1
|
van Belle GJ, Zieseniss A, Heidenreich D, Olmos M, Zhuikova A, Möbius W, Paul MW, Katschinski DM. Cargo-specific effects of hypoxia on clathrin-mediated trafficking. Pflugers Arch 2024; 476:1399-1410. [PMID: 38294517 PMCID: PMC11310247 DOI: 10.1007/s00424-024-02911-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/18/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
Clathrin-associated trafficking is a major mechanism for intracellular communication, as well as for cells to communicate with the extracellular environment. A decreased oxygen availability termed hypoxia has been described to influence this mechanism in the past. Mostly biochemical studies were applied in these analyses, which miss spatiotemporal information. We have applied live cell microscopy and a newly developed analysis script in combination with a GFP-tagged clathrin-expressing cell line to obtain insight into the dynamics of the effect of hypoxia. Number, mobility and directionality of clathrin-coated vesicles were analysed in non-stimulated cells as well as after stimulation with epidermal growth factor (EGF) or transferrin in normoxic and hypoxic conditions. These data reveal cargo-specific effects, which would not be observable with biochemical methods or with fixed cells and add to the understanding of cell physiology in hypoxia. The stimulus-dependent consequences were also reflected in the final cellular output, i.e. decreased EGF signaling and in contrast increased iron uptake in hypoxia.
Collapse
Affiliation(s)
- Gijsbert J van Belle
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August University, 37073, Göttingen, Germany
| | - Anke Zieseniss
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August University, 37073, Göttingen, Germany
| | - Doris Heidenreich
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August University, 37073, Göttingen, Germany
| | - Maxime Olmos
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August University, 37073, Göttingen, Germany
| | - Asia Zhuikova
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August University, 37073, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Electron Microscopy, City Campus, Max-Planck-Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany
| | - Maarten W Paul
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Dörthe M Katschinski
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August University, 37073, Göttingen, Germany.
| |
Collapse
|
2
|
Ma L, Kasula RK, Ouyang Q, Schmidt M, Morrow EM. GGA1 interacts with the endosomal Na+/H+ exchanger NHE6 governing localization to the endosome compartment. J Biol Chem 2024; 300:107552. [PMID: 39002678 PMCID: PMC11375261 DOI: 10.1016/j.jbc.2024.107552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/15/2024] Open
Abstract
Mutations in the endosomal Na+/H+ exchanger 6 (NHE6) cause Christianson syndrome, an X-linked neurological disorder. NHE6 functions in regulation of endosome acidification and maturation in neurons. Using yeast two-hybrid screening with the NHE6 carboxyl terminus as bait, we identify Golgi-associated, gamma adaptin ear-containing, ADP-ribosylation factor (ARF) binding protein 1 (GGA1) as an interacting partner for NHE6. We corroborated the NHE6-GGA1 interaction using: coimmunoprecipitation; overexpressed constructs in mammalian cells; and coimmunoprecipitation of endogenously expressed GGA1 and NHE6 from neuroblastoma cells, as well as from the mouse brain. We demonstrate that GGA1 interacts with organellar NHEs (NHE6, NHE7, and NHE9) and that there is significantly less interaction with cell-surface localized NHEs (NHE1 and NHE5). By constructing hybrid NHE1/NHE6 exchangers, we demonstrate the cytoplasmic tail of NHE6 interacts most strongly with GGA1. We demonstrate the colocalization of NHE6 and GGA1 in cultured, primary hippocampal neurons, using super-resolution microscopy. We test the hypothesis that the interaction of NHE6 and GGA1 functions in the localization of NHE6 to the endosome compartment. Using subcellular fractionation experiments, we show that NHE6 is mislocalized in GGA1 KO cells, wherein we find less NHE6 in endosomes, but more NHE6 transport to lysosomes, and more Golgi retention of NHE6, with increased exocytosis to the surface plasma membrane. Consistent with NHE6 mislocalization, and Golgi retention, we find the intraluminal pH in Golgi to be alkalinized in GGA1-null cells. Our study demonstrates a new interaction between NHE6 and GGA1 which functions in the localization of this intracellular NHE to the endosome compartment.
Collapse
Affiliation(s)
- Li Ma
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA; Center for Translational Neuroscience, Brown University, Providence, Rhode Island, USA
| | - Ravi Kiran Kasula
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA; Center for Translational Neuroscience, Brown University, Providence, Rhode Island, USA
| | - Qing Ouyang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA; Center for Translational Neuroscience, Brown University, Providence, Rhode Island, USA
| | - Michael Schmidt
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA; Center for Translational Neuroscience, Brown University, Providence, Rhode Island, USA
| | - Eric M Morrow
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA; Center for Translational Neuroscience, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
3
|
Tavares LA, Rodrigues RL, Santos da Costa C, Nascimento JA, Vargas de Carvalho J, Nogueira de Carvalho A, Mardones GA, daSilva LLP. AP-1γ2 is an adaptor protein 1 variant required for endosome-to-Golgi trafficking of the mannose-6-P receptor (CI-MPR) and ATP7B copper transporter. J Biol Chem 2024; 300:105700. [PMID: 38307383 PMCID: PMC10909764 DOI: 10.1016/j.jbc.2024.105700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/04/2024] Open
Abstract
Selective retrograde transport from endosomes back to the trans-Golgi network (TGN) is important for maintaining protein homeostasis, recycling receptors, and returning molecules that were transported to the wrong compartments. Two important transmembrane proteins directed to this pathway are the Cation-Independent Mannose-6-phosphate receptor (CI-MPR) and the ATP7B copper transporter. Among CI-MPR functions is the delivery of acid hydrolases to lysosomes, while ATP7B facilitates the transport of cytosolic copper ions into organelles or the extracellular space. Precise subcellular localization of CI-MPR and ATP7B is essential for the proper functioning of these proteins. This study shows that both CI-MPR and ATP7B interact with a variant of the clathrin adaptor 1 (AP-1) complex that contains a specific isoform of the γ-adaptin subunit called γ2. Through synchronized anterograde trafficking and cell-surface uptake assays, we demonstrated that AP-1γ2 is dispensable for ATP7B and CI-MPR exit from the TGN while being critically required for ATP7B and CI-MPR retrieval from endosomes to the TGN. Moreover, AP-1γ2 depletion leads to the retention of endocytosed CI-MPR in endosomes enriched in retromer complex subunits. These data underscore the importance of AP-1γ2 as a key component in the sorting and trafficking machinery of CI-MPR and ATP7B, highlighting its essential role in the transport of proteins from endosomes.
Collapse
Affiliation(s)
- Lucas Alves Tavares
- Center for Virology Research and Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Roger Luiz Rodrigues
- Center for Virology Research and Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Cristina Santos da Costa
- Center for Virology Research and Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jonas Alburqueque Nascimento
- Center for Virology Research and Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Julianne Vargas de Carvalho
- Center for Virology Research and Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Andreia Nogueira de Carvalho
- Center for Virology Research and Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gonzalo A Mardones
- Escuela de Medicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - Luis L P daSilva
- Center for Virology Research and Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
4
|
Ma L, Kasula RK, Ouyang Q, Schmidt M, Morrow EM. GGA1 interacts with the endosomal Na+/H+ Exchanger NHE6 governing localization to the endosome compartment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.565997. [PMID: 37986849 PMCID: PMC10659387 DOI: 10.1101/2023.11.08.565997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Mutations in the endosomal Na+/H+ exchanger (NHE6) cause Christianson syndrome (CS), an X-linked neurological disorder. Previous studies have shown that NHE6 functions in regulation of endosome acidification and maturation in neurons. Using yeast two-hybrid screening with the NHE6 carboxyl-terminus as bait, we identify Golgi-associated, Gamma adaptin ear containing, ARF binding protein 1 (GGA1) as an interacting partner for NHE6. We corroborated the NHE6-GGA1 interaction using co-immunoprecipitation (co-IP): using over-expressed constructs in mammalian cells; and co-IP of endogenously-expressed GGA1 and NHE6 from neuroblastoma cells, as well as from mouse brain. We demonstrate that GGA1 interacts with organellar NHEs (NHE6, NHE7 and NHE9) but not with cell-surface localized NHEs (NHE1 and NHE5). By constructing hybrid NHE1/NHE6 exchangers, we demonstrate that the cytoplasmic tail of NHE6 is necessary and sufficient for interactions with GGA1. We demonstrate the co-localization of NHE6 and GGA1 in cultured, primary hippocampal neurons, using super-resolution microscopy. We test the hypothesis that the interaction of NHE6 and GGA1 functions in the localization of NHE6 to the endosome compartment. Using subcellular fractionation experiments, we show that NHE6 is mis-localized in GGA1 knockout cells wherein we find less NHE6 in endosomes but more NHE6 transport to lysosomes, and more Golgi retention of NHE6 with increased exocytosis to the surface plasma membrane. Consistent with NHE6 mis-localization, and Golgi retention, we find the intra-luminal pH in Golgi to be alkalinized. Our study demonstrates a new interaction between NHE6 and GGA1 which functions in the localization of this intra-cellular NHE to the endosome compartment.
Collapse
|
5
|
Pazos I, Puig‐Tintó M, Betancur L, Cordero J, Jiménez‐Menéndez N, Abella M, Hernández AC, Duran AG, Adachi‐Fernández E, Belmonte‐Mateos C, Sabido‐Bozo S, Tosi S, Nezu A, Oliva B, Colombelli J, Graham TR, Yoshimori T, Muñiz M, Hamasaki M, Gallego O. The P4-ATPase Drs2 interacts with and stabilizes the multisubunit tethering complex TRAPPIII in yeast. EMBO Rep 2023; 24:e56134. [PMID: 36929574 PMCID: PMC10157312 DOI: 10.15252/embr.202256134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 03/17/2023] Open
Abstract
Multisubunit Tethering Complexes (MTCs) are a set of conserved protein complexes that tether vesicles at the acceptor membrane. Interactions with other components of the trafficking machinery regulate MTCs through mechanisms that are partially understood. Here, we systematically investigate the interactome that regulates MTCs. We report that P4-ATPases, a family of lipid flippases, interact with MTCs that participate in the anterograde and retrograde transport at the Golgi, such as TRAPPIII. We use the P4-ATPase Drs2 as a paradigm to investigate the mechanism and biological relevance of this interplay during transport of Atg9 vesicles. Binding of Trs85, the sole-specific subunit of TRAPPIII, to the N-terminal tail of Drs2 stabilizes TRAPPIII on membranes loaded with Atg9 and is required for Atg9 delivery during selective autophagy, a role that is independent of P4-ATPase canonical functions. This mechanism requires a conserved I(S/R)TTK motif that also mediates the interaction of the P4-ATPases Dnf1 and Dnf2 with MTCs, suggesting a broader role of P4-ATPases in MTC regulation.
Collapse
Affiliation(s)
- Irene Pazos
- Department of Medicine and Life Sciences (MELIS)Pompeu Fabra University (UPF)BarcelonaSpain
| | - Marta Puig‐Tintó
- Department of Medicine and Life Sciences (MELIS)Pompeu Fabra University (UPF)BarcelonaSpain
| | - Laura Betancur
- Department of Medicine and Life Sciences (MELIS)Pompeu Fabra University (UPF)BarcelonaSpain
| | - Jorge Cordero
- Department of Medicine and Life Sciences (MELIS)Pompeu Fabra University (UPF)BarcelonaSpain
| | | | - Marc Abella
- Department of Medicine and Life Sciences (MELIS)Pompeu Fabra University (UPF)BarcelonaSpain
| | - Altair C Hernández
- Department of Medicine and Life Sciences (MELIS)Pompeu Fabra University (UPF)BarcelonaSpain
| | - Ana G Duran
- Department of Medicine and Life Sciences (MELIS)Pompeu Fabra University (UPF)BarcelonaSpain
| | - Emi Adachi‐Fernández
- Department of Medicine and Life Sciences (MELIS)Pompeu Fabra University (UPF)BarcelonaSpain
| | - Carla Belmonte‐Mateos
- Department of Medicine and Life Sciences (MELIS)Pompeu Fabra University (UPF)BarcelonaSpain
| | - Susana Sabido‐Bozo
- Department of Cell BiologyUniversity of SevilleSevilleSpain
- Instituto de Biomedicina de Sevilla (IBiS)Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevilleSpain
| | - Sébastien Tosi
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Akiko Nezu
- Department of Genetics, Graduate School of MedicineOsaka UniversityOsakaJapan
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier BiosciencesOsaka UniversityOsakaJapan
| | - Baldomero Oliva
- Department of Medicine and Life Sciences (MELIS)Pompeu Fabra University (UPF)BarcelonaSpain
- Structural Bioinformatics Lab (GRIB‐IMIM)BarcelonaSpain
| | - Julien Colombelli
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Todd R Graham
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of MedicineOsaka UniversityOsakaJapan
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier BiosciencesOsaka UniversityOsakaJapan
| | - Manuel Muñiz
- Department of Cell BiologyUniversity of SevilleSevilleSpain
- Instituto de Biomedicina de Sevilla (IBiS)Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevilleSpain
| | - Maho Hamasaki
- Department of Genetics, Graduate School of MedicineOsaka UniversityOsakaJapan
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier BiosciencesOsaka UniversityOsakaJapan
| | - Oriol Gallego
- Department of Medicine and Life Sciences (MELIS)Pompeu Fabra University (UPF)BarcelonaSpain
| |
Collapse
|
6
|
Nakano A. The Golgi Apparatus and its Next-Door Neighbors. Front Cell Dev Biol 2022; 10:884360. [PMID: 35573670 PMCID: PMC9096111 DOI: 10.3389/fcell.2022.884360] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/28/2022] [Indexed: 12/20/2022] Open
Abstract
The Golgi apparatus represents a central compartment of membrane traffic. Its apparent architecture, however, differs considerably among species, from unstacked and scattered cisternae in the budding yeast Saccharomyces cerevisiae to beautiful ministacks in plants and further to gigantic ribbon structures typically seen in mammals. Considering the well-conserved functions of the Golgi, its fundamental structure must have been optimized despite seemingly different architectures. In addition to the core layers of cisternae, the Golgi is usually accompanied by next-door compartments on its cis and trans sides. The trans-Golgi network (TGN) can be now considered as a compartment independent from the Golgi stack. On the cis side, the intermediate compartment between the ER and the Golgi (ERGIC) has been known in mammalian cells, and its functional equivalent is now suggested for yeast and plant cells. High-resolution live imaging is extremely powerful for elucidating the dynamics of these compartments and has revealed amazing similarities in their behaviors, indicating common mechanisms conserved along the long course of evolution. From these new findings, I would like to propose reconsideration of compartments and suggest a new concept to describe their roles comprehensively around the Golgi and in the post-Golgi trafficking.
Collapse
|
7
|
Casler JC, Johnson N, Krahn AH, Pantazopoulou A, Day KJ, Glick BS. Clathrin adaptors mediate two sequential pathways of intra-Golgi recycling. J Cell Biol 2022; 221:212747. [PMID: 34739034 PMCID: PMC8576872 DOI: 10.1083/jcb.202103199] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/16/2021] [Accepted: 10/26/2021] [Indexed: 01/11/2023] Open
Abstract
The pathways of membrane traffic within the Golgi apparatus are not fully known. This question was addressed using the yeast Saccharomyces cerevisiae, in which the maturation of individual Golgi cisternae can be visualized. We recently proposed that the AP-1 clathrin adaptor mediates intra-Golgi recycling late in the process of cisternal maturation. Here, we demonstrate that AP-1 cooperates with the Ent5 clathrin adaptor to recycle a set of Golgi transmembrane proteins, including some that were previously thought to pass through endosomes. This recycling can be detected by removing AP-1 and Ent5, thereby diverting the AP-1/Ent5-dependent Golgi proteins into an alternative recycling loop that involves traffic to the plasma membrane followed by endocytosis. Unexpectedly, various AP-1/Ent5-dependent Golgi proteins show either intermediate or late kinetics of residence in maturing cisternae. We infer that the AP-1/Ent5 pair mediates two sequential intra-Golgi recycling pathways that define two classes of Golgi proteins. This insight can explain the polarized distribution of transmembrane proteins in the Golgi.
Collapse
Affiliation(s)
- Jason C Casler
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL
| | - Natalie Johnson
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL
| | - Adam H Krahn
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL
| | - Areti Pantazopoulou
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL
| | - Kasey J Day
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL
| | - Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL
| |
Collapse
|
8
|
Dickens JA, Rutherford EN, Abreu S, Chambers JE, Ellis MO, van Schadewijk A, Hiemstra PS, Marciniak SJ. Novel insights into surfactant protein C trafficking revealed through the study of a pathogenic mutant. Eur Respir J 2022; 59:2100267. [PMID: 34049951 PMCID: PMC8792467 DOI: 10.1183/13993003.00267-2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/16/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Alveolar epithelial cell dysfunction plays an important role in the pathogenesis of idiopathic pulmonary fibrosis (IPF), but remains incompletely understood. Some monogenic forms of pulmonary fibrosis are associated with expression of mutant surfactant protein C (SFTPC). The commonest pathogenic mutant, I73T, mislocalises to the alveolar epithelial cell plasma membrane and displays a toxic gain of function. Because the mechanisms explaining the link between this mutant and IPF are incompletely understood, we sought to interrogate SFTPC trafficking in health and disease to understand the functional significance of SFTPC-I73T relocalisation. METHODS We performed mechanistic analysis of SFTPC trafficking in a cell model that reproduces the in vivo phenotype and validated findings in human primary alveolar organoids. RESULTS We show that wild-type SFTPC takes an unexpected indirect trafficking route via the plasma membrane and undergoes the first of multiple cleavage events before reaching the multivesicular body (MVB) for further processing. SFTPC-I73T takes this same route, but its progress is retarded both at the cell surface and due to failure of trafficking into the MVB. Unable to undergo onward trafficking, it is recycled to the plasma membrane as a partially cleaved intermediate. CONCLUSION These data show for the first time that all SFTPC transits the cell surface during normal trafficking, and the I73T mutation accumulates at the cell surface through both retarded trafficking and active recycling. This understanding of normal SFTPC trafficking and how the I73T mutant disturbs it provides novel insight into SFTPC biology in health and disease, and in the contribution of the SFTPC mutant to IPF development.
Collapse
Affiliation(s)
| | | | - Susana Abreu
- Cambridge Institute for Medical Research, Cambridge, UK
| | | | | | | | - Pieter S Hiemstra
- Dept of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
9
|
Wan C, Crisman L, Wang B, Tian Y, Wang S, Yang R, Datta I, Nomura T, Li S, Yu H, Yin Q, Shen J. AAGAB is an assembly chaperone regulating AP1 and AP2 clathrin adaptors. J Cell Sci 2021; 134:272394. [PMID: 34494650 DOI: 10.1242/jcs.258587] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/31/2021] [Indexed: 11/20/2022] Open
Abstract
Multimeric cargo adaptors such as AP2 play central roles in intracellular membrane trafficking. We recently discovered that the assembly of the AP2 adaptor complex, a key player in clathrin-mediated endocytosis, is a highly organized process controlled by alpha- and gamma-adaptin-binding protein (AAGAB, also known as p34). In this study, we demonstrate that besides AP2, AAGAB also regulates the assembly of AP1, a cargo adaptor involved in clathrin-mediated transport between the trans-Golgi network and the endosome. However, AAGAB is not involved in the formation of other adaptor complexes, including AP3. AAGAB promotes AP1 assembly by binding and stabilizing the γ and σ subunits of AP1, and its mutation abolishes AP1 assembly and disrupts AP1-mediated cargo trafficking. Comparative proteomic analyses indicate that AAGAB mutation massively alters surface protein homeostasis, and its loss-of-function phenotypes reflect the synergistic effects of AP1 and AP2 deficiency. Taken together, these findings establish AAGAB as an assembly chaperone for both AP1 and AP2 adaptors and pave the way for understanding the pathogenesis of AAGAB-linked diseases.
Collapse
Affiliation(s)
- Chun Wan
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Lauren Crisman
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Bing Wang
- Department of Biological Sciences and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Yuan Tian
- Department of Biological Sciences and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Shifeng Wang
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Rui Yang
- Department of Biological Sciences and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Ishara Datta
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Toshifumi Nomura
- Department of Dermatology, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Suzhao Li
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Haijia Yu
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Qian Yin
- Department of Biological Sciences and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Jingshi Shen
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
10
|
Liu CCS, Cheung PW, Dinesh A, Baylor N, Paunescu TC, Nair AV, Bouley R, Brown D. Actin-related protein 2/3 complex plays a critical role in the aquaporin-2 exocytotic pathway. Am J Physiol Renal Physiol 2021; 321:F179-F194. [PMID: 34180716 PMCID: PMC8424666 DOI: 10.1152/ajprenal.00015.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The trafficking of proteins such as aquaporin-2 (AQP2) in the exocytotic pathway requires an active actin cytoskeleton network, but the mechanism is incompletely understood. Here, we show that the actin-related protein (Arp)2/3 complex, a key factor in actin filament branching and polymerization, is involved in the shuttling of AQP2 between the trans-Golgi network (TGN) and the plasma membrane. Arp2/3 inhibition (using CK-666) or siRNA knockdown blocks vasopressin-induced AQP2 membrane accumulation and induces the formation of distinct AQP2 perinuclear patches positive for markers of TGN-derived clathrin-coated vesicles. After a 20°C cold block, AQP2 formed perinuclear patches due to continuous endocytosis coupled with inhibition of exit from TGN-associated vesicles. Upon rewarming, AQP2 normally leaves the TGN and redistributes into the cytoplasm, entering the exocytotic pathway. Inhibition of Arp2/3 blocked this process and trapped AQP2 in clathrin-positive vesicles. Taken together, these results suggest that Arp2/3 is essential for AQP2 trafficking, specifically for its delivery into the post-TGN exocytotic pathway to the plasma membrane.NEW & NOTEWORTHY Aquaporin-2 (AQP2) undergoes constitutive recycling between the cytoplasm and plasma membrane, with an intricate balance between endocytosis and exocytosis. By inhibiting the actin-related protein (Arp)2/3 complex, we prevented AQP2 from entering the exocytotic pathway at the post-trans-Golgi network level and blocked AQP2 membrane accumulation. Arp2/3 inhibition, therefore, enables us to separate and target the exocytotic process, while not affecting endocytosis, thus allowing us to envisage strategies to modulate AQP2 trafficking and treat water balance disorders.
Collapse
Affiliation(s)
- Chen-Chung Steven Liu
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Pui Wen Cheung
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anupama Dinesh
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Noah Baylor
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Theodor C. Paunescu
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anil V. Nair
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Richard Bouley
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dennis Brown
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
11
|
Ristovski M, Farhat D, Bancud SEM, Lee JY. Lipid Transporters Beam Signals from Cell Membranes. MEMBRANES 2021; 11:562. [PMID: 34436325 PMCID: PMC8399137 DOI: 10.3390/membranes11080562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022]
Abstract
Lipid composition in cellular membranes plays an important role in maintaining the structural integrity of cells and in regulating cellular signaling that controls functions of both membrane-anchored and cytoplasmic proteins. ATP-dependent ABC and P4-ATPase lipid transporters, two integral membrane proteins, are known to contribute to lipid translocation across the lipid bilayers on the cellular membranes. In this review, we will highlight current knowledge about the role of cholesterol and phospholipids of cellular membranes in regulating cell signaling and how lipid transporters participate this process.
Collapse
Affiliation(s)
- Miliça Ristovski
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (M.R.); (D.F.); (S.E.M.B.)
- Translational and Molecular Medicine Program, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Danny Farhat
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (M.R.); (D.F.); (S.E.M.B.)
- Biomedical Sciences Program, Faculty of Science, University of Ottawa, Ottawa, ON K1H 6N5, Canada
| | - Shelly Ellaine M. Bancud
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (M.R.); (D.F.); (S.E.M.B.)
- Translational and Molecular Medicine Program, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jyh-Yeuan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (M.R.); (D.F.); (S.E.M.B.)
| |
Collapse
|
12
|
Ma CIJ, Burgess J, Brill JA. Maturing secretory granules: Where secretory and endocytic pathways converge. Adv Biol Regul 2021; 80:100807. [PMID: 33866198 DOI: 10.1016/j.jbior.2021.100807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
Secretory granules (SGs) are specialized organelles responsible for the storage and regulated release of various biologically active molecules from the endocrine and exocrine systems. Thus, proper SG biogenesis is critical to normal animal physiology. Biogenesis of SGs starts at the trans-Golgi network (TGN), where immature SGs (iSGs) bud off and undergo maturation before fusing with the plasma membrane (PM). How iSGs mature is unclear, but emerging studies have suggested an important role for the endocytic pathway. The requirement for endocytic machinery in SG maturation blurs the line between SGs and another class of secretory organelles called lysosome-related organelles (LROs). Therefore, it is important to re-evaluate the differences and similarities between SGs and LROs.
Collapse
Affiliation(s)
- Cheng-I Jonathan Ma
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, Room 15.9716, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Medical Sciences Building, Room 2374, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Jason Burgess
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, Room 15.9716, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Medical Sciences Building, Room 4396, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Julie A Brill
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, Room 15.9716, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Medical Sciences Building, Room 2374, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Medical Sciences Building, Room 4396, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
13
|
Casler JC, Glick BS. A microscopy-based kinetic analysis of yeast vacuolar protein sorting. eLife 2020; 9:56844. [PMID: 32584255 PMCID: PMC7338053 DOI: 10.7554/elife.56844] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/23/2020] [Indexed: 12/25/2022] Open
Abstract
Saccharomyces cerevisiae is amenable to studying membrane traffic by live-cell fluorescence microscopy. We used this system to explore two aspects of cargo protein traffic through prevacuolar endosome (PVE) compartments to the vacuole. First, at what point during Golgi maturation does a biosynthetic vacuolar cargo depart from the maturing cisternae? To address this question, we modified a regulatable fluorescent secretory cargo by adding a vacuolar targeting signal. Traffic of the vacuolar cargo requires the GGA clathrin adaptors, which arrive during the early-to-late Golgi transition. Accordingly, the vacuolar cargo begins to exit the Golgi near the midpoint of maturation, significantly before exit of a secretory cargo. Second, how are cargoes delivered from PVE compartments to the vacuole? To address this question, we tracked biosynthetic and endocytic cargoes after they had accumulated in PVE compartments. The results suggest that stable PVE compartments repeatedly deliver material to the vacuole by a kiss-and-run mechanism.
Collapse
Affiliation(s)
- Jason C Casler
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States
| | - Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States
| |
Collapse
|
14
|
Rópolo AS, Feliziani C, Touz MC. Unusual proteins in Giardia duodenalis and their role in survival. ADVANCES IN PARASITOLOGY 2019; 106:1-50. [PMID: 31630755 DOI: 10.1016/bs.apar.2019.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The capacity of the parasite Giardia duodenalis to perform complex functions with minimal amounts of proteins and organelles has attracted increasing numbers of scientists worldwide, trying to explain how this parasite adapts to internal and external changes to survive. One explanation could be that G. duodenalis evolved from a structurally complex ancestor by reductive evolution, resulting in adaptation to its parasitic lifestyle. Reductive evolution involves the loss of genes, organelles, and functions that commonly occur in many parasites, by which the host renders some structures and functions redundant. However, there is increasing data that Giardia possesses proteins able to perform more than one function. During recent decades, the concept of moonlighting was described for multitasking proteins, which involves only proteins with an extra independent function(s). In this chapter, we provide an overview of unusual proteins in Giardia that present multifunctional properties depending on the location and/or parasite requirement. We also discuss experimental evidence that may allow some giardial proteins to be classified as moonlighting proteins by examining the properties of moonlighting proteins in general. Up to date, Giardia does not seem to require the numerous redundant proteins present in other organisms to accomplish its normal functions, and thus this parasite may be an appropriate model for understanding different aspects of moonlighting proteins, which may be helpful in the design of drug targets.
Collapse
Affiliation(s)
- Andrea S Rópolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Constanza Feliziani
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María C Touz
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
15
|
Makowski SL, Kuna RS, Field SJ. Induction of membrane curvature by proteins involved in Golgi trafficking. Adv Biol Regul 2019; 75:100661. [PMID: 31668661 PMCID: PMC7056495 DOI: 10.1016/j.jbior.2019.100661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 12/22/2022]
Abstract
The Golgi apparatus serves a key role in processing and sorting lipids and proteins for delivery to their final cellular destinations. Vesicle exit from the Golgi initiates with directional deformation of the lipid bilayer to produce a bulge. Several mechanisms have been described by which lipids and proteins can induce directional membrane curvature to promote vesicle budding. Here we review some of the mechanisms implicated in inducing membrane curvature at the Golgi to promote vesicular trafficking to various cellular destinations.
Collapse
Affiliation(s)
- Stefanie L Makowski
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ramya S Kuna
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Seth J Field
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
16
|
Pantazopoulou A, Glick BS. A Kinetic View of Membrane Traffic Pathways Can Transcend the Classical View of Golgi Compartments. Front Cell Dev Biol 2019; 7:153. [PMID: 31448274 PMCID: PMC6691344 DOI: 10.3389/fcell.2019.00153] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/22/2019] [Indexed: 01/07/2023] Open
Abstract
A long-standing assumption is that the cisternae of the Golgi apparatus can be grouped into functionally distinct compartments, yet the molecular identities of those compartments have not been clearly described. The concept of a compartmentalized Golgi is challenged by the cisternal maturation model, which postulates that cisternae form de novo and then undergo progressive biochemical changes. Cisternal maturation can potentially be reconciled with Golgi compartmentation by defining compartments as discrete kinetic stages in the maturation process. These kinetic stages are distinguished by the traffic pathways that are operating. For example, a major transition occurs when a cisterna stops producing COPI vesicles and begins producing clathrin-coated vesicles. This transition separates one kinetic stage, the "early Golgi," from a subsequent kinetic stage, the "late Golgi" or "trans-Golgi network (TGN)." But multiple traffic pathways drive Golgi maturation, and the periods of operation for different traffic pathways can partially overlap, so there is no simple way to define a full set of Golgi compartments in terms of kinetic stages. Instead, we propose that the focus should be on the series of transitions experienced by a Golgi cisterna as various traffic pathways are switched on and off. These traffic pathways drive changes in resident transmembrane protein composition. Transitions in traffic pathways seem to be the fundamental, conserved determinants of Golgi organization. According to this view, the initial goal is to identify the relevant traffic pathways and place them on the kinetic map of Golgi maturation, and the ultimate goal is to elucidate the logic circuit that switches individual traffic pathways on and off as a cisterna matures.
Collapse
Affiliation(s)
- Areti Pantazopoulou
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
| | - Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
17
|
Yanguas F, Moscoso-Romero E, Valdivieso MH. Ent3 and GGA adaptors facilitate diverse anterograde and retrograde trafficking events to and from the prevacuolar endosome. Sci Rep 2019; 9:10747. [PMID: 31341193 PMCID: PMC6656748 DOI: 10.1038/s41598-019-47035-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/09/2019] [Indexed: 11/09/2022] Open
Abstract
Carboxypeptidases Y (Cpy1) and S (Cps1), the receptor Vps10, and the ATPase subunit Vph1 follow the carboxypeptidase Y (CPY) pathway from the trans-Golgi network (TGN) to the prevacuolar endosome (PVE). Using Schizosaccharomyces pombe quantitative live-cell imaging, biochemical and genetic analyses, we extended the previous knowledge and showed that collaboration between Gga22, the dominant Golgi-localized Gamma-ear-containing ARF-binding (GGA) protein, and Gga21, and between Gga22 and the endosomal epsin Ent3, was required for efficient: i) Vps10 anterograde trafficking from the TGN to the PVE; ii) Vps10 retrograde trafficking from the PVE to the TGN; iii) Cps1 exit from the TGN, and its sorting in the PVE en route to the vacuole; and iv) Syb1/Snc1 recycling to the plasma membrane through the PVE. Therefore, monomeric clathrin adaptors facilitated the trafficking of Vps10 in both directions of the CPY pathway, and facilitated trafficking events of Cps1 in different organelles. By contrast, they were dispensable for Vph1 trafficking. Thus, these adaptors regulated the traffic of some, but not all, of the cargo of the CPY pathway, and regulated the traffic of cargoes that do not follow this pathway. Additionally, this collaboration was required for PVE organization and efficient growth under stress.
Collapse
Affiliation(s)
- Francisco Yanguas
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.,Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Calle Zacarías González 2, 37007, Salamanca, Spain
| | - Esteban Moscoso-Romero
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.,Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Calle Zacarías González 2, 37007, Salamanca, Spain
| | - M-Henar Valdivieso
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain. .,Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Calle Zacarías González 2, 37007, Salamanca, Spain.
| |
Collapse
|
18
|
Abstract
In eukaryotes, TORC1/MTORC1 is a critical regulator of growth and proliferation. In response to nutrient abundance TORC1/MTORC1 favors anabolic processes and retards degradative ones. In S. cerevisiae, TORC1 is conventionally known to localize on the vacuolar membrane. In the course of their recent investigations, Hatakeyama et al. discovered a novel second site of TORC1 localization- the prevacuolar endosome. Their article, highlighted here, discusses the mechanism of TORC1 localization to the prevacuolar endosome and highlights a hitherto unappreciated mechanism by which 2 spatially separated pools of TORC1 execute the distinct functions of promoting anabolism and inhibiting degradation.
Collapse
Affiliation(s)
- Vikramjit Lahiri
- a Life Sciences Institute, and Department of Molecular, Cellular and Developmental Biology , University of Michigan , Ann Arbor , MI , USA
| | - Daniel J Klionsky
- a Life Sciences Institute, and Department of Molecular, Cellular and Developmental Biology , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
19
|
Spatially Distinct Pools of TORC1 Balance Protein Homeostasis. Mol Cell 2019; 73:325-338.e8. [DOI: 10.1016/j.molcel.2018.10.040] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/03/2018] [Accepted: 10/25/2018] [Indexed: 11/19/2022]
|
20
|
Intracellular Delivery: An Overview. TARGETED INTRACELLULAR DRUG DELIVERY BY RECEPTOR MEDIATED ENDOCYTOSIS 2019. [DOI: 10.1007/978-3-030-29168-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
21
|
Saraste J, Marie M. Intermediate compartment (IC): from pre-Golgi vacuoles to a semi-autonomous membrane system. Histochem Cell Biol 2018; 150:407-430. [PMID: 30173361 PMCID: PMC6182704 DOI: 10.1007/s00418-018-1717-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2018] [Indexed: 12/19/2022]
Abstract
Despite its discovery more than three decades ago and well-established role in protein sorting and trafficking in the early secretory pathway, the intermediate compartment (IC) has remained enigmatic. The prevailing view is that the IC evolved as a specialized organelle to mediate long-distance endoplasmic reticulum (ER)–Golgi communication in metazoan cells, but is lacking in other eukaryotes, such as plants and fungi. However, this distinction is difficult to reconcile with the high conservation of the core machineries that regulate early secretory trafficking from yeast to man. Also, it has remained unclear whether the pleiomorphic IC components—vacuoles, tubules and vesicles—represent transient transport carriers or building blocks of a permanent pre-Golgi organelle. Interestingly, recent studies have revealed that the IC maintains its compositional, structural and spatial properties throughout the cell cycle, supporting a model that combines the dynamic and stable aspects of the organelle. Moreover, the IC has been assigned novel functions, such as cell signaling, Golgi-independent trafficking and autophagy. The emerging permanent nature of the IC and its connections with the centrosome and the endocytic recycling system encourage reconsideration of its relationship with the Golgi ribbon, role in Golgi biogenesis and ubiquitous presence in eukaryotic cells.
Collapse
Affiliation(s)
- Jaakko Saraste
- Department of Biomedicine and Molecular Imaging Center (MIC), University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| | - Michaël Marie
- Department of Biomedicine and Molecular Imaging Center (MIC), University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
| |
Collapse
|
22
|
UEMURA T, SAWADA N, SAKABA T, KAMETAKA S, YAMAMOTO M, WAGURI S. Intracellular localization of GGA accessory protein p56 in cell lines and central nervous system neurons . Biomed Res 2018; 39:179-187. [DOI: 10.2220/biomedres.39.179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Takefumi UEMURA
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine
| | - Naoki SAWADA
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine
| | - Takao SAKABA
- Department of Plastic and Reconstructive Surgery, Fukushima Medical University School of Medicine
| | - Satoshi KAMETAKA
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine
| | - Masaya YAMAMOTO
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine
| | - Satoshi WAGURI
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine
| |
Collapse
|
23
|
Day KJ, Casler JC, Glick BS. Budding Yeast Has a Minimal Endomembrane System. Dev Cell 2018; 44:56-72.e4. [PMID: 29316441 DOI: 10.1016/j.devcel.2017.12.014] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 12/01/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022]
Abstract
The endomembrane system consists of the secretory and endocytic pathways, which communicate by transport to and from the trans-Golgi network (TGN). In mammalian cells, the endocytic pathway includes early, late, and recycling endosomes. In budding yeast, different types of endosomes have been described, but the organization of the endocytic pathway has remained unclear. We performed a spatial and temporal analysis of yeast endosomal markers and endocytic cargoes. Our results indicate that the yeast TGN also serves as an early and recycling endosome. In addition, as previously described, yeast contains a late or prevacuolar endosome (PVE). Endocytic cargoes localize to the TGN shortly after internalization, and manipulations that perturb export from the TGN can slow the passage of endocytic cargoes to the PVE. Yeast apparently lacks a distinct early endosome. Thus, yeast has a simple endocytic pathway that may reflect the ancestral organization of the endomembrane system.
Collapse
Affiliation(s)
- Kasey J Day
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | - Jason C Casler
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | - Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
| |
Collapse
|
24
|
Schultzhaus Z, Johnson TB, Shaw BD. Clathrin localization and dynamics in Aspergillus nidulans. Mol Microbiol 2016; 103:299-318. [PMID: 27741567 DOI: 10.1111/mmi.13557] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2016] [Indexed: 12/15/2022]
Abstract
Cell growth necessitates extensive membrane remodeling events including vesicle fusion or fission, processes that are regulated by coat proteins. The hyphal cells of filamentous fungi concentrate both exocytosis and endocytosis at the apex. This investigation focuses on clathrin in Aspergillus nidulans, with the aim of understanding its role in membrane remodeling in growing hyphae. We examined clathrin heavy chain (ClaH-GFP) which localized to three distinct subcellular structures: late Golgi (trans-Golgi equivalents of filamentous fungi), which are concentrated just behind the hyphal tip but are intermittently present throughout all hyphal cells; the region of concentrated endocytosis just behind the hyphal apex (the "endocytic collar"); and small, rapidly moving puncta that were seen trafficking long distances in nearly all hyphal compartments. ClaH localized to distinct domains on late Golgi, and these clathrin "hubs" dispersed in synchrony after the late Golgi marker PHOSBP . Although clathrin was essential for growth, ClaH did not colocalize well with the endocytic patch marker fimbrin. Tests of FM4-64 internalization and repression of ClaH corroborated the observation that clathrin does not play an important role in endocytosis in A. nidulans. A minor portion of ClaH puncta exhibited bidirectional movement, likely along microtubules, but were generally distinct from early endosomes.
Collapse
Affiliation(s)
- Z Schultzhaus
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX, 77845, USA
| | - T B Johnson
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX, 77845, USA
| | - B D Shaw
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX, 77845, USA
| |
Collapse
|
25
|
Wang S, Ma Z, Xu X, Wang Z, Sun L, Zhou Y, Lin X, Hong W, Wang T. A role of Rab29 in the integrity of the trans-Golgi network and retrograde trafficking of mannose-6-phosphate receptor. PLoS One 2014; 9:e96242. [PMID: 24788816 PMCID: PMC4008501 DOI: 10.1371/journal.pone.0096242] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 04/07/2014] [Indexed: 11/18/2022] Open
Abstract
Rab29 (also referred as Rab7L1) is a novel Rab protein, and is recently demonstrated to regulate phagocytosis and traffic from the Golgi to the lysosome. However, its roles in membrane trafficking have not been investigated extensively. Our results in this study revealed that Rab29 is associated with the trans-Golgi network (TGN), and is essential for maintaining the integrity of the TGN, because inhibition of the activity of Rab29 or depletion of Rab29 resulted in fragmentation of the TGN marked by TGN46. Expression of the dominant negative form Rab29T21N or shRNA-Rab29 also altered the distribution of mannose-6-phosphate receptor (M6PR), and interrupted the retrograde trafficking of M6PR through monitoring the endocytosis of CD8-tagged calcium dependent M6PR (cdM6PR) or calcium independent M6PR (ciM6PR), but without significant effects on the anterograde trafficking of vesicular stomatitis virus G protein (VSV-G). Our results suggest that Rab29 is essential for the integrity of the TGN and participates in the retrograde trafficking of M6PRs.
Collapse
Affiliation(s)
- Shicong Wang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Zexu Ma
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Xiaohui Xu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Zhen Wang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Lixiang Sun
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Yunhe Zhou
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Xiaosi Lin
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Wanjin Hong
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Tuanlao Wang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
26
|
Holloway ZG, Velayos-Baeza A, Howell GJ, Levecque C, Ponnambalam S, Sztul E, Monaco AP. Trafficking of the Menkes copper transporter ATP7A is regulated by clathrin-, AP-2-, AP-1-, and Rab22-dependent steps. Mol Biol Cell 2013; 24:1735-48, S1-8. [PMID: 23596324 PMCID: PMC3667726 DOI: 10.1091/mbc.e12-08-0625] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
ATP7A mediates copper absorption and feeds cuproenzymes in the trans-Golgi network. To regulate copper homeostasis, ATP7A cycles between the TGN and plasma membrane. The roles of clathrin, adaptor complexes, lipid rafts, and Rab22a are assessed in an attempt to decipher the regulatory proteins involved in ATP7A cycling. The transporter ATP7A mediates systemic copper absorption and provides cuproenzymes in the trans-Golgi network (TGN) with copper. To regulate metal homeostasis, ATP7A constitutively cycles between the TGN and plasma membrane (PM). ATP7A trafficking to the PM is elevated in response to increased copper load and is reversed when copper concentrations are lowered. Molecular mechanisms underlying this trafficking are poorly understood. We assess the role of clathrin, adaptor complexes, lipid rafts, and Rab22a in an attempt to decipher the regulatory proteins involved in ATP7A cycling. While RNA interference (RNAi)–mediated depletion of caveolin 1/2 or flotillin had no effect on ATP7A localization, clathrin heavy chain depletion or expression of AP180 dominant-negative mutant not only disrupted clathrin-regulated pathways, but also blocked PM-to-TGN internalization of ATP7A. Depletion of the μ subunits of either adaptor protein-2 (AP-2) or AP-1 using RNAi further provides evidence that both clathrin adaptors are important for trafficking of ATP7A from the PM to the TGN. Expression of the GTP-locked Rab22aQ64L mutant caused fragmentation of TGN membrane domains enriched for ATP7A. These appear to be a subdomain of the mammalian TGN, showing only partial overlap with the TGN marker golgin-97. Of importance, ATP7A remained in the Rab22aQ64L-generated structures after copper treatment and washout, suggesting that forward trafficking out of this compartment was blocked. This study provides evidence that multiple membrane-associated factors, including clathrin, AP-2, AP-1, and Rab22, are regulators of ATP7A trafficking.
Collapse
Affiliation(s)
- Zoe G Holloway
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
27
|
Sorting signals that mediate traffic of chitin synthase III between the TGN/endosomes and to the plasma membrane in yeast. PLoS One 2012; 7:e46386. [PMID: 23056294 PMCID: PMC3463608 DOI: 10.1371/journal.pone.0046386] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 08/29/2012] [Indexed: 12/14/2022] Open
Abstract
Traffic of the integral yeast membrane protein chitin synthase III (Chs3p) from the trans-Golgi network (TGN) to the cell surface and to and from the early endosomes (EE) requires active protein sorting decoded by a number of protein coats. Here we define overlapping signals on Chs3p responsible for sorting in both exocytic and intracellular pathways by the coats exomer and AP-1, respectively. Residues 19DEESLL24, near the N-terminal cytoplasmically-exposed domain, comprise both an exocytic di-acidic signal and an intracellular di-leucine signal. Additionally we show that the AP-3 complex is required for the intracellular retention of Chs3p. Finally, residues R374 and W391, comprise another signal responsible for an exomer-independent alternative pathway that conveys Chs3p to the cell surface. These results establish a role for active protein sorting at the trans-Golgi en route to the plasma membrane (PM) and suggest a possible mechanism to regulate protein trafficking.
Collapse
|
28
|
Hasan NM, Gupta A, Polishchuk E, Yu CH, Polishchuk R, Dmitriev OY, Lutsenko S. Molecular events initiating exit of a copper-transporting ATPase ATP7B from the trans-Golgi network. J Biol Chem 2012; 287:36041-50. [PMID: 22898812 DOI: 10.1074/jbc.m112.370403] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The copper-transporting ATPase ATP7B has a dual intracellular localization: the trans-Golgi network (TGN) and cytosolic vesicles. Changes in copper levels, kinase-mediated phosphorylation, and mutations associated with Wilson disease alter the steady-state distribution of ATP7B between these compartments. To identify a primary molecular event that triggers ATP7B exit from the TGN, we characterized the folding, activity, and trafficking of the ATP7B variants with mutations within the regulatory N-terminal domain (N-ATP7B). We found that structural changes disrupting the inter-domain contacts facilitate ATP7B exit from the TGN. Mutating Ser-340/341 in the N-ATP7B individually or together to Ala, Gly, Thr, or Asp produced active protein and shifted the steady-state localization of ATP7B to vesicles, independently of copper levels. The Ser340/341G mutant had a lower kinase-mediated phosphorylation under basal conditions and no copper-dependent phosphorylation. Thus, negative charges introduced by copper-dependent phosphorylation are not obligatory for ATP7B trafficking from the TGN. The Ser340/341A mutation did not alter the overall fold of N-ATP7B, but significantly decreased interactions with the nucleotide-binding domain, mimicking consequences of copper binding to N-ATP7B. We propose that structural changes that specifically alter the inter-domain contacts initiate exit of ATP7B from the TGN, whereas increased phosphorylation may be needed to maintain an open interface between the domains.
Collapse
Affiliation(s)
- Nesrin M Hasan
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Suda Y, Nakano A. The Yeast Golgi Apparatus. Traffic 2011; 13:505-10. [DOI: 10.1111/j.1600-0854.2011.01316.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 11/28/2011] [Accepted: 12/01/2011] [Indexed: 11/30/2022]
Affiliation(s)
- Yasuyuki Suda
- Molecular Membrane Biology Laboratory; RIKEN Advanced Science Institute; Wako; Saitama; 351-0198; Japan
| | | |
Collapse
|
31
|
Maritzen T, Haucke V. Gadkin: A novel link between endosomal vesicles and microtubule tracks. Commun Integr Biol 2011; 3:299-302. [PMID: 20798811 DOI: 10.4161/cib.3.4.11835] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Accepted: 03/21/2010] [Indexed: 12/21/2022] Open
Abstract
Different types of endosomal vesicles show distinct distribution patterns within cells. While early endosomes can be found throughout the cell, recycling endosomal vesicles and tubules tend to cluster near the microtubule organizing center in the perinuclear region in most cell types. The molecular mechanisms underlying the steady-state distribution and dynamics of various types of endosomal vesicles has long remained enigmatic. However, during the past decade it has become evident that microtubule-based motor proteins of the kinesin family play a pivotal role in the positioning of endosomes. Early endosomes were shown to cluster in the perinuclear area in the absence of KIF16B,1 KIF3A is required for the steady-state distribution of late endosomes/lysosomes,2 and KIF13A directs M6PR-containing vesicles from the TGN to the plasma membrane3 to name only a few examples. In the case of Tf-containing recycling endosomes antibody-injection experiments implicated kinesin-1, a heteromer comprised of KIF5 heavy and KLC light chains, as a motor for their transport towards the cell periphery.4 Indeed, KIF5B knockdown experiments confirmed that kinesin-1 is necessary to maintain the peripheral pool of recycling endosomes.5 But how is kinesin-1 linked to endosomal vesicles? Work from our own laboratory has identified the AP-1-binding protein Gadkin as a molecular link between AP-1-mediated traffic and kinesin-1-based transport along microtubules.5 This work as well as hypothetical models for kinesin-dependent endosomal membrane traffic will be discussed here.
Collapse
|
32
|
Burgess J, Jauregui M, Tan J, Rollins J, Lallet S, Leventis PA, Boulianne GL, Chang HC, Le Borgne R, Krämer H, Brill JA. AP-1 and clathrin are essential for secretory granule biogenesis in Drosophila. Mol Biol Cell 2011; 22:2094-105. [PMID: 21490149 PMCID: PMC3113773 DOI: 10.1091/mbc.e11-01-0054] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Regulated secretion of hormones, digestive enzymes, and other biologically active molecules requires the formation of secretory granules. Clathrin and the clathrin adaptor protein complex 1 (AP-1) are necessary for maturation of exocrine, endocrine, and neuroendocrine secretory granules. However, the initial steps of secretory granule biogenesis are only minimally understood. Powerful genetic approaches available in the fruit fly Drosophila melanogaster were used to investigate the molecular pathway for biogenesis of the mucin-containing "glue granules" that form within epithelial cells of the third-instar larval salivary gland. Clathrin and AP-1 colocalize at the trans-Golgi network (TGN) and clathrin recruitment requires AP-1. Furthermore, clathrin and AP-1 colocalize with secretory cargo at the TGN and on immature granules. Finally, loss of clathrin or AP-1 leads to a profound block in secretory granule formation. These findings establish a novel role for AP-1- and clathrin-dependent trafficking in the biogenesis of mucin-containing secretory granules.
Collapse
Affiliation(s)
- Jason Burgess
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Anitei M, Wassmer T, Stange C, Hoflack B. Bidirectional transport between the trans-Golgi network and the endosomal system. Mol Membr Biol 2010; 27:443-56. [DOI: 10.3109/09687688.2010.522601] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Arias DAA, McCarty N, Lu L, Maldonado RA, Shinohara ML, Cantor H. Unexpected role of clathrin adaptor AP-1 in MHC-dependent positive selection of T cells. Proc Natl Acad Sci U S A 2010; 107:2556-61. [PMID: 20133794 PMCID: PMC2823916 DOI: 10.1073/pnas.0913671107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Trafficking of transmembrane receptors to a specific intracellular compartment is conducted by adaptor molecules that bind to target motifs within the cytoplasmic domains of cargo proteins. We generated mice containing a lymphoid-specific deficiency of AP-1 using RNAi knockdown technology. Inhibition of AP-1 expression in thymocytes blocks progression from double-positive immature thymocytes, resulting in complete absence of CD4(+) single-positive thymocytes and severe reduction of CD3(+)CD8(+) single-positive thymocytes. Analysis of the contribution of AP-1 deficiency on the interaction between mature CD4(+) T cells and antigen-presenting cells revealed that AP-1 is essential to efficient immune synapse formation and associated T cell activation, suggesting a possible mechanism of AP-1 function in thymocyte development.
Collapse
Affiliation(s)
- Diana A. Alvarez Arias
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115; and
- Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Nami McCarty
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115; and
- Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Linrong Lu
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115; and
- Department of Pathology, Harvard Medical School, Boston, MA 02115
| | | | - Mari L. Shinohara
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115; and
- Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Harvey Cantor
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115; and
- Department of Pathology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
35
|
Abstract
Newly synthesized secretory cargo molecules pass through the Golgi apparatus while resident Golgi proteins remain in the organelle. However, the pathways of membrane traffic within the Golgi are still uncertain. Most of the available data can be accommodated by the cisternal maturation model, which postulates that Golgi cisternae form de novo, carry secretory cargoes forward and ultimately disappear. The entry face of the Golgi receives material that has been exported from transitional endoplasmic reticulum sites, and the exit face of the Golgi is intimately connected with endocytic compartments. These conserved features are enhanced by cell-type-specific elaborations such as tubular connections between mammalian Golgi cisternae. Key mechanistic questions remain about the formation and maturation of Golgi cisternae, the recycling of resident Golgi proteins, the origins of Golgi compartmental identity, the establishment of Golgi architecture, and the roles of Golgi structural elements in membrane traffic.
Collapse
Affiliation(s)
- Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
36
|
Maritzen T, Schmidt MR, Kukhtina V, Higman VA, Strauss H, Volkmer R, Oschkinat H, Dotti CG, Haucke V. A novel subtype of AP-1-binding motif within the palmitoylated trans-Golgi network/endosomal accessory protein Gadkin/gamma-BAR. J Biol Chem 2009; 285:4074-4086. [PMID: 19965873 DOI: 10.1074/jbc.m109.049197] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Membrane traffic between the trans-Golgi network (TGN) and endosomes is mediated in part by the assembly of clathrin-AP-1 adaptor complex-coated vesicles. This process involves multiple accessory proteins that directly bind to the ear domain of AP-1gamma via degenerate peptide motifs that conform to the consensus sequence diameterG(P/D/E)(diameter/L/M) (with diameter being a large hydrophobic amino acid). Recently, gamma-BAR (hereafter referred to as Gadkin for reasons explained below) has been identified as a novel AP-1 recruitment factor involved in AP-1-dependent endosomal trafficking of lysosomal enzymes. How precisely Gadkin interacts with membranes and with AP-1gamma has remained unclear. Here we show that Gadkin is an S-palmitoylated peripheral membrane protein that lacks stable tertiary structure. S-Palmitoylation is required for the recruitment of Gadkin to TGN/endosomal membranes but not for binding to AP-1. Furthermore, we identify a novel subtype of AP-1-binding motif within Gadkin that specifically associates with the gamma1-adaptin ear domain. Mutational inactivation of this novel type of motif, either alone or in combination with three more conventional AP-1gamma binding peptides, causes Gadkin to mislocalize to the plasma membrane and interferes with its ability to render AP-1 brefeldin A-resistant, indicating its physiological importance. Our studies thus unravel the molecular basis for Gadkin-mediated AP-1 recruitment to TGN/endosomal membranes and identify a novel subtype of the AP-1-binding motif.
Collapse
Affiliation(s)
- Tanja Maritzen
- From the Institute of Chemistry and Biochemistry, Department of Membrane Biochemistry, Freie Universität and Charité-Universitätsmedizin Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Michael R Schmidt
- From the Institute of Chemistry and Biochemistry, Department of Membrane Biochemistry, Freie Universität and Charité-Universitätsmedizin Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Viktoria Kukhtina
- From the Institute of Chemistry and Biochemistry, Department of Membrane Biochemistry, Freie Universität and Charité-Universitätsmedizin Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Victoria A Higman
- the Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Holger Strauss
- the Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Rudolf Volkmer
- the Institut für Medizinische Immunologie, Charité-Universitätsmedizin Berlin, Hessische Strasse 3-4, 10115 Berlin, Germany
| | - Hartmut Oschkinat
- the Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Carlos G Dotti
- the Vlanders Institute for Biotechnology, Molecular & Developmental Genetics Program and Department of Human Genetics, University of Leuven Medical School, Herestraat 49, 3000 Leuven, Belgium, and
| | - Volker Haucke
- From the Institute of Chemistry and Biochemistry, Department of Membrane Biochemistry, Freie Universität and Charité-Universitätsmedizin Berlin, Takustrasse 6, 14195 Berlin, Germany; the Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.
| |
Collapse
|
37
|
Hirst J, Sahlender DA, Choma M, Sinka R, Harbour ME, Parkinson M, Robinson MS. Spatial and Functional Relationship of GGAs and AP-1 inDrosophilaand HeLa Cells. Traffic 2009; 10:1696-710. [DOI: 10.1111/j.1600-0854.2009.00983.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Muthusamy BP, Natarajan P, Zhou X, Graham TR. Linking phospholipid flippases to vesicle-mediated protein transport. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:612-9. [PMID: 19286470 DOI: 10.1016/j.bbalip.2009.03.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 03/03/2009] [Accepted: 03/04/2009] [Indexed: 11/16/2022]
Abstract
Type IV P-type ATPases (P4-ATPases) are a large family of putative phospholipid translocases (flippases) implicated in the generation of phospholipid asymmetry in biological membranes. P4-ATPases are typically the largest P-type ATPase subgroup found in eukaryotic cells, with five members in Saccharomyces cerevisiae, six members in Caenorhabditis elegans, 12 members in Arabidopsis thaliana and 14 members in humans. In addition, many of the P4-ATPases require interaction with a noncatalytic subunit from the CDC50 gene family for their transport out of the endoplasmic reticulum (ER). Deficiency of a P4-ATPase (Atp8b1) causes liver disease in humans, and studies in a variety of model systems indicate that P4-ATPases play diverse and essential roles in membrane biogenesis. In addition to their proposed role in establishing and maintaining plasma membrane asymmetry, P4-ATPases are linked to vesicle-mediated protein transport in the exocytic and endocytic pathways. Recent studies have also suggested a role for P4-ATPases in the nonvesicular intracellular trafficking of sterols. Here, we discuss the physiological requirements for yeast P4-ATPases in phospholipid translocase activity, transport vesicle budding and ergosterol metabolism, with an emphasis on Drs2p and its noncatalytic subunit, Cdc50p.
Collapse
|
39
|
Vacca F, Giustizieri M, Ciotti MT, Mercuri NB, Volonté C. Rapid constitutive and ligand-activated endocytic trafficking of P2X receptor. J Neurochem 2009; 109:1031-41. [PMID: 19519775 DOI: 10.1111/j.1471-4159.2009.06029.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
P2X receptors mediate a variety of physiological actions, including smooth muscle contraction, neuro-endocrine secretion and synaptic transmission. Among P2X receptors, the P2X(3) subtype is expressed in sensory neurons of dorsal root- and trigeminal-ganglia, where it performs a well-recognized role in sensory and pain transmission. Recent evidence indicates that the strength of P2X(3)-mediated responses is modulated in vivo by altering the number of receptors at the plasma membrane. In the present study, we investigate the trafficking properties of P2X(3) receptor in transfected HEK293 cells and in primary cultures of dorsal root ganglion neurons, finding that P2X(3) receptor undergoes rapid constitutive and cholesterol-dependent endocytosis. We also show that endocytosis is accompanied by preferential targeting of the receptor to late endosomes/lysosomes, with subsequent degradation. Furthermore, we observe that at steady state the receptor localizes predominantly in lamp1-positive intracellular structures, with a minor fraction present at the plasma membrane. Finally, the level of functional receptor expressed on the cell surface is rapidly up-regulated in response to agonist stimulation, which also augments receptor endocytosis. The findings presented in this work underscore a very dynamic trafficking behavior of P2X(3) receptor and disclose a possible mechanism for the rapid modulation of ATP-mediated responses potentially relevant during physiological and pathological conditions.
Collapse
Affiliation(s)
- Fabrizio Vacca
- Laboratory of Cellular Neurobiology, Santa Lucia Foundation, Rome, Italy.
| | | | | | | | | |
Collapse
|
40
|
Abazeed ME, Fuller RS. Yeast Golgi-localized, gamma-Ear-containing, ADP-ribosylation factor-binding proteins are but adaptor protein-1 is not required for cell-free transport of membrane proteins from the trans-Golgi network to the prevacuolar compartment. Mol Biol Cell 2008; 19:4826-36. [PMID: 18784256 DOI: 10.1091/mbc.e07-05-0442] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Golgi-localized, gamma-Ear-containing, ADP-ribosylation factor-binding proteins (GGAs) and adaptor protein-1 (AP-1) mediate clathrin-dependent trafficking of transmembrane proteins between the trans-Golgi network (TGN) and endosomes. In yeast, the vacuolar sorting receptor Vps10p follows a direct pathway from the TGN to the late endosome/prevacuolar compartment (PVC), whereas, the processing protease Kex2p partitions between the direct pathway and an indirect pathway through the early endosome. To examine the roles of the Ggas and AP-1 in TGN-PVC transport, we used a cell-free assay that measures delivery to the PVC of either Kex2p or a chimeric protein (K-V), in which the Vps10p cytosolic tail replaces the Kex2p tail. Either antibody inhibition or dominant-negative Gga2p completely blocked K-V transport but only partially blocked Kex2p transport. Deletion of APL2, encoding the beta subunit of AP-1, did not affect K-V transport but partially blocked Kex2p transport. Residual Kex2p transport seen with apl2Delta membranes was insensitive to dominant-negative Gga2p, suggesting that the apl2Delta mutation causes Kex2p to localize to a compartment that precludes Gga-dependent trafficking. These results suggest that yeast Ggas facilitate the specific and direct delivery of Vps10p and Kex2p from the TGN to the PVC and that AP-1 modulates Kex2p trafficking through a distinct pathway, presumably involving the early endosome.
Collapse
Affiliation(s)
- Mohamed E Abazeed
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
41
|
Chi S, Cao H, Chen J, McNiven MA. Eps15 mediates vesicle trafficking from the trans-Golgi network via an interaction with the clathrin adaptor AP-1. Mol Biol Cell 2008; 19:3564-75. [PMID: 18524853 PMCID: PMC2488291 DOI: 10.1091/mbc.e07-10-0997] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 05/21/2008] [Accepted: 05/22/2008] [Indexed: 11/11/2022] Open
Abstract
Eps15 (EGFR pathway substrate clone 15) is well known for its role in clathrin-coated vesicle formation at the plasma membrane through interactions with other clathrin adaptor proteins such as AP-2. Interestingly, we observed that in addition to its plasma membrane localization, Eps15 is also present at the trans-Golgi network (TGN). Therefore, we predicted that Eps15 might associate with clathrin adaptor proteins at the TGN and thereby mediate the formation of Golgi-derived vesicles. Indeed, we have found that Eps15 and the TGN clathrin adaptor AP-1 coimmunoprecipitate from rat liver Golgi fractions. Furthermore, we have identified a 14-amino acid motif near the AP-2-binding domain of Eps15 that is required for binding to AP-1, but not AP-2. Disruption of the Eps15-AP-1 interaction via siRNA knockdown of AP-1 or expression of mutant Eps15 protein, which lacks a 14-amino acid motif representing the AP-1 binding site of Eps15, significantly reduced the exit of secretory proteins from the TGN. Together, these findings indicate that Eps15 plays an important role in clathrin-coated vesicle formation not only at the plasma membrane but also at the TGN during the secretory process.
Collapse
Affiliation(s)
- Susan Chi
- Mayo Clinic College of Medicine, Department of Biochemistry and Molecular Biology, and the Miles and Shirley Fiterman Center for Digestive Diseases, Rochester, MN 55905
| | - Hong Cao
- Mayo Clinic College of Medicine, Department of Biochemistry and Molecular Biology, and the Miles and Shirley Fiterman Center for Digestive Diseases, Rochester, MN 55905
| | - Jing Chen
- Mayo Clinic College of Medicine, Department of Biochemistry and Molecular Biology, and the Miles and Shirley Fiterman Center for Digestive Diseases, Rochester, MN 55905
| | - Mark A. McNiven
- Mayo Clinic College of Medicine, Department of Biochemistry and Molecular Biology, and the Miles and Shirley Fiterman Center for Digestive Diseases, Rochester, MN 55905
| |
Collapse
|
42
|
Liu K, Surendhran K, Nothwehr SF, Graham TR. P4-ATPase requirement for AP-1/clathrin function in protein transport from the trans-Golgi network and early endosomes. Mol Biol Cell 2008; 19:3526-35. [PMID: 18508916 DOI: 10.1091/mbc.e08-01-0025] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Drs2p is a resident type 4 P-type ATPase (P4-ATPase) and potential phospholipid translocase of the trans-Golgi network (TGN) where it has been implicated in clathrin function. However, precise protein transport pathways requiring Drs2p and how it contributes to clathrin-coated vesicle budding remain unclear. Here we show a functional codependence between Drs2p and the AP-1 clathrin adaptor in protein sorting at the TGN and early endosomes of Saccharomyces cerevisiae. Genetic criteria indicate that Drs2p and AP-1 operate in the same pathway and that AP-1 requires Drs2p for function. In addition, we show that loss of AP-1 markedly increases Drs2p trafficking to the plasma membrane, but does not perturb retrieval of Drs2p from the early endosome back to the TGN. Thus AP-1 is required at the TGN to sort Drs2p out of the exocytic pathway, presumably for delivery to the early endosome. Moreover, a conditional allele that inactivates Drs2p phospholipid translocase (flippase) activity disrupts its own transport in this AP-1 pathway. Drs2p physically interacts with AP-1; however, AP-1 and clathrin are both recruited normally to the TGN in drs2Delta cells. These results imply that Drs2p acts independently of coat recruitment to facilitate AP-1/clathrin-coated vesicle budding from the TGN.
Collapse
Affiliation(s)
- Ke Liu
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235-1634, USA
| | | | | | | |
Collapse
|
43
|
|
44
|
Duffield A, Caplan MJ, Muth TR. Chapter 4 Protein Trafficking in Polarized Cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 270:145-79. [DOI: 10.1016/s1937-6448(08)01404-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Duncan MC, Ho DG, Huang J, Jung ME, Payne GS. Composite synthetic lethal identification of membrane traffic inhibitors. Proc Natl Acad Sci U S A 2007; 104:6235-40. [PMID: 17404221 PMCID: PMC1851079 DOI: 10.1073/pnas.0607773104] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Small molecule inhibitors provide powerful tools to characterize highly dynamic and complex eukaryotic cell pathways such as those mediating membrane traffic. However, a lack of easy and generalizable assays has constrained identification of novel inhibitors despite availability of diverse chemical libraries. Here, we report a facile growth-based strategy in yeast to screen for pathway-specific inhibitors. The approach uses well characterized synthetic genetic growth defects to guide design of cells genetically sensitized for inhibition of chosen pathways. With this strategy, we identified a family of piperazinyl phenylethanone compounds as inhibitors of traffic between the trans-Golgi network (TGN) and endosomes that depends on the clathrin adaptor complex AP-1. The compounds did not significantly alter other trafficking pathways involving the TGN or endosomes, indicating specificity. Compound treatment also altered localization of AP-1 in mammalian cells. These previously uncharacterized inhibitors will be useful for future studies of clathrin-mediated transport in yeast, and potentially in other organisms. Furthermore, the easily automated technology should be adaptable for identification of inhibitors of other cellular processes.
Collapse
Affiliation(s)
| | - David G. Ho
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Jing Huang
- Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095; and
| | - Michael E. Jung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Gregory S. Payne
- Departments of *Biological Chemistry and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
46
|
Shultz T, Nash-Livni N, Shmuel M, Altschuler Y. EFA6 regulates endosomal trafficking and affects early endosomes in polarized MDCK cells. Biochem Biophys Res Commun 2006; 351:106-12. [PMID: 17054918 DOI: 10.1016/j.bbrc.2006.10.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2006] [Accepted: 10/03/2006] [Indexed: 12/21/2022]
Abstract
The small-GTPase family of ADP ribosylation factors (ARFs) recruit coat proteins to promote vesicle budding. ARFs are activated by an association with sec7-containing exchange factors which load them with GTP. In epithelial cells, the small GTPase ARF6 operates within the endocytic system and has been shown to associate with ARNO to promote apical endocytosis and early to late endosomal trafficking. EFA6 has been shown to stimulate tight-junction formation and maintenance. Here, we show that in polarized epithelial MDCK cells, EFA6 is localized to early endosomes, causes their dramatic enlargement, and promotes basolateral targeting of IgA, which is normally targeted to the apical PM. These results suggest that the physiological function of ARF6 within the endocytic system is regulated by the exchange factor it associates with.
Collapse
Affiliation(s)
- Tamar Shultz
- Department of Pharmacology, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
47
|
Phelan JP, Millson SH, Parker PJ, Piper PW, Cooke FT. Fab1p and AP-1 are required for trafficking of endogenously ubiquitylated cargoes to the vacuole lumen in S. cerevisiae. J Cell Sci 2006; 119:4225-34. [PMID: 17003107 DOI: 10.1242/jcs.03188] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In S. cerevisiae synthesis of phosphatidylinositol (3,5)-bisphosphate [PtdIns(3,5)P2] by Fab1p is required for several cellular events, including an as yet undefined step in the ubiquitin-dependent trafficking of some integral membrane proteins from the trans-Golgi network to the vacuole lumen. AP-1 is a heterotetrameric clathrin adaptor protein complex that binds cargo proteins and clathrin coats, and regulates bi-directional protein trafficking between the trans-Golgi network and the endocytic/secretory pathway. Like fab1Δ cells, AP-1 complex component mutants have lost the ability to traffic ubiquitylated cargoes to the vacuole lumen – the first demonstration that AP-1 is required for this process. Deletion mutants of AP-1 complex components are compromised in their ability to synthesize PtdIns(3,5)P2, indicating that AP-1 is required for correct in vivo activation of Fab1p. Furthermore, wild-type protein sorting can be restored in AP-1 mutants by overexpression of Fab1p, implying that the protein-sorting defect in these cells is as a result of disruption of PtdIns(3,5)P2 synthesis. Finally, we show that Fab1p and Vac14p, an activator of Fab1p, are also required for another AP-1-dependent process: chitin-ring deposition in chs6Δ cells. Our data imply that AP-1 is required for some Fab1p and PtdIns(3,5)P2-dependent processes.
Collapse
Affiliation(s)
- John P Phelan
- Department of Biochemistry and Molecular Biology, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
48
|
McNiven MA, Thompson HM. Vesicle formation at the plasma membrane and trans-Golgi network: the same but different. Science 2006; 313:1591-4. [PMID: 16973870 DOI: 10.1126/science.1118133] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
An elaborate vesicle transport system supports the active exchange of membranes and protein cargo between the plasma membrane and the trans-Golgi network. Many observations suggest that highly conserved mechanisms are used in vesicle formation and scission. Such similarity is found both at the level of the receptor-ligand sequestration process that uses clathrin and associated polymeric and monomeric adaptor proteins, and in the machinery used to deform and vesiculate lipid membranes.
Collapse
Affiliation(s)
- Mark A McNiven
- Department of Biochemistry and Molecular Biology and the Miles and Shirley Fiterman Center for Digestive Diseases, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | |
Collapse
|
49
|
Yogosawa S, Kawasaki M, Wakatsuki S, Kominami E, Shiba Y, Nakayama K, Kohsaka S, Akazawa C. Monoubiquitylation of GGA3 by hVPS18 regulates its ubiquitin-binding ability. Biochem Biophys Res Commun 2006; 350:82-90. [PMID: 16996030 DOI: 10.1016/j.bbrc.2006.09.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 09/01/2006] [Indexed: 12/13/2022]
Abstract
GGAs (Golgi-localizing, gamma-adaptin ear domain homology, ADP-ribosylation factor (ARF)-binding proteins), constitute a family of monomeric adaptor proteins and are associated with protein trafficking from the trans-Golgi network to endosomes. Here, we show that GGA3 is monoubiquitylated by a RING-H2 type-ubiquitin ligase hVPS18 (human homologue of vacuolar protein sorting 18). By in vitro ubiquitylation assays, we have identified lysine 258 in the GAT domain as a major ubiquitylation site that resides adjacent to the ubiquitin-binding site. The ubiquitylation is abolished by a mutation in either the GAT domain or ubiquitin that disrupts the GAT-ubiquitin interaction, indicating that the ubiquitin binding is a prerequisite for the ubiquitylation. Furthermore, the GAT domain ubiquitylated by hVPS18 no longer binds to ubiquitin, indicating that ubiquitylation negatively regulates the ubiquitin-binding ability of the GAT domain. These results suggest that the ubiquitin binding and ubiquitylation of GGA3-GAT domain are mutually inseparable through a ubiquitin ligase activity of hVPS18.
Collapse
Affiliation(s)
- Satomi Yogosawa
- Department of Neurochemistry, National Institute of Neuroscience, NCNP, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Düwel M, Ungewickell EJ. Clathrin-dependent association of CVAK104 with endosomes and the trans-Golgi network. Mol Biol Cell 2006; 17:4513-25. [PMID: 16914521 PMCID: PMC1635376 DOI: 10.1091/mbc.e06-05-0390] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
CVAK104 is a novel coated vesicle-associated protein with a serine/threonine kinase homology domain that was recently shown to phosphorylate the beta2-subunit of the adaptor protein (AP) complex AP2 in vitro. Here, we demonstrate that a C-terminal segment of CVAK104 interacts with the N-terminal domain of clathrin and with the alpha-appendage of AP2. CVAK104 localizes predominantly to the perinuclear region of HeLa and COS-7 cells, but it is also present on peripheral vesicular structures that are accessible to endocytosed transferrin. The distribution of CVAK104 overlaps extensively with that of AP1, AP3, the mannose 6-phosphate receptor, and clathrin but not at all with its putative phosphorylation target AP2. RNA interference-mediated clathrin knockdown reduced the membrane association of CVAK104. Recruitment of CVAK104 to perinuclear membranes of permeabilized cells is enhanced by guanosine 5'-O-(3-thio)triphosphate, and brefeldin A redistributes CVAK104 in cells. Both observations suggest a direct or indirect requirement for GTP-binding proteins in the membrane association of CVAK104. Live-cell imaging showed colocalization of green fluorescent protein-CVAK104 with endocytosed transferrin and with red fluorescent protein-clathrin on rapidly moving endosomes. Like AP1-depleted COS-7 cells, CVAK104-depleted cells missort the lysosomal hydrolase cathepsin D. Together, our data suggest a function for CVAK104 in clathrin-dependent pathways between the trans-Golgi network and the endosomal system.
Collapse
Affiliation(s)
- Michael Düwel
- Department of Cell Biology, Center of Anatomy, Hannover Medical School, D-30625 Hannover, Germany
| | - Ernst J. Ungewickell
- Department of Cell Biology, Center of Anatomy, Hannover Medical School, D-30625 Hannover, Germany
| |
Collapse
|