1
|
Yu A, Xing Y, Zhang F, Cao D, Jiang Y, Lu X, Li J. Chromosome remodeling and cytoplasmic distribution during embryonic development in fused pair embryos. Theriogenology 2025; 243:117465. [PMID: 40319703 DOI: 10.1016/j.theriogenology.2025.117465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/15/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Cell fusion is now widely employed as an in vitro model for inducing and investigating cell fate changes. In early embryo research, fusion of embryos is also a way to probe the mechanisms of mammalian oogenesis and preimplantation development. To establish a novel model for porcine early embryo studies and investigate its developmental mechanisms, pair of zona pellucida (ZP)-free oocytes were electro fused to produce the fused pair (FP) embryos, which were further in vitro cultured to the blastocyst stage. Firstly, developmental competence was assessed, revealing a cleavage rate of 92.27 ± 5.59 % and a blastocyst rate of 26.12 ± 6.61 %, which were similar to the parthenogenetic activation (PA) embryos (p > 0.05). Subsequently, nuclear and spindle staining was performed on FP embryos collected at 14-22 h, with 67.18 ± 3.18 % of the embryos spindle reorganization occurred and nuclei fusion, whereas a few displayed independent division of the two nuclei or tripolar spindle. Lastly, the distribution of lipid droplets (LDs) and mitochondria in FP embryos was assessed via fluorescent staining. Results showed that the even distribution of LDs from one oocyte was observed in each blastomere of 4-cell to blastocysts. A similar distribution pattern was observed for mitochondria, which was being observed at the 2-cell stage, a relatively earlier developmental stage than that of LDs. Results suggested that cytoplasm including mitochondria and LDs could redistribute once two oocytes fused into a single embryo. More studies are needed for the underlying mechanism and potential impact on the developmental ability of FP embryos.
Collapse
Affiliation(s)
- Aochen Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yang Xing
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Fuyao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Deru Cao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yuan Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xinyue Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Juan Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Natalia B, John P, Wiesława M, Wojciech N, Marzenna PO, Katarzyna HL, Michał K, Małgorzata O. Age-related changes in the cytoplasmic ultrastructure of feline oocytes. Sci Rep 2025; 15:12668. [PMID: 40221528 PMCID: PMC11993646 DOI: 10.1038/s41598-025-96983-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
This study elucidates the impact of aging on the cellular architecture of feline oocytes, with a particular emphasis on organelles essential for fertilization and embryo development. Using transmission electron microscopy (TEM), the research compares oocytes from prepubescent, cycling adult, and aged cats, revealing notable differences in the arrangement of key structures, particularly mitochondria, lipid droplets, and vacuoles. Oocytes from adult donors are at their metabolic peak, demonstrating a higher concentration of mitochondria near lipid droplets, supporting efficient energy metabolism. In contrast, younger and older oocytes exhibit larger lipid droplets and reduced mitochondrial density, indicative of diminished metabolic activity. These findings not only underscore the necessity of selecting an optimal donor age for in vitro fertilization but also suggest potential biomarkers for oocyte quality assessment. This novel insight offers promising strategies to enhance reproductive success, improve assisted reproduction outcomes, and support feline conservation efforts.
Collapse
Affiliation(s)
- Brągiel Natalia
- Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Norwida 25, Wroclaw, 50-375, Poland.
| | - Perrin John
- Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Norwida 25, Wroclaw, 50-375, Poland
| | - Młodawska Wiesława
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Kraków, Kraków, Poland
| | - Niżański Wojciech
- Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Norwida 25, Wroclaw, 50-375, Poland
| | - Podhorska-Okołów Marzenna
- Department of Ultrastructural Research, Wroclaw Medical University, ul. Chałubińskiego 6a, Wrocław, 50- 368, Poland
- Department of Human Biology, Wroclaw University of Health and Sport Sciences, Paderewskiego 35 Avenue, 51-612, Wrocław, Poland
| | | | - Kulus Michał
- Department of Ultrastructural Research, Wroclaw Medical University, ul. Chałubińskiego 6a, Wrocław, 50- 368, Poland.
| | - Ochota Małgorzata
- Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Norwida 25, Wroclaw, 50-375, Poland.
| |
Collapse
|
3
|
Xu X, Cui C, Du X, Chen J, He X, Zhu L, Hu C, Xu F, Ma C, Yu S, He X, Song H, Wang Y. PPARs Activity Affects the Hatchability Through Lipid Metabolism Regulation in Silkworm, Bombyx mori L. Biomolecules 2025; 15:492. [PMID: 40305260 PMCID: PMC12025131 DOI: 10.3390/biom15040492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 05/02/2025] Open
Abstract
Lipid metabolism serves as the primary energy source for organisms. Silkworm eggs for spring use are divided into two types: autumn-produced eggs for next spring rearing (AS) and spring-produced eggs for next spring rearing (SS). Production practice revealed significant differences in hatching rates between these two types of silkworm production strain QiufengA. In this study, we identified differentially expressed genes (DEGs) primarily enriched in energy metabolism pathways. In particular, the PPARs are involved in energy regulation through lipid metabolism. Furthermore, both AS and SS contained the same eight long-chain fatty acids but in different amounts. Interference with PPARs activity in silkworm eggs disrupted the expression of key genes in this pathway, resulting in a significant decrease in hatching rate. Additionally, knockdown of the pathway key gene BmPlin4 led to the reduction in lipid droplets. In conclusion, PPARs regulates the hatching rate of silkworms mainly by affecting lipid metabolism. This study proved the importance of PPARs for hatching and identifies them as potential target genes for population control.
Collapse
Affiliation(s)
- Xia Xu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chunguang Cui
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xin Du
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jine Chen
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiuling He
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Linbao Zhu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chengjie Hu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fang Xu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chenkai Ma
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shaofang Yu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xingjian He
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Houhui Song
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Yongqiang Wang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
4
|
Ran Z, Liu R, Shi H, Wang X, Wu Z, Zhou S, Liao J, Hu L, Hu Y, Zhou J, He C, Li X. mTOR signaling mediates energy metabolic equilibrium in bovine and mouse oocytes during the ovulatory phase†. Biol Reprod 2025; 112:474-484. [PMID: 39832885 DOI: 10.1093/biolre/ioae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/07/2024] [Indexed: 01/22/2025] Open
Abstract
The mammalian target of rapamycin (mTOR) signaling pathway is activated by luteinizing hormone in preovulatory follicle. However, its impact on ovulation remains inadequately explored. Utilizing in vivo studies and in vitro fertilization, we demonstrated that the negative effect of inhibition of mTOR signaling by rapamycin on oocyte quality during the ovulatory phase, with a notable decrease in the total cell count of blastocysts, a reduction in gastrula size, and fetal degeneration on the 16th day of gestation while not affecting ovulated oocyte count or granulosa cell luteinization. Mechanistically, our study elucidated that in the ovulatory phase, mTOR signaling inhibition enhances lipid consumption, mitochondrial membrane potential of oocytes, and ATP generation. As a result, embryos derived from these oocytes exhibit higher levels of reactive oxygen species, insufficient energy supply, and lower developmental potency. Furthermore, the impact of mTOR signaling on oocytes remains consistent across various species, and its inhibition has been demonstrated to enhance energy metabolism during the in vitro maturation process of bovine oocytes. These findings demonstrate the critical role of mTOR signaling during the ovulatory phase in balancing oocyte energy metabolism, enriching our understanding of the role of mTOR on ovulation regulation.
Collapse
Affiliation(s)
- Zaohong Ran
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, National Center for International Research on Animal Genetics, Breeding and Reproduction, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ruiyan Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, National Center for International Research on Animal Genetics, Breeding and Reproduction, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Canine Laboratory Animal Resources Center, Guangzhou General Pharmaceutical Research Institute Co. Ltd, Guangzhou, China
| | - Hongru Shi
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, National Center for International Research on Animal Genetics, Breeding and Reproduction, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaodong Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, National Center for International Research on Animal Genetics, Breeding and Reproduction, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zian Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, National Center for International Research on Animal Genetics, Breeding and Reproduction, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shanshan Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, National Center for International Research on Animal Genetics, Breeding and Reproduction, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jianning Liao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, National Center for International Research on Animal Genetics, Breeding and Reproduction, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lichang Hu
- Livestock and Poultry Breeding Center of Hubei Province, Wuhan, China
| | - Yongtao Hu
- Livestock and Poultry Breeding Center of Hubei Province, Wuhan, China
| | - Jintao Zhou
- Hubei Gengyuanhui Technology Co., Ltd, Xiantao, China
| | - Changjiu He
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, National Center for International Research on Animal Genetics, Breeding and Reproduction, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Shennongjia Science and Technology Innovation Center, Huazhong Agricultural University, Shennongjia, China
- Xinjiang Western Animal Husbandry Co., Ltd, Shihezi, China
| | - Xiang Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, National Center for International Research on Animal Genetics, Breeding and Reproduction, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Shennongjia Science and Technology Innovation Center, Huazhong Agricultural University, Shennongjia, China
| |
Collapse
|
5
|
Salek F, Guest A, Johnson C, Kastelic JP, Thundathil J. Factors Affecting the Success of Ovum Pick-Up, In Vitro Production and Cryopreservation of Embryos in Cattle. Animals (Basel) 2025; 15:344. [PMID: 39943114 PMCID: PMC11815730 DOI: 10.3390/ani15030344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/26/2024] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Increasing global demand for animal proteins warrants improved productivity by genetic selection of superior cattle and faster dissemination of genetics. Availability of more progeny for genomic selection should maximize chances of identifying animals with desirable traits and increase selection pressure. OPU and IVP of embryos using these oocytes will substantially increase calves produced compared to conventional embryo transfer (ET). The OPU-IVP technology not only supports genetic improvement but also contributes to reducing environmental impacts of livestock production systems by improving efficiency and optimizing resources, aligning with the Sustainable Development Goals of the United Nations. However, there are several factors influencing the success of OPU-IVP. This review is focused on these factors and the impacts of in vitro culture conditions on the lipid content of embryos and potential role of L-carnitine, a lipolytic agent, on developmental competence of IVP embryos. The documented effects of L-carnitine and current knowledge regarding regulation of the Hippo signaling pathway suggest that supplementation of embryo culture media with L-carnitine will increase post-thaw survival of IVP embryos and their subsequent developmental competence by regulating lipid metabolism, production of reactive oxygen species, and Hippo signaling. Therefore, this review highlights current advancements in the field of OPU-IVP and potential areas for refining culture conditions to yield developmentally competent embryos that survive cryopreservation procedures.
Collapse
Affiliation(s)
| | | | | | | | - Jacob Thundathil
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada (C.J.); (J.P.K.)
| |
Collapse
|
6
|
Ibayashi M, Tatsumi T, Tsukamoto S. Perilipin2 depletion causes lipid droplet enlargement in the ovarian corpus luteum in mice. J Reprod Dev 2024; 70:296-302. [PMID: 39010158 PMCID: PMC11461514 DOI: 10.1262/jrd.2024-023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/17/2024] [Indexed: 07/17/2024] Open
Abstract
Lipid droplets (LDs) are endoplasmic reticulum-derived organelles that store neutral lipids (mostly triglycerides and cholesterol esters) within a phospholipid monolayer and appear in most eukaryotic cells. Perilipins (PLINs, comprising PLIN1-5) are abundant LD-associated proteins with highly variable expression levels among tissues. Although PLINs are expressed in the mammalian ovaries, little is known about their subcellular localization and physiological functions. In this study, we investigated the localization of PLIN1-3 and their relationship with LD synthesis using mCherry-HPos reporter mice, thereby enabling the visualization of LD biogenesis in vivo. PLIN2 and PLIN3 were localized as puncta in granulosa cells with low levels of LD synthesis in developing follicles. This localization pattern was quite different from that of PLIN1, which was mainly localized in the theca and interstitial cells with high levels of LD synthesis. In the corpus luteum, where LD synthesis is highly induced, PLIN2 and PLIN3 are abundant in the particulate structures, whereas PLIN1 is poorly distributed. We also generated global Plin2-deficient mice using the CRSPR/Cas9 system and demonstrated that the lack of PLIN2 did not alter the distribution of PLIN1 and PLIN3 but unexpectedly induced LD enlargement in the corpus luteum. Collectively, our results suggest that the localization of PLIN1-3 is spatiotemporally regulated and that PLIN2 deficiency influences LD mobilization in the corpus luteum within the ovaries.
Collapse
Affiliation(s)
- Megumi Ibayashi
- Laboratory Animal and Bioresource Sciences Section, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Takayuki Tatsumi
- Division of Reproductive Medicine, Center of Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Satoshi Tsukamoto
- Laboratory Animal and Bioresource Sciences Section, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| |
Collapse
|
7
|
Ma Z, Huang X, Kuang J, Wang Q, Qin Y, Huang T, Liang Z, Li W, Fu Y, Li P, Fan Y, Zhai Z, Wang X, Ming J, Zhao C, Wang B, Pei D. Cpt1a Drives primed-to-naïve pluripotency transition through lipid remodeling. Commun Biol 2024; 7:1223. [PMID: 39349670 PMCID: PMC11442460 DOI: 10.1038/s42003-024-06874-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
Metabolism has been implicated in cell fate determination, particularly through epigenetic modifications. Similarly, lipid remodeling also plays a role in regulating cell fate. Here, we present comprehensive lipidomics analysis during BMP4-driven primed to naive pluripotency transition or BiPNT and demonstrate that lipid remodeling plays an essential role. We further identify Cpt1a as a rate-limiting factor in BiPNT, driving lipid remodeling and metabolic reprogramming while simultaneously increasing intracellular acetyl-CoA levels and enhancing H3K27ac at chromatin open sites. Perturbation of BiPNT by histone acetylation inhibitors suppresses lipid remodeling and pluripotency transition. Together, our study suggests that lipid remodeling promotes pluripotency transitions and further regulates cell fate decisions, implicating Cpt1a as a critical regulator between primed-naive cell fate control.
Collapse
Affiliation(s)
- Zhaoyi Ma
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xingnan Huang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Junqi Kuang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Qiannan Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yue Qin
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Tao Huang
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Zechuan Liang
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Wei Li
- Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Fu
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Pengli Li
- Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yixin Fan
- Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziwei Zhai
- Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomin Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jin Ming
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Chengchen Zhao
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Biomedical Intelligent Computing Technology, Hangzhou, China
| | - Bo Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of Biomedical Intelligent Computing Technology, Hangzhou, China
- Zhejiang University of Science and Technology School of Information and Electronic Engineering, Hangzhou, China
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Lee SH, Rinaudo PF. Metabolic regulation of preimplantation embryo development in vivo and in vitro: Molecular mechanisms and insights. Biochem Biophys Res Commun 2024; 726:150256. [PMID: 38909536 DOI: 10.1016/j.bbrc.2024.150256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024]
Abstract
Understanding of embryonic development has led to the clinical application of Assisted Reproductive technologies (ART), with the resulting birth of millions of children. Recent developments in metabolomics, proteomics, and transcriptomics have brought to light new insights into embryonic growth dynamics, with implications spanning reproductive medicine, stem cell research, and regenerative medicine. The review explores the key metabolic processes and molecular pathways active during preimplantation embryo development, including PI3K-Akt, mTOR, AMPK, Wnt/β-catenin, TGF-β, Notch and Jak-Stat signaling pathways. We focused on analyzing the differences occurring in vitro as opposed to in vivo development and we discussed significant physiological and clinical implications.
Collapse
Affiliation(s)
- Seok Hee Lee
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Paolo F Rinaudo
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
9
|
Gitta S, Szabó É, Sulc A, Czétány P, Máté G, Balló A, Csabai T, Szántó Á, Márk L. Investigation of Phosphatidylcholine by MALDI Imaging Mass Spectrometry in Normal and IVF Early-Stage Embryos. Int J Mol Sci 2024; 25:7423. [PMID: 39000535 PMCID: PMC11242196 DOI: 10.3390/ijms25137423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
The receptive phase of the uterus is marked by structural and functional maturation of the endometrium. During this limited time span, the blastocyst competency is superimposed on the receptive endometrium. It is a well-known fact that lipid signalling in early-stage pregnancy has a crucial role in successful embryogenesis. In our study, CD-1 mouse uteri after normal and in vitro fertilization (IVF) were investigated at 6.5, 8.5, and 10.5 days of pregnancy. Matrix-assisted laser desorption/ionization time-of-flight imaging mass spectrometry and liquid chromatography coupled tandem mass spectrometry were used for identification of phosphatidylcholine (PC) lipid structures. In the embryonal tissues, PC 32:0 and PC 34:0 were increased, while in the antemesometrial (AM) decidua the two 20:4-containing PCs, PC 36:4 and PC 38:4 were increased. In transferred uterus samples, higher expressions of PC 34:0, PC 34:1, PC 34:2, PC 36:1, and PC 36:2 in mesometrial decidua were seen, whereas the two 20:4-containing PCs, PC 36:4 and PC 38:4 showed increased expression in the AM and lateral decidua. This paper shows a significant spatio-temporal change in lipid metabolism during IVF procedures for the first time.
Collapse
Affiliation(s)
- Stefánia Gitta
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary; (S.G.); (A.S.)
| | - Éva Szabó
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary; (S.G.); (A.S.)
| | - Alexandra Sulc
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary; (S.G.); (A.S.)
- National Laboratory on Human Reproduction, University of Pécs, 7621 Pécs, Hungary; (P.C.); (G.M.); (A.B.); (Á.S.)
| | - Péter Czétány
- National Laboratory on Human Reproduction, University of Pécs, 7621 Pécs, Hungary; (P.C.); (G.M.); (A.B.); (Á.S.)
- Urology Clinic, Clinical Center, University of Pécs, 7621 Pécs, Hungary
| | - Gábor Máté
- National Laboratory on Human Reproduction, University of Pécs, 7621 Pécs, Hungary; (P.C.); (G.M.); (A.B.); (Á.S.)
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
| | - András Balló
- National Laboratory on Human Reproduction, University of Pécs, 7621 Pécs, Hungary; (P.C.); (G.M.); (A.B.); (Á.S.)
- Urology Clinic, Clinical Center, University of Pécs, 7621 Pécs, Hungary
| | - Tímea Csabai
- Institute of Biology, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | - Árpád Szántó
- National Laboratory on Human Reproduction, University of Pécs, 7621 Pécs, Hungary; (P.C.); (G.M.); (A.B.); (Á.S.)
- Urology Clinic, Clinical Center, University of Pécs, 7621 Pécs, Hungary
| | - László Márk
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary; (S.G.); (A.S.)
- National Laboratory on Human Reproduction, University of Pécs, 7621 Pécs, Hungary; (P.C.); (G.M.); (A.B.); (Á.S.)
- Imaging Centre for Life and Material Sciences, University of Pécs, 7624 Pécs, Hungary
- HUN-REN-PTE, Human Reproduction Research Group, 7624 Pécs, Hungary
| |
Collapse
|
10
|
Yang N, Sun Y, Han B, Deng N, Li G, Han Q, Wang Y, Cai H, Liu F, Cao B, Deng W, Bao H, Kong S, Lu J, Wang H. Trophoblastic signals facilitate endometrial interferon response and lipid metabolism, ensuring normal decidualization. Cell Rep 2024; 43:114246. [PMID: 38762885 DOI: 10.1016/j.celrep.2024.114246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/04/2024] [Accepted: 05/02/2024] [Indexed: 05/21/2024] Open
Abstract
The decidua plays a crucial role in providing structural and trophic support to the developing conceptus before placentation. Following embryo attachment, embryonic components intimately interact with the decidual tissue. While evidence indicates the participation of embryo-derived factors in crosstalk with the uterus, the extent of their impact on post-implantation decidual development requires further investigation. Here, we utilize transgenic mouse models to selectively eliminate primary trophoblast giant cells (pTGCs), the embryonic cells that interface with maternal tissue at the forefront. pTGC ablation impairs decidualization and compromises decidual interferon response and lipid metabolism. Mechanistically, pTGCs release factors such as interferon kappa (IFNK) to strengthen the decidual interferon response and lipoprotein lipase (LPL) to enhance lipid accumulation within the decidua, thereby promoting decidualization. This study presents genetic and metabolomic evidence reinforcing the proactive role of pTGC-derived factors in mobilizing maternal resources to strengthen decidualization, facilitating the normal progression of early pregnancy.
Collapse
Affiliation(s)
- Ningjie Yang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yang Sun
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Bing Han
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Na Deng
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Gaizhen Li
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Qian Han
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yinan Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Han Cai
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Fan Liu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Bin Cao
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Wenbo Deng
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Haili Bao
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China.
| | - Shuangbo Kong
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China.
| | - Jinhua Lu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China.
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
11
|
Zhang H, Sun Q, Dong H, Jin Z, Li M, Jin S, Zeng X, Fan J, Kong Y. Long-chain acyl-CoA synthetase-4 regulates endometrial decidualization through a fatty acid β-oxidation pathway rather than lipid droplet accumulation. Mol Metab 2024; 84:101953. [PMID: 38710444 PMCID: PMC11099325 DOI: 10.1016/j.molmet.2024.101953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
OBJECTIVE Lipid metabolism plays an important role in early pregnancy, but its effects on decidualization are poorly understood. Fatty acids (FAs) must be esterified by fatty acyl-CoA synthetases to form biologically active acyl-CoA in order to enter the anabolic and/or catabolic pathway. Long-chain acyl-CoA synthetase 4 (ACSL4) is associated with female reproduction. However, whether it is involved in decidualization is unknown. METHODS The expression of ACSL4 in human and mouse endometrium was detected by immunohistochemistry. ACSL4 levels were regulated by the overexpression of ACSL4 plasmid or ACSL4 siRNA, and the effects of ACSL4 on decidualization markers and morphology of endometrial stromal cells (ESCs) were clarified. A pregnant mouse model was established to determine the effect of ACSL4 on the implantation efficiency of mouse embryos. Modulation of ACSL4 detects lipid anabolism and catabolism. RESULTS Through examining the expression level of ACSL4 in human endometrial tissues during proliferative and secretory phases, we found that ACSL4 was highly expressed during the secretory phase. Knockdown of ACSL4 suppressed decidualization and inhibited the mesenchymal-to-epithelial transition induced by MPA and db-cAMP in ESCs. Further, the knockdown of ACSL4 reduced the efficiency of embryo implantation in pregnant mice. Downregulation of ACSL4 inhibited FA β-oxidation and lipid droplet accumulation during decidualization. Interestingly, pharmacological and genetic inhibition of lipid droplet synthesis did not affect FA β-oxidation and decidualization, while the pharmacological and genetic inhibition of FA β-oxidation increased lipid droplet accumulation and inhibited decidualization. In addition, inhibition of β-oxidation was found to attenuate the promotion of decidualization by the upregulation of ACSL4. The decidualization damage caused by ACSL4 knockdown could be reversed by activating β-oxidation. CONCLUSIONS Our findings suggest that ACSL4 promotes endometrial decidualization by activating the β-oxidation pathway. This study provides interesting insights into our understanding of the mechanisms regulating lipid metabolism during decidualization.
Collapse
Affiliation(s)
- Hongshuo Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China; Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Qianyi Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Haojie Dong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Zeen Jin
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Mengyue Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shanyuan Jin
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xiaolan Zeng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jianhui Fan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| | - Ying Kong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| |
Collapse
|
12
|
Ezoe K, Onogi S, Sawado A, Amagai A, Kato K. Maternal and obstetric outcomes following the transfer of embryos warmed with fatty acid-supplemented solutions. BMC Pregnancy Childbirth 2024; 24:343. [PMID: 38704546 PMCID: PMC11069166 DOI: 10.1186/s12884-024-06546-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Vitrification procedures decrease intracytoplasmic lipid content and impair developmental competence. Adding fatty acids (FAs) to the warming solution has been shown to recover the lipid content of the cytoplasm and improve developmental competence and pregnancy outcomes. However, the influence of the FA supplementation on live birth rates after embryo transfers and perinatal outcomes remains unknown. In the present study, we examined the influence of FA-supplemented warming solutions on live birth rates, pregnancy complications, and neonatal outcomes after single vitrified-warmed cleavage-stage embryo transfers (SVCTs). METHODS The clinical records of 701 treatment cycles in 701 women who underwent SVCTs were retrospectively analyzed. Vitrified embryos were warmed using solutions (from April 2022 to June 2022, control group) or FA-supplemented solutions (from July 2022 to September 2022, FA group). The live birth rate, pregnancy complications, and perinatal outcomes were compared between the control and FA groups. RESULTS The live birth rate per transfer was significantly higher in the FA group than in the control group. Multivariate logistic regression analysis further demonstrated a higher probability of live births in the FA group than in the control group. Miscarriage rates, the incidence and types of pregnancy complications, the cesarean section rate, gestational age, incidence of preterm delivery, birth length and weight, incidence of low birth weight, infant sex, and incidence of birth defects were all comparable between the control and FA groups. Multivariate logistic regression analysis further demonstrated no adverse effects of FA-supplemented warming solutions. CONCLUSIONS FA-supplemented warming solutions improved live birth rates after SVCTs without exerting any adverse effects on maternal and obstetric outcomes. Therefore, FA-supplemented solutions can be considered safe and effective for improving clinical outcomes and reducing patient burden.
Collapse
Affiliation(s)
- Kenji Ezoe
- Kato Ladies Clinic, 7-20-3 Nishishinjyuku, Shinjyuku-ku, Tokyo, 160-0023, Japan
| | - Sachie Onogi
- Kato Ladies Clinic, 7-20-3 Nishishinjyuku, Shinjyuku-ku, Tokyo, 160-0023, Japan
| | - Ayano Sawado
- Kato Ladies Clinic, 7-20-3 Nishishinjyuku, Shinjyuku-ku, Tokyo, 160-0023, Japan
| | - Ayumi Amagai
- Kato Ladies Clinic, 7-20-3 Nishishinjyuku, Shinjyuku-ku, Tokyo, 160-0023, Japan
| | - Keiichi Kato
- Kato Ladies Clinic, 7-20-3 Nishishinjyuku, Shinjyuku-ku, Tokyo, 160-0023, Japan.
| |
Collapse
|
13
|
Sawado A, Ezoe K, Miki T, Ohata K, Amagai A, Shimazaki K, Okimura T, Kato K. Fatty acid supplementation during warming improves pregnancy outcomes after frozen blastocyst transfers: a propensity score-matched study. Sci Rep 2024; 14:9343. [PMID: 38653766 PMCID: PMC11039611 DOI: 10.1038/s41598-024-60136-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Abstract
This study aimed to examine the viability of human blastocysts after warming with fatty acids (FAs) using an in vitro outgrowth model and to assess pregnancy outcomes after a single vitrified-warmed blastocyst transfer (SVBT). For the experimental study, we used 446 discarded vitrified human blastocysts donated for research purposes by consenting couples. The blastocysts were warmed using FA-supplemented (FA group) or non-FA-supplemented (control group) solutions. The outgrowth area was significantly larger in the FA group (P = 0.0428), despite comparable blastocyst adhesion rates between the groups. Furthermore, the incidence of outgrowth degeneration was significantly lower in the FA group than in the control group (P = 0.0158). For the clinical study, we retrospectively analyzed the treatment records of women who underwent SVBT in natural cycles between January and August 2022. Multiple covariates that affected the outcomes were used for propensity score matching as follows: 1342 patients in the FA group were matched to 2316 patients in the control group. Pregnancy outcomes were compared between the groups. The rates of implantation, clinical pregnancy, and ongoing pregnancy significantly increased in the FA group after SVBTs (P = 0.0091-0.0266). These results indicate that warming solutions supplemented with FAs improve blastocyst outgrowth and pregnancy outcomes after SVBTs.
Collapse
Affiliation(s)
- Ayano Sawado
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Shinjyuku-ku, Tokyo, 160-0023, Japan
| | - Kenji Ezoe
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Shinjyuku-ku, Tokyo, 160-0023, Japan.
| | - Tetsuya Miki
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Shinjyuku-ku, Tokyo, 160-0023, Japan
| | - Kazuki Ohata
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Shinjyuku-ku, Tokyo, 160-0023, Japan
| | - Ayumi Amagai
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Shinjyuku-ku, Tokyo, 160-0023, Japan
| | - Kiyoe Shimazaki
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Shinjyuku-ku, Tokyo, 160-0023, Japan
| | - Tadashi Okimura
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Shinjyuku-ku, Tokyo, 160-0023, Japan
| | - Keiichi Kato
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Shinjyuku-ku, Tokyo, 160-0023, Japan.
| |
Collapse
|
14
|
Aizawa R, Ibayashi M, Mitsui J, Tsukamoto S. Lipid droplet formation is spatiotemporally regulated in oocytes during follicular development in mice. J Reprod Dev 2024; 70:18-24. [PMID: 38105003 PMCID: PMC10902640 DOI: 10.1262/jrd.2023-055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Communication between oocytes and the surrounding granulosa cells during follicular development is essential for complete oocyte growth. Oocytes contain lipid droplets (LDs), organelles assembled in the endoplasmic reticulum (ER) that store neutral lipids, including triglycerides and cholesterol esters. Although the LD content varies among animals, LDs stored in oocytes have been shown to play an important role in oocyte maturation and preimplantation embryonic development. However, knowledge is lacking regarding how and when LDs are initially produced in developing oocytes within follicles. In the present study, we found that LDs appeared in mouse oocytes in a specific phase during follicular development. The emergence of LDs in intrafollicular oocytes was induced within a similar time window in vitro and in vivo. Fluorescence imaging and electron microscopy revealed that LDs emerging in oocytes during the early stages of follicular growth were in close proximity to the ER. Furthermore, fatty-acid-tracking experiments have revealed that exogenous fatty acids are rapidly incorporated into oocytes, and their uptake is regulated by the interaction between oocytes and granulosa cells, likely in part through transzonal projections. In summary, our results suggest that LD synthesis observed in growing oocytes is spatiotemporally regulated and that oocyte-granulosa cell contact may be involved in LD biosynthesis during follicular development.
Collapse
Affiliation(s)
- Ryutaro Aizawa
- Laboratory Animal and Genome Sciences Section, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Megumi Ibayashi
- Laboratory Animal and Genome Sciences Section, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Junichiro Mitsui
- Laboratory Animal and Genome Sciences Section, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
- Department of Comprehensive Reproductive Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Satoshi Tsukamoto
- Laboratory Animal and Genome Sciences Section, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| |
Collapse
|
15
|
Zhang L, Zhao J, Lam SM, Chen L, Gao Y, Wang W, Xu Y, Tan T, Yu H, Zhang M, Liao X, Wu M, Zhang T, Huang J, Li B, Zhou QD, Shen N, Lee HJ, Ye C, Li D, Shui G, Zhang J. Low-input lipidomics reveals lipid metabolism remodelling during early mammalian embryo development. Nat Cell Biol 2024; 26:278-293. [PMID: 38302721 DOI: 10.1038/s41556-023-01341-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/20/2023] [Indexed: 02/03/2024]
Abstract
Lipids are indispensable for energy storage, membrane structure and cell signalling. However, dynamic changes in various categories of endogenous lipids in mammalian early embryonic development have not been systematically characterized. Here we comprehensively investigated the dynamic lipid landscape during mouse and human early embryo development. Lipid signatures of different developmental stages are distinct, particularly for the phospholipid classes. We highlight that the high degree of phospholipid unsaturation is a conserved feature as embryos develop to the blastocyst stage. Moreover, we show that lipid desaturases such as SCD1 are required for in vitro blastocyst development and blastocyst implantation. One of the mechanisms is through the regulation of unsaturated fatty-acid-mediated fluidity of the plasma membrane and apical proteins and the establishment of apical-basal polarity during development of the eight-cell embryo to the blastocyst. Overall, our study provides an invaluable resource about the remodelling of the endogenous lipidome in mammalian preimplantation embryo development and mechanistic insights into the regulation of embryogenesis and implantation by lipid unsaturation.
Collapse
Affiliation(s)
- Ling Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Jing Zhao
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- LipidALL Technologies, Changzhou, China
| | - Lang Chen
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingzhuo Gao
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China
| | - Wenjie Wang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuyan Xu
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianyu Tan
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hua Yu
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xufeng Liao
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengchen Wu
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianyun Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Jie Huang
- College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
| | - Bowen Li
- LipidALL Technologies, Changzhou, China
| | - Quan D Zhou
- Institute of Immunology, Department of Surgical Oncology of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ning Shen
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Hyeon Jeong Lee
- College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
| | - Cunqi Ye
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Da Li
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Jin Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
- Center of Gene and Cell Therapy and Genome Medicine of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
16
|
Affiliation(s)
- Megumi Ibayashi
- Laboratory Animal and Genome Sciences Section, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Satoshi Tsukamoto
- Laboratory Animal and Genome Sciences Section, National Institutes for Quantum Science and Technology, Chiba, Japan.
| |
Collapse
|
17
|
Ohnaka Y, Tsukamoto S, Iwai Y, Hamada-Kanazawa M, Kariya R, Takano M. Bradykinin deficiency causes high blood pressure in mice. Biochem Biophys Res Commun 2023; 681:73-79. [PMID: 37757669 DOI: 10.1016/j.bbrc.2023.09.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
Bradykinin has a wide variety of physiological functions, including vasodilation and blood pressure reduction. However, the physiological roles of bradykinin are not fully understood. We used the CRISPR/Cas9 method to generate BKdelK1 and BKdelK2 mutant mice, targeting the BK portion of mouse kininogen1 and kininogen2 genes, respectively. The BKdelK1 and BKdelK2 mutant mice had about 50% reductions in plasma low molecular weight kininogen and trypsin-released BK, compared to wild mice. Both BKdelK1 and BKdelK2 mice had significantly elevated systolic blood pressure compared to WT mice. These results suggest that plasma LKNG is a source of KNG in the vascular kallikrein-kinin system and contributes to maintaining lower systolic blood pressure.
Collapse
Affiliation(s)
- Yusuke Ohnaka
- Laboratory of Molecular Cellular Biology, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Satoshi Tsukamoto
- Laboratory Animal and Genome Sciences Section, National Institute for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Yuna Iwai
- Laboratory of Molecular Cellular Biology, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Michiko Hamada-Kanazawa
- Laboratory of Molecular Cellular Biology, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Ryusho Kariya
- Laboratory of Molecular Cellular Biology, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Masaoki Takano
- Laboratory of Molecular Cellular Biology, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan.
| |
Collapse
|
18
|
Kurzella J, Miskel D, Rings F, Tholen E, Tesfaye D, Schellander K, Salilew-Wondim D, Held-Hoelker E, Große-Brinkhaus C, Hoelker M. The mitochondrial respiration signature of the bovine blastocyst reflects both environmental conditions of development as well as embryo quality. Sci Rep 2023; 13:19408. [PMID: 37938581 PMCID: PMC10632430 DOI: 10.1038/s41598-023-45691-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023] Open
Abstract
The major limitation of the widespread use of IVP derived embryos is their consistent deficiencies in vitality when compared with their ex vivo derived counterparts. Although embryo metabolism is considered a useful metric of embryo quality, research connecting mitochondrial function with the developmental capacity of embryos is still lacking. Therefore, the aim of the present study was to analyse bovine embryo respiration signatures in relation to developmental capacity. This was achieved by taking advantage of two generally accepted metrics for developmental capacity: (I) environmental conditions during development (vivo vs. vitro) and (II) developmental kinetics (day 7 vs. day 8 blastocysts). Our study showed that the developmental environment affected total embryo oxygen consumption while different morphokinetics illustrating the embryo qualities correlate with maximal mitochondrial respiration, mitochondrial spare capacity, ATP-linked respiration as well as efficiency of ATP generation. This respiration fingerprint for high embryo quality is reflected by relatively lower lipid contents and relatively higher ROS contents. In summary, the results of the present study extend the existing knowledge on the relationship between bovine embryo quality and the signature of mitochondrial respiration by considering contrasting developmental environments as well as different embryo morphokinetics.
Collapse
Affiliation(s)
- Jessica Kurzella
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Dennis Miskel
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Franca Rings
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Ernst Tholen
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Dawit Tesfaye
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, 3105 Rampart Rd, Fort Collins, CO, 80521, USA
| | - Karl Schellander
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Dessie Salilew-Wondim
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
- Department of Animal Science, Biotechnology and Reproduction of Farm Animals, Georg-August-University Goettingen, Burckhardtweg 2, 37077, Göttingen, Germany
| | - Eva Held-Hoelker
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Christine Große-Brinkhaus
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Michael Hoelker
- Department of Animal Science, Biotechnology and Reproduction of Farm Animals, Georg-August-University Goettingen, Burckhardtweg 2, 37077, Göttingen, Germany.
| |
Collapse
|
19
|
Hu Y, Han F, Wang Y, Zhong Y, Zhan J, Liu J. Trimester-specific hemodynamics of per- and polyfluoroalkyl substances and its relation to lipid profile in pregnant women. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132339. [PMID: 37660622 DOI: 10.1016/j.jhazmat.2023.132339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants widely detected in blood from pregnant women, yet limited study evaluated the trimester-specific variance of serum PFAS, and even less is known for the window of vulnerability to lipids metabolism interrupting effects of PFAS during pregnancy. We quantified 16 legacy, 3 emerging PFAS, and lipid biomarkers in 286 serum samples from 118 pregnant women. All target PFAS, except perfluorotridecanoic acid (PFTrDA), in maternal serum showed moderate to low temporal irregular variability across gestation (average intraclass correlation coefficients ≥ 0.57), while the generalized estimating equations showed a significant declining trend in the serum levels during pregnancy (p for trend < 0.05). The decline of 6:2 chlorinated polyfluorinated ether sulfonate in maternal serum was the greatest with a change of - 21.63% from 1st to 2nd trimester, which indicated a possible higher accumulation of this emerging PFAS in fetal compartment. Multiple linear regression, multiple informant model and Bayesian kernel machine regression showed a higher vulnerability in the 1st trimester to effects of PFAS exposure on serum lipids of pregnant women. The results highlighted the importance of the study timing of PFAS exposure during pregnancy.
Collapse
Affiliation(s)
- Yao Hu
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Feng Han
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China; National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yuxin Wang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yuxin Zhong
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Jing Zhan
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Jiaying Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
20
|
Elías-López AL, Vázquez-Mena O, Sferruzzi-Perri AN. Mitochondrial dysfunction in the offspring of obese mothers and it's transmission through damaged oocyte mitochondria: Integration of mechanisms. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166802. [PMID: 37414229 DOI: 10.1016/j.bbadis.2023.166802] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/23/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
In vivo and in vitro studies demonstrate that mitochondria in the oocyte, are susceptible to damage by suboptimal pre/pregnancy conditions, such as obesity. These suboptimal conditions have been shown to induce mitochondrial dysfunction (MD) in multiple tissues of the offspring, suggesting that mitochondria of oocytes that pass from mother to offspring, can carry information that can programme mitochondrial and metabolic dysfunction of the next generation. They also suggest that transmission of MD could increase the risk of obesity and other metabolic diseases in the population inter- and trans-generationally. In this review, we examined whether MD observed in offspring tissues of high energetic demand, is the result of the transmission of damaged mitochondria from the oocytes of obese mothers to the offspring. The contribution of genome-independent mechanisms (namely mitophagy) in this transmission were also explored. Finally, potential interventions aimed at improving oocyte/embryo health were investigated, to see if they may provide an opportunity to halter the generational effects of MD.
Collapse
Affiliation(s)
- A L Elías-López
- Dirección de Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", México.
| | | | - A N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, UK.
| |
Collapse
|
21
|
Song X, Jiang H, Lv P, Cui K, Liu Q, Yin S, Liu H, Li Z. Transcriptome analyses reveal transcriptional profiles of horse oocytes before and after in vitro maturation. Reprod Domest Anim 2023; 58:1468-1479. [PMID: 37650336 DOI: 10.1111/rda.14462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023]
Abstract
Oocyte in vitro maturation is necessary for the study and application of animal-assisted reproduction technology in animal reproduction and breeding. The comprehensive transcriptional profile of equine oocyte maturated in vitro has not been fully mined yet, which makes many key transcriptional events still unidentified. Here, Smart-seq2 was performed to analyse the gene expression pattern and the underlying regulatory mechanism of horse germinal vesicle (GV) and in vitro metaphase II (MII) oocytes. The results showed that 6402 genes (2640 up-regulated and 3762 down-regulated in MII samples compared to GV) and 4021 lncRNA transcripts (1210 up-regulated and 2811 down-regulated in MII samples compared to GV) were differentially expressed in GV and MII oocytes. Further, GO and KEGG analysis found that differentially expressed mRNAs and lncRNAs were mainly enriched in the pathways related to energy and lipid metabolism. In addition, LGALS3 was found a key gene in mediating the regulation of oocyte meiosis recovery and fertilization ability. This study provides novel knowledge about gene expression and energy metabolism during equine oocyte maturation and a reference for the further study and application of assisted reproductive technology in horse reproduction and breeding.
Collapse
Affiliation(s)
- Xinhui Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hancai Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Peiru Lv
- Henan Chuangyuan Biotechnology Co. Ltd, Zhengzhou, China
| | - Kuiqing Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Shan Yin
- Henan Chuangyuan Biotechnology Co. Ltd, Zhengzhou, China
| | - Hongbo Liu
- Henan Chuangyuan Biotechnology Co. Ltd, Zhengzhou, China
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
22
|
Li T, Jin Y, Wu J, Ren Z. Beyond energy provider: multifunction of lipid droplets in embryonic development. Biol Res 2023; 56:38. [PMID: 37438836 DOI: 10.1186/s40659-023-00449-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/23/2023] [Indexed: 07/14/2023] Open
Abstract
Since the discovery, lipid droplets (LDs) have been recognized to be sites of cellular energy reserves, providing energy when necessary to sustain cellular life activities. Many studies have reported large numbers of LDs in eggs and early embryos from insects to mammals. The questions of how LDs are formed, what role they play, and what their significance is for embryonic development have been attracting the attention of researchers. Studies in recent years have revealed that in addition to providing energy for embryonic development, LDs in eggs and embryos also function to resist lipotoxicity, resist oxidative stress, inhibit bacterial infection, and provide lipid and membrane components for embryonic development. Removal of LDs from fertilized eggs or early embryos artificially leads to embryonic developmental arrest and defects. This paper reviews recent studies to explain the role and effect mechanisms of LDs in the embryonic development of several species and the genes involved in the regulation. The review contributes to understanding the embryonic development mechanism and provides new insight for the diagnosis and treatment of diseases related to embryonic developmental abnormalities.
Collapse
Affiliation(s)
- Tai Li
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China
| | - Yi Jin
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China
| | - Jian Wu
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
23
|
Berteli TS, Vireque AA, Borges ED, Da Luz CM, Navarro PA. Membrane lipid changes in mouse blastocysts induced by ovarian stimulation, IVF and oocyte vitrification. Reprod Biomed Online 2023; 46:887-902. [PMID: 37095039 DOI: 10.1016/j.rbmo.2023.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/27/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
RESEARCH QUESTION Is the membrane lipid profile of mice blastocysts affected by ovarian stimulation, IVF and oocyte vitrification? Could supplementation of vitrification media with L-carnitine and fatty acids prevent membrane phospholipid changes in blastocysts from vitrified oocytes? DESIGN Experimental study comparing the lipid profile of murine blastocysts produced from natural mating, superovulated cycles or after IVF submitted or not to vitrification. For in-vitro experiments, 562 oocytes from superovulated females were randomly divided into four groups: fresh oocytes fertilized in vitro and vitrified groups: Irvine Scientific (IRV); Tvitri-4 (T4) or T4 supplemented with L-carnitine and fatty acids (T4-LC/FA). Fresh or vitrified-warmed oocytes were inseminated and cultured for 96 h or 120 h. The lipid profile of nine of the best quality blastocysts from each experimental group was assessed by multiple reaction monitoring profiling method. Significantly different lipids or transitions between groups were found using univariate statistics (P < 0.05; fold change = 1.5) and multivariate statistical methods. RESULTS A total of 125 lipids in blastocysts were profiled. Statistical analysis revealed several classes of phospholipids affected in the blastocysts by ovarian stimulation, IVF, oocyte vitrification, or all. L-carnitine and fatty acid supplements prevented, to a certain extent, changes in phospholipid and sphingolipid contents in the blastocysts. CONCLUSION Ovarian stimulation alone, or in association with IVF, promoted changes in phospholipid profile and abundance of blastocysts. A short exposure time to the lipid-based solutions during oocyte vitrification was sufficient to induce changes in the lipid profile that were sustained until the blastocyst stage.
Collapse
Affiliation(s)
- Thalita S Berteli
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.; National Institute of Hormones and Women's Health, CNPq, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil..
| | - Alessandra A Vireque
- Invitra - Assisted Reproductive Technologies Ltd - Supera Innovation and Technology Park, Ribeirão Preto, São Paulo, Brazil
| | - Eduardo D Borges
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.; National Institute of Hormones and Women's Health, CNPq, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Caroline M Da Luz
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.; National Institute of Hormones and Women's Health, CNPq, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Paula A Navarro
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.; National Institute of Hormones and Women's Health, CNPq, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| |
Collapse
|
24
|
Calanni-Pileri M, Michaelis M, Langhammer M, Tognetti PR, Weitzel JM. The Imitation of the Ovarian Fatty Acid Profile of Superfertile Dummerstorf Mouse Lines during IVM of Control Line Oocytes Could Influence Their Maturation Rates. Biomedicines 2023; 11:biomedicines11051439. [PMID: 37239110 DOI: 10.3390/biomedicines11051439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Declining human fertility worldwide is an attractive research target for the search for "high fertility" genes and pathways to counteract this problem. To study these genes and pathways for high fertility, the superfertile Dummerstorf mouse lines FL1 and FL2 are two unique model organisms representing an improved fertility phenotype. A direct reason for this remarkable characteristic of increased litter size, which reaches >20 pups/litter in both FLs, is the raised ovulation rate by approximately 100%, representing an impressive record in this field. Dummerstorf high-fertility lines incarnate extraordinary and singular models of high-fertility for other species, mostly farm animals, with the aim of improving production and reducing costs. Our main goal is to describe the genetic and molecular pathways to reach their phenotypical excellence, and to reproduce them using the control population. The large litter size and ovulation rate in Dummerstorf lines are mostly due to an increase in the quality of their oocytes, which receive a different intake of fat and are composed of different types and concentrations of fatty acids. As the follicular microenvironment plays a fundamental role during the oocytes development, in the present manuscript, we tried to improve the in vitro maturation technique by mimicking the fatty acid profile of FLs oocytes during the IVM of control oocytes. Currently, the optimization of the IVM system is fundamental mostly for prepubertal girls and oncological patients whose main source of gametes to restore fertility may be their maturation in vitro. Our data suggest that the specific fatty acid composition of FLs COCs can contribute to their high-fertility phenotype. Indeed, COCs from the control line matured in IVM-medium supplemented with C14:0 (high in FL2 COCs) or with C20:0, C21:0, C22:0, and C23:0 (high in FL1 COCs), but also control oocytes without cumulus, whose concentration in long-chain FAs are "naturally" higher, showing a slightly higher maturation rate. These findings represent an important starting point for the optimization of the IVM system using FA supplementation.
Collapse
Affiliation(s)
- Michela Calanni-Pileri
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Marten Michaelis
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Martina Langhammer
- Service Group Lab Animal Facility, Institute of Genetics and Biometry, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Paolo Rosellini Tognetti
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
- Service Group Lab Animal Facility, Institute of Genetics and Biometry, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Joachim M Weitzel
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| |
Collapse
|
25
|
Lipinska P, Pawlak P, Warzych E. Species and embryo genome origin affect lipid droplets in preimplantation embryos. Front Cell Dev Biol 2023; 11:1187832. [PMID: 37250899 PMCID: PMC10217358 DOI: 10.3389/fcell.2023.1187832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Mammalian embryo development is affected by multiple metabolism processes, among which energy metabolism seems to be crucial. Therefore the ability and the scale of lipids storage in different preimplantation stages might affect embryos quality. The aim of the present studies was to show a complex characterization of lipid droplets (LD) during subsequent embryo developmental stages. It was performed on two species (bovine and porcine) as well as on embryos with different embryo origin [after in vitro fertilization (IVF) and after parthenogenetic activation (PA)]. Embryos after IVF/PA were collected at precise time points of development at the following stages: zygote, 2-cell, 4-cell, 8/16-cell, morula, early blastocyst, expanded blastocyst. LD were stained with BODIPY 493/503 dye, embryos were visualized under a confocal microscope and images were analyzed with the ImageJ Fiji software. The following parameters were analyzed: lipid content, LD number, LD size and LD area within the total embryo. The most important results show that lipid parameters in the IVF vs. PA bovine embryos differ at the most crucial moments of embryonic development (zygote, 8-16-cell, blastocyst), indicating possible dysregulations of lipid metabolism in PA embryos. When bovine vs. porcine species are compared, we observe higher lipid content around EGA stage and lower lipid content at the blastocyst stage for bovine embryos, which indicates different demand for energy depending on the species. We conclude that lipid droplets parameters significantly differ among developmental stages and between species but also can be affected by the genome origin.
Collapse
|
26
|
Jia H, Yue S. Stimulated Raman Scattering Imaging Sheds New Light on Lipid Droplet Biology. J Phys Chem B 2023; 127:2381-2394. [PMID: 36897936 PMCID: PMC10042165 DOI: 10.1021/acs.jpcb.3c00038] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/05/2023] [Indexed: 03/11/2023]
Abstract
A lipid droplet (LD) is a dynamic organelle closely associated with cellular functions and energy homeostasis. Dysregulated LD biology underlies an increasing number of human diseases, including metabolic disease, cancer, and neurodegenerative disorder. Commonly used lipid staining and analytical tools have difficulty providing the information regarding LD distribution and composition at the same time. To address this problem, stimulated Raman scattering (SRS) microscopy uses the intrinsic chemical contrast of biomolecules to achieve both direct visualization of LD dynamics and quantitative analysis of LD composition with high molecular selectivity at the subcellular level. Recent developments of Raman tags have further enhanced sensitivity and specificity of SRS imaging without perturbing molecular activity. With these advantages, SRS microscopy has offered great promise for deciphering LD metabolism in single live cells. This article overviews and discusses the latest applications of SRS microscopy as an emerging platform to dissect LD biology in health and disease.
Collapse
Affiliation(s)
- Hao Jia
- Key Laboratory of Biomechanics and
Mechanobiology (Beihang University), Ministry of Education, Institute
of Medical Photonics, Beijing Advanced Innovation Center for Biomedical
Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Shuhua Yue
- Key Laboratory of Biomechanics and
Mechanobiology (Beihang University), Ministry of Education, Institute
of Medical Photonics, Beijing Advanced Innovation Center for Biomedical
Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
27
|
Saadeldin IM, Tanga BM, Bang S, Seo C, Maigoro AY, Kang H, Cha D, Yun SH, Kim SI, Lee S, Cho J. Isolation, characterization, proteome, miRNAome, and the embryotrophic effects of chicken egg yolk nanovesicles (vitellovesicles). Sci Rep 2023; 13:4204. [PMID: 36918605 PMCID: PMC10014936 DOI: 10.1038/s41598-023-31012-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
Egg yolk constitutes about a third of the structure of the chicken egg however, the molecular structure and physiological effects of egg yolk-derived lipid membranous vesicles are not clearly understood. In this study, for the first record, the egg yolk nanovesicles (vitellovesicles, VVs) were isolated, characterized, and used as a supplement for porcine embryo culture. Yolks of ten freshly oviposited eggs were filtered and ultracentrifuged at 100,000 × g for 3 h to obtain a pellet. Cryogenic transmission electron microscopy and nanoparticle tracking analysis of the pellet revealed bilipid membranous vesicles. Protein contents of the pellet were analyzed using tandem mass spectrometry and the miRNA content was also profiled through BGISEQ-500 sequencer. VVs were supplemented with the in vitro culture medium of day-7 hatched parthenogenetic blastocysts. After 2 days of blastocyst culture, the embryonic cell count was increased in VVs supplemented embryos in comparison to the non-supplemented embryos. TUNEL assay showed that apoptotic cells were increased in control groups when compared with the VVs supplemented group. Reduced glutathione was increased by 2.5 folds in the VVs supplemented group while reactive oxygen species were increased by 5.3 folds in control groups. Quantitative PCR analysis showed that VVs significantly increased the expression of lipid metabolism-associated genes (monoglyceride lipase and lipase E), anti-apoptotic gene (BCL2), and superoxide dismutase, while significantly reducing apoptotic gene (BAX). Culturing embryos on Matrigel basement membrane matrix indicated that VVs significantly enhanced embryo attachment and embryonic stem cell outgrowths compared to the non-supplemented group. This considers the first report to characterize the molecular bioactive cargo contents of egg yolk nanovesicles to show their embryotrophic effect on mammalian embryos. This effect might be attributed to the protein and miRNA cargo contents of VVs. VVs can be used for the formulation of in vitro culture medium for mammalian embryos including humans.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-Ro, Daejeon, 34134, Republic of Korea.
- Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Bereket Molla Tanga
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-Ro, Daejeon, 34134, Republic of Korea
| | - Seonggyu Bang
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-Ro, Daejeon, 34134, Republic of Korea
| | - Chaerim Seo
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-Ro, Daejeon, 34134, Republic of Korea
| | - Abdulkadir Y Maigoro
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Heejae Kang
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-Ro, Daejeon, 34134, Republic of Korea
| | - Dabin Cha
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-Ro, Daejeon, 34134, Republic of Korea
| | - Sung Ho Yun
- Korea Basic Science Institute (KBSI), Ochang, 28119, Republic of Korea
| | - Seung Il Kim
- Korea Basic Science Institute (KBSI), Ochang, 28119, Republic of Korea
| | - Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-Ro, Daejeon, 34134, Republic of Korea
| | - Jongki Cho
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-Ro, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
28
|
Ibayashi M, Aizawa R, Mitsui J, Tsukamoto S. Lipid droplet synthesis is associated with angiogenesis in mouse ovarian follicles†. Biol Reprod 2023; 108:492-503. [PMID: 36579469 DOI: 10.1093/biolre/ioac223] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/21/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022] Open
Abstract
Lipid droplets (LDs) are endoplasmic reticulum (ER)-derived organelles comprising a core of neutral lipids surrounded by a phospholipid monolayer. Lipid droplets play important roles in lipid metabolism and energy homeostasis. Mammalian ovaries have been hypothesized to use neutral lipids stored in LDs to produce the hormones and nutrients necessary for rapid follicular development; however, our understanding of LD synthesis remains incomplete. In this study, we generated transgenic reporter mice that express mCherry fused to HPos, a minimal peptide that localizes specifically to nascent LDs synthesized at the ER. With this tool for visualizing initial LD synthesis in ovaries, we found that LDs are synthesized continuously in theca cells but rarely in inner granulosa cells (Gc) during early follicular development. Administration of exogenous gonadotropin enhances LD synthesis in the Gc, suggesting that LD synthesis is hormonally regulated. In contrast, we observed copious LD synthesis in the corpus luteum, and excessive LDs accumulation in atretic follicles. Furthermore, we demonstrated that LD synthesis is synchronized with angiogenesis around the follicle and that suppressing angiogenesis caused defective LD biosynthesis in developing follicles. Overall, our study is the first to demonstrate a spatiotemporally regulated interplay between LD synthesis and neovascularization during mammalian follicular development.
Collapse
Affiliation(s)
- Megumi Ibayashi
- Laboratory Animal and Genome Sciences Section, National Institutes for Quantum Science and Technology, Anagawa, Chiba, Japan
| | - Ryutaro Aizawa
- Laboratory Animal and Genome Sciences Section, National Institutes for Quantum Science and Technology, Anagawa, Chiba, Japan
| | - Junichiro Mitsui
- Laboratory Animal and Genome Sciences Section, National Institutes for Quantum Science and Technology, Anagawa, Chiba, Japan
- Department of Comprehensive Reproductive Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoshi Tsukamoto
- Laboratory Animal and Genome Sciences Section, National Institutes for Quantum Science and Technology, Anagawa, Chiba, Japan
| |
Collapse
|
29
|
Satouh Y, Sato K. Reorganization, specialization, and degradation of oocyte maternal components for early development. Reprod Med Biol 2023; 22:e12505. [PMID: 36726596 PMCID: PMC9884333 DOI: 10.1002/rmb2.12505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/30/2023] Open
Abstract
Background Oocyte components are maternally provided, solely determine oocyte quality, and coordinately determine embryo quality with zygotic gene expression. During oocyte maturation, maternal organelles are drastically reorganized and specialized to support oocyte characteristics. A large number of maternal components are actively degraded after fertilization and gradually replaced by zygotic gene products. The molecular basis and the significance of these processes on oocyte/embryo quality are not fully understood. Methods Firstly, recent findings in organelle characteristics of other cells or oocytes from model organisms are introduced for further understanding of oocyte organelle reorganization/specialization. Secondly, recent progress in studies on maternal components degradation and their molecular mechanisms are introduced. Finally, future applications of these advancements for predicting mammalian oocyte/embryo quality are discussed. Main findings The significance of cellular surface protein degradation via endocytosis for embryonic development, and involvement of biogenesis of lipid droplets in embryonic quality, were recently reported using mammalian model organisms. Conclusion Identifying key oocyte component characteristics and understanding their dynamics may lead to new applications in oocyte/embryo quality prediction and improvement. To implement these multidimensional concepts, development of new technical approaches that allow us to address the complexity and efficient studies using model organisms are required.
Collapse
Affiliation(s)
- Yuhkoh Satouh
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular RegulationGunma UniversityMaebashiJapan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular RegulationGunma UniversityMaebashiJapan
| |
Collapse
|
30
|
Wu Y, Chen K, Li L, Hao Z, Wang T, Liu Y, Xing G, Liu Z, Li H, Yuan H, Lu J, Zhang C, Zhang J, Zhao D, Wang J, Nie J, Ye D, Pan G, Chan WY, Liu X. Plin2-mediated lipid droplet mobilization accelerates exit from pluripotency by lipidomic remodeling and histone acetylation. Cell Death Differ 2022; 29:2316-2331. [PMID: 35614132 PMCID: PMC9613632 DOI: 10.1038/s41418-022-01018-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 12/29/2022] Open
Abstract
Metabolic switch is critical for cell fate determination through metabolic functions, epigenetic modifications, and gene expression. However, the mechanisms underlying these alterations and their functional roles remain unclear. Here, we show that Plin2-mediated moderate lipid hydrolysis is critical for pluripotency of embryonic stem cells (ESCs). Upon exit from pluripotency, lipid droplet (LD)-associated protein Plin2 is recognized by Hsc70 and degraded via chaperone-mediated autophagy to facilitate LD mobilization. Enhancing lipid hydrolysis by Plin2 knockout promotes pluripotency exit, which is recovered by ATGL inhibition. Mechanistically, excessive lipid hydrolysis induces a dramatic lipidomic remodeling characterized by decreased cardiolipin and phosphatidylethanolamine, which triggers defects in mitochondrial cristae and fatty acid oxidation, resulting in reduced acetyl-CoA and histone acetylation. Our results reveal how LD mobilization is regulated and its critical role in ESC pluripotency, and indicate the mechanism linking LD homeostasis to mitochondrial remodeling and epigenetic regulation, which might shed light on development and diseases.
Collapse
Affiliation(s)
- Yi Wu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Keshi Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Linpeng Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Zhihong Hao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianyu Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yang Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangsuo Xing
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Zichao Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Heying Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Hao Yuan
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jianghuan Lu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | | | | | - Danyun Zhao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Junwei Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jinfu Nie
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Dan Ye
- Fudan University, Shanghai, 200433, China
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Wai-Yee Chan
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
| |
Collapse
|
31
|
Hussein AM, Balachandar N, Mathieu J, Ruohola-Baker H. Molecular Regulators of Embryonic Diapause and Cancer Diapause-like State. Cells 2022; 11:cells11192929. [PMID: 36230891 PMCID: PMC9562880 DOI: 10.3390/cells11192929] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Embryonic diapause is an enigmatic state of dormancy that interrupts the normally tight connection between developmental stages and time. This reproductive strategy and state of suspended development occurs in mice, bears, roe deer, and over 130 other mammals and favors the survival of newborns. Diapause arrests the embryo at the blastocyst stage, delaying the post-implantation development of the embryo. This months-long quiescence is reversible, in contrast to senescence that occurs in aging stem cells. Recent studies have revealed critical regulators of diapause. These findings are important since defects in the diapause state can cause a lack of regeneration and control of normal growth. Controlling this state may also have therapeutic applications since recent findings suggest that radiation and chemotherapy may lead some cancer cells to a protective diapause-like, reversible state. Interestingly, recent studies have shown the metabolic regulation of epigenetic modifications and the role of microRNAs in embryonic diapause. In this review, we discuss the molecular mechanism of diapause induction.
Collapse
Affiliation(s)
- Abdiasis M. Hussein
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Nanditaa Balachandar
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai 603203, India
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Department of Comparative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Correspondence:
| |
Collapse
|
32
|
Sun JT, Yuan JD, Zhang Q, Luo X, Qi XY, Liu JH, Jiang XQ, Lee S, Taweechaipaisankul A, Liu ZH, Jin JX. Ramelteon Reduces Oxidative Stress by Maintenance of Lipid Homeostasis in Porcine Oocytes. Antioxidants (Basel) 2022; 11:antiox11091640. [PMID: 36139716 PMCID: PMC9495855 DOI: 10.3390/antiox11091640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to determine the underlying mechanism of ramelteon on the competence of oocyte and subsequent embryo development in pigs during in vitro maturation (IVM). Our results showed that the cumulus expansion index was significantly lower in the control group compared to the ramelteon groups (p < 0.05). Moreover, supplementation of 10−11 and 10−9 M ramelteon significantly increased the cumulus expansion and development-related genes expression, and reduced apoptosis in cumulus cells (p < 0.05). In oocytes, the nuclear maturation rate was significantly improved in 10−11, 10−9, and 10−7 M ramelteon groups compared to the control (p < 0.05). Additionally, the level of intracellular GSH was significantly increased and ROS was significantly decreased in ramelteon-supplemented groups, and the gene expression of oocyte development and apoptosis were significantly up- and down-regulated by 10−11 and 10−9 M ramelteon (p < 0.05), respectively. The immunofluorescence results showed that the protein levels of GDF9, BMP15, SOD1, CDK1, and PGC1α were significantly increased by 10−11 M ramelteon compared to the control (p < 0.05). Although there was no significant difference in cleavage rate, the blastocyst formation rate, total cell numbers, and hatching/-ed rate were significantly improved in 10−11 M ramelteon group compared to the control (p < 0.05). Furthermore, embryo development, hatching, and mitochondrial biogenesis-related genes were dramatically up-regulated by 10−11 M ramelteon (p < 0.05). In addition, the activities of lipogenesis and lipolysis in oocytes were dramatically increased by 10−11 M ramelteon compared to the control (p < 0.05). In conclusion, supplementation of 10−11 M ramelteon during IVM improved the oocyte maturation and subsequent embryo development by reducing oxidative stress and maintenance of lipid homeostasis.
Collapse
Affiliation(s)
- Jing-Tao Sun
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jin-Dong Yuan
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Qi Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xin Luo
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xin-Yue Qi
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jia-Hui Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xi-Qing Jiang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Anukul Taweechaipaisankul
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Zhong-Hua Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (Z.-H.L.); (J.-X.J.)
| | - Jun-Xue Jin
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (Z.-H.L.); (J.-X.J.)
| |
Collapse
|
33
|
Malott KF, Leon Parada K, Lee M, Swanson E, Luderer U. Gestational Benzo[a]pyrene Exposure Destroys F1 Ovarian Germ Cells Through Mitochondrial Apoptosis Pathway and Diminishes Surviving Oocyte Quality. Toxicol Sci 2022; 190:23-40. [PMID: 35993611 PMCID: PMC9960072 DOI: 10.1093/toxsci/kfac086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Polycyclic aromatic hydrocarbons, including benzo[a]pyrene (BaP), are products of incomplete combustion. In female mouse embryos primordial germ cells proliferate before and after arriving at the gonadal ridge around embryonic (E) 10 and begin entering meiosis at E13.5. Now oocytes, they arrest in the first meiotic prophase beginning at E17.5. We previously reported dose-dependent depletion of ovarian follicles in female mice exposed to 2 or 10 mg/kg-day BaP E6.5-15.5. We hypothesized that embryonic ovaries are more sensitive to gestational BaP exposure during the mitotic developmental window, and that this exposure results in persistent oxidative stress in ovaries and oocytes of exposed F1 female offspring. We orally dosed timed-pregnant female mice with 0 or 2 mg/kg-day BaP in oil from E6.5-11.5 (mitotic window) or E12.5-17.5 (meiotic window). Cultured E13.5 ovaries were utilized to investigate the mechanism of BaP-induced germ cell death. We observed statistically significant follicle depletion and increased ovarian lipid peroxidation in F1 pubertal ovaries following BaP exposure during either prenatal window. Culture of E13.5 ovaries with BaP induced germ cell DNA damage and release of cytochrome c from the mitochondria in oocytes, confirming that BaP exposure induced apoptosis via the mitochondrial pathway. Mitochondrial membrane potential, oocyte lipid droplet (LD) volume, and mitochondrial-LD colocalization were decreased and mitochondrial superoxide levels were increased in the MII oocytes of F1 females exposed gestationally to BaP. Results demonstrate similar sensitivity to germ cell depletion and persistent oxidative stress in F1 ovaries and oocytes following gestational BaP exposure during mitotic or meiotic windows.
Collapse
Affiliation(s)
- Kelli F Malott
- Environmental Health Sciences Graduate Program, University of California, Irvine, Irvine, California 92617, USA,Department of Environmental and Occupational Health, University of California, Irvine, Irvine, California 92617, USA
| | - Kathleen Leon Parada
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92617, USA
| | - Melody Lee
- Department of Medicine, University of California, Irvine, Irvine, California 92617, USA
| | - Edward Swanson
- Department of Medicine, University of California, Irvine, Irvine, California 92617, USA
| | - Ulrike Luderer
- To whom correspondence should be addressed at Center for Occupational and Environmental Health, 100 Theory Drive, Suite 100, Irvine, CA 92617, USA. E-mail:
| |
Collapse
|
34
|
The effect of discrete wavelengths of visible light on the developing murine embryo. J Assist Reprod Genet 2022; 39:1825-1837. [PMID: 35737174 PMCID: PMC9428105 DOI: 10.1007/s10815-022-02555-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 06/15/2022] [Indexed: 01/19/2023] Open
Abstract
PURPOSE A current focus of the IVF field is non-invasive imaging of the embryo to quantify developmental potential. Such approaches use varying wavelengths to gain maximum biological information. The impact of irradiating the developing embryo with discrete wavelengths of light is not fully understood. Here, we assess the impact of a range of wavelengths on the developing embryo. METHODS Murine preimplantation embryos were exposed daily to wavelengths within the blue, green, yellow, and red spectral bands and compared to an unexposed control group. Development to blastocyst, DNA damage, and cell number/allocation to blastocyst cell lineages were assessed. For the longer wavelengths (yellow and red), pregnancy/fetal outcomes and the abundance of intracellular lipid were investigated. RESULTS Significantly fewer embryos developed to the blastocyst stage when exposed to the yellow wavelength. Elevated DNA damage was observed within embryos exposed to blue, green, or red wavelengths. There was no effect on blastocyst cell number/lineage allocation for all wavelengths except red, where there was a significant decrease in total cell number. Pregnancy rate was significantly reduced when embryos were irradiated with the red wavelength. Weight at weaning was significantly higher when embryos were exposed to yellow or red wavelengths. Lipid abundance was significantly elevated following exposure to the yellow wavelength. CONCLUSION Our results demonstrate that the impact of light is wavelength-specific, with longer wavelengths also impacting the embryo. We also show that effects are energy-dependent. This data shows that damage is multifaceted and developmental rate alone may not fully reflect the impact of light exposure.
Collapse
|
35
|
Mau KHT, Karimlou D, Barneda D, Brochard V, Royer C, Leeke B, de Souza RA, Pailles M, Percharde M, Srinivas S, Jouneau A, Christian M, Azuara V. Dynamic enlargement and mobilization of lipid droplets in pluripotent cells coordinate morphogenesis during mouse peri-implantation development. Nat Commun 2022; 13:3861. [PMID: 35790717 PMCID: PMC9256688 DOI: 10.1038/s41467-022-31323-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/09/2022] [Indexed: 11/08/2022] Open
Abstract
Mammalian pre-implantation embryos accumulate substantial lipids, which are stored in lipid droplets (LDs). Despite the fundamental roles of lipids in many cellular functions, the significance of building-up LDs for the developing embryo remains unclear. Here we report that the accumulation and mobilization of LDs upon implantation are causal in the morphogenesis of the pluripotent epiblast and generation of the pro-amniotic cavity in mouse embryos, a critical step for all subsequent development. We show that the CIDEA protein, found abundantly in adipocytes, enhances lipid storage in blastocysts and pluripotent stem cells by promoting LD enlargement through fusion. The LD-stored lipids are mobilized into lysosomes at the onset of lumenogenesis, but without CIDEA are prematurely degraded by cytosolic lipases. Loss of lipid storage or inactivation of lipophagy leads to the aberrant formation of multiple cavities within disorganised epithelial structures. Thus, our study reveals an unexpected role for LDs in orchestrating tissue remodelling and uncovers underappreciated facets of lipid metabolism in peri-implantation development.
Collapse
Affiliation(s)
- King Hang Tommy Mau
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- Physiology and Metabolism Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Donja Karimlou
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - David Barneda
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- Signalling Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Vincent Brochard
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, 78350, France
- École Nationale Vétérinaire d'Alfort, BREED, Maison-Alfort, 94700, France
| | - Christophe Royer
- Institute of Developmental & Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Old Road Campus, Oxford, OX3 7TY, UK
| | - Bryony Leeke
- MRC London Institute of Medical Sciences (LMS), Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Roshni A de Souza
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Mélanie Pailles
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, 78350, France
- École Nationale Vétérinaire d'Alfort, BREED, Maison-Alfort, 94700, France
| | - Michelle Percharde
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- MRC London Institute of Medical Sciences (LMS), Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Shankar Srinivas
- Institute of Developmental & Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Old Road Campus, Oxford, OX3 7TY, UK
| | - Alice Jouneau
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, 78350, France
- École Nationale Vétérinaire d'Alfort, BREED, Maison-Alfort, 94700, France
| | - Mark Christian
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Véronique Azuara
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
36
|
Malott KF, Reshel S, Ortiz L, Luderer U. Glutathione deficiency decreases lipid droplet stores and increases reactive oxygen species in mouse oocytes†. Biol Reprod 2022; 106:1218-1231. [PMID: 35238901 PMCID: PMC9198951 DOI: 10.1093/biolre/ioac032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/06/2022] [Accepted: 02/01/2022] [Indexed: 12/30/2022] Open
Abstract
Glutathione (GSH) is a tripeptide thiol antioxidant that has been shown to be important to overall reproductive health. Glutamate cysteine ligase, the rate-limiting enzyme in GSH synthesis consists of a catalytic and a modifier (GCLM) subunit. We previously showed that oxidative stress in the ovary and oocytes of Gclm-/- mice is associated with accelerated age-related decline in ovarian follicles and decreased female fertility due to preimplantation embryonic mortality. Mammalian preimplantation development is a highly regulated and energy-intensive process that primarily relies on coordination between lipid droplets (LDs) and mitochondria to maintain cellular homeostasis. In this study, we hypothesized that GSH deficiency in oocytes increases oxidative stress, leading to increased mitochondrial dysfunction and decreased LD consumption, thereby decreasing oocyte developmental competence. We observed that Gclm-/- oocytes have increased oxidative stress, primarily in the form of mitochondrial superoxide and decreased subcortical mitochondrial clusters. Further, Gclm-/- oocytes have decreased mitochondrial membrane potential (ΔΨm) compared with Gclm+/+. We surmise this is likely due to the decreased availability of LDs, as we observed a significant decrease in LD content in Gclm-/- oocytes compared with Gclm+/+. The decreased oocyte LD content is likely related to an altered serum lipidome, with Gclm-/- serum having relatively lower unsaturated fatty acids and triglycerides than that of Gclm+/+ and Gclm+/- females. Altogether these data support that decreased LDs and increased oxidative stress are primary drivers of decreased oocyte developmental competence in GSH-deficient oocytes.
Collapse
Affiliation(s)
- Kelli F Malott
- Environmental Health Sciences Graduate Program, University of California, Irvine, CA, USA
- Department of Environmental and Occupational Health, University of California, Irvine, CA, USA
- Department of Medicine, University of California, Irvine, CA, USA
| | - Samantha Reshel
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Laura Ortiz
- Department of Medicine, University of California, Irvine, CA, USA
| | - Ulrike Luderer
- Environmental Health Sciences Graduate Program, University of California, Irvine, CA, USA
- Department of Environmental and Occupational Health, University of California, Irvine, CA, USA
- Department of Medicine, University of California, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| |
Collapse
|
37
|
Sequential IVM by CNP preincubation and cooperating of PGE2 with AREG enhances developmental competence of SCNT reconstructs in goat. Sci Rep 2022; 12:4243. [PMID: 35273320 PMCID: PMC8913792 DOI: 10.1038/s41598-022-08238-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/04/2022] [Indexed: 12/03/2022] Open
Abstract
Developmental competence of in vitro matured cumulus oocyte complexes (COCs) in conventional IVM (C.IVM) is lower than in vivo maturated COCs and is related to unsynchronized nuclear and cytoplasmic maturation. To overcome this dearth, COCs can be exposed to granulosa secreted factors in a two-step system. Therefore, in the first experiment, 1000 nM of C-type natriuretic peptide for 8 h was determined (CAPA), as the best time and concentration to retain oocytes in germinal vesicle stage. This condition, also reduces lipid droplets and increases the expression of ATGL and PLIN2 involved in lipolysis and lipogenesis, respectively. In the second experiment, maturation was stimulated with prostaglandin E2 and amphiregulin for 18 h (CAPA-IVM), and their optimal concentrations based on blastocyst formation rates through in vitro fertilization (IVF) were determined as 1 and 600 nM, respectively. In the third experiment, the in vitro and in vivo developmental competency of SCNT embryos in CAPA-IVM group were determined. Despite similar blastocyst formation rates in IVF and SCNT between CAPA-IVM and C.IVM, the quality of blastocysts were quality was higher in CAPA-IVM, which reflected itself, as higher ICM/TE ratio and also expression of NANOG in SCNT blastocysts. Pregnancy rate, live births rate and SCNT efficiency were not significant between CAPA-IVM and C.IVM groups. Therefore, CAPA-IVM can improve the developmental competency of SCNT derived embryos.
Collapse
|
38
|
Dubińska-Magiera M, Lewandowski D, Cysewski D, Pawlak S, Najbar B, Daczewska M. Lipid droplets in skeletal muscle during grass snake (Natrix natrix L.) development. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159086. [PMID: 34822977 DOI: 10.1016/j.bbalip.2021.159086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/19/2021] [Accepted: 11/15/2021] [Indexed: 11/21/2022]
Abstract
Lipid droplets (LDs) are common organelles observed in Eucaryota. They are multifunctional organelles (involved in lipid storage, metabolism, and trafficking) that originate from endoplasmic reticulum (ER). LDs consist of a neutral lipid core, made up of diacyl- and triacylglycerols (DAGs and TAGs) and cholesterol esters (CEs), surrounded by a phospholipid monolayer and proteins, which are necessary for their structure and dynamics. Here, we report the protein and lipid composition as well as characterization and dynamics of grass snake (Natrix natrix) skeletal muscle LDs at different developmental stages. In the present study, we used detailed morphometric, LC-MS, quantitative lipidomic analyses of LDs isolated from the skeletal muscles of the snake embryos, immunofluorescence, and TEM. Our study also provides a valuable insight concerning the LDs' multifunctionality and ability to interact with a variety of organelles. These LD features are reflected in their proteome composition, which contains scaffold proteins, metabolic enzymes signalling polypeptides, proteins necessary for the formation of docking sites, and many others. We also provide insights into the biogenesis and growth of muscle LDs goes beyond the conventional mechanism based on the synthesis and incorporation of TAGs and LD fusion. We assume that the formation and functioning of grass snake muscle LDs are based on additional mechanisms that have not yet been identified, which could be related to the unique features of reptiles that are manifested in the after-hatching period of life, such as a reptile-specific strategy for energy saving during hibernation.
Collapse
Affiliation(s)
- Magda Dubińska-Magiera
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland
| | - Damian Lewandowski
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland.
| | - Dominik Cysewski
- Mass Spectrometry Laboratory, IBB PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Seweryn Pawlak
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland
| | - Bartłomiej Najbar
- Faculty of Biological Sciences, University of Zielona Góra, Szafrana 1, 65-516 Zielona Góra 1, Poland
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland
| |
Collapse
|
39
|
Fryc K, Nowak A, Kij-Mitka B, Kochan J, Murawski M, Pena S, Bartlewski PM. Relationships of morphological and phototextural attributes of presumptive ovine zygotes and early embryos to their developmental competence in vitro: a preliminary assessment using time-lapse imaging. Anim Reprod 2022; 19:e20220009. [PMID: 35432605 PMCID: PMC9007056 DOI: 10.1590/1984-3143-ar2022-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
The assessment of morphology and digital image opacity may provide valuable information on the present embryo quality. Time-lapse imaging has been employed in research to establish a means of monitoring the dynamic nature of preimplantation embryo development. The aim of present study was to use time-lapse imaging for assessing various prospective morphometric and phototextural markers of the developmental potential of in vitro-derived ovine embryos. Oocytes were obtained by scarification of ovaries from nine Polish Longwool ewes. After in vitro maturation (IVM) and fertilization (IVF) of oocytes with fresh ram semen, the development of embryos to the blastocyst stage was monitored and evaluated using Primo Vision time-lapse imaging technology. Commercially available Image-Pro® Plus software was used to measure zona pellucida thickness, embryo diameter, total area of the perivitelline space, cellular grey-scale pixel intensity and cellular pixel heterogeneity. Statistical assessment of all attributes was done at various time points during embryo development (i.e., presumptive zygote stage: t(0); first cleavage detected at t(2) or t(3); and second cleavage detected at t(4) or t(6)). Out of thirty-seven zygotes analyzed in this study, five did not divide, 26 arrested before and six developed to the blastocyst stage. Our present results indicate that most parameters analyzed did not differ among embryos varying in their developmental fate except for the perivitelline space area that was greater (P<0.05) for non-dividing zygotes than future blastocysts at the presumptive zygote stage (4040±1850 vs. 857±262 µm2, respectively; means±SEM). Consequently, the measurement of perivitelline space at t(0) can potentially be used to prognosticate developmental potential of in vitro-produced ovine embryos albeit further confirmational studies are needed.
Collapse
|
40
|
Ye Q, Zeng X, Cai S, Qiao S, Zeng X. Mechanisms of lipid metabolism in uterine receptivity and embryo development. Trends Endocrinol Metab 2021; 32:1015-1030. [PMID: 34625374 DOI: 10.1016/j.tem.2021.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/19/2021] [Accepted: 09/06/2021] [Indexed: 02/05/2023]
Abstract
Metabolic regulation plays important roles in embryo development and uterine receptivity during early pregnancy, ultimately influencing pregnancy efficiency in mammals. The important roles of lipid metabolism during early pregnancy have not been fully understood. Here, we described the regulatory roles of phospholipid, sphingolipid, and cholesterol metabolism on early embryo development, implantation, and uterine receptivity through production of cannabinoids, prostaglandins, lysophosphatidic acid, sphingosine-1-phosphate, and steroid hormones. Moreover, the impacts of lipids and fatty acids on embryo development potential and the related epigenetic modifications are also discussed. This review aims to elucidate the modulations of lipid metabolism on uterine receptivity and embryo development, contributing to novel strategies to establish dietary balanced lipids and fatty acids for reducing early embryo loss.
Collapse
Affiliation(s)
- Qianhong Ye
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, P. R. China; Beijing Key Laboratory of Biofeed Additives, Beijing 100193, P. R. China
| | - Xiangzhou Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, P. R. China; Beijing Key Laboratory of Biofeed Additives, Beijing 100193, P. R. China
| | - Shuang Cai
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, P. R. China; Beijing Key Laboratory of Biofeed Additives, Beijing 100193, P. R. China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, P. R. China; Beijing Key Laboratory of Biofeed Additives, Beijing 100193, P. R. China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, P. R. China; Beijing Key Laboratory of Biofeed Additives, Beijing 100193, P. R. China.
| |
Collapse
|
41
|
Zeng X, Lyu L, Zhao D, Zhong J, Feng Y, Wan H, Li C, Zhang Z, Wang Y. dLp/HDL-BGBP and MTP Cloning and Expression Profiles During Embryonic Development in the Mud Crab Scylla paramamosain. Front Physiol 2021; 12:717751. [PMID: 34489734 PMCID: PMC8416765 DOI: 10.3389/fphys.2021.717751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/22/2021] [Indexed: 11/21/2022] Open
Abstract
Lipids are the main energy source for embryonic development in oviparous animals. Prior to the utilization and catabolism, lipids are primarily transported from the yolk sac to embryonic tissues. In the present study, cDNA encoding a circulatory large lipid transfer protein (LLTP) superfamily member, the precursor of large discoidal lipoprotein (dLp) and high-density lipoprotein/β-1,3-glucan-binding protein (HDL-BGBP), named dLp/HDL-BGBP of 14,787 bp in length, was cloned from the mud crab Scylla paramamosain. dLp/HDL-BGBP was predicted to encode a 4,831 amino acids (aa) protein that was the precursor of dLp and HDL-BGBP, which were both detected in hemolymph by liquid chromatography-mass spectrometry (LC-MS/MS) analysis. For the intracellular LLTP, three microsomal triglyceride transfer protein (MTP) cDNAs of 2,905, 2,897, and 3,088 bp in length were cloned from the mud crab and were predicted to encode MTP-A of 881 aa, MTP-B of 889 aa, and MTP-C of 919 aa, respectively, which were different merely in the N-terminal region and shared an identical sequence of 866 aa. During embryonic development, the expression level of dLp/HDL-BGBP consecutively increased from the early appendage formation stage to the eye pigment-formation stage, which indicated that HDL-BGBP is probably the scaffolding protein for yolk lipid. For the MTP gene, MTP-C accounted for ~70% of MTP mRNA from the blastocyst stage to the nauplius stage, as well as the pre-hatching stage; MTP-C and MTP-A expression levels were comparable from the early appendage formation stage to the late eye pigment-formation stage; MTP-A was extremely low in blastocyst and gastrula stages; MTP-B was expressed at a relatively low-level throughout embryo development. The variations in the expression profiles among MTP transcripts suggested that MTP might play roles in the lipid droplet maturation and lipoprotein assembly during embryonic development.
Collapse
Affiliation(s)
- Xianyuan Zeng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
- School of Life Sciences, Ningde Normal University, Ningde, China
| | - Liang Lyu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| | - Dousha Zhao
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| | - Jinying Zhong
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| | - Yan Feng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| | - Haifu Wan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| | - Chunyang Li
- Department of Student Affairs, Ningde Normal University, Ningde, China
| | - Ziping Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| |
Collapse
|
42
|
Ibayashi M, Aizawa R, Tsukamoto S. mRNA decapping factor Dcp1a is essential for embryonic growth in mice. Biochem Biophys Res Commun 2021; 555:128-133. [PMID: 33813271 DOI: 10.1016/j.bbrc.2021.03.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
mRNA decapping is a critical step in posttranscriptional regulation of gene expression in eukaryotes. Although Dcp1a is a well characterized and widely conserved mRNA decapping factor, little is known about its physiological function. To extend our understanding of Dcp1a function in vivo, we employed a transgenic rescue strategy to produce Dcp1a-deficient mice using the CRISPR/Cas9 system. This approach arrowed us to generate heterozygous Dcp1a mice and define the phenotype of Dcp1a-deficient embryos. We found that expression of Dcp1a protein, which is detectable in most mouse tissues, was developmentally regulated through embryonic growth, and that depletion of the Dcp1a gene resulted in embryonic lethality around embryonic day 10.5 (E10.5) concomitant with massive growth retardation and cardiac developmental defects. Moreover, the embryonic lethality was fully rescued by transgenic expression of exogenous human Dcp1a. Together, our results suggest that Dcp1a is required for embryonic growth.
Collapse
Affiliation(s)
- Megumi Ibayashi
- Laboratory of Animal and Genome Sciences Section, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Chiba, 263-8555, Japan
| | - Ryutaro Aizawa
- Laboratory of Animal and Genome Sciences Section, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Chiba, 263-8555, Japan
| | - Satoshi Tsukamoto
- Laboratory of Animal and Genome Sciences Section, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Chiba, 263-8555, Japan.
| |
Collapse
|
43
|
Abstract
Embryonic stem (ES) cells, derived from the inner cell mass of a blastocyst, are believed to pluripotent cells and give rise to embryonic, but not extraembryonic, tissues. In mice, totipotent 2-cell stage embryo-like (2-cell-like) cells, which are identified by reactivation of murine endogenous retrovirus with leucin transfer RNA primer (MuERV-L), arise at a very few frequencies in ES cell cultures. Here, we found that a lipid droplet forms during the transition from ES cells to 2-cell-like cells, and we propose that 2-cell-like cells utilize a unique energy storage and production pathway.
Collapse
Affiliation(s)
- Asuka Furuta
- Laboratory for Epigenetic Regulation, Department of Bio-Science, Nagahama Institute of Bio-Science and Technology, Shiga 526-0829, Japan
| | - Toshinobu Nakamura
- Laboratory for Epigenetic Regulation, Department of Bio-Science, Nagahama Institute of Bio-Science and Technology, Shiga 526-0829, Japan
| |
Collapse
|
44
|
Almubarak AM, Kim E, Yu IJ, Jeon Y. Supplementation with Niacin during in vitro maturation improves the quality of porcine embryos. Theriogenology 2021; 169:36-46. [PMID: 33932650 DOI: 10.1016/j.theriogenology.2021.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 01/17/2023]
Abstract
Niacin, also known as vitamin B3, has a pivotal role in energy metabolism, cellular signaling cascades regulating gene expression, and apoptosis. However, the effect of Niacin on porcine early embryo developmental competence remains to be elucidated. The present study aimed to assess the effects of Niacin treatment during in vitro maturation (IVM) on the nuclear maturation of porcine oocytes and subsequent development of in vitro embryos. In addition, the expression profiles of selected genes related to lipid metabolism, oxidative stress, and apoptosis were assessed. The IVM medium was supplemented with different concentrations of Niacin (0, 300, 600, and 900 μM). The results showed that a high concentration of Niacin (900 μM) significantly decreased cumulus expansion compared to the other groups (p < 0.05). No significant difference was observed among the experimental groups for nuclear maturation rate. Niacin treatments (300, 600, and 900 μM) during IVM significantly (p < 0.05) enhanced glutathione levels. Treatment with 300 and 600 μM significantly (p < 0.05) lowered the reactive oxygen species levels compared to treatment with 900 μM and the control group. Niacin supplementation to the IVM media significantly improved the cleavage and blastocyst rates compared to the control group. Supplementation with 300 and 600 μM of Niacin significantly increased the total cell number of blastocysts compared to supplementation with 900 μM or the control groups. Cytoplasmic lipid droplets were significantly reduced after 600 μM treatment. Supplementation of Niacin to IVM media positively affected the relative expression of genes related to energy and oxidative status (SIRT1), pro-apoptosis (BAX), anti-apoptosis (BCL2), and lipid metabolism (ACACA and PNPLA2) in cumulus cells and oocytes. Taken together, Niacin supplementation to porcine IVM media improved the developmental competence of early embryos mainly through protection against oxidative stress and its influence on energy metabolism and apoptosis pathways.
Collapse
Affiliation(s)
- Areeg M Almubarak
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea; Department of Veterinary Medicine and Animal Surgery, College of Veterinary Medicine, Sudan University of Science and Technology, Khartoum North, Khartoum, 11111, Sudan
| | - Eunji Kim
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Il-Jeoung Yu
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| | - Yubyeol Jeon
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|
45
|
Zhu T, Guan S, Lv D, Zhao M, Yan L, Shi L, Ji P, Zhang L, Liu G. Melatonin Modulates Lipid Metabolism in Porcine Cumulus-Oocyte Complex via Its Receptors. Front Cell Dev Biol 2021; 9:648209. [PMID: 33869202 PMCID: PMC8047119 DOI: 10.3389/fcell.2021.648209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Lipid is a crucial energy resource for mammalian oocyte. Melatonin could benefit the maturation of porcine oocyte in vitro, but the related mechanism is not elucidated yet. In the current study, methods to monitor lipid metabolism in single live oocytes were firstly established using probes (Lipi-Blue and Lipi-Green). It was observed that both lipid biogenesis and lipolysis occurred in maturing oocyte, but the general level of lipids dropped. Then maturing oocytes stained with probes were treated with melatonin or lipid metabolic-related inhibitors (triacsin C, rotenone, or etomoxir). The results showed that the lipid metabolism and maturation of porcine oocytes were all disrupted and that melatonin rescued the oocytes treated with triacsin C or rotenone, but not those treated with etomoxir. Further investigation demonstrated that cumulus cells are able to transfer lipids to oocytes via gap junctions. It was also observed that melatonin receptors exist in cumulus cells and are required for oocytes to maintain lipid metabolism. Meanwhile, the global gene expressing in cumulus cells was also modulated by melatonin, especially the genes related to antioxidants (SOD1, GPX1, GPX3, GPX4, PRDX2, and PRDX5), lipid metabolism (FABP3, FABP5, ACACB, TECR, etc.), and mitochondrial respiration (GPD1, ETFB, CYC1, and the genes of ATP synthase). Altogether the current research demonstrates that melatonin modulates lipid metabolism in maturing oocytes through its receptors in cumulus cells and benefits the developmental competence of oocytes.
Collapse
Affiliation(s)
- Tianqi Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics Improvement, Ministry of Agriculture, Beijing, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengyu Guan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics Improvement, Ministry of Agriculture, Beijing, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dongying Lv
- Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics Improvement, Ministry of Agriculture, Beijing, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mengmeng Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics Improvement, Ministry of Agriculture, Beijing, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Laiqing Yan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics Improvement, Ministry of Agriculture, Beijing, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Li Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics Improvement, Ministry of Agriculture, Beijing, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Pengyun Ji
- Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics Improvement, Ministry of Agriculture, Beijing, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics Improvement, Ministry of Agriculture, Beijing, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guoshi Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics Improvement, Ministry of Agriculture, Beijing, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
46
|
Maekura K, Tsukamoto S, Hamada-Kanazawa M, Takano M. Rimklb mutation causes male infertility in mice. Sci Rep 2021; 11:4604. [PMID: 33633267 PMCID: PMC7907349 DOI: 10.1038/s41598-021-84105-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 02/11/2021] [Indexed: 11/23/2022] Open
Abstract
Rimklb is a mammalian homologue of the E. coli enzyme RimK, which catalyzes addition of glutamic acid to the ribosomal protein S6. To date, no previous studies have shown any physiological role for Rimklb in mammals. In this study, using Western blotting, we found that Rimklb is distributed and expressed in mouse testis and heart. Rimklb was subsequently localized to the testicular Leydig cells using immunohistochemistry with an anti-Rimklb antibody. We generated a Rimklb mutant mouse in which a three-base deletion results in deletion of Ala 29 and substitution of Leu 30 with Val, which we named the RimklbA29del, L30V mutant mouse. RimklbA29del, L30V mutant mice show a decrease in testicular size and weight, and in vitro fertilization demonstrates complete male infertility. Furthermore, we found that a key factor in the mammalian target of the rapamycin/ribosomal protein S6 transcriptional pathway is hyperphosphorylated in the seminiferous tubules of the mutant testis. We conclude that Rimklb has important roles that include spermatogenesis in seminiferous tubules. In summary, male RimklbA29del, L30V mice are infertile.
Collapse
Affiliation(s)
- Koji Maekura
- Laboratory of Molecular Cellular Biology, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Satoshi Tsukamoto
- Laboratory Animal and Genome Sciences Section, National Institute for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Michiko Hamada-Kanazawa
- Laboratory of Molecular Cellular Biology, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Masaoki Takano
- Laboratory of Molecular Cellular Biology, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan.
| |
Collapse
|
47
|
Xingzhu D, Qingrui Z, Keren C, Yuxi L, Yunpeng H, Shien Z, Xiangwei F. Cryopreservation of Porcine Embryos: Recent Updates and Progress. Biopreserv Biobank 2021; 19:210-218. [PMID: 33625892 DOI: 10.1089/bio.2020.0074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cryopreservation of embryos is important for long-distance embryo transfer and conservation of genetic resources. Porcine research is important for animal husbandry and biomedical research. However, porcine embryos are difficult to cryopreserve because of their high cytoplasmic lipid content and sensitivity to chilling stress. Vitrification is more efficient than slow freezing, and vitrification is mostly used in embryo cryopreservation. So far, the vitrification process of porcine embryos has been continuously improved, resulting in improved survival rates of warmed embryos and farrowing rates after the transplant procedure. It is worth noting that automatic vitrification has made great progress, which is expected to promote the standardization and application of vitrification. In this article, the vitrification process of porcine embryos at the blastula stage and early development stages is reviewed in detail. In addition, the efficiency of different vitrification systems was compared. In addition, we summarize technology that can improve the survival rate of cryopreserved porcine embryos, such as delipidation methods (including physical delipidation and chemical delipidation) and medium improvements (including chemically defined media and adding antioxidants). Meanwhile, gene expression changes during cryopreservation are also elaborated.
Collapse
Affiliation(s)
- Du Xingzhu
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhuan Qingrui
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Cheng Keren
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Luo Yuxi
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hou Yunpeng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhu Shien
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fu Xiangwei
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
48
|
Aizawa R, Ibayashi M, Hatakeyama T, Tatsumi T, Tsukamoto S. Impact of short-term high-fat feeding on lipid droplet content in mouse oocytes. J Reprod Dev 2021; 67:73-77. [PMID: 33071247 PMCID: PMC7902217 DOI: 10.1262/jrd.2020-094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mature mammalian oocytes contain lipid droplets (LDs), which are neutral lipid storage organelles critically important for energy metabolism. In mice, maternal obesity, induced by long-term (> 3 months) high-fat feeding, contributes to the accumulation of LDs in mature oocytes. However, few studies have investigated the influence of short-term high-fat feeding on LD content. In this study, we demonstrated that 3 weeks of high-fat feeding is sufficient to increase LD content and intracellular triacylglycerol levels. Using a two-step centrifugation technique to release LDs into the perivitelline space, we found that short-term high-fat feeding increased the level of LDs in MII oocytes and that 3 days of high-fat feeding were sufficient to increase efficiency of LD release. Collectively, our study suggests that short-term high fat feeding can have a higher impact on lipid metabolism during oocyte maturation.
Collapse
Affiliation(s)
- Ryutaro Aizawa
- Laboratory Animal and Genome Sciences Section, National Institute for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Megumi Ibayashi
- Laboratory Animal and Genome Sciences Section, National Institute for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Tomomi Hatakeyama
- Laboratory Animal and Genome Sciences Section, National Institute for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Takayuki Tatsumi
- Department of Pediatrics, Perinatal and Maternal Medicine (Ibaraki), Graduate School, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Satoshi Tsukamoto
- Laboratory Animal and Genome Sciences Section, National Institute for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| |
Collapse
|
49
|
Zarezadeh R, Nouri M, Hamdi K, Shaaker M, Mehdizadeh A, Darabi M. Fatty acids of follicular fluid phospholipids and triglycerides display distinct association with IVF outcomes. Reprod Biomed Online 2020; 42:301-309. [PMID: 33279420 DOI: 10.1016/j.rbmo.2020.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/19/2020] [Accepted: 09/29/2020] [Indexed: 12/31/2022]
Abstract
RESEARCH QUESTION Are triglyceride fatty acids in the follicular fluid associated with either follicular fluid phospholipid fatty acids or IVF outcomes and, if so, how are they associated? DESIGN In a prospective cross-sectional study, 70 women undergoing intracytoplasmic sperm injection were recruited. Follicular fluid phospholipids and triglycerides were separated by thin-layer chromatography. Fatty acids were measured using gas-liquid chromatography and flame ionization detection system. RESULTS Significant differences in fatty acid composition were observed between follicular fluid phospholipid and triglyceride fractions. Phospholipid stearic acid and n-3 polyunsaturated fatty acids, particularly alpha-linolenic acid, were negatively associated with the number of mature oocytes and cleaved embryos, whereas arachidonic acid was in direct correlation with cleavage rate per IVF cycle (β = 0.325, P = 0.022). In the case of triglyceride fraction, total monounsaturated fatty acids, oleic acid in particular, displayed significantly positive associations with the number of oocytes (β = 0.261, P = 0.043) and embryos (β = 0.310, P = 0.018). Furthermore, cleavage rate correlated inversely with palmitic acid (β = -0.359, P = 0.007) and directly with pentadecanoic acid (β = 0.378, P = 0.005). Most of these associations, however, were not independent of predictive fatty acids belonging to phospholipid fraction, according to multivariate analysis. CONCLUSIONS Fatty acid compositions of phospholipid and triglyceride fractions from human follicular fluid differentially correlate with IVF cycle parameters.
Collapse
Affiliation(s)
- Reza Zarezadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Hamdi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maghsod Shaaker
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Darabi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
50
|
Wang S, Larina IV, Larin KV. Label-free optical imaging in developmental biology [Invited]. BIOMEDICAL OPTICS EXPRESS 2020; 11:2017-2040. [PMID: 32341864 PMCID: PMC7173889 DOI: 10.1364/boe.381359] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/30/2020] [Accepted: 02/25/2020] [Indexed: 05/03/2023]
Abstract
Application of optical imaging in developmental biology marks an exciting frontier in biomedical optics. Optical resolution and imaging depth allow for investigation of growing embryos at subcellular, cellular, and whole organism levels, while the complexity and variety of embryonic processes set multiple challenges stimulating the development of various live dynamic embryonic imaging approaches. Among other optical methods, label-free optical techniques attract an increasing interest as they allow investigation of developmental mechanisms without application of exogenous markers or fluorescent reporters. There has been a boost in development of label-free optical imaging techniques for studying embryonic development in animal models over the last decade, which revealed new information about early development and created new areas for investigation. Here, we review the recent progress in label-free optical embryonic imaging, discuss specific applications, and comment on future developments at the interface of photonics, engineering, and developmental biology.
Collapse
Affiliation(s)
- Shang Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ 07030, USA
| | - Irina V. Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Kirill V. Larin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Boulevard, Houston, TX 77204, USA
| |
Collapse
|