1
|
Sorrenti M, Klinger FG, Iona S, Rossi V, Marcozzi S, DE Felici M. Expression and possible roles of extracellular signal-related kinases 1-2 (ERK1-2) in mouse primordial germ cell development. J Reprod Dev 2020; 66:399-409. [PMID: 32418930 PMCID: PMC7593634 DOI: 10.1262/jrd.2019-141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In the present work, we described the expression and activity of extracellular signal-related kinases 1-2 (ERK1-2) in mouse primordial germ cells (PGCs) from
8.5–14.5 days post coitum (dpc) and investigated whether these kinases play a role in regulating the various processes of PGC development. Using
immunofluorescence and immunoblotting to detect the active phosphorylated form of ERK1-2 (p-ERK1-2), we found that the kinases were present in most
proliferating 8.5–10.5 dpc PGCs, low in 11.5 dpc PGCs, and progressively increasing between 12.5–14.5 dpc both in female and male PGCs. In
vitro culture experiments showed that inhibiting activation of ERK1-2 with the MEK-specific inhibitor U0126 significantly reduced the growth of 8.5
dpc PGCs in culture but had little effect on 11.5–12.5 dpc PGCs. Moreover, we found that the inhibitor did not affect the adhesion of 11.5 dpc PGCs, but it
significantly reduced their motility features onto a cell monolayer. Further, while the ability of female PGCs to begin meiosis was not significantly affected
by U0126, their progression through meiotic prophase I was slowed down. Notably, the activity of ERK1-2 was necessary for maintaining the correct expression of
oocyte-specific genes crucial for germ cells survival and the formation of primordial follicles.
Collapse
Affiliation(s)
- Maria Sorrenti
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University of Rome "Tor Vergata", Rome 00173, Italy
| | - Francesca Gioia Klinger
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University of Rome "Tor Vergata", Rome 00173, Italy
| | - Saveria Iona
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University of Rome "Tor Vergata", Rome 00173, Italy
| | - Valerio Rossi
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University of Rome "Tor Vergata", Rome 00173, Italy
| | - Serena Marcozzi
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University of Rome "Tor Vergata", Rome 00173, Italy
| | - Massimo DE Felici
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University of Rome "Tor Vergata", Rome 00173, Italy
| |
Collapse
|
2
|
Ghosh T, Varshney A, Kumar P, Kaur M, Kumar V, Shekhar R, Devi R, Priyanka P, Khan MM, Saxena S. MicroRNA-874-mediated inhibition of the major G 1/S phase cyclin, CCNE1, is lost in osteosarcomas. J Biol Chem 2017; 292:21264-21281. [PMID: 29109143 DOI: 10.1074/jbc.m117.808287] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/24/2017] [Indexed: 01/26/2023] Open
Abstract
The tumor microenvironment is characterized by nutrient-deprived conditions in which the cancer cells have to adapt for survival. Serum starvation resembles the growth factor deprivation characteristic of the poorly vascularized tumor microenvironment and has aided in the discovery of key growth regulatory genes and microRNAs (miRNAs) that have a role in the oncogenic transformation. We report here that miR-874 down-regulates the major G1/S phase cyclin, cyclin E1 (CCNE1), during serum starvation. Because the adaptation of cancer cells to the tumor microenvironment is vital for subsequent oncogenesis, we tested for miR-874 and CCNE1 interdependence in osteosarcoma cells. We observed that miR-874 inhibits CCNE1 expression in primary osteoblasts, but in aggressive osteosarcomas, miR-874 is down-regulated, leading to elevated CCNE1 expression and appearance of cancer-associated phenotypes. We established that loss of miR-874-mediated control of cyclin E1 is a general feature of osteosarcomas. The down-regulation of CCNE1 by miR-874 is independent of E2F transcription factors. Restoration of miR-874 expression impeded S phase progression, suppressing aggressive growth phenotypes, such as cell invasion, migration, and xenograft tumors, in nude mice. In summary, we report that miR-874 inhibits CCNE1 expression during growth factor deprivation and that miR-874 down-regulation in osteosarcomas leads to CCNE1 up-regulation and more aggressive growth phenotypes.
Collapse
Affiliation(s)
- Tanushree Ghosh
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Akhil Varshney
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Praveen Kumar
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Manpreet Kaur
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Vipin Kumar
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Ritu Shekhar
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Raksha Devi
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Priyanka Priyanka
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Md Muntaz Khan
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Sandeep Saxena
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
3
|
Nutter FH, Haylor JL, Khwaja A. Inhibiting ERK Activation with CI-1040 Leads to Compensatory Upregulation of Alternate MAPKs and Plasminogen Activator Inhibitor-1 following Subtotal Nephrectomy with No Impact on Kidney Fibrosis. PLoS One 2015; 10:e0137321. [PMID: 26415098 PMCID: PMC4586140 DOI: 10.1371/journal.pone.0137321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 08/15/2015] [Indexed: 11/27/2022] Open
Abstract
Extracellular-signal regulated kinase (ERK) activation by MEK plays a key role in many of the cellular processes that underlie progressive kidney fibrosis including cell proliferation, apoptosis and transforming growth factor β1-mediated epithelial to mesenchymal transition. We therefore assessed the therapeutic impact of ERK1/2 inhibition using a MEK inhibitor in the rat 5/6 subtotal nephrectomy (SNx) model of kidney fibrosis. There was a twentyfold upregulation in phospho-ERK1/2 expression in the kidney after SNx in Male Wistar rats. Rats undergoing SNx became hypertensive, proteinuric and developed progressive kidney failure with reduced creatinine clearance. Treatment with the MEK inhibitor, CI-1040 abolished phospho- ERK1/2 expression in kidney tissue and prevented phospho-ERK1/2 expression in peripheral lymphocytes during the entire course of therapy. CI-1040 had no impact on creatinine clearance, proteinuria, glomerular and tubular fibrosis, and α-smooth muscle actin expression. However, inhibition of ERK1/2 activation led to significant compensatory upregulation of the MAP kinases, p38 and JNK in kidney tissue. CI-1040 also increased the expression of plasminogen activator inhibitor-1 (PAI-1), a key inhibitor of plasmin-dependent matrix metalloproteinases. Thus inhibition of ERK1/2 activation has no therapeutic effect on kidney fibrosis in SNx possibly due to increased compensatory activation of the p38 and JNK signalling pathways with subsequent upregulation of PAI-1.
Collapse
Affiliation(s)
- Faith Hannah Nutter
- Academic Unit of Nephrology, Department of Infection and Immunity, Medical School, University of Sheffield, Sheffield, England
- * E-mail:
| | - John L. Haylor
- Academic Unit of Nephrology, Department of Infection and Immunity, Medical School, University of Sheffield, Sheffield, England
| | - Arif Khwaja
- Sheffield Kidney Institute, Northern General Hospital, Sheffield, England
| |
Collapse
|
4
|
Liu Y, Sánchez-Tilló E, Lu X, Huang L, Clem B, Telang S, Jenson AB, Cuatrecasas M, Chesney J, Postigo A, Dean DC. The ZEB1 transcription factor acts in a negative feedback loop with miR200 downstream of Ras and Rb1 to regulate Bmi1 expression. J Biol Chem 2013; 289:4116-25. [PMID: 24371144 DOI: 10.1074/jbc.m113.533505] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ras mutations are frequent in cancer cells where they drive proliferation and resistance to apoptosis. However in primary cells, mutant Ras instead can cause oncogene-induced senescence, a tumor suppressor function linked to repression of the polycomb factor Bmi1, which normally regulates cell cycle inhibitory cyclin-dependent kinase inhibitors (cdki). It is unclear how Ras causes repression of Bmi1 in primary cells to suppress tumor formation while inducing the gene in cancer cells to drive tumor progression. Ras also induces the EMT transcription factor ZEB1 to trigger tumor invasion and metastasis. Beyond its well-documented role in EMT, ZEB1 is important for maintaining repression of cdki. Indeed, heterozygous mutation of ZEB1 is sufficient for elevated cdki expression, leading to premature senescence of primary cells. A similar phenotype is evident with Bmi1 mutation. We show that activation of Rb1 in response to mutant Ras causes dominant repression of ZEB1 in primary cells, but loss of the Rb1 pathway is a hallmark of cancer cells and in the absence of such Rb1 repression Ras induces ZEB1 in cancer cells. ZEB1 represses miR-200 in the context of a mutual repression loop. Because miR-200 represses Bmi1, induction of ZEB1 leads to induction of Bmi1. Rb1 pathway status then dictates the opposing effects of mutant Ras on the ZEB1-miR-200 loop in primary versus cancer cells. This loop not only triggers EMT, surprisingly we show it acts downstream of Ras to regulate Bmi1 expression and thus the critical decision between oncogene-induced senescence and tumor initiation.
Collapse
Affiliation(s)
- Yongqing Liu
- From the Molecular Targets Program, James Brown Cancer Center
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Azrak SS, Ginel-Picardo A, Drosten M, Barbacid M, Santos E. Reversible, interrelated mRNA and miRNA expression patterns in the transcriptome of Rasless fibroblasts: functional and mechanistic implications. BMC Genomics 2013; 14:731. [PMID: 24156637 PMCID: PMC4007593 DOI: 10.1186/1471-2164-14-731] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/04/2013] [Indexed: 12/13/2022] Open
Abstract
Background 4-Hydroxy-tamoxifen (4OHT) triggers Cre-mediated K-Ras removal in [H-Ras-/-;N-Ras-/-;K-Raslox/lox;RERTert/ert] fibroblasts, generating growth-arrested “Rasless” MEFs which are able to recover their proliferative ability after ectopic expression of Ras oncoproteins or constitutively active BRAF or MEK1. Results Comparison of the transcriptional profiles of Rasless fibroblasts with those of MEFs lacking only H-Ras and N-Ras identified a series of differentially expressed mRNAs and microRNAs specifically linked to the disappearance of K-Ras from these cells. The rescue of cell cycle progression in Rasless cells by activated BRAF or MEK1 resulted in the reversal of most such transcriptional mRNA and microRNA alterations. Functional analysis of the differentially expressed mRNAs uncovered a significant enrichment in the components of pathways regulating cell division, DNA/RNA processing and response to DNA damage. Consistent with G1/S blockade, Rasless cells displayed repression of a series of cell cycle-related genes, including Cyclins, Cyclin-dependent kinases, Myc and E2F transcription targets, and upregulation of Cyclin-dependent kinase inhibitors. The profile of differentially expressed microRNAs included a specific set of oncomiR families and clusters (repressed miR-17 ~ 92, miR-106a ~ 363, miR-106b ~ 25, miR-212 ~ 132, miR-183 ~ 182, and upregulated miR-335) known for their ability to target a specific set of cellular regulators and checkpoint sensors (including Rb, E2F and Cdkns) able to modulate the interplay between the pro- and anti-proliferative or stress-response pathways that are reversibly altered in Rasless cells. Conclusions Our data suggest that the reversible proliferation phenotype of Rasless cells is the pleiotropic result of interplay among distinct pro- and anti-proliferative, and stress-response pathways modulated by a regulatory circuitry constituted by a specific set of differentially expressed mRNAs and microRNAs and preferentially targeting two cross-talking signalling axes: Myc-Rb-E2F-dependent and Cdkns-p53-dependent pathways.
Collapse
Affiliation(s)
| | | | | | | | - Eugenio Santos
- Centro de Investigacion del Cancer, IBMCC (CSIC-USAL), University of Salamanca, Campus Unamuno, 37007, Salamanca, Spain.
| |
Collapse
|
6
|
Neurauter CG, Luna L, Bjørås M. Release from quiescence stimulates the expression of human NEIL3 under the control of the Ras dependent ERK-MAP kinase pathway. DNA Repair (Amst) 2012; 11:401-9. [PMID: 22365498 DOI: 10.1016/j.dnarep.2012.01.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 01/11/2012] [Accepted: 01/12/2012] [Indexed: 12/25/2022]
Abstract
Base excision repair (BER) is believed to be the predominant pathway for the repair of oxidative DNA damage. BER is initiated by lesion-specific DNA glycosylases that recognize and remove the damaged base. NEIL1, NEIL2 and NEIL3 are three mammalian members of the Fpg/Nei DNA glycosylase family with similar enzymatic properties. In this study we showed that both the transcription and protein levels of hNEIL3 fluctuated during the cell cycle. Based on predicted promoter elements of cell cycle-regulated genes and microarray data from various reports, we suggest that hNEIL3 repression in quiescent cells might be mediated by the DREAM (DP1, RB p130, E2F4 and MuvB core complex) complex. Release from G0 by mitogenic stimulation showed an induction of hNEIL3 in early S phase under the control of the Ras dependent ERK-MAP kinase pathway. In contrast, the total expression of hNEIL1 was downregulated upon release from quiescence while the expression of hNEIL2 was cell cycle independent. Notably, hNEIL3 showed a similar regulation pattern as the replication protein hFEN1 supporting a function of hNEIL3 in replication associated repair. Thus, it appears that specialized functions of the NEILs are ensured by their expression patterns.
Collapse
Affiliation(s)
- Christine Gran Neurauter
- Department of Microbiology, University of Oslo, Oslo University Hospital, Rikshospitalet, Norway
| | | | | |
Collapse
|
7
|
Abstract
The recent RAF inhibitor trial with PLX4032/RG7204 in late-stage mutant B-RAF melanoma patients has been lauded as a success story for personalized cancer therapy since short-term clinical responses were observed in the majority of patients. However, initial responses were followed by subsequent tumor re-growth, and a subset of patients showed intrinsic resistance. Bi-directional translational efforts are now essential to determine the mechanisms underlying acquired/secondary and intrinsic resistance to RAF inhibitors.
Collapse
Affiliation(s)
- Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | |
Collapse
|
8
|
Witkiewicz AK, Knudsen KE, Dicker AP, Knudsen ES. The meaning of p16(ink4a) expression in tumors: functional significance, clinical associations and future developments. Cell Cycle 2011; 10:2497-503. [PMID: 21775818 DOI: 10.4161/cc.10.15.16776] [Citation(s) in RCA: 219] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The CDKN2A gene is a tumor suppressor that encodes the CDK4/6 inhibitor p16(ink4a). Loss of this tumor suppressor contributes to the bypass of critical senescent signals and is associated with progression to malignant disease. However, the high-level expression of p16(ink4a) in tumors is associated with aggressive subtypes of disease, and in certain clinical settings elevated p16(ink4a) expression is an important determinant for disease prognosis and therapeutic response. These seemingly contradictory facets of p16(ink4a) expression have lead to confusion related to the meaning of this tumor suppression in tumor pathobiology. As reviewed here, the alternative expression of p16(ink4a) represents an ideal marker for considering RB-pathway function, tumor heterogeneity, and novel means for directing therapy.
Collapse
|
9
|
Rodríguez J, Calvo F, González JM, Casar B, Andrés V, Crespo P. ERK1/2 MAP kinases promote cell cycle entry by rapid, kinase-independent disruption of retinoblastoma-lamin A complexes. ACTA ACUST UNITED AC 2011; 191:967-79. [PMID: 21115804 PMCID: PMC2995174 DOI: 10.1083/jcb.201004067] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
When in the nucleus, ERK1/2 dislodges the retinoblastoma protein from lamin A, facilitating its rapid phosphorylation. As orchestrators of essential cellular processes like proliferation, ERK1/2 mitogen-activated protein kinase signals impact on cell cycle regulation. A-type lamins are major constituents of the nuclear matrix that also control the cell cycle machinery by largely unknown mechanisms. In this paper, we disclose a functional liaison between ERK1/2 and lamin A whereby cell cycle progression is regulated. We demonstrate that lamin A serves as a mutually exclusive dock for ERK1/2 and the retinoblastoma (Rb) protein. Our results reveal that, immediately after their postactivation entrance in the nucleus, ERK1/2 dislodge Rb from its interaction with lamin A, thereby facilitating its rapid phosphorylation and consequently promoting E2F activation and cell cycle entry. Interestingly, these effects are independent of ERK1/2 kinase activity. We also show that cellular transformation and tumor cell proliferation are dependent on the balance between lamin A and nuclear ERK1/2 levels, which determines Rb accessibility for phosphorylation/inactivation.
Collapse
Affiliation(s)
- Javier Rodríguez
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas, Investigación Desarrollo e Innovación Cantabria, Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
The RB-pathway, consisting of inhibitors and activators of cyclin-dependent kinases, the retinoblastoma tumor suppressor (RB), and the E2F-family of transcription factors, plays critical roles in the regulation of cell cycle progression and cell death. Components of this pathway, particularly p16Ink4a, cyclin D1, and RB, are frequently altered in sporadic human cancers to promote deregulated cellular proliferation. The consistent disruption of the RB-pathway in human cancers raises the possibility of exploiting tumor-specific RB-pathway defects to improve the efficacy of current therapies and to develop new therapeutic strategies. This article discusses how the RB-pathway status impacts the cellular responses to cytotoxic, cytostatic, and hormone therapies, and how the components of the RB-pathway may be directly targeted to treat cancer.
Collapse
Affiliation(s)
- Erik S. Knudsen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Jean Y. J. Wang
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0820
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0820
| |
Collapse
|
11
|
Mutation of the Rb1 pathway leads to overexpression of mTor, constitutive phosphorylation of Akt on serine 473, resistance to anoikis, and a block in c-Raf activation. Mol Cell Biol 2009; 29:5710-7. [PMID: 19703998 DOI: 10.1128/mcb.00197-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Atk can be activated by two independent phosphorylation events. Growth factor-dependent phosphorylation of threonine 308 (Akt-308) by phosphatidylinositol 3-kinase-dependent PDK1 leads to activation of mammalian target of rapamycin (mTor) complex 1 (TORC1) and stimulation of protein synthesis. Phosphorylation on serine 473 (Akt-473) is catalyzed by mTor in a second complex (TORC2), and Akt-473 phosphorylates Foxo3a to inhibit apoptosis. Accumulation of both phosphorylated forms of Akt is frequent in cancer, and TORC2 activity is required for progression to prostate cancer with Pten mutation. Here, we link Akt-473 to the Rb1 pathway and show that mTor is overexpressed with loss of the Rb1 family pathway. This leads to constitutive Akt-473 and, in turn, phosphorylation of Foxo3a and resistance to cell adhesion-dependent apoptosis (anoikis). Additionally, Akt-473 accumulation blocks c-Raf activation, thereby preventing downstream Erk activation. This block cannot be overcome by constitutively active Ras, and it also prevents induction of the Arf tumor suppressor by Ras. These studies link inactivation of the Rb1 pathway, a hallmark of cancer, to accumulation of Akt-473, resistance to anoikis, and a block in c-Raf/Erk activation.
Collapse
|
12
|
Lee SJ, Lim KT. Glycine- and proline-rich glycoprotein regulates the balance between cell proliferation and apoptosis for ACF formation in 1,2-dimethylhydrazine-treated A/J mice. Mol Cell Biochem 2009; 325:187-97. [PMID: 19184365 DOI: 10.1007/s11010-009-0033-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Accepted: 01/15/2009] [Indexed: 12/27/2022]
Abstract
The objective of this study was to investigate the chemopreventive potentials of glycine- and proline-rich glycoprotein (SNL glycoprotein, 150-kDa) isolated from Solanum nigrum Linne on formation of colonic aberrant crypt foci (ACF) induced by 1,2-dimethylhydrazine (DMH, 20 mg/kg) in A/J mice. Administration of SNL glycoprotein inhibited phosphorylation of extracellular signal-regulated kinase (ERK), expression of colonic proliferating cell nuclear antigen (PCNA), and frequency of colonic ACF in DMH-stimulated mice colon carcinogenesis. In addition, SNL glycoprotein increased expression of cyclin-dependent kinase inhibitors (p21(WAF/Cip1) and p27(Kip1)), whereas reduced expression of precursor form of apoptosis-related proteins [pro-caspase-3 and pro-poly(ADP-ribose)polymerase (PARP)] in the mice. Interestingly, the results in this study revealed that SNL glycoprotein has suppressive effects on activity of nuclear factor-kappa B (NF-kappaB), whereas it has stimulatory effect on the expression of p53, accompanying inhibitory effects on expression of NF-kappaBp50, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin (IL)-6, and tumor necrosis factor (TNF)-alpha in DMH-stimulated ACF formation. Also, SNL glycoprotein has inhibitory effects on the formation of thiobarbituric acid reactive substances (TBARS), on the production of inducible nitric oxide (NO), and on the release of lactate dehydrogenase (LDH) in the mice plasma. Collectively, our findings in this study suggest that SNL glycoprotein has chemopreventive activity via modulation of cell proliferation and apoptosis in DMH-treated A/J mice.
Collapse
Affiliation(s)
- Sei-Jung Lee
- Molecular Biochemistry Laboratory, Biotechnology Research Institute, Chonnam National University, 300 Yongbong-Dong, Kwang-ju, 500-757, South Korea
| | | |
Collapse
|
13
|
Abstract
The retinoblastoma tumour suppressor (RB) is a crucial regulator of cell-cycle progression that is invoked in response to a myriad of anti-mitogenic signals. It has been hypothesized that perturbations of the RB pathway confer a synonymous proliferative advantage to tumour cells; however, recent findings demonstrate context-specific outcomes associated with such lesions. Particularly, loss of RB function is associated with differential response to wide-ranging therapeutic agents. Thus, the status of this tumour suppressor may be particularly informative in directing treatment regimens.
Collapse
Affiliation(s)
- Erik S. Knudsen
- Department of Cancer Biology, Kimmel Cancer Center, Bluemle Life Science Building-Room 1002, 233, South 10th Street, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | - Karen E. Knudsen
- Department of Cancer Biology, Kimmel Cancer Center, Bluemle Life Science Building-Room 1002, 233, South 10th Street, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
- Department of Urology, Kimmel Cancer Center, Bluemle Life Science Building-Room 1002, 233, South 10th Street, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| |
Collapse
|
14
|
Davis RK, Chellappan S. Disrupting the Rb-Raf-1 interaction: a potential therapeutic target for cancer. DRUG NEWS & PERSPECTIVES 2008; 21:331-5. [PMID: 18836591 PMCID: PMC2800199 DOI: 10.1358/dnp.2008.21.6.1246832] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cell-cycle progression in cancer is often mediated by disrupting the function of the retinoblastoma tumor suppressor protein, Rb. One way in which Rb's function is altered is through phosphorylation mediated by cyclin-dependent kinases (CDKs). Our studies have shown that the Raf-1 kinase binds and phosphorylates Rb very early in the cell cycle prior to the binding of cyclins and CDKs. It was also found that human lung cancer tumor samples had increased binding of Raf-1 to Rb, suggesting this interaction could have contributed to the malignancy of these tumors. Disrupting the Rb-Raf-1 interaction could inhibit cell proliferation in a multitude of cancer cell lines as well as prevent angiogenesis and tumor growth in vivo. Thus, the Rb-Raf-1 interaction is a promising therapeutic target for cancer. This review will highlight the importance of the Rb-Raf-1 interaction in cancer, the search for small molecules capable of disrupting the interaction as well as properties of Rb-Raf-1 disruptors, focusing specifically on RRD-251 (Rb-Raf-1 Disruptor 251). This review will also touch on why targeting protein-protein interactions may be a viable alternate and better strategy to inhibiting kinase function for cancer therapies.
Collapse
Affiliation(s)
- Rebecca K. Davis
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612
| | - Srikumar Chellappan
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612
| |
Collapse
|
15
|
Roderick HL, Cook SJ. Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer 2008; 8:361-75. [PMID: 18432251 DOI: 10.1038/nrc2374] [Citation(s) in RCA: 560] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increases in cytosolic free Ca2+ ([Ca2+]i) represent a ubiquitous signalling mechanism that controls a variety of cellular processes, including proliferation, metabolism and gene transcription, yet under certain conditions increases in intracellular Ca2+ are cytotoxic. Thus, in using Ca2+ as a messenger, cells walk a tightrope in which [Ca2+]i is strictly maintained within defined boundaries. To adhere to these boundaries and to sustain their modified phenotype, many cancer cells remodel the expression or activity of their Ca2+ signalling apparatus. Here, we review the role of Ca2+ in promoting cell proliferation and cell death, how these processes are remodelled in cancer and the opportunities this might provide for therapeutic intervention.
Collapse
Affiliation(s)
- H Llewelyn Roderick
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| | | |
Collapse
|
16
|
Foijer F, Simonis M, van Vliet M, Wessels L, Kerkhoven R, Sorger PK, Te Riele H. Oncogenic pathways impinging on the G2-restriction point. Oncogene 2007; 27:1142-54. [PMID: 17700522 DOI: 10.1038/sj.onc.1210724] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the absence of mitogenic stimuli, cells normally arrest in G(1/0), because they fail to pass the G1-restriction point. However, abrogation of the G1-restriction point (by loss of the retinoblastoma gene family) reveals a second-restriction point that arrests cells in G2. Serum-starvation-induced G2 arrest is effectuated through inhibitory interactions of p27(KIP1) and p21(CIP1) with cyclins A and B1 and can be reversed through mitogen re-addition. In this study, we have investigated the pathways that allow cell cycle re-entry from this G2 arrest. We provide evidence that recovery from G2 arrest depends on the rat sarcoma viral oncogene (RAS) and phosphatidylinositol-3 kinase pathways and show that oncogenic hits, such as overexpression of c-MYC or mutational activation of RAS can abrogate the G2-restriction point. Together, our results provide new mechanistic insight into multistep carcinogenesis.
Collapse
Affiliation(s)
- F Foijer
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
17
|
Villanueva J, Yung Y, Walker JL, Assoian RK. ERK activity and G1 phase progression: identifying dispensable versus essential activities and primary versus secondary targets. Mol Biol Cell 2007; 18:1457-63. [PMID: 17314399 PMCID: PMC1838994 DOI: 10.1091/mbc.e06-10-0908] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ERK subfamily of MAP kinases is a critical regulator of S phase entry. ERK activity regulates the induction of cyclin D1, and a sustained ERK signal is thought to be required for this effect, at least in fibroblasts. We now show that early G1 phase ERK activity is dispensable for the induction of cyclin D1 and that the critical ERK signaling period is restricted to 3-6 h after mitogenic stimulation of quiescent fibroblasts. Similarly, early G1 phase ERK activity is dispensable for entry into S phase. Moreover, if cyclin D1 is expressed ectopically, ERK activity becomes dispensable throughout the G1 phase. In addition to its effect on cyclin D1, ERK activity is thought to contribute to the down-regulation of p27kip1. We found that this effect is restricted to late G1/S phase. Mechanistic analysis showed that the ERK effect on p27kip1 is mediated by Skp2 and is secondary to its effect on cyclin D1. Our results emphasize the importance of mid-G1 phase ERK activity and resolve primary versus secondary ERK targets within the G1 phase cyclin-dependent kinases.
Collapse
Affiliation(s)
- Jessie Villanueva
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6084
| | - Yuval Yung
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6084
| | - Janice L. Walker
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6084
| | - Richard K. Assoian
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6084
| |
Collapse
|
18
|
Katiyar S, Jiao X, Wagner E, Lisanti MP, Pestell RG. Somatic excision demonstrates that c-Jun induces cellular migration and invasion through induction of stem cell factor. Mol Cell Biol 2006; 27:1356-69. [PMID: 17145782 PMCID: PMC1800718 DOI: 10.1128/mcb.01061-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cancer cells arise through sequential acquisition of mutations in tumor suppressors and oncogenes. c-Jun, a critical component of the AP-1 complex, is frequently overexpressed in diverse tumor types and has been implicated in promoting cellular proliferation, migration, and angiogenesis. Functional analysis of candidate genetic targets using germ line deletion in murine models can be compromised through compensatory mechanisms. As germ line deletion of c-jun induces embryonic lethality, somatic deletion of the c-jun gene was conducted using floxed c-jun (c-jun(f/f)) conditional knockout mice. c-jun-deleted cells showed increased cellular adhesion, stress fiber formation, and reduced cellular migration. The reduced migratory velocity and migratory directionality was rescued by either c-Jun reintroduction or addition of secreted factors from wild-type cells. An unbiased analysis of cytokines and growth factors, differentially expressed and showing loss of secretion upon c-jun deletion, identified stem cell factor (SCF) as a c-Jun target gene. Immunoneutralizing antibody to SCF reduced migration of wild-type cells. SCF addition rescued the defect in cellular adhesion, cellular velocity, directional migration, transwell migration, and cellular invasion of c-jun(-/-) cells. c-Jun induced SCF protein, mRNA, and promoter activity. Induction of the SCF promoter required the c-Jun DNA-binding domain. c-Jun bound to the SCF promoter in chromatin immunoprecipitation assays. Mutation of the c-Jun binding site abolished c-Jun-mediated induction of the SCF promoter. These studies demonstrate an essential role of c-Jun in cellular migration through induction of SCF.
Collapse
Affiliation(s)
- Sanjay Katiyar
- Departments of Cancer Biology and Medical Oncology, The Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
19
|
Isaac CE, Francis SM, Martens AL, Julian LM, Seifried LA, Erdmann N, Binné UK, Harrington L, Sicinski P, Bérubé NG, Dyson NJ, Dick FA. The retinoblastoma protein regulates pericentric heterochromatin. Mol Cell Biol 2006; 26:3659-71. [PMID: 16612004 PMCID: PMC1447412 DOI: 10.1128/mcb.26.9.3659-3671.2006] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 11/09/2005] [Accepted: 02/03/2006] [Indexed: 12/22/2022] Open
Abstract
The retinoblastoma protein (pRb) has been proposed to regulate cell cycle progression in part through its ability to interact with enzymes that modify histone tails and create a repressed chromatin structure. We created a mutation in the murine Rb1 gene that disrupted pRb's ability to interact with these enzymes to determine if it affected cell cycle control. Here, we show that loss of this interaction slows progression through mitosis and causes aneuploidy. Our experiments reveal that while the LXCXE binding site mutation does not disrupt pRb's interaction with the Suv4-20h histone methyltransferases, it dramatically reduces H4-K20 trimethylation in pericentric heterochromatin. Disruption of heterochromatin structure in this chromosomal region leads to centromere fusions, chromosome missegregation, and genomic instability. These results demonstrate the surprising finding that pRb uses the LXCXE binding cleft to control chromatin structure for the regulation of events beyond the G(1)-to-S-phase transition.
Collapse
Affiliation(s)
- Christian E Isaac
- Cancer Research Labs, 790 Commissioners Road East, London, Ontario, Canada, N6A 4L6
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver Health Sciences Center, Aurora, CO 80045, USA.
| |
Collapse
|
21
|
Cook SJ, Lockyer PJ. Recent advances in Ca(2+)-dependent Ras regulation and cell proliferation. Cell Calcium 2006; 39:101-12. [PMID: 16343616 DOI: 10.1016/j.ceca.2005.10.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2005] [Revised: 10/17/2005] [Accepted: 10/27/2005] [Indexed: 12/20/2022]
Abstract
Our understanding of the mechanisms whereby growth factors stimulate cell proliferation through the Ras pathway stems largely from studies of the canonical pathway involving recruitment of Ras activators and inhibitors to the vicinity of receptor tyrosine kinases via phosphotyrosine-binding adaptor proteins. Ca(2+) has seldom joined the party, despite the identification of phospholipase Cgamma and Ca(2+) entry as receptor tyrosine kinase-dependent signals. Mechanisms by which Ca(2+) can directly influence Ras activity have remained relatively elusive. Similarly, the mechanisms whereby Ca(2+) modulates the cell cycle have been equally murky, and yet there are some interesting parallels in the role of Ras and Ca(2+) in cell cycle re-entry. This review focuses on a number of novel mechanisms that link Ca(2+) with the regulation of Ras activity and signaling output. Their collective discovery adds to the complexities of Ras regulation and raises further questions about the role of Ca(2+) signals in Ras-dependent cell proliferation.
Collapse
Affiliation(s)
- Simon J Cook
- Laboratory of Molecular Signaling, The Babraham Institute, Babraham Research Campus, Cambridge CB2 4AT, UK
| | | |
Collapse
|
22
|
Williams JP, Stewart T, Li B, Mulloy R, Dimova D, Classon M. The retinoblastoma protein is required for Ras-induced oncogenic transformation. Mol Cell Biol 2006; 26:1170-82. [PMID: 16449633 PMCID: PMC1367176 DOI: 10.1128/mcb.26.4.1170-1182.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 05/23/2005] [Accepted: 10/20/2005] [Indexed: 12/24/2022] Open
Abstract
Most human cancers involve either mutational activation of the Ras oncogenic pathway and/or inactivation of the retinoblastoma tumor suppressor (RB) pathway. Paradoxically, tumors that harbor Ras mutations almost invariably retain expression of a wild-type pRB protein. We explain this phenomenon by demonstrating that Ras-induced oncogenic transformation surprisingly depends on functional pRB protein. Cells lacking pRB are less susceptible to the oncogenic actions of H-RasV12 than wild-type cells and activated Ras has an inhibitory effect on the proliferation of pRB-deficient human tumor cells. In addition, depletion of pRB from Ras-transformed murine cells or human tumor cells that harbor Ras pathway mutations inhibits their proliferation and anchorage-independent growth. In sharp contrast to pRB-/- 3T3 cells, fibroblasts deficient in other pRB family members (p107 and p130) are more susceptible to Ras-mediated transformation than wild-type 3T3 cells. Moreover, loss of pRB in tumor cells harboring a Ras mutation results in increased expression of p107, and overexpression of p107 but not pRB strongly inhibits proliferation of these tumor cells. Together, these findings suggest that pRB and p107 have distinct roles in Ras-mediated transformation and suggest a novel tumor-suppressive role for p107 in the context of activated Ras.
Collapse
Affiliation(s)
- Jonathan P Williams
- MGH Cancer Center and Harvard Medical School, Bldg. 149, 13th St., Charlestown, MA 02129, USA
| | | | | | | | | | | |
Collapse
|
23
|
Adayev T, Ranasinghe B, Banerjee P. Transmembrane signaling in the brain by serotonin, a key regulator of physiology and emotion. Biosci Rep 2006; 25:363-85. [PMID: 16307382 DOI: 10.1007/s10540-005-2896-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Accepted: 07/14/2005] [Indexed: 11/30/2022] Open
Abstract
Serotonin (5-HT) is an ancient chemical that plays a crucial functional role in almost every living organism. It regulates platelet aggregation, activation of immune cells, and contraction of stomach and intestinal muscles. In addition, serotonin acts as a neurotransmitter in the brain and the peripheral nervous system. These activities are initiated by the binding of serotonin to 15 or more receptors that are pharmacologically classified into seven groups, 5-HT1 through 5-HT7. Each group is further divided into subgroups of receptors that are homologous but are encoded by discrete genes. With the exception of the 5-HT3 receptor--a cation channel--all of the others are G protein-coupled receptors that potentially activate or inhibit a large number of biochemical cascades. This review will endeavor to compare and contrast such signaling pathways with special attention to their tissue-specific occurrence, their possible role in immediate effects on covalent modification of other proteins, and relatively slower effects on gene expression, physiology and behavior.
Collapse
Affiliation(s)
- Tatyana Adayev
- Department of Chemistry and the CSI/IBR Center for Developmental Neuroscience, The College of Staten Island (CUNY), Staten Island, NY 10314, USA
| | | | | |
Collapse
|
24
|
White CR, Stevens HY, Haidekker M, Frangos JA. Temporal gradients in shear, but not spatial gradients, stimulate ERK1/2 activation in human endothelial cells. Am J Physiol Heart Circ Physiol 2006; 289:H2350-5. [PMID: 16284106 DOI: 10.1152/ajpheart.01229.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously demonstrated temporal gradients in shear stress stimulate endothelial cell proliferation, whereas spatial gradients do not. In the present study, the extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathway was investigated as a possible mediator for the promitogenic effect of temporal gradients. The sudden expansion flow chamber (SEFC) model was used to differentiate the effect of temporal gradients in shear from that of spatial gradients on ERK1/2 activation in human umbilical vein endothelial cells (HUVEC). ERK1/2 activation in the SEFC was not significantly different from control when HUVEC were exposed to spatial gradients alone. When a single temporal impulse was superimposed on spatial gradients, ERK1/2 activation was stimulated 330% (relative to spatial alone) within the region of spatial gradients. Inhibition of the ERK1/2 pathway with U-0126 abolished all effects of temporal gradients. To further separate temporal and spatial gradients, a conventional parallel plate flow chamber was utilized. Acute exposure to oscillations in flow at a frequency of 1 Hz stimulated ERK1/2 activation 620 +/- 88% relative to control, whereas a single impulse of flow increased ERK1/2 activation 166 +/- 19%. Flow without the temporal component did not significantly activate ERK1/2. These results suggest that the ERK1/2 pathway directly mediates the promitogenic effects of temporal gradients in shear stress.
Collapse
Affiliation(s)
- Charles R White
- La Jolla Bioengineering Institute, 505 Coast Blvd., South, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
25
|
Guo J, Sheng G, Warner BW. Epidermal Growth Factor-induced Rapid Retinoblastoma Phosphorylation at Ser780 and Ser795 Is Mediated by ERK1/2 in Small Intestine Epithelial Cells. J Biol Chem 2005; 280:35992-8. [PMID: 16126730 DOI: 10.1074/jbc.m504583200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The retinoblastoma protein Rb is critical for the regulation of mammalian cell cycle entry. Hypophosphorylated Rb is considered to be the active form and directs G1 arrest, while hyperphosphorylated Rb permits the transition from G1 to S phase for cell proliferation. Upon stimulation by various growth factors, Rb appears to be phosphorylated by a cascade of phosphorylation events mediated mainly by kinases associated with cyclins D and E. Here we report that in prototype small intestine crypt stem cells (RIEC-6), stimulation with either epidermal growth factor or fetal bovine serum results in an unexpected rapid and sustained Rb phosphorylation at sites Ser780, Ser795, and Thr821 which precedes cyclin D1 expression, cyclin D1/cdk4 complex formation, and cdk4 kinase activity. Rb phosphorylation at Ser780 and Ser795 is prevented by MEK, but not phosphatidylinositol 3-kinase, inhibitors. In vitro, Rb is directly phosphorylated by active ERK1/2 as shown by [gamma-32P]ATP labeling. The phosphorylation sites are further directed to Ser780 and Ser795 by kinase assays using recombined active ERK1/2 or immunoprecipitated phospho-ERK1/2 from mitogen stimulated cells. Pull-down assays revealed that Rb interacts with active ERK1/2 but not their inactive unphosphorylated forms. Upon EGF stimulation, phosphorylated ERK1/2 co-immunoprecipitates together with phosphorylated Rb. Collectively, these results demonstrate a novel rapid Rb phosphorylation at specific sites induced by mitogen stimulation in epithelial cells of the small intestine. These data specifically identify ERK1/2 as the kinase responsible for Rb phosphorylation targeted to sites Ser780 and Ser795. It appears that ERK1/2 could be an important link between a mitogenic signal directly to Rb, thereby providing a rapid response mechanism between mitogen stimulation and cell cycle machinery.
Collapse
Affiliation(s)
- Jun Guo
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039, USA
| | | | | |
Collapse
|
26
|
Telfer JF, Urquhart J, Crouch DH. Suppression of MEK/ERK signalling by Myc: role of Bin-1. Cell Signal 2005; 17:701-8. [PMID: 15722194 DOI: 10.1016/j.cellsig.2004.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Revised: 10/14/2004] [Accepted: 10/15/2004] [Indexed: 11/21/2022]
Abstract
We report for the first time that over-expression of Myc suppresses mitogen-activated ERK kinase (MEK)/extracellular regulated kinase (ERK) signalling in chick embryo fibroblasts (CEF). Myc does not interfere with individual components of the signalling cascade, since efficient signal propagation via MEK and ERK in Myc-infected CEF can be seen. However, using the Myc-binding domain (MBD) of Bin-1, which binds to and negatively regulates the activity of Myc, we selectively suppressed Myc-induced apoptosis, without affecting its transforming properties. This was accompanied by a restoration in MEK/ERK signalling, suggesting a critical role for this pathway in regulating apoptosis in these cells. This was also confirmed using a specific pharmacological inhibitor of MEK. Experiments with conditioned media suggest that over-expression of Myc may inhibit autocrine growth factor production, which can be restored by co-expression of MBD. Although the identity of the growth factor(s) is not known, we propose a feedback mechanism whereby Myc interferes with growth factor signalling.
Collapse
Affiliation(s)
- Joan F Telfer
- Biomedical Research Centre, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
| | | | | |
Collapse
|
27
|
Abstract
CD40, a member of the tumor necrosis factor (TNF) receptor family that is expressed on B cells, monocytes, dendritic cells, endothelial cells, and epithelial cells, as well as on B cell lymphomas and carcinomas, activates multiple signaling pathways. In B cells, the response to CD40 is complex and depends on the maturation status of the cell. It is well established that CD40 can promote cell survival through up-regulation of the expression of genes encoding antiapoptotic proteins. However, a new role for CD40 signaling is being recognized in promoting progression through the cell cycle. The roles of the phosphoinositide 3-kinase, mitogen-activated protein kinase, and nuclear factor kappaB pathways in mediating CD40 stimulation of the cell cycle are described.
Collapse
Affiliation(s)
- Margaret M Harnett
- Division of Immunology, Infection and Inflammation, University of Glasgow, Glasgow G11 6NT, UK.
| |
Collapse
|
28
|
Coleman ML, Marshall CJ, Olson MF. RAS and RHO GTPases in G1-phase cell-cycle regulation. Nat Rev Mol Cell Biol 2004; 5:355-66. [PMID: 15122349 DOI: 10.1038/nrm1365] [Citation(s) in RCA: 272] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mathew L Coleman
- Abramson Family Cancer Research Institute, BRB II/III, 421 Curie Boulevard, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6160, USA
| | | | | |
Collapse
|
29
|
Bonnefoy-Berard N, Aouacheria A, Verschelde C, Quemeneur L, Marçais A, Marvel J. Control of proliferation by Bcl-2 family members. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1644:159-68. [PMID: 14996500 DOI: 10.1016/j.bbamcr.2003.10.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2003] [Accepted: 10/10/2003] [Indexed: 01/05/2023]
Abstract
The anti-proliferative effect of Bcl-2 acts mainly at the level of the G0/G1 phase of the cell cycle. Deletions and point mutations in the bcl-2 gene show that the anti-proliferative activity of Bcl-2, can in some cases, be dissociated from its anti-apoptotic function. This indicates that the effect of Bcl-2 on cell cycle progression can be a direct effect and not only a consequence of its anti-apoptotic activity. Bcl-2 appears to mediate its anti-proliferative effect by acting on both signal transduction pathways (NFAT, ERK) and on specific cell cycle regulators (p27, p130).
Collapse
Affiliation(s)
- Nathalie Bonnefoy-Berard
- INSERM U503, Centre d'étude et de Recherche en Virologie et Immunologie, 21 Avenue Tony Garnier 69365 Lyon Cedex 07, France
| | | | | | | | | | | |
Collapse
|
30
|
Le Gallic L, Virgilio L, Cohen P, Biteau B, Mavrothalassitis G. ERF nuclear shuttling, a continuous monitor of Erk activity that links it to cell cycle progression. Mol Cell Biol 2004; 24:1206-18. [PMID: 14729966 PMCID: PMC321421 DOI: 10.1128/mcb.24.3.1206-1218.2004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ets domain transcriptional repressor ERF is an effector of the receptor tyrosine kinase/Ras/Erk pathway, which, it has been suggested, is regulated by subcellular localization as a result of Erk-dependent phosphorylation and is capable of suppressing cell proliferation and ras-induced tumorigenicity. Here, we analyze the effect of ERF phosphorylation on nuclear import and export, the timing of its phosphorylation and dephosphorylation in relation to its subcellular location, Erk activity, and the requirements for ERF-induced cell cycle arrest. Our findings indicate that ERF continuously shuttles between the nucleus and the cytoplasm and that both phosphorylation and dephosphorylation of ERF occur within the nucleus. While nuclear import is not affected by phosphorylation, ERF nuclear export and cytoplasmic release require multisite phosphorylation and dephosphorylation. ERF export is CRM1 dependent, although ERF does not have a detectable nuclear export signal. ERF phosphorylation and export correlate with the levels of nuclear Erk activity. The cell cycle arrest induced by nonphosphorylated ERF requires the wild-type retinoblastoma protein and can be suppressed by overexpression of cyclin. These data suggest that ERF may be a very sensitive and constant sensor of Erk activity that can affect cell cycle progression through G(1), providing another link between the Ras/Erk pathway and cellular proliferation.
Collapse
|