1
|
Koch P, Zhang Z, Genuth NR, Susanto TT, Haimann M, Khmelinskaia A, Byeon GW, Dey S, Barna M, Leppek K. A versatile toolbox for determining IRES activity in cells and embryonic tissues. EMBO J 2025; 44:2695-2724. [PMID: 40082722 PMCID: PMC12048685 DOI: 10.1038/s44318-025-00404-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 01/26/2025] [Accepted: 02/18/2025] [Indexed: 03/16/2025] Open
Abstract
Widespread control of gene expression through translation has emerged as a key level of spatiotemporal regulation of protein expression. A prominent mechanism by which ribosomes can confer gene regulation is via internal ribosomal entry sites (IRESes), whose functions have however, remained difficult to rigorously characterize. Here we present a set of technologies in embryos and cells, including IRES-mediated translation of circular RNA (circRNA) reporters, single-molecule messenger (m)RNA isoform imaging, PacBio long-read sequencing, and isoform-sensitive mRNA quantification along polysome profiles as a new toolbox for understanding IRES regulation. Using these techniques, we investigate a broad range of cellular IRES RNA elements including Hox IRESes. We show IRES-dependent translation in circRNAs, as well as the relative expression, localization, and translation of an IRES-containing mRNA isoform in specific embryonic tissues. We thereby provide a new resource of technologies to elucidate the roles of versatile IRES elements in gene regulation and embryonic development.
Collapse
Affiliation(s)
- Philipp Koch
- Institute of Clinical Chemistry and Clinical Pharmacology, Biomedical Center II (BMZ II), Venusberg-Campus 1, University Hospital Bonn, University of Bonn, Bonn, 53127, Germany
| | - Zijian Zhang
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Naomi R Genuth
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Teodorus Theo Susanto
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- Epigenetic and Epitranscriptomic Systems, Genome Institute of Singapore, A*STAR, Singapore, 138672, Singapore
| | - Martin Haimann
- Institute of Clinical Chemistry and Clinical Pharmacology, Biomedical Center II (BMZ II), Venusberg-Campus 1, University Hospital Bonn, University of Bonn, Bonn, 53127, Germany
| | - Alena Khmelinskaia
- Transdisciplinary Research Area "Building Blocks of Matter and Fundamental Interactions", University of Bonn, Bonn, 53113, Germany
- Life and Medical Sciences Institute, University of Bonn, Bonn, 53121, Germany
- Department of Chemistry, Ludwig-Maximilians-Universität München, München, 81377, Germany
| | - Gun Woo Byeon
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Saurabh Dey
- Institute of Clinical Chemistry and Clinical Pharmacology, Biomedical Center II (BMZ II), Venusberg-Campus 1, University Hospital Bonn, University of Bonn, Bonn, 53127, Germany
| | - Maria Barna
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA.
| | - Kathrin Leppek
- Institute of Clinical Chemistry and Clinical Pharmacology, Biomedical Center II (BMZ II), Venusberg-Campus 1, University Hospital Bonn, University of Bonn, Bonn, 53127, Germany.
| |
Collapse
|
2
|
Thiruppathy M, Teubner L, Roberts RR, Lasser MC, Moscatello A, Chen YW, Hochstim C, Ruffins S, Sarkar A, Tassey J, Evseenko D, Lozito TP, Willsey HR, Gillis JA, Crump JG. Repurposing of a gill gene regulatory program for outer-ear evolution. Nature 2025; 639:682-690. [PMID: 39788155 DOI: 10.1038/s41586-024-08577-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025]
Abstract
How new structures emerge during evolution has long fascinated biologists. An example is how the diminutive bones of the mammalian middle ear arose from ancestral fish jawbones1. By contrast, the evolutionary origin of the outer ear, another mammalian innovation, remains a mystery, partly because it is supported by non-mineralized elastic cartilage, which is rarely recovered in fossils. Whether the outer ear arose de novo or through the reuse of ancestral developmental programs has remained unknown. Here we show that the outer ear shares gene regulatory programs with the gills of fishes and amphibians for both its initial outgrowth and the later development of the elastic cartilage. Comparative single-nucleus multiomics of the human outer ear and zebrafish gills reveals conserved gene expression and putative enhancers enriched for common transcription factor binding motifs. This is reflected by the transgenic activity of human outer-ear enhancers in gills, and of fish gill enhancers in the outer ear. Furthermore, single-cell multiomics of the cartilaginous book gills of horseshoe crabs reveals a developmental program shared with the distal-less homeobox (DLX)-mediated gill program of vertebrates, with a book-gill distal-less enhancer driving expression in zebrafish gills. We propose that elements of an invertebrate gill program were reutilized in vertebrates to generate first gills and then the outer ear.
Collapse
Affiliation(s)
- Mathi Thiruppathy
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lauren Teubner
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ryan R Roberts
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Micaela C Lasser
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Alessandra Moscatello
- School of Medicine, New York Medical College, Valhalla, NY, USA
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ya-Wen Chen
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute of Airway Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute of Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christian Hochstim
- Division of Otolaryngology, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Clinical Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Seth Ruffins
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Arijita Sarkar
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jade Tassey
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Denis Evseenko
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Thomas P Lozito
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - J Andrew Gillis
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - J Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Zhou S, Zhang J, Yang Z, Fu Y, Lai Y, Xu X, Xu R, Lü Y, Li Z, Zhao P, Su S, Nie H. Transcriptomic Analysis of Genes Associated with Stinger Development at Different Life Stages of Apis mellifera. Int J Mol Sci 2024; 25:10746. [PMID: 39409075 PMCID: PMC11477386 DOI: 10.3390/ijms251910746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
Stingers, evolved from ovipositors, are an important defense organ for the Apidae, Vespidae, and Formicidae species. However, the molecular mechanism of stinger development remains unclear. Here, we show that the earliest time point for the appearance of stingers in Apis mellifera is at the 1-day-old worker pupal stage based on morphological observations and anatomy from the pre-pupal to adult stages. To discover the genes related to stinger development, we first comprehensively compared the stinger transcriptome at different stages and screened 1282, 186, and 166 highly expressed genes in the stingers of 1- and 5-day-old worker pupae and newly emerged worker bees (NEBs), respectively, then identified 25 DEGs involved in the early stage of stinger development. We found that Dll was a key candidate gene in the early development of A. mellifera stingers by combining analyses of the protein-protein interaction network and spatiotemporal expression patterns. An RNAi experiment showed that about 20% of individuals exhibited tip bending in the piercing parts of their stingers in the Dll-dsRNA-treated group, with the morphology presenting as side-side or front-back tip bending. This indicates that Dll plays a vital role in the early development of A. mellifera stingers. Together, our study provides insight into the molecular mechanism of Hymenoptera stinger development and an inspiration for the molecular breeding of gentle honeybee species with stinger abnormalities.
Collapse
Affiliation(s)
- Shiwen Zhou
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Z.); (J.Z.); (Z.Y.); (Y.F.); (Y.L.); (R.X.); (Y.L.); (Z.L.)
- State Key Laboratory of Resource Insects, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Juan Zhang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Z.); (J.Z.); (Z.Y.); (Y.F.); (Y.L.); (R.X.); (Y.L.); (Z.L.)
| | - Zhenhui Yang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Z.); (J.Z.); (Z.Y.); (Y.F.); (Y.L.); (R.X.); (Y.L.); (Z.L.)
| | - Yunxi Fu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Z.); (J.Z.); (Z.Y.); (Y.F.); (Y.L.); (R.X.); (Y.L.); (Z.L.)
| | - Yu Lai
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Z.); (J.Z.); (Z.Y.); (Y.F.); (Y.L.); (R.X.); (Y.L.); (Z.L.)
| | - Xueling Xu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Z.); (J.Z.); (Z.Y.); (Y.F.); (Y.L.); (R.X.); (Y.L.); (Z.L.)
| | - Ruixin Xu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Z.); (J.Z.); (Z.Y.); (Y.F.); (Y.L.); (R.X.); (Y.L.); (Z.L.)
| | - Yang Lü
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Z.); (J.Z.); (Z.Y.); (Y.F.); (Y.L.); (R.X.); (Y.L.); (Z.L.)
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China
| | - Zhiguo Li
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Z.); (J.Z.); (Z.Y.); (Y.F.); (Y.L.); (R.X.); (Y.L.); (Z.L.)
| | - Ping Zhao
- State Key Laboratory of Resource Insects, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Songkun Su
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Z.); (J.Z.); (Z.Y.); (Y.F.); (Y.L.); (R.X.); (Y.L.); (Z.L.)
| | - Hongyi Nie
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Z.); (J.Z.); (Z.Y.); (Y.F.); (Y.L.); (R.X.); (Y.L.); (Z.L.)
- State Key Laboratory of Resource Insects, Biological Science Research Center, Southwest University, Chongqing 400715, China
| |
Collapse
|
4
|
Li XC, Srinivasan V, Laiker I, Misunou N, Frankel N, Pallares LF, Crocker J. TF-High-Evolutionary: In Vivo Mutagenesis of Gene Regulatory Networks for the Study of the Genetics and Evolution of the Drosophila Regulatory Genome. Mol Biol Evol 2024; 41:msae167. [PMID: 39117360 PMCID: PMC11342961 DOI: 10.1093/molbev/msae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/10/2024] Open
Abstract
Understanding the evolutionary potential of mutations in gene regulatory networks is essential to furthering the study of evolution and development. However, in multicellular systems, genetic manipulation of regulatory networks in a targeted and high-throughput way remains challenging. In this study, we designed TF-High-Evolutionary (HighEvo), a transcription factor (TF) fused with a base editor (activation-induced deaminase), to continuously induce germline mutations at TF-binding sites across regulatory networks in Drosophila. Populations of flies expressing TF-HighEvo in their germlines accumulated mutations at rates an order of magnitude higher than natural populations. Importantly, these mutations accumulated around the targeted TF-binding sites across the genome, leading to distinct morphological phenotypes consistent with the developmental roles of the tagged TFs. As such, this TF-HighEvo method allows the interrogation of the mutational space of gene regulatory networks at scale and can serve as a powerful reagent for experimental evolution and genetic screens focused on the regulatory genome.
Collapse
Affiliation(s)
- Xueying C Li
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Ian Laiker
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Universidad de Buenos Aires (UBA), Buenos Aires 1428, Argentina
| | | | - Nicolás Frankel
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Universidad de Buenos Aires (UBA), Buenos Aires 1428, Argentina
| | - Luisa F Pallares
- Friedrich Miescher Laboratory, Max Planck Society, Tübingen, Germany
| | - Justin Crocker
- European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
5
|
Green RA, Khaliullin RN, Zhao Z, Ochoa SD, Hendel JM, Chow TL, Moon H, Biggs RJ, Desai A, Oegema K. Automated profiling of gene function during embryonic development. Cell 2024; 187:3141-3160.e23. [PMID: 38759650 PMCID: PMC11166207 DOI: 10.1016/j.cell.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 02/10/2024] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
Systematic functional profiling of the gene set that directs embryonic development is an important challenge. To tackle this challenge, we used 4D imaging of C. elegans embryogenesis to capture the effects of 500 gene knockdowns and developed an automated approach to compare developmental phenotypes. The automated approach quantifies features-including germ layer cell numbers, tissue position, and tissue shape-to generate temporal curves whose parameterization yields numerical phenotypic signatures. In conjunction with a new similarity metric that operates across phenotypic space, these signatures enabled the generation of ranked lists of genes predicted to have similar functions, accessible in the PhenoBank web portal, for ∼25% of essential development genes. The approach identified new gene and pathway relationships in cell fate specification and morphogenesis and highlighted the utilization of specialized energy generation pathways during embryogenesis. Collectively, the effort establishes the foundation for comprehensive analysis of the gene set that builds a multicellular organism.
Collapse
Affiliation(s)
- Rebecca A Green
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | - Zhiling Zhao
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Stacy D Ochoa
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | | | | | - HongKee Moon
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Ronald J Biggs
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Arshad Desai
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Karen Oegema
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
6
|
Benard EL, Küçükaylak I, Hatzold J, Berendes KU, Carney TJ, Beleggia F, Hammerschmidt M. wnt10a is required for zebrafish median fin fold maintenance and adult unpaired fin metamorphosis. Dev Dyn 2024; 253:566-592. [PMID: 37870737 PMCID: PMC11035493 DOI: 10.1002/dvdy.672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Mutations of human WNT10A are associated with odonto-ectodermal dysplasia syndromes. Here, we present analyses of wnt10a loss-of-function mutants in the zebrafish. RESULTS wnt10a mutant zebrafish embryos display impaired tooth development and a collapsing median fin fold (MFF). Rescue experiments show that wnt10a is essential for MFF maintenance both during embryogenesis and later metamorphosis. The MFF collapse could not be attributed to increased cell death or altered proliferation rates of MFF cell types. Rather, wnt10a mutants show reduced expression levels of dlx2a in distal-most MFF cells, followed by compromised expression of col1a1a and other extracellular matrix proteins encoding genes. Transmission electron microscopy analysis shows that although dermal MFF compartments of wnt10a mutants initially are of normal morphology, with regular collagenous actinotrichia, positioning of actinotrichia within the cleft of distal MFF cells becomes compromised, coinciding with actinotrichia shrinkage and MFF collapse. CONCLUSIONS MFF collapse of wnt10a mutant zebrafish is likely caused by the loss of distal properties in the developing MFF, strikingly similar to the proposed molecular pathomechanisms underlying the teeth defects caused by the loss of Wnt10 in fish and mammals. In addition, it points to thus fur unknown mechanisms controlling the linear growth and stability of actinotrichia and their collagen fibrils.
Collapse
Affiliation(s)
- Erica L. Benard
- Institute of Zoology, Developmental Biology Unit,
University of Cologne, Cologne, Germany
| | - Ismail Küçükaylak
- Institute of Zoology, Developmental Biology Unit,
University of Cologne, Cologne, Germany
| | - Julia Hatzold
- Institute of Zoology, Developmental Biology Unit,
University of Cologne, Cologne, Germany
| | - Kilian U.W. Berendes
- Institute of Zoology, Developmental Biology Unit,
University of Cologne, Cologne, Germany
| | - Thomas J. Carney
- Discovery Research Division, Institute of Molecular and
Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research),
Singapore, Republic of Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological
University, Singapore, Republic of Singapore
| | - Filippo Beleggia
- Department I of Internal Medicine, Faculty of Medicine and
University Hospital Cologne, University of Cologne, Germany
- Department of Translational Genomics, Faculty of Medicine
and University Hospital Cologne, University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne
Düsseldorf (MSSO ABCD), Faculty of Medicine and University Hospital Cologne,
University of Cologne, Cologne, Germany
| | - Matthias Hammerschmidt
- Institute of Zoology, Developmental Biology Unit,
University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of
Cologne, Cologne, Germany
| |
Collapse
|
7
|
Rubenstein JL, Nord AS, Ekker M. DLX genes and proteins in mammalian forebrain development. Development 2024; 151:dev202684. [PMID: 38819455 PMCID: PMC11190439 DOI: 10.1242/dev.202684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The vertebrate Dlx gene family encode homeobox transcription factors that are related to the Drosophila Distal-less (Dll) gene and are crucial for development. Over the last ∼35 years detailed information has accrued about the redundant and unique expression and function of the six mammalian Dlx family genes. DLX proteins interact with general transcriptional regulators, and co-bind with other transcription factors to enhancer elements with highly specific activity in the developing forebrain. Integration of the genetic and biochemical data has yielded a foundation for a gene regulatory network governing the differentiation of forebrain GABAergic neurons. In this Primer, we describe the discovery of vertebrate Dlx genes and their crucial roles in embryonic development. We largely focus on the role of Dlx family genes in mammalian forebrain development revealed through studies in mice. Finally, we highlight questions that remain unanswered regarding vertebrate Dlx genes despite over 30 years of research.
Collapse
Affiliation(s)
- John L. Rubenstein
- UCSF Department of Psychiatry and Behavioral Sciences, Department of UCSF Weill Institute for Neurosciences, Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Alex S. Nord
- Department of Neurobiology, Physiology, and Behavior and Department of Psychiatry and 20 Behavioral Sciences, Center for Neuroscience, University of California Davis, Davis, CA 95618, USA
| | - Marc Ekker
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
8
|
Stein WD. Orthologs at the Base of the Olfactores Clade. Genes (Basel) 2024; 15:657. [PMID: 38927593 PMCID: PMC11203038 DOI: 10.3390/genes15060657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Tunicate orthologs in the human genome comprise just 84 genes of the 19,872 protein-coding genes and 23 of the 16,528 non-coding genes, yet they stand at the base of the Olfactores clade, which radiated to generate thousands of tunicate and vertebrate species. What were the powerful drivers among these genes that enabled this process? Many of these orthologs are present in gene families. We discuss the biological role of each family and the orthologs' quantitative contribution to the family. Most important was the evolution of a second type of cadherin. This, a Type II cadherin, had the property of detaching the cell containing that cadherin from cells that expressed the Type I class. The set of such Type II cadherins could now detach and move away from their Type I neighbours, a process which would eventually evolve into the formation of the neural crest, "the fourth germ layer", providing a wide range of possibilities for further evolutionary invention. A second important contribution were key additions to the broad development of the muscle and nerve protein and visual perception toolkits. These developments in mobility and vision provided the basis for the development of the efficient predatory capabilities of the Vertebrata.
Collapse
Affiliation(s)
- Wilfred D Stein
- Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
9
|
Truman JW, Riddiford LM, Konopova B, Nouzova M, Noriega FG, Herko M. The embryonic role of juvenile hormone in the firebrat, Thermobia domestica, reveals its function before its involvement in metamorphosis. eLife 2024; 12:RP92643. [PMID: 38568859 PMCID: PMC10994664 DOI: 10.7554/elife.92643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
To gain insights into how juvenile hormone (JH) came to regulate insect metamorphosis, we studied its function in the ametabolous firebrat, Thermobia domestica. Highest levels of JH occur during late embryogenesis, with only low levels thereafter. Loss-of-function and gain-of-function experiments show that JH acts on embryonic tissues to suppress morphogenesis and cell determination and to promote their terminal differentiation. Similar embryonic actions of JH on hemimetabolous insects with short germ band embryos indicate that JH's embryonic role preceded its derived function as the postembryonic regulator of metamorphosis. The postembryonic expansion of JH function likely followed the evolution of flight. Archaic flying insects were considered to lack metamorphosis because tiny, movable wings were evident on the thoraces of young juveniles and their positive allometric growth eventually allowed them to support flight in late juveniles. Like in Thermobia, we assume that these juveniles lacked JH. However, a postembryonic reappearance of JH during wing morphogenesis in the young juvenile likely redirected wing development to make a wing pad rather than a wing. Maintenance of JH then allowed wing pad growth and its disappearance in the mature juvenile then allowed wing differentiation. Subsequent modification of JH action for hemi- and holometabolous lifestyles are discussed.
Collapse
Affiliation(s)
- James W Truman
- Friday Harbor Laboratories, University of WashingtonFriday HarborUnited States
- Department of Biology, University of WashingtonSeattleUnited States
| | - Lynn M Riddiford
- Friday Harbor Laboratories, University of WashingtonFriday HarborUnited States
- Department of Biology, University of WashingtonSeattleUnited States
| | - Barbora Konopova
- Department of Zoology, Faculty of Science, University of South BohemiaCeske BudejoviceCzech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of SciencesCeske BudejoviceCzech Republic
| | - Marcela Nouzova
- Institute of Parasitology, Biology Centre of the Czech Academy of SciencesCeske BudejoviceCzech Republic
| | - Fernando G Noriega
- Department of Biological Sciences and BSI, Florida International UniversityMiamiUnited States
- Department of Parasitology, Faculty of Science, University of South BohemiaCeské BudejoviceCzech Republic
| | - Michelle Herko
- Friday Harbor Laboratories, University of WashingtonFriday HarborUnited States
| |
Collapse
|
10
|
Seto Y, Ogihara R, Takizawa K, Eiraku M. In vitro induction of patterned branchial arch-like aggregate from human pluripotent stem cells. Nat Commun 2024; 15:1351. [PMID: 38355589 PMCID: PMC10867012 DOI: 10.1038/s41467-024-45285-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
Early patterning of neural crest cells (NCCs) in the craniofacial primordium is important for subsequent development of proper craniofacial structures. However, because of the complexity of the environment of developing tissues, surveying the early specification and patterning of NCCs is difficult. In this study, we develop a simplified in vitro 3D model using human pluripotent stem cells to analyze the early stages of facial development. In this model, cranial NCC-like cells spontaneously differentiate from neural plate border-like cells into maxillary arch-like mesenchyme after a long-term culture. Upon the addition of EDN1 and BMP4, these aggregates are converted into a mandibular arch-like state. Furthermore, temporary treatment with EDN1 and BMP4 induces the formation of spatially separated domains expressing mandibular and maxillary arch markers within a single aggregate. These results suggest that this in vitro model is useful for determining the mechanisms underlying cell fate specification and patterning during early facial development.
Collapse
Affiliation(s)
- Yusuke Seto
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
| | - Ryoma Ogihara
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Kaori Takizawa
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Mototsugu Eiraku
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
- Institute for Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.
| |
Collapse
|
11
|
Truman JW, Riddiford LM, Konopová B, Nouzova M, Noriega FG, Herko M. The embryonic role of juvenile hormone in the firebrat, Thermobia domestica, reveals its function before its involvement in metamorphosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.06.561279. [PMID: 37873170 PMCID: PMC10592639 DOI: 10.1101/2023.10.06.561279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
To gain insights into how juvenile hormone (JH) came to regulate insect metamorphosis, we studied its function in the ametabolous firebrat, Thermobia domestica. Highest levels of JH occur during late embryogenesis, with only low levels thereafter. Loss-of-function and gain-of-function experiments show that JH acts on embryonic tissues to suppress morphogenesis and cell determination and to promote their terminal differentiation. Similar embryonic actions of JH on hemimetabolous insects with short germ band embryos indicate that JH's embryonic role preceded its derived function as the postembryonic regulator of metamorphosis. The postembryonic expansion of JH function likely followed the evolution of flight. Archaic flying insects were considered to lack metamorphosis because tiny, movable wings were evident on the thoraces of young juveniles and their positive allometric growth eventually allowed them to support flight in late juveniles. Like in Thermobia, we assume that these juveniles lacked JH. However, a postembryonic reappearance of JH during wing morphogenesis in the young juvenile likely redirected wing development to make a wing pad rather than a wing. Maintenance of JH then allowed wing pad growth and its disappearance in the mature juvenile then allowed wing differentiation. Subsequent modification of JH action for hemi- and holometabolous lifestyles are discussed.
Collapse
Affiliation(s)
- James W. Truman
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, USA
- Department of Biology, University of Washington, Seattle, WA USA
| | - Lynn M. Riddiford
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, USA
- Department of Biology, University of Washington, Seattle, WA USA
| | - Barbora Konopová
- Department of Zoology, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Marcela Nouzova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Fernando G. Noriega
- Department of Biological Sciences and BSI, Florida International University, FL ,USA
- Department of Parasitology, Faculty of Science, University of South Bohemia, Ceské Budejovice, Czech Republic
| | - Michelle Herko
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, USA
| |
Collapse
|
12
|
Genetta T, Hurwitz J, Clark E, Herold B, Khalil S, Abbas T, Larner J. ZEB1 promotes non-homologous end joining double-strand break repair. Nucleic Acids Res 2023; 51:9863-9879. [PMID: 37665026 PMCID: PMC10570029 DOI: 10.1093/nar/gkad723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 07/31/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
Repair of DSB induced by IR is primarily carried out by Non-Homologous End Joining (NHEJ), a pathway in which 53BP1 plays a key role. We have discovered that the EMT-inducing transcriptional repressor ZEB1 (i) interacts with 53BP1 and that this interaction occurs rapidly and is significantly amplified following exposure of cells to IR; (ii) is required for the localization of 53BP1 to a subset of double-stranded breaks, and for physiological DSB repair; (iii) co-localizes with 53BP1 at IR-induced foci (IRIF); (iv) promotes NHEJ and inhibits Homologous Recombination (HR); (v) depletion increases resection at DSBs and (vi) confers PARP inhibitor (PARPi) sensitivity on BRCA1-deficient cells. Lastly, ZEB1's effects on repair pathway choice, resection, and PARPi sensitivity all rely on its homeodomain. In contrast to the well-characterized therapeutic resistance of high ZEB1-expressing cancer cells, the novel ZEB1-53BP1-shieldin resection axis described here exposes a therapeutic vulnerability: ZEB1 levels in BRCA1-deficient tumors may serve as a predictive biomarker of response to PARPis.
Collapse
Affiliation(s)
- Thomas L Genetta
- Dept. of Radiation Oncology, University of Virginia School of Medicine, PO Box 800383, Charlottesville, VA 22908, USA
| | - Joshua C Hurwitz
- Dept. of Radiation Oncology, University of Virginia School of Medicine, PO Box 800383, Charlottesville, VA 22908, USA
| | - Evan A Clark
- Dept. of Radiation Oncology, University of Virginia School of Medicine, PO Box 800383, Charlottesville, VA 22908, USA
| | - Benjamin T Herold
- Dept. of Radiation Oncology, University of Virginia School of Medicine, PO Box 800383, Charlottesville, VA 22908, USA
| | - Shadi Khalil
- Dept. of Radiation Oncology, University of Virginia School of Medicine, PO Box 800383, Charlottesville, VA 22908, USA
| | - Tarek Abbas
- Dept. of Radiation Oncology, University of Virginia School of Medicine, PO Box 800383, Charlottesville, VA 22908, USA
- Dept. of Biochemistry and Molecular Genetics University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - James M Larner
- Dept. of Radiation Oncology, University of Virginia School of Medicine, PO Box 800383, Charlottesville, VA 22908, USA
| |
Collapse
|
13
|
Pouliou M, Koutsi MA, Champezou L, Giannopoulou AI, Vatsellas G, Piperi C, Agelopoulos M. MYCN Amplifications and Metabolic Rewiring in Neuroblastoma. Cancers (Basel) 2023; 15:4803. [PMID: 37835497 PMCID: PMC10571721 DOI: 10.3390/cancers15194803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Cancer is a disease caused by (epi)genomic and gene expression abnormalities and characterized by metabolic phenotypes that are substantially different from the normal phenotypes of the tissues of origin. Metabolic reprogramming is one of the key features of tumors, including those established in the human nervous system. In this work, we emphasize a well-known cancerous genomic alteration: the amplification of MYCN and its downstream effects in neuroblastoma phenotype evolution. Herein, we extend our previous computational biology investigations by conducting an integrative workflow applied to published genomics datasets and comprehensively assess the impact of MYCN amplification in the upregulation of metabolism-related transcription factor (TF)-encoding genes in neuroblastoma cells. The results obtained first emphasized overexpressed TFs, and subsequently those committed in metabolic cellular processes, as validated by gene ontology analyses (GOs) and literature curation. Several genes encoding for those TFs were investigated at the mechanistic and regulatory levels by conducting further omics-based computational biology assessments applied on published ChIP-seq datasets retrieved from MYCN-amplified- and MYCN-enforced-overexpression within in vivo systems of study. Hence, we approached the mechanistic interrelationship between amplified MYCN and overexpression of metabolism-related TFs in neuroblastoma and showed that many are direct targets of MYCN in an amplification-inducible fashion. These results illuminate how MYCN executes its regulatory underpinnings on metabolic processes in neuroblastoma.
Collapse
Affiliation(s)
- Marialena Pouliou
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou St., 11527 Athens, Greece; (M.P.); (M.A.K.); (L.C.); (G.V.)
| | - Marianna A. Koutsi
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou St., 11527 Athens, Greece; (M.P.); (M.A.K.); (L.C.); (G.V.)
| | - Lydia Champezou
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou St., 11527 Athens, Greece; (M.P.); (M.A.K.); (L.C.); (G.V.)
| | - Angeliki-Ioanna Giannopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street Bldg 16, 11527 Athens, Greece;
| | - Giannis Vatsellas
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou St., 11527 Athens, Greece; (M.P.); (M.A.K.); (L.C.); (G.V.)
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street Bldg 16, 11527 Athens, Greece;
| | - Marios Agelopoulos
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou St., 11527 Athens, Greece; (M.P.); (M.A.K.); (L.C.); (G.V.)
| |
Collapse
|
14
|
Hulett RE, Kimura JO, Bolaños DM, Luo YJ, Rivera-López C, Ricci L, Srivastava M. Acoel single-cell atlas reveals expression dynamics and heterogeneity of adult pluripotent stem cells. Nat Commun 2023; 14:2612. [PMID: 37147314 PMCID: PMC10163032 DOI: 10.1038/s41467-023-38016-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 04/11/2023] [Indexed: 05/07/2023] Open
Abstract
Adult pluripotent stem cell (aPSC) populations underlie whole-body regeneration in many distantly-related animal lineages, but how the underlying cellular and molecular mechanisms compare across species is unknown. Here, we apply single-cell RNA sequencing to profile transcriptional cell states of the acoel worm Hofstenia miamia during postembryonic development and regeneration. We identify cell types shared across stages and their associated gene expression dynamics during regeneration. Functional studies confirm that the aPSCs, also known as neoblasts, are the source of differentiated cells and reveal transcription factors needed for differentiation. Subclustering of neoblasts recovers transcriptionally distinct subpopulations, the majority of which are likely specialized to differentiated lineages. One neoblast subset, showing enriched expression of the histone variant H3.3, appears to lack specialization. Altogether, the cell states identified in this study facilitate comparisons to other species and enable future studies of stem cell fate potentials.
Collapse
Affiliation(s)
- Ryan E Hulett
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Julian O Kimura
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - D Marcela Bolaños
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Yi-Jyun Luo
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Carlos Rivera-López
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
- Department of Molecular and Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Lorenzo Ricci
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
15
|
Sifre-Ruiz A, Sagasta A, Santos E, Perez de Nanclares G, Heath KE. New pathogenic variant in DLX5: New clues for a clinical spectrum from split-hand-foot malformation to fibular aplasia, tibial campomelia and oligosyndactyly. Front Genet 2023; 14:1165780. [PMID: 37124614 PMCID: PMC10133553 DOI: 10.3389/fgene.2023.1165780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/05/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction: FATCO (Fibular Aplasia, Tibial Campomelia and Oligosyndactyly) is a very infrequent skeletal dysplasia classified within the limb hypoplasia-reduction defects group whose genetic cause has not yet been identified. The advent of next-generation sequencing is enabling the diagnosis of diseases with no previously known genetic cause. Methods: We performed a thorough autopsy on a fetus whose pregnancy was legally terminated due to severe malformations detected by ultrasound. A trio exome was run to identify the genetic cause and risk of recurrence. Previous literature of similar cases was systematically searched. Results: Anatomopathological analyses revealed complete fibular aplasia, shortened and campomelic tibia, absent ankle joint, club right foot and a split foot malformation, leading to the diagnosis of FATCO. Exome sequencing showed that the female fetus carried a de novo nonsense variant in DLX5. The literature search permitted the collection of information on 43 patients with FATCO, the majority of whom were males diagnosed postnatally. In most cases, lower limbs were affected exclusively, but in 39.5% of cases the upper limbs were also affected. Conclusion: The pathologies associated with DLX5 variants encompass a wide spectrum of manifestations ranging from abnormalities exclusively in the hands and feet to long bones such as the tibia and fibula.
Collapse
Affiliation(s)
- Anna Sifre-Ruiz
- Pathology Service, Bioaraba Research Health Institute, Araba University Hospital, Vitoria-Gasteiz, Spain
| | - Amaia Sagasta
- Pathology Service, Bioaraba Research Health Institute, Araba University Hospital, Vitoria-Gasteiz, Spain
| | - Erika Santos
- Radiodiagnostic Service, Araba University Hospital, Vitoria-Gasteiz, Spain
| | - Guiomar Perez de Nanclares
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, Bioaraba Research Health Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Araba, Spain
| | - Karen E. Heath
- Institute of Medical and Molecular Genetics (INGEMM), IdiPAZ, Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid, Spain
- Skeletal Dysplasia Multidisciplinary Unit (UMDE), ERN-BOND, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, ISCIII, Madrid, Spain
| |
Collapse
|
16
|
Wang J, Tao L, Liu Y, Liu H, Shen X, Tao L. Identification and validation of DLX4 as a prognostic and diagnostic biomarker for clear cell renal cell carcinoma. Oncol Lett 2023; 25:146. [PMID: 36936018 PMCID: PMC10018244 DOI: 10.3892/ol.2023.13732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/09/2021] [Indexed: 03/04/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a lethal cancer, and biomarkers for exact diagnosis and predicting prognosis are urgently needed. The present study aimed to determine the roles of distal-less homeobox (DLX) family genes in ccRCC. The clinicopathological and mRNA expression data of patients with ccRCC were derived from The Cancer Genome Atlas database. Kaplan-Meier curves, univariate and multivariate Cox hazard analyses, in addition to receiver operator characteristic curves were used to evaluate the prognostic and diagnostic values. A single-sample gene set enrichment analysis was used to quantify the infiltration levels of immune cells. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry were conducted to examine the expression levels of DLX4 in tumor and adjacent tissue; the results demonstrated that DLX4 was highly expressed in ccRCC tissues compared with normal renal tissues. Furthermore, DLX4 expression was associated with tumor stage and grade. High proportions of males, advanced pathological stage, higher tumor grade and T, N and M stage were also observed in the high DLX4 expression group. Patients with the high DLX4 expression levels tended to have lower overall survival and disease-free survival rates compared with those with low DLX4 expression. DLX4 expression also showed favorable diagnostic efficiency in ccRCC patients. Based on functional enrichment analysis, cell cycle related pathways, epithelial-mesenchymal transition, glycolysis and inflammatory response were associated with the expression levels of DLX4. Furthermore, DLX4 expression was revealed to be associated with tumor immunosuppressive microenvironment. Overall, the expression level of DLX4 may be considered a novel prognostic indicator in ccRCC and a specific diagnostic biomarker for patients with ccRCC.
Collapse
Affiliation(s)
- Jiawei Wang
- Department of Urology, The Second People's Hospital of Wuhu, Wuhu, Anhui 241000, P.R. China
| | - Liangjun Tao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yingqing Liu
- Department of Urology, The Second People's Hospital of Wuhu, Wuhu, Anhui 241000, P.R. China
| | - Heqian Liu
- Department of Urology, The Second People's Hospital of Wuhu, Wuhu, Anhui 241000, P.R. China
| | - Xudong Shen
- Department of Urology, The Second People's Hospital of Wuhu, Wuhu, Anhui 241000, P.R. China
| | - Lingsong Tao
- Department of Urology, The Second People's Hospital of Wuhu, Wuhu, Anhui 241000, P.R. China
- Correspondence to: Dr Lingsong Tao, Department of Urology, The Second People's Hospital of Wuhu, 259 JiuHuaShan Avenue, Wuhu, Anhui 241000, P.R. China, E-mail:
| |
Collapse
|
17
|
Buffry AD, Kittelmann S, McGregor AP. Characterisation of the role and regulation of Ultrabithorax in sculpting fine-scale leg morphology. Front Cell Dev Biol 2023; 11:1119221. [PMID: 36861038 PMCID: PMC9968978 DOI: 10.3389/fcell.2023.1119221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/20/2023] [Indexed: 02/16/2023] Open
Abstract
Hox genes are expressed during embryogenesis and determine the regional identity of animal bodies along the antero-posterior axis. However, they also function post-embryonically to sculpt fine-scale morphology. To better understand how Hox genes are integrated into post-embryonic gene regulatory networks, we further analysed the role and regulation of Ultrabithorax (Ubx) during leg development in Drosophila melanogaster. Ubx regulates several aspects of bristle and trichome patterning on the femurs of the second (T2) and third (T3) leg pairs. We found that repression of trichomes in the proximal posterior region of the T2 femur by Ubx is likely mediated by activation of the expression of microRNA-92a and microRNA-92b by this Hox protein. Furthermore, we identified a novel enhancer of Ubx that recapitulates the temporal and regional activity of this gene in T2 and T3 legs. We then used transcription factor (TF) binding motif analysis in regions of accessible chromatin in T2 leg cells to predict and functionally test TFs that may regulate the Ubx leg enhancer. We also tested the role of the Ubx co-factors Homothorax (Hth) and Extradenticle (Exd) in T2 and T3 femurs. We found several TFs that may act upstream or in concert with Ubx to modulate trichome patterning along the proximo-distal axis of developing femurs and that the repression of trichomes also requires Hth and Exd. Taken together our results provide insights into how Ubx is integrated into a post-embryonic gene regulatory network to determine fine-scale leg morphology.
Collapse
Affiliation(s)
- Alexandra D. Buffry
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Sebastian Kittelmann
- Centre for Functional Genomics, Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Alistair P. McGregor
- Department of Biosciences, Durham University, Durham, United Kingdom,*Correspondence: Alistair P. McGregor,
| |
Collapse
|
18
|
Gao M, Wang K, Zhao H. GABAergic neurons maturation is regulated by a delicate network. Int J Dev Neurosci 2023; 83:3-15. [PMID: 36401305 DOI: 10.1002/jdn.10242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/25/2022] [Accepted: 11/13/2022] [Indexed: 11/21/2022] Open
Abstract
Gamma-aminobutyric acid-expressing (GABAergic) neurons are implicated in a variety of neuropsychiatric disorders, such as epilepsy, anxiety, autism, and other pathological processes, including cerebral ischemia injury and drug addiction. Therefore, GABAergic neuronal processes warrant further research. The development of GABAergic neurons is a tightly controlled process involving the activity of multiple transcription and growth factors. Here, we focus on the gene expression pathways and the molecular modulatory networks that are engaged during the development of GABAergic neurons with the goal of exploring regulatory mechanisms that influence GABAergic neuron fate (i.e., maturation). Overall, we hope to provide a basis for clarifying the pathogenesis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Mingxing Gao
- Department of Histology and Embryology, School of Basic Medical Science, Jilin University, Changchun, Jilin, China
| | - Kaizhong Wang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hui Zhao
- Department of Histology and Embryology, School of Basic Medical Science, Jilin University, Changchun, Jilin, China
| |
Collapse
|
19
|
Schlosser G. Rebuilding ships while at sea-Character individuality, homology, and evolutionary innovation. J Morphol 2023; 284:e21522. [PMID: 36282954 PMCID: PMC10100095 DOI: 10.1002/jmor.21522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/15/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
Abstract
How novel traits originate in evolution is still one of the most perplexing questions in Evolutionary Biology. Building on a previous account of evolutionary innovation, I here propose that evolutionary novelties are those individualized characters that are not homologous to any characters in the ancestor. To clarify this definition, I here provide a detailed analysis of the concepts of "character individuality" and "homology" first, before addressing their role for our understanding of evolutionary innovation. I will argue (1) that functional as well as structural considerations are important for character individualization; and (2) that compositional (structural) and positional homology need to be clearly distinguished to properly describe the evolutionary transformations of hierarchically structured characters. My account will therefore integrate functional and structural perspectives and put forward a new multi-level view of character identity and transformation.
Collapse
Affiliation(s)
- Gerhard Schlosser
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
20
|
Abstract
AbstractEvolvability is best addressed from a multi-level, macroevolutionary perspective through a comparative approach that tests for among-clade differences in phenotypic diversification in response to an opportunity, such as encountered after a mass extinction, entering a new adaptive zone, or entering a new geographic area. Analyzing the dynamics of clades under similar environmental conditions can (partially) factor out shared external drivers to recognize intrinsic differences in evolvability, aiming for a macroevolutionary analog of a common-garden experiment. Analyses will be most powerful when integrating neontological and paleontological data: determining differences among extant populations that can be hypothesized to generate large-scale, long-term contrasts in evolvability among clades; or observing large-scale differences among clade histories that can by hypothesized to reflect contrasts in genetics and development observed directly in extant populations. However, many comparative analyses can be informative on their own, as explored in this overview. Differences in clade-level evolvability can be visualized in diversity-disparity plots, which can quantify positive and negative departures of phenotypic productivity from stochastic expectations scaled to taxonomic diversification. Factors that evidently can promote evolvability include modularity—when selection aligns with modular structure or with morphological integration patterns; pronounced ontogenetic changes in morphology, as in allometry or multiphase life cycles; genome size; and a variety of evolutionary novelties, which can also be evaluated using macroevolutionary lags between the acquisition of a trait and phenotypic diversification, and dead-clade-walking patterns that may signal a loss of evolvability when extrinsic factors can be excluded. High speciation rates may indirectly foster phenotypic evolvability, and vice versa. Mechanisms are controversial, but clade evolvability may be higher in the Cambrian, and possibly early in the history of clades at other times; in the tropics; and, for marine organisms, in shallow-water disturbed habitats.
Collapse
|
21
|
Price JD, Lindtner S, Ypsilanti A, Binyameen F, Johnson JR, Newton BW, Krogan NJ, Rubenstein JLR. DLX1 and the NuRD complex cooperate in enhancer decommissioning and transcriptional repression. Development 2022; 149:dev199508. [PMID: 35695185 PMCID: PMC9245191 DOI: 10.1242/dev.199508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/17/2022] [Indexed: 09/27/2023]
Abstract
In the developing subpallium, the fate decision between neurons and glia is driven by expression of Dlx1/2 or Olig1/2, respectively, two sets of transcription factors with a mutually repressive relationship. The mechanism by which Dlx1/2 repress progenitor and oligodendrocyte fate, while promoting transcription of genes needed for differentiation, is not fully understood. We identified a motif within DLX1 that binds RBBP4, a NuRD complex subunit. ChIP-seq studies of genomic occupancy of DLX1 and six different members of the NuRD complex show that DLX1 and NuRD colocalize to putative regulatory elements enriched near other transcription factor genes. Loss of Dlx1/2 leads to dysregulation of genome accessibility at putative regulatory elements near genes repressed by Dlx1/2, including Olig2. Consequently, heterozygosity of Dlx1/2 and Rbbp4 leads to an increase in the production of OLIG2+ cells. These findings highlight the importance of the interplay between transcription factors and chromatin remodelers in regulating cell-fate decisions.
Collapse
Affiliation(s)
- James D. Price
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California San Francisco, San Francisco, CA 94143, USA
| | - Susan Lindtner
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Athena Ypsilanti
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Fadya Binyameen
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Jeffrey R. Johnson
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA
- Gladstone Institute of Data Science and Biosciences, J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Billy W. Newton
- Gladstone Institute of Data Science and Biosciences, J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Nevan J. Krogan
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA
- Gladstone Institute of Data Science and Biosciences, J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John L. R. Rubenstein
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
22
|
Viral strategies for targeting spinal neuronal subtypes in adult wild-type rodents. Sci Rep 2022; 12:8627. [PMID: 35606530 PMCID: PMC9126985 DOI: 10.1038/s41598-022-12535-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/12/2022] [Indexed: 12/02/2022] Open
Abstract
Targeting specific subtypes of interneurons in the spinal cord is primarily restricted to a small group of genetic model animals. Since the development of new transgenic model animals can be expensive and labor intensive, it is often difficult to generalize these findings and verify them in other model organisms, such as the rat, ferret or monkey, that may be more beneficial in certain experimental investigations. Nevertheless, endogenous enhancers and promoters delivered using an adeno-associated virus (AAV) have been successful in providing expression in specific subtypes of neurons in the forebrain of wildtype animals, and therefore may introduce a shortcut. GABAergic interneurons, for instance, have successfully been targeted using the mDlx promoter, which has recently been developed and is now widely used in wild type animals. Here, we test the specificity and efficiency of the mDlx enhancer for robust targeting of inhibitory interneurons in the lumbar spinal cord of wild-type rats using AAV serotype 2 (AAV2). Since this has rarely been done in the spinal cord, we also test the expression and specificity of the CamKIIa and hSynapsin promoters using serotype 9. We found that AAV2-mDlx does in fact target many neurons that contain an enzyme for catalyzing GABA, the GAD-65, with high specificity and a small fraction of neurons containing an isoform, GAD-67. Expression was also seen in some motor neurons although with low correlation. Viral injections using the CamKIIa enhancer via AAV9 infected in some glutamatergic neurons, but also GABAergic neurons, whereas hSynapsin via AAV9 targets almost all the neurons in the lumbar spinal cord.
Collapse
|
23
|
Yi W, Mueller T, Rücklin M, Richardson MK. Developmental neuroanatomy of the rosy bitterling Rhodeus ocellatus (Teleostei: Cypriniformes)-A microCT study. J Comp Neurol 2022; 530:2132-2153. [PMID: 35470436 PMCID: PMC9245027 DOI: 10.1002/cne.25324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 02/09/2022] [Accepted: 03/17/2022] [Indexed: 11/11/2022]
Abstract
Bitterlings are carp-like teleost fish (Cypriniformes: Acheilanathidae) known for their specialized brood parasitic lifestyle. Bitterling embryos, in fact, develop inside the gill chamber of their freshwater mussel hosts. However, little is known about how their parasitic lifestyle affects brain development in comparison to nonparasitic species. Here, we document the development of the brain of the rosy bitterling, Rhodeus ocellatus, at four embryonic stages of 165, 185, 210, 235 hours postfertilization (hpf) using micro-computed tomography (microCT). Focusing on developmental regionalization and brain ventricular organization, we relate the development of the brain divisions to those described for zebrafish using the prosomeric model as a reference paradigm. Segmentation and three-dimensional visualization of the ventricular system allowed us to identify changes in the longitudinal brain axis as a result of cephalic flexure during development. The results show that during early embryonic and larval development, histological differentiation, tissue boundaries, periventricular proliferation zones, and ventricular spaces are all detectable by microCT. The results of this study visualized with differential CT profiles are broadly consistent with comparable histological studies, and with the genoarchitecture of teleosts like the zebrafish. Compared to the zebrafish, our study identifies distinct developmental heterochronies in the rosy bitterling, such as a precocious development of the inferior lobe.
Collapse
Affiliation(s)
- Wenjing Yi
- Institute of Biology, University of Leiden, Sylvius Laboratory, Leiden, the Netherlands.,Vertebrate Evolution, Development and Ecology, Naturalis Biodiversity Center, Leiden, the Netherlands
| | - Thomas Mueller
- Vertebrate Evolution, Development and Ecology, Naturalis Biodiversity Center, Leiden, the Netherlands.,Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Martin Rücklin
- Institute of Biology, University of Leiden, Sylvius Laboratory, Leiden, the Netherlands.,Vertebrate Evolution, Development and Ecology, Naturalis Biodiversity Center, Leiden, the Netherlands
| | - Michael K Richardson
- Institute of Biology, University of Leiden, Sylvius Laboratory, Leiden, the Netherlands.,Vertebrate Evolution, Development and Ecology, Naturalis Biodiversity Center, Leiden, the Netherlands
| |
Collapse
|
24
|
Cunningham JG, Scripter JD, Nti SA, Tucker ES. Early construction of the thalamocortical axon pathway requires c-Jun N-terminal kinase signaling within the ventral forebrain. Dev Dyn 2022; 251:459-480. [PMID: 34494344 PMCID: PMC8891049 DOI: 10.1002/dvdy.416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Thalamocortical connectivity is essential for normal brain function. This important pathway is established during development, when thalamic axons extend a long distance through the forebrain before reaching the cerebral cortex. In this study, we identify a novel role for the c-Jun N-terminal kinase (JNK) signaling pathway in guiding thalamocortical axons through intermediate target territories. RESULTS Complete genetic removal of JNK signaling from the Distal-less 5/6 (Dlx5/6) domain in mice prevents thalamocortical axons from crossing the diencephalon-telencephalon boundary (DTB) and the internal capsule fails to form. Ventral telencephalic cells critical for thalamocortical axon extensions including corridor and guidepost neurons are also disrupted. In addition, corticothalamic, striatonigral, and nigrostriatal axons fail to cross the DTB. Analyses of different JNK mutants demonstrate that thalamocortical axon pathfinding has a non-autonomous requirement for JNK signaling. CONCLUSIONS We conclude that JNK signaling within the Dlx5/6 territory enables the construction of major axonal pathways in the developing forebrain. Further exploration of this intermediate axon guidance territory is needed to uncover mechanisms of axonal pathfinding during normal brain development and to elucidate how this vital process may be compromised in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jessica G. Cunningham
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506,Neuroscience Graduate Program, West Virginia University School of Medicine, Morgantown, WV 26506,Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506
| | - James D. Scripter
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506,Neuroscience Graduate Program, West Virginia University School of Medicine, Morgantown, WV 26506,Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Stephany A. Nti
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506,Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Eric S. Tucker
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506,Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506
| |
Collapse
|
25
|
Butterfly eyespots evolved via cooption of an ancestral gene-regulatory network that also patterns antennae, legs, and wings. Proc Natl Acad Sci U S A 2022; 119:2108661119. [PMID: 35169073 PMCID: PMC8872758 DOI: 10.1073/pnas.2108661119] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Where do butterfly eyespots come from? One of the long-standing questions in the field of evolution concerns addressing where novel complex traits come from. Here we show that butterfly eyespots, a novel complex trait, likely originated from the redeployment of a preexisting gene-regulatory network regulating antennae, legs, and wings, to novel locations on the wing. Butterfly eyespots are beautiful novel traits with an unknown developmental origin. Here we show that eyespots likely originated via cooption of parts of an ancestral appendage gene-regulatory network (GRN) to novel locations on the wing. Using comparative transcriptome analysis, we show that eyespots cluster most closely with antennae, relative to multiple other tissues. Furthermore, three genes essential for eyespot development, Distal-less (Dll), spalt (sal), and Antennapedia (Antp), share similar regulatory connections as those observed in the antennal GRN. CRISPR knockout of cis-regulatory elements (CREs) for Dll and sal led to the loss of eyespots, antennae, legs, and also wings, demonstrating that these CREs are highly pleiotropic. We conclude that eyespots likely reused an ancient GRN for their development, a network also previously implicated in the development of antennae, legs, and wings.
Collapse
|
26
|
Fatimah RM, Adhitama N, Kato Y, Watanabe H. Development of transgenic Daphnia magna for visualizing homology-directed repair of DNA. Sci Rep 2022; 12:2497. [PMID: 35169221 PMCID: PMC8847417 DOI: 10.1038/s41598-022-06526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/28/2022] [Indexed: 11/09/2022] Open
Abstract
In the crustacean Daphnia magna, studying homology-directed repair (HDR) is important to understand genome maintenance during parthenogenesis, effects of environmental toxicants on the genome, and improvement of HDR-mediated genome editing. Here we developed a transgenic D. magna that expresses green fluorescence protein (GFP) upon HDR occurrence. We utilized the previously established reporter plasmid named DR-GFP that has a mutated eGFP gene (SceGFP) and the tandemly located donor GFP gene fragment (iGFP). Upon double-strand break (DSB) introduction on SceGFP, the iGFP gene fragment acts as the HDR template and restores functional eGFP expression. We customized this reporter plasmid to allow bicistronic expression of the mCherry gene under the control of the D. magna EF1α-1 promoter/enhancer. By CRISPR/Cas-mediated knock-in of this plasmid via non-homologous joining, we generated the transgenic D. magna that expresses mCherry ubiquitously, suggesting that the DR-GFP reporter gene is expressed in most cells. Introducing DSB on the SceGFP resulted in eGFP expression and this HDR event could be detected by fluorescence, genomic PCR, and quantitative reverse-transcription PCR, suggesting this line could be used for evaluating HDR. The established reporter line might expand our understanding of the HDR mechanism and also improve the HDR-based gene-editing system in this species.
Collapse
Affiliation(s)
- Rizky Mutiara Fatimah
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Biotechnology Global Human Resource Development Program, Division of Advanced Science and Biotechnology, Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Nikko Adhitama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Yasuhiko Kato
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Hajime Watanabe
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
27
|
Neal S, McCulloch KJ, Napoli FR, Daly CM, Coleman JH, Koenig KM. Co-option of the limb patterning program in cephalopod eye development. BMC Biol 2022; 20:1. [PMID: 34983491 PMCID: PMC8728989 DOI: 10.1186/s12915-021-01182-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/02/2021] [Indexed: 12/01/2022] Open
Abstract
Background Across the Metazoa, similar genetic programs are found in the development of analogous, independently evolved, morphological features. The functional significance of this reuse and the underlying mechanisms of co-option remain unclear. Cephalopods have evolved a highly acute visual system with a cup-shaped retina and a novel refractive lens in the anterior, important for a number of sophisticated behaviors including predation, mating, and camouflage. Almost nothing is known about the molecular-genetics of lens development in the cephalopod. Results Here we identify the co-option of the canonical bilaterian limb patterning program during cephalopod lens development, a functionally unrelated structure. We show radial expression of transcription factors SP6-9/sp1, Dlx/dll, Pbx/exd, Meis/hth, and a Prdl homolog in the squid Doryteuthis pealeii, similar to expression required in Drosophila limb development. We assess the role of Wnt signaling in the cephalopod lens, a positive regulator in the developing Drosophila limb, and find the regulatory relationship reversed, with ectopic Wnt signaling leading to lens loss. Conclusion This regulatory divergence suggests that duplication of SP6-9 in cephalopods may mediate the co-option of the limb patterning program. Thus, our study suggests that this program could perform a more universal developmental function in radial patterning and highlights how canonical genetic programs are repurposed in novel structures. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01182-2.
Collapse
Affiliation(s)
- Stephanie Neal
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA, 02138, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Kyle J McCulloch
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA, 02138, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Francesca R Napoli
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA, 02138, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Christina M Daly
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA, 02138, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - James H Coleman
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA, 02138, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Kristen M Koenig
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA, 02138, USA. .,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
28
|
Mullen RD, Bellessort B, Levi G, Behringer RR. Distal-less homeobox genes Dlx5/6 regulate Müllerian duct regression. Front Endocrinol (Lausanne) 2022; 13:916173. [PMID: 35909540 PMCID: PMC9334558 DOI: 10.3389/fendo.2022.916173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Dlx5 and Dlx6 encode distal-less homeodomain transcription factors that are present in the genome as a linked pair at a single locus. Dlx5 and Dlx6 have redundant roles in craniofacial, skeletal, and uterine development. Previously, we performed a transcriptome comparison for anti-Müllerian hormone (AMH)-induced genes expressed in the Müllerian duct mesenchyme of male and female mouse embryos. In that study, we found that Dlx5 transcripts were nearly seven-fold higher in males compared to females and Dlx6 transcripts were found only in males, suggesting they may be AMH-induced genes. Therefore, we investigated the role of Dlx5 and Dlx6 during AMH-induced Müllerian duct regression. We found that Dlx5 was detected in the male Müllerian duct mesenchyme from E14.5 to E16.5. In contrast, in female embryos Dlx5 was detected in the Müllerian duct epithelium. Dlx6 expression in Müllerian duct mesenchyme was restricted to males. Dlx6 expression was not detected in female Müllerian duct mesenchyme or epithelium. Genetic experiments showed that AMH signaling is necessary for Dlx5 and Dlx6 expression. Müllerian duct regression was variable in Dlx5 homozygous mutant males at E16.5, ranging from regression like controls to a block in Müllerian duct regression. In E16.5 Dlx6 homozygous mutants, Müllerian duct tissue persisted primarily in the region adjacent to the testes. In Dlx5-6 double homozygous mutant males Müllerian duct regression was also found to be incomplete but more severe than either single mutant. These studies suggest that Dlx5 and Dlx6 act redundantly to mediate AMH-induced Müllerian duct regression during male differentiation.
Collapse
Affiliation(s)
- Rachel D. Mullen
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Brice Bellessort
- Département AVIV, Physiologie Moléculaire et Adaptation, CNRS UMR7221, Muséum National d’Histoire Naturelle, Paris, France
| | - Giovanni Levi
- Département AVIV, Physiologie Moléculaire et Adaptation, CNRS UMR7221, Muséum National d’Histoire Naturelle, Paris, France
| | - Richard R. Behringer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- *Correspondence: Richard R. Behringer,
| |
Collapse
|
29
|
Lam DD, Nikolic AA, Zhao C, Mirza-Schreiber N, Krężel W, Oexle K, Winkelmann J. Intronic elements associated with insomnia and restless legs syndrome exhibit cell type-specific epigenetic features contributing to MEIS1 regulation. Hum Mol Genet 2021; 31:1733-1746. [PMID: 34888668 DOI: 10.1093/hmg/ddab355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/25/2021] [Accepted: 12/05/2021] [Indexed: 12/13/2022] Open
Abstract
A highly evolutionarily conserved MEIS1 intronic region is strongly associated with restless legs syndrome (RLS) and insomnia. To understand its regulatory function, we dissected the region by analyzing chromatin accessibility, enhancer-promoter contacts, DNA methylation, and eQTLs in different human neural cell types and tissues. We observed specific activity with respect to cell type and developmental maturation, indicating a prominent role for distinct highly conserved intronic elements in forebrain inhibitory neuron differentiation. Two elements were hypomethylated in neural cells with higher MEIS1 expression, suggesting a role of enhancer demethylation in gene regulation. MEIS1 eQTLs showed a striking modular chromosomal distribution, with forebrain eQTLs clustering in intron 8/9. CRISPR interference targeting of individual elements in this region attenuated MEIS1 expression, revealing a complex regulatory interplay of distinct elements. In summary, we found that MEIS1 regulation is organized in a modular pattern. Disease-associated intronic regulatory elements control MEIS1 expression with cell type and maturation stage specificity, particularly in the inhibitory neuron lineage. The precise spatiotemporal activity of these elements likely contributes to the pathogenesis of insomnia and RLS.
Collapse
Affiliation(s)
- Daniel D Lam
- Institute of Neurogenomics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Germany
| | - Ana Antic Nikolic
- Institute of Neurogenomics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Germany
| | - Chen Zhao
- Institute of Neurogenomics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Germany
| | - Nazanin Mirza-Schreiber
- Institute of Neurogenomics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Konrad Oexle
- Institute of Neurogenomics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Germany
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Germany.,Chair of Neurogenetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
30
|
Delling JP, Boeckers TM. Comparison of SHANK3 deficiency in animal models: phenotypes, treatment strategies, and translational implications. J Neurodev Disord 2021; 13:55. [PMID: 34784886 PMCID: PMC8594088 DOI: 10.1186/s11689-021-09397-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental condition, which is characterized by clinical heterogeneity and high heritability. Core symptoms of ASD include deficits in social communication and interaction, as well as restricted, repetitive patterns of behavior, interests, or activities. Many genes have been identified that are associated with an increased risk for ASD. Proteins encoded by these ASD risk genes are often involved in processes related to fetal brain development, chromatin modification and regulation of gene expression in general, as well as the structural and functional integrity of synapses. Genes of the SH3 and multiple ankyrin repeat domains (SHANK) family encode crucial scaffolding proteins (SHANK1-3) of excitatory synapses and other macromolecular complexes. SHANK gene mutations are highly associated with ASD and more specifically the Phelan-McDermid syndrome (PMDS), which is caused by heterozygous 22q13.3-deletion resulting in SHANK3-haploinsufficiency, or by SHANK3 missense variants. SHANK3 deficiency and potential treatment options have been extensively studied in animal models, especially in mice, but also in rats and non-human primates. However, few of the proposed therapeutic strategies have translated into clinical practice yet. MAIN TEXT This review summarizes the literature concerning SHANK3-deficient animal models. In particular, the structural, behavioral, and neurological abnormalities are described and compared, providing a broad and comprehensive overview. Additionally, the underlying pathophysiologies and possible treatments that have been investigated in these models are discussed and evaluated with respect to their effect on ASD- or PMDS-associated phenotypes. CONCLUSIONS Animal models of SHANK3 deficiency generated by various genetic strategies, which determine the composition of the residual SHANK3-isoforms and affected cell types, show phenotypes resembling ASD and PMDS. The phenotypic heterogeneity across multiple models and studies resembles the variation of clinical severity in human ASD and PMDS patients. Multiple therapeutic strategies have been proposed and tested in animal models, which might lead to translational implications for human patients with ASD and/or PMDS. Future studies should explore the effects of new therapeutic approaches that target genetic haploinsufficiency, like CRISPR-mediated activation of promotors.
Collapse
Affiliation(s)
- Jan Philipp Delling
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany.
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany. .,Ulm Site, DZNE, Ulm, Germany.
| |
Collapse
|
31
|
New extreme morphologies as exemplified by 100 million-year-old lacewing larvae. Sci Rep 2021; 11:20432. [PMID: 34650142 PMCID: PMC8517013 DOI: 10.1038/s41598-021-99480-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
Larvae of the group Holometabola (beetles, wasps, flies, moths and others) differ significantly in their morphology from their corresponding adults. In most larvae, appendages and other structures protruding from the body (antennae, palps, legs, trunk processes) appear less elongate than in their corresponding adults, providing the impression that these larvae are restricted to a certain degree in developing more elongate structures. We provide here numerous counterexamples of larvae of lacewings (Neuroptera). These include different forms of elongated antennae, mandibles, maxillae, labial palps, legs, trunk processes and neck regions. Most of these examples are larvae preserved in different types of 100 million-year-old amber. The longest neck region was found in an extant specimen. All these examples demonstrate that certain branches of Neuroptera indeed had larval forms that possessed strongly elongated structures. Hence there is no principal constraint that hinders holometabolan larvae to develop such structures.
Collapse
|
32
|
Goel S, Bhatia V, Kundu S, Biswas T, Carskadon S, Gupta N, Asim M, Morrissey C, Palanisamy N, Ateeq B. Transcriptional network involving ERG and AR orchestrates Distal-less homeobox-1 mediated prostate cancer progression. Nat Commun 2021; 12:5325. [PMID: 34493733 PMCID: PMC8423767 DOI: 10.1038/s41467-021-25623-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 08/20/2021] [Indexed: 02/07/2023] Open
Abstract
Distal-less homeobox-1 (DLX1) is a well-established non-invasive biomarker for prostate cancer (PCa) diagnosis, however, its mechanistic underpinnings in disease pathobiology are not known. Here, we reveal the oncogenic role of DLX1 and show that abrogating its function leads to reduced tumorigenesis and metastases. We observed that ~60% of advanced-stage and metastatic patients display higher DLX1 levels. Moreover, ~96% of TMPRSS2-ERG fusion-positive and ~70% of androgen receptor (AR)-positive patients show elevated DLX1, associated with aggressive disease and poor survival. Mechanistically, ERG coordinates with enhancer-bound AR and FOXA1 to drive transcriptional upregulation of DLX1 in ERG-positive background. However, in ERG-negative context, AR/AR-V7 and FOXA1 suffice to upregulate DLX1. Notably, inhibiting ERG/AR-mediated DLX1 transcription using BET inhibitor (BETi) or/and anti-androgen drugs reduce its expression and downstream oncogenic effects. Conclusively, this study establishes DLX1 as a direct-target of ERG/AR with an oncogenic role and demonstrates the clinical significance of BETi and anti-androgens for DLX1-positive patients.
Collapse
Affiliation(s)
- Sakshi Goel
- grid.417965.80000 0000 8702 0100Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, U.P. India
| | - Vipul Bhatia
- grid.417965.80000 0000 8702 0100Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, U.P. India
| | - Sushmita Kundu
- grid.417965.80000 0000 8702 0100Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, U.P. India
| | - Tanay Biswas
- grid.417965.80000 0000 8702 0100Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, U.P. India
| | - Shannon Carskadon
- grid.239864.20000 0000 8523 7701Vattikuti Urology Institute, Department of Urology, Henry Ford Health System, Detroit, MI USA
| | - Nilesh Gupta
- grid.239864.20000 0000 8523 7701Department of Pathology, Henry Ford Health System, Detroit, MI USA
| | - Mohammad Asim
- grid.5475.30000 0004 0407 4824Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Colm Morrissey
- grid.34477.330000000122986657Department of Urology, University of Washington, Seattle, WA USA
| | - Nallasivam Palanisamy
- grid.239864.20000 0000 8523 7701Vattikuti Urology Institute, Department of Urology, Henry Ford Health System, Detroit, MI USA
| | - Bushra Ateeq
- grid.417965.80000 0000 8702 0100Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, U.P. India ,grid.417965.80000 0000 8702 0100The Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, U.P. India
| |
Collapse
|
33
|
Samoilova EM, Belopasov VV, Baklaushev VP. Transcription Factors of Direct Neuronal Reprogramming in Ontogenesis and Ex Vivo. Mol Biol 2021; 55:645-669. [DOI: 10.1134/s0026893321040087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 03/07/2025]
|
34
|
ACE2 protein expression within isogenic cell lines is heterogeneous and associated with distinct transcriptomes. Sci Rep 2021; 11:15900. [PMID: 34354120 PMCID: PMC8342525 DOI: 10.1038/s41598-021-95308-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/16/2021] [Indexed: 12/23/2022] Open
Abstract
The membrane protein angiotensin-converting enzyme 2 (ACE2) is a physiologic regulator of the renin-angiotensin system and the cellular receptor for the SARS-CoV-2 virus. Prior studies of ACE2 expression have primarily focused on mRNA abundance, with investigation at the protein level limited by uncertain specificity of commercial ACE2 antibodies. Here, we report our development of a sensitive and specific flow cytometry-based assay for cellular ACE2 protein abundance. Application of this approach to multiple cell lines revealed an unexpected degree of cellular heterogeneity, with detectable ACE2 protein in only a subset of cells in each isogenic population. This heterogeneity was mediated at the mRNA level by transcripts predominantly initiated from the ACE2 proximal promoter. ACE2 expression was heritable but not fixed over multiple generations of daughter cells, with gradual drift toward the original heterogeneous background. RNA-seq profiling identified distinct transcriptomes of ACE2-expressing relative cells to non-expressing cells, with enrichment in functionally related genes and transcription factor target sets. Our findings provide a validated approach for the specific detection of ACE2 protein at the surface of single cells, support an epigenetic mechanism of ACE2 gene regulation, and identify specific pathways associated with ACE2 expression in HuH7 cells.
Collapse
|
35
|
Fabik J, Psutkova V, Machon O. The Mandibular and Hyoid Arches-From Molecular Patterning to Shaping Bone and Cartilage. Int J Mol Sci 2021; 22:7529. [PMID: 34299147 PMCID: PMC8303155 DOI: 10.3390/ijms22147529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
The mandibular and hyoid arches collectively make up the facial skeleton, also known as the viscerocranium. Although all three germ layers come together to assemble the pharyngeal arches, the majority of tissue within viscerocranial skeletal components differentiates from the neural crest. Since nearly one third of all birth defects in humans affect the craniofacial region, it is important to understand how signalling pathways and transcription factors govern the embryogenesis and skeletogenesis of the viscerocranium. This review focuses on mouse and zebrafish models of craniofacial development. We highlight gene regulatory networks directing the patterning and osteochondrogenesis of the mandibular and hyoid arches that are actually conserved among all gnathostomes. The first part of this review describes the anatomy and development of mandibular and hyoid arches in both species. The second part analyses cell signalling and transcription factors that ensure the specificity of individual structures along the anatomical axes. The third part discusses the genes and molecules that control the formation of bone and cartilage within mandibular and hyoid arches and how dysregulation of molecular signalling influences the development of skeletal components of the viscerocranium. In conclusion, we notice that mandibular malformations in humans and mice often co-occur with hyoid malformations and pinpoint the similar molecular machinery controlling the development of mandibular and hyoid arches.
Collapse
Affiliation(s)
- Jaroslav Fabik
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.F.); (V.P.)
- Department of Cell Biology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Viktorie Psutkova
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.F.); (V.P.)
- Department of Cell Biology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Ondrej Machon
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.F.); (V.P.)
| |
Collapse
|
36
|
Song X, Chen H, Shang Z, Du H, Li Z, Wen Y, Liu G, Qi D, You Y, Yang Z, Zhang Z, Xu Z. Homeobox Gene Six3 is Required for the Differentiation of D2-Type Medium Spiny Neurons. Neurosci Bull 2021; 37:985-998. [PMID: 34014554 PMCID: PMC8275777 DOI: 10.1007/s12264-021-00698-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 01/09/2021] [Indexed: 12/31/2022] Open
Abstract
Medium spiny neurons (MSNs) in the striatum, which can be divided into D1 and D2 MSNs, originate from the lateral ganglionic eminence (LGE). Previously, we reported that Six3 is a downstream target of Sp8/Sp9 in the transcriptional regulatory cascade of D2 MSN development and that conditionally knocking out Six3 leads to a severe loss of D2 MSNs. Here, we showed that Six3 mainly functions in D2 MSN precursor cells and gradually loses its function as D2 MSNs mature. Conditional deletion of Six3 had little effect on cell proliferation but blocked the differentiation of D2 MSN precursor cells. In addition, conditional overexpression of Six3 promoted the differentiation of precursor cells in the LGE. We measured an increase of apoptosis in the postnatal striatum of conditional Six3-knockout mice. This suggests that, in the absence of Six3, abnormally differentiated D2 MSNs are eliminated by programmed cell death. These results further identify Six3 as an important regulatory element during D2 MSN differentiation.
Collapse
Affiliation(s)
- Xiaolei Song
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Haotian Chen
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zicong Shang
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Heng Du
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhenmeiyu Li
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yan Wen
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Guoping Liu
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Dashi Qi
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yan You
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhengang Yang
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhuangzhi Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Zhejun Xu
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
37
|
Mishra P, Kumar S. Association of lncRNA with regulatory molecular factors in brain and their role in the pathophysiology of schizophrenia. Metab Brain Dis 2021; 36:849-858. [PMID: 33608830 DOI: 10.1007/s11011-021-00692-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/11/2021] [Indexed: 01/12/2023]
Abstract
Schizophrenia is one of the most agonizing neurodegenerative diseases of the brain. Research undertaken to understand the molecular mechanism of this disease has undergone a transition and currently more emphasis is put on long noncoding RNA (lncRNA). High expression level of lncRNA in the brain contributes to several molecular pathways essential for the proper functioning of neurons, neurotransmitters, and synapses, that are often found dysfunctional in Schizophrenia. Recently, the association of lncRNA with various molecular factors in the brain has been explored to a considerably large extent. This review comprehends the significance of lncRNA in causing profound regulatory effect in the brain and how any alterations to the association of lncRNA with regulatory proteins, enzymes and other noncoding RNA could contribute to the aetiology of Schizophrenia.
Collapse
Affiliation(s)
- Parinita Mishra
- Life Science Department, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Santosh Kumar
- Life Science Department, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
38
|
Park HR, Choi YJ, Kim JY, Kim IG, Jung U. Repeated Irradiation with γ-Ray Induces Cancer Stemness through TGF-β-DLX2 Signaling in the A549 Human Lung Cancer Cell Line. Int J Mol Sci 2021; 22:ijms22084284. [PMID: 33924205 PMCID: PMC8074596 DOI: 10.3390/ijms22084284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/08/2021] [Accepted: 04/18/2021] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSCs) play an important role in cancer recurrence and metastasis. It is suggested that the CSC properties in heterogeneous cancer cells can be induced by ionizing radiation (IR). This study investigated the role of DLX2 in the radioresistance and CSC properties induced by IR in NSCLC cancer cells. Here, A549 cells were exposed to fractionated irradiation at a cumulative dose of 52 Gy (4 Gy × 13 times) for a generation of radioresistant cells. After fractionated irradiation, surviving A549 cells exhibited resistance to IR and enhanced expression of various cancer stem cell markers. They also showed upregulation of mesenchymal molecular markers and downregulation of epithelial molecular markers, correlating with an increase in the migration and invasion. Fractionated irradiation triggered the secretion of TGF-β1 and DLX2 expression. Interestingly, the increased DLX2 following fractionated irradiation seemed to induce the expression of the gene for the EGFR-ligand betacellulin via Smad2/3 signaling. To contrast, DLX2 knockdown dramatically decreased the expression of CSC markers, migration, and proliferation. Moreover, A549 cells expressing DLX2 shRNA formed tumors with a significantly smaller volume compared to those expressing control shDNA in a mouse xenograft assay. These results suggest that DLX2 overexpression in surviving NSCLC cancer cells after fractionated IR exposure is involved in the cancer stemness, radioresistance, EMT, tumor survival, and tumorigenic capability.
Collapse
Affiliation(s)
- Hae-Ran Park
- Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeonbuk 56212, Korea; (Y.-J.C.); (J.-Y.K.)
- Correspondence: (H.-R.P.); (U.J.); Tel.: +82-63-570-3222 (H.-R.P.); +82-42-868-8038 (U.J.)
| | - Yeo-Jin Choi
- Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeonbuk 56212, Korea; (Y.-J.C.); (J.-Y.K.)
| | - Jee-Young Kim
- Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeonbuk 56212, Korea; (Y.-J.C.); (J.-Y.K.)
| | - In-Gyu Kim
- Environmental Safety Evaluation Research Division, Korea Atomic Energy Research Institute, Daejeon 34057, Korea;
| | - Uhee Jung
- Environmental Safety Evaluation Research Division, Korea Atomic Energy Research Institute, Daejeon 34057, Korea;
- Correspondence: (H.-R.P.); (U.J.); Tel.: +82-63-570-3222 (H.-R.P.); +82-42-868-8038 (U.J.)
| |
Collapse
|
39
|
Yang J, Yang X, Tang K. Interneuron development and dysfunction. FEBS J 2021; 289:2318-2336. [PMID: 33844440 DOI: 10.1111/febs.15872] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Understanding excitation and inhibition balance in the brain begins with the tale of two basic types of neurons, glutamatergic projection neurons and GABAergic interneurons. The diversity of cortical interneurons is contributed by multiple origins in the ventral forebrain, various tangential migration routes, and complicated regulations of intrinsic factors, extrinsic signals, and activities. Abnormalities of interneuron development lead to dysfunction of interneurons and inhibitory circuits, which are highly associated with neurodevelopmental disorders including schizophrenia, autism spectrum disorders, and intellectual disability. In this review, we mainly discuss recent findings on the development of cortical interneuron and on neurodevelopmental disorders related to interneuron dysfunction.
Collapse
Affiliation(s)
- Jiaxin Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, China
| | - Xiong Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, China
| | - Ke Tang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, China
| |
Collapse
|
40
|
Functional and structural basis of extreme conservation in vertebrate 5' untranslated regions. Nat Genet 2021; 53:729-741. [PMID: 33821006 PMCID: PMC8825242 DOI: 10.1038/s41588-021-00830-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/26/2021] [Indexed: 01/07/2023]
Abstract
The lack of knowledge about extreme conservation in genomes remains a major gap in our understanding of the evolution of gene regulation. Here, we reveal an unexpected role of extremely conserved 5' untranslated regions (UTRs) in noncanonical translational regulation that is linked to the emergence of essential developmental features in vertebrate species. Endogenous deletion of conserved elements within these 5' UTRs decreased gene expression, and extremely conserved 5' UTRs possess cis-regulatory elements that promote cell-type-specific regulation of translation. We further developed in-cell mutate-and-map (icM2), a new methodology that maps RNA structure inside cells. Using icM2, we determined that an extremely conserved 5' UTR encodes multiple alternative structures and that each single nucleotide within the conserved element maintains the balance of alternative structures important to control the dynamic range of protein expression. These results explain how extreme sequence conservation can lead to RNA-level biological functions encoded in the untranslated regions of vertebrate genomes.
Collapse
|
41
|
Yanar K, Molbay M, Özaydın-Goksu E, Unek G, Cetindağ E, Unal A, Korgun ET. Contribution of Human Trophoblast Progenitor Cells to Neurogenesis in Rat Focal Cerebral Ischemia Model. Brain Inj 2021; 35:850-862. [PMID: 33780298 DOI: 10.1080/02699052.2021.1906948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE : A decrease in the blood flow below a current level in the brain results in ischemia. Studies demonstrated that human trophoblast progenitor cells (hTPCs) contribute to the treatment of many diseases. Therefore, hTPCs might be a promising source to repair ischemia in cerebral ischemia models. For this purpose, we evaluated the expression of many neurogenesis markers by performing hTPC transplantation after focal cerebral ischemia in rats. METHODS : hTPCs, isolated from the term placentae, were characterized by immunofluorescent staining and differentiated into neuron-like cells. Differentiation was confirmed with immunostaining of GFAP and NeuN proteins. Cerebral ischemia models were generated in rats via middle cerebral artery occlusion and, after 24 hours, hTPCs were injected via the tail vein. Animals were sacrificed on day 3 or day 11. Immunohistochemical analysis was performed with proteins associated with neurogenesis and neuronal development, such as DLX2, DLX5, LHX6, NGN1, and NGN2, Olig1, Olig2, and PDGFRα. RESULTS : According to our results, hTPCs may alleviate ischemic damage in the brain and contribute to the neurogenesis after ischemia. CONCLUSIONS : Based on our findings, this topic should be further investigated as the hTPC-based therapies may be a reliable source that can be used in the treatment of stroke and ischemia.
Collapse
Affiliation(s)
- Kerem Yanar
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Muge Molbay
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Eylem Özaydın-Goksu
- Department of Neurology, Antalya Research and Training Hospital, Neurology Clinic, Antalya, Turkey
| | - Gozde Unek
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Emre Cetindağ
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Ali Unal
- Department of Neurology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Emin Turkay Korgun
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
42
|
Sherman EJ, Emmer BT. ACE2 protein expression within isogenic cell lines is heterogeneous and associated with distinct transcriptomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33791703 DOI: 10.1101/2021.03.26.437218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The membrane protein angiotensin-converting enzyme 2 (ACE2) is a physiologic regulator of the renin-angiotensin system and the cellular receptor for the SARS-CoV-2 virus. Prior studies of ACE2 expression have primarily focused on mRNA abundance, with investigation at the protein level limited by uncertain specificity of commercial ACE2 antibodies. Here, we report our development of a sensitive and specific flow cytometry-based assay for cellular ACE2 protein abundance. Application of this approach to multiple cell lines revealed an unexpected degree of cellular heterogeneity, with detectable ACE2 protein in only a subset of cells in each isogenic population. This heterogeneity was mediated at the mRNA level by transcripts predominantly initiated from the ACE2 proximal promoter. ACE2 expression was heritable but not fixed over multiple generations of daughter cells, with gradual drift toward the original heterogeneous background. RNA-seq profiling identified distinct transcriptomes of ACE2-expressing relative cells to non-expressing cells, with enrichment in functionally related genes and transcription factor target sets. Our findings provide a validated approach for the specific detection of ACE2 protein at the surface of single cells, support an epigenetic mechanism ACE2 gene regulation, and identify specific pathways associated with ACE2 expression in HuH7 cells.
Collapse
|
43
|
Lindtner S, Catta-Preta R, Tian H, Su-Feher L, Price JD, Dickel DE, Greiner V, Silberberg SN, McKinsey GL, McManus MT, Pennacchio LA, Visel A, Nord AS, Rubenstein JLR. Genomic Resolution of DLX-Orchestrated Transcriptional Circuits Driving Development of Forebrain GABAergic Neurons. Cell Rep 2020; 28:2048-2063.e8. [PMID: 31433982 PMCID: PMC6750766 DOI: 10.1016/j.celrep.2019.07.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/29/2019] [Accepted: 07/08/2019] [Indexed: 11/24/2022] Open
Abstract
DLX transcription factors (TFs) are master regulators of the developing vertebrate brain, driving forebrain GABAergic neuronal differentiation. Ablation of Dlx1&2 alters expression of genes that are critical for forebrain GABAergic development. We integrated epigenomic and transcriptomic analyses, complemented with in situ hybridization (ISH), and in vivo and in vitro studies of regulatory element (RE) function. This revealed the DLX-organized gene regulatory network at genomic, cellular, and spatial levels in mouse embryonic basal ganglia. DLX TFs perform dual activating and repressing functions; the consequences of their binding were determined by the sequence and genomic context of target loci. Our results reveal and, in part, explain the paradox of widespread DLX binding contrasted with a limited subset of target loci that are sensitive at the epigenomic and transcriptomic level to Dlx1&2 ablation. The regulatory properties identified here for DLX TFs suggest general mechanisms by which TFs orchestrate dynamic expression programs underlying neurodevelopment. Lindtner et al. reveal the regulatory wiring organized by DLX transcription factors in forebrain GABAergic neuronal specification, by integrating functional genomic, epigenomic, and genetic data on a transgenic mouse model. This network determines key sequence-encoded regulatory elements and implicates a combination of histone modifications and biophysical interactions.
Collapse
Affiliation(s)
- Susan Lindtner
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Rinaldo Catta-Preta
- Department of Neurobiology, Physiology and Behavior, and Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA 95618, USA
| | - Hua Tian
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Linda Su-Feher
- Department of Neurobiology, Physiology and Behavior, and Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA 95618, USA
| | - James D Price
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Development and Stem Cell Biology Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Diane E Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Vanille Greiner
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Shanni N Silberberg
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gabriel L McKinsey
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael T McManus
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Len A Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; Comparative Biochemistry Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; School of Natural Sciences, University of California, Merced, Merced, CA 95343, USA
| | - Alex S Nord
- Department of Neurobiology, Physiology and Behavior, and Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA 95618, USA.
| | - John L R Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Development and Stem Cell Biology Program, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
44
|
Reed RD, Selegue JE, Zhang L, Brunetti CR. Transcription factors underlying wing margin color patterns and pupal cuticle markings in butterflies. EvoDevo 2020; 11:10. [PMID: 32514330 PMCID: PMC7254719 DOI: 10.1186/s13227-020-00155-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/19/2020] [Indexed: 11/30/2022] Open
Abstract
Background The diversity of butterfly color patterns can be attributed to a relatively small number of pattern elements that are homologous across Lepidoptera. Although genes involved in patterning some of these elements have been identified, the development of several major elements remains poorly understood. To identify genes underlying wing pupal cuticle markings and wing margin color patterns, we examined expression of the candidate transcription factors Engrailed/Invected (En/Inv), Distal-less (Dll), Cubitus interruptus (Ci), and Spalt in two nymphalids: Junonia coenia and Bicyclus anynana. Results We found that En/Inv, Dll, and Ci mark domains on the J. coenia last-instar forewing disc that closely correspond to the position and shape of pupal cuticle markings. We also found that Spalt demarcates wing margin color patterns in both J. coenia and B. anynana, and that CRISPR/Cas9 deletions in the spalt gene result in reduction and loss of wing margin color patterns in J. coenia. These data demonstrate a role for spalt in promoting wing margin color patterning, in addition to its previously described role in eyespot patterning. Conclusion Our observations support the model that a core set of regulatory genes are redeployed multiple times, and in multiple roles, during butterfly wing pattern development. Of these genes, spalt is of special interest as it plays a dual role in both eyespot and margin color pattern development.
Collapse
Affiliation(s)
- Robert D Reed
- Department of Ecology and Evolutionary Biology, Cornell University, 215 Tower Road, Ithaca, NY 14853-7202 USA
| | - Jayne E Selegue
- School of Pharmacy, University of Wisconsin, 777 Highland Ave, Madison, WI 53705 USA
| | - Linlin Zhang
- Department of Ecology and Evolutionary Biology, Cornell University, 215 Tower Road, Ithaca, NY 14853-7202 USA.,Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266003 China
| | - Craig R Brunetti
- Department of Biology, Trent University, 1600 East Bank Dr., Peterborough, ON K9J 7B8 Canada
| |
Collapse
|
45
|
Nair RR, Blankvoort S, Lagartos MJ, Kentros C. Enhancer-Driven Gene Expression (EDGE) Enables the Generation of Viral Vectors Specific to Neuronal Subtypes. iScience 2020; 23:100888. [PMID: 32087575 PMCID: PMC7033522 DOI: 10.1016/j.isci.2020.100888] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/03/2019] [Accepted: 02/03/2020] [Indexed: 12/19/2022] Open
Abstract
Although a variety of remarkable molecular tools for studying neural circuits have recently been developed, the ability to deploy them in particular neuronal subtypes is limited by the fact that native promoters are almost never specific enough. We recently showed that one can generate transgenic mice with anatomical specificity surpassing that of native promoters by combining enhancers uniquely active in particular brain regions with a heterologous minimal promoter, an approach we call EDGE (Enhancer-Driven Gene Expression). Here we extend this strategy to the generation of viral (rAAV) vectors, showing that some EDGE rAAVs can recapitulate the specificity of the corresponding transgenic lines in wild-type animals, even of another species. This approach thus holds the promise of enabling circuit-specific manipulations in wild-type animals, not only enhancing our understanding of brain function, but perhaps one day even providing novel therapeutic avenues to approach disorders of the brain. rAAVs with enhancers unique to a brain region specify cell types of that brain region This requires viral constructs optimized to express only with enhancers One rAAV distinguishes distinct subtypes of excitatory neurons in a cortical layer The same specificity is seen in wild-type animals of at least two species
Collapse
Affiliation(s)
| | - Stefan Blankvoort
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU, Norway
| | - Maria Jose Lagartos
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU, Norway
| | - Cliff Kentros
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU, Norway; Institute of Neuroscience, University of Oregon, Eugene OR, USA.
| |
Collapse
|
46
|
Wang CY, Brand H, Shaw ND, Talkowski ME, Lee JT. Role of the Chromosome Architectural Factor SMCHD1 in X-Chromosome Inactivation, Gene Regulation, and Disease in Humans. Genetics 2019; 213:685-703. [PMID: 31420322 PMCID: PMC6781896 DOI: 10.1534/genetics.119.302600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/13/2019] [Indexed: 12/11/2022] Open
Abstract
Structural maintenance of chromosomes flexible hinge domain-containing 1 (SMCHD1) is an architectural factor critical for X-chromosome inactivation (XCI) and the repression of select autosomal gene clusters. In mice, homozygous nonsense mutations in Smchd1 cause female-specific embryonic lethality due to an XCI defect. However, although human mutations in SMCHD1 are associated with congenital arhinia and facioscapulohumeral muscular dystrophy type 2 (FSHD2), the diseases do not show a sex-specific bias, despite the essential nature of XCI in humans. To investigate whether there is a dosage imbalance for the sex chromosomes, we here analyze transcriptomic data from arhinia and FSHD2 patient blood and muscle cells. We find that X-linked dosage compensation is maintained in these patients. In mice, SMCHD1 controls not only protocadherin (Pcdh) gene clusters, but also Hox genes critical for craniofacial development. Ablating Smchd1 results in aberrant expression of these genes, coinciding with altered chromatin states and three-dimensional (3D) topological organization. In a subset of FSHD2 and arhinia patients, we also found dysregulation of clustered PCDH, but not HOX genes. Overall, our study demonstrates preservation of XCI in arhinia and FSHD2, and implicates SMCHD1 in the regulation of the 3D organization of select autosomal gene clusters.
Collapse
Affiliation(s)
- Chen-Yu Wang
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Harrison Brand
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Natalie D Shaw
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Michael E Talkowski
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
47
|
Alzu'bi A, Clowry GJ. Expression of ventral telencephalon transcription factors ASCL1 and DLX2 in the early fetal human cerebral cortex. J Anat 2019; 235:555-568. [PMID: 30861584 PMCID: PMC6704271 DOI: 10.1111/joa.12971] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2019] [Indexed: 01/21/2023] Open
Abstract
In rodent ventral telencephalon, diffusible morphogens induce expression of the proneural transcription factor ASCL1, which in turn induces expression of the transcription factor DLX2 that controls differentiation of cortical interneuron precursors and their tangential migration to the cerebral cortex. RNAseq analysis of human fetal samples of dorsal telencephalon revealed consistently high cortical expression of ASCL1 and increasing expression of DLX2 between 7.5 and 17 post-conceptional weeks (PCW). We explored whether cortical expression of these genes represented a population of intracortically derived interneuron precursors. Immunohistochemistry revealed an ASCL1+ /DLX2+ population of progenitor cells in the human ganglionic eminences between 6.5 and 12 PCW, but in the cortex there also existed a population of ASCL1+ /DLX2- progenitors in the subventricular zone (SVZ) that largely co-expressed cortical markers PAX6 or TBR2, although a few ASCL1+ /PAX6- progenitors were observed in the ventricular zone (VZ) and ASCL1+ cells expressing the interneuron marker GAD67 were present in the SVZ. Although rare in the VZ, DLX2+ cells progressively increased in number between 8 and 12 PCW across the cortical wall and the majority co-expressed LHX6 and originated either in the MGE, migrating to the lateral cortex, or from the septum, populating the medial wall. A minority co-expressed COUP-TFII, which identifies cells from the caudal ganglionic eminence (CGE). By 19 PCW, a significant increase in expression of DLX2 and ASCL1 was observed in the cortical VZ with a small proportion expressing both proteins. The DLX2+ cells did not co-express a cell division marker, so were not progenitors. The majority of DLX2+ cells throughout the cortical plate expressed COUP-TFII rather than LHX6+ . As the VZ declined as a proliferative zone it appeared to be re-defined as a migration pathway for COUP-TFII+ /DLX2+ interneurons from CGE to cortex. Therefore, in developing human cortex, ASCL1 expression predominantly marks a population of intermediate progenitors giving rise to glutamatergic neurons. DLX2 expression predominantly defines post-mitotic interneuron precursors.
Collapse
Affiliation(s)
- Ayman Alzu'bi
- The institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
- The Institute of Genetic MedicineNewcastle UniversityNewcastle upon TyneUK
- The Department of Basic Medical SciencesYarmouk UniversityIrbidJordan
| | - Gavin J. Clowry
- The institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
48
|
Sohal VS, Rubenstein JLR. Excitation-inhibition balance as a framework for investigating mechanisms in neuropsychiatric disorders. Mol Psychiatry 2019; 24:1248-1257. [PMID: 31089192 PMCID: PMC6742424 DOI: 10.1038/s41380-019-0426-0] [Citation(s) in RCA: 557] [Impact Index Per Article: 92.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 04/01/2019] [Accepted: 04/11/2019] [Indexed: 12/21/2022]
Abstract
In 2003 Rubenstein and Merzenich hypothesized that some forms of Autism (ASD) might be caused by a reduction in signal-to-noise in key neural circuits, which could be the result of changes in excitatory-inhibitory (E-I) balance. Here, we have clarified the concept of E-I balance, and updated the original hypothesis in light of the field's increasingly sophisticated understanding of neuronal circuits. We discuss how specific developmental mechanisms, which reduce inhibition, affect cortical and hippocampal functions. After describing how mutations of some ASD genes disrupt inhibition in mice, we close by suggesting that E-I balance represents an organizing framework for understanding findings related to pathophysiology and for identifying appropriate treatments.
Collapse
Affiliation(s)
- Vikaas S. Sohal
- Department of Psychiatry, Weill Institute for Neurosciences, and Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA 94143, USA
| | - John L. R. Rubenstein
- Department of Psychiatry, Weill Institute for Neurosciences, and Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
49
|
Shibano M, Watanabe A, Takano N, Mishima H, Kinoshita A, Yoshiura KI, Shibahara T. Target Capture/Next-Generation Sequencing for Nonsyndromic Cleft Lip and Palate in the Japanese Population. Cleft Palate Craniofac J 2019; 57:80-87. [PMID: 31337262 DOI: 10.1177/1055665619857650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE The pathogenesis of nonsyndromic cleft lip with or without cleft palate (NSCL ± P) and nonsyndromic cleft palate only (NSCP) may be associated with genetic factors. Although some predisposing genes/loci have been reported, their attributable risk is too small to be clinically meaningful. To clarify the genetic causes and mechanisms of NSCL±P or NSCP, we conducted mutation analysis of target genes using a next-generation sequencing (NGS) approach. METHODS The target genes, IRF6, WNT5A, WNT9B, TP63, MSX1, TFAP2A, PAX9, DLX3, DLX4, and MN1, were selected based on previous reports of potential associations with the development of NSCL±P or NSCP from genome-wide association studies and candidate gene analyses. Mutation analysis was conducted using NGS on 74 Japanese trios (patient and parents) and 18 Japanese patients only families. RESULTS We detected single-nucleotide variants (SNVs) for 7 genes: IRF6, DLX4, WNT5A, TFAP2A, WNT9B, TP63, and PAX9. The SNVs found on IRF6 and DLX4 were missense mutations, whereas those identified on WNT5A, TFAP2A, WNT9B, TP63, and PAX9 were rare variants in the noncoding region; no de novo mutation was identified in the trio samples. The amino acid change on DLX4 was detected within the highly conserved homeodomain and was predicted to have a deleterious impact on the protein function by in silico analysis. CONCLUSIONS The DLX4 missense mutation c.359C>T (Pro120Leu) was found in 1 Japanese patient with NSCL±P and was located in the homeodomain region. This mutation likely plays a role in the development of NSCL±P in the Japanese population.
Collapse
Affiliation(s)
- Masayasu Shibano
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Tokyo, Japan
| | - Akira Watanabe
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Tokyo, Japan
| | - Nobuo Takano
- Oral Cancer Center, Tokyo Dental College, Chiba, Japan
| | - Hiroyuki Mishima
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Akira Kinoshita
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Koh-Ichiro Yoshiura
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takahiko Shibahara
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
50
|
Lee SY, Ju MK, Jeon HM, Lee YJ, Kim CH, Park HG, Han SI, Kang HS. Reactive oxygen species induce epithelial‑mesenchymal transition, glycolytic switch, and mitochondrial repression through the Dlx‑2/Snail signaling pathways in MCF‑7 cells. Mol Med Rep 2019; 20:2339-2346. [PMID: 31322179 DOI: 10.3892/mmr.2019.10466] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 03/20/2019] [Indexed: 11/06/2022] Open
Abstract
Reactive oxygen species (ROS) are important cellular second messengers involved in various aspects of cell signaling. ROS are elevated in multiple types of cancer cells, and this elevation is known to be involved in pathological processes of cancer. Although high levels of ROS exert cytotoxic effects on cancer cells, low levels of ROS stimulate cell proliferation and survival by inducing several pro‑survival signaling pathways. In addition, ROS have been shown to induce epithelial‑mesenchymal transition (EMT), which is essential for the initiation of metastasis. However, the precise mechanism of ROS‑induced EMT remains to be elucidated. In the present study, it was indicated that ROS induce EMT by activating Snail expression, which then represses E‑cadherin expression in MCF‑7 cells. It was further indicated that distal‑less homeobox‑2 (Dlx‑2), one of the human Dlx gene family proteins involved in embryonic development, acts as an upstream regulator of ROS‑induced Snail expression. It was also revealed that ROS treatment induces the glycolytic switch, a phenomenon whereby cancer cells primarily rely on glycolysis instead of mitochondrial oxidative phosphorylation for ATP production, even in the presence of oxygen. In addition, ROS inhibited oxidative phosphorylation and caused cytochrome c oxidase inhibition via the Dlx‑2/Snail cascade. These results suggest that ROS induce EMT, the glycolytic switch and mitochondrial repression by activating the Dlx‑2/Snail axis, thereby playing crucial roles in MCF‑7 cancer cell progression.
Collapse
Affiliation(s)
- Su Yeon Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Min Kyung Ju
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Hyun Min Jeon
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Yig Ji Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Cho Hee Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Hye Gyeong Park
- Nanobiotechnology Center, Pusan National University, Busan 46241, Republic of Korea
| | - Song Iy Han
- Division of Natural Medical Sciences, College of Health Science, Chosun University, Gwangju, Gyeonggi 61452, Republic of Korea
| | - Ho Sung Kang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|