1
|
Pan Y, Li Y, Zhao F, Zeng Y, Tan S, He F, Xiong F, Ma D. The dominant negative mutation of PAX9 in nonsyndromic tooth agenesis. Clin Oral Investig 2025; 29:247. [PMID: 40227334 DOI: 10.1007/s00784-025-06308-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 03/31/2025] [Indexed: 04/15/2025]
Abstract
OBJECTIVES Paired box 9 (PAX9) is a transcription factor that plays a critical role in the development of human dentition. Although various mutations in the PAX9 gene have been identified to date, the mechanisms by which these mutations cause non-syndromic tooth agenesis (NSTA) remain not fully understood. To study the pathogenesis of NSTA, we investigated a Chinese NSTA family. MATERIALS AND METHODS Genomic DNA was extracted from the family members. Whole-exome sequencing was performed, followed by Sanger sequencing for validation. The function of the mutant PAX9 was studied using bioinformatics, real-time PCR, Western blotting, luciferase reporter assays, and co-immunoprecipitation. RESULTS Here, we assess the functional impact of a novel missense PAX9 variant (c.156 C > G p.C52W), identified in a Chinese family with NSTA, and provide novel insights into the molecular mechanism of PAX9-C52W dysfunction. We show that while PAX9-C52W is expressed and even upregulated, its functionality is severely compromised. The mutation affects the binding affinity between PAX9 and MSX1 and alters the transcriptional activity of BMP4. Mutations such as PAX9-C52W can lead to disturbances in the intricate regulatory networks controlling tooth development. These molecular changes have significant downstream effects, as evidenced by the decreased capacity for osteo/odontogenic differentiation observed in human dental pulp stem cells (hDPSCs) infected with the PAX9-C52W lentivirus. CONCLUSIONS Overall, our studies reveal a dominant-negative effect of PAX9-C52W on the wild-type PAX9. CLINICAL RELEVANCE Our findings not only provide new insights into the mechanism of NSTA pathogenesis but also expand the current knowledge of how pathogenic variants in PAX9 cause disease.
Collapse
Affiliation(s)
- Yuhua Pan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuanyuan Li
- Guangzhou Haizhu District Hospital of Stomotology, Guangzhou, Guangdong, China
| | - Fangbing Zhao
- Department of Stomatology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuting Zeng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shenglong Tan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Fei He
- Department of Medical Genetics, Experimental Education, Administration Center, School of Basic Medical Sciences, Southern Medical University, 1838 Guangzhou North Avenue, Guangzhou, 510515, China
| | - Fu Xiong
- Department of Medical Genetics, Experimental Education, Administration Center, School of Basic Medical Sciences, Southern Medical University, 1838 Guangzhou North Avenue, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong, China.
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Li W, Jiang H, Hu L, Shen T, Chen Q. The Role of Gli1 + Mesenchymal Stem Cells in Craniofacial Development and Disease Treatment. J Oral Rehabil 2025; 52:531-539. [PMID: 39794930 DOI: 10.1111/joor.13917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 11/23/2024] [Accepted: 12/01/2024] [Indexed: 01/13/2025]
Abstract
OBJECTIVE This review summarises the role of Gli1+ (Glioma-associated oncogene homologue 1) mesenchymal stem cells in craniofacial growth and development or tissue repair, and their application in the treatment of some diseases. DESIGN The search for this narrative review was conducted in PubMed and Web of Science using relevant keywords, including checking reference lists of journal articles by hand searching. RESULTS Gli1+ mesenchymal stem cells play an important role in the growth and development of the skull, tooth, periodontium and mandibular condyle. They can be applied to the treatment of pulp and periodontal diseases, temporomandibular joint osteoarthritis and other diseases. CONCLUSIONS Gli1+ mesenchymal stem cells are crucial for the development and repair of craniofacial tissue.
Collapse
Affiliation(s)
- Wen Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Han Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Longshuang Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Tianjiao Shen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| |
Collapse
|
3
|
Mizoguchi T. In vivo dynamics of hard tissue-forming cell origins: Insights from Cre/loxP-based cell lineage tracing studies. JAPANESE DENTAL SCIENCE REVIEW 2024; 60:109-119. [PMID: 38406212 PMCID: PMC10885318 DOI: 10.1016/j.jdsr.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
Bone tissue provides structural support for our bodies, with the inner bone marrow (BM) acting as a hematopoietic organ. Within the BM tissue, two types of stem cells play crucial roles: mesenchymal stem cells (MSCs) (or skeletal stem cells) and hematopoietic stem cells (HSCs). These stem cells are intricately connected, where BM-MSCs give rise to bone-forming osteoblasts and serve as essential components in the BM microenvironment for sustaining HSCs. Despite the mid-20th century proposal of BM-MSCs, their in vivo identification remained elusive owing to a lack of tools for analyzing stemness, specifically self-renewal and multipotency. To address this challenge, Cre/loxP-based cell lineage tracing analyses are being employed. This technology facilitated the in vivo labeling of specific cells, enabling the tracking of their lineage, determining their stemness, and providing a deeper understanding of the in vivo dynamics governing stem cell populations responsible for maintaining hard tissues. This review delves into cell lineage tracing studies conducted using commonly employed genetically modified mice expressing Cre under the influence of LepR, Gli1, and Axin2 genes. These studies focus on research fields spanning long bones and oral/maxillofacial hard tissues, offering insights into the in vivo dynamics of stem cell populations crucial for hard tissue homeostasis.
Collapse
|
4
|
Pi HJ, Huang B, Yuan Q, Jing JJ. Neural regulation of mesenchymal stem cells in craniofacial bone: development, homeostasis and repair. Front Physiol 2024; 15:1423539. [PMID: 39135707 PMCID: PMC11318092 DOI: 10.3389/fphys.2024.1423539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Mesenchymal stem cells endow various functions, including proliferation, multipotency, migration, etc. Craniofacial bones originate from the cranial neural crest and are developed mainly through intramembranous ossification, which are different from long bones. There are varied mesenchymal stem cells existing in the craniofacial bone, including Gli1 + cells, Axin2 + cells, Prx1 + cells, etc. Nerves distributed in craniofacial area are also derived from the neural crest, and the trigeminal nerve is the major sensory nerve in craniofacial area. The nerves and the skeleton are tightly linked spatially, and the skeleton is broadly innervated by sensory and sympathetic nerves, which also participate in bone development, homeostasis and healing process. In this review, we summarize mesenchymal stem cells located in craniofacial bone or, to be more specific, in jaws, temporomandibular joint and cranial sutures. Then we discuss the research advance concerning neural regulation of mesenchymal stem cells in craniofacial bone, mainly focused on development, homeostasis and repair. Discovery of neural regulation of mesenchymal stem cells may assist in treatment in the craniofacial bone diseases or injuries.
Collapse
Affiliation(s)
| | | | - Quan Yuan
- *Correspondence: Quan Yuan, ; Jun-Jun Jing,
| | | |
Collapse
|
5
|
Xu C, Xie X, Wu Y, Wang J, Feng JQ. Bone or Tooth dentin: The TGF-β signaling is the key. Int J Biol Sci 2024; 20:3557-3569. [PMID: 38993575 PMCID: PMC11234226 DOI: 10.7150/ijbs.97206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/15/2024] [Indexed: 07/13/2024] Open
Abstract
To investigate the cell linkage between tooth dentin and bones, we studied TGF-β roles during postnatal dentin development using TGF-β receptor 2 (Tgfβr2) cKO models and cell lineage tracing approaches. Micro-CT showed that the early Tgfβr2 cKO exhibit short roots and thin root dentin (n = 4; p<0.01), a switch from multilayer pre-odontoblasts/odontoblasts to a single-layer of bone-like cells with a significant loss of ~85% of dentinal tubules (n = 4; p<0.01), and a matrix shift from dentin to bone. Mechanistic studies revealed a statistically significant decrease in odontogenic markers, and a sharp increase in bone markers. The late Tgfβr2 cKO teeth displayed losses of odontoblast polarity, a significant reduction in crown dentin volume, and the onset of massive bone-like structures in the crown pulp with high expression levels of bone markers and low levels of dentin markers. We thus concluded that bones and tooth dentin are in the same evolutionary linkage in which TGF-β signaling defines the odontogenic fate of dental mesenchymal cells and odontoblasts. This finding also raises the possibility of switching the pulp odontogenic to the osteogenic feature of pulp cells via a local manipulation of gene programs in future treatment of tooth fractures.
Collapse
Affiliation(s)
- Chunmei Xu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan China
| | - Xudong Xie
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan China
| | - Jian Q Feng
- Shanxi Medical University School and Hospital of Stomatology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| |
Collapse
|
6
|
Yao Y, Wang X, Lin L, Zhang X, Wang Y. ROR2-Related Skeletal Dysplasia Reveals Disrupted Chondrocyte Polarity through Modulation of BMP/TGF-β Signaling. Aging Dis 2024; 15:282-294. [PMID: 37307827 PMCID: PMC10796094 DOI: 10.14336/ad.2023.0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023] Open
Abstract
Genetic studies have shown that Robinow syndrome (RS), a rare skeletal dysplasia, is caused by ROR2 mutation. However, the cell origin and molecular mechanisms underlying this disease remain elusive. We established a conditional knockout system by crossing Prx1cre and Osxcre with Ror2 flox/flox mice. and conducted histological and immunofluorescence analyses to investigate the phenotypes during skeletal development. In the Prx1cre line, we observed RS-like skeletal abnormities, including short stature and an arched skull. Additionally, we found inhibition of chondrocyte differentiation and proliferation. In the Osxcre line, loss of ROR2 in osteoblast lineage cells led to reduced osteoblast differentiation during both embryonic and postnatal stages. Furthermore, ROR2 mutant mice exhibited increased adipogenesis in the bone marrow compared to their littermate controls. To further explore the underlying mechanisms, bulk RNA-seq analysis of Prx1cre; Ror2 flox/flox embryos was performed, results revealed decreased BMP/TGF-β signaling. Immunofluorescence analysis further confirmed the decreased expression of p-smad1/5/8, accompanied by disrupted cell polarity in the developing growth plate. Pharmacological treatment using FK506 partially rescued the skeletal dysplasia and resulted in increased mineralization and osteoblast differentiation. By modeling the phenotype of RS in mice, our findings provide evidence for the involvement of mesenchymal progenitors as the cell origin and highlight the molecular mechanism of BMP/TGF-β signaling in skeletal dysplasia.
Collapse
Affiliation(s)
- Yichen Yao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| | - Xin Wang
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, MA, USA.
| | - Lichieh Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| | - Xiaolei Zhang
- Department of Stomatology, the Eighth Affiliated Hospital, Sun Yat-sen University, Shen Zhen, Guangdong, China.
| | - Yan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| |
Collapse
|
7
|
Pei F, Ma L, Guo T, Zhang M, Jing J, Wen Q, Feng J, Lei J, He J, Janečková E, Ho TV, Chen JF, Chai Y. Sensory nerve regulates progenitor cells via FGF-SHH axis in tooth root morphogenesis. Development 2024; 151:dev202043. [PMID: 38108472 PMCID: PMC10820866 DOI: 10.1242/dev.202043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Nerves play important roles in organ development and tissue homeostasis. Stem/progenitor cells differentiate into different cell lineages responsible for building the craniofacial organs. The mechanism by which nerves regulate stem/progenitor cell behavior in organ morphogenesis has not yet been comprehensively explored. Here, we use tooth root development in mouse as a model to investigate how sensory nerves regulate organogenesis. We show that sensory nerve fibers are enriched in the dental papilla at the initiation of tooth root development. Through single cell RNA-sequencing analysis of the trigeminal ganglion and developing molar, we reveal several signaling pathways that connect the sensory nerve with the developing molar, of which FGF signaling appears to be one of the important regulators. Fgfr2 is expressed in the progenitor cells during tooth root development. Loss of FGF signaling leads to shortened roots with compromised proliferation and differentiation of progenitor cells. Furthermore, Hh signaling is impaired in Gli1-CreER;Fgfr2fl/fl mice. Modulation of Hh signaling rescues the tooth root defects in these mice. Collectively, our findings elucidate the nerve-progenitor crosstalk and reveal the molecular mechanism of the FGF-SHH signaling cascade during tooth root morphogenesis.
Collapse
Affiliation(s)
- Fei Pei
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Li Ma
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Tingwei Guo
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Mingyi Zhang
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Quan Wen
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Jie Lei
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Jinzhi He
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Eva Janečková
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| |
Collapse
|
8
|
Hazrati P, Mirtaleb MH, Boroojeni HSH, Koma AAY, Nokhbatolfoghahaei H. Current Trends, Advances, and Challenges of Tissue Engineering-Based Approaches of Tooth Regeneration: A Review of the Literature. Curr Stem Cell Res Ther 2024; 19:473-496. [PMID: 35984017 DOI: 10.2174/1574888x17666220818103228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/17/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Tooth loss is a significant health issue. Currently, this situation is often treated with the use of synthetic materials such as implants and prostheses. However, these treatment modalities do not fully meet patients' biological and mechanical needs and have limited longevity. Regenerative medicine focuses on the restoration of patients' natural tissues via tissue engineering techniques instead of rehabilitating with artificial appliances. Therefore, a tissue-engineered tooth regeneration strategy seems like a promising option to treat tooth loss. OBJECTIVE This review aims to demonstrate recent advances in tooth regeneration strategies and discoveries about underlying mechanisms and pathways of tooth formation. RESULTS AND DISCUSSION Whole tooth regeneration, tooth root formation, and dentin-pulp organoid generation have been achieved by using different seed cells and various materials for scaffold production. Bioactive agents are critical elements for the induction of cells into odontoblast or ameloblast lineage. Some substantial pathways enrolled in tooth development have been figured out, helping researchers design their experiments more effectively and aligned with the natural process of tooth formation. CONCLUSION According to current knowledge, tooth regeneration is possible in case of proper selection of stem cells, appropriate design and manufacturing of a biocompatible scaffold, and meticulous application of bioactive agents for odontogenic induction. Understanding innate odontogenesis pathways play a crucial role in accurately planning regenerative therapeutic interventions in order to reproduce teeth.
Collapse
Affiliation(s)
- Parham Hazrati
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Helia Sadat Haeri Boroojeni
- Oral and Maxillofacial Surgery Department, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hanieh Nokhbatolfoghahaei
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Li L, Liu P, Lv X, Yu T, Jin X, Wang R, Xie X, Wang Q, Liu Y, Saiyin W. Ablation of FAM20C caused short root defects via suppressing the BMP signaling pathway in mice. J Orofac Orthop 2023; 84:349-361. [PMID: 35316352 DOI: 10.1007/s00056-022-00386-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/16/2022] [Indexed: 10/18/2022]
Abstract
Short root defects are prone to cause various periodontal diseases and lead to tooth loss in some serious cases. Studies about the mechanisms governing the development of the root are needed for a better understanding of the pathogenesis of short root defects. The protein family with sequence similarity 20 group C (FAM20C) is a Golgi casein kinase that has been well studied in the development of tooth crown formation. However, whether FAM20C plays a role in the development of tooth root is still unknown. Thus, we generated Sox2-Cre;Fam20cfl/fl (cKO) mice, in which Fam20c was ablated in both the dental epithelium and dental mesenchyme, and found that the cKO mice showed severe short root defects mainly by inhibiting the development of dental mesenchyme in the root region. In this investigation, we found morphological changes and differentiation defects, with reduced expression of dentin sialophosphoprotein (DSPP) in odontoblasts of the root region in cKO mice. Furthermore, the proliferation rate of apical papillary cells was reduced in the root of cKO mice. In addition, the levels of bone morphogenetic protein 4 (BMP4) and phospho-Smad1/5/8, and that of Osterix and Krüppel-like factor 4 (KLF4), two downstream target molecules of the BMP signaling pathway, were significantly reduced in the root of cKO mice. These results indicate that FAM20C plays an essential role in the development of the root by regulating the BMP signaling pathway.
Collapse
Affiliation(s)
- Lili Li
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Nangang, 150086, Harbin, Heilongjiang, China
| | - Peihong Liu
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Nangang, 150086, Harbin, Heilongjiang, China
| | - Xuechao Lv
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Nangang, 150086, Harbin, Heilongjiang, China
| | - Tianliang Yu
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Nangang, 150086, Harbin, Heilongjiang, China
| | - Xingai Jin
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Nangang, 150086, Harbin, Heilongjiang, China
| | - Rui Wang
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Nangang, 150086, Harbin, Heilongjiang, China
| | - Xiaohua Xie
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, 150001, Harbin, Heilongjiang, China
| | - Qingshan Wang
- Department of Vascular Surgery, The Heilongjiang Provincial Hospital, 82 Zhongshan Road, Xiangfang, 150036, Harbin, Heilongjiang, China
| | - Yingqun Liu
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Nangang, 150086, Harbin, Heilongjiang, China
| | - Wuliji Saiyin
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Road, Nangang, 150086, Harbin, Heilongjiang, China.
| |
Collapse
|
10
|
Liu C, Guo H, Shi C, Sun H. BMP signaling in the development and regeneration of tooth roots: from mechanisms to applications. Front Cell Dev Biol 2023; 11:1272201. [PMID: 37779895 PMCID: PMC10540449 DOI: 10.3389/fcell.2023.1272201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Short root anomaly (SRA), along with caries, periodontitis, and trauma, can cause tooth loss, affecting the physical and mental health of patients. Dental implants have become widely utilized for tooth restoration; however, they exhibit certain limitations compared to natural tooth roots. Tissue engineering-mediated root regeneration offers a strategy to sustain a tooth with a physiologically more natural function by regenerating the bioengineered tooth root (bio-root) based on the bionic principle. While the process of tooth root development has been reported in previous studies, the specific molecular mechanisms remain unclear. The Bone Morphogenetic Proteins (BMPs) family is an essential factor regulating cellular activities and is involved in almost all tissue development. Recent studies have focused on exploring the mechanism of BMP signaling in tooth root development by using transgenic animal models and developing better tissue engineering strategies for bio-root regeneration. This article reviews the unique roles of BMP signaling in tooth root development and regeneration.
Collapse
Affiliation(s)
- Cangwei Liu
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Hao Guo
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Ce Shi
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Hongchen Sun
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| |
Collapse
|
11
|
Yang D, Solidum JGN, Park D. Dental Pulp Stem Cells and Current in vivo Approaches to Study Dental Pulp Stem Cells in Pulp Injury and Regeneration. J Bone Metab 2023; 30:231-244. [PMID: 37718901 PMCID: PMC10509030 DOI: 10.11005/jbm.2023.30.3.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/20/2023] [Indexed: 09/19/2023] Open
Abstract
Dental pulp stem cells (DPSCs) have garnered significant interest in dental research for their unique characteristics and potential in tooth development and regeneration. While there were many studies to define their stem cell-like characteristics and osteogenic differentiation functions that are considered ideal candidates for regenerating damaged dental pulp tissue, how endogenous DPSCs respond to dental pulp injury and supply new dentin-forming cells has not been extensively investigated in vivo. Here, we review the recent progress in identity, function, and regulation of endogenous DPSCs and their clinical potential for pulp injury and regeneration. In addition, we discuss current advances in new mouse models, imaging techniques, and its practical uses and limitations in the analysis of DPSCs in pulp injury and regeneration in vivo.
Collapse
Affiliation(s)
- Dongwook Yang
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX,
USA
- Center for Skeletal Biology, Baylor College of Medicine, Houston, TX,
USA
| | - Jea Giezl Niedo Solidum
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX,
USA
- Department of Biochemistry & Molecular Biology, College of Medicine, University of the Philippines Manila, Manila,
Philippines
| | - Dongsu Park
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX,
USA
- Center for Skeletal Biology, Baylor College of Medicine, Houston, TX,
USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX,
USA
| |
Collapse
|
12
|
Sui BD, Zheng CX, Zhao WM, Xuan K, Li B, Jin Y. Mesenchymal condensation in tooth development and regeneration: a focus on translational aspects of organogenesis. Physiol Rev 2023; 103:1899-1964. [PMID: 36656056 DOI: 10.1152/physrev.00019.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The teeth are vertebrate-specific, highly specialized organs performing fundamental functions of mastication and speech, the maintenance of which is crucial for orofacial homeostasis and is further linked to systemic health and human psychosocial well-being. However, with limited ability for self-repair, the teeth can often be impaired by traumatic, inflammatory, and progressive insults, leading to high prevalence of tooth loss and defects worldwide. Regenerative medicine holds the promise to achieve physiological restoration of lost or damaged organs, and in particular an evolving framework of developmental engineering has pioneered functional tooth regeneration by harnessing the odontogenic program. As a key event of tooth morphogenesis, mesenchymal condensation dictates dental tissue formation and patterning through cellular self-organization and signaling interaction with the epithelium, which provides a representative to decipher organogenetic mechanisms and can be leveraged for regenerative purposes. In this review, we summarize how mesenchymal condensation spatiotemporally assembles from dental stem cells (DSCs) and sequentially mediates tooth development. We highlight condensation-mimetic engineering efforts and mechanisms based on ex vivo aggregation of DSCs, which have achieved functionally robust and physiologically relevant tooth regeneration after implantation in animals and in humans. The discussion of this aspect will add to the knowledge of development-inspired tissue engineering strategies and will offer benefits to propel clinical organ regeneration.
Collapse
Affiliation(s)
- Bing-Dong Sui
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wan-Min Zhao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bei Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
13
|
Ruan X, Zhang Z, Aili M, Luo X, Wei Q, Zhang D, Bai M. Activin receptor-like kinase 3: a critical modulator of development and function of mineralized tissues. Front Cell Dev Biol 2023; 11:1209817. [PMID: 37457289 PMCID: PMC10347416 DOI: 10.3389/fcell.2023.1209817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
Mineralized tissues, such as teeth and bones, pose significant challenges for repair due to their hardness, low permeability, and limited blood flow compared to soft tissues. Bone morphogenetic proteins (BMPs) have been identified as playing a crucial role in mineralized tissue formation and repair. However, the application of large amounts of exogenous BMPs may cause side effects such as inflammation. Therefore, it is necessary to identify a more precise molecular target downstream of the ligands. Activin receptor-like kinase 3 (ALK3), a key transmembrane receptor, serves as a vital gateway for the transmission of BMP signals, triggering cellular responses. Recent research has yielded new insights into the regulatory roles of ALK3 in mineralized tissues. Experimental knockout or mutation of ALK3 has been shown to result in skeletal dysmorphisms and failure of tooth formation, eruption, and orthodontic tooth movement. This review summarizes the roles of ALK3 in mineralized tissue regulation and elucidates how ALK3-mediated signaling influences the physiology and pathology of teeth and bones. Additionally, this review provides a reference for recommended basic research and potential future treatment strategies for the repair and regeneration of mineralized tissues.
Collapse
Affiliation(s)
- Xianchun Ruan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhaowei Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Munire Aili
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiang Luo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Qiang Wei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Mingru Bai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Li P, Ou Q, Shi S, Shao C. Immunomodulatory properties of mesenchymal stem cells/dental stem cells and their therapeutic applications. Cell Mol Immunol 2023; 20:558-569. [PMID: 36973490 PMCID: PMC10040934 DOI: 10.1038/s41423-023-00998-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/02/2023] [Indexed: 03/29/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are widely distributed in the body and play essential roles in tissue regeneration and homeostasis. MSCs can be isolated from discarded tissues, expanded in vitro and used as therapeutics for autoimmune diseases and other chronic disorders. MSCs promote tissue regeneration and homeostasis by primarily acting on immune cells. At least six different types of MSCs have been isolated from postnatal dental tissues and have remarkable immunomodulatory properties. Dental stem cells (DSCs) have been demonstrated to have therapeutic effects on several systemic inflammatory diseases. Conversely, MSCs derived from nondental tissues such as the umbilical cord exhibit great benefits in the management of periodontitis in preclinical studies. Here, we discuss the main therapeutic uses of MSCs/DSCs, their mechanisms, extrinsic inflammatory cues and the intrinsic metabolic circuitries that govern the immunomodulatory functions of MSCs/DSCs. Increased understanding of the mechanisms underpinning the immunomodulatory functions of MSCs/DSCs is expected to aid in the development of more potent and precise MSC/DSC-based therapeutics.
Collapse
Affiliation(s)
- Peishan Li
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, PR China
| | - Qianmin Ou
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, PR China
| | - Songtao Shi
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, PR China.
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, PR China.
| |
Collapse
|
15
|
Liu P, An Y, Zhu T, Tang S, Huang X, Li S, Fu F, Chen J, Xuan K. Mesenchymal stem cells: Emerging concepts and recent advances in their roles in organismal homeostasis and therapy. Front Cell Infect Microbiol 2023; 13:1131218. [PMID: 36968100 PMCID: PMC10034133 DOI: 10.3389/fcimb.2023.1131218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/03/2023] [Indexed: 03/11/2023] Open
Abstract
Stem cells play a crucial role in re-establishing homeostasis in the body, and the search for mechanisms by which they interact with the host to exert their therapeutic effects remains a key question currently being addressed. Considering their significant regenerative/therapeutic potential, research on mesenchymal stem cells (MSCs) has experienced an unprecedented advance in recent years, becoming the focus of extensive works worldwide to develop cell-based approaches for a variety of diseases. Initial evidence for the effectiveness of MSCs therapy comes from the restoration of dynamic microenvironmental homeostasis and endogenous stem cell function in recipient tissues by systemically delivered MSCs. The specific mechanisms by which the effects are exerted remain to be investigated in depth. Importantly, the profound cell-host interplay leaves persistent therapeutic benefits that remain detectable long after the disappearance of transplanted MSCs. In this review, we summarize recent advances on the role of MSCs in multiple disease models, provide insights into the mechanisms by which MSCs interact with endogenous stem cells to exert therapeutic effects, and refine the interconnections between MSCs and cells fused to damaged sites or differentiated into functional cells early in therapy.
Collapse
Affiliation(s)
- Peisheng Liu
- The College of Life Science, Northwest University, Xi’an, Shaanxi, China
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yongqian An
- Department of Stomatology, 962 Hospital of People's Liberation Army of China, Harbin, Heilongjiang, China
| | - Ting Zhu
- The College of Life Science, Northwest University, Xi’an, Shaanxi, China
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Siyuan Tang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- School of Basic Medicine, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xiaoyao Huang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Shijie Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Fei Fu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Ji Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Oral Implantology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- *Correspondence: Ji Chen, ; Kun Xuan,
| | - Kun Xuan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- *Correspondence: Ji Chen, ; Kun Xuan,
| |
Collapse
|
16
|
Jing J, Zhang M, Guo T, Pei F, Yang Y, Chai Y. Rodent incisor as a model to study mesenchymal stem cells in tissue homeostasis and repair. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.1068494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The homeostasis of adult tissues, such as skin, hair, blood, and bone, requires continuous generation of differentiated progeny of stem cells. The rodent incisor undergoes constant renewal and can provide an extraordinary model for studying stem cells and their progeny in adult tissue homeostasis, cell differentiation and injury-induced regeneration. Meanwhile, cellular heterogeneity in the mouse incisor also provides an opportunity to study cell-cell communication between different cell types, including interactions between stem cells and their niche environment. More importantly, the molecular and cellular regulatory mechanisms revealed by the mouse incisor have broad implications for other organs. Here we review recent findings and advances using the mouse incisor as a model, including perspectives on the heterogeneity of cells in the mesenchyme, the niche environment, and signaling networks that regulate stem cell behavior. The progress from this field will not only expand the knowledge of stem cells and organogenesis, but also bridge a gap between animal models and tissue regeneration.
Collapse
|
17
|
Jing J, Feng J, Yuan Y, Guo T, Lei J, Pei F, Ho TV, Chai Y. Spatiotemporal single-cell regulatory atlas reveals neural crest lineage diversification and cellular function during tooth morphogenesis. Nat Commun 2022; 13:4803. [PMID: 35974052 PMCID: PMC9381504 DOI: 10.1038/s41467-022-32490-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 08/02/2022] [Indexed: 11/10/2022] Open
Abstract
Cranial neural crest cells are an evolutionary innovation of vertebrates for craniofacial development and function, yet the mechanisms that govern the cell fate decisions of postmigratory cranial neural crest cells remain largely unknown. Using the mouse molar as a model, we perform single-cell transcriptome profiling to interrogate the cell fate diversification of postmigratory cranial neural crest cells. We reveal the landscape of transcriptional heterogeneity and define the specific cellular domains during the progression of cranial neural crest cell-derived dental lineage diversification, and find that each domain makes a specific contribution to distinct molar mesenchymal tissues. Furthermore, IGF signaling-mediated cell-cell interaction between the cellular domains highlights the pivotal role of autonomous regulation of the dental mesenchyme. Importantly, we reveal cell-type-specific gene regulatory networks in the dental mesenchyme and show that Foxp4 is indispensable for the differentiation of periodontal ligament. Our single-cell atlas provides comprehensive mechanistic insight into the cell fate diversification process of the cranial neural crest cell-derived odontogenic populations.
Collapse
Affiliation(s)
- Junjun Jing
- grid.42505.360000 0001 2156 6853Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033 USA ,grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Chengdu, Sichuan 610041 China
| | - Jifan Feng
- grid.42505.360000 0001 2156 6853Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033 USA
| | - Yuan Yuan
- grid.42505.360000 0001 2156 6853Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033 USA
| | - Tingwei Guo
- grid.42505.360000 0001 2156 6853Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033 USA
| | - Jie Lei
- grid.42505.360000 0001 2156 6853Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033 USA
| | - Fei Pei
- grid.42505.360000 0001 2156 6853Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033 USA
| | - Thach-Vu Ho
- grid.42505.360000 0001 2156 6853Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033 USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
18
|
BMP Signaling Pathway in Dentin Development and Diseases. Cells 2022; 11:cells11142216. [PMID: 35883659 PMCID: PMC9317121 DOI: 10.3390/cells11142216] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/27/2022] Open
Abstract
BMP signaling plays an important role in dentin development. BMPs and antagonists regulate odontoblast differentiation and downstream gene expression via canonical Smad and non-canonical Smad signaling pathways. The interaction of BMPs with their receptors leads to the formation of complexes and the transduction of signals to the canonical Smad signaling pathway (for example, BMP ligands, receptors, and Smads) and the non-canonical Smad signaling pathway (for example, MAPKs, p38, Erk, JNK, and PI3K/Akt) to regulate dental mesenchymal stem cell/progenitor proliferation and differentiation during dentin development and homeostasis. Both the canonical Smad and non-canonical Smad signaling pathways converge at transcription factors, such as Dlx3, Osx, Runx2, and others, to promote the differentiation of dental pulp mesenchymal cells into odontoblasts and downregulated gene expressions, such as those of DSPP and DMP1. Dysregulated BMP signaling causes a number of tooth disorders in humans. Mutation or knockout of BMP signaling-associated genes in mice results in dentin defects which enable a better understanding of the BMP signaling networks underlying odontoblast differentiation and dentin formation. This review summarizes the recent advances in our understanding of BMP signaling in odontoblast differentiation and dentin formation. It includes discussion of the expression of BMPs, their receptors, and the implicated downstream genes during dentinogenesis. In addition, the structures of BMPs, BMP receptors, antagonists, and dysregulation of BMP signaling pathways associated with dentin defects are described.
Collapse
|
19
|
Shalehin N, Seki Y, Takebe H, Fujii S, Mizoguchi T, Nakamura H, Yoshiba N, Yoshiba K, Iijima M, Shimo T, Irie K, Hosoya A. Gli1 +-PDL Cells Contribute to Alveolar Bone Homeostasis and Regeneration. J Dent Res 2022; 101:1537-1543. [PMID: 35786034 DOI: 10.1177/00220345221106921] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The periodontal ligament (PDL) contains mesenchymal stem cells (MSCs) that can differentiate into osteoblasts, cementoblasts, and fibroblasts. Nevertheless, the distribution and characteristics of these cells remain uncertain. Gli1, an essential hedgehog signaling transcription factor, functions in undifferentiated cells during embryogenesis. Therefore, in the present study, the differentiation ability of Gli1+ cells was examined using Gli1-CreERT2/ROSA26-loxP-stop-loxP-tdTomato (iGli1/Tomato) mice. In 4-wk-old iGli1/Tomato mice, Gli1/Tomato+ cells were only slightly detected in the PDL, around endomucin-expressing blood vessels. These cells had proliferated over time, localizing in the PDL as well as on the bone and cementum surfaces at day 28. However, in 8-wk-old iGli1/Tomato mice, Gli1/Tomato+ cells were quiescent, as most cells were not immunoreactive for Ki-67. These cells in 8-wk-old mice exhibited high colony-forming unit fibroblast activity and were capable of osteogenic, chondrogenic, and adipogenic differentiation in vitro. In addition, after transplantation of teeth of iGli1/Tomato mice into the hypodermis of wild-type mice, Tomato fluorescence indicating the progeny of Gli1+ cells was detected in the osteoblasts and osteocytes of the regenerated bone. These results demonstrate that Gli1+ cells in the PDL were MSCs and could contribute to the alveolar bone regeneration.
Collapse
Affiliation(s)
- N Shalehin
- Division of Histology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Y Seki
- Division of Histology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan.,Division of Orthodontics and Dentofacial Orthopedics, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - H Takebe
- Division of Histology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - S Fujii
- Division of Oral Surgery, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - T Mizoguchi
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - H Nakamura
- Department of Oral Anatomy, Matsumoto Dental University, Nagano, Japan
| | - N Yoshiba
- Division of Cariology, Department of Oral Health Science, Operative Dentistry and Endodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - K Yoshiba
- Division of Oral Science for Health Promotion, Department of Oral Health and Welfare, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - M Iijima
- Division of Orthodontics and Dentofacial Orthopedics, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - T Shimo
- Division of Oral Surgery, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - K Irie
- Division of Anatomy, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - A Hosoya
- Division of Histology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| |
Collapse
|
20
|
Xie X, Xu C, Zhao L, Wu Y, Feng JQ, Wang J. Axin2-expressing cells in the PDL are regulated by BMP signaling and play a pivotal role in periodontium development. J Clin Periodontol 2022; 49:945-956. [PMID: 35634660 DOI: 10.1111/jcpe.13666] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/05/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND To date, controversies still exist regarding the exact cellular origin and regulatory mechanisms of periodontium development, which hinders efforts to achieve ideal periodontal tissue regeneration. Axin2-expressing cells in the periodontal ligament (PDL) have been shown to be a novel progenitor cell population that is essential for periodontal homeostasis. In the current study, we aimed to elucidate the regulatory role of bone morphogenetic protein receptor type 1A (BMPR1A)-mediated BMP signaling in Axin2-expressing cells during periodontium development. METHODS Two strains of Axin2 gene reporter mice, Axin2lacZ/+ and Axin2CreERT2/+ ; R26RtdTomato/+ mice, were used. We next generated Axin2CreERT2/+ ; R26RDTA/+ ; R26RtdTomato/+ mice to genetically ablate of Axin2-lineage cells. Axin2CreERT2/+ ; Bmpr1afl/fl ; R26RtdTomato/+ mice were established to conditionally knock out Bmpr1a in Axin2-lineage cells. Multiple approaches, including micro-CT, calcein green and alizarin red double-labeling, scanning electron microscopy, and histological and immunostaining assays, were used to analyze periodontal phenotypes and molecular mechanisms. RESULTS X-gal staining revealed that Axin2-expressing cells in the PDL were mainly distributed along the alveolar bone and cementum surface. Cell lineage tracing and cell ablation assays further demonstrated the indispensable role of Axin2-expressing cells in periodontium development. Next, we found that conditional knockout of Bmpr1a in Axin2-lineage cells led to periodontal defects, which were characterized by alveolar bone loss, impaired cementogenesis, and abnormal Sharpey's fibers. CONCLUSIONS Our findings suggest that Axin2-expressing cells in the PDL are essential for periodontium development, which is regulated by BMP signaling. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xudong Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Med-X Center for Materials, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chunmei Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Med-X Center for Materials, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Med-X Center for Materials, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Med-X Center for Materials, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Med-X Center for Materials, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Odontogenic Differentiation-Induced Tooth Regeneration by Psoralea corylifolia L. Curr Issues Mol Biol 2022; 44:2300-2308. [PMID: 35678685 PMCID: PMC9164060 DOI: 10.3390/cimb44050156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 01/22/2023] Open
Abstract
Psoralea corylifolia L. (P. corylifolia) has been used as an oriental phytomedicine to treat coldness of hands and feet in bone marrow injury. Hydroxyapatite is usually used for tooth regeneration. In this study, the role of P. corylifolia and bakuchiol, a compound originated from P. corylifolia as differentiation-inducing substances for tooth regeneration, was determined by monitoring odontogenic differentiation in human dental pulp stem cells (hDPSCs). We confirmed that P. corylifolia extracts and bakuchiol increased the odontogenic differentiation of hDPSCs. In addition, the expression of the odontogenic differentiation marker genes alkaline phosphatase (APL), Runt-related transcription factor 2 (RUNX-2), osteocalcin (OC), and dentin matrix acidic phosphoprotein-1 (DMP-1) was proved by real-time polymerase chain reaction, and protein expression of dentin matrix acidic phosphoprotein-1 (DMP-1) and dentin sialophosphoprotein (DSPP) was proved by western blotting. Further, by confirming the increase in small mothers against decapentaplegia (SMAD) 1/5/8 phosphorylation, the SMAD signaling pathway was found to increase the differentiation of odontoblasts. This study confirmed that P. corylifolia L. extracts and bakuchiol alone promote odontogenic differentiation in hDPSCs. These results suggest that bakuchiol from P. corylifolia is responsible for odontogenic differentiation, and they encourage future in vivo studies on dentin regeneration.
Collapse
|
22
|
Chen X, Li Y, Paiboonrungruang C, Li Y, Peters H, Kist R, Xiong Z. PAX9 in Cancer Development. Int J Mol Sci 2022; 23:5589. [PMID: 35628401 PMCID: PMC9147292 DOI: 10.3390/ijms23105589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 02/05/2023] Open
Abstract
Paired box 9 (PAX9) is a transcription factor of the PAX family functioning as both a transcriptional activator and repressor. Its functional roles in the embryonic development of various tissues and organs have been well studied. However, its roles and molecular mechanisms in cancer development are largely unknown. Here, we review the current understanding of PAX9 expression, upstream regulation of PAX9, and PAX9 downstream events in cancer development. Promoter hypermethylation, promoter SNP, microRNA, and inhibition of upstream pathways (e.g., NOTCH) result in PAX9 silencing or downregulation, whereas gene amplification and an epigenetic axis upregulate PAX9 expression. PAX9 may contribute to carcinogenesis through dysregulation of its transcriptional targets and related molecular pathways. In summary, extensive studies on PAX9 in its cellular and tissue contexts are warranted in various cancers, in particular, HNSCC, ESCC, lung cancer, and cervical SCC.
Collapse
Affiliation(s)
- Xiaoxin Chen
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA; (X.C.); (Y.L.); (C.P.); (Y.L.)
| | - Yahui Li
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA; (X.C.); (Y.L.); (C.P.); (Y.L.)
| | - Chorlada Paiboonrungruang
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA; (X.C.); (Y.L.); (C.P.); (Y.L.)
| | - Yong Li
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA; (X.C.); (Y.L.); (C.P.); (Y.L.)
- Department of Thoracic Surgery, National Cancer Center, Cancer Hospital of Chinese Academy of Medical Sciences, 17 Panjiayuan Nanli Road, Beijing 100021, China
| | - Heiko Peters
- Newcastle University Biosciences Institute, Newcastle upon Tyne NE2 4BW, UK;
| | - Ralf Kist
- Newcastle University Biosciences Institute, Newcastle upon Tyne NE2 4BW, UK;
- School of Dental Sciences, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4BW, UK
| | - Zhaohui Xiong
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA; (X.C.); (Y.L.); (C.P.); (Y.L.)
| |
Collapse
|
23
|
Zhang Y, Zhang H, Yuan G, Yang G. circKLF4 Upregulates Klf4 and Endoglin to Promote Odontoblastic Differentiation of Mouse Dental Papilla Cells via Sponging miRNA-1895 and miRNA-5046. Front Physiol 2022; 12:760223. [PMID: 35222058 PMCID: PMC8865004 DOI: 10.3389/fphys.2021.760223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/29/2021] [Indexed: 12/03/2022] Open
Abstract
circular RNAs (circRNAs) is a broad and diverse endogenous subfamily of non-coding RNAs, regulating the gene expression by acting as a microRNA (miRNA) sponge. However, the biological functions of circRNAs in odontoblast differentiation remain largely unknown. Our preliminary study identified an unknown mouse circRNA by circRNA sequencing generated from mouse dental papilla and we termed it circKLF4. In this study, quantitative real-time PCR and in situ hybridization were used and demonstrated that circKLF4 was upregulated during odontoblastic differentiation. Gene knockdown and overexpression assays indicated that circKLF4 promoted odontoblastic differentiation of mouse dental papilla cells (mDPCs). Mechanistically, we found that circKLF4 increased the linear KLF4 expression in a microRNA-dependent manner. By mutating the binding sites of microRNA and circKLF4, we further confirmed that circKLF4 acted as sponge of miRNA-1895 and miRNA-5046 to promote the expression of KLF4. We then also found that ENDOGLIN was also up-regulated by circKLF4 by transfection of circKLF4 overexpression plasmids with or without microRNA inhibitor. In conclusion, circKLF4 increases the expression of KLF4 and ENDOGLIN to promote odontoblastic differentiation via sponging miRNA-1895 and miRNA-5046.
Collapse
|
24
|
Wu Y, Zhou X, Yuan W, Liu J, Yang W, Zhu Y, Ye C, Xiong X, Zhang Q, Liu J, Wang J. Gli1+ Mesenchymal Stem Cells in Bone and Teeth. Curr Stem Cell Res Ther 2022; 17:494-502. [PMID: 34994317 DOI: 10.2174/1574888x17666220107102911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/11/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023]
Abstract
Mesenchymal stem cells (MSCs) are remarkable and noteworthy. Identification of markers for MSCs enables the study of their niche in vivo. It has been identified that glioma-associated oncogene 1 positive (Gli1+) cells are mesenchymal stem cells supporting homeostasis and injury repair, especially in the skeletal system and teeth. This review outlines the role of Gli1+ cells as an MSC subpopulation in both bones and teeth, suggesting the prospects of Gli1+ cells in stem cell-based tissue engineering.
Collapse
Affiliation(s)
- Yange Wu
- Department of Orthodontics, State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China; b Lab for Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Orthodontics, State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xueman Zhou
- Department of Orthodontics, State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenxiu Yuan
- Department of Orthodontics, State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiaqi Liu
- Department of Orthodontics, State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenke Yang
- Department of Orthodontics, State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yufan Zhu
- Department of Orthodontics, State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengxinyue Ye
- Department of Orthodontics, State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xiong
- Department of Orthodontics, State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qinlanhui Zhang
- Department of Orthodontics, State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jin Liu
- Lab for Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Wang
- Department of Orthodontics, State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Wang J, Ran S, Liu B, Gu S. Monitoring of canonical BMP and Wnt activities during postnatal stages of mouse first molar root formation. J Appl Oral Sci 2021; 29:e20210281. [PMID: 34910074 PMCID: PMC8687650 DOI: 10.1590/1678-7757-2021-0281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022] Open
Abstract
Objective This study aimed to explore the precise temporospatial distributions of bone morphogenetic protein (BMP) and Wnt signaling pathways during postnatal development of mammalian tooth roots after the termination of crown morphogenesis. Methodology A total of two transgenic mouse lines, BRE-LacZ mice and BAT-gal mice, were undertaken. The mice were sacrificed on every postnatal (PN) day from PN 3d up to PN 21d. Then, the first lower molars were extracted, and the dissected mandibles were stained with 5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside (X-gal) and fixed. Serial sections at 10 µm were prepared after decalcification, dehydration, and embedding in paraffin. Results We observed BMP/Smads and Wnt/β-catenin signaling activities in the dental sac, dental pulp, and apical papilla with a certain degree of variation. The position of activation of the BMP/Smad signaling pathway was located more coronally in the early stage, which then gradually expanded as root elongation proceeded and was associated with blood vessels in the pulp and developing complex apical tissues in the later stage. However, Wnt/β-catenin signaling was highly concentrated in the mesenchyme below the cusps in the early stage, gradually expanded to regions around the root in the transition/root stage, and then disappeared entirely in the later stage. Conclusions These results further confirmed the participation of both BMP and Wnt canonical signaling pathways in tooth root development, as well as formed the basis for future studies on how precisely integrated signaling pathways regulate root morphogenesis and regeneration.
Collapse
Affiliation(s)
- Jia Wang
- Shanghai Jiao Tong University, School of Medicine, Ninth People's Hospital, Department of Endodontics and Operative Dentistry, Shanghai, China.,Tulane University, Department of Cell and Molecular Biology, New Orleans, LA, USA
| | - Shujun Ran
- Shanghai Jiao Tong University, School of Medicine, Ninth People's Hospital, Department of Endodontics and Operative Dentistry, Shanghai, China
| | - Bin Liu
- Shanghai Jiao Tong University, School of Medicine, Ninth People's Hospital, Department of Endodontics and Operative Dentistry, Shanghai, China
| | - Shensheng Gu
- Shanghai Jiao Tong University, School of Medicine, Ninth People's Hospital, Department of Endodontics and Operative Dentistry, Shanghai, China
| |
Collapse
|
26
|
Hermans F, Hemeryck L, Lambrichts I, Bronckaers A, Vankelecom H. Intertwined Signaling Pathways Governing Tooth Development: A Give-and-Take Between Canonical Wnt and Shh. Front Cell Dev Biol 2021; 9:758203. [PMID: 34778267 PMCID: PMC8586510 DOI: 10.3389/fcell.2021.758203] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Teeth play essential roles in life. Their development relies on reciprocal interactions between the ectoderm-derived dental epithelium and the underlying neural crest-originated mesenchyme. This odontogenic process serves as a prototype model for the development of ectodermal appendages. In the mouse, developing teeth go through distinct morphological phases that are tightly controlled by epithelial signaling centers. Crucial molecular regulators of odontogenesis include the evolutionarily conserved Wnt, BMP, FGF and sonic hedgehog (Shh) pathways. These signaling modules do not act on their own, but are closely intertwined during tooth development, thereby outlining the path to be taken by specific cell populations including the resident dental stem cells. Recently, pivotal Wnt-Shh interaction and feedback loops have been uncovered during odontogenesis, showing conservation in other developing ectodermal appendages. This review provides an integrated overview of the interplay between canonical Wnt and Shh throughout mouse tooth formation stages, extending from the initiation of dental placode to the fully formed adult tooth.
Collapse
Affiliation(s)
- Florian Hermans
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium.,Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Lara Hemeryck
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
| | - Ivo Lambrichts
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Annelies Bronckaers
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
| |
Collapse
|
27
|
Tokavanich N, Wein MN, English JD, Ono N, Ono W. The Role of Wnt Signaling in Postnatal Tooth Root Development. FRONTIERS IN DENTAL MEDICINE 2021; 2:769134. [PMID: 35782525 PMCID: PMC9248717 DOI: 10.3389/fdmed.2021.769134] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Appropriate tooth root formation and tooth eruption are critical for achieving and maintaining good oral health and quality of life. Tooth eruption is the process through which teeth emerge from their intraosseous position to their functional position in the oral cavity. This temporospatial process occurs simultaneously with tooth root formation through a cascade of interactions between the epithelial and adjoining mesenchymal cells. Here, we will review the role of the Wnt system in postnatal tooth root development. This signaling pathway orchestrates the process of tooth root formation and tooth eruption in conjunction with several other major signaling pathways. The Wnt signaling pathway is comprised of the canonical, or Wnt/β-catenin, and the non-Canonical signaling pathway. The expression of multiple Wnt ligands and their downstream transcription factors including β-catenin is found in the cells in the epithelia and mesenchyme starting from the initiation stage of tooth development. The inhibition of canonical Wnt signaling in an early stage arrests odontogenesis. Wnt transcription factors continue to be present in dental follicle cells, the progenitor cells responsible for differentiation into cells constituting the tooth root and the periodontal tissue apparatus. This expression occurs concurrently with osteogenesis and cementogenesis. The conditional ablation of β-catenin in osteoblast and odontoblast causes the malformation of the root dentin and cementum. On the contrary, the overexpression of β-catenin led to shorter molar roots with thin and hypo-mineralized dentin, along with the failure of tooth eruption. Therefore, the proper expression of Wnt signaling during dental development is crucial for regulating the proliferation, differentiation, as well as epithelial-mesenchymal interaction essential for tooth root formation and tooth eruption.
Collapse
Affiliation(s)
- Nicha Tokavanich
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| | - Marc N. Wein
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Jeryl D. English
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Noriaki Ono
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Wanida Ono
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| |
Collapse
|
28
|
Xu C, Xie X, Zhao H, Wu Y, Wang J, Feng JQ. TGF-Beta Receptor II Is Critical for Osteogenic Progenitor Cell Proliferation and Differentiation During Postnatal Alveolar Bone Formation. Front Physiol 2021; 12:721775. [PMID: 34630143 PMCID: PMC8497707 DOI: 10.3389/fphys.2021.721775] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/27/2021] [Indexed: 02/05/2023] Open
Abstract
Transforming growth factor beta (TGFβ) signaling plays an important role during osteogenesis. However, most research in this area focuses on cortical and trabecular bone, whereas alveolar bone is largely overlooked. To address the role of TGFβR2 (the key receptor for TGFβ signaling) during postnatal alveolar bone development, we conditionally deleted Tgfβr2 in early mesenchymal progenitors by crossing Gli1-Cre ERT2; Tgfβr2 flox/flox ; R26R tdTomato mice (named early cKO) or in osteoblasts by crossing 3.2kb Col1-Cre ERT2 ; Tgfβr2 flox/flox ; R26R tdTomato mice (named late cKO). Both cKO lines were induced at postnatal day 5 (P5) and mice were harvested at P28. Compared to the control littermates, early cKO mice exhibited significant reduction in alveolar bone mass and bone mineral density, with drastic defects in the periodontal ligament (PDL); conversely, the late cKO mice displayed very minor changes in alveolar bone. Mechanism studies showed a significant reduction in PCNA+ PDL cell numbers and OSX+ alveolar bone cell numbers, as well as disorganized PDL fibers with a great reduction in periostin (the most abundant extracellular matrix protein) on both mRNA and protein levels. We also showed a drastic reduction in β-catenin in the early cKO PDL and a great increase in SOST (a potent inhibitor of Wnt signaling). Based on these findings, we conclude that TGFβ signaling plays critical roles during early alveolar bone formation via the promotion of PDL mesenchymal progenitor proliferation and differentiation mechanisms.
Collapse
Affiliation(s)
- Chunmei Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Biomedical Sciences, College of Dentistry, Texas A&M University, Dallas, TX, United States
| | - Xudong Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Biomedical Sciences, College of Dentistry, Texas A&M University, Dallas, TX, United States
| | - Hu Zhao
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX, United States
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Biomedical Sciences, College of Dentistry, Texas A&M University, Dallas, TX, United States
| | - Jian Q Feng
- Department of Biomedical Sciences, College of Dentistry, Texas A&M University, Dallas, TX, United States
| |
Collapse
|
29
|
Du J, Jing J, Chen S, Yuan Y, Feng J, Ho TV, Sehgal P, Xu J, Jiang X, Chai Y. Arid1a regulates cell cycle exit of transit-amplifying cells by inhibiting the Aurka-Cdk1 axis in mouse incisor. Development 2021; 148:dev198838. [PMID: 33766930 PMCID: PMC8077510 DOI: 10.1242/dev.198838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/18/2021] [Indexed: 12/14/2022]
Abstract
Stem cells self-renew or give rise to transit-amplifying cells (TACs) that differentiate into specific functional cell types. The fate determination of stem cells to TACs and their transition to fully differentiated progeny is precisely regulated to maintain tissue homeostasis. Arid1a, a core component of the switch/sucrose nonfermentable complex, performs epigenetic regulation of stage- and tissue-specific genes that is indispensable for stem cell homeostasis and differentiation. However, the functional mechanism of Arid1a in the fate commitment of mesenchymal stem cells (MSCs) and their progeny is not clear. Using the continuously growing adult mouse incisor model, we show that Arid1a maintains tissue homeostasis through limiting proliferation, promoting cell cycle exit and differentiation of TACs by inhibiting the Aurka-Cdk1 axis. Loss of Arid1a overactivates the Aurka-Cdk1 axis, leading to expansion of the mitotic TAC population but compromising their differentiation ability. Furthermore, the defective homeostasis after loss of Arid1a ultimately leads to reduction of the MSC population. These findings reveal the functional significance of Arid1a in regulating the fate of TACs and their interaction with MSCs to maintain tissue homeostasis.
Collapse
Affiliation(s)
- Jiahui Du
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Shuo Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Prerna Sehgal
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jian Xu
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA
| |
Collapse
|
30
|
Du J, Jing J, Yuan Y, Feng J, Han X, Chen S, Li X, Peng W, Xu J, Ho TV, Jiang X, Chai Y. Arid1a-Plagl1-Hh signaling is indispensable for differentiation-associated cell cycle arrest of tooth root progenitors. Cell Rep 2021; 35:108964. [PMID: 33826897 PMCID: PMC8132592 DOI: 10.1016/j.celrep.2021.108964] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 02/10/2021] [Accepted: 03/17/2021] [Indexed: 12/04/2022] Open
Abstract
Chromatin remodelers often show broad expression patterns in multiple cell types yet can elicit cell-specific effects in development and diseases. Arid1a binds DNA and regulates gene expression during tissue development and homeostasis. However, it is unclear how Arid1a achieves its functional specificity in regulating progenitor cells. Using the tooth root as a model, we show that loss of Arid1a impairs the differentiation-associated cell cycle arrest of tooth root progenitors through Hedgehog (Hh) signaling regulation, leading to shortened roots. Our data suggest that Plagl1, as a co-factor, endows Arid1a with its cell-type/spatial functional specificity. Furthermore, we show that loss of Arid1a leads to increased expression of Arid1b, which is also indispensable for odontoblast differentiation but is not involved in regulation of Hh signaling. This study expands our knowledge of the intricate interactions among chromatin remodelers, transcription factors, and signaling molecules during progenitor cell fate determination and lineage commitment.
Collapse
Affiliation(s)
- Jiahui Du
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA; Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Xia Han
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Shuo Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Xiang Li
- Department of Physics, George Washington University, Washington, DC 20052, USA
| | - Weiqun Peng
- Department of Physics, George Washington University, Washington, DC 20052, USA
| | - Jian Xu
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
31
|
Chen Q, Zheng L, Zhang Y, Huang X, Wang F, Li S, Yang Z, Liang F, Hu J, Jiang Y, Li Y, Zhou P, Luo W, Zhang H. Special AT-rich sequence-binding protein 2 (Satb2) synergizes with Bmp9 and is essential for osteo/odontogenic differentiation of mouse incisor mesenchymal stem cells. Cell Prolif 2021; 54:e13016. [PMID: 33660290 PMCID: PMC8016638 DOI: 10.1111/cpr.13016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Mouse incisor mesenchymal stem cells (MSCs) have self-renewal ability and osteo/odontogenic differentiation potential. However, the mechanism controlling the continuous self-renewal and osteo/odontogenic differentiation of mouse incisor MSCs remains unclear. Special AT-rich sequence-binding protein 2 (SATB2) positively regulates craniofacial patterning, bone development and regeneration, whereas SATB2 deletion or mutation leads to craniomaxillofacial dysplasia and delayed tooth and root development, similar to bone morphogenetic protein (BMP) loss-of-function phenotypes. However, the detailed mechanism underlying the SATB2 role in odontogenic MSCs is poorly understood. The aim of this study was to investigate whether SATB2 can regulate self-renewal and osteo/odontogenic differentiation of odontogenic MSCs. MATERIALS AND METHODS Satb2 expression was detected in the rapidly renewing mouse incisor mesenchyme by immunofluorescence staining, quantitative RT-PCR and Western blot analysis. Ad-Satb2 and Ad-siSatb2 were constructed to evaluate the effect of Satb2 on odontogenic MSCs self-renewal and osteo/odontogenic differentiation properties and the potential role of Satb2 with the osteogenic factor bone morphogenetic protein 9 (Bmp9) in vitro and in vivo. RESULTS Satb2 was found to be expressed in mesenchymal cells and pre-odontoblasts/odontoblasts. We further discovered that Satb2 effectively enhances mouse incisor MSCs self-renewal. Satb2 acted synergistically with the potent osteogenic factor Bmp9 in inducing osteo/odontogenic differentiation of mouse incisor MSCs in vitro and in vivo. CONCLUSIONS Satb2 promotes self-renewal and osteo/odontogenic differentiation of mouse incisor MSCs. Thus, Satb2 can cooperate with Bmp9 as a new efficacious bio-factor for osteogenic regeneration and tooth engineering.
Collapse
Affiliation(s)
- Qiuman Chen
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Liwen Zheng
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Yuxin Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Xia Huang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Feilong Wang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Shuang Li
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Zhuohui Yang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Fang Liang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Jing Hu
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Yucan Jiang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Yeming Li
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Pengfei Zhou
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Wenping Luo
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Hongmei Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| |
Collapse
|
32
|
Liu Z, Lin Y, Fang X, Yang J, Chen Z. Epigallocatechin-3-Gallate Promotes Osteo-/Odontogenic Differentiation of Stem Cells from the Apical Papilla through Activating the BMP-Smad Signaling Pathway. Molecules 2021; 26:molecules26061580. [PMID: 33809391 PMCID: PMC8001198 DOI: 10.3390/molecules26061580] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 12/20/2022] Open
Abstract
Stem cells from apical papilla (SCAPs) are desirable sources of dentin regeneration. Epigallocatechin-3-gallate (EGCG), a natural component of green tea, shows potential in promoting the osteogenic differentiation of bone mesenchymal stem cells. However, whether EGCG regulates the odontogenic differentiation of SCAPs and how this occurs remain unknown. SCAPs from immature human third molars (16–20 years, n = 5) were treated with a medium containing different concentrations of EGCG or bone morphogenic protein 2 (BMP2), with or without LDN193189 (an inhibitor of the canonical BMP pathway). Cell proliferation and migration were analyzed using a CCK-8 assay and wound-healing assay, respectively. Osteo-/odontogenic differentiation was evaluated via alkaline phosphatase staining, alizarin red S staining, and the expression of osteo-/odontogenic markers using qPCR and Western blotting. We found that EGCG (1 or 10 μM) promoted the proliferation of SCAPs, increased alkaline phosphatase activity and mineral deposition, and upregulated the expression of osteo-/odontogenic markers including dentin sialophosphoprotein (Dspp), dentin matrix protein-1 (Dmp-1), bone sialoprotein (Bsp), and Type I collagen (Col1), along with the elevated expression of BMP2 and phosphorylation level of Smad1/5/9 (p < 0.01). EGCG at concentrations below 10 μM had no significant influence on cell migration. Moreover, EGCG-induced osteo-/odontogenic differentiation was significantly attenuated via LDN193189 treatment (p < 0.01). Furthermore, EGCG showed the ability to promote mineralization comparable with that of recombinant BMP2. Our study demonstrated that EGCG promotes the osteo-/odontogenic differentiation of SCAPs through the BMP–Smad signaling pathway.
Collapse
|
33
|
Jiang S, Sheng R, Qi X, Wang J, Guo Y, Yuan Q. USP34 regulates tooth root morphogenesis by stabilizing NFIC. Int J Oral Sci 2021; 13:7. [PMID: 33686052 PMCID: PMC7940473 DOI: 10.1038/s41368-021-00114-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Tooth root morphogenesis involves two biological processes, root elongation and dentinogenesis, which are guaranteed by downgrowth of Hertwig's epithelial root sheath (HERS) and normal odontoblast differentiation. Ubiquitin-dependent protein degradation has been reported to precisely regulate various physiological processes, while its role in tooth development is still elusive. Here we show ubiquitin-specific protease 34 (USP34) plays a pivotal role in root formation. Deletion of Usp34 in dental mesenchymal cells leads to short root anomaly, characterized by truncated roots and thin root dentin. The USP34-deficient dental pulp cells (DPCs) exhibit decreased odontogenic differentiation with downregulation of nuclear factor I/C (NFIC). Overexpression of NFIC partially restores the impaired odontogenic potential of DPCs. These findings indicate that USP34-dependent deubiquitination is critical for root morphogenesis by stabilizing NFIC.
Collapse
Affiliation(s)
- Shuang Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Sheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xingying Qi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuchen Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Oral Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Quan Yuan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
34
|
Fairfield H, Costa S, Falank C, Farrell M, Murphy CS, D’Amico A, Driscoll H, Reagan MR. Multiple Myeloma Cells Alter Adipogenesis, Increase Senescence-Related and Inflammatory Gene Transcript Expression, and Alter Metabolism in Preadipocytes. Front Oncol 2021; 10:584683. [PMID: 33680918 PMCID: PMC7930573 DOI: 10.3389/fonc.2020.584683] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/23/2020] [Indexed: 12/27/2022] Open
Abstract
Within the bone marrow microenvironment, mesenchymal stromal cells (MSCs) are an essential precursor to bone marrow adipocytes and osteoblasts. The balance between this progenitor pool and mature cells (adipocytes and osteoblasts) is often skewed by disease and aging. In multiple myeloma (MM), a cancer of the plasma cell that predominantly grows within the bone marrow, as well as other cancers, MSCs, preadipocytes, and adipocytes have been shown to directly support tumor cell survival and proliferation. Increasing evidence supports the idea that MM-associated MSCs are distinct from healthy MSCs, and their gene expression profiles may be predictive of myeloma patient outcomes. Here we directly investigate how MM cells affect the differentiation capacity and gene expression profiles of preadipocytes and bone marrow MSCs. Our studies reveal that MM.1S cells cause a marked decrease in lipid accumulation in differentiating 3T3-L1 cells. Also, MM.1S cells or MM.1S-conditioned media altered gene expression profiles of both 3T3-L1 and mouse bone marrow MSCs. 3T3-L1 cells exposed to MM.1S cells before adipogenic differentiation displayed gene expression changes leading to significantly altered pathways involved in steroid biosynthesis, the cell cycle, and metabolism (oxidative phosphorylation and glycolysis) after adipogenesis. MM.1S cells induced a marked increase in 3T3-L1 expression of MM-supportive genes including Il-6 and Cxcl12 (SDF1), which was confirmed in mouse MSCs by qRT-PCR, suggesting a forward-feedback mechanism. In vitro experiments revealed that indirect MM exposure prior to differentiation drives a senescent-like phenotype in differentiating MSCs, and this trend was confirmed in MM-associated MSCs compared to MSCs from normal donors. In direct co-culture, human mesenchymal stem cells (hMSCs) exposed to MM.1S, RPMI-8226, and OPM-2 prior to and during differentiation, exhibited different levels of lipid accumulation as well as secreted cytokines. Combined, our results suggest that MM cells can inhibit adipogenic differentiation while stimulating expression of the senescence associated secretory phenotype (SASP) and other pro-myeloma molecules. This study provides insight into a novel way in which MM cells manipulate their microenvironment by altering the expression of supportive cytokines and skewing the cellular diversity of the marrow.
Collapse
Affiliation(s)
- Heather Fairfield
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, United States,School of Medicine, Tufts University, Boston, MA, United States,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
| | - Samantha Costa
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, United States,School of Medicine, Tufts University, Boston, MA, United States,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
| | - Carolyne Falank
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, United States,School of Medicine, Tufts University, Boston, MA, United States,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
| | - Mariah Farrell
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, United States,School of Medicine, Tufts University, Boston, MA, United States,Biology Department, University of Southern Maine, Portland, ME, United States
| | - Connor S. Murphy
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, United States,School of Medicine, Tufts University, Boston, MA, United States,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
| | - Anastasia D’Amico
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, United States,School of Medicine, Tufts University, Boston, MA, United States,Biology Department, University of Southern Maine, Portland, ME, United States
| | - Heather Driscoll
- Biology Department, Norwich University, Northfield, VT, United States
| | - Michaela R. Reagan
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, United States,School of Medicine, Tufts University, Boston, MA, United States,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States,Biology Department, University of Southern Maine, Portland, ME, United States,*Correspondence: Michaela R. Reagan,
| |
Collapse
|
35
|
Jing D, Li C, Yao K, Xie X, Wang P, Zhao H, Feng JQ, Zhao Z, Wu Y, Wang J. The vital role of Gli1 + mesenchymal stem cells in tissue development and homeostasis. J Cell Physiol 2021; 236:6077-6089. [PMID: 33533019 DOI: 10.1002/jcp.30310] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/04/2021] [Accepted: 01/21/2021] [Indexed: 02/05/2023]
Abstract
The hedgehog (Hh) signaling pathway plays an essential role in both tissue development and homeostasis. Glioma-associated oncogene homolog 1 (Gli1) is one of the vital transcriptional factors as well as the direct target gene in the Hh signaling pathway. The cells expressing the Gli1 gene (Gli1+ cells) have been identified as mesenchymal stem cells (MSCs) that are responsible for various tissue developments, homeostasis, and injury repair. This review outlines some recent discoveries on the crucial roles of Gli1+ MSCs in the development and homeostasis of varieties of hard and soft tissues.
Collapse
Affiliation(s)
- Dian Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chaoyuan Li
- Department of Oral Implantology, School and Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Ke Yao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xudong Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peiqi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hu Zhao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
He J, Jing J, Feng J, Han X, Yuan Y, Guo T, Pei F, Ma Y, Cho C, Ho TV, Chai Y. Lhx6 regulates canonical Wnt signaling to control the fate of mesenchymal progenitor cells during mouse molar root patterning. PLoS Genet 2021; 17:e1009320. [PMID: 33596195 PMCID: PMC7920342 DOI: 10.1371/journal.pgen.1009320] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/01/2021] [Accepted: 12/21/2020] [Indexed: 02/05/2023] Open
Abstract
Mammalian tooth crown formation has long served as a model for investigating how patterning and morphogenesis are orchestrated during development. However, the mechanism underlying root patterning and morphogenesis remains poorly understood. In this study, we find that Lhx6 labels a subpopulation of root progenitor cells in the apical dental mesenchyme, which is closely associated with furcation development. Loss of Lhx6 leads to furcation and root number defects, indicating that Lhx6 is a key root patterning regulator. Among the multiple cellular events regulated by Lhx6 is the odontoblast fate commitment of progenitor cells, which it controls in a cell-autonomous manner. Specifically, Lhx6 loss leads to elevated expression of the Wnt antagonist Sfrp2 and down-regulation of Wnt signaling in the furcation region, while overactivation of Wnt signaling in Lhx6+ progenitor cells partially restore the furcation defects in Lhx6-/- mice. Collectively, our findings have important implications for understanding organ morphogenesis and future strategies for tooth root regeneration.
Collapse
Affiliation(s)
- Jinzhi He
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Chengdu, Sichuan province, China
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Xia Han
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Tingwei Guo
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Fei Pei
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Yuanyuan Ma
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Courtney Cho
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Yang Chai
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
37
|
Fan J, Lee CS, Kim S, Zhang X, Pi-Anfruns J, Guo M, Chen C, Rahnama M, Li J, Wu BM, Aghaloo TL, Lee M. Trb3 controls mesenchymal stem cell lineage fate and enhances bone regeneration by scaffold-mediated local gene delivery. Biomaterials 2021; 264:120445. [PMID: 33069136 PMCID: PMC7655726 DOI: 10.1016/j.biomaterials.2020.120445] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/26/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
Aberrant lineage commitment of mesenchymal stem cells (MSCs) in marrow contributes to abnormal bone formation due to reduced osteogenic and increased adipogenic potency. While several major transcriptional factors associated with lineage differentiation have been found during the last few decades, the molecular switch for MSC fate determination and its role in skeletal regeneration remains largely unknown, limiting creation of effective therapeutic approaches. Tribbles homolog 3 (Trb3), a member of tribbles family pseudokinases, is known to exert diverse roles in cellular differentiation. Here, we investigated the reciprocal role of Trb3 in the regulation of osteogenic and adipogenic differentiation of MSCs in the context of bone formation, and examined the mechanisms by which Trb3 controls the adipo-osteogenic balance. Trb3 promoted osteoblastic commitment of MSCs at the expense of adipocyte differentiation. Mechanistically, Trb3 regulated cell-fate choice of MSCs through BMP/Smad and Wnt/β-catenin signals. Importantly, in vivo local delivery of Trb3 using a novel gelatin-conjugated caffeic acid-coated apatite/PLGA (GelCA-PLGA) scaffold stimulated robust bone regeneration and inhibited fat-filled cyst formation in rodent non-healing mandibular defect models. These findings demonstrate Trb3-based therapeutic strategies that favor osteoblastogenesis over adipogenesis for improved skeletal regeneration and future treatment of bone-loss disease. The distinctive approach implementing a scaffold-mediated local gene transfer may further broaden the translational use of targeting specific therapeutic gene related to lineage commitment for clinical bone treatment.
Collapse
Affiliation(s)
- Jiabing Fan
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, 90095, USA; Weintraub Center for Reconstructive Biotechnology, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Chung-Sung Lee
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Soyon Kim
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Xiao Zhang
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Joan Pi-Anfruns
- Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Mian Guo
- Department of Neurosurgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Chen Chen
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Matthew Rahnama
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Jiong Li
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Benjamin M Wu
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, 90095, USA; Weintraub Center for Reconstructive Biotechnology, School of Dentistry, University of California, Los Angeles, CA, 90095, USA; Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| | - Tara L Aghaloo
- Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Min Lee
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA, 90095, USA; Weintraub Center for Reconstructive Biotechnology, School of Dentistry, University of California, Los Angeles, CA, 90095, USA; Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
38
|
Stem cell properties of Gli1-positive cells in the periodontal ligament. J Oral Biosci 2020; 62:299-305. [DOI: 10.1016/j.job.2020.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/14/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022]
|
39
|
Wen Q, Jing J, Han X, Feng J, Yuan Y, Ma Y, Chen S, Ho TV, Chai Y. Runx2 Regulates Mouse Tooth Root Development Via Activation of WNT Inhibitor NOTUM. J Bone Miner Res 2020; 35:2252-2264. [PMID: 32569388 PMCID: PMC7689689 DOI: 10.1002/jbmr.4120] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 01/09/2023]
Abstract
Progenitor cells are crucial in controlling organ morphogenesis. Tooth development is a well-established model for investigating the molecular and cellular mechanisms that regulate organogenesis. Despite advances in our understanding of how tooth crown formation is regulated, we have limited understanding of tooth root development. Runt-related transcription factor 2 (RUNX2) is a well-known transcription factor in osteogenic differentiation and early tooth development. However, the function of RUNX2 during tooth root formation remains unknown. We revealed in this study that RUNX2 is expressed in a subpopulation of GLI1+ root progenitor cells, and that loss of Runx2 in these GLI1+ progenitor cells and their progeny results in root developmental defects. Our results provide in vivo evidence that Runx2 plays a crucial role in tooth root development and in regulating the differentiation of root progenitor cells. Furthermore, we identified that Gli1, Pcp4, NOTUM, and Sfrp2 are downstream targets of Runx2 by integrating bulk and single-cell RNA sequencing analyses. Specifically, ablation of Runx2 results in downregulation of WNT inhibitor NOTUM and upregulation of canonical WNT signaling in the odontoblastic site, which disturbs normal odontoblastic differentiation. Significantly, exogenous NOTUM partially rescues the impaired root development in Runx2 mutant molars. Collectively, our studies elucidate how Runx2 achieves functional specificity in regulating the development of diverse organs and yields new insights into the network that regulates tooth root development. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Quan Wen
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, USA.,Peking University Hospital of Stomatology First Clinical Division, Beijing, China
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, USA
| | - Xia Han
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, USA
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, USA
| | - Yuanyuan Ma
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, USA
| | - Shuo Chen
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA, USA
| |
Collapse
|
40
|
Ying J, Ge Q, Hu S, Luo C, Lu F, Yu Y, Xu T, Lv S, Zhang L, Shen J, Chen D, Tong P, Xiao L, Li J, Jin H, Wang P. Amygdalin Promotes Fracture Healing through TGF- β/Smad Signaling in Mesenchymal Stem Cells. Stem Cells Int 2020; 2020:8811963. [PMID: 32963548 PMCID: PMC7492948 DOI: 10.1155/2020/8811963] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 12/29/2022] Open
Abstract
Chondrogenesis and subsequent osteogenesis of mesenchymal stem cells (MSCs) and angiogenesis at injured sites are crucial for bone fracture healing. Amygdalin, a cyanogenic glycoside compound derived from bitter apricot kernel, has been reported to inhibit IL-1β-induced chondrocyte degeneration and to stimulate blood circulation, suggesting a promising role of amygdalin in fracture healing. In this study, tibial fractures in C57BL/6 mice were treated with amygdalin. Fracture calluses were then harvested and subjected to radiographic, histological, and biomechanical testing, as well as angiography and gene expression analyses to evaluate fracture healing. The results showed that amygdalin treatment promoted bone fracture healing. Further experiments using MSC-specific transforming growth factor- (TGF-) β receptor 2 conditional knockout (KO) mice (Tgfbr2Gli1-Cre ) and C3H10 T1/2 murine mesenchymal progenitor cells showed that this effect was mediated through TGF-β/Smad signaling. We conclude that amygdalin could be used as an alternative treatment for bone fractures.
Collapse
Affiliation(s)
- Jun Ying
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006 Zhejiang Province, China
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province, China
| | - Qinwen Ge
- First Clinical College of Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province, China
| | - Songfeng Hu
- Department of Orthopaedics, Shaoxing Hospital of Traditional Chinese Medicine, Affiliated with Zhejiang Chinese Medical University, Shaoxing, 312000 Zhejiang Province, China
| | - Cheng Luo
- Department of Orthopaedic Surgery, Fuyang Orthopaedics and Traumatology Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Fengyi Lu
- First Clinical College of Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province, China
| | - Yikang Yu
- First Clinical College of Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province, China
| | - Taotao Xu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006 Zhejiang Province, China
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province, China
| | - Shuaijie Lv
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006 Zhejiang Province, China
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province, China
| | - Lei Zhang
- Department of Orthopedics, Xiaoshan District Hospital of Traditional Chinese Medicine of Hangzhou, Hangzhou, 311201 Zhejiang Province, China
| | - Jie Shen
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Peijian Tong
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006 Zhejiang Province, China
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province, China
| | - Luwei Xiao
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province, China
| | - Ju Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006 Zhejiang Province, China
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province, China
| | - Hongting Jin
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006 Zhejiang Province, China
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province, China
| | - Pinger Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006 Zhejiang Province, China
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province, China
| |
Collapse
|
41
|
Qi X, Xiao Q, Sheng R, Jiang S, Yuan Q, Liu W. Endogenous GDF11 regulates odontogenic differentiation of dental pulp stem cells. J Cell Mol Med 2020; 24:11457-11464. [PMID: 32845070 PMCID: PMC7576269 DOI: 10.1111/jcmm.15754] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/27/2020] [Accepted: 08/03/2020] [Indexed: 02/05/2023] Open
Abstract
Dental stem cell‐based tooth regeneration is the futuristic treatment for missing teeth. Growth differentiation factor 11 (GDF11), a novel member of the TGF‐beta superfamily, has been reported to play a critical role in regulating stem cell differentiation. However, the role of endogenous GDF11 during dental stem cell differentiation remains unknown. Here, we have shown that GDF11 was highly expressed in dental pulp tissues in both mouse and human. Knockdown of endogenous GDF11 in human dental pulp stem cells (hDPSCs) led to comparable proliferation and migration but attenuated odontogenic differentiation as evidenced by alkaline phosphatase and Alizarin Red S staining. In addition, transcriptional levels of odontogenic‐related genes were significantly down‐regulated according to real‐time polymerase chain reaction. Mechanistically, we performed RNA sequencing analysis and found that silencing of endogenous GDF11 compromised the process of ossification and osteoblast differentiation, especially down‐regulated transcription expression of Wnt pathway‐specific genes. Immunofluorescence staining also showed diminished β‐catenin expression and nuclei accumulation after knockdown of endogenous GDF11 in hDPSCs. In summary, our results suggested that endogenous GDF11 positively regulate odontogenic differentiation of hDPSCs through canonical Wnt/β‐catenin signalling pathway.
Collapse
Affiliation(s)
- Xingying Qi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qingyue Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Sheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuang Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weiqing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
Nagata M, Ono N, Ono W. Unveiling diversity of stem cells in dental pulp and apical papilla using mouse genetic models: a literature review. Cell Tissue Res 2020; 383:603-616. [PMID: 32803323 DOI: 10.1007/s00441-020-03271-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022]
Abstract
The dental pulp, a non-mineralized connective tissue uniquely encased within the cavity of the tooth, provides a niche for diverse arrays of dental mesenchymal stem cells. Stem cells in the dental pulp, including dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHEDs) and stem cells from apical papilla (SCAPs), have been isolated from human tissues with an emphasis on their potential application to regenerative therapies. Recent studies utilizing mouse genetic models shed light on the identities of these mesenchymal progenitor cells derived from neural crest cells (NCCs) in their native conditions, particularly regarding how they contribute to homeostasis and repair of the dental tissue. The current concept is that at least two distinct niches for stem cells exist in the dental pulp, e.g., the perivascular niche and the perineural niche. The precise identities of these stem cells and their niches are now beginning to be unraveled thanks to sophisticated mouse genetic models, which lead to better understanding of the fundamental properties of stem cells in the dental pulp and the apical papilla in humans. The new knowledge will be highly instrumental for developing more effective stem cell-based regenerative therapies to repair teeth in the future.
Collapse
Affiliation(s)
- Mizuki Nagata
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Noriaki Ono
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Wanida Ono
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
43
|
Danilov CA, Gu Y, Punj V, Wu Z, Steward O, Schönthal AH, Tahara SM, Hofman FM, Chen TC. Intravenous delivery of microRNA-133b along with Argonaute-2 enhances spinal cord recovery following cervical contusion in mice. Spine J 2020; 20:1138-1151. [PMID: 32145360 DOI: 10.1016/j.spinee.2020.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Acute spinal cord injury (SCI) is a devastating condition for which spine decompression and stabilization of injury remains the only therapy available in the clinical setup. However, fibrous scar formation during the healing process significantly impairs full recovery. MicroRNAs (miRs) are small noncoding RNAs that regulate gene expression by binding to target mRNA(s) and initiating translational repression or mRNA degradation. It has been reported that microRNA-133b (miR133b) is highly expressed in regenerating neurons following a SCI in zebrafish, and lentiviral delivery of miR133b at the time of SCI in mice resulted in improved functional recovery. PURPOSE The aim of this study was to investigate whether intravenous delivery of miR133b enhances spinal cord recovery when administered 24 hours following a cervical contusion injury in mice. STUDY DESIGN This is an experimental animal study of acute SCI, investigating the effect of miR133b on spinal cord recovery by targeting scar lesion formation. The approach involved setting an acute SCI in mice, which was followed 24 hours later by intravenous co-delivery of miR133b and Argonaute 2 (Ago2), a protein involved in miRNA stabilization. Readouts of the impact of this intervention included analysis of RNA and protein expression at the lesion site, in particular with regard to markers of scar tissue formation, and determination of motor function recovery by the grip strength meter task. METHODS C57BL6 female mice between 6 and 8 weeks of age were tested. The injury model employed was a unilateral moderate contusion at the cervical fifth level. Twenty-four hours following the injury, the authors co-delivered miR133b, or scrambled miRNA as negative control, along with Ago2 for 3 consecutive days, one dose per day via tail-vein injection. They first investigated the level of miR133b in the spinal cord and in spinal cord lesion after a single dose of injection. Next, they determined the efficacy of miR133b and/or Ago2 delivery in regulating gene and protein expression at the lesion site. Finally, they established the role of miR133b and/or Ago2 in enhancing forelimb gripping recovery as assessed by the grip strength meter task for 8 weeks post-SCI. RESULTS Intravenous delivery of miR133b and/or Ago2 targeted the microenvironment at the lesion site and prevented the increased expression of certain extracellular matrix proteins (ECM), in particular collagen type 1 alpha 1 and tenascin N, which are known to have a key role in scar formation. It also reduced microglia and/or macrophage recruitment to the lesion site. Functional recovery in mice treated with miR133b and/or Ago2 started around 2 weeks postinjury and continued to improve over time, whereas mice in the control group displayed significantly poorer recovery. CONCLUSIONS Our data indicate therapeutic activity of intravenous miR133b and/or Ago2 treatment, possibly via decreasing ECM protein expression and macrophage recruitment at the lesion site, thereby minimizing detrimental fibrous scar formation. CLINICAL SIGNIFICANCE There is an urgent medical need for better treatments of SCIs. Based on our findings in a preclinical model, the miR133b and/or Ago2 system specifically targets fibrous scar formation, a barrier in neuronal regrowth, by remodeling ECM molecules at the injury site. Prevention of scar formation is critical to improved outcomes of treatment. Of note, delivery of miR133b and/or Ago2 was initiated 24 hours after traumatic impact, thus indicating a fairly long window of opportunity providing more time and flexibility for therapeutic intervention. Intravenous miR133b may become a beneficial therapeutic strategy to treat patients with acute SCI.
Collapse
Affiliation(s)
- Camelia A Danilov
- Department of Neurological Surgery, University of Southern California, 2011 Zonal Ave, HMR 414, Los Angeles, CA 90033, USA
| | - Yifei Gu
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, 415 Fengyang Rd, Shanghai, China
| | - Vasu Punj
- Department of Medicine, University of Southern California, Health Sciences Campus, NRT G511, Los Angeles, CA 90033, USA
| | - Zhourui Wu
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education of the People's Republic of China, Shanghai 200072, China
| | - Oswald Steward
- Department of Anatomy and Neurobiology, University of California, Irvine, 1105 GNRF, Irvine, CA 92697, USA
| | - Axel H Schönthal
- Department of Molecular Microbiology and Immunology, University of Southern California, 2011 Zonal Ave, HMR 405A, Los Angeles, CA 90033, USA
| | - Stanley M Tahara
- Department of Molecular Microbiology and Immunology, University of Southern California, 2011 Zonal Ave, HMR 510A, Los Angeles, CA 90033, USA
| | - Florence M Hofman
- Department of Pathology, University of Southern California, 2011 Zonal Ave, HMR 315, Los Angeles, CA 90033, USA
| | - Thomas C Chen
- Department of Neurological Surgery, University of Southern California, 1520 San Pablo St, Los Angeles, CA 90089, USA.
| |
Collapse
|
44
|
Pakvasa M, Haravu P, Boachie-Mensah M, Jones A, Coalson E, Liao J, Zeng Z, Wu D, Qin K, Wu X, Luo H, Zhang J, Zhang M, He F, Mao Y, Zhang Y, Niu C, Wu M, Zhao X, Wang H, Huang L, Shi D, Liu Q, Ni N, Fu K, Lee MJ, Wolf JM, Athiviraham A, Ho SS, He TC, Hynes K, Strelzow J, El Dafrawy M, Reid RR. Notch signaling: Its essential roles in bone and craniofacial development. Genes Dis 2020; 8:8-24. [PMID: 33569510 PMCID: PMC7859553 DOI: 10.1016/j.gendis.2020.04.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/25/2020] [Accepted: 04/03/2020] [Indexed: 02/08/2023] Open
Abstract
Notch is a cell–cell signaling pathway that is involved in a host of activities including development, oncogenesis, skeletal homeostasis, and much more. More specifically, recent research has demonstrated the importance of Notch signaling in osteogenic differentiation, bone healing, and in the development of the skeleton. The craniofacial skeleton is complex and understanding its development has remained an important focus in biology. In this review we briefly summarize what recent research has revealed about Notch signaling and the current understanding of how the skeleton, skull, and face develop. We then discuss the crucial role that Notch plays in both craniofacial development and the skeletal system, and what importance it may play in the future.
Collapse
Affiliation(s)
- Mikhail Pakvasa
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA.,Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Pranav Haravu
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Michael Boachie-Mensah
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Alonzo Jones
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Elam Coalson
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Junyi Liao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Departments of Orthopaedic Surgery, Gastrointestinal Surgery, Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Zongyue Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory and Diagnostic Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Di Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Xiaoxing Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Departments of Orthopaedic Surgery, Gastrointestinal Surgery, Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Huaxiu Luo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Jing Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Departments of Orthopaedic Surgery, Gastrointestinal Surgery, Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Meng Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Orthopaedic Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, PR China
| | - Fang He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Departments of Orthopaedic Surgery, Gastrointestinal Surgery, Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Yukun Mao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Departments of Orthopaedic Surgery and Neurosurgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Yongtao Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266061, PR China
| | - Changchun Niu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Laboratory Diagnostic Medicine, Chongqing General Hospital, Chongqing, 400021, PR China
| | - Meng Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Institute of Bone and Joint Research, and the Department of Orthopaedic Surgery, The Second Hospitals of Lanzhou University, Gansu, Lanzhou, 730030, PR China
| | - Xia Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266061, PR China
| | - Hao Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory and Diagnostic Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Linjuan Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Departments of Orthopaedic Surgery, Gastrointestinal Surgery, Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430072, PR China
| | - Qing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Spine Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Na Ni
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory and Diagnostic Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Kai Fu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Departments of Orthopaedic Surgery and Neurosurgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Michael J Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Aravind Athiviraham
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin S Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kelly Hynes
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Mostafa El Dafrawy
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
45
|
Hosoya A, Shalehin N, Takebe H, Shimo T, Irie K. Sonic Hedgehog Signaling and Tooth Development. Int J Mol Sci 2020; 21:ijms21051587. [PMID: 32111038 PMCID: PMC7084732 DOI: 10.3390/ijms21051587] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022] Open
Abstract
Sonic hedgehog (Shh) is a secreted protein with important roles in mammalian embryogenesis. During tooth development, Shh is primarily expressed in the dental epithelium, from initiation to the root formation stages. A number of studies have analyzed the function of Shh signaling at different stages of tooth development and have revealed that Shh signaling regulates the formation of various tooth components, including enamel, dentin, cementum, and other soft tissues. In addition, dental mesenchymal cells positive for Gli1, a downstream transcription factor of Shh signaling, have been found to have stem cell properties, including multipotency and the ability to self-renew. Indeed, Gli1-positive cells in mature teeth appear to contribute to the regeneration of dental pulp and periodontal tissues. In this review, we provide an overview of recent advances related to the role of Shh signaling in tooth development, as well as the contribution of this pathway to tooth homeostasis and regeneration.
Collapse
Affiliation(s)
- Akihiro Hosoya
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (N.S.); (H.T.); (K.I.)
- Correspondence: ; Tel.: +81-133-23-1938; Fax: +81-133-23-1236
| | - Nazmus Shalehin
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (N.S.); (H.T.); (K.I.)
| | - Hiroaki Takebe
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (N.S.); (H.T.); (K.I.)
| | - Tsuyoshi Shimo
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan;
| | - Kazuharu Irie
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (N.S.); (H.T.); (K.I.)
| |
Collapse
|
46
|
Omi M, Kulkarni AK, Raichur A, Fox M, Uptergrove A, Zhang H, Mishina Y. BMP-Smad Signaling Regulates Postnatal Crown Dentinogenesis in Mouse Molar. JBMR Plus 2020; 4:e10249. [PMID: 32149267 PMCID: PMC7017888 DOI: 10.1002/jbm4.10249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/14/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022] Open
Abstract
Dentinogenesis, a formation of dentin by odontoblasts, is an essential process during tooth development. Bone morphogenetic proteins (BMPs) are one of the most crucial growth factors that contribute to dentin formation. However, it is still unclear how BMP signaling pathways regulate postnatal crown and root dentinogenesis. BMPs transduce signals through canonical Smad and non-Smad signaling pathways including p38 and ERK signaling pathways. To investigate the roles of Smad and non-Smad signaling pathways in dentinogenesis, we conditionally deleted Bmpr1a, which encodes the type 1A receptor for BMPs, to remove both Smad and non-Smad pathways in Osterix-expressing cells. We also expressed a constitutively activated form of Bmpr1a (caBmpr1a) to increase Smad1/5/9 signaling activity without altered non-Smad activity in odontoblasts. To understand the function of BMP signaling during postnatal dentin formation, Cre activity was induced at the day of birth. Our results showed that loss of BmpR1A in odontoblasts resulted in impaired dentin formation and short molar roots at postnatal day 21. Bmpr1a cKO mice displayed a reduction of dentin matrix production compared to controls associated with increased cell proliferation and reduced Osx and Dspp expression. In contrast, caBmpr1a mutant mice that show increased Smad1/5/9 signaling activity resulted in no overt tooth phenotype. To further dissect the functions of each signaling activity, we generated Bmpr1a cKO mice also expressing caBmpr1a to restore only Smad1/5/9 signaling activity. Restoring Smad activity in the compound mutant mice rescued impaired crown dentin formation in the Bmpr1a cKO mice; however, impaired root dentin formation and short roots were not changed. These results suggest that BMP-Smad signaling in odontoblasts is responsible for crown dentin formation, while non-Smad signaling may play a major role in root dentin formation and elongation. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Maiko Omi
- Department of Biologic and Materials Sciences and ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMIUSA
| | - Anshul K Kulkarni
- Department of Biologic and Materials Sciences and ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMIUSA
| | - Anagha Raichur
- Department of Biologic and Materials Sciences and ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMIUSA
| | - Mason Fox
- Department of Biologic and Materials Sciences and ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMIUSA
| | - Amber Uptergrove
- Department of Biologic and Materials Sciences and ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMIUSA
| | - Honghao Zhang
- Department of Biologic and Materials Sciences and ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMIUSA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences and ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMIUSA
| |
Collapse
|
47
|
Tongaonkar P, Punj V, Subramanian A, Tran DQ, Trinh KK, Schaal JB, Laragione T, Ouellette AJ, Gulko PS, Selsted ME. RTD-1 therapeutically normalizes synovial gene signatures in rat autoimmune arthritis and suppresses proinflammatory mediators in RA synovial fibroblasts. Physiol Genomics 2019; 51:657-667. [PMID: 31762409 DOI: 10.1152/physiolgenomics.00066.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Rhesus theta defensin-1 (RTD-1), a macrocyclic immunomodulatory host defense peptide from Old World monkeys, is therapeutic in pristane-induced arthritis (PIA) in rats, a model of rheumatoid arthritis (RA). RNA-sequence (RNA-Seq) analysis was used to interrogate the changes in gene expression in PIA rats, which identified 617 differentially expressed genes (DEGs) in PIA synovial tissue of diseased rats. Upstream regulator analysis showed upregulation of gene expression pathways regulated by TNF, IL1B, IL6, proinflammatory cytokines, and matrix metalloproteases (MMPs) involved in RA. In contrast, ligand-dependent nuclear receptors like the liver X-receptors NR1H2 and NR1H3 and peroxisome proliferator-activated receptor gamma (PPARG) were downregulated in arthritic synovia. Daily RTD-1 treatment of PIA rats for 1-5 days following disease presentation modulated 340 of the 617 disease genes, and synovial gene expression in PIA rats treated 5 days with RTD-1 closely resembled the gene signature of naive synovium. Systemic RTD-1 inhibited proinflammatory upstream regulators such as TNF, IL1, and IL6 and activated antiarthritic ligand-dependent nuclear receptor pathways, including PPARG, NR1H2, and NR1H3, that were suppressed in untreated PIA rats. RTD-1 also inhibited proinflammatory responses in IL-1β-stimulated human RA fibroblast-like synoviocytes (FLS) in vitro and diminished expression of human orthologs of disease genes that are induced in rat PIA synovium. Thus, the antiarthritic mechanisms of systemic RTD-1 include homeostatic regulation of arthritogenic gene networks in a manner that correlates temporally with clinical resolution of rat PIA.
Collapse
Affiliation(s)
- Prasad Tongaonkar
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Vasu Punj
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Akshay Subramanian
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Dat Q Tran
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.,Oryn Therapeutics, LLC, Vacaville, California
| | - Katie K Trinh
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Justin B Schaal
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Teresina Laragione
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mt. Sinai, New York, New York and
| | - André J Ouellette
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Percio S Gulko
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mt. Sinai, New York, New York and
| | - Michael E Selsted
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.,Oryn Therapeutics, LLC, Vacaville, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
48
|
Xiao J, Cao P, Wang C, Huang D, Lian M, Song Y, Yin W, Zheng K, Gu Z, Gu Y, Feng G, Feng X. The Forkhead Box C1, a Novel Negative Regulator of Osteogenesis, Plays a Crucial Role in Odontogenic Differentiation of Dental Pulp Stem Cells. Cell Reprogram 2019; 20:312-319. [PMID: 30277823 DOI: 10.1089/cell.2018.0011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The forkhead box C1 (Foxc1) protein, a member of the forkhead/winged helix transcription factor family, is required in stem cell developmental processes. Recently, multiple studies have indicated the crucial role of Foxc1 in mesenchymal stem cell differentiation, but the precise effects and mechanisms on dental pulp stem cells (DPSCs) remain unclear. In this study, we evaluate the role of Foxc1 on the odontogenic differentiation and proliferation of DPSCs. Our results show that Foxc1 decreases time dependently in odontogenic differentiation of DPSCs. Meanwhile, overexpression of Foxc1 could significantly inhibit the mineralization of DPSCs and the expression of odontogenic-related genes, such as runt-related transcription factor 2 (Runx2), dentin sialophosphoprote (DSPP), and dentin matrix acidic phosphoprotein 1 (DMP-1). Foxc1 overexpression does not significantly alter the proliferation of DPSCs. In addition, Foxc1 reduces the expression of p-Smad1/5, an important modulator of bone morphogenetic protein (BMP)/Smad signaling pathway, inhibiting BMP/Smad signaling pathway. In conclusion, our data demonstrated that Foxc1 inhibits odontogenic differentiation of DPSCs and odontogenic-related gene expression through the BMP/Smad signaling pathway which may be useful for the dental regeneration and repair.
Collapse
Affiliation(s)
- Jingwen Xiao
- 1 Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong, Jiangsu, China
| | - Peipei Cao
- 1 Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong, Jiangsu, China
| | - Chenfei Wang
- 1 Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong, Jiangsu, China
| | - Dan Huang
- 1 Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong, Jiangsu, China
| | - Min Lian
- 1 Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong, Jiangsu, China
| | - Yihua Song
- 1 Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong, Jiangsu, China
| | - Weiwei Yin
- 2 Department of Stomatology, Stomatological Hospital of Nantong City , Nantong, Jiangsu, China
| | - Ke Zheng
- 1 Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong, Jiangsu, China
| | - Zhifeng Gu
- 3 Department of Rheumatology, Affiliated Hospital of Nantong University , Nantong, Jiangsu, China
| | - Yongchun Gu
- 4 Department of Stomatology, First People's Hospital of Wujiang District, Nantong University , Suzhou, Jiangsu, China
| | - Guijuan Feng
- 1 Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong, Jiangsu, China
| | - Xingmei Feng
- 1 Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University , Nantong, Jiangsu, China
| |
Collapse
|
49
|
Shi C, Yuan Y, Guo Y, Jing J, Ho TV, Han X, Li J, Feng J, Chai Y. BMP Signaling in Regulating Mesenchymal Stem Cells in Incisor Homeostasis. J Dent Res 2019; 98:904-911. [PMID: 31136721 DOI: 10.1177/0022034519850812] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bone morphogenetic protein (BMP) signaling performs multiple essential functions during craniofacial development. In this study, we used the adult mouse incisor as a model to uncover how BMP signaling maintains tissue homeostasis and regulates mesenchymal stem cell (MSC) fate by mediating WNT and FGF signaling. We observed a severe defect in the proximal region of the adult mouse incisor after loss of BMP signaling in the Gli1+ cell lineage, indicating that BMP signaling is required for cell proliferation and odontoblast differentiation. Our study demonstrates that BMP signaling serves as a key regulator that antagonizes WNT and FGF signaling to regulate MSC lineage commitment. In addition, BMP signaling in the Gli1+ cell lineage is also required for the maintenance of quiescent MSCs, suggesting that BMP signaling not only is important for odontoblast differentiation but also plays a crucial role in providing feedback to the MSC population. This study highlights multiple important roles of BMP signaling in regulating tissue homeostasis.
Collapse
Affiliation(s)
- C Shi
- 1 Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA.,2 Department of Orthodontics, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
| | - Y Yuan
- 1 Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - Y Guo
- 1 Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA.,3 Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - J Jing
- 1 Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA.,4 State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - T V Ho
- 1 Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - X Han
- 1 Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - J Li
- 1 Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA.,5 Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - J Feng
- 1 Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - Y Chai
- 1 Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
50
|
Abstract
Jaw bones and teeth originate from the first pharyngeal arch and develop in closely related ways. Reciprocal epithelial-mesenchymal interactions are required for the early patterning and morphogenesis of both tissues. Here we review the cellular contribution during the development of the jaw bones and teeth. We also highlight signaling networks as well as transcription factors mediating tissue-tissue interactions that are essential for jaw bone and tooth development. Finally, we discuss the potential for stem cell mediated regenerative therapies to mitigate disorders and injuries that affect these organs.
Collapse
Affiliation(s)
- Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, United States.
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|