1
|
Wang D, Liu N, Kong X, Zhu X, Wang Y, Hu J, Bao Z. Single-cell transcriptomic dynamics of scallop heart reveals the heterogeneous response to heat stress. BMC Biol 2025; 23:98. [PMID: 40234911 PMCID: PMC12001498 DOI: 10.1186/s12915-025-02210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 04/07/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Animals with open circulatory systems are highly vulnerable to environmental temperature fluctuations, making them particularly threatened by global warming. However, research on the cellular heterogeneity of heart responses to elevated temperatures in animals with open circulatory systems remains limited. RESULTS Here, we conducted a comprehensive investigation of the morphology, metabolism and scRNA-seq of the heart in a molluscan model, Argopecten irradians, under heat stress. Our results unraveled that the severity of cardiac structure damage increased progressively with rising temperature, accompanied by widespread mitochondrial dysfunction and neurohumoral response. We identified two subpopulations within cardiomyocytes (CMs), including ventricular myocytes (VMs) and atrial myocytes (AMs), which exhibited specialized functional roles in response to thermal stress. Specifically, AMs enhanced cell-cell communications with the immune-like cells and fibroblasts to contribute to maintaining cardiac homeostasis under heat stress. Whereas, VMs displayed enhanced energy supply and differentiation potential to withstand thermal challenges. Furthermore, RNA interference targeting the most heat-responsive gene, PLRP2-like, resulted in a significant reduction in heat tolerance and triglyceride accumulation in scallops. CONCLUSIONS Our study investigated the heterogeneous response of the scallop heart to high temperatures, revealing distinct response patterns between VMs and AMs. We further identified a key gene, AiPLRP2-like, which exhibits unique cellular localization patterns compared to its mammalian counterpart and may play a pivotal role in regulating cardiac thermotolerance in organisms with open circulatory systems. These findings provide novel insights into the theoretical framework and evolutionary adaptations of marine invertebrate hearts in response to environmental temperature fluctuations.
Collapse
Affiliation(s)
- Danyang Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Fang Zongxi Center for Marine Evo Devo, Ocean University of China, Qingdao, China
| | - Na Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiangfu Kong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xinghai Zhu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
| | - Yangfan Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution of the Ocean University of China (SOI-OUC), Sanya, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
2
|
Gao J, Yu L, Qi H, Qi J, Zheng Z. The Application of scRNA-Seq in Heart Development and Regeneration. Genesis 2025; 63:e70013. [PMID: 40300044 DOI: 10.1002/dvg.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 05/01/2025]
Abstract
Single-cell RNA sequencing (scRNA-seq) is a rapidly developing and useful technique for elucidating biological mechanisms and characterizing individual cells. Tens of millions of patients worldwide suffer from heart injuries and other types of heart disease. Neonatal mammalian hearts and certain adult vertebrate species, such as zebrafish, can fully regenerate after myocardial injury. However, the adult mammalian heart is unable to regenerate the damaged myocardium. scRNA-seq provides many new insights into pathological and normal hearts and facilitates our understanding of cellular responses to cardiac injury and repair at different stages, which may provide critical clues for effective therapies for adult heart regeneration. In this review, we summarize the application of scRNA-seq in heart development and regeneration and describe how important molecular mechanisms can be harnessed to promote heart regeneration.
Collapse
Affiliation(s)
- Junying Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Lindong Yu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Haoran Qi
- Department of Spine Surgery, Spinal Deformity Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jun Qi
- Laboratory Department, Shandong Public Health Clinical Center Affiliated to Shandong University, Jinan, China
| | - Zhaodi Zheng
- School of Forensics and Laboratory Medicine, Jining Medical University, Jining, China
| |
Collapse
|
3
|
Forman-Rubinsky R, Feng W, Schlegel BT, Paul A, Zuppo D, Kedziora K, Stoltz D, Watkins S, Rajasundaram D, Li G, Tsang M. Cited4a limits cardiomyocyte dedifferentiation and proliferation during zebrafish heart regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.626917. [PMID: 39713454 PMCID: PMC11661073 DOI: 10.1101/2024.12.05.626917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Cardiac regeneration involves the interplay of complex interactions between many different cell types, including cardiomyocytes. The exact mechanism that enables cardiomyocytes to undergo dedifferentiation and proliferation to replace lost cells has been intensely studied. Here we report a single nuclear RNA sequencing profile of the injured zebrafish heart and identify distinct cardiomyocyte populations in the injured heart. These cardiomyocyte populations have diverse functions, including stress response, myofibril assembly, proliferation and contraction. The contracting cardiomyocyte population also involves the activation of maturation pathways as an early response to injury. This intriguing finding suggests that constant maintenance of a distinctive terminally differentiated cardiomyocyte population is important for cardiac function during regeneration. To test this hypothesis, we determined that cited4a, a p300/CBP transcriptional coactivator, is induced after injury in the mature cardiomyocyte population. Moreover, loss-of-cited4a mutants presented increased dedifferentiation, proliferation and accelerated heart regeneration. Thus, suppressing cardiomyocyte maturation pathway activity in injured hearts could be an approach to promote heart regeneration.
Collapse
Affiliation(s)
- Rachel Forman-Rubinsky
- Department of Cell Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA
- Center for Integrative Organ Systems, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Wei Feng
- Department of Cell Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA
- Center for Integrative Organ Systems, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Brent T Schlegel
- Department of Pediatrics, Division of Health Informatics, Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - Angela Paul
- Department of Cell Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA
- Center for Integrative Organ Systems, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Daniel Zuppo
- Department of Cell Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA
- Current address: Department of Medicine, University of Rochester Medical Center Rochester, NY
| | - Katarzyna Kedziora
- Department of Cell Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA
- Center for Biological Imaging, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Donna Stoltz
- Department of Cell Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA
- Center for Biological Imaging, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Simon Watkins
- Department of Cell Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA
- Center for Biological Imaging, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Division of Health Informatics, Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - Guang Li
- Department of Cell Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA
- Center for Integrative Organ Systems, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Michael Tsang
- Department of Cell Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA
- Center for Integrative Organ Systems, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| |
Collapse
|
4
|
Cortada E, Yao J, Xia Y, Dündar F, Zumbo P, Yang B, Rubio-Navarro A, Perder B, Qiu M, Pettinato AM, Homan EA, Stoll L, Betel D, Cao J, Lo JC. Cross-species single-cell RNA-seq analysis reveals disparate and conserved cardiac and extracardiac inflammatory responses upon heart injury. Commun Biol 2024; 7:1611. [PMID: 39627536 PMCID: PMC11615278 DOI: 10.1038/s42003-024-07315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
The immune system coordinates the response to cardiac injury and controls regenerative and fibrotic scar outcomes in the heart and subsequent chronic low-grade inflammation associated with heart failure. Adult mice and humans lack the ability to fully recover while adult zebrafish spontaneously regenerate after heart injury. Here we profile the inflammatory response to heart cryoinjury in zebrafish and coronary artery ligation in mouse using single cell transcriptomics. We interrogate the extracardiac reaction to cardiomyocyte necrosis to assess the specific peripheral tissue and immune cell reaction to chronic stress. Cardiac macrophages play a critical role in determining tissue homeostasis by healing versus scarring. We identify distinct transcriptional clusters of monocytes/macrophages (mono/Mϕ) in each species and find analogous pairs in zebrafish and mice. However, the reaction to myocardial injury is largely disparate between mice and zebrafish. The dichotomous response to heart damage between the murine and zebrafish mono/Mϕ and/or the presence of distinct zebrafish mono/Mϕ subtypes may underlie the impaired regenerative process in adult mammals and humans. Our study furnishes a direct cross-species comparison of immune responses between regenerative and profibrotic myocardial injury models, providing a useful resource to the fields of regenerative biology and cardiovascular research.
Collapse
Affiliation(s)
- Eric Cortada
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Jun Yao
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Yu Xia
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Friederike Dündar
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA
| | - Paul Zumbo
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA
| | - Boris Yang
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Alfonso Rubio-Navarro
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Björn Perder
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Miaoyan Qiu
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Anthony M Pettinato
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
| | - Edwin A Homan
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Lisa Stoll
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Doron Betel
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA.
- Institute for Computational Biomedicine, Division of Hematology and Medical, Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Jingli Cao
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA.
| | - James C Lo
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA.
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Foglio E, D'Avorio E, Nieri R, Russo MA, Limana F. Epicardial EMT and cardiac repair: an update. Stem Cell Res Ther 2024; 15:219. [PMID: 39026298 PMCID: PMC11264588 DOI: 10.1186/s13287-024-03823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/30/2024] [Indexed: 07/20/2024] Open
Abstract
Epicardial epithelial-to-mesenchymal transition (EMT) plays a pivotal role in both heart development and injury response and involves dynamic cellular changes that are essential for cardiogenesis and myocardial repair. Specifically, epicardial EMT is a crucial process in which epicardial cells lose polarity, migrate into the myocardium, and differentiate into various cardiac cell types during development and repair. Importantly, following EMT, the epicardium becomes a source of paracrine factors that support cardiac growth at the last stages of cardiogenesis and contribute to cardiac remodeling after injury. As such, EMT seems to represent a fundamental step in cardiac repair. Nevertheless, endogenous EMT alone is insufficient to stimulate adequate repair. Redirecting and amplifying epicardial EMT pathways offers promising avenues for the development of innovative therapeutic strategies and treatment approaches for heart disease. In this review, we present a synthesis of recent literature highlighting the significance of epicardial EMT reactivation in adult heart disease patients.
Collapse
Affiliation(s)
- Eleonora Foglio
- Technoscience, Parco Scientifico e Tecnologico Pontino, Latina, Italy
| | - Erica D'Avorio
- Dipartimento di Promozione delle Scienze Umane e della Qualità della Vita, San Raffaele University of Rome, Rome, Italy
| | - Riccardo Nieri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Federica Limana
- Dipartimento di Promozione delle Scienze Umane e della Qualità della Vita, San Raffaele University of Rome, Rome, Italy.
- Laboratorio di Patologia Cellulare e Molecolare, IRCCS San Raffaele Roma, Rome, Italy.
| |
Collapse
|
6
|
Wang AYL, Chang YC, Chen KH, Loh CYY. Potential Application of Modified mRNA in Cardiac Regeneration. Cell Transplant 2024; 33:9636897241248956. [PMID: 38715279 PMCID: PMC11080755 DOI: 10.1177/09636897241248956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/26/2024] [Accepted: 04/07/2024] [Indexed: 05/12/2024] Open
Abstract
Heart failure remains the leading cause of human death worldwide. After a heart attack, the formation of scar tissue due to the massive death of cardiomyocytes leads to heart failure and sudden death in most cases. In addition, the regenerative ability of the adult heart is limited after injury, partly due to cell-cycle arrest in cardiomyocytes. In the current post-COVID-19 era, urgently authorized modified mRNA (modRNA) vaccines have been widely used to prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Therefore, modRNA-based protein replacement may act as an alternative strategy for improving heart disease. It is a safe, effective, transient, low-immunogenic, and integration-free strategy for in vivo protein expression, in addition to recombinant protein and stem-cell regenerative therapies. In this review, we provide a summary of various cardiac factors that have been utilized with the modRNA method to enhance cardiovascular regeneration, cardiomyocyte proliferation, fibrosis inhibition, and apoptosis inhibition. We further discuss other cardiac factors, modRNA delivery methods, and injection methods using the modRNA approach to explore their application potential in heart disease. Factors for promoting cardiomyocyte proliferation such as a cocktail of three genes comprising FoxM1, Id1, and Jnk3-shRNA (FIJs), gp130, and melatonin have potential to be applied in the modRNA approach. We also discuss the current challenges with respect to modRNA-based cardiac regenerative medicine that need to be overcome to apply this approach to heart disease. This review provides a short description for investigators interested in the development of alternative cardiac regenerative medicines using the modRNA platform.
Collapse
Affiliation(s)
- Aline Yen Ling Wang
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yun-Ching Chang
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Kuan-Hung Chen
- Department of Physical Medicine & Rehabilitation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | | |
Collapse
|
7
|
Huang H, Huang GN, Payumo AY. Two decades of heart regeneration research: Cardiomyocyte proliferation and beyond. WIREs Mech Dis 2024; 16:e1629. [PMID: 37700522 PMCID: PMC10840678 DOI: 10.1002/wsbm.1629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 09/14/2023]
Abstract
Interest in vertebrate cardiac regeneration has exploded over the past two decades since the discovery that adult zebrafish are capable of complete heart regeneration, contrasting the limited regenerative potential typically observed in adult mammalian hearts. Undercovering the mechanisms that both support and limit cardiac regeneration across the animal kingdom may provide unique insights in how we may unlock this capacity in adult humans. In this review, we discuss key discoveries in the heart regeneration field over the last 20 years. Initially, seminal findings revealed that pre-existing cardiomyocytes are the major source of regenerated cardiac muscle, drawing interest into the intrinsic mechanisms regulating cardiomyocyte proliferation. Moreover, recent studies have identified the importance of intercellular interactions and physiological adaptations, which highlight the vast complexity of the cardiac regenerative process. Finally, we compare strategies that have been tested to increase the regenerative capacity of the adult mammalian heart. This article is categorized under: Cardiovascular Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Herman Huang
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| | - Guo N. Huang
- Cardiovascular Research Institute & Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Alexander Y. Payumo
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| |
Collapse
|
8
|
Zhuo D, Lei I, Li W, Liu L, Li L, Ni J, Liu Z, Fan G. The origin, progress, and application of cell-based cardiac regeneration therapy. J Cell Physiol 2023; 238:1732-1755. [PMID: 37334836 DOI: 10.1002/jcp.31060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Accepted: 05/29/2023] [Indexed: 06/21/2023]
Abstract
Cardiovascular disease (CVD) has become a severe threat to human health, with morbidity and mortality increasing yearly and gradually becoming younger. When the disease progresses to the middle and late stages, the loss of a large number of cardiomyocytes is irreparable to the body itself, and clinical drug therapy and mechanical support therapy cannot reverse the development of the disease. To explore the source of regenerated myocardium in model animals with the ability of heart regeneration through lineage tracing and other methods, and develop a new alternative therapy for CVDs, namely cell therapy. It directly compensates for cardiomyocyte proliferation through adult stem cell differentiation or cell reprogramming, which indirectly promotes cardiomyocyte proliferation through non-cardiomyocyte paracrine, to play a role in heart repair and regeneration. This review comprehensively summarizes the origin of newly generated cardiomyocytes, the research progress of cardiac regeneration based on cell therapy, the opportunity and development of cardiac regeneration in the context of bioengineering, and the clinical application of cell therapy in ischemic diseases.
Collapse
Affiliation(s)
- Danping Zhuo
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ienglam Lei
- Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Wenjun Li
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Li Liu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lan Li
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingyu Ni
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihao Liu
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
9
|
Sun J, Peterson EA, Chen X, Wang J. hapln1a + cells guide coronary growth during heart morphogenesis and regeneration. Nat Commun 2023; 14:3505. [PMID: 37311876 PMCID: PMC10264374 DOI: 10.1038/s41467-023-39323-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/07/2023] [Indexed: 06/15/2023] Open
Abstract
Although several tissues and chemokines orchestrate coronary formation, the guidance cues for coronary growth remain unclear. Here, we profile the juvenile zebrafish epicardium during coronary vascularization and identify hapln1a+ cells enriched with vascular-regulating genes. hapln1a+ cells not only envelop vessels but also form linear structures ahead of coronary sprouts. Live-imaging demonstrates that coronary growth occurs along these pre-formed structures, with depletion of hapln1a+ cells blocking this growth. hapln1a+ cells also pre-lead coronary sprouts during regeneration and hapln1a+ cell loss inhibits revascularization. Further, we identify serpine1 expression in hapln1a+ cells adjacent to coronary sprouts, and serpine1 inhibition blocks vascularization and revascularization. Moreover, we observe the hapln1a substrate, hyaluronan, forming linear structures along and preceding coronary vessels. Depletion of hapln1a+ cells or serpine1 activity inhibition disrupts hyaluronan structure. Our studies reveal that hapln1a+ cells and serpine1 are required for coronary production by establishing a microenvironment to facilitate guided coronary growth.
Collapse
Affiliation(s)
- Jisheng Sun
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Elizabeth A Peterson
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Xin Chen
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Jinhu Wang
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
10
|
Boezio GLM, Zhao S, Gollin J, Priya R, Mansingh S, Guenther S, Fukuda N, Gunawan F, Stainier DYR. The developing epicardium regulates cardiac chamber morphogenesis by promoting cardiomyocyte growth. Dis Model Mech 2023; 16:dmm049571. [PMID: 36172839 PMCID: PMC9612869 DOI: 10.1242/dmm.049571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/13/2022] [Indexed: 11/20/2022] Open
Abstract
The epicardium, the outermost layer of the heart, is an important regulator of cardiac regeneration. However, a detailed understanding of the crosstalk between the epicardium and myocardium during development requires further investigation. Here, we generated three models of epicardial impairment in zebrafish by mutating the transcription factor genes tcf21 and wt1a, and ablating tcf21+ epicardial cells. Notably, all three epicardial impairment models exhibited smaller ventricles. We identified the initial cause of this phenotype as defective cardiomyocyte growth, resulting in reduced cell surface and volume. This failure of cardiomyocyte growth was followed by decreased proliferation and increased abluminal extrusion. By temporally manipulating its ablation, we show that the epicardium is required to support cardiomyocyte growth mainly during early cardiac morphogenesis. By transcriptomic profiling of sorted epicardial cells, we identified reduced expression of FGF and VEGF ligand genes in tcf21-/- hearts, and pharmacological inhibition of these signaling pathways in wild type partially recapitulated the ventricular growth defects. Taken together, these data reveal distinct roles of the epicardium during cardiac morphogenesis and signaling pathways underlying epicardial-myocardial crosstalk.
Collapse
Affiliation(s)
- Giulia L. M. Boezio
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute, Aulweg 130, 35392 Giessen, Germany
| | - Shengnan Zhao
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Josephine Gollin
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Rashmi Priya
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute, Aulweg 130, 35392 Giessen, Germany
| | - Shivani Mansingh
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Stefan Guenther
- Cardio-Pulmonary Institute, Aulweg 130, 35392 Giessen, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Nana Fukuda
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Felix Gunawan
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute, Aulweg 130, 35392 Giessen, Germany
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute, Aulweg 130, 35392 Giessen, Germany
| |
Collapse
|
11
|
Cortada E, Yao J, Xia Y, Dündar F, Zumbo P, Yang B, Rubio-Navarro A, Perder B, Qiu M, Pettinato AM, Homan EA, Stoll L, Betel D, Cao J, Lo JC. Cross-species single-cell comparison of systemic and cardiac inflammatory responses after cardiac injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532865. [PMID: 36993713 PMCID: PMC10055080 DOI: 10.1101/2023.03.15.532865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The immune system coordinates the response to cardiac injury and is known to control regenerative and fibrotic scar outcomes in the heart and subsequent chronic low-grade inflammation associated with heart failure. Here we profiled the inflammatory response to heart injury using single cell transcriptomics to compare and contrast two experimental models with disparate outcomes. We used adult mice, which like humans lack the ability to fully recover and zebrafish which spontaneously regenerate after heart injury. The extracardiac reaction to cardiomyocyte necrosis was also interrogated to assess the specific peripheral tissue and immune cell reaction to chronic stress. Cardiac macrophages are known to play a critical role in determining tissue homeostasis by healing versus scarring. We identified distinct transcriptional clusters of monocytes/macrophages in each species and found analogous pairs in zebrafish and mice. However, the reaction to myocardial injury was largely disparate between mice and zebrafish. The dichotomous response to heart damage between the mammalian and zebrafish monocytes/macrophages may underlie the impaired regenerative process in mice, representing a future therapeutic target.
Collapse
|
12
|
de Sena-Tomás C, Aleman AG, Ford C, Varshney A, Yao D, Harrington JK, Saúde L, Ramialison M, Targoff KL. Activation of Nkx2.5 transcriptional program is required for adult myocardial repair. Nat Commun 2022; 13:2970. [PMID: 35624100 PMCID: PMC9142600 DOI: 10.1038/s41467-022-30468-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
The cardiac developmental network has been associated with myocardial regenerative potential. However, the embryonic signals triggered following injury have yet to be fully elucidated. Nkx2.5 is a key causative transcription factor associated with human congenital heart disease and one of the earliest markers of cardiac progenitors, thus it serves as a promising candidate. Here, we show that cardiac-specific RNA-sequencing studies reveal a disrupted embryonic transcriptional profile in the adult Nkx2.5 loss-of-function myocardium. nkx2.5-/- fish exhibit an impaired ability to recover following ventricular apex amputation with diminished dedifferentiation and proliferation. Complex network analyses illuminate that Nkx2.5 is required to provoke proteolytic pathways necessary for sarcomere disassembly and to mount a proliferative response for cardiomyocyte renewal. Moreover, Nkx2.5 targets embedded in these distinct gene regulatory modules coordinate appropriate, multi-faceted injury responses. Altogether, our findings support a previously unrecognized, Nkx2.5-dependent regenerative circuit that invokes myocardial cell cycle re-entry, proteolysis, and mitochondrial metabolism to ensure effective regeneration in the teleost heart.
Collapse
Affiliation(s)
- Carmen de Sena-Tomás
- Division of Cardiology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
| | - Angelika G Aleman
- Department of Physiology & Cellular Biophysics, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
| | - Caitlin Ford
- Department of Genetics & Development, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
| | - Akriti Varshney
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Australian Regenerative Medicine Institute & Systems Biology Institute Australia, Monash University, Clayton, VIC, 3800, Australia
| | - Di Yao
- Division of Cardiology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
| | - Jamie K Harrington
- Division of Cardiology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
| | - Leonor Saúde
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Mirana Ramialison
- Australian Regenerative Medicine Institute & Systems Biology Institute Australia, Monash University, Clayton, VIC, 3800, Australia
- Murdoch Children's Research Institute & Department of Peadiatrics, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Kimara L Targoff
- Division of Cardiology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA.
- Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
13
|
Kapuria S, Bai H, Fierros J, Huang Y, Ma F, Yoshida T, Aguayo A, Kok F, Wiens KM, Yip JK, McCain ML, Pellegrini M, Nagashima M, Hitchcock PF, Mochizuki N, Lawson ND, Harrison MMR, Lien CL. Heterogeneous pdgfrb+ cells regulate coronary vessel development and revascularization during heart regeneration. Development 2022; 149:274137. [PMID: 35088848 PMCID: PMC8918812 DOI: 10.1242/dev.199752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022]
Abstract
Endothelial cells emerge from the atrioventricular canal to form coronary blood vessels in juvenile zebrafish hearts. We find that pdgfrb is first expressed in the epicardium around the atrioventricular canal and later becomes localized mainly in the mural cells. pdgfrb mutant fish show severe defects in mural cell recruitment and coronary vessel development. Single-cell RNA sequencing analyses identified pdgfrb+ cells as epicardium-derived cells (EPDCs) and mural cells. Mural cells associated with coronary arteries also express cxcl12b and smooth muscle cell markers. Interestingly, these mural cells remain associated with coronary arteries even in the absence of Pdgfrβ, although smooth muscle gene expression is downregulated. We find that pdgfrb expression dynamically changes in EPDCs of regenerating hearts. Differential gene expression analyses of pdgfrb+ EPDCs and mural cells suggest that they express genes that are important for regeneration after heart injuries. mdka was identified as a highly upregulated gene in pdgfrb+ cells during heart regeneration. However, pdgfrb but not mdka mutants show defects in heart regeneration after amputation. Our results demonstrate that heterogeneous pdgfrb+ cells are essential for coronary development and heart regeneration.
Collapse
Affiliation(s)
- Subir Kapuria
- Department of Surgery, The Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA,Authors for correspondence (; ; )
| | - Haipeng Bai
- Department of Surgery, The Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA,Laboratory of Chemical Genomics, School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, People's Republic of China
| | - Juancarlos Fierros
- Department of Surgery, The Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA,Department of Biology, California State University, San Bernardino, San Bernardino, CA 92407, USA
| | - Ying Huang
- Department of Surgery, The Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Feiyang Ma
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Tyler Yoshida
- Department of Surgery, The Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA,Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90007, USA
| | - Antonio Aguayo
- Department of Surgery, The Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Fatma Kok
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Katie M. Wiens
- Department of Surgery, The Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA,Science Department, Bay Path University, Longmeadow, MA 01106, USA
| | - Joycelyn K. Yip
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Megan L. McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Mikiko Nagashima
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Peter F. Hitchcock
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, 564-8565, Japan
| | - Nathan D. Lawson
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Michael M. R. Harrison
- Department of Surgery, The Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA,Authors for correspondence (; ; )
| | - Ching-Ling Lien
- Department of Surgery, The Saban Research Institute and Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA,Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA,Authors for correspondence (; ; )
| |
Collapse
|
14
|
Cao Y, Xia Y, Balowski JJ, Ou J, Song L, Safi A, Curtis T, Crawford GE, Poss KD, Cao J. Identification of enhancer regulatory elements that direct epicardial gene expression during zebrafish heart regeneration. Development 2022; 149:dev200133. [PMID: 35179181 PMCID: PMC8918790 DOI: 10.1242/dev.200133] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/11/2022] [Indexed: 12/17/2022]
Abstract
The epicardium is a mesothelial tissue layer that envelops the heart. Cardiac injury activates dynamic gene expression programs in epicardial tissue, which in zebrafish enables subsequent regeneration through paracrine and vascularizing effects. To identify tissue regeneration enhancer elements (TREEs) that control injury-induced epicardial gene expression during heart regeneration, we profiled transcriptomes and chromatin accessibility in epicardial cells purified from regenerating zebrafish hearts. We identified hundreds of candidate TREEs, which are defined by increased chromatin accessibility of non-coding elements near genes with increased expression during regeneration. Several of these candidate TREEs were incorporated into stable transgenic lines, with five out of six elements directing injury-induced epicardial expression but not ontogenetic epicardial expression in larval hearts. Whereas two independent TREEs linked to the gene gnai3 showed similar functional features of gene regulation in transgenic lines, two independent ncam1a-linked TREEs directed distinct spatiotemporal domains of epicardial gene expression. Thus, multiple TREEs linked to a regeneration gene can possess either matching or complementary regulatory controls. Our study provides a new resource and principles for understanding the regulation of epicardial genetic programs during heart regeneration. This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Yingxi Cao
- Cardiovascular Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
| | - Yu Xia
- Cardiovascular Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
| | - Joseph J. Balowski
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Duke Regeneration Center, Duke University, Durham, NC 27710, USA
| | - Jianhong Ou
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Duke Regeneration Center, Duke University, Durham, NC 27710, USA
| | - Lingyun Song
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, NC 27710, USA
| | - Alexias Safi
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, NC 27710, USA
| | - Timothy Curtis
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Duke Regeneration Center, Duke University, Durham, NC 27710, USA
| | - Gregory E. Crawford
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, NC 27710, USA
| | - Kenneth D. Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Duke Regeneration Center, Duke University, Durham, NC 27710, USA
| | - Jingli Cao
- Cardiovascular Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
| |
Collapse
|
15
|
Li Z, Ross Stewart KM, Bruton FA, Denvir MA, Brittan M. Isolation of Cardiac Endothelial Cells for Transcriptomic Analysis of the Zebrafish and Mouse Heart. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2441:297-309. [PMID: 35099746 DOI: 10.1007/978-1-0716-2059-5_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Isolation of high quality cardiac endothelial cells is a prerequisite for successful bulk and single cell sequencing for RNA (scRNA-seq). We describe a protocol using both enzymatic and mechanical dissociation and fluorescence-activated cell sorting (FACS) to isolate endothelial cells from larval and adult zebrafish hearts and from healthy and ischemic adult mouse hearts. Endothelial cells with high viability and purity can be obtained using this method for downstream transcriptional analyses applications.
Collapse
Affiliation(s)
- Ziwen Li
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| | - Katherine M Ross Stewart
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| | - Finnius A Bruton
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Martin A Denvir
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Mairi Brittan
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
16
|
Riley SE, Feng Y, Hansen CG. Hippo-Yap/Taz signalling in zebrafish regeneration. NPJ Regen Med 2022; 7:9. [PMID: 35087046 PMCID: PMC8795407 DOI: 10.1038/s41536-022-00209-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/14/2021] [Indexed: 12/29/2022] Open
Abstract
The extent of tissue regeneration varies widely between species. Mammals have a limited regenerative capacity whilst lower vertebrates such as the zebrafish (Danio rerio), a freshwater teleost, can robustly regenerate a range of tissues, including the spinal cord, heart, and fin. The molecular and cellular basis of this altered response is one of intense investigation. In this review, we summarise the current understanding of the association between zebrafish regeneration and Hippo pathway function, a phosphorylation cascade that regulates cell proliferation, mechanotransduction, stem cell fate, and tumorigenesis, amongst others. We also compare this function to Hippo pathway activity in the regenerative response of other species. We find that the Hippo pathway effectors Yap/Taz facilitate zebrafish regeneration and that this appears to be latent in mammals, suggesting that therapeutically promoting precise and temporal YAP/TAZ signalling in humans may enhance regeneration and hence reduce morbidity.
Collapse
Affiliation(s)
- Susanna E Riley
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Yi Feng
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Carsten Gram Hansen
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
17
|
Miklas JW, Levy S, Hofsteen P, Mex DI, Clark E, Muster J, Robitaille AM, Sivaram G, Abell L, Goodson JM, Pranoto I, Madan A, Chin MT, Tian R, Murry CE, Moon RT, Wang Y, Ruohola-Baker H. Amino acid primed mTOR activity is essential for heart regeneration. iScience 2022; 25:103574. [PMID: 34988408 PMCID: PMC8704488 DOI: 10.1016/j.isci.2021.103574] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 06/17/2021] [Accepted: 12/03/2021] [Indexed: 01/01/2023] Open
Abstract
Heart disease is the leading cause of death with no method to repair damaged myocardium due to the limited proliferative capacity of adult cardiomyocytes. Curiously, mouse neonates and zebrafish can regenerate their hearts via cardiomyocyte de-differentiation and proliferation. However, a molecular mechanism of why these cardiomyocytes can re-enter cell cycle is poorly understood. Here, we identify a unique metabolic state that primes adult zebrafish and neonatal mouse ventricular cardiomyocytes to proliferate. Zebrafish and neonatal mouse hearts display elevated glutamine levels, predisposing them to amino-acid-driven activation of TOR, and that TOR activation is required for zebrafish cardiomyocyte regeneration in vivo. Through a multi-omics approach with cellular validation we identify metabolic and mitochondrial changes during the first week of regeneration. These data suggest that regeneration of zebrafish myocardium is driven by metabolic remodeling and reveals a unique metabolic regulator, TOR-primed state, in which zebrafish and mammalian cardiomyocytes are regeneration competent.
Collapse
Affiliation(s)
- Jason W. Miklas
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Shiri Levy
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA 98195, USA
| | - Peter Hofsteen
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Pathology, University of Washington, Seattle, WA 98109, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA
| | - Diego Ic Mex
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA 98195, USA
| | - Elisa Clark
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Jeanot Muster
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Pharmacology, University of Washington, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Aaron M. Robitaille
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Pharmacology, University of Washington, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Gargi Sivaram
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA 98195, USA
| | - Lauren Abell
- Department of Pathology, University of Washington, Seattle, WA 98109, USA
- Mitochondria and Metabolism Center, University of Washington, Seattle, WA 98109, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Jamie M. Goodson
- Department of Pathology, University of Washington, Seattle, WA 98109, USA
| | - Inez Pranoto
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA 98195, USA
| | - Anup Madan
- Covance Genomics Laboratory, Redmond, WA 98052, USA
| | - Michael T. Chin
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Pathology, University of Washington, Seattle, WA 98109, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA
- Department of Medicine/Cardiology, University of Washington, Seattle, WA 98109, USA
| | - Rong Tian
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA 98195, USA
- Mitochondria and Metabolism Center, University of Washington, Seattle, WA 98109, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Charles E. Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Pathology, University of Washington, Seattle, WA 98109, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA
- Department of Medicine/Cardiology, University of Washington, Seattle, WA 98109, USA
| | - Randall T. Moon
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Pharmacology, University of Washington, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Yuliang Wang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
| | - Hannele Ruohola-Baker
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
18
|
Wasserman AH, Huang AR, Lewis-Israeli YR, Dooley MD, Mitchell AL, Venkatesan M, Aguirre A. Oxytocin promotes epicardial cell activation and heart regeneration after cardiac injury. Front Cell Dev Biol 2022; 10:985298. [PMID: 36247002 PMCID: PMC9561106 DOI: 10.3389/fcell.2022.985298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease (CVD) is one of the leading causes of mortality worldwide, and frequently leads to massive heart injury and the loss of billions of cardiac muscle cells and associated vasculature. Critical work in the last 2 decades demonstrated that these lost cells can be partially regenerated by the epicardium, the outermost mesothelial layer of the heart, in a process that highly recapitulates its role in heart development. Upon cardiac injury, mature epicardial cells activate and undergo an epithelial-mesenchymal transition (EMT) to form epicardium-derived progenitor cells (EpiPCs), multipotent progenitors that can differentiate into several important cardiac lineages, including cardiomyocytes and vascular cells. In mammals, this process alone is insufficient for significant regeneration, but it might be possible to prime it by administering specific reprogramming factors, leading to enhanced EpiPC function. Here, we show that oxytocin (OXT), a hypothalamic neuroendocrine peptide, induces epicardial cell proliferation, EMT, and transcriptional activity in a model of human induced pluripotent stem cell (hiPSC)-derived epicardial cells. In addition, we demonstrate that OXT is produced after cardiac cryoinjury in zebrafish, and that it elicits significant epicardial activation promoting heart regeneration. Oxytocin signaling is also critical for proper epicardium development in zebrafish embryos. The above processes are significantly impaired when OXT signaling is inhibited chemically or genetically through RNA interference. RNA sequencing data suggests that the transforming growth factor beta (TGF-β) pathway is the primary mediator of OXT-induced epicardial activation. Our research reveals for the first time an evolutionary conserved brain-controlled mechanism inducing cellular reprogramming and regeneration of the injured mammalian and zebrafish heart, a finding that could contribute to translational advances for the treatment of cardiac injuries.
Collapse
Affiliation(s)
- Aaron H Wasserman
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, United States.,Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
| | - Amanda R Huang
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, United States.,Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
| | - Yonatan R Lewis-Israeli
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, United States.,Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
| | - McKenna D Dooley
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, United States.,Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
| | - Allison L Mitchell
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, United States.,Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
| | - Manigandan Venkatesan
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, United States.,Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
| | - Aitor Aguirre
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, United States.,Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
19
|
Ma H, Liu Z, Yang Y, Feng D, Dong Y, Garbutt TA, Hu Z, Wang L, Luan C, Cooper CD, Li Y, Welch JD, Qian L, Liu J. Functional coordination of non-myocytes plays a key role in adult zebrafish heart regeneration. EMBO Rep 2021; 22:e52901. [PMID: 34523214 DOI: 10.15252/embr.202152901] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/07/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022] Open
Abstract
Cardiac regeneration occurs primarily through proliferation of existing cardiomyocytes, but also involves complex interactions between distinct cardiac cell types including non-cardiomyocytes (non-CMs). However, the subpopulations, distinguishing molecular features, cellular functions, and intercellular interactions of non-CMs in heart regeneration remain largely unexplored. Using the LIGER algorithm, we assemble an atlas of cell states from 61,977 individual non-CM scRNA-seq profiles isolated at multiple time points during regeneration. This analysis reveals extensive non-CM cell diversity, including multiple macrophage (MC), fibroblast (FB), and endothelial cell (EC) subpopulations with unique spatiotemporal distributions, and suggests an important role for MC in inducing the activated FB and EC subpopulations. Indeed, pharmacological perturbation of MC function compromises the induction of the unique FB and EC subpopulations. Furthermore, we developed computational algorithm Topologizer to map the topological relationships and dynamic transitions between functional states. We uncover dynamic transitions between MC functional states and identify factors involved in mRNA processing and transcriptional regulation associated with the transition. Together, our single-cell transcriptomic analysis of non-CMs during cardiac regeneration provides a blueprint for interrogating the molecular and cellular basis of this process.
Collapse
Affiliation(s)
- Hong Ma
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Ziqing Liu
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Yuchen Yang
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA.,Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Dong Feng
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Yanhan Dong
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Tiffany A Garbutt
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Zhiyuan Hu
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Li Wang
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Changfei Luan
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Cynthia D Cooper
- School of Molecular Biosciences, Washington State University Vancouver, Vancouver, WA, USA
| | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA.,Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Joshua D Welch
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Li Qian
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Jiandong Liu
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
20
|
de Bakker DEM, Bouwman M, Dronkers E, Simões FC, Riley PR, Goumans MJ, Smits AM, Bakkers J. Prrx1b restricts fibrosis and promotes Nrg1-dependent cardiomyocyte proliferation during zebrafish heart regeneration. Development 2021; 148:272033. [PMID: 34486669 PMCID: PMC8513610 DOI: 10.1242/dev.198937] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 08/04/2021] [Indexed: 01/21/2023]
Abstract
Fibroblasts are activated to repair the heart following injury. Fibroblast activation in the mammalian heart leads to a permanent fibrotic scar that impairs cardiac function. In other organisms, such as zebrafish, cardiac injury is followed by transient fibrosis and scar-free regeneration. The mechanisms that drive scarring versus scar-free regeneration are not well understood. Here, we show that the homeobox-containing transcription factor Prrx1b is required for scar-free regeneration of the zebrafish heart as the loss of Prrx1b results in excessive fibrosis and impaired cardiomyocyte proliferation. Through lineage tracing and single-cell RNA sequencing, we find that Prrx1b is activated in epicardial-derived cells where it restricts TGFβ ligand expression and collagen production. Furthermore, through combined in vitro experiments in human fetal epicardial-derived cells and in vivo rescue experiments in zebrafish, we conclude that Prrx1 stimulates Nrg1 expression and promotes cardiomyocyte proliferation. Collectively, these results indicate that Prrx1 is a key transcription factor that balances fibrosis and regeneration in the injured zebrafish heart. This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Dennis E M de Bakker
- Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584CT Utrecht, The Netherlands
| | - Mara Bouwman
- Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584CT Utrecht, The Netherlands
| | - Esther Dronkers
- Department of Cell and Chemical Biology, Leiden University Medical Centre, 2333ZC Leiden, The Netherlands
| | - Filipa C Simões
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Centre, 2333ZC Leiden, The Netherlands
| | - Anke M Smits
- Department of Cell and Chemical Biology, Leiden University Medical Centre, 2333ZC Leiden, The Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584CT Utrecht, The Netherlands.,Department of Pediatric Cardiology, University Medical Centre Utrecht, 3584CX Utrecht, The Netherlands
| |
Collapse
|
21
|
Streef TJ, Smits AM. Epicardial Contribution to the Developing and Injured Heart: Exploring the Cellular Composition of the Epicardium. Front Cardiovasc Med 2021; 8:750243. [PMID: 34631842 PMCID: PMC8494983 DOI: 10.3389/fcvm.2021.750243] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
The epicardium is an essential cell population during cardiac development. It contributes different cell types to the developing heart through epithelial-to-mesenchymal transition (EMT) and it secretes paracrine factors that support cardiac tissue formation. In the adult heart the epicardium is a quiescent layer of cells which can be reactivated upon ischemic injury, initiating an embryonic-like response in the epicardium that contributes to post-injury repair processes. Therefore, the epicardial layer is considered an interesting target population to stimulate endogenous repair mechanisms. To date it is still not clear whether there are distinct cell populations in the epicardium that contribute to specific lineages or aid in cardiac repair, or that the epicardium functions as a whole. To address this putative heterogeneity, novel techniques such as single cell RNA sequencing (scRNA seq) are being applied. In this review, we summarize the role of the epicardium during development and after injury and provide an overview of the most recent insights into the cellular composition and diversity of the epicardium.
Collapse
Affiliation(s)
| | - Anke M. Smits
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
22
|
Coordination of endothelial cell positioning and fate specification by the epicardium. Nat Commun 2021; 12:4155. [PMID: 34230480 PMCID: PMC8260743 DOI: 10.1038/s41467-021-24414-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
The organization of an integrated coronary vasculature requires the specification of immature endothelial cells (ECs) into arterial and venous fates based on their localization within the heart. It remains unclear how spatial information controls EC identity and behavior. Here we use single-cell RNA sequencing at key developmental timepoints to interrogate cellular contributions to coronary vessel patterning and maturation. We perform transcriptional profiling to define a heterogenous population of epicardium-derived cells (EPDCs) that express unique chemokine signatures. We identify a population of Slit2+ EPDCs that emerge following epithelial-to-mesenchymal transition (EMT), which we term vascular guidepost cells. We show that the expression of guidepost-derived chemokines such as Slit2 are induced in epicardial cells undergoing EMT, while mesothelium-derived chemokines are silenced. We demonstrate that epicardium-specific deletion of myocardin-related transcription factors in mouse embryos disrupts the expression of key guidance cues and alters EPDC-EC signaling, leading to the persistence of an immature angiogenic EC identity and inappropriate accumulation of ECs on the epicardial surface. Our study suggests that EC pathfinding and fate specification is controlled by a common mechanism and guided by paracrine signaling from EPDCs linking epicardial EMT to EC localization and fate specification in the developing heart. It remains unclear how spatial information controls endothelial cell identity and behavior in the developing heart. Here the authors perform single cell RNA sequencing at key developmental timepoints in mice to interrogate cellular contributions to coronary vessel patterning and maturation in the epicardium.
Collapse
|
23
|
Niksirat H, Siino V, Steinbach C, Levander F. High-Resolution Proteomic Profiling Shows Sexual Dimorphism in Zebrafish Heart-Associated Proteins. J Proteome Res 2021; 20:4075-4088. [PMID: 34185526 DOI: 10.1021/acs.jproteome.1c00387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the molecular basis of sexual dimorphism in the cardiovascular system may contribute to the improvement of the outcome in biological, pharmacological, and toxicological studies as well as on the development of sex-based drugs and therapeutic approaches. Label-free protein quantification using high-resolution mass spectrometry was applied to detect sex-based proteome differences in the heart of zebrafish Danio rerio. Out of almost 3000 unique identified proteins in the heart, 79 showed significant abundance differences between male and female fish. The functional differences were mapped using enrichment analyses. Our results suggest that a large amount of materials needed for reproduction (e.g., sugars, lipids, proteins, etc.) may impose extra pressure on blood, vessels, and heart on their way toward the ovaries. In the present study, the female's heart shows a clear sexual dimorphism by changing abundance levels of numerous proteins, which could be a way to safely overcome material-induced elevated pressures. These proteins belong to the immune system, oxidative stress response, drug metabolization, detoxification, energy, metabolism, and so on. In conclusion, we showed that sex can induce dimorphism at the molecular level in nonsexual organs such as heart and must be considered as an important factor in cardiovascular research. Data are available via ProteomeXchange with identifier PXD023506.
Collapse
Affiliation(s)
- Hamid Niksirat
- Faculty of Fisheries and Protection of Waters, CENAKVA, University of South Bohemia in České Budějovice, Vodňany, 370 05 České Budějovice, Czech Republic
| | - Valentina Siino
- Department of Immunotechnology, Lund University, Lund 223 87, Sweden
| | - Christoph Steinbach
- Faculty of Fisheries and Protection of Waters, CENAKVA, University of South Bohemia in České Budějovice, Vodňany, 370 05 České Budějovice, Czech Republic
| | - Fredrik Levander
- Department of Immunotechnology, Lund University, Lund 223 87, Sweden.,National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Lund University, Lund 223 87, Sweden
| |
Collapse
|
24
|
Grivas D, González-Rajal Á, de la Pompa JL. Midkine-a Regulates the Formation of a Fibrotic Scar During Zebrafish Heart Regeneration. Front Cell Dev Biol 2021; 9:669439. [PMID: 34026760 PMCID: PMC8138450 DOI: 10.3389/fcell.2021.669439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/07/2021] [Indexed: 01/22/2023] Open
Abstract
Unlike the hearts of mammals, the adult zebrafish heart regenerates after injury. Heart cryoinjury in zebrafish triggers the formation of a fibrotic scar that gradually degrades, leading to regeneration. Midkine-a (Mdka) is a multifunctional cytokine that is activated after cardiac injury. Here, we investigated the role of mdka in zebrafish heart regeneration. We show that mdka expression was induced at 1-day post-cryoinjury (dpci) throughout the epicardial layer, whereas by 7 dpci expression had become restricted to the epicardial cells covering the injured area. To study the role of mdka in heart regeneration, we generated mdka-knock out (KO) zebrafish strains. Analysis of injured hearts showed that loss of mdka decreased endothelial cell proliferation and resulted in an arrest in heart regeneration characterized by retention of a collagenous scar. Transcriptional analysis revealed increases in collagen transcription and intense TGFβ signaling activity. These results reveal a critical role for mdka in fibrosis regulation during heart regeneration.
Collapse
Affiliation(s)
- Dimitrios Grivas
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Ciber de Enfermedades Cardiovasculares, Madrid, Spain.,Developmental Biology, Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Álvaro González-Rajal
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - José Luis de la Pompa
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Ciber de Enfermedades Cardiovasculares, Madrid, Spain
| |
Collapse
|
25
|
Albacete-Albacete L, Sánchez-Álvarez M, Del Pozo MA. Extracellular Vesicles: An Emerging Mechanism Governing the Secretion and Biological Roles of Tenascin-C. Front Immunol 2021; 12:671485. [PMID: 33981316 PMCID: PMC8107694 DOI: 10.3389/fimmu.2021.671485] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
ECM composition and architecture are tightly regulated for tissue homeostasis. Different disorders have been associated to alterations in the levels of proteins such as collagens, fibronectin (FN) or tenascin-C (TnC). TnC emerges as a key regulator of multiple inflammatory processes, both during physiological tissue repair as well as pathological conditions ranging from tumor progression to cardiovascular disease. Importantly, our current understanding as to how TnC and other non-collagen ECM components are secreted has remained elusive. Extracellular vesicles (EVs) are small membrane-bound particles released to the extracellular space by most cell types, playing a key role in cell-cell communication. A broad range of cellular components can be transported by EVs (e.g. nucleic acids, lipids, signalling molecules and proteins). These cargoes can be transferred to target cells, potentially modulating their function. Recently, several extracellular matrix (ECM) proteins have been characterized as bona fide EV cargoes, exosomal secretion being particularly critical for TnC. EV-dependent ECM secretion might underpin diseases where ECM integrity is altered, establishing novel concepts in the field such as ECM nucleation over long distances, and highlighting novel opportunities for diagnostics and therapeutic intervention. Here, we review recent findings and standing questions on the molecular mechanisms governing EV–dependent ECM secretion and its potential relevance for disease, with a focus on TnC.
Collapse
Affiliation(s)
- Lucas Albacete-Albacete
- Mechanoadaptation and Caveolae Biology Lab, Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Sánchez-Álvarez
- Mechanoadaptation and Caveolae Biology Lab, Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Angel Del Pozo
- Mechanoadaptation and Caveolae Biology Lab, Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
26
|
Bideau L, Kerner P, Hui J, Vervoort M, Gazave E. Animal regeneration in the era of transcriptomics. Cell Mol Life Sci 2021; 78:3941-3956. [PMID: 33515282 PMCID: PMC11072743 DOI: 10.1007/s00018-021-03760-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 12/27/2022]
Abstract
Animal regeneration, the ability to restore a lost body part, is a process that has fascinated scientists for centuries. In this review, we first present what regeneration is and how it relates to development, as well as the widespread and diverse nature of regeneration in animals. Despite this diversity, animal regeneration includes three common mechanistic steps: initiation, induction and activation of progenitors, and morphogenesis. In this review article, we summarize and discuss, from an evolutionary perspective, the recent data obtained for a variety of regeneration models which have allowed to identify key shared mechanisms that control these main steps of animal regeneration. This review also synthesizes the wealth of high-throughput mRNA sequencing data (bulk mRNA-seq) concerning regeneration which have been obtained in recent years, highlighting the major advances in the regeneration field that these studies have revealed. We stress out that, through a comparative approach, these data provide opportunities to further shed light on the evolution of regeneration in animals. Finally, we point out how the use of single-cell mRNA-seq technology and integration with epigenomic approaches may further help researchers to decipher mechanisms controlling regeneration and their evolution in animals.
Collapse
Affiliation(s)
- Loïc Bideau
- Université de Paris, CNRS, Institut Jacques Monod, 75006, Paris, France
| | - Pierre Kerner
- Université de Paris, CNRS, Institut Jacques Monod, 75006, Paris, France
| | - Jerome Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Michel Vervoort
- Université de Paris, CNRS, Institut Jacques Monod, 75006, Paris, France.
| | - Eve Gazave
- Université de Paris, CNRS, Institut Jacques Monod, 75006, Paris, France.
| |
Collapse
|
27
|
Network-driven discovery yields new insight into Shox2-dependent cardiac rhythm control. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194702. [PMID: 33706013 DOI: 10.1016/j.bbagrm.2021.194702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/23/2022]
Abstract
The homeodomain transcription factor SHOX2 is involved in the development and function of the heart's primary pacemaker, the sinoatrial node (SAN), and has been associated with cardiac conduction-related diseases such as atrial fibrillation and sinus node dysfunction. To shed light on Shox2-dependent genetic processes involved in these diseases, we established a murine embryonic stem cell (ESC) cardiac differentiation model to investigate Shox2 pathways in SAN-like cardiomyocytes. Differential RNA-seq-based expression profiling of Shox2+/+ and Shox2-/- ESCs revealed 94 dysregulated transcripts in Shox2-/- ESC-derived SAN-like cells. Of these, 15 putative Shox2 target genes were selected for further validation based on comparative expression analysis with SAN- and right atria-enriched genes. Network-based analyses, integrating data from the Mouse Organogenesis Cell Atlas and the Ingenuity pathways, as well as validation in mouse and zebrafish models confirmed a regulatory role for the novel identified Shox2 target genes including Cav1, Fkbp10, Igfbp5, Mcf2l and Nr2f2. Our results indicate that genetic networks involving SHOX2 may contribute to conduction traits through the regulation of these genes.
Collapse
|
28
|
Münch J, Abdelilah-Seyfried S. Sensing and Responding of Cardiomyocytes to Changes of Tissue Stiffness in the Diseased Heart. Front Cell Dev Biol 2021; 9:642840. [PMID: 33718383 PMCID: PMC7952448 DOI: 10.3389/fcell.2021.642840] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
Cardiomyocytes are permanently exposed to mechanical stimulation due to cardiac contractility. Passive myocardial stiffness is a crucial factor, which defines the physiological ventricular compliance and volume of diastolic filling with blood. Heart diseases often present with increased myocardial stiffness, for instance when fibrotic changes modify the composition of the cardiac extracellular matrix (ECM). Consequently, the ventricle loses its compliance, and the diastolic blood volume is reduced. Recent advances in the field of cardiac mechanobiology revealed that disease-related environmental stiffness changes cause severe alterations in cardiomyocyte cellular behavior and function. Here, we review the molecular mechanotransduction pathways that enable cardiomyocytes to sense stiffness changes and translate those into an altered gene expression. We will also summarize current knowledge about when myocardial stiffness increases in the diseased heart. Sophisticated in vitro studies revealed functional changes, when cardiomyocytes faced a stiffer matrix. Finally, we will highlight recent studies that described modulations of cardiac stiffness and thus myocardial performance in vivo. Mechanobiology research is just at the cusp of systematic investigations related to mechanical changes in the diseased heart but what is known already makes way for new therapeutic approaches in regenerative biology.
Collapse
Affiliation(s)
- Juliane Münch
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Salim Abdelilah-Seyfried
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.,Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
29
|
Zeng CW, Kamei Y, Shigenobu S, Sheu JC, Tsai HJ. Injury-induced Cavl-expressing cells at lesion rostral side play major roles in spinal cord regeneration. Open Biol 2021; 11:200304. [PMID: 33622104 PMCID: PMC8061693 DOI: 10.1098/rsob.200304] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The extent of cellular heterogeneity involved in neuronal regeneration after spinal cord injury (SCI) remains unclear. Therefore, we established stress-responsive transgenic zebrafish embryos with SCI. As a result, we found an SCI-induced cell population, termed SCI stress-responsive regenerating cells (SrRCs), essential for neuronal regeneration post-SCI. SrRCs were mostly composed of subtypes of radial glia (RGs-SrRCs) and neuron stem/progenitor cells (NSPCs-SrRCs) that are able to differentiate into neurons, and they formed a bridge across the lesion and connected with neighbouring undamaged motor neurons post-SCI. Compared to SrRCs at the caudal side of the SCI site (caudal-SrRCs), rostral-SrRCs participated more actively in neuronal regeneration. After RNA-seq analysis, we discovered that caveolin 1 (cav1) was significantly upregulated in rostral-SrRCs and that cav1 was responsible for the axonal regrowth and regenerative capability of rostral-SrRCs. Collectively, we define a specific SCI-induced cell population, SrRCs, involved in neuronal regeneration, demonstrate that rostral-SrRCs exhibit higher neuronal differentiation capability and prove that cav1 is predominantly expressed in rostral-SrRCs, playing a major role in neuronal regeneration after SCI.
Collapse
Affiliation(s)
- Chih-Wei Zeng
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan.,Liver Disease Prevention and Treatment Research Foundation, Taipei 10008, Taiwan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility, National Institute for Basic Biology (NIBB), National Institutes of Natural Sciences (NINS), Okazaki 444-8585, Japan.,Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Shuji Shigenobu
- Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan.,Functional Genomics Facility, NIBB, NINS, Okazaki 444-8585, Japan
| | - Jin-Chuan Sheu
- Liver Disease Prevention and Treatment Research Foundation, Taipei 10008, Taiwan
| | - Huai-Jen Tsai
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 25245, Taiwan.,Department of Life Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| |
Collapse
|
30
|
Ex uno, plures-From One Tissue to Many Cells: A Review of Single-Cell Transcriptomics in Cardiovascular Biology. Int J Mol Sci 2021; 22:ijms22042071. [PMID: 33669808 PMCID: PMC7922347 DOI: 10.3390/ijms22042071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 11/17/2022] Open
Abstract
Recent technological advances have revolutionized the study of tissue biology and garnered a greater appreciation for tissue complexity. In order to understand cardiac development, heart tissue homeostasis, and the effects of stress and injury on the cardiovascular system, it is essential to characterize the heart at high cellular resolution. Single-cell profiling provides a more precise definition of tissue composition, cell differentiation trajectories, and intercellular communication, compared to classical bulk approaches. Here, we aim to review how recent single-cell multi-omic studies have changed our understanding of cell dynamics during cardiac development, and in the healthy and diseased adult myocardium.
Collapse
|
31
|
Klatt Shaw D, Saraswathy VM, Zhou L, McAdow AR, Burris B, Butka E, Morris SA, Dietmann S, Mokalled MH. Localized EMT reprograms glial progenitors to promote spinal cord repair. Dev Cell 2021; 56:613-626.e7. [PMID: 33609461 DOI: 10.1016/j.devcel.2021.01.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/17/2020] [Accepted: 01/22/2021] [Indexed: 02/06/2023]
Abstract
Anti-regenerative scarring obstructs spinal cord repair in mammals and presents a major hurdle for regenerative medicine. In contrast, adult zebrafish possess specialized glial cells that spontaneously repair spinal cord injuries by forming a pro-regenerative bridge across the severed tissue. To identify the mechanisms that regulate differential regenerative capacity between mammals and zebrafish, we first defined the molecular identity of zebrafish bridging glia and then performed cross-species comparisons with mammalian glia. Our transcriptomics show that pro-regenerative zebrafish glia activate an epithelial-to-mesenchymal transition (EMT) gene program and that EMT gene expression is a major factor distinguishing mammalian and zebrafish glia. Functionally, we found that localized niches of glial progenitors undergo EMT after spinal cord injury in zebrafish and, using large-scale CRISPR-Cas9 mutagenesis, we identified the gene regulatory network that activates EMT and drives functional regeneration. Thus, non-regenerative mammalian glia lack an essential EMT-driving gene regulatory network that reprograms pro-regenerative zebrafish glia after injury.
Collapse
Affiliation(s)
- Dana Klatt Shaw
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Lili Zhou
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anthony R McAdow
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brooke Burris
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emily Butka
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samantha A Morris
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sabine Dietmann
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mayssa H Mokalled
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
32
|
Missinato MA, Zuppo DA, Watkins SC, Bruchez MP, Tsang M. Zebrafish heart regenerates after chemoptogenetic cardiomyocyte depletion. Dev Dyn 2021; 250:986-1000. [PMID: 33501711 DOI: 10.1002/dvdy.305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/17/2020] [Accepted: 01/14/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Zebrafish can regenerate adult cardiac tissue following injuries from ventricular apex amputation, cryoinjury, and cardiomyocyte genetic ablation. Here, we characterize cardiac regeneration from cardiomyocyte chemoptogenetic ablation caused by localized near-infrared excited photosensitizer-mediated reactive oxygen species (ROS) generation. RESULTS Exposure of transgenic adult zebrafish, Tg(myl7:fapdl5-cerulean), to di-iodinated derivative of the cell- permeable Malachite Green ester fluorogen (MG-2I) and whole-body illumination with 660 nm light resulted in cytotoxic damage to about 30% of cardiac tissue. After chemoptogenetic cardiomyocyte ablation, heart function was compromised, and macrophage infiltration was detected, but epicardial and endocardial activation response was much muted when compared to ventricular amputation. The spared cardiomyocytes underwent proliferation and restored the heart structure and function in 45-60 days after ablation. CONCLUSIONS This cardiomyocyte ablation system did not appear to activate the epicardium and endocardium as is noted in other cardiac injury models. This approach represents a useful model to study specifically cardiomyocyte injury, proliferation and regeneration in the absence of whole organ activation. Moreover, this system can be adapted to ablate distinct cell populations in any organ system to study their function in regeneration.
Collapse
Affiliation(s)
- Maria A Missinato
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Avidity Biosciences, Inc., La Jolla, California, USA
| | - Daniel A Zuppo
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Simon C Watkins
- Department of Cell Biology, Center for Biologic Imaging, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Marcel P Bruchez
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.,Department of Biological Sciences, Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Michael Tsang
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
33
|
Mukherjee D, Wagh G, Mokalled MH, Kontarakis Z, Dickson AL, Rayrikar A, Günther S, Poss KD, Stainier DYR, Patra C. Ccn2a is an injury-induced matricellular factor that promotes cardiac regeneration in zebrafish. Development 2021; 148:dev193219. [PMID: 33234717 PMCID: PMC7847265 DOI: 10.1242/dev.193219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022]
Abstract
The ability of zebrafish to heal their heart after injury makes them an attractive model for investigating the mechanisms governing the regenerative process. In this study, we show that the gene cellular communication network factor 2a (ccn2a), previously known as ctgfa, is induced in endocardial cells in the injured tissue and regulates CM proliferation and repopulation of the damaged tissue. We find that, whereas in wild-type animals, CMs track along the newly formed blood vessels that revascularize the injured tissue, in ccn2a mutants CM proliferation and repopulation are disrupted, despite apparently unaffected revascularization. In addition, we find that ccn2a overexpression enhances CM proliferation and improves the resolution of transient collagen deposition. Through loss- and gain-of-function as well as pharmacological approaches, we provide evidence that Ccn2a is necessary for and promotes heart regeneration by enhancing the expression of pro-regenerative extracellular matrix genes, and by inhibiting the chemokine receptor gene cxcr3.1 through a mechanism involving Tgfβ/pSmad3 signaling. Thus, Ccn2a positively modulates the innate regenerative response of the adult zebrafish heart.
Collapse
Affiliation(s)
- Debanjan Mukherjee
- Department of Developmental Biology, Agharkar Research Institute, Pune 411004, India
| | - Ganesh Wagh
- Department of Developmental Biology, Agharkar Research Institute, Pune 411004, India
- SP Pune University, Pune 411007, India
| | - Mayssa H Mokalled
- Regeneration Next, Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Zacharias Kontarakis
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim 61231, Germany
| | - Amy L Dickson
- Regeneration Next, Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Amey Rayrikar
- Department of Developmental Biology, Agharkar Research Institute, Pune 411004, India
- SP Pune University, Pune 411007, India
| | - Stefan Günther
- ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Kenneth D Poss
- Regeneration Next, Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim 61231, Germany
| | - Chinmoy Patra
- Department of Developmental Biology, Agharkar Research Institute, Pune 411004, India
| |
Collapse
|
34
|
Nishiga M, Qi LS, Wu JC. Therapeutic genome editing in cardiovascular diseases. Adv Drug Deliv Rev 2021; 168:147-157. [PMID: 32092381 DOI: 10.1016/j.addr.2020.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/23/2019] [Accepted: 02/19/2020] [Indexed: 12/25/2022]
Abstract
During the past decade, developments in genome editing technology have fundamentally transformed biomedical research. In particular, the CRISPR/Cas9 system has been extensively applied because of its simplicity and ability to alter genomic sequences within living organisms, and an ever increasing number of CRISPR/Cas9-based molecular tools are being developed for a wide variety of applications. While genome editing tools have been used for many aspects of biological research, they also have enormous potential to be used for genome editing therapy to treat a broad range of diseases. For some hematopoietic diseases, clinical trials of therapeutic genome editing with CRISPR/Cas9 are already starting phase I. In the cardiovascular field, genome editing tools have been utilized to understand the mechanisms of diseases such as cardiomyopathy, arrythmia, and lipid metabolism, which now open the door to therapeutic genome editing. Currently, therapeutic genome editing in the cardiovascular field is centered on liver-targeting strategies to reduce cardiovascular risks. Targeting the heart is more challenging. In this review, we discuss the potential applications, recent advances, and current limitations of therapeutic genome editing in the cardiovascular field.
Collapse
|
35
|
Redpath AN, Smart N. Recapturing embryonic potential in the adult epicardium: Prospects for cardiac repair. Stem Cells Transl Med 2020; 10:511-521. [PMID: 33222384 PMCID: PMC7980211 DOI: 10.1002/sctm.20-0352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/07/2020] [Accepted: 10/25/2020] [Indexed: 12/12/2022] Open
Abstract
Research into potential targets for cardiac repair encompasses recognition of tissue‐resident cells with intrinsic regenerative properties. The adult vertebrate heart is covered by mesothelium, named the epicardium, which becomes active in response to injury and contributes to repair, albeit suboptimally. Motivation to manipulate the epicardium for treatment of myocardial infarction is deeply rooted in its central role in cardiac formation and vasculogenesis during development. Moreover, the epicardium is vital to cardiac muscle regeneration in lower vertebrate and neonatal mammalian‐injured hearts. In this review, we discuss our current understanding of the biology of the mammalian epicardium in development and injury. Considering present challenges in the field, we further contemplate prospects for reinstating full embryonic potential in the adult epicardium to facilitate cardiac regeneration.
Collapse
Affiliation(s)
- Andia N Redpath
- Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Regenerative Medicine, Burdon Sanderson Cardiac Science Centre, University of Oxford, Oxford, UK
| | - Nicola Smart
- Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Regenerative Medicine, Burdon Sanderson Cardiac Science Centre, University of Oxford, Oxford, UK
| |
Collapse
|
36
|
Zhao Y, James NA, Beshay AR, Chang EE, Lin A, Bashar F, Wassily A, Nguyen B, Nguyen TP. Adult zebrafish ventricular electrical gradients as tissue mechanisms of ECG patterns under baseline vs. oxidative stress. Cardiovasc Res 2020; 117:1891-1907. [PMID: 32735330 DOI: 10.1093/cvr/cvaa238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/29/2020] [Accepted: 07/24/2020] [Indexed: 12/27/2022] Open
Abstract
AIMS In mammalian ventricles, electrical gradients establish electrical heterogeneities as essential tissue mechanisms to optimize mechanical efficiency and safeguard electrical stability. Electrical gradients shape mammalian electrocardiographic patterns; disturbance of electrical gradients is proarrhythmic. The zebrafish heart is a popular surrogate model for human cardiac electrophysiology thanks to its remarkable recapitulation of human electrocardiogram and ventricular action potential features. Yet, zebrafish ventricular electrical gradients are largely unexplored. The goal of this study is to define the zebrafish ventricular electrical gradients that shape the QRS complex and T wave patterns at baseline and under oxidative stress. METHODS AND RESULTS We performed in vivo electrocardiography and ex vivo voltage-sensitive fluorescent epicardial and transmural optical mapping of adult zebrafish hearts at baseline and during acute H2O2 exposure. At baseline, apicobasal activation and basoapical repolarization gradients accounted for the polarity concordance between the QRS complex and T wave. During H2O2 exposure, differential regional impairment of activation and repolarization at the apex and base disrupted prior to baseline electrical gradients, resulting in either reversal or loss of polarity concordance between the QRS complex and T wave. KN-93, a specific calcium/calmodulin-dependent protein kinase II inhibitor (CaMKII), protected zebrafish hearts from H2O2 disruption of electrical gradients. The protection was complete if administered prior to oxidative stress exposure. CONCLUSIONS Despite remarkable apparent similarities, zebrafish and human ventricular electrocardiographic patterns are mirror images supported by opposite electrical gradients. Like mammalian ventricles, zebrafish ventricles are also susceptible to H2O2 proarrhythmic perturbation via CaMKII activation. Our findings suggest that the adult zebrafish heart may constitute a clinically relevant model to investigate ventricular arrhythmias induced by oxidative stress. However, the fundamental ventricular activation and repolarization differences between the two species that we demonstrated in this study highlight the potential limitations when extrapolating results from zebrafish experiments to human cardiac electrophysiology, arrhythmias, and drug toxicities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Thao P Nguyen
- The Cardiovascular Research Laboratory, Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
37
|
Grivas D, González-Rajal Á, Guerrero Rodríguez C, Garcia R, de la Pompa JL. Loss of Caveolin-1 and caveolae leads to increased cardiac cell stiffness and functional decline of the adult zebrafish heart. Sci Rep 2020; 10:12816. [PMID: 32733088 PMCID: PMC7393500 DOI: 10.1038/s41598-020-68802-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/05/2020] [Indexed: 01/06/2023] Open
Abstract
Caveolin-1 is the main structural protein of caveolae, small membrane invaginations involved in signal transduction and mechanoprotection. Here, we generated cav1-KO zebrafish lacking Cav1 and caveolae, and investigated the impact of this loss on adult heart function and response to cryoinjury. We found that cardiac function was impaired in adult cav1-KO fish, which showed a significantly decreased ejection fraction and heart rate. Using atomic force microscopy, we detected an increase in the stiffness of epicardial cells and cells of the cortical zone lacking Cav1/caveolae. This loss of cardiac elasticity might explain the decreased cardiac contraction and function. Surprisingly, cav1-KO mutants were able to regenerate their heart after a cryoinjury but showed a transient decrease in cardiomyocyte proliferation.
Collapse
Affiliation(s)
- Dimitrios Grivas
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain.,Ciber de Enfermedades Cardiovasculares, 28029, Madrid, Spain
| | - Álvaro González-Rajal
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain.,Cell Division Lab, ANZAC Research Institute, Gate 3, Hospital Road, Concord, NSW, 2139, Australia
| | - Carlos Guerrero Rodríguez
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, 28049, Madrid, Spain
| | - Ricardo Garcia
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, 28049, Madrid, Spain
| | - José Luis de la Pompa
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain. .,Ciber de Enfermedades Cardiovasculares, 28029, Madrid, Spain.
| |
Collapse
|
38
|
Andrés-Delgado L, Galardi-Castilla M, Mercader N, Santamaría L. Analysis of wt1a reporter line expression levels during proepicardium formation in the zebrafish. Histol Histopathol 2020; 35:1035-1046. [PMID: 32633330 DOI: 10.14670/hh-18-238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The epicardium is the outer mesothelial layer of the heart. It covers the myocardium and plays important roles in both heart development and regeneration. It is derived from the proepicardium (PE), groups of cells that emerges at early developmental stages from the dorsal pericardial layer (DP) close to the atrio-ventricular canal and the venous pole of the heart-tube. In zebrafish, PE cells extrude apically into the pericardial cavity as a consequence of DP tissue constriction, a process that is dependent on Bmp pathway signaling. Expression of the transcription factor Wilms tumor-1, Wt1, which is a leader of important morphogenetic events such as apoptosis regulation or epithelial-mesenchymal cell transition, is also necessary during PE formation. In this study, we used the zebrafish model to compare intensity level of the wt1a reporter line epi:GFP in PE and its original tissue, the DP. We found that GFP is present at higher intensity level in the PE tissue, and differentially wt1 expression at pericardial tissues could be involved in the PE formation process. Our results reveal that bmp2b overexpression leads to enhanced GFP level both in DP and in PE tissues.
Collapse
Affiliation(s)
- Laura Andrés-Delgado
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Autonoma University of Madrid, Madrid, Spain. .,Development of the Epicardium and its Role During Regeneration Laboratory, Nacional Center of Cardiovascular Research Carlos III, Madrid, Spain
| | - María Galardi-Castilla
- Development of the Epicardium and its Role During Regeneration Laboratory, Nacional Center of Cardiovascular Research Carlos III, Madrid, Spain
| | - Nadia Mercader
- Development of the Epicardium and its Role During Regeneration Laboratory, Nacional Center of Cardiovascular Research Carlos III, Madrid, Spain.,Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Luis Santamaría
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Autonoma University of Madrid, Madrid, Spain
| |
Collapse
|
39
|
Hu H, Lin S, Wang S, Chen X. The Role of Transcription Factor 21 in Epicardial Cell Differentiation and the Development of Coronary Heart Disease. Front Cell Dev Biol 2020; 8:457. [PMID: 32582717 PMCID: PMC7290112 DOI: 10.3389/fcell.2020.00457] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/18/2020] [Indexed: 02/02/2023] Open
Abstract
Transcription factor 21 (TCF21) is specific for mesoderm and is expressed in the embryos' mesenchymal derived tissues, such as the epicardium. It plays a vital role in regulating cell differentiation and cell fate specificity through epithelial-mesenchymal transformation during cardiac development. For instance, TCF21 could promote cardiac fibroblast development and inhibit vascular smooth muscle cells (VSMCs) differentiation of epicardial cells. Recent large-scale genome-wide association studies have identified a mass of loci associated with coronary heart disease (CHD). There is mounting evidence that TCF21 polymorphism might confer genetic susceptibility to CHD. However, the molecular mechanisms of TCF21 in heart development and CHD remain fundamentally problematic. In this review, we are committed to providing a detailed introduction of the biological roles of TCF21 in epicardial fate determination and the development of CHD.
Collapse
Affiliation(s)
- Haochang Hu
- School of Medicine, Ningbo University, Ningbo, China.,Department of Cardiology, Ningbo City First Hospital, Ningbo, China
| | - Shaoyi Lin
- School of Medicine, Ningbo University, Ningbo, China.,Department of Cardiology, Ningbo City First Hospital, Ningbo, China
| | | | - Xiaomin Chen
- School of Medicine, Ningbo University, Ningbo, China.,Department of Cardiology, Ningbo City First Hospital, Ningbo, China
| |
Collapse
|
40
|
Lupu IE, Redpath AN, Smart N. Spatiotemporal Analysis Reveals Overlap of Key Proepicardial Markers in the Developing Murine Heart. Stem Cell Reports 2020; 14:770-787. [PMID: 32359445 PMCID: PMC7221110 DOI: 10.1016/j.stemcr.2020.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 01/05/2023] Open
Abstract
The embryonic epicardium, originating from the proepicardial organ (PEO), provides a source of multipotent progenitors for cardiac lineages, including pericytes, fibroblasts, and vascular smooth muscle cells. Maximizing the regenerative capacity of the adult epicardium depends on recapitulating embryonic cell fates. The potential of the epicardium to contribute coronary endothelium is unclear, due to conflicting Cre-based lineage trace data. Controversy also surrounds when epicardial cell fate becomes restricted. Here, we systematically investigate expression of five widely used epicardial markers, Wt1, Tcf21, Tbx18, Sema3d, and Scx, over the course of development. We show overlap of markers in all PEO and epicardial cells until E13.5, and find no evidence for discrete proepicardial sub-compartments that might contribute coronary endothelium via the epicardial layer. Our findings clarify a number of prevailing discrepancies and support the notion that epicardium-derived cell fate, to form fibroblasts or mural cells, is specified after epithelial-mesenchymal transition, not pre-determined within the PEO.
Collapse
Affiliation(s)
- Irina-Elena Lupu
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Andia N Redpath
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Nicola Smart
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3PT, UK.
| |
Collapse
|
41
|
Floy ME, Mateyka TD, Foreman KL, Palecek SP. Human pluripotent stem cell-derived cardiac stromal cells and their applications in regenerative medicine. Stem Cell Res 2020; 45:101831. [PMID: 32446219 PMCID: PMC7931507 DOI: 10.1016/j.scr.2020.101831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/16/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
Coronary heart disease is one of the leading causes of death in the United States. Recent advances in stem cell biology have led to the development and engineering of human pluripotent stem cell (hPSC)-derived cardiac cells and tissues for application in cellular therapy and cardiotoxicity studies. Initial studies in this area have largely focused on improving differentiation efficiency and maturation states of cardiomyocytes. However, other cell types in the heart, including endothelial and stromal cells, play crucial roles in cardiac development, injury response, and cardiomyocyte function. This review discusses recent advances in differentiation of hPSCs to cardiac stromal cells, identification and classification of cardiac stromal cell types, and application of hPSC-derived cardiac stromal cells and tissues containing these cells in regenerative and drug development applications.
Collapse
Affiliation(s)
- Martha E Floy
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Taylor D Mateyka
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Koji L Foreman
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
42
|
Koth J, Wang X, Killen AC, Stockdale WT, Potts HG, Jefferson A, Bonkhofer F, Riley PR, Patient RK, Göttgens B, Mommersteeg MTM. Runx1 promotes scar deposition and inhibits myocardial proliferation and survival during zebrafish heart regeneration. Development 2020; 147:dev186569. [PMID: 32341028 PMCID: PMC7197712 DOI: 10.1242/dev.186569] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
Abstract
Runx1 is a transcription factor that plays a key role in determining the proliferative and differential state of multiple cell types, during both development and adulthood. Here, we report how Runx1 is specifically upregulated at the injury site during zebrafish heart regeneration, and that absence of runx1 results in increased myocardial survival and proliferation, and overall heart regeneration, accompanied by decreased fibrosis. Using single cell sequencing, we found that the wild-type injury site consists of Runx1-positive endocardial cells and thrombocytes that induce expression of smooth muscle and collagen genes. Both these populations cannot be identified in runx1 mutant wounds that contain less collagen and fibrin. The reduction in fibrin in the mutant is further explained by reduced myofibroblast formation and upregulation of components of the fibrin degradation pathway, including plasminogen receptor annexin 2A as well as downregulation of plasminogen activator inhibitor serpine1 in myocardium and endocardium, resulting in increased levels of plasminogen. Our findings suggest that Runx1 controls the regenerative response of multiple cardiac cell types and that targeting Runx1 is a novel therapeutic strategy for inducing endogenous heart repair.
Collapse
Affiliation(s)
- Jana Koth
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Xiaonan Wang
- Department of Haematology, Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Abigail C Killen
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | - William T Stockdale
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | - Helen G Potts
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | - Andrew Jefferson
- Micron Advanced Bioimaging Unit, Department of Biochemistry, South Parks Road, Oxford OX1 3QU, UK
| | - Florian Bonkhofer
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | - Roger K Patient
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Berthold Göttgens
- Department of Haematology, Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Mathilda T M Mommersteeg
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
43
|
Visualization of cardiovascular development, physiology and disease at the single-cell level: Opportunities and future challenges. J Mol Cell Cardiol 2020; 142:80-92. [PMID: 32205182 DOI: 10.1016/j.yjmcc.2020.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/18/2022]
Abstract
Single-cell RNA sequencing (scRNA-seq), a method of transcriptome sequencing at the single-cell level, has recently emerged as a revolutionary technology in the field of biomedical research. Compared to conventional gene expression profiling in bulk, scRNA-seq resolves biological differences among individual cells and enables the identification of rare cell populations that are easily overlooked. This review introduces the method of scRNA-seq, summarizes its applications in the field of cardiovascular disease research, and discusses existing limitations and prospects for future applications.
Collapse
|
44
|
Dronkers E, Wauters MMM, Goumans MJ, Smits AM. Epicardial TGFβ and BMP Signaling in Cardiac Regeneration: What Lesson Can We Learn from the Developing Heart? Biomolecules 2020; 10:biom10030404. [PMID: 32150964 PMCID: PMC7175296 DOI: 10.3390/biom10030404] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/31/2022] Open
Abstract
The epicardium, the outer layer of the heart, has been of interest in cardiac research due to its vital role in the developing and diseased heart. During development, epicardial cells are active and supply cells and paracrine cues to the myocardium. In the injured adult heart, the epicardium is re-activated and recapitulates embryonic behavior that is essential for a proper repair response. Two indispensable processes for epicardial contribution to heart tissue formation are epithelial to mesenchymal transition (EMT), and tissue invasion. One of the key groups of cytokines regulating both EMT and invasion is the transforming growth factor β (TGFβ) family, including TGFβ and Bone Morphogenetic Protein (BMP). Abundant research has been performed to understand the role of TGFβ family signaling in the developing epicardium. However, less is known about signaling in the adult epicardium. This review provides an overview of the current knowledge on the role of TGFβ in epicardial behavior both in the development and in the repair of the heart. We aim to describe the presence of involved ligands and receptors to establish if and when signaling can occur. Finally, we discuss potential targets to improve the epicardial contribution to cardiac repair as a starting point for future investigation.
Collapse
|
45
|
Juul Belling H, Hofmeister W, Andersen DC. A Systematic Exposition of Methods used for Quantification of Heart Regeneration after Apex Resection in Zebrafish. Cells 2020; 9:cells9030548. [PMID: 32111059 PMCID: PMC7140516 DOI: 10.3390/cells9030548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 02/06/2023] Open
Abstract
Myocardial infarction (MI) is a worldwide condition that affects millions of people. This is mainly caused by the adult human heart lacking the ability to regenerate upon injury, whereas zebrafish have the capacity through cardiomyocyte proliferation to fully regenerate the heart following injury such as apex resection (AR). But a systematic overview of the methods used to evidence heart regrowth and regeneration in the zebrafish is lacking. Herein, we conducted a systematical search in Embase and Pubmed for studies on heart regeneration in the zebrafish following injury and identified 47 AR studies meeting the inclusion criteria. Overall, three different methods were used to assess heart regeneration in zebrafish AR hearts. 45 out of 47 studies performed qualitative (37) and quantitative (8) histology, whereas immunohistochemistry for various cell cycle markers combined with cardiomyocyte specific proteins was used in 34 out of 47 studies to determine cardiomyocyte proliferation qualitatively (6 studies) or quantitatively (28 studies). For both methods, analysis was based on selected heart sections and not the whole heart, which may bias interpretations. Likewise, interstudy comparison of reported cardiomyocyte proliferation indexes seems complicated by distinct study designs and reporting manners. Finally, six studies performed functional analysis to determine heart function, a hallmark of human heart injury after MI. In conclusion, our data implies that future studies should consider more quantitative methods eventually taking the 3D of the zebrafish heart into consideration when evidencing myocardial regrowth after AR. Furthermore, standardized guidelines for reporting cardiomyocyte proliferation and sham surgery details may be considered to enable inter study comparisons and robustly determine the effect of given genes on the process of heart regeneration.
Collapse
Affiliation(s)
- Helene Juul Belling
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, 5000 Odense C, Denmark; (H.J.B.); (W.H.)
- Clinical Institute, University of Southern Denmark, Winsloewparken 25, 1. floor, 5000 Odense C, Denmark
| | - Wolfgang Hofmeister
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, 5000 Odense C, Denmark; (H.J.B.); (W.H.)
- Clinical Institute, University of Southern Denmark, Winsloewparken 25, 1. floor, 5000 Odense C, Denmark
- Faculty of Health and Medical Sciences, DanStem, Novo Nordisk Foundation Center for Stem Cell Biology, 2200 København H, Denmark
| | - Ditte Caroline Andersen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, 5000 Odense C, Denmark; (H.J.B.); (W.H.)
- Clinical Institute, University of Southern Denmark, Winsloewparken 25, 1. floor, 5000 Odense C, Denmark
- Correspondence:
| |
Collapse
|
46
|
FitzSimons M, Beauchemin M, Smith AM, Stroh EG, Kelpsch DJ, Lamb MC, Tootle TL, Yin VP. Cardiac injury modulates critical components of prostaglandin E 2 signaling during zebrafish heart regeneration. Sci Rep 2020; 10:3095. [PMID: 32080283 PMCID: PMC7033201 DOI: 10.1038/s41598-020-59868-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 01/31/2020] [Indexed: 12/14/2022] Open
Abstract
The inability to effectively stimulate cardiomyocyte proliferation remains a principle barrier to regeneration in the adult human heart. A tightly regulated, acute inflammatory response mediated by a range of cell types is required to initiate regenerative processes. Prostaglandin E2 (PGE2), a potent lipid signaling molecule induced by inflammation, has been shown to promote regeneration and cell proliferation; however, the dynamics of PGE2 signaling in the context of heart regeneration remain underexplored. Here, we employ the regeneration-competent zebrafish to characterize components of the PGE2 signaling circuit following cardiac injury. In the regenerating adult heart, we documented an increase in PGE2 levels, concurrent with upregulation of cox2a and ptges, two genes critical for PGE2 synthesis. Furthermore, we identified the epicardium as the most prominent site for cox2a expression, thereby suggesting a role for this tissue as an inflammatory mediator. Injury also drove the opposing expression of PGE2 receptors, upregulating pro-restorative ptger2a and downregulating the opposing receptor ptger3. Importantly, treatment with pharmacological inhibitors of Cox2 activity suppressed both production of PGE2, and the proliferation of cardiomyocytes. These results suggest that injury-induced PGE2 signaling is key to stimulating cardiomyocyte proliferation during regeneration.
Collapse
Affiliation(s)
- MaryLynn FitzSimons
- Kathryn W. Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Bar Harbor, ME, 04609, US
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, 04469, US
| | - Megan Beauchemin
- Kathryn W. Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Bar Harbor, ME, 04609, US
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, 04469, US
- The University of New England, Biddeford, ME, 04005, US
| | - Ashley M Smith
- Kathryn W. Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Bar Harbor, ME, 04609, US
| | - Erika G Stroh
- Kathryn W. Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Bar Harbor, ME, 04609, US
| | - Daniel J Kelpsch
- Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242, US
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, US
| | - Maureen C Lamb
- Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242, US
| | - Tina L Tootle
- Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242, US
| | - Viravuth P Yin
- Kathryn W. Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Bar Harbor, ME, 04609, US.
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, 04469, US.
| |
Collapse
|
47
|
Abstract
The epicardium, the outermost tissue layer that envelops all vertebrate hearts, plays a crucial role in cardiac development and regeneration and has been implicated in potential strategies for cardiac repair. The heterogenous cell population that composes the epicardium originates primarily from a transient embryonic cell cluster known as the proepicardial organ (PE). Characterized by its high cellular plasticity, the epicardium contributes to both heart development and regeneration in two critical ways: as a source of progenitor cells and as a critical signaling hub. Despite this knowledge, there are many unanswered questions in the field of epicardial biology, the resolution of which will advance the understanding of cardiac development and repair. We review current knowledge in cross-species epicardial involvement, specifically in relation to lineage specification and differentiation during cardiac development.
Collapse
Affiliation(s)
- Yingxi Cao
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, Cornell University, New York, New York 10021, USA
| | - Sierra Duca
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, Cornell University, New York, New York 10021, USA
| | - Jingli Cao
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, Cornell University, New York, New York 10021, USA
| |
Collapse
|
48
|
Abstract
The heart is lined by a single layer of mesothelial cells called the epicardium that provides important cellular contributions for embryonic heart formation. The epicardium harbors a population of progenitor cells that undergo epithelial-to-mesenchymal transition displaying characteristic conversion of planar epithelial cells into multipolar and invasive mesenchymal cells before differentiating into nonmyocyte cardiac lineages, such as vascular smooth muscle cells, pericytes, and fibroblasts. The epicardium is also a source of paracrine cues that are essential for fetal cardiac growth, coronary vessel patterning, and regenerative heart repair. Although the epicardium becomes dormant after birth, cardiac injury reactivates developmental gene programs that stimulate epithelial-to-mesenchymal transition; however, it is not clear how the epicardium contributes to disease progression or repair in the adult. In this review, we will summarize the molecular mechanisms that control epicardium-derived progenitor cell migration, and the functional contributions of the epicardium to heart formation and cardiomyopathy. Future perspectives will be presented to highlight emerging therapeutic strategies aimed at harnessing the regenerative potential of the fetal epicardium for cardiac repair.
Collapse
Affiliation(s)
- Pearl Quijada
- From the Aab Cardiovascular Research Institute (P.Q., E.M.S.), University of Rochester, School of Medicine and Dentistry, Rochester, NY.,Department of Medicine (P.Q., E.M.S.), University of Rochester, School of Medicine and Dentistry, Rochester, NY
| | | | - Eric M Small
- From the Aab Cardiovascular Research Institute (P.Q., E.M.S.), University of Rochester, School of Medicine and Dentistry, Rochester, NY.,Department of Medicine (P.Q., E.M.S.), University of Rochester, School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
49
|
Gambardella L, McManus SA, Moignard V, Sebukhan D, Delaune A, Andrews S, Bernard WG, Morrison MA, Riley PR, Göttgens B, Gambardella Le Novère N, Sinha S. BNC1 regulates cell heterogeneity in human pluripotent stem cell-derived epicardium. Development 2019; 146:dev174441. [PMID: 31767620 PMCID: PMC6955213 DOI: 10.1242/dev.174441] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 11/21/2019] [Indexed: 02/02/2023]
Abstract
The murine developing epicardium heterogeneously expresses the transcription factors TCF21 and WT1. Here, we show that this cell heterogeneity is conserved in human epicardium, regulated by BNC1 and associated with cell fate and function. Single cell RNA sequencing of epicardium derived from human pluripotent stem cells (hPSC-epi) revealed that distinct epicardial subpopulations are defined by high levels of expression for the transcription factors BNC1 or TCF21. WT1+ cells are included in the BNC1+ population, which was confirmed in human foetal hearts. THY1 emerged as a membrane marker of the TCF21 population. We show that THY1+ cells can differentiate into cardiac fibroblasts (CFs) and smooth muscle cells (SMCs), whereas THY1- cells were predominantly restricted to SMCs. Knocking down BNC1 during the establishment of the epicardial populations resulted in a homogeneous, predominantly TCF21high population. Network inference methods using transcriptomic data from the different cell lineages derived from the hPSC-epi delivered a core transcriptional network organised around WT1, TCF21 and BNC1. This study unveils a list of epicardial regulators and is a step towards engineering subpopulations of epicardial cells with selective biological activities.
Collapse
Affiliation(s)
- Laure Gambardella
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge CB2 0AZ, UK
| | - Sophie A McManus
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge CB2 0AZ, UK
| | - Victoria Moignard
- Department of Haematology, Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AZ, UK
| | | | | | | | - William G Bernard
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge CB2 0AZ, UK
| | - Maura A Morrison
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge CB2 0AZ, UK
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Berthold Göttgens
- Department of Haematology, Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AZ, UK
| | | | - Sanjay Sinha
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge CB2 0AZ, UK
| |
Collapse
|
50
|
Stockdale WT, Lemieux ME, Killen AC, Zhao J, Hu Z, Riepsaame J, Hamilton N, Kudoh T, Riley PR, van Aerle R, Yamamoto Y, Mommersteeg MTM. Heart Regeneration in the Mexican Cavefish. Cell Rep 2019; 25:1997-2007.e7. [PMID: 30462998 PMCID: PMC6280125 DOI: 10.1016/j.celrep.2018.10.072] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/18/2018] [Accepted: 10/19/2018] [Indexed: 01/30/2023] Open
Abstract
Although Astyanax mexicanus surface fish regenerate their hearts after injury, their Pachón cave-dwelling counterparts cannot and, instead, form a permanent fibrotic scar, similar to the human heart. Myocardial proliferation peaks at similar levels in both surface fish and Pachón 1 week after injury. However, in Pachón, this peak coincides with a strong scarring and immune response, and ultimately, cavefish cardiomyocytes fail to replace the scar. We identified lrrc10 to be upregulated in surface fish compared with Pachón after injury. Similar to cavefish, knockout of lrrc10 in zebrafish impairs heart regeneration without affecting wound cardiomyocyte proliferation. Furthermore, using quantitative trait locus (QTL) analysis, we have linked the degree of heart regeneration to three loci in the genome, identifying candidate genes fundamental to the difference between scarring and regeneration. Our study provides evidence that successful heart regeneration entails a delicate interplay between cardiomyocyte proliferation and scarring. Astyanax mexicanus surface fish regenerate their hearts, but Pachón cavefish cannot Successful regeneration is a delicate interplay between proliferation and scarring lrrc10 is required for heart regeneration Using QTL analysis, we have identified three genomic loci linked to heart regeneration
Collapse
Affiliation(s)
- William T Stockdale
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, UK
| | | | - Abigail C Killen
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, UK
| | - Juanjuan Zhao
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, UK
| | - Zhilian Hu
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, UK
| | - Joey Riepsaame
- Genome Engineering Oxford, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Noémie Hamilton
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Tetsuhiro Kudoh
- Biosciences, College of Life and Environmental Sciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, UK
| | - Ronny van Aerle
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, Dorset DT4 8UB, UK
| | - Yoshiyuki Yamamoto
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK.
| | - Mathilda T M Mommersteeg
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, UK; Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|