1
|
Khoury Damaa M, Serizay J, Balagué R, Boudjema AR, Faucourt M, Delgehyr N, Goh KJ, Lu H, Tan EK, James CT, Faucon C, Mitri R, Bracht DC, Bingle CD, Dunn NR, Arnold SJ, Zaragosi LE, Barbry P, Koszul R, Omran H, Gil-Gómez G, Escudier E, Legendre M, Roy S, Spassky N, Meunier A. Cyclin O controls entry into the cell-cycle variant required for multiciliated cell differentiation. Cell Rep 2025; 44:115117. [PMID: 39740663 DOI: 10.1016/j.celrep.2024.115117] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 01/02/2025] Open
Abstract
Multiciliated cells (MCCs) ensure fluid circulation in various organs. Their differentiation is marked by the amplification of cilia-nucleating centrioles, driven by a genuine cell-cycle variant, which is characterized by wave-like expression of canonical and non-canonical cyclins such as Cyclin O (CCNO). Patients with CCNO mutations exhibit a subtype of primary ciliary dyskinesia called reduced generation of motile cilia (RGMC). Here, we show that Ccno is activated at the crossroads of the onset of MCC differentiation, the entry into the MCC cell-cycle variant, and the activation of the centriole biogenesis program. Its absence blocks the G1/S-like transition of the cell-cycle variant, interrupts the centriologenesis transcription program, and compromises the production of centrioles and cilia in mouse brain and human respiratory MCCs. Altogether, our study identifies CCNO as a core regulator of entry into the MCC cell-cycle variant and the interruption of this variant as one etiology of RGMC.
Collapse
Affiliation(s)
- Michella Khoury Damaa
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Jacques Serizay
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France; Institut Pasteur, CNRS UMR3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| | - Rémi Balagué
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Amélie-Rose Boudjema
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Marion Faucourt
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Nathalie Delgehyr
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Kim Jee Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
| | - Hao Lu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Ee Kim Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
| | - Cameron T James
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore; Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2RX, UK; Singapore-MIT Association for Research and Technology, Critical Analytics for Manufacturing Personalised-Medicine (SMART CAMP), 1 CREATE Way, Singapore 138602, Singapore
| | - Catherine Faucon
- Centre Hospitalier Intercommunal de Créteil, Laboratoire de Microscopie Électronique, Service d'Anatomopathologie, 94010 Créteil, France
| | - Rana Mitri
- Centre Hospitalier Intercommunal de Créteil, Laboratoire de Microscopie Électronique, Service d'Anatomopathologie, 94010 Créteil, France
| | - Diana Carolin Bracht
- Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany
| | - Colin D Bingle
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Norris Ray Dunn
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore; Skin Research Institute of Singapore, 11 Mandalay Road #17-01 Clinical Sciences Building, Singapore 308232, Singapore
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestrasse18, 79104 Freiburg, Germany
| | - Laure-Emmanuelle Zaragosi
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Sophia Antipolis, France
| | - Pascal Barbry
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Sophia Antipolis, France; 3IA Côte d'Azur, 06560 Sophia Antipolis, France
| | - Romain Koszul
- Institut Pasteur, CNRS UMR3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany
| | - Gabriel Gil-Gómez
- Hospital del Mar Research Institute, Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Estelle Escudier
- Sorbonne Université, Inserm, Childhood genetic diseases UMR_S933, Hôpital Armand-Trousseau, 75012 Paris, France; AP-HP, Sorbonne Université, Hôpital Armand-Trousseau, 75012 Paris, France
| | - Marie Legendre
- Sorbonne Université, Inserm, Childhood genetic diseases UMR_S933, Hôpital Armand-Trousseau, 75012 Paris, France; AP-HP, Sorbonne Université, Hôpital Armand-Trousseau, 75012 Paris, France
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore; Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119288, Singapore
| | - Nathalie Spassky
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Alice Meunier
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France.
| |
Collapse
|
2
|
Wang L, Gao L, Chen Y, Xu B. Transcriptional regulation of CCNO during the formation of multiple motile cilia. Biochem Biophys Res Commun 2024; 735:150428. [PMID: 39094231 DOI: 10.1016/j.bbrc.2024.150428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
Primary ciliary dyskinesia (PCD) is a group of genetically heterogeneous disorders characterized by clinical manifestations resulting from abnormal ciliary motility. Mutations in critical genes, such as Cyclin O (CCNO), have been associated with severe respiratory disease, though limited data are currently available. Here we show that CCNO deficient ciliated cells can only form a reduced number of fully functional centrioles that can mature into ciliated basal bodies, and their transport and anchoring to the top of the plasma membrane are abnormal. Furthermore, we observed that CCNO localizes not only in the cytoplasm but also in the nucleus during the early stages of ciliogenesis, and this dual localization persists into adulthood. Transcriptome analysis revealed downregulation of genes involved in cilia assembly and movement, along with altered transcription factors associated with ciliation upon CCNO depletion. These findings indicate that CCNO may serve as a key regulator in the transcriptional regulation of multiciliogenesis.
Collapse
Affiliation(s)
- Lina Wang
- Department of Respiratory Medicine, National Clinical Research Center of Respiratory Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Liwei Gao
- Department of Respiratory Medicine, National Clinical Research Center of Respiratory Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Yinghong Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - BaoPing Xu
- Department of Respiratory Medicine, National Clinical Research Center of Respiratory Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China.
| |
Collapse
|
3
|
Nguyen TK, Baker S, Rodriguez JM, Arceri L, Wingert RA. Using Zebrafish to Study Multiciliated Cell Development and Disease States. Cells 2024; 13:1749. [PMID: 39513856 PMCID: PMC11545745 DOI: 10.3390/cells13211749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Multiciliated cells (MCCs) serve many important functions, including fluid propulsion and chemo- and mechanosensing. Diseases ranging from rare conditions to the recent COVID-19 global health pandemic have been linked to MCC defects. In recent years, the zebrafish has emerged as a model to investigate the biology of MCCs. Here, we review the major events in MCC formation including centriole biogenesis and basal body docking. Then, we discuss studies on the role of MCCs in diseases of the brain, respiratory, kidney and reproductive systems, as well as recent findings about the link between MCCs and SARS-CoV-2. Next, we explore why the zebrafish is a useful model to study MCCs and provide a comprehensive overview of previous studies of genetic components essential for MCC development and motility across three major tissues in the zebrafish: the pronephros, brain ependymal cells and nasal placode. Taken together, here we provide a cohesive summary of MCC research using the zebrafish and its future potential for expanding our understanding of MCC-related disease states.
Collapse
Affiliation(s)
- Thanh Khoa Nguyen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (S.B.); (J.-M.R.); (L.A.)
| | | | | | | | - Rebecca A. Wingert
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (S.B.); (J.-M.R.); (L.A.)
| |
Collapse
|
4
|
Wesselman HM, Arceri L, Nguyen TK, Lara CM, Wingert RA. Genetic mechanisms of multiciliated cell development: from fate choice to differentiation in zebrafish and other models. FEBS J 2024; 291:4159-4192. [PMID: 37997009 DOI: 10.1111/febs.17012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/17/2023] [Accepted: 11/21/2023] [Indexed: 11/25/2023]
Abstract
Multiciliated cells (MCCS) form bundles of cilia and their activities are essential for the proper development and physiology of many organ systems. Not surprisingly, defects in MCCs have profound consequences and are associated with numerous disease states. Here, we discuss the current understanding of MCC formation, with a special focus on the genetic and molecular mechanisms of MCC fate choice and differentiation. Furthermore, we cast a spotlight on the use of zebrafish to study MCC ontogeny and several recent advances made in understanding MCCs using this vertebrate model to delineate mechanisms of MCC emergence in the developing kidney.
Collapse
Affiliation(s)
| | - Liana Arceri
- Department of Biological Sciences, University of Notre Dame, IN, USA
| | - Thanh Khoa Nguyen
- Department of Biological Sciences, University of Notre Dame, IN, USA
| | - Caroline M Lara
- Department of Biological Sciences, University of Notre Dame, IN, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, University of Notre Dame, IN, USA
| |
Collapse
|
5
|
Quiroz EJ, Kim S, Gautam LK, Borok Z, Kintner C, Ryan AL. RBL2 represses the transcriptional activity of Multicilin to inhibit multiciliogenesis. Cell Death Dis 2024; 15:81. [PMID: 38253523 PMCID: PMC10803754 DOI: 10.1038/s41419-024-06440-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
A core pathophysiologic feature underlying many respiratory diseases is multiciliated cell dysfunction, leading to inadequate mucociliary clearance. Due to the prevalence and highly variable etiology of mucociliary dysfunction in respiratory diseases, it is critical to understand the mechanisms controlling multiciliogenesis that may be targeted to restore functional mucociliary clearance. Multicilin, in a complex with E2F4, is necessary and sufficient to drive multiciliogenesis in airway epithelia, however this does not apply to all cell types, nor does it occur evenly across all cells in the same cell population. In this study we further investigated how co-factors regulate the ability of Multicilin to drive multiciliogenesis. Combining data in mouse embryonic fibroblasts and human bronchial epithelial cells, we identify RBL2 as a repressor of the transcriptional activity of Multicilin. Knockdown of RBL2 in submerged cultures or phosphorylation of RBL2 in response to apical air exposure, in the presence of Multicilin, allows multiciliogenesis to progress. These data demonstrate a dynamic interaction between RBL2 and Multicilin that regulates the capacity of cells to differentiate and multiciliate. Identification of this mechanism has important implications for facilitating MCC differentiation in diseases with impaired mucociliary clearance.
Collapse
Affiliation(s)
- Erik J Quiroz
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52240, USA
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Seongjae Kim
- The Salk Institute of Biological Studies, La Jolla, CA, 92093, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, San Diego, CA, 92037, USA
| | - Lalit K Gautam
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52240, USA
| | - Zea Borok
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, San Diego, CA, 92037, USA
| | | | - Amy L Ryan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52240, USA.
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
6
|
Lyu Q, Li Q, Zhou J, Zhao H. Formation and function of multiciliated cells. J Cell Biol 2024; 223:e202307150. [PMID: 38032388 PMCID: PMC10689204 DOI: 10.1083/jcb.202307150] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/29/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
In vertebrates, multiciliated cells (MCCs) are terminally differentiated cells that line the airway tracts, brain ventricles, and reproductive ducts. Each MCC contains dozens to hundreds of motile cilia that beat in a synchronized manner to drive fluid flow across epithelia, the dysfunction of which is associated with a group of human diseases referred to as motile ciliopathies, such as primary cilia dyskinesia. Given the dynamic and complex process of multiciliogenesis, the biological events essential for forming multiple motile cilia are comparatively unelucidated. Thanks to advancements in genetic tools, omics technologies, and structural biology, significant progress has been achieved in the past decade in understanding the molecular mechanism underlying the regulation of multiple motile cilia formation. In this review, we discuss recent studies with ex vivo culture MCC and animal models, summarize current knowledge of multiciliogenesis, and particularly highlight recent advances and their implications.
Collapse
Affiliation(s)
- Qian Lyu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Qingchao Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Huijie Zhao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
7
|
Cumplido-Laso G, Benitez DA, Mulero-Navarro S, Carvajal-Gonzalez JM. Transcriptional Regulation of Airway Epithelial Cell Differentiation: Insights into the Notch Pathway and Beyond. Int J Mol Sci 2023; 24:14789. [PMID: 37834236 PMCID: PMC10573127 DOI: 10.3390/ijms241914789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The airway epithelium is a critical component of the respiratory system, serving as a barrier against inhaled pathogens and toxins. It is composed of various cell types, each with specific functions essential to proper airway function. Chronic respiratory diseases can disrupt the cellular composition of the airway epithelium, leading to a decrease in multiciliated cells (MCCs) and an increase in secretory cells (SCs). Basal cells (BCs) have been identified as the primary stem cells in the airway epithelium, capable of self-renewal and differentiation into MCCs and SCs. This review emphasizes the role of transcription factors in the differentiation process from BCs to MCCs and SCs. Recent advancements in single-cell RNA sequencing (scRNAseq) techniques have provided insights into the cellular composition of the airway epithelium, revealing specialized and rare cell types, including neuroendocrine cells, tuft cells, and ionocytes. Understanding the cellular composition and differentiation processes within the airway epithelium is crucial for developing targeted therapies for respiratory diseases. Additionally, the maintenance of BC populations and the involvement of Notch signaling in BC self-renewal and differentiation are discussed. Further research in these areas could provide valuable insights into the mechanisms underlying airway epithelial homeostasis and disease pathogenesis.
Collapse
Affiliation(s)
- Guadalupe Cumplido-Laso
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain; (D.A.B.); (S.M.-N.)
| | | | | | - Jose Maria Carvajal-Gonzalez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain; (D.A.B.); (S.M.-N.)
| |
Collapse
|
8
|
Quiroz EJ, Kim S, Gautam LK, Borok Z, Kintner C, Ryan AL. RBL2 represses the transcriptional activity of Multicilin to inhibit multiciliogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.551992. [PMID: 37577572 PMCID: PMC10418160 DOI: 10.1101/2023.08.04.551992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
A core pathophysiologic feature underlying many respiratory diseases is multiciliated cell dysfunction, leading to inadequate mucociliary clearance. Due to the prevalence and highly variable etiology of mucociliary dysfunction in respiratory diseases, it is critical to understand the mechanisms controlling multiciliogenesis that may be targeted to restore functional mucociliary clearance. Multicilin, in a complex with E2F4, is necessary and sufficient to drive multiciliogenesis in airway epithelia, however this does not apply to all cell types, nor does it occur evenly across all cells in the same cell population. In this study we further investigated how co-factors regulate the ability of Multicilin to drive multiciliogenesis. Combining data in mouse embryonic fibroblasts and human bronchial epithelial cells, we identify RBL2 as a repressor of the transcriptional activity of Multicilin. Knockdown of RBL2 in submerged cultures or phosphorylation of RBL2 in response to apical air exposure, in the presence of Multicilin, allows multiciliogenesis to progress. These data demonstrate a dynamic interaction between RBL2 and Multicilin that regulates the capacity of cells to differentiate and multiciliate. Identification of this mechanism has important implications for facilitating MCC differentiation in diseases with impaired mucociliary clearance.
Collapse
Affiliation(s)
- Erik J. Quiroz
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52240
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033
| | - Seongjae Kim
- The Salk Institute of Biological Studies, La Jolla, CA 92093
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, San Diego, CA 92037
| | - Lalit K. Gautam
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52240
| | - Zea Borok
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, San Diego, CA 92037
| | | | - Amy L. Ryan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52240
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033
| |
Collapse
|
9
|
Lewis M, Terré B, Knobel PA, Cheng T, Lu H, Attolini CSO, Smak J, Coyaud E, Garcia-Cao I, Sharma S, Vineethakumari C, Querol J, Gil-Gómez G, Piergiovanni G, Costanzo V, Peiró S, Raught B, Zhao H, Salvatella X, Roy S, Mahjoub MR, Stracker TH. GEMC1 and MCIDAS interactions with SWI/SNF complexes regulate the multiciliated cell-specific transcriptional program. Cell Death Dis 2023; 14:201. [PMID: 36932059 PMCID: PMC10023806 DOI: 10.1038/s41419-023-05720-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023]
Abstract
Multiciliated cells (MCCs) project dozens to hundreds of motile cilia from their apical surface to promote the movement of fluids or gametes in the mammalian brain, airway or reproductive organs. Differentiation of MCCs requires the sequential action of the Geminin family transcriptional activators, GEMC1 and MCIDAS, that both interact with E2F4/5-DP1. How these factors activate transcription and the extent to which they play redundant functions remains poorly understood. Here, we demonstrate that the transcriptional targets and proximal proteomes of GEMC1 and MCIDAS are highly similar. However, we identified distinct interactions with SWI/SNF subcomplexes; GEMC1 interacts primarily with the ARID1A containing BAF complex while MCIDAS interacts primarily with BRD9 containing ncBAF complexes. Treatment with a BRD9 inhibitor impaired MCIDAS-mediated activation of several target genes and compromised the MCC differentiation program in multiple cell based models. Our data suggest that the differential engagement of distinct SWI/SNF subcomplexes by GEMC1 and MCIDAS is required for MCC-specific transcriptional regulation and mediated by their distinct C-terminal domains.
Collapse
Affiliation(s)
- Michael Lewis
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, Barcelona, 08028, Spain
| | - Berta Terré
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, Barcelona, 08028, Spain
- MRC Clinical Trials Unit at UCL, London, UK
| | - Philip A Knobel
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, Barcelona, 08028, Spain
- CDR-Life AG, Zurich, 8592, Switzerland
| | - Tao Cheng
- Washington University in St Louis, Departments of Medicine (Nephrology), Cell Biology and Physiology, St. Louis, MO, 20814, USA
| | - Hao Lu
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, Barcelona, 08028, Spain
| | - Jordann Smak
- National Cancer Institute, Radiation Oncology Branch, Bethesda, MD, 20892, USA
| | - Etienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Univ. Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France
| | - Isabel Garcia-Cao
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, Barcelona, 08028, Spain
| | - Shalu Sharma
- National Cancer Institute, Radiation Oncology Branch, Bethesda, MD, 20892, USA
| | - Chithran Vineethakumari
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, Barcelona, 08028, Spain
| | - Jessica Querol
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, 08035, Spain
| | - Gabriel Gil-Gómez
- Apoptosis Signalling Group, IMIM (Institut Hospital del Mar d'Investigacions Mediques), Barcelona, 08003, Spain
| | - Gabriele Piergiovanni
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, 20139, Italy
- Department of Oncology and Haematology-Oncology, University of Milan, Milan, 20139, Italy
| | - Vincenzo Costanzo
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, 20139, Italy
- Department of Oncology and Haematology-Oncology, University of Milan, Milan, 20139, Italy
| | - Sandra Peiró
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, 08035, Spain
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Haotian Zhao
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, Barcelona, 08028, Spain
- ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
- Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore
- Department of Pediatrics, National University of Singapore, 119288, Singapore, Singapore
| | - Moe R Mahjoub
- Washington University in St Louis, Departments of Medicine (Nephrology), Cell Biology and Physiology, St. Louis, MO, 20814, USA
| | - Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, Barcelona, 08028, Spain.
- National Cancer Institute, Radiation Oncology Branch, Bethesda, MD, 20892, USA.
| |
Collapse
|
10
|
Rethinking the cilia hypothesis of hydrocephalus. Neurobiol Dis 2022; 175:105913. [DOI: 10.1016/j.nbd.2022.105913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
|
11
|
Jiang R, Tang X, Pan J, Li G, Yang N, Tang Y, Bi S, Cai H, Chen Q, Chen D, Wang H, Kong S. CDC42 governs normal oviduct multiciliogenesis through activating AKT to ensure timely embryo transport. Cell Death Dis 2022; 13:757. [PMID: 36056002 PMCID: PMC9440026 DOI: 10.1038/s41419-022-05184-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 01/21/2023]
Abstract
Ciliated and secretory cells are two major cell types that comprise the oviduct epithelia. Accumulating evidences support a role of oviductal multiciliated epithelia for embryo transport, however the mechanisms underlying this specialized cell type differentiation remain elusive. Here, we report that CDC42 depletion in oviduct epithelia hampers the morphogenesis of multiciliated cell, and results in embryo retention, leading to early pregnancy failure. Utilizing the oviduct organoid model, we further observed that CDC42 guides secretory cells transition into multiciliated cells independent of its GTPase activity and the well-known Notch pathway. Further exploration uncovered the AKT as a novel indispensable regulator for multiciliated cells differentiation, whose activity was maintained by CDC42 through interacting with the p110β. Consistently, re-activating AKT partially incites multiciliated cells differentiation in Cdc42 knockout oviductal organoids. Finally, low levels of CDC42 and phospho-AKT with reduced multiciliated cells in the oviduct are observed in women with ectopic pregnancy. Collectively, we provide previously unappreciated evidence that CDC42-AKT signaling is a critical determinant for morphogenesis of oviduct multiciliated cell, which possesses the clinical application in understanding the pathology of ectopic pregnancy and facilitating the development of prevention strategies.
Collapse
Affiliation(s)
- Ruiwei Jiang
- grid.12955.3a0000 0001 2264 7233Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 361102 Xiamen, Fujian China ,grid.41156.370000 0001 2314 964XCenter for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, 210093 Nanjing, Jiangsu China
| | - Xiaofang Tang
- grid.12955.3a0000 0001 2264 7233Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 361102 Xiamen, Fujian China
| | - Jiale Pan
- grid.12955.3a0000 0001 2264 7233Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 361102 Xiamen, Fujian China
| | - Gaizhen Li
- grid.12955.3a0000 0001 2264 7233Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 361102 Xiamen, Fujian China
| | - Ningjie Yang
- grid.12955.3a0000 0001 2264 7233Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 361102 Xiamen, Fujian China
| | - Yedong Tang
- grid.12955.3a0000 0001 2264 7233Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 361102 Xiamen, Fujian China
| | - Shilei Bi
- grid.417009.b0000 0004 1758 4591Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, 510150 Guangzhou, Guangdong China
| | - Han Cai
- grid.12955.3a0000 0001 2264 7233Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 361102 Xiamen, Fujian China
| | - Qionghua Chen
- grid.12955.3a0000 0001 2264 7233Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 361102 Xiamen, Fujian China
| | - Dunjin Chen
- grid.417009.b0000 0004 1758 4591Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, 510150 Guangzhou, Guangdong China
| | - Haibin Wang
- grid.12955.3a0000 0001 2264 7233Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 361102 Xiamen, Fujian China
| | - Shuangbo Kong
- grid.12955.3a0000 0001 2264 7233Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 361102 Xiamen, Fujian China
| |
Collapse
|
12
|
Li Q, Han Z, Singh N, Terré B, Fame RM, Arif U, Page TD, Zahran T, Abdeltawab A, Huang Y, Cao P, Wang J, Lu H, Lidov HGW, Surendran K, Wu L, Virga JQ, Zhao YT, Schüller U, Wechsler-Reya RJ, Lehtinen MK, Roy S, Liu Z, Stracker TH, Zhao H. Disruption of GMNC-MCIDAS multiciliogenesis program is critical in choroid plexus carcinoma development. Cell Death Differ 2022; 29:1596-1610. [PMID: 35322202 PMCID: PMC9345885 DOI: 10.1038/s41418-022-00950-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 01/17/2022] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Multiciliated cells (MCCs) in the brain reside in the ependyma and the choroid plexus (CP) epithelia. The CP secretes cerebrospinal fluid that circulates within the ventricular system, driven by ependymal cilia movement. Tumors of the CP are rare primary brain neoplasms mostly found in children. CP tumors exist in three forms: CP papilloma (CPP), atypical CPP, and CP carcinoma (CPC). Though CPP and atypical CPP are generally benign and can be resolved by surgery, CPC is a particularly aggressive and little understood cancer with a poor survival rate and a tendency for recurrence and metastasis. In contrast to MCCs in the CP epithelia, CPCs in humans are characterized by solitary cilia, frequent TP53 mutations, and disturbances to multiciliogenesis program directed by the GMNC-MCIDAS transcriptional network. GMNC and MCIDAS are early transcriptional regulators of MCC fate differentiation in diverse tissues. Consistently, components of the GMNC-MCIDAS transcriptional program are expressed during CP development and required for multiciliation in the CP, while CPC driven by deletion of Trp53 and Rb1 in mice exhibits multiciliation defects consequent to deficiencies in the GMNC-MCIDAS program. Previous studies revealed that abnormal NOTCH pathway activation leads to CPP. Here we show that combined defects in NOTCH and Sonic Hedgehog signaling in mice generates tumors that are similar to CPC in humans. NOTCH-driven CP tumors are monociliated, and disruption of the NOTCH complex restores multiciliation and decreases tumor growth. NOTCH suppresses multiciliation in tumor cells by inhibiting the expression of GMNC and MCIDAS, while Gmnc-Mcidas overexpression rescues multiciliation defects and suppresses tumor cell proliferation. Taken together, these findings indicate that reactivation of the GMNC-MCIDAS multiciliogenesis program is critical for inhibiting tumorigenesis in the CP, and it may have therapeutic implications for the treatment of CPC.
Collapse
Affiliation(s)
- Qun Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, PR China
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Zhiyuan Han
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA
| | - Navleen Singh
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA
| | - Berta Terré
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, Barcelona, 08028, Spain
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Uzayr Arif
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA
| | - Thomas D Page
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA
| | - Tasneem Zahran
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA
| | - Ahmed Abdeltawab
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA
| | - Yuan Huang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA
| | - Ping Cao
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA
| | - Jun Wang
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
- Explora Biolabs, 11175 Flintkote Avenue, Suite B, San Diego, CA, 92121, USA
| | - Hao Lu
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Hart G W Lidov
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Kameswaran Surendran
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60th Street North, Sioux Falls, SD, 57104, USA
| | - Lizhao Wu
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, PR China
| | - James Q Virga
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA
| | - Ying-Tao Zhao
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA
| | - Ulrich Schüller
- Research Institute Children's Cancer Center, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Robert J Wechsler-Reya
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119288, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Zhongmin Liu
- Department of Cardio-vascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, PR China.
- The Institute of Biomedical Engineering & Nanoscience, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China.
| | - Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, Barcelona, 08028, Spain.
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, Bethesda, MD, 20892, USA.
| | - Haotian Zhao
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA.
| |
Collapse
|
13
|
Niziolek M, Bicka M, Osinka A, Samsel Z, Sekretarska J, Poprzeczko M, Bazan R, Fabczak H, Joachimiak E, Wloga D. PCD Genes-From Patients to Model Organisms and Back to Humans. Int J Mol Sci 2022; 23:ijms23031749. [PMID: 35163666 PMCID: PMC8836003 DOI: 10.3390/ijms23031749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a hereditary genetic disorder caused by the lack of motile cilia or the assembxly of dysfunctional ones. This rare human disease affects 1 out of 10,000-20,000 individuals and is caused by mutations in at least 50 genes. The past twenty years brought significant progress in the identification of PCD-causative genes and in our understanding of the connections between causative mutations and ciliary defects observed in affected individuals. These scientific advances have been achieved, among others, due to the extensive motile cilia-related research conducted using several model organisms, ranging from protists to mammals. These are unicellular organisms such as the green alga Chlamydomonas, the parasitic protist Trypanosoma, and free-living ciliates, Tetrahymena and Paramecium, the invertebrate Schmidtea, and vertebrates such as zebrafish, Xenopus, and mouse. Establishing such evolutionarily distant experimental models with different levels of cell or body complexity was possible because both basic motile cilia ultrastructure and protein composition are highly conserved throughout evolution. Here, we characterize model organisms commonly used to study PCD-related genes, highlight their pros and cons, and summarize experimental data collected using these models.
Collapse
Affiliation(s)
- Michal Niziolek
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Marta Bicka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Faculty of Chemistry, University of Warsaw, 1 Pasteur Street, 02-093 Warsaw, Poland
| | - Anna Osinka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Zuzanna Samsel
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Justyna Sekretarska
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Martyna Poprzeczko
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| | - Rafal Bazan
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Correspondence: (E.J.); (D.W.); Tel.: +48-22-58-92-338 (E.J. & D.W.)
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Correspondence: (E.J.); (D.W.); Tel.: +48-22-58-92-338 (E.J. & D.W.)
| |
Collapse
|
14
|
Hoque M, Kim EN, Chen D, Li FQ, Takemaru KI. Essential Roles of Efferent Duct Multicilia in Male Fertility. Cells 2022; 11:cells11030341. [PMID: 35159149 PMCID: PMC8834061 DOI: 10.3390/cells11030341] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Cilia are microtubule-based hair-like organelles on the cell surface. Cilia have been implicated in various biological processes ranging from mechanosensation to fluid movement. Ciliary dysfunction leads to a plethora of human diseases, known as ciliopathies. Although non-motile primary cilia are ubiquitous, motile multicilia are found in restricted locations of the body, such as the respiratory tract, the oviduct, the efferent duct, and the brain ventricles. Multicilia beat in a whip-like motion to generate fluid flow over the apical surface of an epithelium. The concerted ciliary motion provides the driving force critical for clearing airway mucus and debris, transporting ova from the ovary to the uterus, maintaining sperm in suspension, and circulating cerebrospinal fluid in the brain. In the male reproductive tract, multiciliated cells (MCCs) were first described in the mid-1800s, but their importance in male fertility remained elusive until recently. MCCs exist in the efferent ducts, which are small, highly convoluted tubules that connect the testis to the epididymis and play an essential role in male fertility. In this review, we will introduce multiciliogenesis, discuss mouse models of male infertility with defective multicilia, and summarize our current knowledge on the biological function of multicilia in the male reproductive tract.
Collapse
Affiliation(s)
- Mohammed Hoque
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY 11794, USA; (M.H.); (E.N.K.)
| | - Eunice N. Kim
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY 11794, USA; (M.H.); (E.N.K.)
| | - Danny Chen
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA; (D.C.); (F.-Q.L.)
| | - Feng-Qian Li
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA; (D.C.); (F.-Q.L.)
| | - Ken-Ichi Takemaru
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY 11794, USA; (M.H.); (E.N.K.)
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA; (D.C.); (F.-Q.L.)
- Correspondence:
| |
Collapse
|
15
|
Diversity and function of motile ciliated cell types within ependymal lineages of the zebrafish brain. Cell Rep 2021; 37:109775. [PMID: 34610312 PMCID: PMC8524669 DOI: 10.1016/j.celrep.2021.109775] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/16/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022] Open
Abstract
Motile cilia defects impair cerebrospinal fluid (CSF) flow and can cause brain and spine disorders. The development of ciliated cells, their impact on CSF flow, and their function in brain and axial morphogenesis are not fully understood. We have characterized motile ciliated cells within the zebrafish brain ventricles. We show that the ventricles undergo restructuring through development, involving a transition from mono- to multiciliated cells (MCCs) driven by gmnc. MCCs co-exist with monociliated cells and generate directional flow patterns. These ciliated cells have different developmental origins and are genetically heterogenous with respect to expression of the Foxj1 family of ciliary master regulators. Finally, we show that cilia loss from the tela choroida and choroid plexus or global perturbation of multiciliation does not affect overall brain or spine morphogenesis but results in enlarged ventricles. Our findings establish that motile ciliated cells are generated by complementary and sequential transcriptional programs to support ventricular development. Glutamylated tubulin is enriched in cilia of foxj1-expressing cells in the zebrafish Motile ciliated ependymal cells in the zebrafish forebrain are highly diverse Gmnc drives the transition from mono- to multiciliated cells at juvenile stage Lack of multiciliation does not impact brain and spine morphogenesis
Collapse
|
16
|
Lee DDH, Cardinale D, Nigro E, Butler CR, Rutman A, Fassad MR, Hirst RA, Moulding D, Agrotis A, Forsythe E, Peckham D, Robson E, Smith CM, Somavarapu S, Beales PL, Hart SL, Janes SM, Mitchison HM, Ketteler R, Hynds RE, O'Callaghan C. Higher throughput drug screening for rare respiratory diseases: readthrough therapy in primary ciliary dyskinesia. Eur Respir J 2021; 58:13993003.00455-2020. [PMID: 33795320 PMCID: PMC8514977 DOI: 10.1183/13993003.00455-2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/01/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Development of therapeutic approaches for rare respiratory diseases is hampered by the lack of systems that allow medium-to-high-throughput screening of fully differentiated respiratory epithelium from affected patients. This is a particular problem for primary ciliary dyskinesia (PCD), a rare genetic disease caused by mutations in genes that adversely affect ciliary movement and consequently mucociliary transport. Primary cell culture of basal epithelial cells from nasal brush biopsies followed by ciliated differentiation at the air-liquid interface (ALI) has proven to be a useful tool in PCD diagnostics but the technique's broader utility, including in pre-clinical PCD research, has been restricted by the limited number of basal cells that can be expanded from such biopsies. METHODS We describe an immunofluorescence screening method, enabled by extensive expansion of basal cells from PCD patients and the directed differentiation of these cells into ciliated epithelium in miniaturised 96-well transwell format ALI cultures. As proof-of-principle, we performed a personalised investigation in a patient with a rare and severe form of PCD (reduced generation of motile cilia), in this case caused by a homozygous nonsense mutation in the MCIDAS gene. RESULTS Initial analyses of ciliary ultrastructure, beat pattern and beat frequency in the 96-well transwell format ALI cultures indicate that a range of different PCD defects can be retained in these cultures. The screening system in our proof-of-principal investigation allowed drugs that induce translational readthrough to be evaluated alone or in combination with nonsense-mediated decay inhibitors. We observed restoration of basal body formation but not the generation of cilia in the patient's nasal epithelial cells in vitro. CONCLUSION: Our study provides a platform for higher throughput analyses of airway epithelia that is applicable in a range of settings and suggests novel avenues for drug evaluation and development in PCD caused by nonsense mutations.
Collapse
Affiliation(s)
- Dani Do Hyang Lee
- UCL Great Ormond Street Institute of Child Health, London, UK
- D.D.H. Lee and D. Cardinale contributed equally
| | - Daniela Cardinale
- UCL Great Ormond Street Institute of Child Health, London, UK
- D.D.H. Lee and D. Cardinale contributed equally
| | - Ersilia Nigro
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Colin R Butler
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Andrew Rutman
- Centre for PCD Diagnosis and Research, Dept of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Mahmoud R Fassad
- Ciliary Disease Section, Genetics and Genomic Medicine Research and Teaching Dept, UCL Great Ormond Street Institute of Child Health, London, UK
- Dept of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Robert A Hirst
- Centre for PCD Diagnosis and Research, Dept of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Dale Moulding
- Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Alexander Agrotis
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Elisabeth Forsythe
- Ciliary Disease Section, Genetics and Genomic Medicine Research and Teaching Dept, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Daniel Peckham
- Leeds Institute for Medical Research, University of Leeds, Leeds, UK
| | - Evie Robson
- Leeds Institute for Medical Research, University of Leeds, Leeds, UK
| | - Claire M Smith
- UCL Great Ormond Street Institute of Child Health, London, UK
| | | | - Philip L Beales
- Ciliary Disease Section, Genetics and Genomic Medicine Research and Teaching Dept, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Stephen L Hart
- Ciliary Disease Section, Genetics and Genomic Medicine Research and Teaching Dept, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Hannah M Mitchison
- Ciliary Disease Section, Genetics and Genomic Medicine Research and Teaching Dept, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Robert E Hynds
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
- UCL Cancer Institute, University College London, London, UK
- R.E. Hynds and C. O'Callaghan contributed equally to this article as lead authors and supervised the work
| | - Christopher O'Callaghan
- UCL Great Ormond Street Institute of Child Health, London, UK
- Centre for PCD Diagnosis and Research, Dept of Respiratory Sciences, University of Leicester, Leicester, UK
- R.E. Hynds and C. O'Callaghan contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
17
|
Ma C, Wu H, Zhu D, Wang Y, Shen Q, Cheng H, Zhang J, Geng H, Liu Y, He X, Tao F, Cao Y, Xu X. Bi-allelic mutations in MCIDAS and CCNO cause human infertility associated with abnormal gamete transport. Clin Genet 2021; 100:731-742. [PMID: 34569065 DOI: 10.1111/cge.14067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022]
Abstract
Reduced generation of multiple motile cilia (RGMC) and the consequent primary ciliary dyskinesia (PCD) cause infertility due to a substantial reduction in the number of multiciliated cells (MCCs) in the efferent ducts (EDs)/oviducts. MCIDAS acts upstream of CCNO to regulate the biogenesis of basal bodies (BBs); therefore, both genes play a vital role in the multiciliogenesis of the reproductive tract epithelium. In this study, whole-exome sequencing was performed to identify the causative genes in 10 unrelated infertile patients with PCD: seven males and three females. Notably, homozygous frameshift mutations in MCIDAS (c.186dupT, p.Pro63Serfs*22) and CCNO (c.262_263insGGCCC, p.Gln88Argfs*8) were identified in one male and one female participant from two unrelated consanguineous families. Haematoxylin-eosin staining/scanning electron microscopy revealed abnormal MCCs in the mutated EDs/oviducts. Furthermore, transmission electron microscopy revealed significantly reduced BBs. Immunofluorescence staining showed the absence of MCIDAS and CCNO signals in the affected tissues and confirmed that MCIDAS acts upstream of CCNO in the context of multiciliogenesis in the reproductive tract epithelium. In vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) was successful, with a positive pregnancy outcome in both MCIDAS- and CCNO-mutated patients. Our results support the use of IVF/ICSI interventions to treat infertility due to RGMC in couples.
Collapse
Affiliation(s)
- Cong Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Huan Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Damin Zhu
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qunshan Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Huiru Cheng
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China.,Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Junqiang Zhang
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China.,Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Hao Geng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Yiyuan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, Anhui, China.,Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Xiaojin He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Fangbiao Tao
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Xiaofeng Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| |
Collapse
|
18
|
Wu YJ, Liu Y, Hu YQ, Wang L, Bai FR, Xu C, Wu JW. Control of multiciliogenesis by miR-34/449 in the male reproductive tract through enforcing cell cycle exit. J Cell Sci 2021; 134:261955. [PMID: 33973639 PMCID: PMC8182409 DOI: 10.1242/jcs.253450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Multiciliated cells (MCCs) are terminally differentiated postmitotic cells that possess hundreds of motile cilia on their apical surface. Defects in cilia formation are associated with ciliopathies that affect many organs. In this study, we tested the role and mechanism of the miR-34/449 family in the regulation of multiciliogenesis in EDs using an miR-34b/c−/−; miR-449−/− double knockout (dKO) mouse model. MiR-34b/c and miR-449 depletion led to a reduced number of MCCs and abnormal cilia structure in the EDs starting from postnatal day (P)14. However, abnormal MCC differentiation in the dKO EDs could be observed as early as P7. RNA-seq analyses revealed that the aberrant development of MCCs in the EDs of dKO mice was associated with the upregulation of genes involved in cell cycle control. Using a cyclin-dependent kinase inhibitor to force cell cycle exit promoted MCC differentiation, and partially rescued the defective multiciliogenesis in the EDs of dKO mice. Taken together, our results suggest that miR-34b/c and miR-449 play an essential role in multiciliogenesis in EDs by regulating cell cycle exit. Summary: Mutagenic, expression and histological analyses reveal an essential role for miR-34b/c and miR-449 in multiciliogenesis in efferent ductules of the male reproductive tract by regulating cell cycle exit.
Collapse
Affiliation(s)
- Yu-Jie Wu
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| | - Yue Liu
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| | - Yan-Qin Hu
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| | - Li Wang
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| | - Fu-Rong Bai
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| | - Chen Xu
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| | - Jing-Wen Wu
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| |
Collapse
|
19
|
Rao VG, Kulkarni SS. Xenopus to the rescue: A model to validate and characterize candidate ciliopathy genes. Genesis 2021; 59:e23414. [PMID: 33576572 DOI: 10.1002/dvg.23414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022]
Abstract
Cilia are present on most vertebrate cells and play a central role in development, growth, and homeostasis. Thus, cilia dysfunction can manifest into an array of diseases, collectively termed ciliopathies, affecting millions of lives worldwide. Yet, our understanding of the gene regulatory networks that control cilia assembly and functions remain incomplete. With the advances in next-generation sequencing technologies, we can now rapidly predict pathogenic variants from hundreds of ciliopathy patients. While the pace of candidate gene discovery is exciting, most of these genes have never been previously implicated in cilia assembly or function. This makes assigning the disease causality difficult. This review discusses how Xenopus, a genetically tractable and high-throughput vertebrate model, has played a central role in identifying, validating, and characterizing candidate ciliopathy genes. The review is focused on multiciliated cells (MCCs) and diseases associated with MCC dysfunction. MCCs harbor multiple motile cilia on their apical surface to generate extracellular fluid flow inside the airway, the brain ventricles, and the oviduct. In Xenopus, these cells are external and present on the embryonic epidermal epithelia, facilitating candidate genes analysis in MCC development in vivo. The ability to introduce patient variants to study their effects on disease progression makes Xenopus a powerful model to improve our understanding of the underlying disease mechanisms and explain the patient phenotype.
Collapse
Affiliation(s)
- Venkatramanan G Rao
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Saurabh S Kulkarni
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA.,Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
20
|
Omiya H, Yamaguchi S, Watanabe T, Kuniya T, Harada Y, Kawaguchi D, Gotoh Y. BMP signaling suppresses Gemc1 expression and ependymal differentiation of mouse telencephalic progenitors. Sci Rep 2021; 11:613. [PMID: 33436697 PMCID: PMC7804439 DOI: 10.1038/s41598-020-79610-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 11/18/2020] [Indexed: 01/29/2023] Open
Abstract
The lateral ventricles of the adult mammalian brain are lined by a single layer of multiciliated ependymal cells, which generate a flow of cerebrospinal fluid through directional beating of their cilia as well as regulate neurogenesis through interaction with adult neural stem cells. Ependymal cells are derived from a subset of embryonic neural stem-progenitor cells (NPCs, also known as radial glial cells) that becomes postmitotic during the late embryonic stage of development. Members of the Geminin family of transcriptional regulators including GemC1 and Mcidas play key roles in the differentiation of ependymal cells, but it remains largely unclear what extracellular signals regulate these factors and ependymal differentiation during embryonic and early-postnatal development. We now show that the levels of Smad1/5/8 phosphorylation and Id1/4 protein expression-both of which are downstream events of bone morphogenetic protein (BMP) signaling-decline in cells of the ventricular-subventricular zone in the mouse lateral ganglionic eminence in association with ependymal differentiation. Exposure of postnatal NPC cultures to BMP ligands or to a BMP receptor inhibitor suppressed and promoted the emergence of multiciliated ependymal cells, respectively. Moreover, treatment of embryonic NPC cultures with BMP ligands reduced the expression level of the ependymal marker Foxj1 and suppressed the emergence of ependymal-like cells. Finally, BMP ligands reduced the expression levels of Gemc1 and Mcidas in postnatal NPC cultures, whereas the BMP receptor inhibitor increased them. Our results thus implicate BMP signaling in suppression of ependymal differentiation from NPCs through regulation of Gemc1 and Mcidas expression during embryonic and early-postnatal stages of mouse telencephalic development.
Collapse
Affiliation(s)
- Hanae Omiya
- grid.26999.3d0000 0001 2151 536XGraduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Shima Yamaguchi
- grid.26999.3d0000 0001 2151 536XGraduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Tomoyuki Watanabe
- grid.26999.3d0000 0001 2151 536XGraduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Takaaki Kuniya
- grid.26999.3d0000 0001 2151 536XGraduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Yujin Harada
- grid.26999.3d0000 0001 2151 536XGraduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Daichi Kawaguchi
- grid.26999.3d0000 0001 2151 536XGraduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Yukiko Gotoh
- grid.26999.3d0000 0001 2151 536XGraduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan ,grid.26999.3d0000 0001 2151 536XInternational Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
21
|
Super-Resolution Microscopy and FIB-SEM Imaging Reveal Parental Centriole-Derived, Hybrid Cilium in Mammalian Multiciliated Cells. Dev Cell 2020; 55:224-236.e6. [PMID: 33038333 DOI: 10.1016/j.devcel.2020.09.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/18/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022]
Abstract
Motile cilia are cellular beating machines that play a critical role in mucociliary clearance, cerebrospinal fluid movement, and fertility. In the airways, hundreds of motile cilia present on the surface of a multiciliated epithelia cell beat coordinately to protect the epithelium from bacteria, viruses, and harmful particulates. During multiciliated cell differentiation, motile cilia are templated from basal bodies, each extending a basal foot-an appendage linking motile cilia together to ensure coordinated beating. Here, we demonstrate that among the many motile cilia of a multiciliated cell, a hybrid cilium with structural features of both primary and motile cilia is harbored. The hybrid cilium is conserved in mammalian multiciliated cells, originates from parental centrioles, and its cellular position is biased and dependent on ciliary beating. Furthermore, we show that the hybrid cilium emerges independently of other motile cilia and functions in regulating basal body alignment.
Collapse
|
22
|
Zhou F, Rayamajhi D, Ravi V, Narasimhan V, Chong YL, Lu H, Venkatesh B, Roy S. Conservation as well as divergence in Mcidas function underlies the differentiation of multiciliated cells in vertebrates. Dev Biol 2020; 465:168-177. [PMID: 32735790 DOI: 10.1016/j.ydbio.2020.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 04/23/2020] [Accepted: 07/06/2020] [Indexed: 11/19/2022]
Abstract
Multiciliated cells (MCCs) differentiate hundreds of motile cilia that beat to drive fluid movement over various kinds of epithelia. In Xenopus, mice and human, the coiled-coil containing protein Mcidas (Mci) has been shown to be a key transcriptional regulator of MCC differentiation. We have examined Mci function in the zebrafish, another model organism that is widely used to study ciliary biology. We show that zebrafish mci is expressed specifically in the developing MCCs of the kidney tubules, but surprisingly, not in those of the nasal placodes. Mci proteins lack a DNA binding domain and associate with the cell-cycle transcription factors E2f4/5 for regulating MCC-specific gene expression. We found that while the zebrafish Mci protein can complex with the E2f family members, its sequence as well as the requirement and sufficiency for MCC differentiation has diverged significantly from Mci homologues of the tetrapods. We also provide evidence that compared to Gmnc, another related coiled-coil protein that has recently been shown to regulate MCC development upstream of Mci, the Mci protein originated later within the vertebrate lineage. Based on these data, we argue that in contrast to Gmnc, which has a vital role in the genetic circuitry that drives MCC formation, the requirement of Mci, at least in the zebrafish, is not obligatory.
Collapse
Affiliation(s)
- Feng Zhou
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Dheeraj Rayamajhi
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Vydianathan Ravi
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Vijay Narasimhan
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Yan Ling Chong
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Hao Lu
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore; Department of Paediatrics, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore; Department of Paediatrics, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore.
| |
Collapse
|
23
|
Collins C, Ventrella R, Mitchell BJ. Building a ciliated epithelium: Transcriptional regulation and radial intercalation of multiciliated cells. Curr Top Dev Biol 2020; 145:3-39. [PMID: 34074533 DOI: 10.1016/bs.ctdb.2020.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The epidermis of the Xenopus embryo has emerged as a powerful tool for studying the development of a ciliated epithelium. Interspersed throughout the epithelium are multiciliated cells (MCCs) with 100+ motile cilia that beat in a coordinated manner to generate fluid flow over the surface of the cell. MCCs are essential for various developmental processes and, furthermore, ciliary dysfunction is associated with numerous pathologies. Therefore, understanding the cellular mechanisms involved in establishing a ciliated epithelium are of particular interest. MCCs originate in the inner epithelial layer of Xenopus skin, where Notch signaling plays a critical role in determining which progenitors will adopt a ciliated cell fate. Then, activation of various transcriptional regulators, such as GemC1 and MCIDAS, initiate the MCC transcriptional program, resulting in centriole amplification and the formation of motile cilia. Following specification and differentiation, MCCs undergo the process of radial intercalation, where cells apically migrate from the inner layer to the outer epithelial layer. This process involves the cooperation of various cytoskeletal networks, activation of various signaling molecules, and changes in cell-ECM and cell-cell adhesion. Coordination of these cellular processes is required for complete incorporation into the outer epithelial layer and generation of a functional ciliated epithelium. Here, we highlight recent advances made in understanding the transcriptional cascades required for MCC specification and differentiation and the coordination of cellular processes that facilitate radial intercalation. Proper regulation of these signaling pathways and processes are the foundation for developing a ciliated epithelium.
Collapse
Affiliation(s)
- Caitlin Collins
- Department of Cell and Developmental Biology, Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Rosa Ventrella
- Department of Cell and Developmental Biology, Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Brian J Mitchell
- Department of Cell and Developmental Biology, Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
24
|
Lee L, Ostrowski LE. Motile cilia genetics and cell biology: big results from little mice. Cell Mol Life Sci 2020; 78:769-797. [PMID: 32915243 DOI: 10.1007/s00018-020-03633-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/11/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022]
Abstract
Our understanding of motile cilia and their role in disease has increased tremendously over the last two decades, with critical information and insight coming from the analysis of mouse models. Motile cilia form on specific epithelial cell types and typically beat in a coordinated, whip-like manner to facilitate the flow and clearance of fluids along the cell surface. Defects in formation and function of motile cilia result in primary ciliary dyskinesia (PCD), a genetically heterogeneous disorder with a well-characterized phenotype but no effective treatment. A number of model systems, ranging from unicellular eukaryotes to mammals, have provided information about the genetics, biochemistry, and structure of motile cilia. However, with remarkable resources available for genetic manipulation and developmental, pathological, and physiological analysis of phenotype, the mouse has risen to the forefront of understanding mammalian motile cilia and modeling PCD. This is evidenced by a large number of relevant mouse lines and an extensive body of genetic and phenotypic data. More recently, application of innovative cell biological techniques to these models has enabled substantial advancement in elucidating the molecular and cellular mechanisms underlying the biogenesis and function of mammalian motile cilia. In this article, we will review genetic and cell biological studies of motile cilia in mouse models and their contributions to our understanding of motile cilia and PCD pathogenesis.
Collapse
Affiliation(s)
- Lance Lee
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA. .,Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, Sioux Falls, SD, USA.
| | - Lawrence E Ostrowski
- Marsico Lung Institute/Cystic Fibrosis Center and Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
25
|
Stracker TH, Morrison CG, Gergely F. Molecular causes of primary microcephaly and related diseases: a report from the UNIA Workshop. Chromosoma 2020; 129:115-120. [PMID: 32424716 DOI: 10.1007/s00412-020-00737-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/30/2022]
Abstract
The International University of Andalucía (UNIA) Current Trends in Biomedicine Workshop on Molecular Causes of Primary Microcephaly and Related Diseases took place in Baeza, Spain, November 18-20, 2019. This meeting brought together scientists from Europe, the USA and China to discuss recent advances in our molecular and genetic understanding of a group of rare neurodevelopmental diseases characterised by primary microcephaly, a condition in which head circumference is smaller than normal at birth. Microcephaly can be caused by inherited mutations that affect key cellular processes, or environmental exposure to radiation or other toxins. It can also result from viral infection, as exemplified by the recent Zika virus outbreak in South America. Here we summarise a number of the scientific advances presented and topics discussed at the meeting.
Collapse
Affiliation(s)
- Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona) and Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.
| | - Ciaran G Morrison
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Biosciences Building, Dangan, Galway, H91 TK33, Ireland
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| |
Collapse
|
26
|
Xie H, Kang Y, Wang S, Zheng P, Chen Z, Roy S, Zhao C. E2f5 is a versatile transcriptional activator required for spermatogenesis and multiciliated cell differentiation in zebrafish. PLoS Genet 2020; 16:e1008655. [PMID: 32196499 PMCID: PMC7112233 DOI: 10.1371/journal.pgen.1008655] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/01/2020] [Accepted: 02/05/2020] [Indexed: 11/18/2022] Open
Abstract
E2f5 is a member of the E2f family of transcription factors that play essential roles during many cellular processes. E2f5 was initially characterized as a transcriptional repressor in cell proliferation studies through its interaction with the Retinoblastoma (Rb) protein for inhibition of target gene transcription. However, the precise roles of E2f5 during embryonic and post-embryonic development remain incompletely investigated. Here, we report that zebrafish E2f5 plays critical roles during spermatogenesis and multiciliated cell (MCC) differentiation. Zebrafish e2f5 mutants develop exclusively as infertile males. In the mutants, spermatogenesis is arrested at the zygotene stage due to homologous recombination (HR) defects, which finally leads to germ cell apoptosis. Inhibition of cell apoptosis in e2f5;tp53 double mutants rescued ovarian development, although oocytes generated from the double mutants were still abnormal, characterized by aberrant distribution of nucleoli. Using transcriptome analysis, we identified dmc1, which encodes an essential meiotic recombination protein, as the major target gene of E2f5 during spermatogenesis. E2f5 can bind to the promoter of dmc1 to promote HR, and overexpression of dmc1 significantly increased the fertilization rate of e2f5 mutant males. Besides gametogenesis defects, e2f5 mutants failed to develop MCCs in the nose and pronephric ducts during early embryonic stages, but these cells recovered later due to redundancy with E2f4. Moreover, we demonstrate that ion transporting principal cells in the pronephric ducts, which remain intercalated with the MCCs, do not contain motile cilia in wild-type embryos, while they generate single motile cilia in the absence of E2f5 activity. In line with this, we further show that E2f5 activates the Notch pathway gene jagged2b (jag2b) to inhibit the acquisition of MCC fate as well as motile cilia differentiation by the neighboring principal cells. Taken together, our data suggest that E2f5 can function as a versatile transcriptional activator and identify novel roles of the protein in spermatogenesis as well as MCC differentiation during zebrafish development.
Collapse
Affiliation(s)
- Haibo Xie
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Yunsi Kang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Shuo Wang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Pengfei Zheng
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Zhe Chen
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Department of Pediatrics, Yong Loo Ling School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chengtian Zhao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
- * E-mail:
| |
Collapse
|
27
|
Beeby M, Ferreira JL, Tripp P, Albers SV, Mitchell DR. Propulsive nanomachines: the convergent evolution of archaella, flagella and cilia. FEMS Microbiol Rev 2020; 44:253-304. [DOI: 10.1093/femsre/fuaa006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
Echoing the repeated convergent evolution of flight and vision in large eukaryotes, propulsive swimming motility has evolved independently in microbes in each of the three domains of life. Filamentous appendages – archaella in Archaea, flagella in Bacteria and cilia in Eukaryotes – wave, whip or rotate to propel microbes, overcoming diffusion and enabling colonization of new environments. The implementations of the three propulsive nanomachines are distinct, however: archaella and flagella rotate, while cilia beat or wave; flagella and cilia assemble at their tips, while archaella assemble at their base; archaella and cilia use ATP for motility, while flagella use ion-motive force. These underlying differences reflect the tinkering required to evolve a molecular machine, in which pre-existing machines in the appropriate contexts were iteratively co-opted for new functions and whose origins are reflected in their resultant mechanisms. Contemporary homologies suggest that archaella evolved from a non-rotary pilus, flagella from a non-rotary appendage or secretion system, and cilia from a passive sensory structure. Here, we review the structure, assembly, mechanism and homologies of the three distinct solutions as a foundation to better understand how propulsive nanomachines evolved three times independently and to highlight principles of molecular evolution.
Collapse
Affiliation(s)
- Morgan Beeby
- Department of Life Sciences, Frankland Road, Imperial College of London, London, SW7 2AZ, UK
| | - Josie L Ferreira
- Department of Life Sciences, Frankland Road, Imperial College of London, London, SW7 2AZ, UK
| | - Patrick Tripp
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Schaenzlestrasse 1, 79211 Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Schaenzlestrasse 1, 79211 Freiburg, Germany
| | - David R Mitchell
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| |
Collapse
|
28
|
Rare Human Diseases: Model Organisms in Deciphering the Molecular Basis of Primary Ciliary Dyskinesia. Cells 2019; 8:cells8121614. [PMID: 31835861 PMCID: PMC6952885 DOI: 10.3390/cells8121614] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a recessive heterogeneous disorder of motile cilia, affecting one per 15,000-30,000 individuals; however, the frequency of this disorder is likely underestimated. Even though more than 40 genes are currently associated with PCD, in the case of approximately 30% of patients, the genetic cause of the manifested PCD symptoms remains unknown. Because motile cilia are highly evolutionarily conserved organelles at both the proteomic and ultrastructural levels, analyses in the unicellular and multicellular model organisms can help not only to identify new proteins essential for cilia motility (and thus identify new putative PCD-causative genes), but also to elucidate the function of the proteins encoded by known PCD-causative genes. Consequently, studies involving model organisms can help us to understand the molecular mechanism(s) behind the phenotypic changes observed in the motile cilia of PCD affected patients. Here, we summarize the current state of the art in the genetics and biology of PCD and emphasize the impact of the studies conducted using model organisms on existing knowledge.
Collapse
|
29
|
Boutin C, Kodjabachian L. Biology of multiciliated cells. Curr Opin Genet Dev 2019; 56:1-7. [DOI: 10.1016/j.gde.2019.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/07/2019] [Accepted: 04/14/2019] [Indexed: 01/09/2023]
|
30
|
Terré B, Lewis M, Gil-Gómez G, Han Z, Lu H, Aguilera M, Prats N, Roy S, Zhao H, Stracker TH. Defects in efferent duct multiciliogenesis underlie male infertility in GEMC1-, MCIDAS- or CCNO-deficient mice. Development 2019; 146:dev.162628. [PMID: 30936178 DOI: 10.1242/dev.162628] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/25/2019] [Indexed: 01/02/2023]
Abstract
GEMC1 and MCIDAS are geminin family proteins that transcriptionally activate E2F4/5-target genes during multiciliogenesis, including Foxj 1 and Ccno Male mice that lacked Gemc1, Mcidas or Ccno were found to be infertile, but the origin of this defect has remained unclear. Here, we show that all three genes are necessary for the generation of functional multiciliated cells in the efferent ducts that are required for spermatozoa to enter the epididymis. In mice that are mutant for Gemc1, Mcidas or Ccno, we observed a similar spectrum of phenotypes, including thinning of the seminiferous tubule epithelia, dilation of the rete testes, sperm agglutinations in the efferent ducts and lack of spermatozoa in the epididymis (azoospermia). These data suggest that defective efferent duct development is the dominant cause of male infertility in these mouse models, and this likely extends to individuals with the ciliopathy reduced generation of multiple motile cilia with mutations in MCIDAS and CCNO.
Collapse
Affiliation(s)
- Berta Terré
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Michael Lewis
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Gabriel Gil-Gómez
- Apoptosis Signalling Group, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Barcelona 08003, Spain
| | - Zhiyuan Han
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY 11568, USA
| | - Hao Lu
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Mònica Aguilera
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Neus Prats
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore.,Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119288, Singapore.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Haotian Zhao
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY 11568, USA
| | - Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| |
Collapse
|