1
|
Jiang B, Li J, Wang J. Exploration of the Prognostic Value of m5C Methylation Protein NOP2 and NSUN6 in Colon Cancer. Genet Test Mol Biomarkers 2025; 29:74-84. [PMID: 40067737 DOI: 10.1089/gtmb.2024.0416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Background: Colorectal cancer is a prevalent malignancy with high incidence and poor prognosis. This study explores the clinical significance of 5-methylcytosine RNA modification factors, specifically the NOP2/Sun RNA Methyltransferase (NSUN) family, in colorectal cancer. Methods: Utilizing data from The Cancer Genome Atlas database, we analyzed the expression levels of NSUN family members in tumor tissues, their prognostic relevance, and their relationship with immune cell infiltration. To further investigate, paraffin-embedded cancer tissue microarrays were used to assess the expression of NOP2 Nucleolar Protein (NOP2) and NSUN6 in colorectal cancer tissues and adjacent normal tissues. The correlation between the expression of these genes and patient prognosis was also examined. Results: Bioinformatic analysis revealed that NOP2 is highly expressed in tumors, whereas NOP2/Sun RNA Methyltransferase 6 (NSUN6) is linked to poor prognosis. Immune infiltration analysis demonstrated that NOP2 expression is significantly correlated with varying levels of immune cell infiltration, including a positive association with myeloid-derived suppressor cells (MDSCs), M1 macrophages, and natural killer cells and a negative correlation with regulatory T cells and M2 macrophages. NSUN6 expression showed a significant positive correlation with MDSC infiltration. Clinical sample analysis indicated that NOP2 expression is strongly associated with tumor grade and nerve invasion, whereas NSUN6 is significantly related to nerve invasion. Survival analyses revealed that high levels of NOP2 and NSUN6 are linked to shorter overall survival. Notably, NSUN6 expression, vascular invasion, and T stage emerged as key predictors of colorectal cancer patient survival. Conclusions: These findings suggest that NOP2 and NSUN6 may serve as valuable molecular markers for predicting poor prognosis in colorectal cancer, with potential applications in clinical decision-making.
Collapse
Affiliation(s)
- Bin Jiang
- Tonglu District, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, People's Republic of China
| | - Jie Li
- Department of Hepatobiliary Surgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, People's Republic of China
| | - Jianguo Wang
- Department of Hepatobiliary Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, People's Republic of China
| |
Collapse
|
2
|
Arends T, Bennett SR, Tapscott SJ. DUX4-induced HSATII RNA accumulation drives protein aggregation impacting RNA processing pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.17.628988. [PMID: 39764024 PMCID: PMC11702838 DOI: 10.1101/2024.12.17.628988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
RNA-driven protein aggregation leads to cellular dysregulation, disrupting normal cellular processes, and contributing to the development of diseases and tumorigenesis. Here, we show that double homeobox 4 (DUX4), an early embryonic transcription factor and causative gene of facioscapulohumeral muscular dystrophy (FSHD), induces the accumulation of stable intranuclear RNAs, including nucleolar RNA and human satellite II (HSATII) RNA. Stable intranuclear RNAs drive protein aggregation in DUX4-expressing muscle cells. Specifically, HSATII RNA sequesters RNA methylation factors. HSATII-YBX1 ribonucleoprotein (RNP) complex formation is mediated by HSATII double-stranded RNA and NSUN2 activity. Aberrant HSATII-RNP complexes affect RNA processing pathways, including RNA splicing. Differential splicing of genes mediated by HSATII-RNP complexes are associated with pathways known to be dysregulated by DUX4 expression. These findings highlight the broader influence of DUX4 on nuclear RNA dynamics and suggest that HSATII RNA could be a critical mediator of RNA processing regulation. Understanding the impact of HSATII-RNP formation on RNA processing provides insight into the molecular mechanisms underlying FSHD.
Collapse
Affiliation(s)
- Tessa Arends
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Sean R. Bennett
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Stephen J. Tapscott
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Department of Neurology, University of Washington, Seattle, WA 98105
| |
Collapse
|
3
|
Jia S, Yu X, Deng N, Zheng C, Ju M, Wang F, Zhang Y, Gao Z, Li Y, Zhou H, Li K. Deciphering the pseudouridine nucleobase modification in human diseases: From molecular mechanisms to clinical perspectives. Clin Transl Med 2025; 15:e70190. [PMID: 39834094 PMCID: PMC11746961 DOI: 10.1002/ctm2.70190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/10/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
RNA pseudouridylation, a dynamic and reversible post-transcriptional modification found in diverse RNA species, is crucial for various biological processes, including tRNA homeostasis, tRNA transport, translation initiation regulation, pre-mRNA splicing, enhancement of mRNA translation, and translational fidelity. Disruption of pseudouridylation impairs cellular homeostasis, contributing to pathological alterations. Recent studies have highlighted its regulatory role in human diseases, particularly in tumourigenesis. Cellular stresses trigger RNA pseudouridylation in organisms, suggesting that pseudouridylation-mediated epigenetic reprogramming is essential for maintaining cellular viability and responding to stress. This review examines the regulatory mechanisms and pathological implications of pseudouridylation in human diseases, with a focus on its involvement in tumourigenesis. Additionally, it explores the therapeutic potential of targeting pseudouridylation, presenting novel strategies for disease treatment. HIGHLIGHTS: Methods to detect pseudouridine were introduced from classic mass spectrometry-based methods to newer approaches such as nanopore-based technologies and BID sequencing, each with its advantages and limitations. RNA pseudouridylation is crucial for various biological processes, including tRNA homeostasis, tRNA transport, translation initiation regulation, pre-mRNA splicing, enhancement of mRNA translation, and translational fidelity. Increased pseudouridylation is frequently associated with tumour initiation, progression, and poor prognosis, whereas its reduction is predominantly implicated in non-tumour diseases. A comprehensive understanding of the inducing factors for RNA pseudouridylation will be essential for elucidating its role in diseases. Such insights can provide robust evidence for how pseudouridylation influences disease progression and offer new avenues for therapeutic strategies targeting pseudouridylation dysregulation. The therapeutic potential of RNA pseudouridylation in diseases is enormous, including inhibitors targeting pseudouridine synthases, the application of RNA pseudouridylation in RNA therapeutics, and its role as a biological marker.
Collapse
Affiliation(s)
- Shiheng Jia
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xue Yu
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Na Deng
- Department of HematologyThe Fourth Affiliated Hospital of China Medical UniversityShenyangLiaoningChina
| | - Chen Zheng
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityShenyangLiaoningChina
- Department of AnesthesiologyThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Mingguang Ju
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Fanglin Wang
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Yixiao Zhang
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Ziming Gao
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Yanshu Li
- Department of Cell BiologyKey Laboratory of Cell BiologyNational Health Commission of the PRC and Key Laboratory of Medical Cell BiologyMinistry of Education of the PRCChina Medical UniversityShenyangLiaoningChina
| | - Heng Zhou
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityShenyangLiaoningChina
- Department of AnesthesiologyThe First Hospital of China Medical UniversityShenyangLiaoningChina
- Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in Liaoning Education DepartmentThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Kai Li
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityShenyangLiaoningChina
- Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in Liaoning Education DepartmentThe First Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
4
|
Chen Y, Shen YQ. Role of reactive oxygen species in regulating epigenetic modifications. Cell Signal 2024; 125:111502. [PMID: 39521028 DOI: 10.1016/j.cellsig.2024.111502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Reactive oxygen species (ROS) originate from diverse sources and regulate multiple signaling pathways within the cellular environment. Their generation is intricately controlled, and disruptions in their signaling or atypical levels can precipitate pathological conditions. Epigenetics, the examination of heritable alterations in gene expression independent of changes in the genetic code, has been implicated in the pathogenesis of various diseases through aberrant epigenetic modifications. The significant contribution of epigenetic modifications to disease progression underscores their potential as crucial therapeutic targets for a wide array of medical conditions. This study begins by providing an overview of ROS and epigenetics, followed by a discussion on the mechanisms of epigenetic modifications such as DNA methylation, histone modification, and RNA modification-mediated regulation. Subsequently, a detailed examination of the interaction between ROS and epigenetic modifications is presented, offering new perspectives and avenues for exploring the mechanisms underlying specific epigenetic diseases and the development of novel therapeutics.
Collapse
Affiliation(s)
- Yutong Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
5
|
Liu C, Yu M, Wang M, Yang S, Fu Y, Zhang L, Zhu C, Zhang H. PCAF-mediated acetylation of METTL3 impairs mRNA translation efficiency in response to oxidative stress. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2157-2168. [PMID: 39096338 DOI: 10.1007/s11427-023-2535-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/08/2024] [Accepted: 08/01/2024] [Indexed: 08/05/2024]
Abstract
METTL3 methylates RNA and regulates the fate of mRNA through its methyltransferase activity. METTL3 enhances RNA translation independently of its catalytic activity. However, the underlying mechanism is still elusive. Here, we report that METTL3 is both interacted with and acetylated at lysine 177 by the acetyltransferase PCAF and deacetylated by SIRT3. Neither the methyltransferase activity nor the stability of METTL3 is affected by its acetylation at K177. Importantly, acetylation of METTL3 blocks its interaction with EIF3H, a subunit of the translation initiation factor, thereby reducing mRNA translation efficiency. Interestingly, acetylation of METTL3 responds to oxidative stress. Mechanistically, oxidative stress enhances the interaction of PCAF with METTL3, increases METTL3 acetylation, and suppresses the interaction of METTL3 with EIF3H, thereby decreasing the translation efficiency of ribosomes and inhibiting cell proliferation. Altogether, we suggest a mechanism by which oxidative stress regulates RNA translation efficiency by the modulation of METTL3 acetylation mediated by PCAF.
Collapse
Affiliation(s)
- Cheng Liu
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing, 100191, China
| | - Miao Yu
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing, 100191, China
| | - Mengyuan Wang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing, 100191, China
| | - Siyuan Yang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing, 100191, China
| | - Yenan Fu
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing, 100191, China
| | - Lei Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing, 100191, China
| | - Chaoyang Zhu
- Department of General Surgery and Urological Surgery, Huaihe Hospital, Henan University, Kaifeng, 100084, China.
| | - Hongquan Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing, 100191, China.
- Department of Human Anatomy, Histology, and Embryology, Shenzhen University School of Medicine, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Zhou X, Wu X, Pei C, He M, Chu M, Guo X, Liang C, Bao P, Yan P. Integrative analysis of Iso-Seq and RNA-seq data reveals transcriptome complexity and differential isoform in skin tissues of different hair length Yak. BMC Genomics 2024; 25:498. [PMID: 38773419 PMCID: PMC11106907 DOI: 10.1186/s12864-024-10345-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/25/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND The hair follicle development process is regulated by sophisticated genes and signaling networks, and the hair grows from the hair follicle. The Tianzhu white yak population exhibits differences in hair length, especially on the forehead and shoulder region. However, the genetic mechanism is still unclear. Isoform sequencing (Iso-seq) technology with advantages in long reads sequencing. Hence, we combined the Iso-seq and RNA-seq methods to investigate the transcript complexity and difference between long-haired yak (LHY) and normal-haired yak (NHY). RESULTS The hair length measurement result showed a significant difference between LHY and NHY on the forehead and the shoulder (P-value < 0.001). The skin samples from the forehead and the shoulder of LHY and NHY were pooled for isoform sequencing (Iso-seq). We obtained numerous long transcripts, including novel isoforms, long non-coding RNA, alternative splicing events, and alternative polyadenylation events. Combined with RNA-seq data, we performed differential isoforms (DEIs) analysis between LHY and NHY. We found that some hair follicle and skin development-related DEIs, like BMP4, KRT2, IGF2R, and COL1A2 in the forehead skin; BMP1, KRT1, FGF5, COL2A1, and IGFBP5 in the shoulder skin. Enrichment analysis revealed that DEIs in both two comparable groups significantly participated in skin and hair follicle development-related pathways, like ECM-receptor interaction, focal adhesion, and PI3K-Akt signaling pathways. The results indicated that the hair follicle development of Tianzhu white yak may influence the hair length difference. Besides, the protein-protein interaction (PPI) network of DEIs showed COL2A1 and COL3A1 exhibited a high degree of centrality, and these two genes were suggested as potential candidates for the hair length growth of Tianzhu white yak. CONCLUSIONS The results provided a comprehensive analysis of the transcriptome complexity and identified differential transcripts that enhance our understanding of the molecular mechanisms underlying the variation in hair length growth in Tianzhu white yak.
Collapse
Affiliation(s)
- Xuelan Zhou
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, 730050, Lanzhou, P.R. China
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, 730050, Lanzhou, P.R. China
| | - Xiaoyun Wu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, 730050, Lanzhou, P.R. China
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, 730050, Lanzhou, P.R. China
| | - Chengfang Pei
- Animal Husbandry Technology Promotion Station of Tianzhu County, 733000, Wuwei, P.R. China
| | - Meilan He
- Animal Husbandry Technology Promotion Station of Tianzhu County, 733000, Wuwei, P.R. China
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, 730050, Lanzhou, P.R. China
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, 730050, Lanzhou, P.R. China
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, 730050, Lanzhou, P.R. China
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, 730050, Lanzhou, P.R. China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, 730050, Lanzhou, P.R. China
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, 730050, Lanzhou, P.R. China
| | - Pengjia Bao
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, 730050, Lanzhou, P.R. China.
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, 730050, Lanzhou, P.R. China.
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, 730050, Lanzhou, P.R. China.
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, 730050, Lanzhou, P.R. China.
| |
Collapse
|
7
|
Peng L, Zhang D, Tu H, Wu D, Xiang S, Yang W, Zhao Y, Yang J. The role of Map1b in regulating osteoblast polarity, proliferation, differentiation and migration. Bone 2024; 181:117038. [PMID: 38316337 DOI: 10.1016/j.bone.2024.117038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/07/2024]
Abstract
Osteoblast polarity, proliferation, differentiation, and migration are essential for maintaining normal bone structure and function. While the microtubule-associated protein Map1b has been extensively studied in nerve cells, its role in bone cells is less known. We investigated the functional significance of Map1b in mouse bone marrow stromal cells (ST2) and elucidated its relationship and influence on cytoskeletal polarity and Golgi organization. Our results suggest that Map1b, as a microtubule regulatory protein, can also regulate the expression of cyclin PCNA, p-H3(S10) and migration-related protein integrin β1, thereby affecting the proliferation and migration of osteoblasts. The downstream target gene Rgc32 was screened by RNA sequencing. Furthermore, Map1b, as a downstream mediator, regulates the Wnt5a signaling pathway. This study expands our understanding of the involvement of Map1b in bone biology and highlights its crucial role in governing osteoblast polarity, proliferation, and migration, thereby providing a basis for developing novel therapeutic strategies targeting Map1b in orthopedic medicine and promoting precision treatment modalities. Further investigations on the precise mechanisms underlying Map1b's influence on bone cell function and disease progression are needed.
Collapse
Affiliation(s)
- Li Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Heng Tu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Dan Wu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shuaixi Xiang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wenbin Yang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yun Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jing Yang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
8
|
Zheng J, Lu Y, Lin Y, Si S, Guo B, Zhao X, Cui L. Epitranscriptomic modifications in mesenchymal stem cell differentiation: advances, mechanistic insights, and beyond. Cell Death Differ 2024; 31:9-27. [PMID: 37985811 PMCID: PMC10782030 DOI: 10.1038/s41418-023-01238-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
RNA modifications, known as the "epitranscriptome", represent a key layer of regulation that influences a wide array of biological processes in mesenchymal stem cells (MSCs). These modifications, catalyzed by specific enzymes, often termed "writers", "readers", and "erasers", can dynamically alter the MSCs' transcriptomic landscape, thereby modulating cell differentiation, proliferation, and responses to environmental cues. These enzymes include members of the classes METTL, IGF2BP, WTAP, YTHD, FTO, NAT, and others. Many of these RNA-modifying agents are active during MSC lineage differentiation. This review provides a comprehensive overview of the current understanding of different RNA modifications in MSCs, their roles in regulating stem cell behavior, and their implications in MSC-based therapies. It delves into how RNA modifications impact MSC biology, the functional significance of individual modifications, and the complex interplay among these modifications. We further discuss how these intricate regulatory mechanisms contribute to the functional diversity of MSCs, and how they might be harnessed for therapeutic applications. The review also highlights current challenges and potential future directions in the study of RNA modifications in MSCs, emphasizing the need for innovative tools to precisely map these modifications and decipher their context-specific effects. Collectively, this work paves the way for a deeper understanding of the role of the epitranscriptome in MSC biology, potentially advancing therapeutic strategies in regenerative medicine and MSC-based therapies.
Collapse
Affiliation(s)
- Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Shanshan Si
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Bing Guo
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, 90095, CA, USA.
| |
Collapse
|
9
|
García-Vílchez R, Añazco-Guenkova AM, López J, Dietmann S, Tomé M, Jimeno S, Azkargorta M, Elortza F, Bárcena L, Gonzalez-Lopez M, Aransay AM, Sánchez-Martín MA, Huertas P, Durán RV, Blanco S. N7-methylguanosine methylation of tRNAs regulates survival to stress in cancer. Oncogene 2023; 42:3169-3181. [PMID: 37660182 PMCID: PMC10589097 DOI: 10.1038/s41388-023-02825-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 07/27/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023]
Abstract
Tumour progression and therapy tolerance are highly regulated and complex processes largely dependent on the plasticity of cancer cells and their capacity to respond to stress. The higher plasticity of cancer cells highlights the need for identifying targetable molecular pathways that challenge cancer cell survival. Here, we show that N7-guanosine methylation (m7G) of tRNAs, mediated by METTL1, regulates survival to stress conditions in cancer cells. Mechanistically, we find that m7G in tRNAs protects them from stress-induced cleavage and processing into 5' tRNA fragments. Our analyses reveal that the loss of tRNA m7G methylation activates stress response pathways, sensitising cancer cells to stress. Furthermore, we find that the loss of METTL1 reduces tumour growth and increases cytotoxic stress in vivo. Our study uncovers the role of m7G methylation of tRNAs in stress responses and highlights the potential of targeting METTL1 to sensitise cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Raquel García-Vílchez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Ana M Añazco-Guenkova
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Judith López
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Sabine Dietmann
- Washington University School of Medicine in St. Louis, 660S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Mercedes Tomé
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Sevilla, Spain
| | - Sonia Jimeno
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Sevilla, Spain
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | - Mikel Azkargorta
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 bld., 48160, Derio, Bizkaia, Spain
- Carlos III Networked Proteomics Platform (ProteoRed-ISCIII), Madrid, Spain
| | - Félix Elortza
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 bld., 48160, Derio, Bizkaia, Spain
- Carlos III Networked Proteomics Platform (ProteoRed-ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Laura Bárcena
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 bld., 48160, Derio, Bizkaia, Spain
| | - Monika Gonzalez-Lopez
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 bld., 48160, Derio, Bizkaia, Spain
| | - Ana M Aransay
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 bld., 48160, Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Manuel A Sánchez-Martín
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
- Servicio de Transgénesis, Nucleus, Universidad de Salamanca, 37007, Salamanca, Spain
| | - Pablo Huertas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Sevilla, Spain
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | - Raúl V Durán
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Sevilla, Spain
| | - Sandra Blanco
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain.
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
10
|
Fang L, Huang H, Lv J, Chen Z, Lu C, Jiang T, Xu P, Li Y, Wang S, Li B, Li Z, Wang W, Xu Z. m5C-methylated lncRNA NR_033928 promotes gastric cancer proliferation by stabilizing GLS mRNA to promote glutamine metabolism reprogramming. Cell Death Dis 2023; 14:520. [PMID: 37582794 PMCID: PMC10427642 DOI: 10.1038/s41419-023-06049-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
Abnormal 5-methylcytosine (m5C) methylation has been proved to be closely related to gastric carcinogenesis, progression, and prognosis. Dysregulated long noncoding RNAs (lncRNAs) participate in a variety of biological processes in cancer. However, to date, m5C-methylated lncRNAs are rarely researched in gastric cancer (GC). Here, we found that RNA cytosine-C(5)-methyltransferase (NSUN2) was upregulated in GC and high NSUN2 expression was associated with poor prognosis. NR_033928 was identified as an NSUN2-methylated and upregulated lncRNA in GC. Functionally, NR_033928 upregulated the expression of glutaminase (GLS) by interacting with IGF2BP3/HUR complex to promote GLS mRNA stability. Increased glutamine metabolite, α-KG, upregulated NR_033928 expression by enhancing its promoter 5-hydroxymethylcytosine (hm5C) demethylation. In conclusion, our results revealed that NSUN2-methylated NR_033928 promoted GC progression and might be a potential prognostic and therapeutic target for GC.
Collapse
Affiliation(s)
- Lang Fang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hongxin Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jialun Lv
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zetian Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chen Lu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Tianlu Jiang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Penghui Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ying Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Sen Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Bowen Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zheng Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Weizhi Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 210029, Nanjing, Jiangsu Province, China.
| |
Collapse
|
11
|
Wang D, Zheng T, Zhou S, Liu M, Liu Y, Gu X, Mao S, Yu B. Promoting axon regeneration by inhibiting RNA N6-methyladenosine demethylase ALKBH5. eLife 2023; 12:e85309. [PMID: 37535403 PMCID: PMC10400074 DOI: 10.7554/elife.85309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/04/2023] [Indexed: 08/04/2023] Open
Abstract
A key limiting factor of successful axon regeneration is the intrinsic regenerative ability in both the peripheral nervous system (PNS) and central nervous system (CNS). Previous studies have identified intrinsic regenerative ability regulators that act on gene expression in injured neurons. However, it is less known whether RNA modifications play a role in this process. Here, we systematically screened the functions of all common m6A modification-related enzymes in axon regeneration and report ALKBH5, an evolutionarily conserved RNA m6A demethylase, as a regulator of axonal regeneration in rodents. In PNS, knockdown of ALKBH5 enhanced sensory axonal regeneration, whereas overexpressing ALKBH5 impaired axonal regeneration in an m6A-dependent manner. Mechanistically, ALKBH5 increased the stability of Lpin2 mRNA and thus limited regenerative growth associated lipid metabolism in dorsal root ganglion neurons. Moreover, in CNS, knockdown of ALKBH5 enhanced the survival and axonal regeneration of retinal ganglion cells after optic nerve injury. Together, our results suggest a novel mechanism regulating axon regeneration and point ALKBH5 as a potential target for promoting axon regeneration in both PNS and CNS.
Collapse
Affiliation(s)
- Dong Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Tiemei Zheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Mingwen Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Yaobo Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University; Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Susu Mao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| |
Collapse
|
12
|
Cao J, Kuyumcu-Martinez MN. Alternative polyadenylation regulation in cardiac development and cardiovascular disease. Cardiovasc Res 2023; 119:1324-1335. [PMID: 36657944 PMCID: PMC10262186 DOI: 10.1093/cvr/cvad014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 01/21/2023] Open
Abstract
Cleavage and polyadenylation of pre-mRNAs is a necessary step for gene expression and function. Majority of human genes exhibit multiple polyadenylation sites, which can be alternatively used to generate different mRNA isoforms from a single gene. Alternative polyadenylation (APA) of pre-mRNAs is important for the proteome and transcriptome landscape. APA is tightly regulated during development and contributes to tissue-specific gene regulation. Mis-regulation of APA is linked to a wide range of pathological conditions. APA-mediated gene regulation in the heart is emerging as a new area of research. Here, we will discuss the impact of APA on gene regulation during heart development and in cardiovascular diseases. First, we will briefly review how APA impacts gene regulation and discuss molecular mechanisms that control APA. Then, we will address APA regulation during heart development and its dysregulation in cardiovascular diseases. Finally, we will discuss pre-mRNA targeting strategies to correct aberrant APA patterns of essential genes for the treatment or prevention of cardiovascular diseases. The RNA field is blooming due to advancements in RNA-based technologies. RNA-based vaccines and therapies are becoming the new line of effective and safe approaches for the treatment and prevention of human diseases. Overall, this review will be influential for understanding gene regulation at the RNA level via APA in the heart and will help design RNA-based tools for the treatment of cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Jun Cao
- Faculty of Environment and Life, Beijing University of Technology, Xueyuan Road, Haidian District, Beijing 100124, PR China
| | - Muge N Kuyumcu-Martinez
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77573, USA
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Translational Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77573, USA
| |
Collapse
|
13
|
Huang G, Zhang F, Xie D, Ma Y, Wang P, Cao G, Chen L, Lin S, Zhao Z, Cai Z. High-throughput profiling of RNA modifications by ultra-performance liquid chromatography coupled to complementary mass spectrometry: Methods, quality control, and applications. Talanta 2023; 263:124697. [PMID: 37262985 DOI: 10.1016/j.talanta.2023.124697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/03/2023]
Abstract
Although next-generation sequencing technology has been used to delineate RNA modifications in recent years, the paucity of appropriate converting reactions or specific antibodies impedes the accurate characterization and quantification of numerous RNA modifications, especially when these modifications demonstrate wide variations across developmental stages and cell types. In this study, we developed a high-throughput analytical platform coupling ultra-performance liquid chromatograph (UPLC) with complementary mass spectrometry (MS) to identify and quantify RNA modifications in both synthetic and biological samples. Sixty-four types of RNA modifications, including positional isomers and hypermodified ribonucleosides, were successfully monitored within a 16-min single run of UPLC-MS. Two independent methods to cross-validate the purity of RNA extracted from Caenorhabditis elegans (C. elegans) were developed using the coexisting C. elegans and Escherichia coli (E. coli) as a surveillance system. To test the validity of the method, we investigated the RNA modification landscape of three model organisms, C. elegans, E. coli, and Arabidopsis thaliana (A. thaliana). Both the identity and molarity of modified ribonucleosides markedly varied among the species. Moreover, our platform is not only useful for exploring the dynamics of RNA modifications in response to environmental cues (e.g., cold shock) but can also help with the identification of RNA-modifying enzymes in genetic studies. Cumulatively, our method presents a novel platform for the comprehensive analysis of RNA modifications, which will be of benefit to both analytical chemists involved in biomarker discovery and biologists conducting functional studies of RNA modifications.
Collapse
Affiliation(s)
- Gefei Huang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Feng Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Dongying Xie
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Yiming Ma
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Pengxi Wang
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Guodong Cao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Leijian Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Siyi Lin
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China.
| |
Collapse
|
14
|
Gonskikh Y, Stoute J, Shen H, Budinich K, Pingul B, Schultz K, Elashal H, Marmorstein R, Shi J, Liu KF. Noncatalytic regulation of 18 S rRNA methyltransferase DIMT1 in acute myeloid leukemia. Genes Dev 2023; 37:321-335. [PMID: 37024283 PMCID: PMC10153457 DOI: 10.1101/gad.350298.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/21/2023] [Indexed: 04/08/2023]
Abstract
Several rRNA-modifying enzymes install rRNA modifications while participating in ribosome assembly. Here, we show that 18S rRNA methyltransferase DIMT1 is essential for acute myeloid leukemia (AML) proliferation through a noncatalytic function. We reveal that targeting a positively charged cleft of DIMT1, remote from the catalytic site, weakens the binding of DIMT1 to rRNA and mislocalizes DIMT1 to the nucleoplasm, in contrast to the primarily nucleolar localization of wild-type DIMT1. Mechanistically, rRNA binding is required for DIMT1 to undergo liquid-liquid phase separation, which explains the distinct nucleoplasm localization of the rRNA binding-deficient DIMT1. Re-expression of wild-type or a catalytically inactive mutant E85A, but not the rRNA binding-deficient DIMT1, supports AML cell proliferation. This study provides a new strategy to target DIMT1-regulated AML proliferation via targeting this essential noncatalytic region.
Collapse
Affiliation(s)
- Yulia Gonskikh
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Julian Stoute
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Hui Shen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Krista Budinich
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Bianca Pingul
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kollin Schultz
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Heidi Elashal
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ronen Marmorstein
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Junwei Shi
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kathy Fange Liu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
15
|
Hao L, Zhang J, Liu Z, Lin X, Guo J. Epitranscriptomics in the development, functions, and disorders of cancer stem cells. Front Oncol 2023; 13:1145766. [PMID: 37007137 PMCID: PMC10063963 DOI: 10.3389/fonc.2023.1145766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/10/2023] [Indexed: 03/19/2023] Open
Abstract
Biomolecular modifications play an important role in the development of life, and previous studies have investigated the role of DNA and proteins. In the last decade, with the development of sequencing technology, the veil of epitranscriptomics has been gradually lifted. Transcriptomics focuses on RNA modifications that affect gene expression at the transcriptional level. With further research, scientists have found that changes in RNA modification proteins are closely linked to cancer tumorigenesis, progression, metastasis, and drug resistance. Cancer stem cells (CSCs) are considered powerful drivers of tumorigenesis and key factors for therapeutic resistance. In this article, we focus on describing RNA modifications associated with CSCs and summarize the associated research progress. The aim of this review is to identify new directions for cancer diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Linlin Hao
- Department of Tumor Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Jian Zhang
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Zhongshan Liu
- Department of Tumor Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Xia Lin
- Department of Tumor Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Jie Guo
- Department of Tumor Radiotherapy, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Jie Guo,
| |
Collapse
|
16
|
Ren F, Cao KY, Gong RZ, Yu ML, Tao P, Xiao Y, Jiang ZH. The role of post-transcriptional modification on a new tRNA Ile(GAU) identified from Ganoderma lucidum in its fragments' cytotoxicity on cancer cells. Int J Biol Macromol 2023; 229:885-895. [PMID: 36603719 DOI: 10.1016/j.ijbiomac.2022.12.327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023]
Abstract
Ganoderma lucidum (Ganoderma) is a famous Chinese herbal medicine which has been used clinically for thousands of years in China. Despite numerous studies on triterpenes and polysaccharides, the bioactivity of RNAs abundant in Ganoderma remains unknown. Here, based on LC-MS techniques, dihydrouracil, 5-methyluridine (m5U) and pseudouridine were identified at position 19, 52 and 53 of a new tRNAIle(GAU) which was isolated as the most abundant tRNA species in Ganoderma, and is the first purified tRNA from fungus. Cytotoxic screening of tRNA-half (t-half) and tRNA fragment (tRF) derived from this tRNA, as well as their mimics (t-half or tRF as antisense strand), demonstrated that the double-stranded form, i.e., tRF and t-halve mimics, exhibited stronger cytotoxicity than their single-stranded form, and the cytotoxicity of t-half mimic is significantly stronger than that of tRF mimic. Notably, the cytotoxicity of 3'-t-half mimic is not only much more potent than that of taxol, but also is much more potent than that of ganoderic acids, the major bioactive components in Ganoderma. Furthermore, 3'-t-half mimic_M2 (m5U modified) exhibited significantly stronger cytotoxicity than unmodified 3'-t-half mimic, which is consistent with the computational simulation showing that m5U modification enhances the stability of the tertiary structure of 3'-t-half mimic. Overall, the present study not only indicates t-halves are bioactive components in Ganoderma which should not be neglected, but also reveals an important role of post-transcriptional modification on tRNA in its fragments' cytotoxicity against cancer cells, which benefits the design and development of RNAi drugs from natural resource.
Collapse
Affiliation(s)
- Fei Ren
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Kai-Yue Cao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Rui-Ze Gong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Meng-Lan Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Peng Tao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yi Xiao
- School of Physics and Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau.
| |
Collapse
|
17
|
Roles of RNA Methylations in Cancer Progression, Autophagy, and Anticancer Drug Resistance. Int J Mol Sci 2023; 24:ijms24044225. [PMID: 36835633 PMCID: PMC9959100 DOI: 10.3390/ijms24044225] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
RNA methylations play critical roles in RNA processes, including RNA splicing, nuclear export, nonsense-mediated RNA decay, and translation. Regulators of RNA methylations have been shown to be differentially expressed between tumor tissues/cancer cells and adjacent tissues/normal cells. N6-methyladenosine (m6A) is the most prevalent internal modification of RNAs in eukaryotes. m6A regulators include m6A writers, m6A demethylases, and m6A binding proteins. Since m6A regulators play important roles in regulating the expression of oncogenes and tumor suppressor genes, targeting m6A regulators can be a strategy for developing anticancer drugs. Anticancer drugs targeting m6A regulators are in clinical trials. m6A regulator-targeting drugs could enhance the anticancer effects of current chemotherapy drugs. This review summarizes the roles of m6A regulators in cancer initiation and progression, autophagy, and anticancer drug resistance. The review also discusses the relationship between autophagy and anticancer drug resistance, the effect of high levels of m6A on autophagy and the potential values of m6A regulators as diagnostic markers and anticancer therapeutic targets.
Collapse
|
18
|
Zhang C, Dai D, Zhang W, Yang W, Guo Y, Wei Q. Role of m6A RNA methylation in the development of hepatitis B virus-associated hepatocellular carcinoma. J Gastroenterol Hepatol 2022; 37:2039-2050. [PMID: 36066844 DOI: 10.1111/jgh.15999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/10/2022] [Accepted: 09/03/2022] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common liver malignancy that can be developed from hepatitis B and cirrhosis. Many pathophysiological alterations, including hepatitis B virus (HBV) DNA integration, oxidative stress, cytokine release, telomerase homeostasis, mitochondrial damage, epigenetic modification, and tumor microenvironment, are involved in the biological process from hepatitis B to cirrhosis and HCC. N6-methyladenosine (m6A), as an epitranscriptomic modification of RNAs, can regulate the stability, splicing, degradation, transcription, and translation of downstream target RNAs in HBV and liver cancer cells. m6A regulators (writers, erasers, and readers) play an important role in the pathogenesis of HBV-associated HCC by regulating cell proliferation, apoptosis, migration, autophagy, differentiation, inflammation, angiogenesis, and tumor microenvironment. This review summarizes the current progress of m6A methylation in the molecular mechanisms, biological functions, and potential clinical implications of HBV-associated HCC.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China.,Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dongjun Dai
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wangjian Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenjun Yang
- Department of Pathology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yinglu Guo
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qichun Wei
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Chen HM, Li H, Lin MX, Fan WJ, Zhang Y, Lin YT, Wu SX. Research Progress for RNA Modifications in Physiological and Pathological Angiogenesis. Front Genet 2022; 13:952667. [PMID: 35937999 PMCID: PMC9354963 DOI: 10.3389/fgene.2022.952667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
As a critical layer of epigenetics, RNA modifications demonstrate various molecular functions and participate in numerous biological processes. RNA modifications have been shown to be essential for embryogenesis and stem cell fate. As high-throughput sequencing and antibody technologies advanced by leaps and bounds, the association of RNA modifications with multiple human diseases sparked research enthusiasm; in addition, aberrant RNA modification leads to tumor angiogenesis by regulating angiogenesis-related factors. This review collected recent cutting-edge studies focused on RNA modifications (N6-methyladenosine (m6A), N5-methylcytosine (m5C), N7-methylguanosine (m7G), N1-methyladenosine (m1A), and pseudopuridine (Ψ)), and their related regulators in tumor angiogenesis to emphasize the role and impact of RNA modifications.
Collapse
Affiliation(s)
- Hui-Ming Chen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Hang Li
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Meng-Xian Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Wei-Jie Fan
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yi Zhang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yan-Ting Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
- *Correspondence: Shu-Xiang Wu, ; Yan-Ting Lin,
| | - Shu-Xiang Wu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
- *Correspondence: Shu-Xiang Wu, ; Yan-Ting Lin,
| |
Collapse
|
20
|
Wang X, Lu X, Wang P, Chen Q, Xiong L, Tang M, Hong C, Lin X, Shi K, Liang L, Lin J. SRSF9 promotes colorectal cancer progression via stabilizing DSN1 mRNA in an m6A-related manner. J Transl Med 2022; 20:198. [PMID: 35509101 PMCID: PMC9066907 DOI: 10.1186/s12967-022-03399-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022] Open
Abstract
Background Serine/arginine-rich splicing factor 9 (SRSF9) is a classical RNA-binding protein that is essential for regulating gene expression programs through its interaction with target RNA. Whether SRSF9 plays an essential role in colorectal cancer (CRC) progression and can serve as a therapeutic target is largely unknown. Here, we highlight new findings on the role of SRSF9 in CRC progression and elucidate the underlying mechanism. Methods CRC cell lines and clinical tissue samples were used. qRT-PCR, Western blotting, immunohistochemistry (IHC), gain- and loss-of-function assays, animal xenograft model studies, bioinformatic analysis, methylated single-stranded RNA affinity assays, gene-specific m6A quantitative qRT-PCR, dual-luciferase reporter assays and RNA stability assays were performed in this study. Results The expression level of SRSF9 was higher in CRC cell lines than that in an immortal human intestinal epithelial cell line. Overexpression of SRSF9 was positively associated with lymph node metastasis and Dukes stage. Functionally, SRSF9 promoted cell proliferation, migration and invasion in vitro and xenograft growth. The results of bioinformatic analysis indicated that DSN1 was the downstream target of SRSF9. In CRC cells and clinical tissue samples, the expression of SRSF9 was positively associated with the expression of DSN1. Knockdown of DSN1 partially inhibited the SRSF9-induced phenotype in CRC cells. Mechanistically, we further found that SRSF9 is an m6A-binding protein and that m6A modifications were enriched in DSN1 mRNA in CRC cells. Two m6A modification sites (chr20:36773619–36773620 and chr20:36773645–chr20:36773646) in the SRSF9-binding region (chr20:36773597–36773736) of DSN1 mRNA were identified. SRSF9 binds to DSN1 in an m6A motif- and dose-dependent manner. SRSF9 modulates the expression of DSN1 in CRC cells. Such expression regulation was largely impaired upon methyltransferase METTL3 knockdown. Moreover, knockdown of SRSF9 accelerated DSN1 mRNA turnover, while overexpression of SRSF9 stabilized DSN1 mRNA in CRC cells. Such stabilizing was also weakened upon METTL3 knockdown. Conclusion Overexpression of SRSF9 was associated with lymph node metastasis and Dukes stage in CRC. Knockdown of DSN1 eliminated the effects by SRSF9 overexpression in CRC. Our results indicated that SRSF9 functions as an m6A-binding protein (termed “reader”) by enhancing the stability of DSN1 mRNA in m6A-related manner. Our study is the first to report that SRSF9-mediated m6A recognition has a crucial role in CRC progression, and highlights SRSF9 as a potential therapeutic target for CRC management. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03399-3.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Xiansheng Lu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Ping Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Qiaoyu Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Le Xiong
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Minshan Tang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Chang Hong
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Xiaowen Lin
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Kaixi Shi
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Jie Lin
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China. .,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
21
|
Song H, Zhang J, Liu B, Xu J, Cai B, Yang H, Straube J, Yu X, Ma T. Biological roles of RNA m 5C modification and its implications in Cancer immunotherapy. Biomark Res 2022; 10:15. [PMID: 35365216 PMCID: PMC8973801 DOI: 10.1186/s40364-022-00362-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/03/2022] [Indexed: 01/08/2023] Open
Abstract
Epigenetics including DNA and RNA modifications have always been the hotspot field of life sciences in the post-genome era. Since the first mapping of N6-methyladenosine (m6A) and the discovery of its widespread presence in mRNA, there are at least 160-170 RNA modifications have been discovered. These methylations occur in different RNA types, and their distribution is species-specific. 5-methylcytosine (m5C) has been found in mRNA, rRNA and tRNA of representative organisms from all kinds of species. As reversible epigenetic modifications, m5C modifications of RNA affect the fate of the modified RNA molecules and play important roles in various biological processes including RNA stability control, protein synthesis, and transcriptional regulation. Furthermore, accumulative evidence also implicates the role of RNA m5C in tumorigenesis. Here, we review the latest progresses in the biological roles of m5C modifications and how it is regulated by corresponding "writers", "readers" and "erasers" proteins, as well as the potential molecular mechanism in tumorigenesis and cancer immunotherapy.
Collapse
Affiliation(s)
- Hang Song
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Jianye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Bin Liu
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Jing Xu
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Biao Cai
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Hai Yang
- Division of Surgical Research, Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Julia Straube
- Division of Molecular and Experimental Surgery, Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Xiyong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Teng Ma
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China.
| |
Collapse
|
22
|
Wu W, Zhang F, Zhao J, He P, Li Y. The N6-methyladenosine:mechanisms, diagnostic value, immunotherapy prospec-ts and challenges in gastric cancer. Exp Cell Res 2022; 415:113115. [PMID: 35341774 DOI: 10.1016/j.yexcr.2022.113115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 12/22/2022]
Abstract
The N6-methyladenosine(m6A) RNA modification is important in post-transcriptional regulation of RNA and are regulated reversibly by methyltransferases (writers), demethylases (erasers) and m6A recognition proteins (readers). Changes in the structure and function of key RNAs contribute to the development of diseases, particularly tumors. Many abnormal expressions of molecules related to m6A RNA methylation modification are discovered in gastric cancer(GC), which changes the methylation level and stability of target genes after transcription, and then regulates related metabolic pathways, affecting the occurrence and progression of GC. Therefore, an in-depth study of m6A RNA modification in GC is conducive to the development of new tumor therapies and the achieve of individualized treatment. At present, both basic and clinical studies indicate that m6A plays a complex and contentious role in GC. In this paper, we not only review the roles and mechanisms of m6A modified related proteins, but also discuss the value of m6A modulators in the clinical applications and current challenges of GC, aiming to provide research clues for the early diagnosis and explore the feasibility of m6A related proteins as specific targets for GC immunotherapy.
Collapse
Affiliation(s)
- Wenzhang Wu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Fan Zhang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Jun Zhao
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Puyi He
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Yumin Li
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, China; Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730000, China.
| |
Collapse
|
23
|
Zhang L, Su Z, Hong F, Wang L. Identification of a Methylation-Regulating Genes Prognostic Signature to Predict the Prognosis and Aid Immunotherapy of Clear Cell Renal Cell Carcinoma. Front Cell Dev Biol 2022; 10:832803. [PMID: 35309925 PMCID: PMC8924039 DOI: 10.3389/fcell.2022.832803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/04/2022] [Indexed: 12/21/2022] Open
Abstract
Methylation is one of the most extensive modifications of biological macromolecules and affects cell-fate determination, development, aging, and cancer. Several methylation modifications, including 5-methylcytosine and N6-methyladenosine, play an essential role in many cancers. However, little is known about the relationship between methylation and the prognosis of clear cell renal cell carcinoma (ccRCC). Here, we established a methylation-regulating genes prognostic signature (MRGPS) to predict the prognoses of ccRCC patients. We obtained ccRCC samples from The Cancer Genome Atlas and identified methylation-regulatingd genes (MRGs) from the Gene Set Enrichment Analysis database. We also determined differentially expressed genes (DEGs) and performed cluster analysis to identify candidate genes. Subsequently, we established and validated an MRGPS to predict the overall survival of ccRCC patients. This was also verified in 15 ccRCC samples collected from the Fujian Provincial Hospital via quantitative real-time transcription (qRT-PCR). While 95 MRGs were differentially expressed (DEGs1) between tumor and normal tissues, 17 MRGs were differentially expressed (DEGs2) between cluster 1 and 2. Notably, 13 genes common among DEGs1 and DEGs2 were identified as hub genes. In fact, we established three genes (NOP2, NSUN6, and TET2) to be an MRGPS based on their multivariate Cox regression analysis coefficients (p < 0.05). A receiver operating characteristic curve analysis confirmed this MRGPS to have a good prognostic performance. Moreover, the MRGPS was associated with characteristics of the tumor immune microenvironment and responses to inhibitor checkpoint inhibitors. Data from “IMvigor 210” demonstrated that patients with a low MRGPS would benefit more from atelozumab (p < 0.05). Furthermore, a multivariate analysis revealed that MRGPS was an independent risk factor associated with ccRCC prognosis (p < 0.05). Notably, a nomogram constructed by combining with clinical characteristics (age, grade, stage, and MRGPS risk score) to predict the overall survival of a ccRCC patient had a favorable predictive value. Eventually, our qRT-PCR results showed that tumor tissues had higher NOP2 and NSUN6 expression levels and lower TET2 expression than normal tissues of ccRCC samples. While the proposed MRGPS comprising NOP2, NSUN6, and TET2 can be an alternative prognostic biomarker for ccRCC patients, it is a promising index for personalized ICI treatments against ccRCC.
Collapse
Affiliation(s)
- Li Zhang
- Department of Nephrology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Zhixiong Su
- Department of Radiation Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Fuyuan Hong
- Department of Nephrology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- *Correspondence: Fuyuan Hong, ; Lei Wang,
| | - Lei Wang
- Department of Radiation Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, China
- *Correspondence: Fuyuan Hong, ; Lei Wang,
| |
Collapse
|
24
|
Xin Y, He Q, Liang H, Zhang K, Guo J, Zhong Q, Chen D, Li J, Liu Y, Chen S. m 6A epitranscriptomic modification regulates neural progenitor-to-glial cell transition in the retina. eLife 2022; 11:79994. [PMID: 36459087 PMCID: PMC9718531 DOI: 10.7554/elife.79994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/13/2022] [Indexed: 12/03/2022] Open
Abstract
N 6-methyladenosine (m6A) is the most prevalent mRNA internal modification and has been shown to regulate the development, physiology, and pathology of various tissues. However, the functions of the m6A epitranscriptome in the visual system remain unclear. In this study, using a retina-specific conditional knockout mouse model, we show that retinas deficient in Mettl3, the core component of the m6A methyltransferase complex, exhibit structural and functional abnormalities beginning at the end of retinogenesis. Immunohistological and single-cell RNA sequencing (scRNA-seq) analyses of retinogenesis processes reveal that retinal progenitor cells (RPCs) and Müller glial cells are the two cell types primarily affected by Mettl3 deficiency. Integrative analyses of scRNA-seq and MeRIP-seq data suggest that m6A fine-tunes the transcriptomic transition from RPCs to Müller cells by promoting the degradation of RPC transcripts, the disruption of which leads to abnormalities in late retinogenesis and likely compromises the glial functions of Müller cells. Overexpression of m6A-regulated RPC transcripts in late RPCs partially recapitulates the Mettl3-deficient retinal phenotype. Collectively, our study reveals an epitranscriptomic mechanism governing progenitor-to-glial cell transition during late retinogenesis, which is essential for the homeostasis of the mature retina. The mechanism revealed in this study might also apply to other nervous systems.
Collapse
Affiliation(s)
- Yanling Xin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Qinghai He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Huilin Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Ke Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Jingyi Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Qi Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Dan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Jinyan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Shuyi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| |
Collapse
|
25
|
Cruz J, Lemos B. Post-transcriptional diversity in riboproteins and RNAs in aging and cancer. Semin Cancer Biol 2021; 76:292-300. [PMID: 34474152 PMCID: PMC8627441 DOI: 10.1016/j.semcancer.2021.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 12/19/2022]
Abstract
Post-transcriptional (PtscM) and post-translational (PtrnM) modifications of nucleotides and amino acids are covalent modifications able to change physio-chemical properties of RNAs and proteins. In the ribosome, the adequate assembly of rRNAs and ribosomal protein subunits in the nucleolus ensures suitable translational activity, with protein synthesis tuned according to intracellular demands of energy production, replication, proliferation, and growth. Disruption in the regulatory control of PtscM and PtrnM can impair ribosome biogenesis and ribosome function. Ribosomal impairment may, in turn, impact the synthesis of proteins engaged in functions as varied as telomere maintenance, apoptosis, and DNA repair, as well as intersect with mitochondria and telomerase activity. These cellular processes often malfunction in carcinogenesis and senescence. Here we discuss regulatory mechanisms of PtscMs and PtrnMs on ribosomal function. We also address chemical modification in rRNAs and their impacts on cellular metabolism, replication control, and senescence. Further, we highlight similarities and differences of PtscMs and PtrnMs in ribosomal intermediates during aging and carcinogenesis. Understanding these regulatory mechanisms may uncover critical steps for the development of more efficient oncologic and anti-aging therapies.
Collapse
Affiliation(s)
- Jurandir Cruz
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP 01246, Brazil
| | - Bernardo Lemos
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
26
|
Șelaru A, Costache M, Dinescu S. Epitranscriptomic signatures in stem cell differentiation to the neuronal lineage. RNA Biol 2021; 18:51-60. [PMID: 34582322 PMCID: PMC8677044 DOI: 10.1080/15476286.2021.1985348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Considered to be a field that is continuously growing, epitranscriptomics analyzes the modifications that occur in RNA transcripts and their downstream effects. As epigenetic modifications found in DNA and histones exhibit specific roles on various biological processes, also epitranscriptomic marks control gene expression patterns that are crucial for proper cell proliferation, differentiation and tissue development. Thus, various epitranscriptomic signatures have been identified to play specific roles during stem cell differentiation towards the neuronal and glial lineages, axonal guidance, synaptic plasticity, thus leading to the development of the mature brain tissue. Here we describe in-depth molecular mechanism underlying the most important RNA modifications with emerging roles in the nervous system.
Collapse
Affiliation(s)
- Aida Șelaru
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of the University of Bucharest, Bucharest, Romania
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of the University of Bucharest, Bucharest, Romania
| |
Collapse
|
27
|
Pu Q, Yu H, Zhou X, Li J, Yang Y, Wang T, Li F, Sheng S, Xie G. Xeno nucleic acid probes mediated methylation-specific PCR for single-base resolution analysis of N 6-methyladenosine in RNAs. Analyst 2021; 146:6306-6314. [PMID: 34550117 DOI: 10.1039/d1an01291f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reliable and cost-effective quantification of RNA modifications at a specific gene locus is essential to elucidate the pathogenic mechanism encoded by RNA epigenetics. Current methods to quantify N6-methyladenosine (m6A) at specific sites can hardly satisfy the requirement of clinical application because epigenetic information is easily lost through polymerase chain reaction (PCR) assay or other isothermal amplification methods unless tedious pretreatment is applied. Herein, we propose a simple xeno nucleic acid (XNA) as a blocker probe to mediate the methylation specific reverse transcription quantitative polymerase chain reaction (MsRT-qPCR) assay to directly magnify the minor differences between epigenetic bases and unmodified bases in RNA. Strand displacement reactions selectively initiated between the reverse transcription primer (RT-primer) and the XNA probe at the m6A template given the affinity differences between the blocker probes and the m6A-modified RNA (m6A-RNA) and unmodified RNA (A-RNA). Thus, preferential amplification of m6A-RNA was allowed. Integration of a well-established oligo-modified Fe3O4@UiO-66-NH4 allowed purification of mRNA and lncRNA from cellular total RNA samples and greatly reduced the non-specific interference of m6A detection in real samples. Multiple specific sites of m6A in mRNA and lncRNA samples are also successfully quantified. The XNA probe-based m6A assay required only common and available lab equipment and materials, which can be applied in m6A-related fundamental studies and clinical diagnosis.
Collapse
Affiliation(s)
- Qinli Pu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China. .,Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Hongyan Yu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Xi Zhou
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Junjie Li
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Yujun Yang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Ting Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Fugang Li
- Shanghai Upper Biotech Pharma Co, Ltd., Shanghai 201201, P. R. China
| | - Shangchun Sheng
- Department of Clinical Laboratory Affiliated Hospital & Clinical Medical College of Chengdu University, Sichuan 610081, P.R China.
| | - Guoming Xie
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
28
|
Wang G, Qu F, Liu S, Zhou J, Wang Y. Nucleolar protein NOP2 could serve as a potential prognostic predictor for clear cell renal cell carcinoma. Bioengineered 2021; 12:4841-4855. [PMID: 34334108 PMCID: PMC8806646 DOI: 10.1080/21655979.2021.1960130] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
As an indispensable part for cancer precision medicine, biomarkers and signatures for predicting cancer prognosis and therapeutic benefits were urgently required. The purpose of this study was to investigate the prognostic roles of NOP2 in renal clear cell carcinoma (ccRCC) for overall survival (OS) and its relationships with immunity. NOP2-related gene expression matrix associated with clinical information was obtained from the Cancer Genome Atlas (TCGA) ccRCC dataset and NOP2-related pathways were identified by gene set enrichment analysis (GSEA). Associations among the NOP2 expression and MSI, TMB, TNB, and immunity were also explored. Both the NOP2 mRNA and protein/phosphoprotein had a higher expression in ccRCC tumor tissues than in normal kidney tissues (both P < 0.001) and elevated NOP2 expression was associated with poor OS (P < 0.001). Logistic regression analysis revealed the NOP2 expression was significantly linked to stage, age, grade, N stage, T stage, and M stage (all P < 0.05). Univariate/multivariate Cox hazard regression analysis results indicated that NOP2 was an independent prognostic factor for OS in ccRCC and GSEA revealed five NOP2-related signaling pathways. Nomogram based on NOP2 and eight clinical characteristic parameters (grade, age, stage, gender, T stage, race, M stage, N stage) was constructed and carefully evaluated. Furthermore, NOP2 gene expression was also found to be significantly related to MSI, TMB, and immunity. Our findings revealed that NOP2 might be a potential prognostic factor for OS in ccRCC and it was significantly associated with immunity, MSI, and TMB.
Collapse
Affiliation(s)
- Gang Wang
- Department of Urology, The Affiliated Jianhu Hospital of Nantong University, Jiangsu Province, China
| | - Fangfang Qu
- Department of Anesthesiology, The Affiliated Jianhu Hospital of Nantong University, Jiangsu Province, China
| | - Shouyong Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jincai Zhou
- Department of Urology, The Affiliated Jianhu Hospital of Nantong University, Jiangsu Province, China
| | - Yi Wang
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
29
|
He Y, Yu X, Zhang M, Guo W. Pan-cancer analysis of m 5C regulator genes reveals consistent epigenetic landscape changes in multiple cancers. World J Surg Oncol 2021; 19:224. [PMID: 34325709 PMCID: PMC8323224 DOI: 10.1186/s12957-021-02342-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND 5-Methylcytosine (m5C) is a reversible modification to both DNA and various cellular RNAs. However, its roles in developing human cancers are poorly understood, including the effects of mutant m5C regulators and the outcomes of modified nucleobases in RNAs. METHODS Based on The Cancer Genome Atlas (TCGA) database, we uncovered that mutations and copy number variations (CNVs) of m5C regulatory genes were significantly correlated across many cancer types. We then assessed the correlation between the expression of individual m5C regulators and the activity of related hallmark pathways of cancers. RESULTS After validating m5C regulators' expression based on their contributions to cancer development and progression, we observed their upregulation within tumor-specific processes. Notably, our research connected aberrant alterations to m5C regulatory genes with poor clinical outcomes among various tumors that may drive cancer pathogenesis and/or survival. CONCLUSION Our results offered strong evidence and clinical implications for the involvement of m5C regulators.
Collapse
Affiliation(s)
- Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation At Henan Universities, Zhengzhou, 450052, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation At Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Menggang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation At Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation At Henan Universities, Zhengzhou, 450052, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| |
Collapse
|
30
|
RNA m6A Methyltransferase Mettl3 Regulates Spatial Neural Patterning in Xenopus laevis. Mol Cell Biol 2021; 41:e0010421. [PMID: 33972392 DOI: 10.1128/mcb.00104-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
N6-Methyladenosine (m6A) is the most prevalent internal RNA modification and has a widespread impact on mRNA stability and translation. Methyltransferase-like 3 (Mettl3) is a methyltransferase responsible for RNA m6A modification, and it is essential for early embryogenesis before or during gastrulation in mice and zebrafish. However, due to the early embryonic lethality, loss-of-function phenotypes of Mettl3 beyond gastrulation, especially during neurulation stages when spatial neural patterning takes place, remain elusive. Here, we address multiple roles of Mettl3 during Xenopus neurulation in anteroposterior neural patterning, neural crest specification, and neuronal cell differentiation. Knockdown of Mettl3 causes anteriorization of neurulae and tailbud embryos along with the loss of neural crest and neuronal cells. Knockdown of the m6A reader Ythdf1 and mRNA degradation factors, such as 3' to 5' exonuclease complex component Lsm1 or mRNA uridylation enzyme Tut7, also show similar neural patterning defects, suggesting that m6A-dependent mRNA destabilization regulates spatial neural patterning in Xenopus. We also address that canonical WNT signaling is inhibited in Mettl3 morphants, which may underlie the neural patterning defects of the morphants. Altogether, this study reveals functions of Mettl3 during spatial neural patterning in Xenopus.
Collapse
|
31
|
Garbo S, Zwergel C, Battistelli C. m6A RNA methylation and beyond - The epigenetic machinery and potential treatment options. Drug Discov Today 2021; 26:2559-2574. [PMID: 34126238 DOI: 10.1016/j.drudis.2021.06.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/02/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022]
Abstract
m6A is emerging as one of the most important RNA modifications because of its involvement in pathological and physiological events. Here, we provide an overview of this epitranscriptomic modification, beginning with a description of the molecular players involved and continuing with a focus on the role of m6A in the maintenance of stemness, induction of the epithelial to mesenchymal transition (EMT), and tumor progression. Finally, we discuss the state of the art regarding the design and validation of inhibitors of m6A writers or erasers to provide a background for future investigations and for the development of specific therapeutics.
Collapse
Affiliation(s)
- Sabrina Garbo
- Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Department of Molecular Medicine, Department of Excellence 2018-2022, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesù, Viale di San Paolo 15, 00146 Rome, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Department of Excellence 2018-2022, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Cecilia Battistelli
- Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Department of Molecular Medicine, Department of Excellence 2018-2022, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy.
| |
Collapse
|
32
|
Maran SR, de Lemos Padilha Pitta JL, Dos Santos Vasconcelos CR, McDermott SM, Rezende AM, Silvio Moretti N. Epitranscriptome machinery in Trypanosomatids: New players on the table? Mol Microbiol 2021; 115:942-958. [PMID: 33513291 DOI: 10.1111/mmi.14688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/20/2022]
Abstract
Trypanosoma and Leishmania parasites cause devastating tropical diseases resulting in serious global health consequences. These organisms have complex life cycles with mammalian hosts and insect vectors. The parasites must, therefore, survive in different environments, demanding rapid physiological and metabolic changes. These responses depend upon regulation of gene expression, which primarily occurs posttranscriptionally. Altering the composition or conformation of RNA through nucleotide modifications is one posttranscriptional mechanism of regulating RNA fate and function, and modifications including N6-methyladenosine (m6A), N1-methyladenosine (m1A), N5-methylcytidine (m5C), N4-acetylcytidine (ac4C), and pseudouridine (Ψ), dynamically regulate RNA stability and translation in diverse organisms. Little is known about RNA modifications and their machinery in Trypanosomatids, but we hypothesize that they regulate parasite gene expression and are vital for survival. Here, we identified Trypanosomatid homologs for writers of m1A, m5C, ac4C, and Ψ and analyze their evolutionary relationships. We systematically review the evidence for their functions and assess their potential use as therapeutic targets. This work provides new insights into the roles of these proteins in Trypanosomatid parasite biology and treatment of the diseases they cause and illustrates that Trypanosomatids provide an excellent model system to study RNA modifications, their molecular, cellular, and biological consequences, and their regulation and interplay.
Collapse
Affiliation(s)
- Suellen Rodrigues Maran
- Laboratory of Molecular Biology of Pathogens, Department of Microbiology, Immunology and Parasitology, Federal University of Sao Paulo, São Paulo, Brazil
| | | | | | - Suzanne M McDermott
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Nilmar Silvio Moretti
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| |
Collapse
|
33
|
Hahne JC, Lampis A, Valeri N. Vault RNAs: hidden gems in RNA and protein regulation. Cell Mol Life Sci 2021; 78:1487-1499. [PMID: 33063126 PMCID: PMC7904556 DOI: 10.1007/s00018-020-03675-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/27/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022]
Abstract
Non-coding RNAs are important regulators of differentiation during embryogenesis as well as key players in the fine-tuning of transcription and furthermore, they control the post-transcriptional regulation of mRNAs under physiological conditions. Deregulated expression of non-coding RNAs is often identified as one major contribution in a number of pathological conditions. Non-coding RNAs are a heterogenous group of RNAs and they represent the majority of nuclear transcripts in eukaryotes. An evolutionary highly conserved sub-group of non-coding RNAs is represented by vault RNAs, named since firstly discovered as component of the largest known ribonucleoprotein complexes called "vault". Although they have been initially described 30 years ago, vault RNAs are largely unknown and their molecular role is still under investigation. In this review we will summarize the known functions of vault RNAs and their involvement in cellular mechanisms.
Collapse
Affiliation(s)
- Jens Claus Hahne
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK.
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| | - Andrea Lampis
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Nicola Valeri
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Department of Medicine, The Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
34
|
Chu M, Wan H, Zhang X. Requirement of splicing factor hnRNP A2B1 for tumorigenesis of melanoma stem cells. Stem Cell Res Ther 2021; 12:90. [PMID: 33509274 PMCID: PMC7842053 DOI: 10.1186/s13287-020-02124-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/25/2020] [Indexed: 12/03/2022] Open
Abstract
Background Cancer stem cells play essential roles in tumorigenesis, thus forming an important target for tumor therapy. The hnRNP family proteins are important splicing factors that have been found to be associated with tumor progression. However, the influence of hnRNPs on cancer stem cells has not been extensively explored. Methods Quantitative real-time PCR and Western blot were used to examine gene expressions. RNA immunoprecipitation assays were conducted to identify the RNAs interacted with hnRNP A2B1. The in vivo assays were performed in nude mice. Results In this study, the results showed that out of 19 evaluated hnRNPs, hnRNP A2B1 was significantly upregulated in melanoma stem cells compared with non-stem cells, suggesting an important role of hnRNP A2B1 in cancer stem cells. Silencing of hnRNP A2B1 triggered cell cycle arrest in G2 phase, leading to apoptosis of melanoma stem cells. The results also revealed that hnRNP A2B1 could bind to the precursor mRNAs of pro-apoptosis genes (DAPK1, SYT7, and RNF128) and anti-apoptosis genes (EIF3H, TPPP3, and DOCK2) to regulate the splicing of these 6 genes, thus promoting the expressions of anti-apoptosis genes and suppressing the expressions of pro-apoptosis genes. The in vivo data indicated that hnRNP A2B1 was required for tumorigenesis by affecting the splicing of TPPP3, DOCK2, EIF3H, RNF128, DAPK1, and SYT7, thus suppressing apoptosis of melanoma stem cells. Conclusion Our findings showed the requirement of hnRNP A2B1 for tumorigenesis, thus presenting novel molecular insights into the role of hnRNPs in cancer stem cells.
Collapse
Affiliation(s)
- Mengqi Chu
- College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao), Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Haitao Wan
- College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao), Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xiaobo Zhang
- College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao), Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
35
|
Nombela P, Miguel-López B, Blanco S. The role of m 6A, m 5C and Ψ RNA modifications in cancer: Novel therapeutic opportunities. Mol Cancer 2021; 20:18. [PMID: 33461542 PMCID: PMC7812662 DOI: 10.1186/s12943-020-01263-w] [Citation(s) in RCA: 312] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
RNA modifications have recently emerged as critical posttranscriptional regulators of gene expression programmes. Significant advances have been made in understanding the functional role of RNA modifications in regulating coding and non-coding RNA processing and function, which in turn thoroughly shape distinct gene expression programmes. They affect diverse biological processes, and the correct deposition of many of these modifications is required for normal development. Alterations of their deposition are implicated in several diseases, including cancer. In this Review, we focus on the occurrence of N6-methyladenosine (m6A), 5-methylcytosine (m5C) and pseudouridine (Ψ) in coding and non-coding RNAs and describe their physiopathological role in cancer. We will highlight the latest insights into the mechanisms of how these posttranscriptional modifications influence tumour development, maintenance, and progression. Finally, we will summarize the latest advances on the development of small molecule inhibitors that target specific writers or erasers to rewind the epitranscriptome of a cancer cell and their therapeutic potential.
Collapse
Affiliation(s)
- Paz Nombela
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007, Salamanca, Spain
| | - Borja Miguel-López
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007, Salamanca, Spain
| | - Sandra Blanco
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - University of Salamanca, 37007, Salamanca, Spain. .,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
36
|
Pandey P, Zaman K, Prokai L, Shulaev V. Comparative Proteomics Analysis Reveals Unique Early Signaling Response of Saccharomyces cerevisiae to Oxidants with Different Mechanism of Action. Int J Mol Sci 2020; 22:ijms22010167. [PMID: 33375274 PMCID: PMC7795614 DOI: 10.3390/ijms22010167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 01/18/2023] Open
Abstract
The early signaling events involved in oxidant recognition and triggering of oxidant-specific defense mechanisms to counteract oxidative stress still remain largely elusive. Our discovery driven comparative proteomics analysis revealed unique early signaling response of the yeast Saccharomyces cerevisiae on the proteome level to oxidants with a different mechanism of action as early as 3 min after treatment with four oxidants, namely H2O2, cumene hydroperoxide (CHP), and menadione and diamide, when protein abundances were compared using label-free quantification relying on a high-resolution mass analyzer (Orbitrap). We identified significant regulation of 196 proteins in response to H2O2, 569 proteins in response to CHP, 369 proteins in response to menadione and 207 proteins in response to diamide. Only 17 proteins were common across all treatments, but several more proteins were shared between two or three oxidants. Pathway analyses revealed that each oxidant triggered a unique signaling mechanism associated with cell survival and repair. Signaling pathways mostly regulated by oxidants were Ran, TOR, Rho, and eIF2. Furthermore, each oxidant regulated these pathways in a unique way indicating specificity of response to oxidants having different modes of action. We hypothesize that interplay of these signaling pathways may be important in recognizing different oxidants to trigger different downstream MAPK signaling cascades and to induce specific responses.
Collapse
Affiliation(s)
- Prajita Pandey
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, TX 76203, USA;
- Advanced Environmental Research Institute (AERI), University of North Texas, Denton, TX 76203, USA
| | - Khadiza Zaman
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (K.Z.); (L.P.)
| | - Laszlo Prokai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (K.Z.); (L.P.)
| | - Vladimir Shulaev
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, TX 76203, USA;
- Advanced Environmental Research Institute (AERI), University of North Texas, Denton, TX 76203, USA
- Correspondence: ; Tel.: +1-940-369-5368
| |
Collapse
|
37
|
He C, Bozler J, Janssen KA, Wilusz JE, Garcia BA, Schorn AJ, Bonasio R. TET2 chemically modifies tRNAs and regulates tRNA fragment levels. Nat Struct Mol Biol 2020; 28:62-70. [PMID: 33230319 PMCID: PMC7855721 DOI: 10.1038/s41594-020-00526-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/28/2020] [Indexed: 12/16/2022]
Abstract
The ten-eleven translocation 2 (TET2) protein, which oxidizes 5-methylcytosine in DNA, can also bind RNA; however, the targets and function of TET2-RNA interactions in vivo are not fully understood. Using stringent affinity tags introduced at the Tet2 locus, we purified and sequenced TET2-crosslinked RNAs from mouse embryonic stem cells (mESCs) and found a high enrichment for tRNAs. RNA immunoprecipitation with an antibody against 5-hydroxymethylcytosine (hm5C) recovered tRNAs that overlapped with those bound to TET2 in cells. Mass spectrometry (MS) analyses revealed that TET2 is necessary and sufficient for the deposition of the hm5C modification on tRNA. Tet2 knockout in mESCs affected the levels of several small noncoding RNAs originating from TET2-bound tRNAs that were enriched by hm5C immunoprecipitation. Thus, our results suggest a new function of TET2 in promoting the conversion of 5-methylcytosine to hm5C on tRNA and regulating the processing or stability of different classes of tRNA fragments.
Collapse
Affiliation(s)
- Chongsheng He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan, P. R. China. .,Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Julianna Bozler
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kevin A Janssen
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Benjamin A Garcia
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Roberto Bonasio
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
38
|
McElhinney JMWR, Hasan A, Sajini AA. The epitranscriptome landscape of small noncoding RNAs in stem cells. Stem Cells 2020; 38:1216-1228. [PMID: 32598085 PMCID: PMC7586957 DOI: 10.1002/stem.3233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022]
Abstract
Stem cells (SCs) are unique cells that have an inherent ability to self‐renew or differentiate. Both fate decisions are strongly regulated at the molecular level via intricate signaling pathways. The regulation of signaling networks promoting self‐renewal or differentiation was thought to be largely governed by the action of transcription factors. However, small noncoding RNAs (ncRNAs), such as vault RNAs, and their post‐transcriptional modifications (the epitranscriptome) have emerged as additional regulatory layers with essential roles in SC fate decisions. RNA post‐transcriptional modifications often modulate RNA stability, splicing, processing, recognition, and translation. Furthermore, modifications on small ncRNAs allow for dual regulation of RNA activity, at both the level of biogenesis and RNA‐mediated actions. RNA post‐transcriptional modifications act through structural alterations and specialized RNA‐binding proteins (RBPs) called writers, readers, and erasers. It is through SC‐context RBPs that the epitranscriptome coordinates specific functional roles. Small ncRNA post‐transcriptional modifications are today exploited by different mechanisms to facilitate SC translational studies. One mechanism readily being studied is identifying how SC‐specific RBPs of small ncRNAs regulate fate decisions. Another common practice of using the epitranscriptome for regenerative applications is using naturally occurring post‐transcriptional modifications on synthetic RNA to generate induced pluripotent SCs. Here, we review exciting insights into how small ncRNA post‐transcriptional modifications control SC fate decisions in development and disease. We hope, by illustrating how essential the epitranscriptome and their associated proteome are in SCs, they would be considered as novel tools to propagate SCs for regenerative medicine.
Collapse
Affiliation(s)
- James M W R McElhinney
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ayesha Hasan
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Abdulrahim A Sajini
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
39
|
Du E, Li J, Sheng F, Li S, Zhu J, Xu Y, Zhang Z. A pan-cancer analysis reveals genetic alterations, molecular mechanisms, and clinical relevance of m 5 C regulators. Clin Transl Med 2020; 10:e180. [PMID: 32997404 PMCID: PMC7507430 DOI: 10.1002/ctm2.180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 12/27/2022] Open
Affiliation(s)
- E Du
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jingxian Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Fei Sheng
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shuai Li
- Department of Joint, Tianjin Hospital, No. 406 Jiefang South Rd, Hexi District, Tianjin, 300211, China
| | - Jianqiang Zhu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yong Xu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhihong Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
40
|
Sun F, Wu K, Yao Z, Mu X, Zheng Z, Sun M, Wang Y, Liu Z, Zhu Y. Long Noncoding RNA PVT1 Promotes Prostate Cancer Metastasis by Increasing NOP2 Expression via Targeting Tumor Suppressor MicroRNAs. Onco Targets Ther 2020; 13:6755-6765. [PMID: 32764963 PMCID: PMC7360424 DOI: 10.2147/ott.s242441] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Metastatic disease caused by prostate cancer (PCa) is the principal cause of PCa-related mortality. Long non-protein-coding RNAs may possess significant cellular functions. Plasmacytoma variant translocation 1 (PVT1), a long non-coding RNA encoded by the human PVT1 gene, is an oncogene, which can regulate several tumor-related genes. In PCa, the function and mechanism of PVT1 are unclear. NOP2 is being pursued as a prognostic marker for cancer aggressiveness, which promotes mouse fibroblast growth and tumor formation. Essentially, nothing is known about the specific interactions between the PVT1 and NOP2. METHODS 190 pairs of PCa tissues and adjacent normal tissues were collected and RNA sequencing was used to identify the differential lncRNAs. Real-time quantitative real-time PCR (RT-qPCR) confirmed these results and gene regulatory relationship. Lentiviral vectors were used to alter PVT1 and genes to analyze their effects on PCa progression. Transwell migration and invasion assays were performed to test the metastasis ability. Biofunction of PVT1 and NOP2 were confirmed in vitro and in vivo. RESULTS In this study, we reported that the long noncoding RNA-PVT1 was upregulated in PCa metastasis tissues and promoted migration of PCa cells in vitro and their metastasis in vivo. High levels of PVT1 significantly downregulated tumor suppressor microRNAs (miRNAs), such as miR-15b-5p, miR-27a-3p, miR-143-3p, and miR-627-5p, whose levels in metastasis tissues were low compared to those in non-metastasis tissues. In vitro and in vivo, PVT1 promotes PCa metastasis via targeting miRNAs. Furthermore, the expression level of PVT1 was positively associated with the expression of NOP2, a cancer metastasis-related protein. We demonstrated that NOP2 promoted invasion and migration of PCa. For specific mechanism, correlation analysis showed that PVT1 promoted metastasis by up-regulating NOP2. CONCLUSION Taken together, our results show that PVT1 acts as an inducer of PCa metastasis via targeting miRNAs, thereby promoting NOP2. This axis may have diagnostic and therapeutic potential for advanced PCa.
Collapse
Affiliation(s)
- Feng Sun
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200080, People’s Republic of China
| | - Ke Wu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200080, People’s Republic of China
| | - Zhixian Yao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200080, People’s Republic of China
| | - Xingyu Mu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200080, People’s Republic of China
| | - Zhong Zheng
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200080, People’s Republic of China
| | - Menghao Sun
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200080, People’s Republic of China
| | - Yong Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200080, People’s Republic of China
| | - Zhihong Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200080, People’s Republic of China
| | - Yiyong Zhu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200080, People’s Republic of China
| |
Collapse
|
41
|
Liu Q, Gregory RI. RNAmod: an integrated system for the annotation of mRNA modifications. Nucleic Acids Res 2020; 47:W548-W555. [PMID: 31147718 PMCID: PMC6602476 DOI: 10.1093/nar/gkz479] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/02/2019] [Accepted: 05/17/2019] [Indexed: 01/13/2023] Open
Abstract
Dynamic and reversible RNA modifications such as N6-methyladenosine (m6A) can play important roles in regulating messenger RNA (mRNA) splicing, export, stability and translation. Defective mRNA modification through altered expression of the methyltransferase and/or demethylases results in developmental defects and cancer progression. Identifying modified mRNAs, annotating the distribution of modification sites across the mRNA, as well as characterizing and comparing other modification features are essential for studying the function and elucidating the mechanism of mRNA modifications. Several methods including methylated RNA immunoprecipitation and sequencing (MeRIP-seq) are available for the detection of mRNA modifications. However, a convenient and comprehensive tool to annotate diverse kinds of mRNA modifications in different species is lacking. Here, we developed RNAmod (https://bioinformatics.sc.cn/RNAmod), an interactive, one-stop, web-based platform for the automated analysis, annotation, and visualization of mRNA modifications in 21 species. RNAmod provides intuitive interfaces to show outputs including the distribution of RNA modifications, modification coverage for different gene features, functional annotation of modified mRNAs, and comparisons between different groups or specific gene sets. Furthermore, sites of known RNA modification, as well as binding site data for hundreds of RNA-binding proteins (RBPs) are integrated in RNAmod to help users compare their modification data with known modifications and to explore the relationship with the binding sites of known RBPs. RNAmod is freely available and meets the emerging need for a convenient and comprehensive analysis tool for the fast-developing RNA modification field.
Collapse
Affiliation(s)
- Qi Liu
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Correspondence may also be addressed to Qi Liu. Tel: +1 617 355 0204;
| | - Richard I Gregory
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Initiative for RNA Medicine, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- To whom correspondence should be addressed. Tel: +1 617 919 2273;
| |
Collapse
|
42
|
Zha X, Xi X, Fan X, Ma M, Zhang Y, Yang Y. Overexpression of METTL3 attenuates high-glucose induced RPE cell pyroptosis by regulating miR-25-3p/PTEN/Akt signaling cascade through DGCR8. Aging (Albany NY) 2020; 12:8137-8150. [PMID: 32365051 PMCID: PMC7244028 DOI: 10.18632/aging.103130] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/30/2020] [Indexed: 01/10/2023]
Abstract
Methyltransferase-like protein 3 (METTL3) regulates multiple cell functions and diseases by modulating N6-methyladenosine (m6A) modifications. However, it is still unclear whether METTL3 involves in the pathogenesis of diabetic retinopathy (DR). In the present study, we found that high-glucose inhibited RPE cell proliferation, promoted cell apoptosis and pyroptosis in a time-dependent manner. In addition, both METTL3 mRNA and miR-25-3p were low-expressed in the peripheral venous blood samples of diabetes mellitus (DM) patients compared to normal volunteers, and high-glucose inhibited METTL3 and miR-25-3p expressions in RPE cells. As expected, upregulation of METTL3 and miR-25-3p alleviated the cytotoxic effects of high-glucose on RPE cells, and knock-down of METTL3 and miR-25-3p had opposite effects. Additionally, METTL3 overexpression increased miR-25-3p levels in RPE cells in a microprocessor protein DGCR8-dependent manner, and miR-25-3p ablation abrogated the effects of overexpressed METTL3 on cell functions in high-glucose treated RPE cells. Furthermore, PTEN could be negatively regulated by miR-25-3p, and overexpression of METTL3 increased phosphorylated Akt (p-Akt) levels by targeting miR-25-3p/PTEN axis. Consistently, upregulation of PTEN abrogated the protective effects of METTL3 overexpression on RPE cells treated with high-glucose. Collectively, METTL3 rescued cell viability in high-glucose treated RPE cells by targeting miR-25-3p/PTEN/Akt signaling cascade.
Collapse
Affiliation(s)
- Xu Zha
- Department of Ophthalmology, The 2nd Affiliated Hospital of Kunming Medical University, Kunming Yunnan, China
| | - Xiaoting Xi
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming Yunnan, China
| | - Xinyu Fan
- Department of Ophthalmology, The 2nd Affiliated Hospital of Kunming Medical University, Kunming Yunnan, China
| | - Minjun Ma
- Department of Ophthalmology, The 2nd Affiliated Hospital of Kunming Medical University, Kunming Yunnan, China
| | - Yuanping Zhang
- Department of Ophthalmology, The 2nd Affiliated Hospital of Kunming Medical University, Kunming Yunnan, China
| | - Yanni Yang
- Department of Ophthalmology, The 2nd Affiliated Hospital of Kunming Medical University, Kunming Yunnan, China
| |
Collapse
|
43
|
Jabs S, Biton A, Bécavin C, Nahori MA, Ghozlane A, Pagliuso A, Spanò G, Guérineau V, Touboul D, Giai Gianetto Q, Chaze T, Matondo M, Dillies MA, Cossart P. Impact of the gut microbiota on the m 6A epitranscriptome of mouse cecum and liver. Nat Commun 2020; 11:1344. [PMID: 32165618 PMCID: PMC7067863 DOI: 10.1038/s41467-020-15126-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/17/2020] [Indexed: 12/28/2022] Open
Abstract
The intestinal microbiota modulates host physiology and gene expression via mechanisms that are not fully understood. Here we examine whether host epitranscriptomic marks are affected by the gut microbiota. We use methylated RNA-immunoprecipitation and sequencing (MeRIP-seq) to identify N6-methyladenosine (m6A) modifications in mRNA of mice carrying conventional, modified, or no microbiota. We find that variations in the gut microbiota correlate with m6A modifications in the cecum, and to a lesser extent in the liver, affecting pathways related to metabolism, inflammation and antimicrobial responses. We analyze expression levels of several known writer and eraser enzymes, and find that the methyltransferase Mettl16 is downregulated in absence of a microbiota, and one of its target mRNAs, encoding S-adenosylmethionine synthase Mat2a, is less methylated. We furthermore show that Akkermansia muciniphila and Lactobacillus plantarum affect specific m6A modifications in mono-associated mice. Our results highlight epitranscriptomic modifications as an additional level of interaction between commensal bacteria and their host.
Collapse
Affiliation(s)
- Sabrina Jabs
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, U604 Institut National de la Santé et de la Recherche Médicale, USC 2020 Institut National de la Recherche Agronomique, 25 rue du Dr Roux, F-75015, Paris, France.
| | - Anne Biton
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, 28 rue du Dr Roux, F-75015, Paris, France
| | - Christophe Bécavin
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, 28 rue du Dr Roux, F-75015, Paris, France
| | - Marie-Anne Nahori
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, U604 Institut National de la Santé et de la Recherche Médicale, USC 2020 Institut National de la Recherche Agronomique, 25 rue du Dr Roux, F-75015, Paris, France
| | - Amine Ghozlane
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, 28 rue du Dr Roux, F-75015, Paris, France
| | - Alessandro Pagliuso
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, U604 Institut National de la Santé et de la Recherche Médicale, USC 2020 Institut National de la Recherche Agronomique, 25 rue du Dr Roux, F-75015, Paris, France
| | - Giulia Spanò
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, U604 Institut National de la Santé et de la Recherche Médicale, USC 2020 Institut National de la Recherche Agronomique, 25 rue du Dr Roux, F-75015, Paris, France
| | - Vincent Guérineau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - David Touboul
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Quentin Giai Gianetto
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, 28 rue du Dr Roux, F-75015, Paris, France
- Unité de spectrométrie de masse et Protéomique, CNRS USR 2000, Institut Pasteur, 28 rue du Dr Roux, F-75015, Paris, France
| | - Thibault Chaze
- Unité de spectrométrie de masse et Protéomique, CNRS USR 2000, Institut Pasteur, 28 rue du Dr Roux, F-75015, Paris, France
| | - Mariette Matondo
- Unité de spectrométrie de masse et Protéomique, CNRS USR 2000, Institut Pasteur, 28 rue du Dr Roux, F-75015, Paris, France
| | - Marie-Agnès Dillies
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, 28 rue du Dr Roux, F-75015, Paris, France
| | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, U604 Institut National de la Santé et de la Recherche Médicale, USC 2020 Institut National de la Recherche Agronomique, 25 rue du Dr Roux, F-75015, Paris, France.
| |
Collapse
|
44
|
Li D, Kishta MS, Wang J. Regulation of pluripotency and reprogramming by RNA binding proteins. Curr Top Dev Biol 2020; 138:113-138. [PMID: 32220295 DOI: 10.1016/bs.ctdb.2020.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Embryonic stem cells have the capacities of self-renewal and pluripotency. Pluripotency establishment (somatic cell reprogramming), maintenance, and execution (differentiation) require orchestrated regulatory mechanisms of a cell's molecular machinery, including signaling pathways, epigenetics, transcription, translation, and protein degradation. RNA binding proteins (RBPs) take part in every process of RNA regulation and recent studies began to address their important functions in the regulation of pluripotency and reprogramming. Here, we discuss the roles of RBPs in key regulatory steps in the control of pluripotency and reprogramming. Among RNA binding proteins are a group of RNA helicases that are responsible for RNA structure remodeling with important functional implications. We highlight the largest family of RNA helicases, DDX (DEAD-box) helicase family and our current understanding of their functions specifically in the regulation of pluripotency and reprogramming.
Collapse
Affiliation(s)
- Dan Li
- Department of Cell, Developmental and Regenerative Biology; The Black Family Stem Cell Institute; Icahn School of Medicine at Mount Sinai, New York, NY, United States; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mohamed S Kishta
- Hormones Department, Medical Research Division, National Research Centre, Cairo, Egypt; Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, Cairo, Egypt; Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY, United States
| | - Jianlong Wang
- Department of Cell, Developmental and Regenerative Biology; The Black Family Stem Cell Institute; Icahn School of Medicine at Mount Sinai, New York, NY, United States; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY, United States.
| |
Collapse
|
45
|
Sajini AA, Choudhury NR, Wagner RE, Bornelöv S, Selmi T, Spanos C, Dietmann S, Rappsilber J, Michlewski G, Frye M. Loss of 5-methylcytosine alters the biogenesis of vault-derived small RNAs to coordinate epidermal differentiation. Nat Commun 2019; 10:2550. [PMID: 31186410 PMCID: PMC6560067 DOI: 10.1038/s41467-019-10020-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/09/2019] [Indexed: 12/20/2022] Open
Abstract
The presence and absence of RNA modifications regulates RNA metabolism by modulating the binding of writer, reader, and eraser proteins. For 5-methylcytosine (m5C) however, it is largely unknown how it recruits or repels RNA-binding proteins. Here, we decipher the consequences of m5C deposition into the abundant non-coding vault RNA VTRNA1.1. Methylation of cytosine 69 in VTRNA1.1 occurs frequently in human cells, is exclusively mediated by NSUN2, and determines the processing of VTRNA1.1 into small-vault RNAs (svRNAs). We identify the serine/arginine rich splicing factor 2 (SRSF2) as a novel VTRNA1.1-binding protein that counteracts VTRNA1.1 processing by binding the non-methylated form with higher affinity. Both NSUN2 and SRSF2 orchestrate the production of distinct svRNAs. Finally, we discover a functional role of svRNAs in regulating the epidermal differentiation programme. Thus, our data reveal a direct role for m5C in the processing of VTRNA1.1 that involves SRSF2 and is crucial for efficient cellular differentiation.
Collapse
Affiliation(s)
- Abdulrahim A Sajini
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Department of Medical Laboratory Technology, University of Tabuk, Tabuk, P.O. Box 71491, Saudi Arabia
| | - Nila Roy Choudhury
- Division of Infection and Pathway Medicine, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Rebecca E Wagner
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Susanne Bornelöv
- Wellcome MRC Cambridge Stem Cell Institute, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Tommaso Selmi
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Christos Spanos
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Sabine Dietmann
- Wellcome MRC Cambridge Stem Cell Institute, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK
- Department of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Gracjan Michlewski
- Division of Infection and Pathway Medicine, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK.
- ZJU-UoE Institute, Zhejiang University, 718 East Haizhou Road, Haining, Zhejiang, 314400, P.R. China.
| | - Michaela Frye
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
- German Cancer Research Centre (Deutsches Krebsforschungszentrum, DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
46
|
Gkatza NA, Castro C, Harvey RF, Heiß M, Popis MC, Blanco S, Bornelöv S, Sajini AA, Gleeson JG, Griffin JL, West JA, Kellner S, Willis AE, Dietmann S, Frye M. Cytosine-5 RNA methylation links protein synthesis to cell metabolism. PLoS Biol 2019; 17:e3000297. [PMID: 31199786 PMCID: PMC6594628 DOI: 10.1371/journal.pbio.3000297] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 06/26/2019] [Accepted: 05/14/2019] [Indexed: 02/02/2023] Open
Abstract
Posttranscriptional modifications in transfer RNA (tRNA) are often critical for normal development because they adapt protein synthesis rates to a dynamically changing microenvironment. However, the precise cellular mechanisms linking the extrinsic stimulus to the intrinsic RNA modification pathways remain largely unclear. Here, we identified the cytosine-5 RNA methyltransferase NSUN2 as a sensor for external stress stimuli. Exposure to oxidative stress efficiently repressed NSUN2, causing a reduction of methylation at specific tRNA sites. Using metabolic profiling, we showed that loss of tRNA methylation captured cells in a distinct catabolic state. Mechanistically, loss of NSUN2 altered the biogenesis of tRNA-derived noncoding fragments (tRFs) in response to stress, leading to impaired regulation of protein synthesis. The intracellular accumulation of a specific subset of tRFs correlated with the dynamic repression of global protein synthesis. Finally, NSUN2-driven RNA methylation was functionally required to adapt cell cycle progression to the early stress response. In summary, we revealed that changes in tRNA methylation profiles were sufficient to specify cellular metabolic states and efficiently adapt protein synthesis rates to cell stress.
Collapse
Affiliation(s)
| | - Cecilia Castro
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Robert F. Harvey
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Matthias Heiß
- Department of Chemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Martyna C. Popis
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Sandra Blanco
- Cancer Cell Signaling and Metabolism Lab, Proteomics Unit CIC bioGUNE, Derio, Spain
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Salamanca, Spain
| | - Susanne Bornelöv
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Abdulrahim A. Sajini
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Joseph G. Gleeson
- Department of Neurosciences, San Diego School of Medicine, University of California, La Jolla, California, United States of America
| | - Julian L. Griffin
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - James A. West
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Stefanie Kellner
- Department of Chemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Anne E. Willis
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Sabine Dietmann
- Wellcome–Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Michaela Frye
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- German Cancer Center (Deutsches Krebsforschungszntrum), Heidelberg, Germany
| |
Collapse
|
47
|
Li Z, Li N, Guo C, Li X, Qian Y, Yang Y, Wei Y. The global DNA and RNA methylation and their reversal in lung under different concentration exposure of ambient air particulate matter in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:396-402. [PMID: 30731271 DOI: 10.1016/j.ecoenv.2019.01.111] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
Particulate matter (PM) in air pollution is a pervasive risk factor in pulmonary diseases that are always associated with gene expression level alterations in many specific-genes. DNA methylation (5-methylcytosine [5mC]) and RNA methylation (N6-methyladenine [6 mA]) influence the gene expression from transcription and post-transcription level, and the DNA hydroxymethylation (5-hydroxymethylcytosine [5hmC]) is the oxidized form of 5mC. In the present study, the levels of global 5mC, 5hmC and 6 mA of lungs in experimental mice were investigated. We divided the animals into 3 groups randomly, the group 1 was exposed to heavy PM for 24 h in the unfiltered chamber, the group 2 was exposed to filtered air in the filtered chamber, and the group 3 was 10 of the mice in the group 1 after 24 h exposure and then being moved to the filtered chamber for further 120 h exposure. The morphology of lungs showed that acute PM exposure impaired the structure of pulmonary alveolus. Meanwhile, the global level of DNA methylation was decreased, and DNA hydroxymethylation and RNA methylation levels were increased in lungs after PM exposure for only 24 h. Very notably, after being exposed in purified air for 120 h, the pulmonary morphology, the global levels of DNA methylation, DNA hydroxymethylation and RNA methylation of lungs were all reversed. The present study clearly demonstrated the alteration of DNA and RNA methylation after acute heavy PM exposure and emphasized the reversal of the symptoms caused by PM exposure after the air purification, which provided us a new idea for the intervention of the adverse health effects from air pollution. CAPSULE: Acute PM exposure resulted in reduced global DNA methylation and increased global DNA hydroxymethylcytosine and RNA methylation, and air purification reversed these alterations.
Collapse
Affiliation(s)
- Zhigang Li
- Laboratory of Environmental Criteria and Risk Assessment & Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Nannan Li
- Laboratory of Environmental Criteria and Risk Assessment & Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chen Guo
- Laboratory of Environmental Criteria and Risk Assessment & Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoqian Li
- Laboratory of Environmental Criteria and Risk Assessment & Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yan Qian
- Laboratory of Environmental Criteria and Risk Assessment & Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yining Yang
- Senior High School, Beijing No.171 High School, 100013, China
| | - Yongjie Wei
- Laboratory of Environmental Criteria and Risk Assessment & Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
48
|
Delaunay S, Frye M. RNA modifications regulating cell fate in cancer. Nat Cell Biol 2019; 21:552-559. [PMID: 31048770 DOI: 10.1038/s41556-019-0319-0] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/26/2019] [Indexed: 02/02/2023]
Abstract
The deposition of chemical modifications into RNA is a crucial regulator of temporal and spatial gene expression programs during development. Accordingly, altered RNA modification patterns are widely linked to developmental diseases. Recently, the dysregulation of RNA modification pathways also emerged as a contributor to cancer. By modulating cell survival, differentiation, migration and drug resistance, RNA modifications add another regulatory layer of complexity to most aspects of tumourigenesis.
Collapse
Affiliation(s)
- Sylvain Delaunay
- Department of Genetics, University of Cambridge, Cambridge, UK
- German Cancer Center (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany
| | - Michaela Frye
- Department of Genetics, University of Cambridge, Cambridge, UK.
- German Cancer Center (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany.
| |
Collapse
|
49
|
Galloway A, Cowling VH. mRNA cap regulation in mammalian cell function and fate. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2019; 1862:270-279. [PMID: 30312682 PMCID: PMC6414751 DOI: 10.1016/j.bbagrm.2018.09.011] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/13/2018] [Accepted: 09/30/2018] [Indexed: 12/17/2022]
Abstract
In this review we explore the regulation of mRNA cap formation and its impact on mammalian cells. The mRNA cap is a highly methylated modification of the 5' end of RNA pol II-transcribed RNA. It protects RNA from degradation, recruits complexes involved in RNA processing, export and translation initiation, and marks cellular mRNA as "self" to avoid recognition by the innate immune system. The mRNA cap can be viewed as a unique mark which selects RNA pol II transcripts for specific processing and translation. Over recent years, examples of regulation of mRNA cap formation have emerged, induced by oncogenes, developmental pathways and during the cell cycle. These signalling pathways regulate the rate and extent of mRNA cap formation, resulting in changes in gene expression, cell physiology and cell function.
Collapse
Affiliation(s)
- Alison Galloway
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Victoria H Cowling
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
50
|
Metazoan tsRNAs: Biogenesis, Evolution and Regulatory Functions. Noncoding RNA 2019; 5:ncrna5010018. [PMID: 30781726 PMCID: PMC6468576 DOI: 10.3390/ncrna5010018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 01/30/2019] [Accepted: 02/12/2019] [Indexed: 12/15/2022] Open
Abstract
Transfer RNA-derived small RNAs (tsRNAs) are an emerging class of regulatory non-coding RNAs that play important roles in post-transcriptional regulation across a variety of biological processes. Here, we review the recent advances in tsRNA biogenesis and regulatory functions from the perspectives of functional and evolutionary genomics, with a focus on the tsRNA biology of Drosophila. We first summarize our current understanding of the biogenesis mechanisms of different categories of tsRNAs that are generated under physiological or stressed conditions. Next, we review the conservation patterns of tsRNAs in all domains of life, with an emphasis on the conservation of tsRNAs between two Drosophila species. Then, we elaborate the currently known regulatory functions of tsRNAs in mRNA translation that are independent of, or dependent on, Argonaute (AGO) proteins. We also highlight some issues related to the fundamental biology of tsRNAs that deserve further study.
Collapse
|