasan
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
- Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
| | - Andrew J Kump
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
- Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
| | - Evelyn C Stepaniak
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Manoj Panta
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Kuncha Shashidhar
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
- Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
| | - Rajnandani Katariya
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
- Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
| | - Mofazzal K Sabbir
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Kristopher R Schwab
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
- Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
| | - Mark H Inlow
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
- Department of Mathematical Sciences, Indiana State University, Terre Haute, IN 47809, USA
| | - Ye Chen
- Department of Mathematics and Statistics, Northern Arizona University, Flagstaff, AZ 86001, USA
| | - Shaad M Ahmad
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
- Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
| |
Collapse
|
2
|
Meier CJ, Ahmed S, Barr JS, Estévez-Lao TY, Hillyer JF. Extracellular matrix proteins Pericardin and Lonely heart mediate periostial hemocyte aggregation in the mosquito Anopheles gambiae. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 159:105219. [PMID: 38925431 DOI: 10.1016/j.dci.2024.105219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/18/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
An infection induces the migration of immune cells called hemocytes to the insect heart, where they aggregate around heart valves called ostia and phagocytose pathogens in areas of high hemolymph flow. Here, we investigated whether the cardiac extracellular matrix proteins, Pericardin (Prc) and Lonely heart (Loh), regulate the infection-induced aggregation of periostial hemocytes in the mosquito, An. gambiae. We discovered that RNAi-based post-transcriptional silencing of Prc or Loh did not affect the resident population of periostial hemocytes in uninfected mosquitoes, but that knocking down these genes decreases the infection-induced migration of hemocytes to the heart. Knocking down Prc or Loh did not affect the proportional distribution of periostial hemocytes along the periostial regions. Moreover, knocking down Prc or Loh did not affect the number of sessile hemocytes outside the periostial regions, suggesting that the role of these proteins is cardiac-specific. Finally, knocking down Prc or Loh did not affect the amount of melanin at the periostial regions, or the intensity of an infection at 24 h after challenge. Overall, we demonstrate that Prc and Loh are positive regulators of the infection-induced migration of hemocytes to the heart of mosquitoes.
Collapse
Affiliation(s)
- Cole J Meier
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Shabbir Ahmed
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Jordyn S Barr
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Tania Y Estévez-Lao
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
3
|
Gera J, Kumar D, Chauhan G, Choudhary A, Rani L, Mandal L, Mandal S. High sugar diet-induced fatty acid oxidation potentiates cytokine-dependent cardiac ECM remodeling. J Cell Biol 2024; 223:e202306087. [PMID: 38916917 PMCID: PMC11199913 DOI: 10.1083/jcb.202306087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 03/09/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024] Open
Abstract
Context-dependent physiological remodeling of the extracellular matrix (ECM) is essential for development and organ homeostasis. On the other hand, consumption of high-caloric diet leverages ECM remodeling to create pathological conditions that impede the functionality of different organs, including the heart. However, the mechanistic basis of high caloric diet-induced ECM remodeling has yet to be elucidated. Employing in vivo molecular genetic analyses in Drosophila, we demonstrate that high dietary sugar triggers ROS-independent activation of JNK signaling to promote fatty acid oxidation (FAO) in the pericardial cells (nephrocytes). An elevated level of FAO, in turn, induces histone acetylation-dependent transcriptional upregulation of the cytokine Unpaired 3 (Upd3). Release of pericardial Upd3 augments fat body-specific expression of the cardiac ECM protein Pericardin, leading to progressive cardiac fibrosis. Importantly, this pathway is quite distinct from the ROS-Ask1-JNK/p38 axis that regulates Upd3 expression under normal physiological conditions. Our results unravel an unknown physiological role of FAO in cytokine-dependent ECM remodeling, bearing implications in diabetic fibrosis.
Collapse
Affiliation(s)
- Jayati Gera
- Department of Biological Sciences, Molecular Cell and Developmental Biology Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Dheeraj Kumar
- Department of Biological Sciences, Molecular Cell and Developmental Biology Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Gunjan Chauhan
- Department of Biological Sciences, Molecular Cell and Developmental Biology Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Adarsh Choudhary
- Department of Biological Sciences, Molecular Cell and Developmental Biology Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Lavi Rani
- Department of Biological Sciences, Molecular Cell and Developmental Biology Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Lolitika Mandal
- Department of Biological Sciences, Developmental Genetics Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Sudip Mandal
- Department of Biological Sciences, Molecular Cell and Developmental Biology Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| |
Collapse
|
4
|
Zandawala M, Gera J. Leptin- and cytokine-like unpaired signaling in Drosophila. Mol Cell Endocrinol 2024; 584:112165. [PMID: 38266772 DOI: 10.1016/j.mce.2024.112165] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Animals have evolved a multitude of signaling pathways that enable them to orchestrate diverse physiological processes to tightly regulate systemic homeostasis. This signaling is mediated by various families of peptide hormones and cytokines that are conserved across the animal kingdom. In this review, we primarily focus on the unpaired (Upd) family of proteins in Drosophila which are evolutionarily related to mammalian leptin and the cytokine interleukin 6. We summarize expression patterns of Upd in Drosophila and discuss the parallels in structure, signaling pathway, and functions between Upd and their mammalian counterparts. In particular, we focus on the roles of Upd in governing metabolic homeostasis, growth and development, and immune responses. We aim to stimulate future studies on leptin-like signaling in other phyla which can help bridge the evolutionary gap between insect Upd and vertebrate leptin and cytokines like interleukin 6.
Collapse
Affiliation(s)
- Meet Zandawala
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany; Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA.
| | - Jayati Gera
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| |
Collapse
|
5
|
Bataillé L, Lebreton G, Boukhatmi H, Vincent A. Insights and perspectives on the enigmatic alary muscles of arthropods. Front Cell Dev Biol 2024; 11:1337708. [PMID: 38288343 PMCID: PMC10822924 DOI: 10.3389/fcell.2023.1337708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Three types of muscles, cardiac, smooth and skeletal muscles are classically distinguished in eubilaterian animals. The skeletal, striated muscles are innervated multinucleated syncytia, which, together with bones and tendons, carry out voluntary and reflex body movements. Alary muscles (AMs) are another type of striated syncytial muscles, which connect the exoskeleton to the heart in adult arthropods and were proposed to control hemolymph flux. Developmental studies in Drosophila showed that larval AMs are specified in embryos under control of conserved myogenic transcription factors and interact with excretory, respiratory and hematopoietic tissues in addition to the heart. They also revealed the existence of thoracic AMs (TARMs) connecting to specific gut regions. Their asymmetric attachment sites, deformation properties in crawling larvae and ablation-induced phenotypes, suggest that AMs and TARMs could play both architectural and signalling functions. During metamorphosis, and heart remodelling, some AMs trans-differentiate into another type of muscles. Remaining critical questions include the enigmatic modes and roles of AM innervation, mechanical properties of AMs and TARMS and their evolutionary origin. The purpose of this review is to consolidate facts and hypotheses surrounding AMs/TARMs and underscore the need for further detailed investigation into these atypical muscles.
Collapse
|
6
|
Balaghi N, Erdemci-Tandogan G, McFaul C, Fernandez-Gonzalez R. Myosin waves and a mechanical asymmetry guide the oscillatory migration of Drosophila cardiac progenitors. Dev Cell 2023:S1534-5807(23)00238-1. [PMID: 37295436 DOI: 10.1016/j.devcel.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 02/27/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Heart development begins with the formation of a tube as cardiac progenitors migrate from opposite sides of the embryo. Abnormal cardiac progenitor movements cause congenital heart defects. However, the mechanisms of cell migration during early heart development remain poorly understood. Using quantitative microscopy, we found that in Drosophila embryos, cardiac progenitors (cardioblasts) migrated through a sequence of forward and backward steps. Cardioblast steps were associated with oscillatory non-muscle myosin II waves that induced periodic shape changes and were necessary for timely heart tube formation. Mathematical modeling predicted that forward cardioblast migration required a stiff boundary at the trailing edge. Consistent with this, we found a supracellular actin cable at the trailing edge of the cardioblasts that limited the amplitude of the backward steps, thus biasing the direction of cell movement. Our results indicate that periodic shape changes coupled with a polarized actin cable produce asymmetrical forces that promote cardioblast migration.
Collapse
Affiliation(s)
- Negar Balaghi
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Gonca Erdemci-Tandogan
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Christopher McFaul
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Rodrigo Fernandez-Gonzalez
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
7
|
Morin-Poulard I, Destalminil-Letourneau M, Bataillé L, Frendo JL, Lebreton G, Vanzo N, Crozatier M. Identification of Bipotential Blood Cell/Nephrocyte Progenitors in Drosophila: Another Route for Generating Blood Progenitors. Front Cell Dev Biol 2022; 10:834720. [PMID: 35237606 PMCID: PMC8883574 DOI: 10.3389/fcell.2022.834720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
The Drosophila lymph gland is the larval hematopoietic organ and is aligned along the anterior part of the cardiovascular system, composed of cardiac cells, that form the cardiac tube and its associated pericardial cells or nephrocytes. By the end of embryogenesis the lymph gland is composed of a single pair of lobes. Two additional pairs of posterior lobes develop during larval development to contribute to the mature lymph gland. In this study we describe the ontogeny of lymph gland posterior lobes during larval development and identify the genetic basis of the process. By lineage tracing we show here that each posterior lobe originates from three embryonic pericardial cells, thus establishing a bivalent blood cell/nephrocyte potential for a subset of embryonic pericardial cells. The posterior lobes of L3 larvae posterior lobes are composed of heterogeneous blood progenitors and their diversity is progressively built during larval development. We further establish that in larvae, homeotic genes and the transcription factor Klf15 regulate the choice between blood cell and nephrocyte fates. Our data underline the sequential production of blood cell progenitors during larval development.
Collapse
Affiliation(s)
- Ismaël Morin-Poulard
- Unité de Biologie Moléculaire et Cellulaire et du Développement (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse UMR 5077/CNRS, Toulouse, France
| | - Manon Destalminil-Letourneau
- Unité de Biologie Moléculaire et Cellulaire et du Développement (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse UMR 5077/CNRS, Toulouse, France
| | - Laetitia Bataillé
- Unité de Biologie Moléculaire et Cellulaire et du Développement (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse UMR 5077/CNRS, Toulouse, France.,CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes), UMR6290, ERL U1305, Rennes, France
| | - Jean-Louis Frendo
- Unité de Biologie Moléculaire et Cellulaire et du Développement (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse UMR 5077/CNRS, Toulouse, France.,INSERM U1301, CNRS 5070, Université de Toulouse, Toulouse, France
| | - Gaëlle Lebreton
- Unité de Biologie Moléculaire et Cellulaire et du Développement (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse UMR 5077/CNRS, Toulouse, France
| | - Nathalie Vanzo
- Unité de Biologie Moléculaire et Cellulaire et du Développement (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse UMR 5077/CNRS, Toulouse, France
| | - Michèle Crozatier
- Unité de Biologie Moléculaire et Cellulaire et du Développement (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse UMR 5077/CNRS, Toulouse, France
| |
Collapse
|
8
|
Gera J, Budakoti P, Suhag M, Mandal L, Mandal S. Physiological ROS controls Upd3-dependent modeling of ECM to support cardiac function in Drosophila. SCIENCE ADVANCES 2022; 8:eabj4991. [PMID: 35179958 PMCID: PMC8856619 DOI: 10.1126/sciadv.abj4991] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Despite their highly reactive nature, reactive oxygen species (ROS) at the physiological level serve as signaling molecules regulating diverse biological processes. While ROS usually act autonomously, they also function as local paracrine signals by diffusing out of the cells producing them. Using in vivo molecular genetic analyses in Drosophila, we provide evidence for ROS-dependent paracrine signaling that does not entail ROS release. We show that elevated levels of physiological ROS within the pericardial cells activate a signaling cascade transduced by Ask1, c-Jun N-terminal kinase, and p38 to regulate the expression of the cytokine Unpaired 3 (Upd3). Upd3 released by the pericardial cells controls fat body-specific expression of the extracellular matrix (ECM) protein Pericardin, essential for cardiac function and healthy life span. Therefore, our work reveals an unexpected inter-organ communication circuitry wherein high physiological levels of ROS regulate cytokine-dependent modulation of cardiac ECM with implications in normal and pathophysiological conditions.
Collapse
Affiliation(s)
- Jayati Gera
- Molecular Cell and Developmental Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Prerna Budakoti
- Molecular Cell and Developmental Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Meghna Suhag
- Molecular Cell and Developmental Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Lolitika Mandal
- Developmental Genetics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Sudip Mandal
- Molecular Cell and Developmental Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
- Corresponding author.
| |
Collapse
|
9
|
Selma-Soriano E, Casillas-Serra C, Artero R, Llamusi B, Navarro JA, Redón J. Rabphilin silencing causes dilated cardiomyopathy in a Drosophila model of nephrocyte damage. Sci Rep 2021; 11:15287. [PMID: 34315987 PMCID: PMC8316431 DOI: 10.1038/s41598-021-94710-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 07/14/2021] [Indexed: 11/10/2022] Open
Abstract
Heart failure (HF) and the development of chronic kidney disease (CKD) have a direct association. Both can be cause and consequence of the other. Many factors are known, such as diabetes or hypertension, which can lead to the appearance and/or development of these two conditions. However, it is suspected that other factors, namely genetic ones, may explain the differences in the manifestation and progression of HF and CKD among patients. One candidate factor is Rph, a gene expressed in the nervous and excretory system in mammals and Drosophila, encoding a Rab small GTPase family effector protein implicated in vesicular trafficking. We found that Rph is expressed in the Drosophila heart, and the silencing of Rph gene expression in this organ had a strong impact in the organization of fibers and functional cardiac parameters. Specifically, we observed a significant increase in diastolic and systolic diameters of the heart tube, which is a phenotype that resembles dilated cardiomyopathy in humans. Importantly, we also show that silencing of Rabphilin (Rph) expression exclusively in the pericardial nephrocytes, which are part of the flies' excretory system, brings about a non-cell-autonomous effect on the Drosophila cardiac system. In summary, in this work, we demonstrate the importance of Rph in the fly cardiac system and how silencing Rph expression in nephrocytes affects the Drosophila cardiac system.
Collapse
Affiliation(s)
- Estela Selma-Soriano
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain.,Department of Genetics, University of Valencia, 46100, Burjassot, Spain
| | - Carlos Casillas-Serra
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain.,Department of Genetics, University of Valencia, 46100, Burjassot, Spain
| | - Rubén Artero
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain. .,Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, 46100, Burjassot, Spain. .,CIPF-INCLIVA Joint Unit, Valencia, Spain.
| | - Beatriz Llamusi
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain.,Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, 46100, Burjassot, Spain.,CIPF-INCLIVA Joint Unit, Valencia, Spain
| | - Juan Antonio Navarro
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain.,Department of Genetics, University of Valencia, 46100, Burjassot, Spain
| | - Josep Redón
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain.,Hypertension Unit, Hospital Clínico Universitario, 46010, Valencia, Spain.,CIBERObn, Health Institute Carlos III, Madrid, Spain
| |
Collapse
|
10
|
King TR, Kramer J, Cheng YS, Swope D, Kramer SG. Enabled/VASP is required to mediate proper sealing of opposing cardioblasts during Drosophila dorsal vessel formation. Dev Dyn 2021; 250:1173-1190. [PMID: 33587326 DOI: 10.1002/dvdy.317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/16/2021] [Accepted: 02/02/2021] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION The Drosophila dorsal vessel (DV) is comprised of two opposing rows of cardioblasts (CBs) that migrate toward the dorsal midline during development. While approaching the midline, CBs change shape, enabling dorsal and ventral attachments with their contralateral partners to create a linear tube with a central lumen. We previously demonstrated DV closure occurs via a "buttoning" mechanism where specific CBs advance ahead of their lateral neighbors, and attach creating transient holes, which eventually seal. RESULTS Here, we investigate the role of the actin-regulatory protein enabled (Ena) in DV closure. Loss of Ena results in DV cell shape and alignment defects. Live analysis of DV formation in ena mutants shows a reduction in CB leading edge protrusion length and gaps in the DV between contralateral CB pairs. These gaps occur primarily between a specific genetic subtype of CBs, which express the transcription factor seven-up (Svp) and form the ostia inflow tracts of the heart. In WT embryos these gaps between Svp+ CBs are observed transiently during the final stages of DV closure. CONCLUSIONS Our data suggest that Ena modulates the actin cytoskeleton in order to facilitate the complete sealing of the DV during the final stages of cardiac tube formation.
Collapse
Affiliation(s)
- Tiffany R King
- Graduate Program in Cell and Developmental Biology, Rutgers Graduate School of Biomedical Sciences at Robert Wood Johnson Medical School, Department of Pathology and Laboratory Medicine, Piscataway, New Jersey, USA.,Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph Kramer
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Yi-Shan Cheng
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - David Swope
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA.,Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey, USA
| | - Sunita G Kramer
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| |
Collapse
|
11
|
Hassan A, Sapir L, Nitsan I, Greenblatt Ben-El RT, Halachmi N, Salzberg A, Tzlil S. A Change in ECM Composition Affects Sensory Organ Mechanics and Function. Cell Rep 2020; 27:2272-2280.e4. [PMID: 31116974 DOI: 10.1016/j.celrep.2019.04.092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 02/12/2019] [Accepted: 04/18/2019] [Indexed: 11/26/2022] Open
Abstract
Proprioception requires the transduction of muscle-generated deformations into sensory neuronal impulses. In proprioceptive organs, the mechanical coupling between the sensory neuron and the muscle is mediated by a connective structure composed of accessory cells and an extracellular matrix (ECM). Here, we use the fly chordotonal organ (ChO) to investigate how the mechanical properties of the connective element affect mechanosensing. We show that the loss of Pericardin, a major constituent of the ChO ECM, alters the mechanical properties of the ChO resulting in short-wavelength buckling of the accessory cells upon muscle contraction and low compressive strain within the organ. We explain these results using a simplified theoretical model of an elastic beam interacting with an elastic network under a compressive force. We further demonstrate that the transition from compression to bending interferes with the ability of the accessory cells to propagate muscle-generated deformations correctly to the neuron and hence with proper sensing.
Collapse
Affiliation(s)
- Abeer Hassan
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Liel Sapir
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Ido Nitsan
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Rina T Greenblatt Ben-El
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 3109601, Israel
| | - Naomi Halachmi
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 3109601, Israel
| | - Adi Salzberg
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 3109601, Israel
| | - Shelly Tzlil
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
12
|
Zheng W, Ocorr K, Tatar M. Extracellular matrix induced by steroids and aging through a G-protein-coupled receptor in a Drosophila model of renal fibrosis. Dis Model Mech 2020; 13:dmm041301. [PMID: 32461236 PMCID: PMC7328168 DOI: 10.1242/dmm.041301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 04/17/2020] [Indexed: 12/20/2022] Open
Abstract
Aldosterone is produced by the mammalian adrenal cortex to modulate blood pressure and fluid balance; however, excessive, prolonged aldosterone promotes fibrosis and kidney failure. How aldosterone triggers disease may involve actions independent of its canonical mineralocorticoid receptor. Here, we present a Drosophila model of renal pathology caused by excess extracellular matrix formation, stimulated by exogenous aldosterone and by insect ecdysone. Chronic administration of aldosterone or ecdysone induces expression and accumulation of collagen-like Pericardin in adult nephrocytes - podocyte-like cells that filter circulating hemolymph. Excess Pericardin deposition disrupts nephrocyte (glomerular) filtration and causes proteinuria in Drosophila, hallmarks of mammalian kidney failure. Steroid-induced Pericardin production arises from cardiomyocytes associated with nephrocytes, potentially reflecting an analogous role of mammalian myofibroblasts in fibrotic disease. Remarkably, the canonical ecdysteroid nuclear hormone receptor, Ecdysone receptor (EcR), is not required for aldosterone or ecdysone to stimulate Pericardin production or associated renal pathology. Instead, these hormones require a cardiomyocyte-associated G-protein-coupled receptor, Dopamine-EcR (DopEcR), a membrane-associated receptor previously characterized in the fly brain to affect behavior. DopEcR in the brain is known to affect behavior through interactions with the Drosophila Epidermal growth factor receptor (Egfr), referred to as dEGFR. Here, we find that the steroids ecdysone and aldosterone require dEGFR in cardiomyocytes to induce fibrosis of the cardiac-renal system. In addition, endogenous ecdysone that becomes elevated with age is found to foster age-associated fibrosis, and to require both cardiomyocyte DopEcR and dEGFR. This Drosophila renal disease model reveals a novel signaling pathway through which steroids may modulate mammalian fibrosis through potential orthologs of DopEcR.
Collapse
Affiliation(s)
- Wenjing Zheng
- Department of Ecology and Evolutionary Biology, Division of Biology and Medicine, Brown University, Providence RI 02912, USA
| | - Karen Ocorr
- Development, Aging and Regeneration Program, SBP Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Marc Tatar
- Department of Ecology and Evolutionary Biology, Division of Biology and Medicine, Brown University, Providence RI 02912, USA
| |
Collapse
|
13
|
Bataillé L, Colombié N, Pelletier A, Paululat A, Lebreton G, Carrier Y, Frendo JL, Vincent A. Alary muscles and thoracic alary-related muscles are atypical striated muscles involved in maintaining the position of internal organs. Development 2020; 147:dev.185645. [PMID: 32188630 DOI: 10.1242/dev.185645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/04/2020] [Indexed: 12/11/2022]
Abstract
Alary muscles (AMs) have been described as a component of the cardiac system in various arthropods. Lineage-related thoracic muscles (TARMs), linking the exoskeleton to specific gut regions, have recently been discovered in Drosophila Asymmetrical attachments of AMs and TARMs, to the exoskeleton on one side and internal organs on the other, suggested an architectural function in moving larvae. Here, we analysed the shape and sarcomeric organisation of AMs and TARMs, and imaged their atypical deformability in crawling larvae. We then selectively eliminated AMs and TARMs by targeted apoptosis. Elimination of AMs revealed that AMs are required for suspending the heart in proper intra-haemocelic position and for opening of the heart lumen, and that AMs constrain the curvature of the respiratory tracheal system during crawling; TARMs are required for proper positioning of visceral organs and efficient food transit. AM/TARM cardiac versus visceral attachment depends on Hox control, with visceral attachment being the ground state. TARMs and AMs are the first example of multinucleate striated muscles connecting the skeleton to the cardiac and visceral systems in bilaterians, with multiple physiological functions.
Collapse
Affiliation(s)
- Laetitia Bataillé
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse 3, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Nathalie Colombié
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse 3, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Aurore Pelletier
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse 3, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Achim Paululat
- University of Osnabrück, Department of Biology/Chemistry, Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Gaëlle Lebreton
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse 3, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Yannick Carrier
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse 3, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Jean-Louis Frendo
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse 3, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Alain Vincent
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse 3, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
14
|
Pastor-Pareja JC. Atypical basement membranes and basement membrane diversity - what is normal anyway? J Cell Sci 2020; 133:133/8/jcs241794. [PMID: 32317312 DOI: 10.1242/jcs.241794] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The evolution of basement membranes (BMs) played an essential role in the organization of animal cells into tissues and diversification of body plans. The archetypal BM is a compact extracellular matrix polymer containing laminin, nidogen, collagen IV and perlecan (LNCP matrix) tightly packed into a homogenously thin planar layer. Contrasting this clear-cut morphological and compositional definition, there are numerous examples of LNCP matrices with unusual characteristics that deviate from this planar organization. Furthermore, BM components are found in non-planar matrices that are difficult to categorize as BMs at all. In this Review, I discuss examples of atypical BM organization. First, I highlight atypical BM structures in human tissues before describing the functional dissection of a plethora of BMs and BM-related structures in their tissue contexts in the fruit fly Drosophila melanogaster To conclude, I summarize our incipient understanding of the mechanisms that provide morphological, compositional and functional diversity to BMs. It is becoming increasingly clear that atypical BMs are quite prevalent, and that even typical planar BMs harbor a lot of diversity that we do not yet comprehend.
Collapse
Affiliation(s)
- José C Pastor-Pareja
- School of Life Sciences, Tsinghua University, Beijing 100084, China .,Peking-Tsinghua Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
15
|
Blice-Baum AC, Guida MC, Hartley PS, Adams PD, Bodmer R, Cammarato A. As time flies by: Investigating cardiac aging in the short-lived Drosophila model. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1831-1844. [PMID: 30496794 PMCID: PMC6527462 DOI: 10.1016/j.bbadis.2018.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/05/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023]
Abstract
Aging is associated with a decline in heart function across the tissue, cellular, and molecular levels. The risk of cardiovascular disease grows significantly over time, and as developed countries continue to see an increase in lifespan, the cost of cardiovascular healthcare for the elderly will undoubtedly rise. The molecular basis for cardiac function deterioration with age is multifaceted and not entirely clear, and there is a limit to what investigations can be performed on human subjects or mammalian models. Drosophila melanogaster has emerged as a useful model organism for studying aging in a short timeframe, benefitting from a suite of molecular and genetic tools and displaying highly conserved traits of cardiac senescence. Here, we discuss recent advances in our understanding of cardiac aging and how the fruit fly has aided in these developments.
Collapse
Affiliation(s)
| | - Maria Clara Guida
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA.
| | - Paul S Hartley
- Bournemouth University, Department of Life and Environmental Science, Talbot Campus, Fern Barrow, Poole, Dorset BH12 5BB, UK.
| | - Peter D Adams
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA.
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA.
| | - Anthony Cammarato
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
16
|
Pericardin, a Drosophila collagen, facilitates accumulation of hemocytes at the heart. Dev Biol 2019; 454:52-65. [PMID: 31228417 DOI: 10.1016/j.ydbio.2019.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/29/2019] [Accepted: 06/11/2019] [Indexed: 02/05/2023]
Abstract
Hematopoietic cell lineages support organismal needs by responding to positional and systemic signals that balance proliferative and differentiation events. Drosophila provides an excellent genetic model to dissect these signals, where the activity of cues in the hemolymph or substrate can be traced to determination and differentiation events of well characterized hemocyte types. Plasmatocytes in third instar larvae increase in number in response to infection and in anticipation of metamorphosis. Here we characterize hemocyte clustering, proliferation and transdifferentiation on the heart or dorsal vessel. Hemocytes accumulate on the inner foldings of the heart basement membrane, where they move with heart contraction, and are in proximity to the heart ostia and pericardial nephrocytes. The numbers of hemocytes vary, but increase transiently before pupariation, and decrease by 4 h before pupa formation. During their accumulation at the heart, plasmatocytes can proliferate and can transdifferentiate into crystal cells. Serrate expressing cells as well as lamellocyte-like, Atilla expressing ensheathing cells are associated with some, but not all hemocyte clusters. Hemocyte aggregation is enhanced by the presence of a heart specific Collagen, Pericardin, but not the associated pericardial cells. The varied and transient number of hemocytes in the pericardial compartment suggests that this is not a hematopoietic hub, but a niche supporting differentiation and rapid dispersal in response to systemic signals.
Collapse
|
17
|
Vaughan L, Marley R, Miellet S, Hartley PS. The impact of SPARC on age-related cardiac dysfunction and fibrosis in Drosophila. Exp Gerontol 2018; 109:59-66. [PMID: 29032244 PMCID: PMC6094046 DOI: 10.1016/j.exger.2017.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/17/2017] [Accepted: 10/11/2017] [Indexed: 12/17/2022]
Abstract
Tissue fibrosis, an accumulation of extracellular matrix proteins such as collagen, accompanies cardiac ageing in humans and this is linked to an increased risk of cardiac failure. The mechanisms driving age-related tissue fibrosis and cardiac dysfunction are unclear, yet clinically important. Drosophila is amenable to the study of cardiac ageing as well as collagen deposition; however it is unclear whether collagen accumulates in the ageing Drosophila heart. This work examined collagen deposition and cardiac function in ageing Drosophila, in the context of reduced expression of collagen-interacting protein SPARC (Secreted Protein Acidic and Rich in Cysteine) an evolutionarily conserved protein linked with fibrosis. Heart function was measured using high frame rate videomicroscopy. Collagen deposition was monitored using a fluorescently-tagged collagen IV reporter (encoded by the Viking gene) and staining of the cardiac collagen, Pericardin. The Drosophila heart accumulated collagen IV and Pericardin as flies aged. Associated with this was a decline in cardiac function. SPARC heterozygous flies lived longer than controls and showed little to no age-related cardiac dysfunction. As flies of both genotypes aged, cardiac levels of collagen IV (Viking) and Pericardin increased similarly. Over-expression of SPARC caused cardiomyopathy and increased Pericardin deposition. The findings demonstrate that, like humans, the Drosophila heart develops a fibrosis-like phenotype as it ages. Although having no gross impact on collagen accumulation, reduced SPARC expression extended Drosophila lifespan and cardiac health span. It is proposed that cardiac fibrosis in humans may develop due to the activation of conserved mechanisms and that SPARC may mediate cardiac ageing by mechanisms more subtle than gross accumulation of collagen.
Collapse
Affiliation(s)
- Leigh Vaughan
- Bournemouth University, Department of Life and Environmental Science, Talbot Campus, Fern Barrow, Poole, Dorset BH12 5BB, UK
| | - Richard Marley
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, UK
| | - Sara Miellet
- Bournemouth University, Department of Life and Environmental Science, Talbot Campus, Fern Barrow, Poole, Dorset BH12 5BB, UK
| | - Paul S Hartley
- Bournemouth University, Department of Life and Environmental Science, Talbot Campus, Fern Barrow, Poole, Dorset BH12 5BB, UK.
| |
Collapse
|
18
|
Wilmes AC, Klinke N, Rotstein B, Meyer H, Paululat A. Biosynthesis and assembly of the Collagen IV-like protein Pericardin in Drosophila melanogaster. Biol Open 2018; 7:7/4/bio030361. [PMID: 29685999 PMCID: PMC5936059 DOI: 10.1242/bio.030361] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In Drosophila, formation of the cardiac extracellular matrix (ECM) starts during embryogenesis. Assembly and incorporation of structural proteins such as Collagen IV, Pericardin, and Laminin A, B1, and B2 into the cardiac ECM is critical to the maintenance of heart integrity and functionality and, therefore, to longevity of the animal. The cardiac ECM connects the heart tube with the alary muscles; thus, the ECM contributes to a flexible positioning of the heart within the animal's body. Moreover, the cardiac ECM holds the larval pericardial nephrocytes in close proximity to the heart tube and the inflow tract, which is assumed to be critical to efficient haemolymph clearance. Mutations in either structural ECM constituents or ECM receptors cause breakdown of the ECM network upon ageing, with disconnection of the heart tube from alary muscles becoming apparent at larval stages. Finally, the heart becomes non-functional. Here, we characterised existing and new pericardin mutants and investigated biosynthesis, secretion, and assembly of Pericardin in matrices. We identified two new pericardin alleles, which turned out to be a null (pericardin3-548) and a hypomorphic allele (pericardin3-21). Both mutants could be rescued with a genomic duplication of a fosmid coding for the pericardin locus. Biochemical analysis revealed that Pericardin is highly glycosylated and forms redox-dependent multimers. Multimer formation is remarkably reduced in animals deficient for the prolyl-4 hydroxylase cluster at 75D3-4. Summary: We identified two new pericardin alleles. Both mutants could be rescued with a genomic duplication of a fosmid coding for the pericardin locus. Biochemical analysis revealed that Pericardin is highly glycosylated and forms redox-dependent multimers.
Collapse
Affiliation(s)
- Ariane C Wilmes
- University of Osnabrück, Biology, Department of Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Nora Klinke
- University of Osnabrück, Biology, Department of Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Barbara Rotstein
- University of Osnabrück, Biology, Department of Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Heiko Meyer
- University of Osnabrück, Biology, Department of Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Achim Paululat
- University of Osnabrück, Biology, Department of Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrück, Germany
| |
Collapse
|
19
|
Abstract
Excess adipose fat accumulation, or obesity, is a growing problem worldwide in terms of both the rate of incidence and the severity of obesity-associated metabolic disease. Adipose tissue evolved in animals as a specialized dynamic lipid storage depot: adipose cells synthesize fat (a process called lipogenesis) when energy is plentiful and mobilize stored fat (a process called lipolysis) when energy is needed. When a disruption of lipid homeostasis favors increased fat synthesis and storage with little turnover owing to genetic predisposition, overnutrition or sedentary living, complications such as diabetes and cardiovascular disease are more likely to arise. The vinegar fly Drosophila melanogaster (Diptera: Drosophilidae) is used as a model to better understand the mechanisms governing fat metabolism and distribution. Flies offer a wealth of paradigms with which to study the regulation and physiological effects of fat accumulation. Obese flies accumulate triacylglycerols in the fat body, an organ similar to mammalian adipose tissue, which specializes in lipid storage and catabolism. Discoveries in Drosophila have ranged from endocrine hormones that control obesity to subcellular mechanisms that regulate lipogenesis and lipolysis, many of which are evolutionarily conserved. Furthermore, obese flies exhibit pathophysiological complications, including hyperglycemia, reduced longevity and cardiovascular function - similar to those observed in obese humans. Here, we review some of the salient features of the fly that enable researchers to study the contributions of feeding, absorption, distribution and the metabolism of lipids to systemic physiology.
Collapse
Affiliation(s)
- Laura Palanker Musselman
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902, USA
| | - Ronald P Kühnlein
- Department of Biochemistry 1, Institute of Molecular Biosciences, University of Graz, Humboldtstraβe 50/II, A-8010 Graz, Austria.,BioTechMed-Graz, Graz, Austria
| |
Collapse
|
20
|
Sepulveda D, Rojas-Rivera D, Rodríguez DA, Groenendyk J, Köhler A, Lebeaupin C, Ito S, Urra H, Carreras-Sureda A, Hazari Y, Vasseur-Cognet M, Ali MMU, Chevet E, Campos G, Godoy P, Vaisar T, Bailly-Maitre B, Nagata K, Michalak M, Sierralta J, Hetz C. Interactome Screening Identifies the ER Luminal Chaperone Hsp47 as a Regulator of the Unfolded Protein Response Transducer IRE1α. Mol Cell 2018; 69:238-252.e7. [PMID: 29351844 DOI: 10.1016/j.molcel.2017.12.028] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 10/05/2017] [Accepted: 12/27/2017] [Indexed: 01/17/2023]
Abstract
Maintenance of endoplasmic reticulum (ER) proteostasis is controlled by a dynamic signaling network known as the unfolded protein response (UPR). IRE1α is a major UPR transducer, determining cell fate under ER stress. We used an interactome screening to unveil several regulators of the UPR, highlighting the ER chaperone Hsp47 as the major hit. Cellular and biochemical analysis indicated that Hsp47 instigates IRE1α signaling through a physical interaction. Hsp47 directly binds to the ER luminal domain of IRE1α with high affinity, displacing the negative regulator BiP from the complex to facilitate IRE1α oligomerization. The regulation of IRE1α signaling by Hsp47 is evolutionarily conserved as validated using fly and mouse models of ER stress. Hsp47 deficiency sensitized cells and animals to experimental ER stress, revealing the significance of Hsp47 to global proteostasis maintenance. We conclude that Hsp47 adjusts IRE1α signaling by fine-tuning the threshold to engage an adaptive UPR.
Collapse
Affiliation(s)
- Denisse Sepulveda
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8380453, Chile; Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago 8380453, Chile
| | - Diego Rojas-Rivera
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8380453, Chile; Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago 8380453, Chile
| | - Diego A Rodríguez
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8380453, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago 8380453, Chile; Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jody Groenendyk
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S7, Canada
| | - Andres Köhler
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8380453, Chile; Program of Physiology and Biophysics, Institute of Biomedical Sciences, University of Chile, Santiago 8380453, Chile
| | | | - Shinya Ito
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto and Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | - Hery Urra
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8380453, Chile; Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago 8380453, Chile
| | - Amado Carreras-Sureda
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8380453, Chile; Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago 8380453, Chile
| | - Younis Hazari
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8380453, Chile; Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago 8380453, Chile
| | - Mireille Vasseur-Cognet
- Institut d'Ecologie et des Sciences de l'Environnement de Paris, Bondy; Sorbonne Universités, and Institut National de la Santé et de la Recherche Médicale, Paris 7 113, France
| | - Maruf M U Ali
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Eric Chevet
- Inserm U1242, Chemistry, Oncogenesis, Stress, & Signaling, University of Rennes 1, F-35000 Rennes, France; Centre de Lutte le Cancer Eugène Marquis, F-35000 Rennes, France
| | - Gisela Campos
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund 44139, Germany
| | - Patricio Godoy
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund 44139, Germany
| | - Tomas Vaisar
- Division of Metabolism, Endocrinology and Nutrition, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | - Kazuhiro Nagata
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto and Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S7, Canada
| | - Jimena Sierralta
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8380453, Chile; Program of Physiology and Biophysics, Institute of Biomedical Sciences, University of Chile, Santiago 8380453, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago 8380453, Chile; Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago 8380453, Chile; Buck Institute for Research on Aging, Novato, CA 94945, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston MA 02115, USA.
| |
Collapse
|
21
|
Drechsler M, Meyer H, Wilmes AC, Paululat A. APC/CFzr regulates cardiac and myoblast cell numbers and plays a crucial role during myoblast fusion. J Cell Sci 2018; 131:jcs.209155. [DOI: 10.1242/jcs.209155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 05/30/2018] [Indexed: 11/20/2022] Open
Abstract
Somatic muscles are formed by the iterative fusion of myoblasts into muscle fibres. This process is driven by the recurrent recruitment of proteins to the cell membrane to induce F-actin nucleation at the fusion site. Although various proteins involved in myoblast fusion have been identified, knowledge about their sub-cellular regulation is rather elusive. We identified the anaphase-promoting complex (APC/C) adaptor Fizzy related (Fzr) as an essential regulator of heart and muscle development. We show that APC/CFzr regulates the fusion of myoblasts as well as mitotic exit of pericardial cells, cardioblasts and myoblasts. Surprisingly, over-proliferation is not causative for the observed fusion defects. Instead, fzr mutants exhibit smaller F-actin foci at the fusion site, and display reduced membrane breakdown between adjacent myoblasts. We show that lack of APC/CFzr causes the accumulation and mislocalisation of Rols and Duf, two proteins involved in the fusion process. Duf seems to serve as direct substrate of the APC/CFzr, and its destruction depends on the presence of distinct degron sequences. These novel findings indicate that protein destruction and turnover constitute major events during myoblast fusion.
Collapse
Affiliation(s)
- Maik Drechsler
- University of Osnabrück, Department of Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrück, Germany
- Current address: University of Cambridge, Department of Zoology, CB2 3EJ, Cambridge, UK
| | - Heiko Meyer
- University of Osnabrück, Department of Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Ariane C. Wilmes
- University of Osnabrück, Department of Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Achim Paululat
- University of Osnabrück, Department of Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrück, Germany
| |
Collapse
|
22
|
Dai J, Ma M, Feng Z, Pastor-Pareja JC. Inter-adipocyte Adhesion and Signaling by Collagen IV Intercellular Concentrations in Drosophila. Curr Biol 2017; 27:2729-2740.e4. [PMID: 28867208 DOI: 10.1016/j.cub.2017.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/10/2017] [Accepted: 08/01/2017] [Indexed: 01/02/2023]
Abstract
Sheet-forming Collagen IV is the main component of basement membranes, which are planar polymers of extracellular matrix underlying epithelia and surrounding organs in all animals. Adipocytes in both insects and mammals are mesodermal in origin and often classified as mesenchymal. However, they form true tissues where cells remain compactly associated. Neither the mechanisms providing this tissue-level organization nor its functional significance are known. Here we show that discrete Collagen IV intercellular concentrations (CIVICs), distinct from basement membranes and thicker in section, mediate inter-adipocyte adhesion in Drosophila. Loss of these Collagen-IV-containing structures in the larval fat body caused intercellular gaps and disrupted continuity of the adipose tissue layer. We also found that Integrin and Syndecan matrix receptors attach adipocytes to CIVICs and direct their formation. Finally, we show that Integrin-mediated adhesion to CIVICs promotes normal adipocyte growth and prevents autophagy through Src-Pi3K-Akt signaling. Our results evidence a surprising non-basement membrane role of Collagen IV in non-epithelial tissue morphogenesis while demonstrating adhesion and signaling functions for these structures.
Collapse
Affiliation(s)
- Jianli Dai
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Mengqi Ma
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhi Feng
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | |
Collapse
|
23
|
RNAseq Analysis of the Drosophila Response to the Entomopathogenic Nematode Steinernema. G3-GENES GENOMES GENETICS 2017; 7:1955-1967. [PMID: 28450373 PMCID: PMC5473771 DOI: 10.1534/g3.117.041004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Drosophila melanogaster is an outstanding model to study the molecular and functional basis of host-pathogen interactions. Currently, our knowledge of microbial infections in D. melanogaster is well understood; however, the response of flies to nematode infections is still in its infancy. Here, we have used the potent parasitic nematode Steinernema carpocapsae, which lives in mutualism with its endosymbiotic bacteria Xenorhabdus nematophila, to examine the transcriptomic basis of the interaction between D. melanogaster and entomopathogenic nematodes. We have employed next-generation RNA sequencing (RNAseq) to investigate the transcriptomic profile of D. melanogaster larvae in response to infection by S. carpocapsae symbiotic (carrying X. nematophila) or axenic (lacking X. nematophila) nematodes. Bioinformatic analyses have identified the strong induction of genes that are associated with the peritrophic membrane and the stress response, as well as several genes that participate in developmental processes. We have also found that genes with different biological functions are enriched in D. melanogaster larvae responding to either symbiotic or axenic nematodes. We further show that while symbiotic nematode infection enriched certain known immune-related genes, axenic nematode infection enriched several genes associated with chitin binding, lipid metabolic functions, and neuroactive ligand receptors. In addition, we have identified genes with a potential role in nematode recognition and genes with potential antinematode activity. Findings from this study will undoubtedly set the stage for the identification of key regulators of antinematode immune mechanisms in D. melanogaster, as well as in other insects of socioeconomic importance.
Collapse
|
24
|
Dissecting the Role of the Extracellular Matrix in Heart Disease: Lessons from the Drosophila Genetic Model. Vet Sci 2017; 4:vetsci4020024. [PMID: 29056683 PMCID: PMC5606597 DOI: 10.3390/vetsci4020024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/15/2017] [Accepted: 04/20/2017] [Indexed: 12/16/2022] Open
Abstract
The extracellular matrix (ECM) is a dynamic scaffold within organs and tissues that enables cell morphogenesis and provides structural support. Changes in the composition and organisation of the cardiac ECM are required for normal development. Congenital and age-related cardiac diseases can arise from mis-regulation of structural ECM proteins (Collagen, Laminin) or their receptors (Integrin). Key regulators of ECM turnover include matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of matrix metalloproteinases (TIMPs). MMP expression is increased in mice, pigs, and dogs with cardiomyopathy. The complexity and longevity of vertebrate animals makes a short-lived, genetically tractable model organism, such as Drosophila melanogaster, an attractive candidate for study. We survey ECM macromolecules and their role in heart development and growth, which are conserved between Drosophila and vertebrates, with focus upon the consequences of altered expression or distribution. The Drosophila heart resembles that of vertebrates during early development, and is amenable to in vivo analysis. Experimental manipulation of gene function in a tissue- or temporally-regulated manner can reveal the function of adhesion or ECM genes in the heart. Perturbation of the function of ECM proteins, or of the MMPs that facilitate ECM remodelling, induces cardiomyopathies in Drosophila, including cardiodilation, arrhythmia, and cardia bifida, that provide mechanistic insight into cardiac disease in mammals.
Collapse
|
25
|
Raza QS, Vanderploeg JL, Jacobs JR. Matrix Metalloproteinases are required for membrane motility and lumenogenesis during Drosophila heart development. PLoS One 2017; 12:e0171905. [PMID: 28192468 PMCID: PMC5305246 DOI: 10.1371/journal.pone.0171905] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/28/2017] [Indexed: 01/10/2023] Open
Abstract
Matrix Metalloproteinases (Mmps) degrade glycoproteins and proteoglycans of the extracellular matrix (ECM) or cell surface and are crucial for morphogenesis. Mmps and their inhibitors are expressed during early stages of cardiac development in vertebrates and expression is altered in multiple congenital cardiomyopathies such as cardia bifida. Drosophila genome encodes two copies of Mmps, Mmp1 and Mmp2 whereas in humans up to 25 Mmps have been identified with overlapping functions. We investigated the role of Mmps during embryonic heart development in Drosophila, a process which is morphogenetically similar to early heart tube formation in vertebrates. We demonstrate that the two Mmps in Drosophila have distinct and overlapping roles in cell motility, cell adhesion and cardiac lumenogenesis. We determined that Mmp1 and Mmp2 promote Leading Edge membrane dynamics of cardioblasts during collective migration. Mmp2 is essential for cardiac lumen formation, and mutants generate a cardia bifida phenotype. Mmp1 is required for luminal expansion. Mmp1 and Mmp2 both localise to the basal domains of cardiac cells, however, occupy non-overlapping domains apically. Mmp1 and Mmp2 regulate the proteoglycan composition and size of the apical and basal ECM, yet only Mmp2 is required to restrict ECM assembly to the lumen. Mmp1 negatively regulates the size of the adhesive Cadherin cell surface domain, whereas in a complementary fashion, Mmp2 negatively regulates the size of the Integrin-ECM domain and thereby prescribes the domain to establish and restrict Slit morphogen signalling. Inhibition of Mmp activity through ectopic expression of Tissue Inhibitor of Metalloproteinase in the ectoderm blocks lumen formation. Therefore, Mmp expression and function identifies ECM differentiation and remodelling as a key element for cell polarisation and organogenesis.
Collapse
Affiliation(s)
- Qanber S. Raza
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| | | | - J. Roger Jacobs
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
26
|
Sessions AO, Kaushik G, Parker S, Raedschelders K, Bodmer R, Van Eyk JE, Engler AJ. Extracellular matrix downregulation in the Drosophila heart preserves contractile function and improves lifespan. Matrix Biol 2016; 62:15-27. [PMID: 27793636 DOI: 10.1016/j.matbio.2016.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/19/2016] [Accepted: 10/22/2016] [Indexed: 02/01/2023]
Abstract
Aging is associated with extensive remodeling of the heart, including basement membrane (BM) components that surround cardiomyocytes. Remodeling is thought to impair cardiac mechanotransduction, but the contribution of specific BM components to age-related lateral communication between cardiomyocytes is unclear. Using a genetically tractable, rapidly aging model with sufficient cardiac genetic homology and morphology, e.g. Drosophila melanogaster, we observed differential regulation of BM collagens between laboratory strains, correlating with changes in muscle physiology leading to cardiac dysfunction. Therefore, we sought to understand the extent to which BM proteins modulate contractile function during aging. Cardiac-restricted knockdown of ECM genes Pericardin, Laminin A, and Viking in Drosophila prevented age-associated heart tube restriction and increased contractility, even under viscous load. Most notably, reduction of Laminin A expression correlated with an overall preservation of contractile velocity with age and extension of organismal lifespan. Global heterozygous knockdown confirmed these data, which provides new evidence of a direct link between BM homeostasis, contractility, and maintenance of lifespan.
Collapse
Affiliation(s)
- Ayla O Sessions
- Biomedical Sciences Program, UC, San Diego; La Jolla, CA 92093, USA
| | - Gaurav Kaushik
- Department of Bioengineering, UC, San Diego; La Jolla, CA 92093, USA
| | - Sarah Parker
- Advanced Clinical Biosystems Research Institute; Barbra Streisand Women's Heart Center; Cedars-Sinai Heart Institute; Cedars-Sinai Medical Center; Los Angeles, CA 90048, USA
| | - Koen Raedschelders
- Advanced Clinical Biosystems Research Institute; Barbra Streisand Women's Heart Center; Cedars-Sinai Heart Institute; Cedars-Sinai Medical Center; Los Angeles, CA 90048, USA
| | - Rolf Bodmer
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute; La Jolla, CA 92037, USA
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute; Barbra Streisand Women's Heart Center; Cedars-Sinai Heart Institute; Cedars-Sinai Medical Center; Los Angeles, CA 90048, USA
| | - Adam J Engler
- Biomedical Sciences Program, UC, San Diego; La Jolla, CA 92093, USA; Department of Bioengineering, UC, San Diego; La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA.
| |
Collapse
|
27
|
Shimaji K, Konishi T, Yoshida H, Kimura H, Yamaguchi M. Genome-wide genetic screen identified the link between dG9a and epidermal growth factor receptor signaling pathway in vivo. Exp Cell Res 2016; 346:53-64. [PMID: 27343629 DOI: 10.1016/j.yexcr.2016.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/27/2016] [Accepted: 06/21/2016] [Indexed: 10/21/2022]
Abstract
G9a is one of the histone H3 Lys 9 (H3K9) specific methyltransferases first identified in mammals. Drosophila G9a (dG9a) has been reported to induce H3K9 dimethylation in vivo, and the target genes of dG9a were identified during embryonic and larval stages. Although dG9a is important for a variety of developmental processes, the link between dG9a and signaling pathways are not addressed yet. Here, by genome-wide genetic screen, taking advantage of the rough eye phenotype of flies that over-express dG9a in eye discs, we identified 16 genes that enhanced the rough eye phenotype induced by dG9a over-expression. These 16 genes included Star, anterior open, bereft and F-box and leucine-rich repeat protein 6 which are components of epidermal growth factor receptor (EGFR) signaling pathway. When dG9a over-expression was combined with mutation of Star, differentiation of R7 photoreceptors in eye imaginal discs as well as cone cells and pigment cells in pupal retinae was severely inhibited. Furthermore, the dG9a over-expression reduced the activated ERK signals in eye discs. These data demonstrate a strong genetic link between dG9a and the EGFR signaling pathway.
Collapse
Affiliation(s)
- Kouhei Shimaji
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Takahiro Konishi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hiroshi Kimura
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
28
|
Abstract
The development of the dorsal vessel in Drosophila is one of the first systems in which key mechanisms regulating cardiogenesis have been defined in great detail at the genetic and molecular level. Due to evolutionary conservation, these findings have also provided major inputs into studies of cardiogenesis in vertebrates. Many of the major components that control Drosophila cardiogenesis were discovered based on candidate gene approaches and their functions were defined by employing the outstanding genetic tools and molecular techniques available in this system. More recently, approaches have been taken that aim to interrogate the entire genome in order to identify novel components and describe genomic features that are pertinent to the regulation of heart development. Apart from classical forward genetic screens, the availability of the thoroughly annotated Drosophila genome sequence made new genome-wide approaches possible, which include the generation of massive numbers of RNA interference (RNAi) reagents that were used in forward genetic screens, as well as studies of the transcriptomes and proteomes of the developing heart under normal and experimentally manipulated conditions. Moreover, genome-wide chromatin immunoprecipitation experiments have been performed with the aim to define the full set of genomic binding sites of the major cardiogenic transcription factors, their relevant target genes, and a more complete picture of the regulatory network that drives cardiogenesis. This review will give an overview on these genome-wide approaches to Drosophila heart development and on computational analyses of the obtained information that ultimately aim to provide a description of this process at the systems level.
Collapse
|
29
|
Kim HY, Jackson TR, Davidson LA. On the role of mechanics in driving mesenchymal-to-epithelial transitions. Semin Cell Dev Biol 2016; 67:113-122. [PMID: 27208723 DOI: 10.1016/j.semcdb.2016.05.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 01/27/2023]
Abstract
The mesenchymal-to-epithelial transition (MET) is an intrinsically mechanical process describing a multi-step progression where autonomous mesenchymal cells gradually become tightly linked, polarized epithelial cells. METs are fundamental to a wide range of biological processes, including the evolution of multicellular organisms, generation of primary and secondary epithelia during development and organogenesis, and the progression of diseases including cancer. In these cases, there is an interplay between the establishment of cell polarity and the mechanics of neighboring cells and microenvironment. In this review, we highlight a spectrum of METs found in normal development as well as in pathological lesions, and provide insight into the critical role mechanics play at each step. We define MET as an independent process, distinct from a reverse-EMT, and propose questions to further explore the cellular and physical mechanisms of MET.
Collapse
Affiliation(s)
- Hye Young Kim
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Timothy R Jackson
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lance A Davidson
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Developmental Biology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
30
|
Talin is required to position and expand the luminal domain of the Drosophila heart tube. Dev Biol 2015; 405:189-201. [DOI: 10.1016/j.ydbio.2015.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/25/2015] [Accepted: 04/28/2015] [Indexed: 12/22/2022]
|
31
|
Garlena RA, Lennox AL, Baker LR, Parsons TE, Weinberg SM, Stronach BE. The receptor tyrosine kinase Pvr promotes tissue closure by coordinating corpse removal and epidermal zippering. Development 2015; 142:3403-15. [PMID: 26293306 DOI: 10.1242/dev.122226] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 08/10/2015] [Indexed: 12/14/2022]
Abstract
A leading cause of human birth defects is the incomplete fusion of tissues, often manifested in the palate, heart or neural tube. To investigate the molecular control of tissue fusion, embryonic dorsal closure and pupal thorax closure in Drosophila are useful experimental models. We find that Pvr mutants have defects in dorsal midline closure with incomplete amnioserosa internalization and epidermal zippering, as well as cardia bifida. These defects are relatively mild in comparison to those seen with other signaling mutants, such as in the JNK pathway, and we demonstrate that JNK signaling is not perturbed by altering Pvr receptor tyrosine kinase activity. Rather, modulation of Pvr levels in the ectoderm has an impact on PIP3 membrane accumulation, consistent with a link to PI3K signal transduction. Polarized PI3K activity influences protrusive activity from the epidermal leading edge and the protrusion area changes in accord with Pvr signaling intensity, providing a possible mechanism to explain Pvr mutant phenotypes. Tissue-specific rescue experiments indicate a partial requirement in epithelial tissue, but confirm the essential role of Pvr in hemocytes for embryonic survival. Taken together, we argue that inefficient removal of the internalizing amnioserosa tissue by mutant hemocytes coupled with impaired midline zippering of mutant epithelium creates a situation in some embryos whereby dorsal midline closure is incomplete. Based on these observations, we suggest that efferocytosis (corpse clearance) could contribute to proper tissue closure and thus might underlie some congenital birth defects.
Collapse
Affiliation(s)
- Rebecca A Garlena
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Ashley L Lennox
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Lewis R Baker
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Trish E Parsons
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Seth M Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Beth E Stronach
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
32
|
Bogatan S, Cevik D, Demidov V, Vanderploeg J, Panchbhaya A, Vitkin A, Jacobs JR. Talin Is Required Continuously for Cardiomyocyte Remodeling during Heart Growth in Drosophila. PLoS One 2015; 10:e0131238. [PMID: 26110760 PMCID: PMC4482443 DOI: 10.1371/journal.pone.0131238] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 05/30/2015] [Indexed: 12/26/2022] Open
Abstract
Mechanotransduction of tension can govern the remodeling of cardiomyocytes during growth or cardiomyopathy. Tension is signaled through the integrin adhesion complexes found at muscle insertions and costameres but the relative importance of signalling during cardiomyocyte growth versus remodelling has not been assessed. Employing the Drosophila cardiomyocyte as a genetically amenable model, we depleted the levels of Talin, a central component of the integrin adhesion complex, at different stages of heart growth and remodeling. We demonstrate a continuous requirement for Talin during heart growth to maintain the one-to-one apposition of myofibril ends between cardiomyocytes. Retracted myofibrils cannot regenerate appositions to adjacent cells after restoration of normal Talin expression, and the resulting deficit reduces heart contraction and lifespan. Reduction of Talin during heart remodeling after hatching or during metamorphosis results in pervasive degeneration of cell contacts, myofibril length and number, for which restored Talin expression is insufficient for regeneration. Resultant dilated cardiomyopathy results in a fibrillating heart with poor rhythmicity. Cardiomyocytes have poor capacity to regenerate deficits in myofibril orientation and insertion, despite an ongoing capacity to remodel integrin based adhesions.
Collapse
Affiliation(s)
- Simina Bogatan
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Duygu Cevik
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Valentin Demidov
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Jessica Vanderploeg
- Department of Biology, Taylor University, Euler Science Complex, 236 W. Reade Ave, Upland, IN, 46989, United States of America
| | | | - Alex Vitkin
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - J. Roger Jacobs
- Department of Biology, McMaster University, Hamilton, ON, Canada
- * E-mail:
| |
Collapse
|
33
|
Maartens AP, Brown NH. The many faces of cell adhesion during Drosophila muscle development. Dev Biol 2015; 401:62-74. [DOI: 10.1016/j.ydbio.2014.12.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
|
34
|
Abstract
Many of the major discoveries in the fields of genetics and developmental biology have been made using the fruit fly, Drosophila melanogaster. With regard to heart development, the conserved network of core cardiac transcription factors that underlies cardiogenesis has been studied in great detail in the fly, and the importance of several signaling pathways that regulate heart morphogenesis, such as Slit/Robo, was first shown in the fly model. Recent technological advances have led to a large increase in the genomic data available from patients with congenital heart disease (CHD). This has highlighted a number of candidate genes and gene networks that are potentially involved in CHD. To validate genes and genetic interactions among candidate CHD-causing alleles and to better understand heart formation in general are major tasks. The specific limitations of the various cardiac model systems currently employed (mammalian and fish models) provide a niche for the fly model, despite its evolutionary distance to vertebrates and humans. Here, we review recent advances made using the Drosophila embryo that identify factors relevant for heart formation. These underline how this model organism still is invaluable for a better understanding of CHD.
Collapse
|
35
|
Gopinathan G, Jin T, Liu M, Li S, Atsawasuwan P, Galang MT, Allen M, Luan X, Diekwisch TGH. The expanded amelogenin polyproline region preferentially binds to apatite versus carbonate and promotes apatite crystal elongation. Front Physiol 2014; 5:430. [PMID: 25426079 PMCID: PMC4227485 DOI: 10.3389/fphys.2014.00430] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 10/16/2014] [Indexed: 01/23/2023] Open
Abstract
The transition from invertebrate calcium carbonate-based calcite and aragonite exo- and endoskeletons to the calcium phosphate-based vertebrate backbones and jaws composed of microscopic hydroxyapatite crystals is one of the great revolutions in the evolution of terrestrial organisms. To identify potential factors that might have played a role in such a transition, three key domains of the vertebrate tooth enamel protein amelogenin were probed for calcium mineral/protein interactions and their ability to promote calcium phosphate and calcium carbonate crystal growth. Under calcium phosphate crystal growth conditions, only the carboxy-terminus augmented polyproline repeat peptide, but not the N-terminal peptide nor the polyproline repeat peptide alone, promoted the formation of thin and parallel crystallites resembling those of bone and initial enamel. In contrast, under calcium carbonate crystal growth conditions, all three amelogenin-derived polypeptides caused calcium carbonate to form fused crystalline conglomerates. When examined for long-term crystal growth, polyproline repeat peptides of increasing length promoted the growth of shorter calcium carbonate crystals with broader basis, contrary to the positive correlation between polyproline repeat element length and apatite mineralization published earlier. To determine whether the positive correlation between polyproline repeat element length and apatite crystal growth versus the inverse correlation between polyproline repeat length and calcium carbonate crystal growth were related to the binding affinity of the polyproline domain to either apatite or carbonate, a parallel series of calcium carbonate and calcium phosphate/apatite protein binding studies was conducted. These studies demonstrated a remarkable binding affinity between the augmented amelogenin polyproline repeat region and calcium phosphates, and almost no binding to calcium carbonates. In contrast, the amelogenin N-terminus bound to both carbonate and apatite, but preferentially to calcium carbonate. Together, these studies highlight the specific binding affinity of the augmented amelogenin polyproline repeat region to calcium phosphates versus calcium carbonate, and its unique role in the growth of thin apatite crystals as they occur in vertebrate biominerals. Our data suggest that the rise of apatite-based biominerals in vertebrates might have been facilitated by a rapid evolution of specialized polyproline repeat proteins flanked by a charged domain, resulting in apatite crystals with reduced width, increased length, and tailored biomechanical properties.
Collapse
Affiliation(s)
- Gokul Gopinathan
- Oral Biology, University of Illinois at Chicago Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago College of Dentistry Chicago, IL, USA
| | - Tianquan Jin
- Biocytogen, One Innovation Drive Worcester, MA, USA
| | - Min Liu
- Department of Periodontology, Stomatological Hospital, Jilin University Changchun, China
| | - Steve Li
- Oral Biology, University of Illinois at Chicago Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago College of Dentistry Chicago, IL, USA
| | - Phimon Atsawasuwan
- University of Illinois at Chicago Department of Orthodontics, University of Illinois at Chicago College of Dentistry Chicago, IL, USA
| | - Maria-Therese Galang
- University of Illinois at Chicago Department of Orthodontics, University of Illinois at Chicago College of Dentistry Chicago, IL, USA
| | - Michael Allen
- Department of Medicine, University of Chicago Chicago, IL, USA
| | - Xianghong Luan
- Oral Biology, University of Illinois at Chicago Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago College of Dentistry Chicago, IL, USA
| | - Thomas G H Diekwisch
- Oral Biology, University of Illinois at Chicago Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago College of Dentistry Chicago, IL, USA
| |
Collapse
|
36
|
Haack T, Schneider M, Schwendele B, Renault AD. Drosophila heart cell movement to the midline occurs through both cell autonomous migration and dorsal closure. Dev Biol 2014; 396:169-82. [PMID: 25224224 DOI: 10.1016/j.ydbio.2014.08.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/07/2014] [Accepted: 08/30/2014] [Indexed: 11/16/2022]
Abstract
The Drosophila heart is a linear organ formed by the movement of bilaterally specified progenitor cells to the midline and adherence of contralateral heart cells. This movement occurs through the attachment of heart cells to the overlying ectoderm which is undergoing dorsal closure. Therefore heart cells are thought to move to the midline passively. Through live imaging experiments and analysis of mutants that affect the speed of dorsal closure we show that heart cells in Drosophila are autonomously migratory and part of their movement to the midline is independent of the ectoderm. This means that heart formation in flies is more similar to that in vertebrates than previously thought. We also show that defects in dorsal closure can result in failure of the amnioserosa to properly degenerate, which can physically hinder joining of contralateral heart cells leading to a broken heart phenotype.
Collapse
Affiliation(s)
- Timm Haack
- Max Planck Institute for Developmental Biology, Spemannstr. 35, 72074 Tübingen, Germany
| | - Matthias Schneider
- Max Planck Institute for Developmental Biology, Spemannstr. 35, 72074 Tübingen, Germany
| | - Bernd Schwendele
- Max Planck Institute for Developmental Biology, Spemannstr. 35, 72074 Tübingen, Germany
| | - Andrew D Renault
- Max Planck Institute for Developmental Biology, Spemannstr. 35, 72074 Tübingen, Germany.
| |
Collapse
|
37
|
Horn L, Leips J, Starz‐Gaiano M. Phagocytic ability declines with age in adult Drosophila hemocytes. Aging Cell 2014; 13:719-28. [PMID: 24828474 PMCID: PMC4116448 DOI: 10.1111/acel.12227] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2014] [Indexed: 12/17/2022] Open
Abstract
Most multicellular organisms show a physiological decline in immune function with age. However, little is known about the mechanisms underlying these changes. We examined Drosophila melanogaster, an important model for identifying genes affecting innate immunity and senescence, to explore the role of phagocytosis in age-related immune dysfunction. We characterized the localized response of immune cells at the dorsal vessel to bacterial infection in 1-week- and 5-week-old flies. We developed a quantitative phagocytosis assay for adult Drosophila and utilized this to characterize the effect of age on phagocytosis in transgenic and natural variant lines. We showed that genes necessary for bacterial engulfment in other contexts are also required in adult flies. We found that blood cells from young and old flies initially engulf bacteria equally well, while cells from older flies accumulate phagocytic vesicles and thus are less capable of destroying pathogens. Our results have broad implications for understanding how the breakdown in cellular processes influences immune function with age.
Collapse
Affiliation(s)
- Lucas Horn
- Department of Biological Sciences University of Maryland Baltimore County Baltimore MD 21250USA
| | - Jeff Leips
- Department of Biological Sciences University of Maryland Baltimore County Baltimore MD 21250USA
| | - Michelle Starz‐Gaiano
- Department of Biological Sciences University of Maryland Baltimore County Baltimore MD 21250USA
| |
Collapse
|
38
|
Swope D, Kramer J, King TR, Cheng YS, Kramer SG. Cdc42 is required in a genetically distinct subset of cardiac cells during Drosophila dorsal vessel closure. Dev Biol 2014; 392:221-32. [PMID: 24949939 DOI: 10.1016/j.ydbio.2014.05.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/19/2014] [Accepted: 05/29/2014] [Indexed: 10/25/2022]
Abstract
The embryonic heart tube is formed by the migration and subsequent midline convergence of two bilateral heart fields. In Drosophila the heart fields are organized into two rows of cardioblasts (CBs). While morphogenesis of the dorsal ectoderm, which lies directly above the Drosophila dorsal vessel (DV), has been extensively characterized, the migration and concomitant fundamental factors facilitating DV formation remain poorly understood. Here we provide evidence that DV closure occurs at multiple independent points along the A-P axis of the embryo in a "buttoning" pattern, divergent from the zippering mechanism observed in the overlying epidermis during dorsal closure. Moreover, we demonstrate that a genetically distinct subset of CBs is programmed to make initial contact with the opposing row. To elucidate the cellular mechanisms underlying this process, we examined the role of Rho GTPases during cardiac migration using inhibitory and overexpression approaches. We found that Cdc42 shows striking cell-type specificity during DV formation. Disruption of Cdc42 function specifically prevents CBs that express the homeobox gene tinman from completing their dorsal migration, resulting in a failure to make connections with their partnering CBs. Conversely, neighboring CBs that express the orphan nuclear receptor, seven-up, are not sensitive to Cdc42 inhibition. Furthermore, this phenotype was specific to Cdc42 and was not observed upon perturbation of Rac or Rho function. Together with the observation that DV closure occurs through the initial contralateral pairing of tinman-expressing CBs, our studies suggest that the distinct buttoning mechanism we propose for DV closure is elaborated through signaling pathways regulating Cdc42 activity in this cell type.
Collapse
Affiliation(s)
- David Swope
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Joseph Kramer
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Tiffany R King
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA; Graduate Program in Cell and Developmental Biology, Rutgers Graduate School of Biomedical Sciences at Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Yi-Shan Cheng
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Sunita G Kramer
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA; Graduate Program in Cell and Developmental Biology, Rutgers Graduate School of Biomedical Sciences at Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA.
| |
Collapse
|
39
|
Hollfelder D, Frasch M, Reim I. Distinct functions of the laminin β LN domain and collagen IV during cardiac extracellular matrix formation and stabilization of alary muscle attachments revealed by EMS mutagenesis in Drosophila. BMC DEVELOPMENTAL BIOLOGY 2014; 14:26. [PMID: 24935095 PMCID: PMC4068974 DOI: 10.1186/1471-213x-14-26] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/09/2014] [Indexed: 12/27/2022]
Abstract
BACKGROUND The Drosophila heart (dorsal vessel) is a relatively simple tubular organ that serves as a model for several aspects of cardiogenesis. Cardiac morphogenesis, proper heart function and stability require structural components whose identity and ways of assembly are only partially understood. Structural components are also needed to connect the myocardial tube with neighboring cells such as pericardial cells and specialized muscle fibers, the so-called alary muscles. RESULTS Using an EMS mutagenesis screen for cardiac and muscular abnormalities in Drosophila embryos we obtained multiple mutants for two genetically interacting complementation groups that showed similar alary muscle and pericardial cell detachment phenotypes. The molecular lesions underlying these defects were identified as domain-specific point mutations in LamininB1 and Cg25C, encoding the extracellular matrix (ECM) components laminin β and collagen IV α1, respectively. Of particular interest within the LamininB1 group are certain hypomorphic mutants that feature prominent defects in cardiac morphogenesis and cardiac ECM layer formation, but in contrast to amorphic mutants, only mild defects in other tissues. All of these alleles carry clustered missense mutations in the laminin LN domain. The identified Cg25C mutants display weaker and largely temperature-sensitive phenotypes that result from glycine substitutions in different Gly-X-Y repeats of the triple helix-forming domain. While initial basement membrane assembly is not abolished in Cg25C mutants, incorporation of perlecan is impaired and intracellular accumulation of perlecan as well as the collagen IV α2 chain is detected during late embryogenesis. CONCLUSIONS Assembly of the cardiac ECM depends primarily on laminin, whereas collagen IV is needed for stabilization. Our data underscore the importance of a correctly assembled ECM particularly for the development of cardiac tissues and their lateral connections. The mutational analysis suggests that the β6/β3/β8 interface of the laminin β LN domain is highly critical for formation of contiguous cardiac ECM layers. Certain mutations in the collagen IV triple helix-forming domain may exert a semi-dominant effect leading to an overall weakening of ECM structures as well as intracellular accumulation of collagen and other molecules, thus paralleling observations made in other organisms and in connection with collagen-related diseases.
Collapse
Affiliation(s)
- Dominik Hollfelder
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Manfred Frasch
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Ingolf Reim
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| |
Collapse
|
40
|
Volk T, Wang S, Rotstein B, Paululat A. Matricellular proteins in development: perspectives from the Drosophila heart. Matrix Biol 2014; 37:162-6. [PMID: 24726952 DOI: 10.1016/j.matbio.2014.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 03/16/2014] [Accepted: 03/25/2014] [Indexed: 12/29/2022]
Abstract
The Drosophila model represents an attractive system in which to study the functional contribution of specific genes to organ development. Within the embryo, the heart tube serves as an informative developmental paradigm to analyze functional aspects of matricellular proteins. Here, we describe two essential extracellular matricellular proteins, Multiplexin (Mp) and Lonely heart (Loh). Each of these proteins contributes to the development and morphogenesis of the heart tube by regulating the activity/localization of essential extracellular proteins. Mp, which is secreted by heart cardioblasts and is specifically distributed in the lumen of the heart tube, binds to the signaling protein Slit, and facilitates its local signaling at the heart's luminal domain. Loh is an ADAMTS-like protein, which serves as an adapter protein to Pericardin (a collagen-like protein), promoting its specific localization at the abluminal domain of the heart tube. We also introduce the Drosophila orthologues of matricellular proteins present in mammals, including Thrombospondin, and SPARC, and discuss a possible role for Teneurins (Ten-A and Ten-M) in the heart. Understanding the role of these proteins provides a novel developmental perspective into the functional contribution of matricellular proteins to organ development.
Collapse
Affiliation(s)
- T Volk
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - S Wang
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - B Rotstein
- Fachbereich Biologie/Chemie, Universität Osnabrück, Barbarastr. 11, D-49069 Osnabrueck, Germany
| | - A Paululat
- Fachbereich Biologie/Chemie, Universität Osnabrück, Barbarastr. 11, D-49069 Osnabrueck, Germany
| |
Collapse
|
41
|
Methods to assess Drosophila heart development, function and aging. Methods 2014; 68:265-72. [PMID: 24727147 DOI: 10.1016/j.ymeth.2014.03.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 03/26/2014] [Indexed: 12/11/2022] Open
Abstract
In recent years the Drosophila heart has become an established model for many different aspects of human cardiac disease. This model has allowed identification of disease-causing mechanisms underlying congenital heart disease and cardiomyopathies and has permitted the study of underlying genetic, metabolic and age-related contributions to heart function. In this review we discuss methods currently employed in the analysis of the Drosophila heart structure and function, such as optical methods to infer heart function and performance, electrophysiological and mechanical approaches to characterize cardiac tissue properties, and conclude with histological techniques used in the study of heart development and adult structure.
Collapse
|
42
|
ROS regulate cardiac function via a distinct paracrine mechanism. Cell Rep 2014; 7:35-44. [PMID: 24656823 PMCID: PMC4164050 DOI: 10.1016/j.celrep.2014.02.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/10/2014] [Accepted: 02/20/2014] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) can act cell autonomously and in a paracrine manner by diffusing into nearby cells. Here, we reveal a ROS-mediated paracrine signaling mechanism that does not require entry of ROS into target cells. We found that under physiological conditions, nonmyocytic pericardial cells (PCs) of the Drosophila heart contain elevated levels of ROS compared to the neighboring cardiomyocytes (CMs). We show that ROS in PCs act in a paracrine manner to regulate normal cardiac function, not by diffusing into the CMs to exert their function, but by eliciting a downstream D-MKK3-D-p38 MAPK signaling cascade in PCs that acts on the CMs to regulate their function. We find that ROS-D-p38 signaling in PCs during development is also important for establishing normal adult cardiac function. Our results provide evidence for a previously unrecognized role of ROS in mediating PC/CM interactions that significantly modulates heart function.
Collapse
|
43
|
The Iroquois complex is required in the dorsal mesoderm to ensure normal heart development in Drosophila. PLoS One 2013; 8:e76498. [PMID: 24086746 PMCID: PMC3781054 DOI: 10.1371/journal.pone.0076498] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 08/27/2013] [Indexed: 12/23/2022] Open
Abstract
Drosophila heart development is an invaluable system to study the orchestrated action of numerous factors that govern cardiogenesis. Cardiac progenitors arise within specific dorsal mesodermal regions that are under the influence of temporally coordinated actions of multiple signaling pathways. The Drosophila Iroquois complex (Iro-C) consists of the three homeobox transcription factors araucan (ara), caupolican (caup) and mirror (mirr). The Iro-C has been shown to be involved in tissue patterning leading to the differentiation of specific structures, such as the lateral notum and dorsal head structures and in establishing the dorsal-ventral border of the eye. A function for Iro-C in cardiogenesis has not been investigated yet. Our data demonstrate that loss of the whole Iro complex, as well as loss of either ara/caup or mirr only, affect heart development in Drosophila. Furthermore, the data indicate that the GATA factor Pannier requires the presence of Iro-C to function in cardiogenesis. Furthermore, a detailed expression pattern analysis of the members of the Iro-C revealed the presence of a possibly novel subpopulation of Even-skipped expressing pericardial cells and seven pairs of heart-associated cells that have not been described before. Taken together, this work introduces Iro-C as a new set of transcription factors that are required for normal development of the heart. As the members of the Iro-C may function, at least partly, as competence factors in the dorsal mesoderm, our results are fundamental for future studies aiming to decipher the regulatory interactions between factors that determine different cell fates in the dorsal mesoderm.
Collapse
|
44
|
The bHLH transcription factor hand is required for proper wing heart formation in Drosophila. Dev Biol 2013; 381:446-59. [DOI: 10.1016/j.ydbio.2013.05.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 05/16/2013] [Accepted: 05/27/2013] [Indexed: 11/19/2022]
|
45
|
The conserved ADAMTS-like protein lonely heart mediates matrix formation and cardiac tissue integrity. PLoS Genet 2013; 9:e1003616. [PMID: 23874219 PMCID: PMC3708815 DOI: 10.1371/journal.pgen.1003616] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/22/2013] [Indexed: 11/25/2022] Open
Abstract
Here we report on the identification and functional characterization of the ADAMTS-like homolog lonely heart (loh) in Drosophila melanogaster. Loh displays all hallmarks of ADAMTSL proteins including several thrombospondin type 1 repeats (TSR1), and acts in concert with the collagen Pericardin (Prc). Loss of either loh or prc causes progressive cardiac damage peaking in the abolishment of heart function. We show that both proteins are integral components of the cardiac ECM mediating cellular adhesion between the cardiac tube and the pericardial cells. Loss of ECM integrity leads to an altered myo-fibrillar organization in cardiac cells massively influencing heart beat pattern. We show evidence that Loh acts as a secreted receptor for Prc and works as a crucial determinant to allow the formation of a cell and tissue specific ECM, while it does not influence the accumulation of other matrix proteins like Nidogen or Perlecan. Our findings demonstrate that the function of ADAMTS-like proteins is conserved throughout evolution and reveal a previously unknown interaction of these proteins with collagens. Cellular adhesion and tissue integrity in multicellular organisms strongly depend on the molecular network of the extracellular matrix (ECM). The number, topology and function of ECM molecules are highly diverse in different species, or even in single matrices in one organism. In our study we focus on the protein class of ADAMTS-like proteins. We identified Lonely heart (Loh) a member of this protein family and describe its function using the cardiac system of Drosophila melanogaster as model. Loh constitutes a secreted protein that resides in the ECM of heart cells and mediates the adhesion between different cell types - the pericadial cells and the cardiomyocytes. Lack of Loh function induces the dissociation of these cells and consequently leads to a breakdown of heart function. We found evidence that the major function of Loh is to recruit the collagen Pericardin (Prc) to the ECM of the cells and allow the proper organization of Prc into a reticular matrix. Since the function of Loh homologous proteins in other systems is rather elusive, this work provides new important insights into the biology of cell adhesion, matrix formation and indicates that ADAMTS-like proteins might facilitate an evolutionary conserved function.
Collapse
|
46
|
Frazzled/DCC facilitates cardiac cell outgrowth and attachment during Drosophila dorsal vessel formation. Dev Biol 2013; 380:233-42. [PMID: 23685255 DOI: 10.1016/j.ydbio.2013.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/29/2013] [Accepted: 05/07/2013] [Indexed: 01/30/2023]
Abstract
Drosophila embryonic dorsal vessel (DV) morphogenesis is a highly stereotyped process that involves the migration and morphogenesis of 52 pairs of cardioblasts (CBs) in order to form a linear tube. This process requires spatiotemporally-regulated localization of signaling and adhesive proteins in order to coordinate the formation of a central lumen while maintaining simultaneous adhesion between CBs. Previous studies have shown that the Slit/Roundabout and Netrin/Unc5 repulsive signaling pathways facilitate site-specific loss of adhesion between contralateral CBs in order to form a luminal space. However, the concomitant mechanism by which attraction initiates CB outgrowth and discrete localization of adhesive proteins remains poorly understood. Here we provide genetic evidence that Netrin signals through DCC (Deleted in Colorectal Carcinoma)/UNC-40/Frazzled (Fra) to mediate CB outgrowth and attachment and that this function occurs prior to and independently of Netrin/UNC-5 signaling. fra mRNA is expressed in the CBs prior to and during DV morphogenesis. Loss-of-fra-function results in significant defects in cell shape and alignment between contralateral CB rows. In addition, CB outgrowth and attachment is impaired in both fra loss- and gain-of-function mutants. Deletion of both Netrin genes (NetA and NetB) results in CB attachment phenotypes similar to fra mutants. Similar defects are also seen when both fra and unc5 are deleted. Finally we show that Fra accumulates at dorsal and ventral leading edges of paired CBs, and this localization is dependent upon Netrin. We propose that while repulsive guidance mechanisms contribute to lumen formation by preventing luminal domains from coming together, site-specific Netrin/Frazzled signaling mediates CB attachment.
Collapse
|
47
|
Tauc HM, Mann T, Werner K, Pandur P. A role for Drosophila Wnt-4 in heart development. Genesis 2012; 50:466-81. [DOI: 10.1002/dvg.22021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 02/13/2012] [Accepted: 02/16/2012] [Indexed: 01/09/2023]
|
48
|
Vanderploeg J, Vazquez Paz LL, MacMullin A, Jacobs JR. Integrins are required for cardioblast polarisation in Drosophila. BMC DEVELOPMENTAL BIOLOGY 2012; 12:8. [PMID: 22353787 PMCID: PMC3305622 DOI: 10.1186/1471-213x-12-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 02/21/2012] [Indexed: 11/27/2022]
Abstract
BACKGROUND The formation of a tubular organ, such as the heart, requires the communication of positional and polarity signals between migratory cells. Key to this process is the establishment of a new luminal domain on the cell surface, generally from the apical domain of a migratory cell. This domain will also acquire basal properties, as it will produce a luminal extracellular matrix. Integrin receptors are the primary means of cell adhesion and adhesion signaling with the extracellular matrix. Here we characterise the requirement of Integrins in a genetic model of vasculogenesis, the formation of the heart in Drosophila. RESULTS As with vertebrates, the Drosophila heart arises from lateral mesoderm that migrates medially to meet their contralateral partners, to then assemble a midline vessel. During migration, Integrins are among the first proteins restricted to the presumptive luminal domain of cardioblasts. Integrins are required for normal levels of leading edge membrane motility. Apical accumulation of Integrins is enhanced by Robo, and reciprocally, apicalisation of luminal factors like Slit and Robo requires Integrin function. Integrins may provide a template for the formation of a lumen by stabilising lumen factors like Robo. Subsequent to migration, Integrin is required for normal cardioblast alignment and lumen formation. This phenotype is most readily modified by other mutations that affect adhesion, such as Talin and extracellular matrix ligands. CONCLUSION Our findings reveal an instructive role for Integrins in communicating polarising information to cells during migration, and during transition to an epithelial tube structure.
Collapse
Affiliation(s)
- Jessica Vanderploeg
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - L Lourdes Vazquez Paz
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Allison MacMullin
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
- Life Technologies, Burlington, ON L7L 5Z1, Canada
| | - J Roger Jacobs
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
49
|
Wolfstetter G, Holz A. The role of LamininB2 (LanB2) during mesoderm differentiation in Drosophila. Cell Mol Life Sci 2012; 69:267-82. [PMID: 21387145 PMCID: PMC11114671 DOI: 10.1007/s00018-011-0652-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 02/02/2011] [Accepted: 02/15/2011] [Indexed: 12/31/2022]
Abstract
In Drosophila, four genes encode for laminin subunits and the formation of two laminin heterotrimers has been postulated. We report the identification of mutations in the Drosophila LamininB2 (LanB2) gene that encodes for the only laminin γ subunit and is found in both heterotrimers. We describe their effects on embryogenesis, in particular the differentiation of visceral tissues with respect to the ECM. Analysis of mesoderm endoderm interaction indicates disrupted basement membranes and defective endoderm migration, which finally interferes with visceral myotube stretching. Extracellular deposition of laminin is blocked due to the loss of the LanB2 subunit, resulting in an abnormal distribution of ECM components. Our data, concerning the different function of both trimers during organogenesis, suggest that these trimers might act in a cumulative way and probably at multiple steps during ECM assembly. We also observed genetic interactions with kon-tiki and thrombospondin, indicating a role for laminin during muscle attachment.
Collapse
Affiliation(s)
- Georg Wolfstetter
- Institut für Allgemeine und Spezielle Zoologie, Justus-Liebig-Universität Giessen, Stephanstrasse 24, 35390 Giessen, Germany
| | - Anne Holz
- Institut für Allgemeine und Spezielle Zoologie, Justus-Liebig-Universität Giessen, Stephanstrasse 24, 35390 Giessen, Germany
| |
Collapse
|
50
|
Abstract
The fruit fly, Drosophila melanogaster, has been used to study genetics, development, and signaling for nearly a century, but only over the past few decades has this tremendous resource been the focus of cardiovascular research. Fly genetics offers sophisticated transgenic systems, molecularly defined genomic deficiencies, genome-wide transgenic RNAi lines, and numerous curated mutants to perform genetic screens. As a genetically tractable model, the fly facilitates gene discovery and can complement mammalian models of disease. The circulatory system in the fly comprises well-defined sets of cardiomyocytes, and methodological advances have permitted accurate characterization of cardiac morphology and function. Thus, fly genetics and genomics offer new approaches for gene discovery of adult cardiac phenotypes to identify evolutionarily conserved molecular signals that drive cardiovascular disease.
Collapse
Affiliation(s)
- Matthew J Wolf
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|