1
|
Song HM, Li ZW, Huang Q, Wu CG, Li MH, Shen JK. A diagnostic signatures for intervertebral disc degeneration using TNFAIP6 and COL6A2 based on single-cell RNA-seq and bulk RNA-seq analyses. Ann Med 2025; 57:2443568. [PMID: 39704340 DOI: 10.1080/07853890.2024.2443568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 04/01/2024] [Accepted: 09/17/2024] [Indexed: 12/21/2024] Open
Abstract
OBJECTIVES Intervertebral disc degeneration (IVDD) is a prevalent degenerative condition associated with a high incidence rate of low back pain and disability. This study aimed to identify potential biomarkers and signaling pathways associated with IVDD. METHODS Biomarkers were discerned through bulk-RNA and single-cell RNA sequencing (scRNA-Seq) investigations of IVDD cases from the Gene Expression Omnibus (GEO) database. Following this, two central genes were identified. Furthermore, gene set enrichment analysis (GSEA) and receiver operating characteristic (ROC) curve analysis were conducted. The transcriptional factor (TF) derived from nucleus pulposus (NP) cells was examined through the DoRothEA R package. RT-qPCR and IHC techniques were employed to confirm the expression of the two hub genes and their associated genes in tissue samples. RESULTS The proteins Tumor necrosis factor-inducible gene 6 protein (TNFAIP6) and collagen VI-α2 (COL6A2) were frequently analyzed using a combination of DEGs from datasets GSE70362, GSE124272, and scRNA-seq. Examination of gene expression across multiple datasets indicated significant differences in TNFAIP6 and COL6A2 levels in IVDD compared to control or normal groups (p < 0.05). These two central genes demonstrated strong diagnostic utility in the training cohort and reliable predictive value in the validation datasets. Our study verified the potential role of ZEB2 as a TF in regulating two key genes associated with IVDD. Furthermore, qPCR and IHC confirmed elevated expression levels of the hub genes and transcription factor. CONCLUSION We identified biomarkers, specifically TNFAIP6 and COL6A2, that have the potential to predict disease activity and aid in the diagnosis of IVDD.
Collapse
Affiliation(s)
- Hong-Mei Song
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zuo-Wei Li
- Department of Urological Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Huang
- Department of Pathology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun-Gen Wu
- Department of Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Hua Li
- Department of Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Kang Shen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Qiu Y, Gao S, Ding X, Lu J, Ji X, Hao W, Cheng S, Du H, Gu Y, Yu C, Cheng C, Gao X. Conditional Tnfaip6-Knockout in Inner Ear Hair Cells Does not Alter Auditory Function. Neurosci Bull 2025; 41:421-433. [PMID: 39688649 PMCID: PMC11876497 DOI: 10.1007/s12264-024-01326-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/05/2024] [Indexed: 12/18/2024] Open
Abstract
Noise-induced hearing loss is a worldwide public health issue that is characterized by temporary or permanent changes in hearing sensitivity. This condition is closely linked to inflammatory responses, and interventions targeting the inflammatory gene tumor necrosis factor-alpha (TNFα) are known to mitigate cochlear noise damage. TNFα-induced proteins (TNFAIPs) are a family of translucent acidic proteins, and TNFAIP6 has a notable association with inflammatory responses. To date, there have been few reports on TNFAIP6 levels in the inner ear. To elucidate the precise mechanism, we generated transgenic mouse models with conditional knockout of Tnfaip6 (Tnfaip6 cKO). Evaluation of hair cell morphology and function revealed no significant differences in hair cell numbers or ribbon synapses between Tnfaip6 cKO and wild-type mice. Moreover, there were no notable variations in hair cell numbers or hearing function in noisy environments. Our results indicate that Tnfaip6 does not have a substantial impact on the auditory system.
Collapse
MESH Headings
- Animals
- Mice, Knockout
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/physiology
- Hair Cells, Auditory, Inner/pathology
- Mice
- Mice, Transgenic
- Hearing Loss, Noise-Induced
- Evoked Potentials, Auditory, Brain Stem/physiology
Collapse
Affiliation(s)
- Yue Qiu
- Department of Otolaryngology-Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Song Gao
- Department of Otolaryngology-Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xiaoqiong Ding
- Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, Southeast University, Nanjing, 210008, China
| | - Jie Lu
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Xinya Ji
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Wenli Hao
- Department of Otolaryngology-Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Siqi Cheng
- Department of Otolaryngology-Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Haolinag Du
- Department of Otolaryngology-Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yajun Gu
- Department of Otolaryngology-Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Chenjie Yu
- Department of Otolaryngology-Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
- Research Institute of Otolaryngology, Nanjing, 210008, China.
| | - Cheng Cheng
- Department of Otolaryngology-Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
- Research Institute of Otolaryngology, Nanjing, 210008, China.
| | - Xia Gao
- Department of Otolaryngology-Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
- Research Institute of Otolaryngology, Nanjing, 210008, China.
| |
Collapse
|
3
|
Pearson JJ, Mao J, Temenoff JS. Effects of Release of TSG-6 from Heparin Hydrogels on Supraspinatus Muscle Regeneration. Tissue Eng Part A 2025; 31:195-207. [PMID: 39556321 DOI: 10.1089/ten.tea.2024.0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Muscle degeneration after rotator cuff tendon tear is a significant clinical problem. In these experiments, we developed a poly(ethylene glycol)-based injectable granular hydrogel containing two heparin derivatives (fully sulfated [Hep] and fully desulfated [Hep-]) as well as a matrix metalloproteinase-sensitive peptide to promote sustained release of tumor necrosis factor-stimulated gene 6 (TSG-6) over 14+ days in vivo in a rat model of rotator cuff muscle injury. The hydrogel formulations demonstrated similar release profiles in vivo, thus facilitating comparisons between delivery from heparin derivatives on the level of tissue repair in two different areas of muscle (near the myotendious junction [MTJ] and in the muscle belly [MB]) that have been shown previously to have differing responses to rotator cuff tendon injury. We hypothesized that sustained delivery of TSG-6 would enhance the anti-inflammatory response following rotator cuff injury through macrophage polarization and that release from Hep would potentiate this effect throughout the muscle. Inflammatory/immune cells, satellite cells, and fibroadipogenic progenitor cells were analyzed by flow cytometry 3 and 7 days after injury and hydrogel injection, while metrics of muscle healing were examined via immunohistochemistry up to day 14. Results showed controlled delivery of TSG-6 from Hep caused heightened macrophage response (day 7 macrophages, 4.00 ± 1.85% single cells, M2a, 3.27 ± 1.95% single cells) and increased markers of early muscle regeneration (embryonic heavy chain staining) by day 7, particularly in the MTJ region of the muscle. This work provides a novel strategy for localized, controlled delivery of TSG-6 to enhance muscle healing after rotator cuff tear.
Collapse
Affiliation(s)
- Joseph J Pearson
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech, Emory University, Atlanta, Georgia, USA
| | - Jiahui Mao
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech, Emory University, Atlanta, Georgia, USA
| | - Johnna S Temenoff
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech, Emory University, Atlanta, Georgia, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Martinez-Zalbidea I, Wagner G, Bergendahl N, Mesfin A, Puvanesarajah V, Hitzl W, Schulze S, Wuertz-Kozak K. CRISPR-dCas9 Activation of TSG-6 in MSCs Modulates the Cargo of MSC-Derived Extracellular Vesicles and Attenuates Inflammatory Responses in Human Intervertebral Disc Cells In Vitro. Cell Mol Bioeng 2025; 18:83-98. [PMID: 39949490 PMCID: PMC11813855 DOI: 10.1007/s12195-025-00843-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
Purpose The purpose of this study was to boost the therapeutic effect of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) by overexpressing the gene TSG-6 through CRISPR activation, and assess the biological activity of EVs from these modified MSCs in vitro on human intervertebral disc (IVD) cells. Methods An immortalized human MSC line was transduced with a CRISPR activation lentivirus system targeting TSG-6. MSC-EVs were harvested by ultracentrifugation and particle number/size distribution was determined by nanoparticle tracking analysis. The efficiency of transduction activation was assessed by analyzing gene and protein expression. EV proteomic contents were analyzed by mass spectrometry. Human IVD cells from patients undergoing spinal surgery were isolated, expanded, exposed to IL-1β pre-stimulation and co-treated with MSC-EVs. Results MSC-EVs presented size distribution, morphology, and molecular markers consistent with common EV characteristics. The expression level of TSG-6 was significantly higher (> 800 fold) in transduced MSCs relative to controls. Protein analysis of MSCs and EVs showed higher protein expression of TSG-6 in CRISPR activated samples than controls. Proteomics of EVs identified 35 proteins (including TSG-6) that were differentially expressed in TSG-6 activated EVs vs control EVs. EV co-Treatment of IL-1β pre-Stimulated IVD cells resulted in a significant downregulation of IL-8 and COX-2. Conclusions We successfully generated an MSC line overexpressing TSG-6. Furthermore, we show that EVs isolated from these modified MSCs have the potential to attenuate the pro-inflammatory gene expression in IVD cells. This genomic engineering approach hence holds promise for boosting the therapeutic effects of EVs. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-025-00843-4.
Collapse
Affiliation(s)
- Iker Martinez-Zalbidea
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, NY USA
| | - Gabbie Wagner
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, NY USA
| | - Nea Bergendahl
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, NY USA
| | - Addisu Mesfin
- Medstar Orthopaedic Institute, Georgetown University School of Medicine Washington, Washington, DC USA
| | - Varun Puvanesarajah
- Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY USA
| | - Wolfgang Hitzl
- Research and Innovation Management (RIM), Paracelsus Medical University, Salzburg, Austria
- Department of Ophthalmology and Optometry, Paracelsus Medical University, Salzburg, Austria
- Research Program Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University, Salzburg, Austria
| | - Stefan Schulze
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY USA
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, NY USA
- Schön Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (Austria), Munich, Germany
| |
Collapse
|
5
|
Lu B, Xing L, Zhu XY, Tang H, Lu B, Yuan F, Almasry Y, Krueger A, Barsom SH, Krier JD, Jordan KL, Lerman A, Eirin A, Lerman LO. Tumor necrosis factor-stimulated gene-6 inhibits endoplasmic reticulum stress in the ischemic mouse kidney. iScience 2024; 27:111454. [PMID: 39717095 PMCID: PMC11664141 DOI: 10.1016/j.isci.2024.111454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/20/2024] [Accepted: 11/19/2024] [Indexed: 12/25/2024] Open
Abstract
Kidney tissue injury in renal artery stenosis (RAS) involves inflammation, endoplasmic reticulum stress (ERS), and mitochondria damage. Tumor necrosis factor-stimulated gene-6 (TSG-6), an endogenous reparative molecule, may decrease ERS and improve renal function. To assess its impact on the stenotic murine kidney, we injected TSG-6 or vehicle for two weeks in mice with RAS. At completion, we assessed stenotic kidney function and oxygenation, inflammation, and expression of ERS-related genes. TSG-6 treatment reduced renal hypoxia, urinary protein and plasma creatinine levels, renal fibrosis, and apoptosis. TSG-6 also exhibited an anti-inflammatory effect, reflected in the downregulated expression of the Toll-like receptor 4 (TLR4)/nuclear factor κB (NF-κB) pathway in murine kidneys in vivo and HK-2 cells in vitro. Moreover, ERS-related molecules were downregulated after TSG-6 treatment, while most indicators of mitochondrial unfolded protein response remained unaltered. Therefore, TSG-6 alleviates inflammation, ERS, apoptosis, and fibrosis in the post-stenotic mouse kidney. These observations position TSG-6 as a potential therapeutic tool in RAS.
Collapse
Affiliation(s)
- Bo Lu
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai 200437, China
| | - Li Xing
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu Province, China
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Brandon Lu
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Fei Yuan
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
- Department of Urology, National Children’s Medical Center, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yazan Almasry
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Alexander Krueger
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Samer H. Barsom
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - James D. Krier
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Kyra L. Jordan
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Amir Lerman
- Department of Cardiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Dodd RJ, Moffatt D, Vachiteva M, Parkinson JE, Chan BHK, Day AJ, Allen JE, Sutherland TE. Injury From Nematode Lung Migration Induces an IL-13-Dependent Hyaluronan Matrix. PROTEOGLYCAN RESEARCH 2024; 2:e70012. [PMID: 39606183 PMCID: PMC11589410 DOI: 10.1002/pgr2.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/19/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
A consistent feature of lung injury is a rapid and sustained accumulation of hyaluronan (HA). The rodent gut-dwelling nematode Nippostrongylus brasiliensis (Nb) induces tissue damage as it migrates through the lungs. Type 2 immune responses are essential for the repair of the lungs, hence Nb infection is a well-established model to study immune-mediated lung repair. We found that Nb infection was associated with increased HA in the lung, which peaked at d7 post-infection (p.i.). Deposition of HA in the alveolar epithelium correlated with regions of damaged tissue and the type 2 immune response, which is characterized by eosinophilia and increased type 2 cytokines such as IL-13. Consistent with the accumulation of HA, we observed increased expression of the major synthase Has2, alongside decreased expression of Hyal1, Hyal2, and Tmem2, which can degrade existing HA. Expression of Tsg6 was also increased and correlated with the presence of inter-α-inhibitor heavy chain-HA complexes (HC·HA) at d7 p.i. Using IL-13-deficient mice, we found that the accumulation of HA during Nb infection was IL-13 dependent. Our data thus provide further evidence that IL-13 is a modulator of the HA matrix during lung challenge and links IL-13-mediated HA regulation to tissue repair pathways.
Collapse
Affiliation(s)
- Rebecca J. Dodd
- Wellcome Centre for Cell Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and Inflammation, School of Biological SciencesUniversity of ManchesterManchesterUK
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
| | - Dora Moffatt
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
| | - Monika Vachiteva
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
| | - James E. Parkinson
- Wellcome Centre for Cell Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and Inflammation, School of Biological SciencesUniversity of ManchesterManchesterUK
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
| | - Brian H. K. Chan
- Wellcome Centre for Cell Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and Inflammation, School of Biological SciencesUniversity of ManchesterManchesterUK
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
| | - Anthony J. Day
- Wellcome Centre for Cell Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and Inflammation, School of Biological SciencesUniversity of ManchesterManchesterUK
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
| | - Judith E. Allen
- Wellcome Centre for Cell Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and Inflammation, School of Biological SciencesUniversity of ManchesterManchesterUK
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
| | | |
Collapse
|
7
|
Di Santo C, Siniscalchi A, La Russa D, Tonin P, Bagetta G, Amantea D. Brain Ischemic Tolerance Triggered by Preconditioning Involves Modulation of Tumor Necrosis Factor-α-Stimulated Gene 6 (TSG-6) in Mice Subjected to Transient Middle Cerebral Artery Occlusion. Curr Issues Mol Biol 2024; 46:9970-9983. [PMID: 39329947 PMCID: PMC11430743 DOI: 10.3390/cimb46090595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Ischemic preconditioning (PC) induced by a sub-lethal cerebral insult triggers brain tolerance against a subsequent severe injury through diverse mechanisms, including the modulation of the immune system. Tumor necrosis factor (TNF)-α-stimulated gene 6 (TSG-6), a hyaluronate (HA)-binding protein, has recently been involved in the regulation of the neuroimmune response following ischemic stroke. Thus, we aimed at assessing whether the neuroprotective effects of ischemic PC involve the modulation of TSG-6 in a murine model of transient middle cerebral artery occlusion (MCAo). The expression of TSG-6 was significantly elevated in the ischemic cortex of mice subjected to 1 h MCAo followed by 24 h reperfusion, while this effect was further potentiated (p < 0.05 vs. MCAo) by pre-exposure to ischemic PC (i.e., 15 min MCAo) 72 h before. By immunofluorescence analysis, we detected TSG-6 expression mainly in astrocytes and myeloid cells populating the lesioned cerebral cortex, with a more intense signal in tissue from mice pre-exposed to ischemic PC. By contrast, levels of TSG-6 were reduced after 24 h of reperfusion in plasma (p < 0.05 vs. SHAM), but were dramatically elevated when severe ischemia (1 h MCAo) was preceded by ischemic PC (p < 0.001 vs. MCAo) that also resulted in significant neuroprotection. In conclusion, our data demonstrate that neuroprotection exerted by ischemic PC is associated with the elevation of TSG-6 protein levels both in the brain and in plasma, further underscoring the beneficial effects of this endogenous modulator of the immune system.
Collapse
Affiliation(s)
- Chiara Di Santo
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (C.D.S.)
| | - Antonio Siniscalchi
- Department of Neurology and Stroke Unit, Annunziata Hospital, 87100 Cosenza, Italy
| | - Daniele La Russa
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (C.D.S.)
| | - Paolo Tonin
- Regional Center for Serious Brain Injuries, S. Anna Institute, 88900 Crotone, Italy
| | - Giacinto Bagetta
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (C.D.S.)
| | - Diana Amantea
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (C.D.S.)
| |
Collapse
|
8
|
Trivedi A, Lin M, Miyazawa B, Nair A, Vivona L, Fang X, Bieback K, Schäfer R, Spohn G, McKenna D, Zhuo H, Matthay MA, Pati S. Inter- and Intra-donor variability in bone marrow-derived mesenchymal stromal cells: implications for clinical applications. Cytotherapy 2024; 26:1062-1075. [PMID: 38852094 DOI: 10.1016/j.jcyt.2024.03.486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are attractive as a therapeutic modality in multiple disease conditions characterized by inflammation and vascular compromise. Logistically they are advantageous because they can be isolated from adult tissue sources, such as bone marrow (BM). The phase 2a START clinical trial determined BM-MSCs to be safe in patients with moderate-to-severe acute respiratory distress syndrome (ARDS). Herein, we examine a subset of the clinical doses of MSCs generated for the phase 2a START trial from three unique donors (1-3), where one of the donors' donated BM on two separate occasions (donor 3 and 3W). METHODS The main objective of this study was to correlate properties of the cells from the four lots with plasma biomarkers from treated patients and relevant to ARDS outcomes. To do this we evaluated MSC donor lots for (i) post-thaw viability, (ii) growth kinetics, (iii) metabolism, (iv) surface marker expression, (v) protein expression, (vi) immunomodulatory ability and (vii) their functional effects on regulating endothelial cell permeability. RESULTS MSC-specific marker expression and protection of thrombin-challenged endothelial barrier permeability was similar among all four donor lots. Inter and intra-donor variability was observed in all the other in vitro assays. Furthermore, patient plasma ANG-2 and protein C levels at 6 hours post-transfusion were correlated to cell viability in an inter- and intra-donor dependent manner. CONCLUSIONS These findings highlight the potential of donor dependent (inter-) and collection dependent (intra-) effects in patient biomarker expression.
Collapse
Affiliation(s)
- Alpa Trivedi
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Maximillian Lin
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Byron Miyazawa
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Alison Nair
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | - Lindsay Vivona
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Xiaohui Fang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Richard Schäfer
- Goethe University Medical Center, Institute of Transfusion Medicine and Immunohematology, and German Red Cross Blood Center Frankfurt, Frankfurt, Germany; Institute for Transfusion Medicine and Gene Therapy, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Germany
| | - Gabriele Spohn
- Goethe University Medical Center, Institute of Transfusion Medicine and Immunohematology, and German Red Cross Blood Center Frankfurt, Frankfurt, Germany
| | - David McKenna
- University of Minnesota, Molecular and Cellular Therapeutics, Saint Paul, Minnesota, USA
| | - Hanjing Zhuo
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Michael A Matthay
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA; Department of Medicine and Anesthesia, University of California, San Francisco, San Francisco, California, USA
| | - Shibani Pati
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA; Department of Surgery, University of California, San Francisco, San Francisco, California, USA.
| |
Collapse
|
9
|
Dodd RJ, Blundell CD, Sattelle BM, Enghild JJ, Milner CM, Day AJ. Chemical modification of hyaluronan oligosaccharides differentially modulates hyaluronan-hyaladherin interactions. J Biol Chem 2024; 300:107668. [PMID: 39128716 PMCID: PMC11460632 DOI: 10.1016/j.jbc.2024.107668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024] Open
Abstract
The glycosaminoglycan hyaluronan (HA) is a ubiquitous, nonsulfated polysaccharide with diverse biological roles mediated through its interactions with HA-binding proteins (HABPs). Most HABPs belong to the Link module superfamily, including the major HA receptor, CD44, and secreted protein TSG-6, which catalyzes the covalent transfer of heavy chains from inter-α-inhibitor onto HA. The structures of the HA-binding domains (HABDs) of CD44 (HABD_CD44) and TSG-6 (Link_TSG6) have been determined and their interactions with HA extensively characterized. The mechanisms of binding are different, with Link_TSG6 interacting with HA primarily via ionic and CH-π interactions, whereas HABD_CD44 binds solely via hydrogen bonds and van der Waals forces. Here, we exploit these differences to generate HA oligosaccharides, chemically modified at their reducing ends, that bind specifically and differentially to these target HABPs. Hexasaccharides (HA6AN) modified with 2- or 3-aminobenzoic acid (HA6-2AA, HA6-3AA) or 2-amino-4-methoxybenzoic acid (HA6-2A4MBA), had increased affinities for Link_TSG6 compared to unmodified HA6AN. These modifications did not increase the affinity for CD44_HABD. A model of HA6-2AA (derived from the solution dynamic 3D structure of HA4-2AA) was docked into the Link_TSG6 structure, providing evidence that the 2AA-carboxyl forms a salt bridge with Arginine-81. These modeling results informed a second series of chemical modifications for HA oligosaccharides, which again showed differential binding to the two proteins. Several modifications to HA4 and HA6 were found to convert the oligosaccharide into substrates for heavy chain transfer, whereas unmodified HA4 and HA6 are not. This study has generated valuable research tools to further understand HA biology.
Collapse
Affiliation(s)
- Rebecca J Dodd
- Wellcome Centre for Cell Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | | | | | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Caroline M Milner
- Wellcome Centre for Cell Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom; Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| | - Anthony J Day
- Wellcome Centre for Cell Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom; Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
10
|
Pearson JJ, Mao J, Temenoff JS. Effects of Release of TSG-6 from Heparin Hydrogels on Supraspinatus Muscle Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608812. [PMID: 39229126 PMCID: PMC11370378 DOI: 10.1101/2024.08.20.608812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Muscle degeneration after rotator cuff tendon tear is a significant clinical problem. In these experiments, we developed a poly(ethylene glycol)-based injectable granular hydrogel containing two heparin derivatives (fully sulfated (Hep) and fully desulfated (Hep-)) as well as a matrix metalloproteinase-sensitive peptide to promote sustained release of Tumor Necrosis Factor Stimulated Gene 6 (TSG-6) over 14+ days in vivo in a rat model of rotator cuff muscle injury. The hydrogel formulations demonstrated similar release profiles in vivo , thus facilitating comparisons between delivery from heparin derivatives on level of tissue repair in two different areas of muscle (near the myotendious junction (MTJ) and in the muscle belly (MB)) that have been shown previously to have differing responses to rotator cuff tendon injury. We hypothesized that sustained delivery of TSG-6 would enhance the anti-inflammatory response following rotator cuff injury through macrophage polarization, and that release from a fully sulfated heparin derivative (Hep) would potentiate this effect throughout the muscle. Inflammatory/immune cells, satellite cells, and fibroadipogenic progenitor cells, were analyzed by flow cytometery 3 and 7 days after injury and hydrogel injection, while metrics of muscle healing were examined via immunohistochemistry up to Day 14. Results showed controlled delivery of TSG-6 from Hep caused heightened macrophage response (Day 14 macrophages, 4.00 ± 1.85% single cells, M2a, 3.27 ± 1.95% single cells) and increased markers of early muscle regeneration (embryonic heavy chain staining) by Day 7, particularly in the MTJ region of the muscle, compared to release from desulfated heparin hydrogels. This work provides a novel strategy for localized, controlled delivery of TSG-6 to enhance muscle healing after rotator cuff tear. IMPACT STATEMENT Rotator cuff tear is a significant problem that can cause muscle degeneration. In this study, a hydrogel particle system was developed for sustained release of an anti-inflammatory protein, Tumor Necrosis Factor Stimulated Gene 6 (TSG-6), to injured muscle. Release of the protein from a fully sulfated heparin hydrogel-based carrier demonstrated greater changes in amount inflammatory cells and more early regenerative effects than a less-sulfated carrier. Thus, this work provides a novel strategy for localized, controlled delivery of an anti-inflammatory protein to enhance muscle healing after rotator cuff tear.
Collapse
|
11
|
Wiley JW, Higgins GA. Epigenomics and the Brain-gut Axis: Impact of Adverse Childhood Experiences and Therapeutic Challenges. JOURNAL OF TRANSLATIONAL GASTROENTEROLOGY 2024; 2:125-130. [PMID: 40012740 PMCID: PMC11864786 DOI: 10.14218/jtg.2024.00017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The brain-gut axis represents a bidirectional communication network that integrates neural, hormonal, and immunological signaling between the central nervous system and the gastrointestinal tract. Adverse childhood experiences (ACEs) have increasingly been recognized for their profound impact on this axis, with implications for both mental and physical health outcomes. This mini-review explores the emerging field of epigenomics-specifically, how epigenetic modifications incurred by ACEs can influence the brain-gut axis and contribute to the pathophysiology of various disorders. We examine the evidence linking epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding RNAs to the modulation of gene expression involved in stress responses, neurodevelopment, and immune function-all of which intersect at the brain-gut axis. Additionally, we discuss the emerging potential of the gut microbiome as both a target and mediator of epigenetic changes, further influencing brain-gut communication in the context of ACEs. The methodological and therapeutic challenges posed by these insights are significant. The reversibility of epigenetic marks and the long-term consequences of early life stress require innovative and comprehensive approaches to intervention. This underscores the need for comprehensive strategies encompassing psychosocial, pharmacological, neuromodulation, and lifestyle interventions tailored to address ACEs' individualized and persistent effects. Future directions call for a multi-disciplinary approach and longitudinal studies to uncover the full extent of ACEs' impact on epigenetic regulation and the brain-gut axis, with the goal of developing targeted therapies to mitigate the long-lasting effects on health.
Collapse
Affiliation(s)
- John W. Wiley
- Department of Internal Medicine, University of Michigan Medicine, Ann Arbor, MI, USA
| | - Gerald A. Higgins
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Duan K, Fang K, Sui C. TFAIP6 facilitates hepatocellular carcinoma cell glycolysis through upregulating c-myc/PKM2 axis. Heliyon 2024; 10:e30959. [PMID: 38813227 PMCID: PMC11133704 DOI: 10.1016/j.heliyon.2024.e30959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most prevalent liver cancer. Despite of the improvement of therapies, the durable response rate and survival benefit are still limited for HCC patients. It's urgent to clarify the molecular mechanisms and find therapeutic strategies to improve the clinical outcome. TNFα-stimulated gene-6 (TNFAIP6) plays a critical role in the prognosis of various tumors, but its roles in HCC are still unclear. Methods Quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC) analysis were employed to evaluate the clinical relevance of TNFAIP6 expressions in HCC patients. Cell counting kit-8 (CCK-8), Edu assay, and transwell assay were performed to evaluate the malignancy of HCC cells. Glucose uptake, lactate production, ATP production, extracellular acidification rate (ECAR) by Seahorse XF analyzer were employed to evaluate the role of TNFAIP6 in the regulation of aerobic glycolysis. The expressions of key proteins involved in glycolysis were examined by Western blot. Co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (ChIP) were used for protein-protein interactions or protein-RNA interactions respectively. Knockdown and overexpression of TNFAIP6 in HCC cells were employed for analyzing the functions of TNFAIP6 in HCC. Results TNFAIP6 was significantly upregulated in HCC and predicted a poor clinical prognosis. Knockdown of TNFAIP6 inhibited in vitro cell proliferation, invasion, migration, as well as glycolysis in HCC cells. Mechanistically, we clarified that TNFAIP6 interacted with heterogeneous nuclear ribonucleoprotein C (HNRNPC), stabilized c-Myc mRNA and upregulated pyruvate kinase M2 (PKM2) to promote glycolysis. Conclusions Our study reveals a molecular mechanism by which TNFAIP6 promotes aerobic glycolysis, which is beneficial for malignance of HCC and provides a potential clinical therapy for disease management.
Collapse
Affiliation(s)
- Kecai Duan
- Department of Special Medical Services, Third Affiliated Hospital of Naval Medical University (Shanghai Eastern Hepatobiliary Surgery Hospital), China
| | - Kunpeng Fang
- Department of Special Medical Services, Third Affiliated Hospital of Naval Medical University (Shanghai Eastern Hepatobiliary Surgery Hospital), China
| | - Chengjun Sui
- Department of Special Medical Services, Third Affiliated Hospital of Naval Medical University (Shanghai Eastern Hepatobiliary Surgery Hospital), China
| |
Collapse
|
13
|
Han J, Lee C, Jeong H, Jeon S, Lee M, Lee H, Choi YH, Jung Y. Tumor necrosis factor-inducible gene 6 protein and its derived peptide ameliorate liver fibrosis by repressing CD44 activation in mice with alcohol-related liver disease. J Biomed Sci 2024; 31:54. [PMID: 38790021 PMCID: PMC11127441 DOI: 10.1186/s12929-024-01042-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Alcohol-related liver disease (ALD) is a major health concern worldwide, but effective therapeutics for ALD are still lacking. Tumor necrosis factor-inducible gene 6 protein (TSG-6), a cytokine released from mesenchymal stem cells, was shown to reduce liver fibrosis and promote successful liver repair in mice with chronically damaged livers. However, the effect of TSG-6 and the mechanism underlying its activity in ALD remain poorly understood. METHODS To investigate its function in ALD mice with fibrosis, male mice chronically fed an ethanol (EtOH)-containing diet for 9 weeks were treated with TSG-6 (EtOH + TSG-6) or PBS (EtOH + Veh) for an additional 3 weeks. RESULTS Severe hepatic injury in EtOH-treated mice was markedly decreased in TSG-6-treated mice fed EtOH. The EtOH + TSG-6 group had less fibrosis than the EtOH + Veh group. Activation of cluster of differentiation 44 (CD44) was reported to promote HSC activation. CD44 and nuclear CD44 intracellular domain (ICD), a CD44 activator which were upregulated in activated HSCs and ALD mice were significantly downregulated in TSG-6-exposed mice fed EtOH. TSG-6 interacted directly with the catalytic site of MMP14, a proteolytic enzyme that cleaves CD44, inhibited CD44 cleavage to CD44ICD, and reduced HSC activation and liver fibrosis in ALD mice. In addition, a novel peptide designed to include a region that binds to the catalytic site of MMP14 suppressed CD44 activation and attenuated alcohol-induced liver injury, including fibrosis, in mice. CONCLUSIONS These results demonstrate that TSG-6 attenuates alcohol-induced liver damage and fibrosis by blocking CD44 cleavage to CD44ICD and suggest that TSG-6 and TSG-6-mimicking peptide could be used as therapeutics for ALD with fibrosis.
Collapse
Affiliation(s)
- Jinsol Han
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Chanbin Lee
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
- Institute of Systems Biology, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Hayeong Jeong
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Seunghee Jeon
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Myunggyo Lee
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Pusan, 46241, Republic of Korea
| | - Haeseung Lee
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Pusan, 46241, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dong-Eui University College of Korean Medicine, Pusan, 47227, Republic of Korea
| | - Youngmi Jung
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea.
- Department of Biological Sciences, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea.
| |
Collapse
|
14
|
Srivastava T, Nguyen H, Haden G, Diba P, Sowa S, LaNguyen N, Reed-Dustin W, Zhu W, Gong X, Harris EN, Baltan S, Back SA. TSG-6-Mediated Extracellular Matrix Modifications Regulate Hypoxic-Ischemic Brain Injury. J Neurosci 2024; 44:e2215232024. [PMID: 38569926 PMCID: PMC11112645 DOI: 10.1523/jneurosci.2215-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024] Open
Abstract
Proteoglycans containing link domains modify the extracellular matrix (ECM) to regulate cellular homeostasis and can also sensitize tissues/organs to injury and stress. Hypoxic-ischemic (H-I) injury disrupts cellular homeostasis by activating inflammation and attenuating regeneration and repair pathways. In the brain, the main component of the ECM is the glycosaminoglycan hyaluronic acid (HA), but whether HA modifications of the ECM regulate cellular homeostasis and response to H-I injury is not known. In this report, employing both male and female mice, we demonstrate that link-domain-containing proteoglycan, TNFα-stimulated gene-6 (TSG-6), is active in the brain from birth onward and differentially modifies ECM HA during discrete neurodevelopmental windows. ECM HA modification by TSG-6 enables it to serve as a developmental switch to regulate the activity of the Hippo pathway effector protein, yes-associated protein 1 (YAP1), in the maturing brain and in response to H-I injury. Mice that lack TSG-6 expression display dysregulated expression of YAP1 targets, excitatory amino acid transporter 1 (EAAT1; glutamate-aspartate transporter) and 2 (EAAT2; glutamate transporter-1). Dysregulation of YAP1 activation in TSG-6-/- mice coincides with age- and sex-dependent sensitization of the brain to H-I injury such that 1-week-old neonates display an anti-inflammatory response in contrast to an enhanced proinflammatory injury reaction in 3-month-old adult males but not females. Our findings thus support that a key regulator of age- and sex-dependent H-I injury response in the mouse brain is modulation of the Hippo-YAP1 pathway by TSG-6-dependent ECM modifications.
Collapse
Affiliation(s)
- Taasin Srivastava
- Department of Pediatrics, Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - Hung Nguyen
- Division of Anesthesiology and Perioperative Medicine (APOM), Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - Gage Haden
- Department of Pediatrics, Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - Parham Diba
- Department of Pediatrics, Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - Steven Sowa
- Department of Pediatrics, Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - Norah LaNguyen
- Department of Pediatrics, Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - William Reed-Dustin
- Department of Pediatrics, Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - Wenbin Zhu
- Division of Anesthesiology and Perioperative Medicine (APOM), Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - Xi Gong
- Department of Pediatrics, Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - Edward N Harris
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| | - Selva Baltan
- Division of Anesthesiology and Perioperative Medicine (APOM), Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - Stephen A Back
- Department of Pediatrics, Oregon Health and Science University (OHSU), Portland, Oregon 97239
- Department of Neurology, Oregon Health and Science University (OHSU), Portland, Oregon 97239
| |
Collapse
|
15
|
Xu Y, Benedikt J, Ye L. Hyaluronic Acid Interacting Molecules Mediated Crosstalk between Cancer Cells and Microenvironment from Primary Tumour to Distant Metastasis. Cancers (Basel) 2024; 16:1907. [PMID: 38791985 PMCID: PMC11119954 DOI: 10.3390/cancers16101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Hyaluronic acid (HA) is a prominent component of the extracellular matrix, and its interactions with HA-interacting molecules (HAIMs) play a critical role in cancer development and disease progression. This review explores the multifaceted role of HAIMs in the context of cancer, focusing on their influence on disease progression by dissecting relevant cellular and molecular mechanisms in tumour cells and the tumour microenvironment. Cancer progression can be profoundly affected by the interactions between HA and HAIMs. They modulate critical processes such as cell adhesion, migration, invasion, and proliferation. The TME serves as a dynamic platform in which HAIMs contribute to the formation of a unique niche. The resulting changes in HA composition profoundly influence the biophysical properties of the TME. These modifications in the TME, in conjunction with HAIMs, impact angiogenesis, immune cell recruitment, and immune evasion. Therefore, understanding the intricate interplay between HAIMs and HA within the cancer context is essential for developing novel therapeutic strategies. Targeting these interactions offers promising avenues for cancer treatment, as they hold the potential to disrupt critical aspects of disease progression and the TME. Further research in this field is imperative for advancing our knowledge and the treatment of cancer.
Collapse
Affiliation(s)
- Yali Xu
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
- School of Engineering, Cardiff University, Cardiff CF24 3AA, UK;
| | | | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
| |
Collapse
|
16
|
Verma S, Moreno IY, Prinholato da Silva C, Sun M, Cheng X, Gesteira TF, Coulson-Thomas VJ. Endogenous TSG-6 modulates corneal inflammation following chemical injury. Ocul Surf 2024; 32:26-38. [PMID: 38151073 PMCID: PMC11056311 DOI: 10.1016/j.jtos.2023.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/21/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
PURPOSE Tumor necrosis factor (TNF)-stimulated gene-6 (TSG-6) is upregulated in various pathophysiological contexts, where it has a diverse repertoire of immunoregulatory functions. Herein, we investigated the expression and function of TSG-6 during corneal homeostasis and after injury. METHODS Human corneas, eyeballs from BALB/c (TSG-6+/+), TSG-6+/- and TSG-6-/- mice, human immortalized corneal epithelial cells and murine corneal epithelial progenitor cells were prepared for immunostaining and real time PCR analysis of endogenous expression of TSG-6. Mice were subjected to unilateral corneal debridement or alkali burn (AB) injuries and wound healing assessed over time using fluorescein stain, in vivo confocal microscopy and histology. RESULTS TSG-6 is endogenously expressed in the human and mouse cornea and established corneal epithelial cell lines and is upregulated after injury. A loss of TSG-6 has no structural and functional effect in the cornea during homeostasis. No differences were noted in the rate of corneal epithelial wound closure between BALB/c, TSG-6+/- and TSG-6-/- mice. TSG-6-/- mice presented decreased inflammatory response within the first 24 h of injury and accelerated corneal wound healing following AB when compared to control mice. CONCLUSION TSG-6 is endogenously expressed in the cornea and upregulated after injury where it propagates the inflammatory response following chemical injury.
Collapse
Affiliation(s)
- Sudhir Verma
- College of Optometry, University of Houston, Houston, TX, United States; Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Delhi, India
| | - Isabel Y Moreno
- College of Optometry, University of Houston, Houston, TX, United States
| | | | - Mingxia Sun
- College of Optometry, University of Houston, Houston, TX, United States
| | - Xuhong Cheng
- College of Optometry, University of Houston, Houston, TX, United States
| | - Tarsis F Gesteira
- College of Optometry, University of Houston, Houston, TX, United States
| | | |
Collapse
|
17
|
Yuan Z, Yang X, Hu Z, Gao Y, Yan P, Zheng F, Hong K, Cen K, Mai Y, Bai Y, Guo Y, Zhou J. Investigating the impact of inflammatory response-related genes on renal fibrosis diagnosis: a machine learning-based study with experimental validation. J Biomol Struct Dyn 2024:1-13. [PMID: 38381715 DOI: 10.1080/07391102.2024.2317992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
Renal fibrosis plays a crucial role in the progression of renal diseases, yet the lack of effective diagnostic markers poses challenges in scientific and clinical practices. In this study, we employed machine learning techniques to identify potential biomarkers for renal fibrosis. Utilizing two datasets from the GEO database, we applied LASSO, SVM-RFE and RF algorithms to screen for differentially expressed genes related to inflammatory responses between the renal fibrosis group and the control group. As a result, we identified four genes (CCL5, IFITM1, RIPK2, and TNFAIP6) as promising diagnostic indicators for renal fibrosis. These genes were further validated through in vivo experiments and immunohistochemistry, demonstrating their utility as reliable markers for assessing renal fibrosis. Additionally, we conducted a comprehensive analysis to explore the relationship between these candidate biomarkers, immunity, and drug sensitivity. Integrating these findings, we developed a nomogram with a high discriminative ability, achieving a concordance index of 0.933, enabling the prediction of disease risk in patients with renal fibrosis. Overall, our study presents a predictive model for renal fibrosis and highlights the significance of four potential biomarkers, facilitating clinical diagnosis and personalized treatment. This finding presents valuable insights for advancing precision medicine approaches in the management of renal fibrosis.
Collapse
Affiliation(s)
- Ziwei Yuan
- Department of Endocrinology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Xuejia Yang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zujian Hu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuanyuan Gao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Penghua Yan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fan Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kai Hong
- Department of General Surgery, Ningbo First Hospital, Ningbo, China
| | - Kenan Cen
- Department of General Surgery, Ningbo First Hospital, Ningbo, China
| | - Yifeng Mai
- Department of General Surgery, Ningbo First Hospital, Ningbo, China
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yangyang Guo
- Department of General Surgery, Ningbo First Hospital, Ningbo, China
| | - Jingzong Zhou
- Department of Endocrinology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, Zhejiang, China
| |
Collapse
|
18
|
Tang F, Reeves SR, Brune JE, Chang MY, Chan CK, Waldron P, Drummond SP, Milner CM, Alonge KM, Garantziotis S, Day AJ, Altemeier WA, Frevert CW. Inter-alpha-trypsin inhibitor (IαI) and hyaluronan modifications enhance the innate immune response to influenza virus in the lung. Matrix Biol 2024; 126:25-42. [PMID: 38232913 DOI: 10.1016/j.matbio.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/22/2023] [Accepted: 01/14/2024] [Indexed: 01/19/2024]
Abstract
The inter-alpha-trypsin inhibitor (IαI) complex is composed of the bikunin core protein with a single chondroitin sulfate (CS) attached and one or two heavy chains (HCs) covalently linked to the CS chain. The HCs from IαI can be transferred to hyaluronan (HA) through a TNFα-stimulated gene-6 (TSG-6) dependent process to form an HC•HA matrix. Previous studies reported increased IαI, HA, and HC•HA complexes in mouse bronchoalveolar lavage fluid (BALF) post-influenza infection. However, the expression and incorporation of HCs into the HA matrix of the lungs during the clinical course of influenza A virus (IAV) infection and the biological significance of the HC•HA matrix are poorly understood. The present study aimed to better understand the composition of HC•HA matrices in mice infected with IAV and how these matrices regulate the host pulmonary immune response. In IAV infected mice bikunin, HC1-3, TSG-6, and HAS1-3 all show increased gene expression at various times during a 12-day clinical course. The increased accumulation of IαI and HA was confirmed in the lungs of infected mice using immunohistochemistry and quantitative digital pathology. Western blots confirmed increases in the IαI components in BALF and lung tissue at 6 days post-infection (dpi). Interestingly, HCs and bikunin recovered from BALF and plasma from mice 6 dpi with IAV, displayed differences in the HC composition by Western blot analysis and differences in bikunin's CS chain sulfation patterns by mass spectrometry analysis. This strongly suggests that the IαI components were synthesized in the lungs rather than translocated from the vascular compartment. HA was significantly increased in BALF at 6 dpi, and the HA recovered in BALF and lung tissues were modified with HCs indicating the presence of an HC•HA matrix. In vitro experiments using polyinosinic-polycytidylic acid (poly(I:C)) treated mouse lung fibroblasts (MLF) showed that modification of HA with HCs increased cell-associated HA, and that this increase was due to the retention of HA in the MLF glycocalyx. In vitro studies of leukocyte adhesion showed differential binding of lymphoid (Hut78), monocyte (U937), and neutrophil (dHL60) cell lines to HA and HC•HA matrices. Hut78 cells adhered to immobilized HA in a size and concentration-dependent manner. In contrast, the binding of dHL60 and U937 cells depended on generating a HC•HA matrix by MLF. Our in vivo findings, using multiple bronchoalveolar lavages, correlated with our in vitro findings in that lymphoid cells bound more tightly to the HA-glycocalyx in the lungs of influenza-infected mice than neutrophils and mononuclear phagocytes (MNPs). The neutrophils and MNPs were associated with a HC•HA matrix and were more readily lavaged from the lungs. In conclusion, this work shows increased IαI and HA accumulation and the formation of a HC•HA matrix in mouse lungs post-IAV infection. The formation of HA and HC•HA matrices could potentially create specific microenvironments in the lungs for immune cell recruitment and activation during IAV infection.
Collapse
Affiliation(s)
- Fengying Tang
- Center for Lung Biology, the University of Washington at South Lake Union, Seattle, WA, USA; Department of Comparative Medicine, University of Washington, Seattle, WA, USA.
| | - Stephen R Reeves
- Center for Respiratory Biology and Therapeutics, Seattle Children's Research Institute, Seattle, WA, USA; Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Jourdan E Brune
- Center for Lung Biology, the University of Washington at South Lake Union, Seattle, WA, USA; Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Mary Y Chang
- Center for Lung Biology, the University of Washington at South Lake Union, Seattle, WA, USA; Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Christina K Chan
- Center for Lung Biology, the University of Washington at South Lake Union, Seattle, WA, USA; Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Peter Waldron
- Center for Lung Biology, the University of Washington at South Lake Union, Seattle, WA, USA; Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Sheona P Drummond
- Welcome Centre for Cell-Matrix Research, University of Manchester, Manchester, UK; Faculty of Biology Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Caroline M Milner
- Faculty of Biology Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Kimberly M Alonge
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Stavros Garantziotis
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Anthony J Day
- Welcome Centre for Cell-Matrix Research, University of Manchester, Manchester, UK; Faculty of Biology Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - William A Altemeier
- Center for Lung Biology, the University of Washington at South Lake Union, Seattle, WA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Charles W Frevert
- Center for Lung Biology, the University of Washington at South Lake Union, Seattle, WA, USA; Department of Comparative Medicine, University of Washington, Seattle, WA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
19
|
Su W, Nong Q, Wu J, Fan R, Liang Y, Hu A, Gao Z, Liang W, Deng Q, Wang H, Xia L, Huang Y, Qin Y, Zhao N. Anti-inflammatory protein TSG-6 secreted by BMSCs attenuates silica-induced acute pulmonary inflammation by inhibiting NLRP3 inflammasome signaling in macrophages. Int J Biol Macromol 2023; 253:126651. [PMID: 37709227 DOI: 10.1016/j.ijbiomac.2023.126651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
Silicosis is a severe occupational lung disease caused by inhalation of silica particles. Unfortunately, there are currently limited treatment options available for silicosis. Recent advances have indicated that bone marrow mesenchymal stem cells (BMSCs) have a therapeutic effect on silicosis, but their efficacy and underlying mechanisms remain largely unknown. In this study, we focused on the early phase of silica-induced lung injury to investigate the therapeutic effect of BMSCs. Our findings demonstrated that BMSCs attenuated silica-induced acute pulmonary inflammation by inhibiting NLRP3 inflammasome pathways in lung macrophages. To further understand the mechanisms involved, we utilized RNA sequencing to analyze the transcriptomes of BMSCs co-cultured with silica-stimulated bone marrow-derived macrophages (BMDMs). The results clued tumor necrosis factor-stimulated gene 6 (TSG-6) might be a potentially key paracrine secretion factor released from BMSCs, which exerts a protective effect. Furthermore, the anti-inflammatory and inflammasome pathway inhibition effects of BMSCs were attenuated when TSG-6 expression was silenced, both in vivo and in vitro. Additionally, treatment with exogenous recombinant mouse TSG-6 (rmTSG-6) demonstrated similar effects to BMSCs in attenuating silica-induced inflammation. Overall, our findings suggested that BMSCs can regulate the activation of inflammasome in macrophages by secreting TSG-6, thereby protecting against silica-induced acute pulmonary inflammation both in vivo and in vitro.
Collapse
Affiliation(s)
- Wenyao Su
- Guangdong Province Hospital for Occupational Diseases Prevention and Treatment, Guangzhou 510300, China; Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong 528300, China; School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Qiying Nong
- Guangdong Province Hospital for Occupational Diseases Prevention and Treatment, Guangzhou 510300, China
| | - Jie Wu
- Emeishan Centerfor Disease Control and Prevention, Emeishan, Sichuan 614299, China
| | - Ruihong Fan
- Guangdong Province Hospital for Occupational Diseases Prevention and Treatment, Guangzhou 510300, China
| | - Yuanting Liang
- Guangdong Province Hospital for Occupational Diseases Prevention and Treatment, Guangzhou 510300, China; School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Anyi Hu
- Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Zhongxiang Gao
- Guangdong Province Hospital for Occupational Diseases Prevention and Treatment, Guangzhou 510300, China
| | - Weihui Liang
- Guangdong Province Hospital for Occupational Diseases Prevention and Treatment, Guangzhou 510300, China
| | - Qifei Deng
- Guangdong Province Hospital for Occupational Diseases Prevention and Treatment, Guangzhou 510300, China
| | - Hailan Wang
- Guangdong Province Hospital for Occupational Diseases Prevention and Treatment, Guangzhou 510300, China
| | - Lihua Xia
- Guangdong Province Hospital for Occupational Diseases Prevention and Treatment, Guangzhou 510300, China
| | - Yongshun Huang
- Guangdong Province Hospital for Occupational Diseases Prevention and Treatment, Guangzhou 510300, China
| | - Yiru Qin
- Guangdong Province Hospital for Occupational Diseases Prevention and Treatment, Guangzhou 510300, China.
| | - Na Zhao
- Guangdong Province Hospital for Occupational Diseases Prevention and Treatment, Guangzhou 510300, China; School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong 511436, China; School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
20
|
Massaro F, Corrillon F, Stamatopoulos B, Dubois N, Ruer A, Meuleman N, Bron D, Lagneaux L. Age-related changes in human bone marrow mesenchymal stromal cells: morphology, gene expression profile, immunomodulatory activity and miRNA expression. Front Immunol 2023; 14:1267550. [PMID: 38130717 PMCID: PMC10733451 DOI: 10.3389/fimmu.2023.1267550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Mesenchymal stromal cells (MSC) are one of the main cellular components of bone marrow (BM) microenvironment. MSC play a key role in tissue regeneration, but they are also capable of immunomodulating activity. With host aging, MSC undergo age-related changes, which alter these functions, contributing to the set-up of "inflammaging", which is known to be the basis for the development of several diseases of the elderly, including cancer. However, there's few data investigating this facet of MSC, mainly obtained using murine models or replicative senescence. The aim of this research was to identify morphological, molecular and functional alterations of human bone marrow-derived MSC from young (yBM-MSC) and old (oBM-MSC) healthy donors. Methods MSC were identified by analysis of cell-surface markers according to the ISCT criteria. To evaluate response to inflammatory status, MSC were incubated for 24h in the presence of IL-1β, IFN-α, IFN-ɣ and TNF-α. Macrophages were obtained by differentiation of THP-1 cells through PMA exposure. For M1 polarization experiments, a 24h incubation with LPS and IFN-ɣ was performed. MSC were plated at the bottom of the co-culture transwell system for all the time of cytokine exposure. Gene expression was evaluated by real-time PCR after RNA extraction from BM-MSC or THP-1 culture. Secreted cytokines levels were quantitated through ELISA assays. Results Aging MSC display changes in size, morphology and granularity. Higher levels of β-Gal, reactive oxygen species (ROS), IL-6 and IL-8 and impaired colony-forming and cell cycle progression abilities were found in oBM-MSC. Gene expression profile seems to vary according to subjects' age and particularly in oBM-MSC seem to be characterized by an impaired immunomodulating activity, with a reduced inhibition of macrophage M1 status. The comparative analysis of microRNA (miRNA) expression in yBM-MSC and oBM-MSC revealed a significant difference for miRNA known to be involved in macrophage polarization and particularly miR-193b-3p expression is strongly increased after co-culture of macrophages with yBM-MSC. Conclusion There are profound differences in terms of morphology, gene and miRNA expression and immunomodulating properties among yBM-MSC and oBM-MSC, supporting the critical role of aging BM microenvironment on senescence, immune-mediated disorders and cancer pathogenesis.
Collapse
Affiliation(s)
- Fulvio Massaro
- Department of Hematology, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Florent Corrillon
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, ULB Cancer Research Center (U-CRC) - Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Basile Stamatopoulos
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, ULB Cancer Research Center (U-CRC) - Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Nathan Dubois
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, ULB Cancer Research Center (U-CRC) - Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Achille Ruer
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, ULB Cancer Research Center (U-CRC) - Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Nathalie Meuleman
- Department of Hematology, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Dominique Bron
- Department of Hematology, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, ULB Cancer Research Center (U-CRC) - Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
21
|
Payet M, Septembre-Malaterre A, Gasque P, Guillot X. Human Synovial Mesenchymal Stem Cells Expressed Immunoregulatory Factors IDO and TSG6 in a Context of Arthritis Mediated by Alphaviruses. Int J Mol Sci 2023; 24:15932. [PMID: 37958918 PMCID: PMC10649115 DOI: 10.3390/ijms242115932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Infection by arthritogenic alphaviruses (aavs) can lead to reactive arthritis, which is characterized by inflammation and persistence of the virus; however, its mechanisms remain ill-characterized. Intriguingly, it has been shown that viral persistence still takes place in spite of robust innate and adaptive immune responses, characterized notably by the infiltration of macrophages (sources of TNF-alpha) as well as T/NK cells (sources of IFN-gamma) in the infected joint. Aavs are known to target mesenchymal stem cells (MSCs) in the synovium, and we herein tested the hypothesis that the infection of MSCs may promote the expression of immunoregulators to skew the anti-viral cellular immune responses. We compared the regulated expression via human synovial MSCs of pro-inflammatory mediators (e.g., IL-1β, IL6, CCL2, miR-221-3p) to that of immunoregulators (e.g., IDO, TSG6, GAS6, miR146a-5p). We used human synovial tissue-derived MSCs which were infected with O'Nyong-Nyong alphavirus (ONNV, class II aav) alone, or combined with recombinant human TNF-α or IFN-γ, to mimic the clinical settings. We confirmed via qPCR and immunofluorescence that ONNV infected human synovial tissue-derived MSCs. Interestingly, ONNV alone did not regulate the expression of pro-inflammatory mediators. In contrast, IDO, TSG6, and GAS6 mRNA expression were increased in response to ONNV infection alone, but particularly when combined with both recombinant cytokines. ONNV infection equally decreased miR-146a-5p and miR-221-3p in the untreated cells and abrogated the stimulatory activity of the recombinant TNF-α but not the IFN-gamma. Our study argues for a major immunoregulatory phenotype of MSCs infected with ONNV which may favor virus persistence in the inflamed joint.
Collapse
Affiliation(s)
- Melissa Payet
- Research Unit ‘Etudes Pharmaco-Immunologiques’ UR EPI, Université de la Réunion, 97400 Saint-Denis, La Réunion, France; (M.P.); (A.S.-M.)
| | - Axelle Septembre-Malaterre
- Research Unit ‘Etudes Pharmaco-Immunologiques’ UR EPI, Université de la Réunion, 97400 Saint-Denis, La Réunion, France; (M.P.); (A.S.-M.)
| | - Philippe Gasque
- Research Unit ‘Etudes Pharmaco-Immunologiques’ UR EPI, Université de la Réunion, 97400 Saint-Denis, La Réunion, France; (M.P.); (A.S.-M.)
- Immunology Laboratory (LICE-OI), CHU Bellepierre, Reunion University Hospital, 97400 Saint-Denis, La Réunion, France
| | - Xavier Guillot
- Research Unit ‘Etudes Pharmaco-Immunologiques’ UR EPI, Université de la Réunion, 97400 Saint-Denis, La Réunion, France; (M.P.); (A.S.-M.)
- Rheumatology Clinical Department, CHU Bellepierre, Reunion University Hospital, 97400 Saint-Denis, La Réunion, France
| |
Collapse
|
22
|
Ricciardelli AR, Robledo A, Fish JE, Kan PT, Harris TH, Wythe JD. The Role and Therapeutic Implications of Inflammation in the Pathogenesis of Brain Arteriovenous Malformations. Biomedicines 2023; 11:2876. [PMID: 38001877 PMCID: PMC10669898 DOI: 10.3390/biomedicines11112876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
Brain arteriovenous malformations (bAVMs) are focal vascular lesions composed of abnormal vascular channels without an intervening capillary network. As a result, high-pressure arterial blood shunts directly into the venous outflow system. These high-flow, low-resistance shunts are composed of dilated, tortuous, and fragile vessels, which are prone to rupture. BAVMs are a leading cause of hemorrhagic stroke in children and young adults. Current treatments for bAVMs are limited to surgery, embolization, and radiosurgery, although even these options are not viable for ~20% of AVM patients due to excessive risk. Critically, inflammation has been suggested to contribute to lesion progression. Here we summarize the current literature discussing the role of the immune system in bAVM pathogenesis and lesion progression, as well as the potential for targeting inflammation to prevent bAVM rupture and intracranial hemorrhage. We conclude by proposing that a dysfunctional endothelium, which harbors the somatic mutations that have been shown to give rise to sporadic bAVMs, may drive disease development and progression by altering the immune status of the brain.
Collapse
Affiliation(s)
- Ashley R. Ricciardelli
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ariadna Robledo
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.R.)
| | - Jason E. Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada;
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON M5G 2N2, Canada
| | - Peter T. Kan
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.R.)
| | - Tajie H. Harris
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22903, USA;
- Brain, Immunology, and Glia (BIG) Center, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Joshua D. Wythe
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22903, USA;
- Brain, Immunology, and Glia (BIG) Center, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| |
Collapse
|
23
|
Cui S, Ke L, Wang H, Li L. TSG-6 alleviates cerebral ischemia/reperfusion injury and blood-brain barrier disruption by suppressing ER stress-mediated inflammation. Brain Res 2023; 1817:148466. [PMID: 37336316 DOI: 10.1016/j.brainres.2023.148466] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Tumor necrosis factor-stimulated gene-6 (TSG-6) exhibits promising neuroprotective activity, but how it influences cerebral ischemia/reperfusion (CIR) injury remains to be established. Here, the impact of TSG-6 on the CIR-induced disturbance in the blood-brain barrier (BBB) and associated neurological degeneration was assessed, and the related molecular processes were explored. In this study, TSG-6 markedly reduced CIR-mediated increases in neurological deficit scores, decreased infarct volume, and protected against the apoptotic death of neurons in MCAO/R model rats. Similarly, TSG-6 pretreatment protected cultured neurons against OGD/R-associated neuronal death. TSG-6 also restored BBB integrity, suppressing PERK-eIF2α and IRE1α-TRAF2 pathway activation in CIR model systems, thereby inhibiting NF-κB, TNF-α, IL-1β, and IL-6. The further use of specific inhibitors of ER stress, 4-phenyl butyric acid (4-PBA), PERK (GSK2656157), and IRE1α (STF083010) demonstrated the ability of ER stress to drive inflammatory activity in the context of CIR injury i the PERK-eIF2α-NF-κB and IRE1α-TRAF2-NF-κB pathways. Consistently, the activation of ER stress using tunicamycin resulted in reversing the beneficial effects of TSG-6 on CIR-associated BBB disruption and neurological damage in vitro and in vivo. Treatment with TSG-6 can protect against CIR injury via the inhibition of ER stress-related inflammatory activity induced through the PERK-eIF2α-NF-κB and IRE1α-TRAF2-NF-κB pathways.
Collapse
Affiliation(s)
- Shengwei Cui
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China; Department of Neurology, Graduate School of Anhui University of Traditional Chinese Medicine, Anhui, Hefei 230038, China
| | - Li Ke
- Department of Thoracic Surgery, the First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Lujiang Road 17, Hefei 230001, China.
| | - Han Wang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China.
| | - Liangyong Li
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China.
| |
Collapse
|
24
|
Khan MA, Lau CL, Krupnick AS. Monitoring regulatory T cells as a prognostic marker in lung transplantation. Front Immunol 2023; 14:1235889. [PMID: 37818354 PMCID: PMC10561299 DOI: 10.3389/fimmu.2023.1235889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Lung transplantation is the major surgical procedure, which restores normal lung functioning and provides years of life for patients suffering from major lung diseases. Lung transplant recipients are at high risk of primary graft dysfunction, and chronic lung allograft dysfunction (CLAD) in the form of bronchiolitis obliterative syndrome (BOS). Regulatory T cell (Treg) suppresses effector cells and clinical studies have demonstrated that Treg levels are altered in transplanted lung during BOS progression as compared to normal lung. Here, we discuss levels of Tregs/FOXP3 gene expression as a crucial prognostic biomarker of lung functions during CLAD progression in clinical lung transplant recipients. The review will also discuss Treg mediated immune tolerance, tissue repair, and therapeutic strategies for achieving in-vivo Treg expansion, which will be a potential therapeutic option to reduce inflammation-mediated graft injuries, taper the toxic side effects of ongoing immunosuppressants, and improve lung transplant survival rates.
Collapse
|
25
|
Albtoush N, Queisser KA, Zawerton A, Lauer ME, Beswick EJ, Petrey AC. TSG6 hyaluronan matrix remodeling dampens the inflammatory response during colitis. Matrix Biol 2023; 121:149-166. [PMID: 37391162 PMCID: PMC10530565 DOI: 10.1016/j.matbio.2023.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
In response to tissue injury, changes in the extracellular matrix (ECM) can directly affect the inflammatory response and contribute to disease progression or resolution. During inflammation, the glycosaminoglycan hyaluronan (HA) becomes modified by tumor necrosis factor stimulated gene-6 (TSG6). TSG6 covalently transfers heavy chain (HC) proteins from inter-α-trypsin inhibitor (IαI) to HA in a transesterification reaction and is to date is the only known HC-transferase. By modifying the HA matrix, TSG6 generates HC:HA complexes that are implicated in mediating both protective and pathological responses. Inflammatory bowel disease (IBD) is a lifelong chronic disorder with well-described remodeling of the ECM and increased mononuclear leukocyte influx into the intestinal mucosa. Deposition of HC:HA matrices is an early event in inflamed gut tissue that precedes and promotes leukocyte infiltration. However, the mechanisms by which TSG6 contributes to intestinal inflammation are not well understood. The aim of our study was to understand how the TSG6 and its enzymatic activity contributes to the inflammatory response in colitis. Our findings indicate that inflamed tissues of IBD patients show an elevated level of TSG6 and increased HC deposition and that levels of HA strongly associate with TSG6 levels in patient colon tissue specimens. Additionally, we observed that mice lacking TSG6 are more vulnerable to acute colitis and exhibit an aggravated macrophage-associated mucosal immune response characterized by elevated pro-inflammatory cytokines and chemokines and diminished anti-inflammatory mediators including IL-10. Surprisingly, along with significantly increased levels of inflammation in the absence of TSG6, tissue HA levels in mice were found to be significantly reduced and disorganized, absent of typical "HA-cable" structures. Inhibition of TSG6 HC-transferase activity leads to a loss of cell surface HA and leukocyte adhesion, indicating that the enzymatic functions of TSG6 are a major contributor to stability of the HA ECM during inflammation. Finally, using biochemically generated HC:HA matrices derived by TSG6, we show that HC:HA complexes can attenuate the inflammatory response of activated monocytes. In conclusion, our data suggests that TSG6 exerts a tissue-protective, anti-inflammatory effect via the generation of HC:HA complexes that become dysregulated in IBD.
Collapse
Affiliation(s)
- Nansy Albtoush
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, 84112; Lerner Research Institute, Department of Inflammation & Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kimberly A Queisser
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, 84112; Lerner Research Institute, Department of Inflammation & Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ash Zawerton
- Lerner Research Institute, Department of Inflammation & Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mark E Lauer
- Lerner Research Institute, Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ellen J Beswick
- Division of Gastroenterology, Department of Internal Medicine, University of Kentucky, Lexington, KY, United States
| | - Aaron C Petrey
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, 84112; Department of Pathology, Division of Microbiology & Immunology, University of Utah School of Medicine, Salt Lake City, Utah, 84132, USA; Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA; Lerner Research Institute, Department of Inflammation & Immunity, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
26
|
Jayabal D, Jayanthi S, Thirumalaisamy R, Shimu MSS. Molecular insights of anti-diabetic compounds and its hyaluronic acid conjugates against aldose reductase enzyme through molecular modeling and simulations study-a novel treatment option for inflammatory diabetes. J Mol Model 2023; 29:238. [PMID: 37420135 DOI: 10.1007/s00894-023-05616-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/07/2023] [Indexed: 07/09/2023]
Abstract
CONTEXT Chronic inflammation is a risk factor for diabetes, but it can also be a complication of diabetes, leading to severe diabetes and causing many other clinical manifestations. Inflammation is a major emerging complication in both type I and type II diabetes, which causes increasing interest in targeting inflammation to improve and control diabetes. Diabetes with insulin resistance and impaired glucose utilization in humans and their underlying mechanism is not fully understood. But a growing understanding of the intricacy of the insulin signaling cascade in diabetic inflammatory cells reveals potential target genes and their proteins responsible for severe insulin resistance. With this baseline concept, the current project explores the binding affinities of the hyaluronic acid anti-diabetic compounds conjugates to such target proteins in diabetic inflammatory cells and their molecular geometries. A range of 48 anti-diabetic compounds was screened against aldose reductase binding pocket 3 protein target through in silico molecular docking, and results revealed that three compounds viz, metformin (CID:4091), phenformin (CID:8249), sitagliptin (CID:4,369,359), possess significant binding affinity out of 48 chosen drugs. Further, these three anti-diabetic compounds were conjugated with hyaluronic acid (HA), and their binding affinity and their molecular geometrics towards aldose reductase enzyme were screened compared with the free form of the drug. The molecular geometries of three shortlisted drugs (metformin, phenformin, sitagliptin) and their HA conjugates were also explored through density functional theory studies, and it proves their good molecular geometry towards pocket 3 of aldose reductase target. Further, MD simulation trajectories affirm that HA conjugates possess good binding affinity and simulation trajectories with protein target aldose reductase than a free form of the drug. Our current study unravels the new mechanism of drug targeting for diabetes through HA conjugation for inflammatory diabetes. HA conjugates act as novel drug candidates for treating inflammatory diabetes; however, it needs further human clinical trials. METHODS For ligand structure, PubChem, ACD chem sketch, and online structure file generator platform are utilized for ligand preparation. Target protein aldose reductase obtained from protein database (PDB). For molecular docking analysis, AutoDock Vina (Version 4) was utilized. pKCSM online server used to predict ADMET properties of the above three shortlisted drugs from the docking study. Using mol-inspiration software (version 2011.06), three shortlisted compounds' bioactivity scores were predicted. DFT analysis for three shortlisted anti-diabetic drugs and their hyaluronic acid conjugates were calculated using a functional B3LYP set of Gaussian 09 software. Molecular dynamics simulation calculations for six chosen protein-ligand complexes were done through YASARA dynamics software and AMBER14 force field.
Collapse
Affiliation(s)
- D Jayabal
- Department of Biochemistry, Periyar University, Salem, 636011, Tamil Nadu, India
- Department of Biochemistry, Sri Ganesh College of Arts and Science, Salem, 636014, Tamil Nadu, India
| | - S Jayanthi
- Department of Biochemistry, Shri Sakthikailash Women's College, Ammapet, Salem, 636003, Tamil Nadu, India.
| | - R Thirumalaisamy
- Department of Biotechnology, Sona College of Arts & Science, Salem, 636005, Tamil Nadu, India
| | | |
Collapse
|
27
|
Tasci O, Dogan K. Evaluation of tumour necrosis factor alpha-stimulated gene-6 and fibroblast growth factor-2 levels in patients diagnosed with multi-system inflammatory syndrome in children. Cardiol Young 2023; 33:1086-1091. [PMID: 36918343 DOI: 10.1017/s1047951123000355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Investigations are still ongoing about the pathophysiology of multi-system inflammatory syndrome in children, which can progress with serious morbidity and mortality after COVID-19 infection. In this study, we aimed to investigate whether fibroblast growth factor-2 and tumour necrosis factor alpha-stimulated gene-6 levels play a role in the diagnosis of the disease and on cardiac involvement. Twenty-three patients (11 girls, 12 boys) and 26 healthy controls (10 girls, 16 boys) were included in the study. The mean age of the patient and control group was 8.45 ± 2.43 and 10.73 ± 4.27 years, respectively. There was no difference between the fibroblast growth factor-2 and tumour necrosis factor alpha-stimulated gene-6 levels of the patient and control groups. When the patients with myocardial involvement in the patient group were compared with the patients without myocardial involvement in terms of fibroblast growth factor-2 and tumour necrosis factor alpha-stimulated gene-6 levels, no difference was found between these groups. The correlation of fibroblast growth factor-2 and tumour necrosis factor alpha-stimulated gene-6 levels with other laboratory parameters was investigated in the patient group. Fibroblast growth factor-2 was moderately inversely correlated with white blood cell count (r = -0.541, p = 0.008), absolute neutrophil count (r = -0.502, p = 0.015) and C-reactive protein (r = -0.528, p = 0.010). Fibroblast growth factor-2 was strongly inversely correlated with erythrocyte sedimentation rate (r = -0.694, p =<0.001). Our data show that fibroblast growth factor-2 and tumour necrosis factor alpha stimulated gene-6 do not provide sufficient information about diagnosis and cardiac involvement in multi-system inflammatory syndrome in children.
Collapse
Affiliation(s)
- Onur Tasci
- Sivas Numune Hospital, Department of Pediatric Cardiology, Sivas, Turkey
| | - Kubra Dogan
- Sivas Numune Hospital, Department of Biochemistry, Sivas, Turkey
| |
Collapse
|
28
|
Ma L, Hua L, Yu W, Ke L, Li LY. TSG-6 inhibits hypertrophic scar fibroblast proliferation by regulating IRE1α/TRAF2/NF-κB signalling. Int Wound J 2023; 20:1008-1019. [PMID: 36056472 PMCID: PMC10031217 DOI: 10.1111/iwj.13950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
TNF-stimulated gene (TSG-6) was reported to suppress hypertrophic scar (HS) formation in a rabbit ear model, and the overexpression of TSG-6 in human HS fibroblasts (HSFs) was found to induce their apoptotic death. The molecular basis for these findings, however, remains to be clarified. HSFs were subjected to TSG-6 treatment. Treatment with TSG-6 significantly suppressed HSF proliferation and induced them to undergo apoptosis. Moreover, TSG-6 exposure led to reductions in collagen I, collagen III, and α-SMA mRNA and protein levels, with a corresponding drop in proliferating cell nuclear antigen (PCNA) expression indicative of impaired proliferative activity. Endoplasmic reticulum (ER) stress was also suppressed in these HSFs as demonstrated by decreases in Bip and p-IRE1α expression, downstream inositol requiring enzyme 1 alpha (IRE1α) -Tumor necrosis factor receptor associated factor 2 (TRAF2) pathway signalling was inhibited and treated cells failed to induce NF-κB, TNF-α, IL-1β, and IL-6 expression. Overall, ER stress was found to trigger inflammatory activity in HSFs via the IRE1α-TRAF2 axis, as confirmed with the specific inhibitor of IRE1α STF083010. Additionally, the effects of TSG-6 on apoptosis, collagen I, collagen III, α-SMA, and PCNA of HSFs were reversed by the IRE1α activator thapsigargin (TG). These data suggest that TSG-6 administration can effectively suppress the proliferation of HSFs in part via the inhibition of IRE1α-mediated ER stress-induced inflammation (IRE1α/TRAF2/NF-κB signalling).
Collapse
Affiliation(s)
- Li Ma
- Clinical College of Integrated Traditional Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Lei Hua
- Department of Neurology, the Affiliated Nanjing city Hospital of Chinese Medicine of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenyuan Yu
- Department of Plastic and Cosmetic Surgery, the Second Affiliated Hospital of Soochow University, SuZhou City, PR China
| | - Li Ke
- Department of Thoracic Surgery, the First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, China
| | - Liang-Yong Li
- Department of Neurology, the First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
29
|
Di Santo C, La Russa D, Greco R, Persico A, Zanaboni AM, Bagetta G, Amantea D. Characterization of the Involvement of Tumour Necrosis Factor (TNF)-α-Stimulated Gene 6 (TSG-6) in Ischemic Brain Injury Caused by Middle Cerebral Artery Occlusion in Mouse. Int J Mol Sci 2023; 24:ijms24065800. [PMID: 36982872 PMCID: PMC10051687 DOI: 10.3390/ijms24065800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/03/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The identification of novel targets to modulate the immune response triggered by cerebral ischemia is crucial to promote the development of effective stroke therapeutics. Since tumour necrosis factor (TNF)-α-stimulated gene 6 (TSG-6), a hyaluronate (HA)-binding protein, is involved in the regulation of immune and stromal cell functions in acute neurodegeneration, we aimed to characterize its involvement in ischemic stroke. Transient middle cerebral artery occlusion (1 h MCAo, followed by 6 to 48 of reperfusion) in mice resulted in a significant elevation in cerebral TSG-6 protein levels, mainly localized in neurons and myeloid cells of the lesioned hemisphere. These myeloid cells were clearly infiltrating from the blood, strongly suggesting that brain ischemia also affects TSG-6 in the periphery. Accordingly, TSG-6 mRNA expression was elevated in peripheral blood mononuclear cells (PBMCs) from patients 48 h after ischemic stroke onset, and TSG-6 protein expression was higher in the plasma of mice subjected to 1 h MCAo followed by 48 h of reperfusion. Surprisingly, plasma TSG-6 levels were reduced in the acute phase (i.e., within 24 h of reperfusion) when compared to sham-operated mice, supporting the hypothesis of a detrimental role of TSG-6 in the early reperfusion stage. Accordingly, systemic acute administration of recombinant mouse TSG-6 increased brain levels of the M2 marker Ym1, providing a significant reduction in the brain infarct volume and general neurological deficits in mice subjected to transient MCAo. These findings suggest a pivotal role of TSG-6 in ischemic stroke pathobiology and underscore the clinical relevance of further investigating the mechanisms underlying its immunoregulatory role.
Collapse
Affiliation(s)
- Chiara Di Santo
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Daniele La Russa
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Rosaria Greco
- IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, PV, Italy
| | | | | | - Giacinto Bagetta
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Diana Amantea
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| |
Collapse
|
30
|
Jin C, Zong Y. The role of hyaluronan in renal cell carcinoma. Front Immunol 2023; 14:1127828. [PMID: 36936902 PMCID: PMC10019822 DOI: 10.3389/fimmu.2023.1127828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Renal cell carcinoma (RCC) is associated with high mortality rates worldwide and survival among RCC patients has not improved significantly in the past few years. A better understanding of the pathogenesis of RCC can enable the development of more effective therapeutic strategies against RCC. Hyaluronan (HA) is a glycosaminoglycan located in the extracellular matrix (ECM) that has several roles in biology, medicine, and physiological processes, such as tissue homeostasis and angiogenesis. Dysregulated HA and its receptors play important roles in fundamental cellular and molecular biology processes such as cell signaling, immune modulation, tumor progression and angiogenesis. There is emerging evidence that alterations in the production of HA regulate RCC development, thereby acting as important biomarkers as well as specific therapeutic targets. Therefore, targeting HA or combining it with other therapies are promising therapeutic strategies. In this Review, we summarize the available data on the role of abnormal regulation of HA and speculate on its potential as a therapeutic target against RCC.
Collapse
Affiliation(s)
- Chenchen Jin
- Zhejiang Academy of Science & Technology for Inspection & Quarantine, Hangzhou, Zhejiang, China
| | - Yunfeng Zong
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
31
|
Lee JH, An JH, Youn HY. Tumour necrosis factor stimulated gene 6 intrinsically regulates PD-L1 expressions in breast cancer cells, leading to modulation of tumour microenvironment. Vet Comp Oncol 2023; 21:255-269. [PMID: 36807440 DOI: 10.1111/vco.12884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/17/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023]
Abstract
Recent studies have shown that tumour cells express tumour necrosis factor-inducible gene 6 (TSG-6) and its protein, which is known to play a key role in regulating excessive immune responses and proliferation and growth of mesenchymal stem cells (MSCs). It has not been confirmed whether the inhibition of TSG-6 for tumour cells can suppress tumour cell growth and regulate the activation of immune cells in the tumour microenvironment (TME). TSG-6-specific small interfering RNA was transfected into canine and human breast cancer cells (CIPp, CIPm and BT-20). TSG-6-down-regulated (siTSG-6) cells showed decreased cell proliferation, migration, and invasion abilities. Decreased mRNA expressions of NF-κB, STAT3 and Sox2, confirming that TSG-6 is an upper factor governing tumour growth and metastasis. Notably, siTSG-6 cells showed significantly decreased expression levels of CD44 and PD-L1. Direct and indirect co-culture of canine peripheral blood mononuclear cells (cPBMCs) and the siTSG-6 cells showed significant activation in M1 type macrophages and cytotoxic T cells. They also showed a tendency to decrease in the expression of CTLA-4 and increase in the expression of PD-1. In conclusion, this study suggests that the down-regulation of TSG-6 in breast cancer cells could not only suppress tumour growth and metastasis, and but also regulate TME. Since modulation of immune checkpoint proteins occurs in both tumour cells and immune cells, inhibiting TSG-6 and its protein within the TME could be novel therapeutic target for anticancer treatment.
Collapse
Affiliation(s)
- Jeong-Hwa Lee
- K-BIO KIURI Center, Seoul National University, Seoul, Republic of Korea.,Laboratory of Veterinary Theriogenology, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ju-Hyun An
- Department of Veterinary Emergency and Critical Care Medicine and Institute of Veterinary Science, College of Veterinary Medicine, Kangwon National University, Chuncheon-si, Republic of Korea
| | - Hwa-Young Youn
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
32
|
Arreola-Ramírez JL, Vargas MH, Carbajal V, Alquicira-Mireles J, Montaño M, Ramos-Abraham C, Ortiz-Quintero B, Torres-Machorro AL, Rodríguez-Velasco A, Esquivel-Campos AL, Vásquez-Vásquez JA, Segura-Medina P. Mesenchymal stem cells attenuate the proinflammatory cytokine pattern in a guinea pig model of chronic cigarette smoke exposure. Cytokine 2023; 162:156104. [PMID: 36493630 DOI: 10.1016/j.cyto.2022.156104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/16/2022] [Accepted: 11/26/2022] [Indexed: 12/13/2022]
Abstract
AIMS Cigarette smoke often induces pulmonary and systemic inflammation. In animal models, mesenchymal stem cells (MSC) tend to ameliorate these effects. We aimed to explore the local and systemic expression of cytokines in guinea pigs chronically exposed to cigarette smoke, and their modifications by MSC. MAIN METHODS Concentrations of IL-1β, IL-6, IL-8, IL-12, TNF-α, INF-ɣ, TSG-6, MMP-9, TIMP-1, and/or TIMP-2 in serum and bronchoalveolar lavage (BALF) from animals exposed to tobacco smoke (20 cigarettes/day, 5 days/week for 10 weeks) were determined, and mRNA expression of some of them was measured in lung tissue. Intratracheal instillation of allogeneic bone marrow MSC (5x106 cells in 1 ml) was done at week 2. KEY FINDINGS After cigarette smoke, IL-6 and IFN-γ increased in serum and BALF, while IL-1β and IL-12 decreased in serum, and TSG-6 and TIMP-2 increased in BALF. IL-1β had a paradoxical increase in BALF. MSC had an almost null effect in unexposed animals. The intratracheal administration of MSC in guinea pigs exposed to cigarette smoke was associated with a statistically significant decrease of IL-12 and TSG-6 in serum, as well as a decrease of IL-1β and IFN-γ and an increase in TIMP-1 in BALF. Concerning mRNA expression in lung tissue, cigarette smoke did not modify the relative amount of the studied transcripts, but even so, MSC decreased the IL-12 mRNA and increased the TIMP-1 mRNA. SIGNIFICANCE A single intratracheal instillation of MSC reduces the pulmonary and systemic proinflammatory pattern induced by chronic exposure to cigarette smoke in guinea pigs. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- José Luis Arreola-Ramírez
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, CP 14080, Mexico City, Mexico.
| | - Mario H Vargas
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, CP 14080, Mexico City, Mexico
| | - Verónica Carbajal
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, CP 14080, Mexico City, Mexico
| | - Jesús Alquicira-Mireles
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, CP 14080, Mexico City, Mexico
| | - Martha Montaño
- Departamento de Investigación en Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, CP 14080, Mexico City, Mexico
| | - Carlos Ramos-Abraham
- Departamento de Investigación en Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, CP 14080, Mexico City, Mexico
| | - Blanca Ortiz-Quintero
- Departamento de Investigación en Bioquímica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, CP 14080, Mexico City, Mexico
| | - Ana Lilia Torres-Machorro
- Departamento de Investigación en Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, CP 14080, Mexico City, Mexico
| | - Alicia Rodríguez-Velasco
- Servicio de Anatomía Patológica, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, CP 06720, Mexico City, Mexico
| | - Ana Laura Esquivel-Campos
- Laboratorio de Investigación en Biología Experimental, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | | | - Patricia Segura-Medina
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, CP 14080, Mexico City, Mexico; Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Mexico City, Mexico
| |
Collapse
|
33
|
Hu Y, Li K, Swahn H, Ordoukhanian P, Head SR, Natarajan P, Woods AK, Joseph SB, Johnson KA, Lotz MK. Transcriptomic analyses of joint tissues during osteoarthritis development in a rat model reveal dysregulated mechanotransduction and extracellular matrix pathways. Osteoarthritis Cartilage 2023; 31:199-212. [PMID: 36354073 PMCID: PMC9892293 DOI: 10.1016/j.joca.2022.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/20/2022] [Accepted: 10/03/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Transcriptomic changes in joint tissues during the development of osteoarthritis (OA) are of interest for the discovery of biomarkers and mechanisms of disease. The objective of this study was to use the rat medial meniscus transection (MMT) model to discover stage and tissue-specific transcriptomic changes. DESIGN Sham or MMT surgeries were performed in mature rats. Cartilage, menisci and synovium were scored for histopathological changes at 2, 4 and 6 weeks post-surgery and processed for RNA-sequencing. Differentially expressed genes (DEG) were used to identify pathways and mechanisms. Published transcriptomic datasets from animal models and human OA were used to confirm and extend present findings. RESULTS The total number of DEGs was already high at 2 weeks (723 in meniscus), followed by cartilage (259) and synovium (42) and declined to varying degrees in meniscus and synovium but increased in cartilage at 6 weeks. The most upregulated genes included tenascins. The 'response to mechanical stimulus' and extracellular matrix-related pathways were enriched in both cartilage and meniscus. Pathways that were enriched in synovium at 4 weeks indicate processes related to synovial hyperplasia and fibrosis. Synovium also showed upregulation of IL-11 and several MMPs. The mechanical stimulus pathway included upregulation of the mechanoreceptors PIEZO1, PIEZO2 and TRPV4 and nerve growth factor. Analysis of data from prior RNA-sequencing studies of animal models and human OA support these findings. CONCLUSION These results indicate several shared pathways that are affected during OA in cartilage and meniscus and support the role of mechanotransduction and other pathways in OA pathogenesis.
Collapse
Affiliation(s)
- Y Hu
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, 92037, USA; Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - K Li
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, 92037, USA
| | - H Swahn
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, 92037, USA
| | - P Ordoukhanian
- Center for Computational Biology & Bioinformatics and Genomics Core, Scripps Research, La Jolla, CA, 92037, USA
| | - S R Head
- Center for Computational Biology & Bioinformatics and Genomics Core, Scripps Research, La Jolla, CA, 92037, USA
| | - P Natarajan
- Center for Computational Biology & Bioinformatics and Genomics Core, Scripps Research, La Jolla, CA, 92037, USA
| | - A K Woods
- Calibr, a Division of Scripps Research, La Jolla, CA, 92037, USA
| | - S B Joseph
- Calibr, a Division of Scripps Research, La Jolla, CA, 92037, USA
| | - K A Johnson
- Calibr, a Division of Scripps Research, La Jolla, CA, 92037, USA
| | - M K Lotz
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, 92037, USA.
| |
Collapse
|
34
|
La Russa D, Di Santo C, Lizasoain I, Moraga A, Bagetta G, Amantea D. Tumor Necrosis Factor (TNF)-α-Stimulated Gene 6 (TSG-6): A Promising Immunomodulatory Target in Acute Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24021162. [PMID: 36674674 PMCID: PMC9865344 DOI: 10.3390/ijms24021162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Tumor necrosis factor (TNF)-α-stimulated gene 6 (TSG-6), the first soluble chemokine-binding protein to be identified in mammals, inhibits chemotaxis and transendothelial migration of neutrophils and attenuates the inflammatory response of dendritic cells, macrophages, monocytes, and T cells. This immunoregulatory protein is a pivotal mediator of the therapeutic efficacy of mesenchymal stem/stromal cells (MSC) in diverse pathological conditions, including neuroinflammation. However, TSG-6 is also constitutively expressed in some tissues, such as the brain and spinal cord, and is generally upregulated in response to inflammation in monocytes/macrophages, dendritic cells, astrocytes, vascular smooth muscle cells and fibroblasts. Due to its ability to modulate sterile inflammation, TSG-6 exerts protective effects in diverse degenerative and inflammatory diseases, including brain disorders. Emerging evidence provides insights into the potential use of TSG-6 as a peripheral diagnostic and/or prognostic biomarker, especially in the context of ischemic stroke, whereby the pathobiological relevance of this protein has also been demonstrated in patients. Thus, in this review, we will discuss the most recent data on the involvement of TSG-6 in neurodegenerative diseases, particularly focusing on relevant anti-inflammatory and immunomodulatory functions. Furthermore, we will examine evidence suggesting novel therapeutic opportunities that can be afforded by modulating TSG-6-related pathways in neuropathological contexts and, most notably, in stroke.
Collapse
Affiliation(s)
- Daniele La Russa
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Chiara Di Santo
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, and Instituto de Investigación Hospital 12 de Octubre (Imas12), 28040 Madrid, Spain
| | - Ana Moraga
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, and Instituto de Investigación Hospital 12 de Octubre (Imas12), 28040 Madrid, Spain
| | - Giacinto Bagetta
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Diana Amantea
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
- Correspondence:
| |
Collapse
|
35
|
van Setten GB. Expression of GPR-68 in Human Corneal and Conjunctival Epithelium. Possible indicator and mediator of attrition associated inflammation at the ocular surface. J Fr Ophtalmol 2023; 46:19-24. [PMID: 36503812 DOI: 10.1016/j.jfo.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Attrition and osmotic stress have been identified as major forces in the pathophysiology of dry eye. Impaired tolerance to mechano-transduction in the presence of insufficient lubrication has been associated with disturbances of ocular surface homeostasis and encouragement of inflammatory reactions, challenging the usual regulatory coping mechanisms. In spite of the probable link between enhanced attrition and secondary inflammation, the key mediators driving the vicious cycle of severe dry eye disease have not yet been identified. The goal of this study was therefore to investigate human corneal and conjunctival epithelium for the presence of the G protein-coupled receptor GPR-68. This protein had most recently been shown to be not only chemically activated but also mechanically, possibly through attrition. METHODS De-identified sections of human cornea and conjunctiva were stained for the presence of G protein-coupled receptor 68 with specific antibodies using immunohistochemical methods. Results Specific staining for G-protein-coupled receptor 68 (GPR68) was observed in all samples of the cornea throughout the epithelial layers of the corneal epithelium, most prominently in the area of the wing cells and the basement membrane. Even in the conjunctiva, specific staining for GPR-68 was found. DISCUSSION The detection of G protein-coupled receptor GPR-68 in human corneal and conjunctival epithelium raises the question of its function and purpose. The mechanical activation of GPR68 in situations with enhanced friction and attrition could modify various cellular functions and possibly jeopardize normal inflammatory homeostasis at the ocular surface. Accordingly, decreased lubrication in dry eye disease could result in activation of GPR-68. This could lead to secondary inflammation, initially in the epithelium and surrounding stroma. Continuous mechanical stress could result in chronic inflammation, also reaching deeper structures of the cornea, possibly making GPR-68 an important actor in the vicious cycle of dry eye disease. CONCLUSION G protein-coupled receptor GPR-68, sensitive to flow and mechanic stimulation, is present in the human corneal epithelium and conjunctiva. Decreased lubrication and increased attrition, accompanied by sensations typical for dry eye, might lead to local inflammation. It is possible that subtle signs of conjunctival, and later corneal, surface damage in the context of these sensations could be a better indicator of the need for and success of therapy than the clinical signs of dry eye disease alone, at least in the early stages of the disease. Inhibition of G protein-coupled receptor GPR-68 could represent a new strategy in the treatment of dry eye disease.
Collapse
Affiliation(s)
- G-B van Setten
- Department of Clinical Neuroscience, Section for Ophthalmology and Vision, Lab DOHF and Wound healing, Karolinska Institutet, St. Erik Eye Hospital, Eugeniavägen 12, 17164 Solna, Sweden.
| |
Collapse
|
36
|
Wang Y, Maytin EV. The Role of Hyaluronan in Skin Wound Healing. BIOLOGY OF EXTRACELLULAR MATRIX 2023:189-204. [DOI: 10.1007/978-3-031-30300-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
37
|
He X, Chen S, Wang X, Kong M, Shi F, Qi X, Xu Y. TSG6 Plays a Role in Improving Orbital Inflammatory Infiltration and Extracellular Matrix Accumulation in TAO Model Mice. J Inflamm Res 2023; 16:1937-1948. [PMID: 37168288 PMCID: PMC10166143 DOI: 10.2147/jir.s409286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction TSG-6 plays a wide anti-inflammatory and therapeutic role in a variety of autoimmune diseases as the key mediator of mesenchymal stem cells (MSCs). Purpose We aimed to test whether TSG-6 could exert similar effects as MSCS in TAO via establishing TAO animal model immunized by hTSHR-A subunit plasmid. Material and Methods We tested the expression level of TSG-6 on intraconal orbital fat from controls and patients with TAO. We established a stable thyroid-associated ophthalmopathy animal model by immunizing 6-week-old female Balb/c mice with recombination hTSHR-A subunit plasmid. After four immunizations, TSG-6 or dexamethasone was injected through the tail vein. The effects of the drugs on body weight, thyroid function, orbital inflammation, fibrosis and lipogenesis were observed. Results The expression of TSG-6 in the orbital tissues of TAO patient is lower than that of normal people. In our animal model, mice showed weight loss, higher TT4 and TSHR antibody levels, and ocular symptoms such as inflammation and proptosis. TSG-6 can reduce ocular fibrosis and lipogenesis by inhibiting the infiltration of CD3+ T lymphocytes and macrophages in the mouse model of thyroid associated ophthalmopathy. Compared with dexamethasone, TSG-6 showed comparable anti-inflammatory effect, moreover, it has given a better performance in inhibiting adipogenesis. Conclusion It was demonstrated that TSG-6 has a considerable positive impact on improving eye symptoms of TAO mice, which could be a novel candidate for the early treatment of TAO.
Collapse
Affiliation(s)
- Xiuhui He
- Department of Ophthalmology, Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Siya Chen
- Department of Ophthalmology, Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Xiaohui Wang
- Department of Ophthalmology, Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Min Kong
- Department of Ophthalmology, Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Fangzheng Shi
- Department of Ophthalmology, Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Xiaoxuan Qi
- Department of Ophthalmology, Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Yuxin Xu
- Department of Ophthalmology, Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Correspondence: Yuxin Xu, Department of Ophthalmology, Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Economic and Technological Development Zone, Hefei, People’s Republic of China, Tel +86-13866752297, Email
| |
Collapse
|
38
|
Rizzo G, Rubbino F, Elangovan S, Sammarco G, Lovisa S, Restelli S, Pineda Chavez SE, Massimino L, Lamparelli L, Paulis M, Maroli A, Roda G, Shalaby M, Carvello M, Foppa C, Drummond SP, Spaggiari P, Ungaro F, Spinelli A, Malesci A, Repici A, Day AJ, Armuzzi A, Danese S, Vetrano S. Dysfunctional Extracellular Matrix Remodeling Supports Perianal Fistulizing Crohn's Disease by a Mechanoregulated Activation of the Epithelial-to-Mesenchymal Transition. Cell Mol Gastroenterol Hepatol 2022; 15:741-764. [PMID: 36521659 PMCID: PMC9898761 DOI: 10.1016/j.jcmgh.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Perianal fistula represents one of the most disabling manifestations of Crohn's disease (CD) due to complete destruction of the affected mucosa, which is replaced by granulation tissue and associated with changes in tissue organization. To date, the molecular mechanisms underlying perianal fistula formation are not well defined. Here, we dissected the tissue changes in the fistula area and addressed whether a dysregulation of extracellular matrix (ECM) homeostasis can support fistula formation. METHODS Surgical specimens from perianal fistula tissue and the surrounding region of fistulizing CD were analyzed histologically and by RNA sequencing. Genes significantly modulated were validated by real-time polymerase chain reaction, Western blot, and immunofluorescence assays. The effect of the protein product of TNF-stimulated gene-6 (TSG-6) on cell morphology, phenotype, and ECM organization was investigated with endogenous lentivirus-induced overexpression of TSG-6 in Caco-2 cells and with exogenous addition of recombinant human TSG-6 protein to primary fibroblasts from region surrounding fistula. Proliferative and migratory assays were performed. RESULTS A markedly different organization of ECM was found across fistula and surrounding fistula regions with an increased expression of integrins and matrix metalloproteinases and hyaluronan (HA) staining in the fistula, associated with increased newly synthesized collagen fibers and mechanosensitive proteins. Among dysregulated genes associated with ECM, TNFAI6 (gene encoding for TSG-6) was as significantly upregulated in the fistula compared with area surrounding fistula, where it promoted the pathological formation of complexes between heavy chains from inter-alpha-inhibitor and HA responsible for the formation of a crosslinked ECM. There was a positive correlation between TNFAI6 expression and expression of mechanosensitive genes in fistula tissue. The overexpression of TSG-6 in Caco-2 cells promoted migration, epithelial-mesenchymal transition, transcription factor SNAI1, and HA synthase (HAs) levels, while in fibroblasts, isolated from the area surrounding the fistula, it promoted an activated phenotype. Moreover, the enrichment of an HA scaffold with recombinant human TSG-6 protein promoted collagen release and increase of SNAI1, ITGA4, ITGA42B, and PTK2B genes, the latter being involved in the transduction of responses to mechanical stimuli. CONCLUSIONS By mediating changes in the ECM organization, TSG-6 triggers the epithelial-mesenchymal transition transcription factor SNAI1 through the activation of mechanosensitive proteins. These data point to regulators of ECM as new potential targets for the treatment of CD perianal fistula.
Collapse
Affiliation(s)
- Giulia Rizzo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Federica Rubbino
- Laboratory of Molecular Gastroenterology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | | | - Giusy Sammarco
- IBD Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Sara Lovisa
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; IBD Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Silvia Restelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | | | - Luca Massimino
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy; Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Luigi Lamparelli
- IBD Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Marianna Paulis
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy; Institute of Genetic and Biomedical Research, UOS Milan, National Research Council of Italy, Milan, Italy
| | - Annalisa Maroli
- Colon and Rectal Surgery Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Giulia Roda
- IBD Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Mohammad Shalaby
- IBD Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Michele Carvello
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; Colon and Rectal Surgery Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Caterina Foppa
- Colon and Rectal Surgery Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Sheona P Drummond
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Paola Spaggiari
- Department of Pathology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Federica Ungaro
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy; Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milan, Italy; Faculty of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | - Antonino Spinelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; Colon and Rectal Surgery Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Alberto Malesci
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy; Faculty of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | - Alessandro Repici
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; Digestive Endoscopy Unit, Department of Gastroenterology, IRCCS Humanitas Clinical and Research Center, Rozzano, Italy
| | - Anthony J Day
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Alessandro Armuzzi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; IBD Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Silvio Danese
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy; Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milan, Italy; Faculty of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | - Stefania Vetrano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; IBD Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy.
| |
Collapse
|
39
|
Mesenchymal stem/stromal cells primed by inflammatory cytokines alleviate psoriasis-like inflammation via the TSG-6-neutrophil axis. Cell Death Dis 2022; 13:996. [PMID: 36433947 PMCID: PMC9700741 DOI: 10.1038/s41419-022-05445-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022]
Abstract
Psoriasis is currently an incurable skin disorder mainly driven by a chronic inflammatory response. We found that subcutaneous application of umbilical cord- derived mesenchymal stem/stromal cells (MSCs) primed by IFN-γ and TNF-α, referred to as MSCs-IT, exhibited remarkable therapeutic efficacy on imiquimod (IMQ)-induced psoriasis-like inflammation in mice. Neutrophil infiltration, a hallmark of psoriasis, was significantly reduced after treatment with MSCs-IT. We further demonstrated that the effects of MSCs-IT were mediated by tumor necrosis factor (TNF) stimulating gene-6 (TSG-6), which was greatly upregulated in MSCs upon IFN-γ and TNF-α stimulation. MSCs transduced with TSG-6 siRNA lost their therapeutic efficacy while recombinant TSG-6 applied alone could also reduce neutrophil infiltration and alleviate the psoriatic lesions. Furthermore, we demonstrated that TSG-6 could inhibit neutrophil recruitment by decreasing the expression of CXCL1, which may be related to the reduced level of STAT1 phosphorylation in the keratinocytes. Thus, blocking neutrophil recruitment by MSCs-IT or TSG-6 has potential for therapeutic application in human psoriasis.
Collapse
|
40
|
Gong SC, Yoon Y, Jung PY, Kim MY, Baik SK, Ryu H, Eom YW. Antifibrotic TSG-6 Expression Is Synergistically Increased in Both Cells during Coculture of Mesenchymal Stem Cells and Macrophages via the JAK/STAT Signaling Pathway. Int J Mol Sci 2022; 23:13122. [PMID: 36361907 PMCID: PMC9656625 DOI: 10.3390/ijms232113122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 12/28/2022] Open
Abstract
The pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-1β upregulate TNF-α-stimulated gene 6 (TSG-6); however, current knowledge about the optimal conditions for TSG-6 expression in mesenchymal stem cells (MSCs) is limited. Here, we investigated whether TSG-6 expression varies depending on the polarization state of macrophages co-cultured with adipose tissue-derived stem cells (ASCs) and analyzed the optimal conditions for TSG-6 expression in ASCs. TSG-6 expression increased in ASCs co-cultured with M0, M1, and M2 macrophages indirectly; among them, M1 macrophages resulted in the highest increase in TSG-6 expression in ASCs. TSG-6 expression in ASCs dramatically increased by combination (but not single) treatment of TNF-α, IL-1β, interferon-gamma (IFN-γ), and lipopolysaccharide (LPS). In addition, phosphorylation of signal transducer and activator of transcription (STAT) 1/3 was observed in response to IFN-γ and LPS treatment but not TNF-α and/or IL-1β. STAT1/3 activation synergistically increased TNF-α/IL-1β-dependent TSG-6 expression, and JAK inhibitors suppressed TSG-6 expression both in ASCs and macrophages. In LX-2 hepatic stellate cells, TSG-6 inhibited TGF-β-induced Smad3 phosphorylation, resulting in decreased α-smooth muscle actin (SMA) expression. Moreover, fibrotic activities of LX-2 cells induced by TGF-β were dramatically decreased after indirect co-culture with ASCs and M1 macrophages. These results suggest that a comprehensive inflammatory microenvironment may play an important role in determining the therapeutic properties of ASCs by increasing TSG-6 expression through STAT1/3 activation.
Collapse
Affiliation(s)
- Seong Chan Gong
- Department of Surgery, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| | - Yongdae Yoon
- Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| | - Pil Young Jung
- Department of Surgery, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| | - Moon Young Kim
- Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| | - Soon Koo Baik
- Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| | - Hoon Ryu
- Department of Surgery, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| | - Young Woo Eom
- Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| |
Collapse
|
41
|
Sin YJA, MacLeod R, Tanguay AP, Wang A, Braender-Carr O, Vitelli TM, Jay GD, Schmidt TA, Cowman MK. Noncovalent hyaluronan crosslinking by TSG-6: Modulation by heparin, heparan sulfate, and PRG4. Front Mol Biosci 2022; 9:990861. [PMID: 36275631 PMCID: PMC9579337 DOI: 10.3389/fmolb.2022.990861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The size, conformation, and organization of the glycosaminoglycan hyaluronan (HA) affect its interactions with soluble and cell surface-bound proteins. HA that is induced to form stable networks has unique biological properties relative to unmodified soluble HA. AlphaLISA assay technology offers a facile and general experimental approach to assay protein-mediated networking of HA in solution. Connections formed between two end-biotinylated 50 kDa HA (bHA) chains can be detected by signal arising from streptavidin-coated donor and acceptor beads being brought into close proximity when the bHA chains are bridged by proteins. We observed that incubation of bHA with the protein TSG-6 (tumor necrosis factor alpha stimulated gene/protein 6, TNFAIP/TSG-6) leads to dimerization or higher order multimerization of HA chains in solution. We compared two different heparin (HP) samples and two heparan sulfate (HS) samples for the ability to disrupt HA crosslinking by TSG-6. Both HP samples had approximately three sulfates per disaccharide, and both were effective in inhibiting HA crosslinking by TSG-6. HS with a relatively high degree of sulfation (1.75 per disaccharide) also inhibited TSG-6 mediated HA networking, while HS with a lower degree of sulfation (0.75 per disaccharide) was less effective. We further identified Proteoglycan 4 (PRG4, lubricin) as a TSG-6 ligand, and found it to inhibit TSG-6-mediated HA crosslinking. The effects of HP, HS, and PRG4 on HA crosslinking by TSG-6 were shown to be due to HP/HS/PRG4 inhibition of HA binding to the Link domain of TSG-6. Using the AlphaLISA platform, we also tested other HA-binding proteins for ability to create HA networks. The G1 domain of versican (VG1) effectively networked bHA in solution but required a higher concentration than TSG-6. Cartilage link protein (HAPLN1) and the HA binding protein segment of aggrecan (HABP, G1-IGD-G2) showed only low and variable magnitude HA networking effects. This study unambiguously demonstrates HA crosslinking in solution by TSG-6 and VG1 proteins, and establishes PRG4, HP and highly sulfated HS as modulators of TSG-6 mediated HA crosslinking.
Collapse
Affiliation(s)
- Yun Jin Ashley Sin
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
| | - Rebecca MacLeod
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
| | - Adam P. Tanguay
- Department of Biomedical Engineering, School of Dental Medicine, UConn Health, Farmington, CT, United States
| | - Andrew Wang
- New York Medical College, Valhalla, NY, United States
| | - Olivia Braender-Carr
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
| | - Teraesa M. Vitelli
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
| | - Gregory D. Jay
- Department of Emergency Medicine, Warren Alpert Medical School and School of Engineering, Brown University, Providence, RI, United States
| | - Tannin A. Schmidt
- Department of Biomedical Engineering, School of Dental Medicine, UConn Health, Farmington, CT, United States
- *Correspondence: Mary K. Cowman, ; Tannin A. Schmidt,
| | - Mary K. Cowman
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
- Department of Orthopedic Surgery, Grossman School of Medicine, New York University, New York, NY, United States
- *Correspondence: Mary K. Cowman, ; Tannin A. Schmidt,
| |
Collapse
|
42
|
Tang E, Zaidi M, Lim W, Govindasamy V, Then K, Then K, Das AK, Cheong S. Headway and the remaining hurdles of mesenchymal stem cells therapy for bronchopulmonary dysplasia. THE CLINICAL RESPIRATORY JOURNAL 2022; 16:629-645. [PMID: 36055758 PMCID: PMC9527154 DOI: 10.1111/crj.13540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 12/17/2021] [Accepted: 08/15/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Preterm infants are at a high risk of developing BPD. Although progression in neonatal care has improved, BPD still causes significant morbidity and mortality, which can be attributed to the limited therapeutic choices for BPD. This review discusses the potential of MSC in treating BPD as well as their hurdles and possible solutions. DATA SOURCES The search for data was not limited to any sites but was mostly performed on all clinical trials available in ClinicalTrials.gov as well as on PubMed by applying the following keywords: lung injury, preterm, inflammation, neonatal, bronchopulmonary dysplasia and mesenchymal stem cells. STUDY SELECTIONS The articles chosen for this review were collectively determined to be relevant and appropriate in discussing MSC not only as a potential treatment strategy for curbing the incidence of BPD but also including insights on problems regarding MSC treatment for BPD. RESULTS Clinical trials regarding the use of MSC for BPD had good results but also illustrated insights on problems to be addressed in the future regarding the treatment strategy. Despite that, the clinical trials had mostly favourable reviews. CONCLUSION With BPD existing as a constant threat and there being no permanent solutions, the idea of regenerative medicine such as MSC may prove to be a breakthrough strategy when it comes to treating BPD. The success in clinical trials led to the formulation of prospective MSC-derived products such as PNEUMOSTEM®, and there is the possibility of a stem cell medication and permanent treatment for BPD in the near future.
Collapse
Affiliation(s)
- Eireen Tang
- CryoCord Sdn Bhd, Bio‐X CentreCyberjayaMalaysia
| | | | | | | | - Kong‐Yong Then
- Brighton Healthcare (Bio‐X Healthcare Sdn Bhd), Bio‐X CentreCyberjayaMalaysia
| | | | | | - Soon‐Keng Cheong
- Faculty of Medicine & Health Sciences, Universiti Tunku Abdul Rahman (UTAR)KajangMalaysia
| |
Collapse
|
43
|
Azaryan E, Karbasi S, Zarban A, Naseri M. Cell-free therapy based on stem cell-derived exosomes: A promising approach for wound healing. Wound Repair Regen 2022; 30:585-594. [PMID: 35927607 DOI: 10.1111/wrr.13043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/22/2022] [Accepted: 07/15/2022] [Indexed: 11/28/2022]
Abstract
There are several successive and overlapping phases in wound healing as a complex process. By the disruption of each of these phases, chronic non-healing wounds are resultant. Despite the present soothing surgeries, standard wound dressings and topical gels, the wound is often not completely closed. Today, stem cells have attracted a huge deal of attention therapeutically and pharmaceutically considering their unique features. However, they have some restrictions. Moreover, it is hoped to eliminate the limitations of cellular therapies based on their derivatives known as exosomes. Exosomes are extracellular vesicles secreted from cells. They have a diameter of almost 30-150 nm and miRNAs, mRNAs, and proteins that are possibly different from the source cell are included in exosomal contents. Such nanovesicles have a key role in the intercellular communication of pathological and physiological procedures. Exosome-based therapy is a new significant method for wound healing. By exosomes effects, wound management may be improved and a new therapeutic model may be highlighted for cell-free therapies with reduced side effects for the wound repair.
Collapse
Affiliation(s)
- Ehsaneh Azaryan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Cellular and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Samira Karbasi
- Department of Molecular Medicine, School of Medicine, Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Asghar Zarban
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Clinical Biochemistry Department, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Cellular and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
44
|
Liu D, Saikam V, Skrada KA, Merlin D, Iyer SS. Inflammatory bowel disease biomarkers. Med Res Rev 2022; 42:1856-1887. [PMID: 35603998 PMCID: PMC10321231 DOI: 10.1002/med.21893] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 11/16/2021] [Accepted: 05/05/2022] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel disease (IBD) is characterized as chronic inflammation in the gastrointestinal tract, which includes two main subtypes, Crohn's disease and ulcerative colitis. Endoscopy combined with biopsy is the most effective way to establish IBD diagnosis and disease management. Imaging techniques have also been developed to monitor IBD. Although effective, the methods are expensive and invasive, which leads to pain and discomfort. Alternative noninvasive biomarkers are being explored as tools for IBD prognosis and disease management. This review focuses on novel biomarkers that have emerged in recent years. These serological biomarkers and microRNAs could potentially be used for disease management in IBD, thereby decreasing patient discomfort and morbidity.
Collapse
Affiliation(s)
- Dandan Liu
- Department of Chemistry, 788 Petit Science Center, Georgia State University, Atlanta, Georgia, USA
| | - Varma Saikam
- Department of Chemistry, 788 Petit Science Center, Georgia State University, Atlanta, Georgia, USA
| | - Katie A Skrada
- Department of Chemistry, 788 Petit Science Center, Georgia State University, Atlanta, Georgia, USA
| | - Didier Merlin
- 790 Petit Science Center, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
- Atlanta Veterans Medical Center, Decatur, Georgia, USA
| | - Suri S Iyer
- Department of Chemistry, 788 Petit Science Center, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
45
|
Tang F, Brune JE, Chang MY, Reeves SR, Altemeier WA, Frevert CW. Defining the versican interactome in lung health and disease. Am J Physiol Cell Physiol 2022; 323:C249-C276. [PMID: 35649251 PMCID: PMC9291419 DOI: 10.1152/ajpcell.00162.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022]
Abstract
The extracellular matrix (ECM) imparts critical mechanical and biochemical information to cells in the lungs. Proteoglycans are essential constituents of the ECM and play a crucial role in controlling numerous biological processes, including regulating cellular phenotype and function. Versican, a chondroitin sulfate proteoglycan required for embryonic development, is almost absent from mature, healthy lungs and is reexpressed and accumulates in acute and chronic lung disease. Studies using genetically engineered mice show that the versican-enriched matrix can be pro- or anti-inflammatory depending on the cellular source or disease process studied. The mechanisms whereby versican develops a contextual ECM remain largely unknown. The primary goal of this review is to provide an overview of the interaction of versican with its many binding partners, the "versican interactome," and how through these interactions, versican is an integrator of complex extracellular information. Hopefully, the information provided in this review will be used to develop future studies to determine how versican and its binding partners can develop contextual ECMs that control select biological processes. Although this review focuses on versican and the lungs, what is described can be extended to other proteoglycans, tissues, and organs.
Collapse
Affiliation(s)
- Fengying Tang
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Jourdan E Brune
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Mary Y Chang
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Stephen R Reeves
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, Washington
| | - William A Altemeier
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Charles W Frevert
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
46
|
Lin D, Li W, Zhang N, Cai M. Identification of TNFAIP6 as a hub gene associated with the progression of glioblastoma by weighted gene co-expression network analysis. IET Syst Biol 2022; 16:145-156. [PMID: 35766985 PMCID: PMC9469790 DOI: 10.1049/syb2.12046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 05/29/2022] [Accepted: 06/08/2022] [Indexed: 11/19/2022] Open
Abstract
This study aims to discover the genetic modules that distinguish glioblastoma multiforme (GBM) from low‐grade glioma (LGG) and identify hub genes. A co‐expression network is constructed using the expression profiles of 28 GBM and LGG patients from the Gene Expression Omnibus database. The authors performed gene ontology (GO) and Kyoto encyclopaedia of genes and genomes (KEGG) analysis on these genes. The maximal clique centrality method was used to identify hub genes. Online tools were employed to confirm the link between hub gene expression and overall patient survival rate. The top 5000 genes with major variance were classified into 18 co‐expression gene modules. GO analysis indicated that abnormal changes in ‘cell migration’ and ‘collagen metabolic process’ were involved in the development of GBM. KEGG analysis suggested that ‘focal adhesion’ and ‘p53 signalling pathway’ regulate the tumour progression. TNFAIP6 was identified as a hub gene, and the expression of TNFAIP6 was increased with the elevation of pathological grade. Survival analysis indicated that the higher the expression of TNFAIP6, the shorter the survival time of patients. The authors identified TNFAIP6 as the hub gene in the progression of GBM, and its high expression indicates the poor prognosis of the patients.
Collapse
Affiliation(s)
- Dongdong Lin
- Department of Neurosurgery, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Li
- Department of Neurosurgery, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ming Cai
- Department of Neurosurgery, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
47
|
Recent Advancements in Antifibrotic Therapies for Regression of Liver Fibrosis. Cells 2022; 11:cells11091500. [PMID: 35563807 PMCID: PMC9104939 DOI: 10.3390/cells11091500] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Cirrhosis is a severe form of liver fibrosis that results in the irreversible replacement of liver tissue with scar tissue in the liver. Environmental toxicity, infections, metabolic causes, or other genetic factors including autoimmune hepatitis can lead to chronic liver injury and can result in inflammation and fibrosis. This activates myofibroblasts to secrete ECM proteins, resulting in the formation of fibrous scars on the liver. Fibrosis regression is possible through the removal of pathophysiological causes as well as the elimination of activated myofibroblasts, resulting in the reabsorption of the scar tissue. To date, a wide range of antifibrotic therapies has been tried and tested, with varying degrees of success. These therapies include the use of growth factors, cytokines, miRNAs, monoclonal antibodies, stem-cell-based approaches, and other approaches that target the ECM. The positive results of preclinical and clinical studies raise the prospect of a viable alternative to liver transplantation in the near future. The present review provides a synopsis of recent antifibrotic treatment modalities for the treatment of liver cirrhosis, as well as a brief summary of clinical trials that have been conducted to date.
Collapse
|
48
|
Da Luz CM, Da Broi MG, Koopman LDO, Plaça JR, da Silva-Jr WA, Ferriani RA, Meola J, Navarro PA. Transcriptomic analysis of cumulus cells shows altered pathways in patients with minimal and mild endometriosis. Sci Rep 2022; 12:5775. [PMID: 35388025 PMCID: PMC8986826 DOI: 10.1038/s41598-022-09386-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/11/2022] [Indexed: 11/09/2022] Open
Abstract
Endometriosis is a chronic inflammatory disorder that is highly associated with infertility. This association seems to be related to oocyte impairment, mainly in the initial stages of endometriosis (minimal and mild), where no distortions or adhesions are present. Nonetheless, invasive oocyte analyses are not routinely feasible; thus, indirect assessment of oocyte quality is highly desirable, and, in this context, cumulus cells (CCs) may be more suitable targets of analysis. CCs are crucial in oocyte development and could be used as an index of oocyte quality. Therefore, this prospective case–control study aimed to shed light on the infertility mechanisms of endometriosis I/II by analyzing the CCs’ mRNA transcription profile (women with endometriosis I/II, n = 9) compared to controls (women with tubal abnormalities or male factor, n = 9). The transcriptomic analyses of CCs from patients with minimal and mild endometriosis revealed 26 differentially expressed genes compared to the controls. The enrichment analysis evidenced some altered molecular processes: Cytokine-cytokine receptor interactions, Chemokine signaling, TNF signaling, NOD-like receptor signaling, NF-kappa B signaling, and inflammatory response. With the exception of CXCL12, all enriched genes were downregulated in CCs from patients with endometriosis. These findings provide a significant achievement in the field of reproductive biology, directing future studies to discover biomarkers of oocyte quality in endometriosis.
Collapse
Affiliation(s)
- Caroline Mantovani Da Luz
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil. .,National Institute of Hormones and Women's Health, CNPq, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil.
| | - Michele Gomes Da Broi
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil.,National Institute of Hormones and Women's Health, CNPq, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil
| | - Larissa de Oliveira Koopman
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil.,National Institute of Hormones and Women's Health, CNPq, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil
| | - Jessica Rodrigues Plaça
- Center for Integrative Systems Biology - CISBi, NAP/USP, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Wilson Araújo da Silva-Jr
- Center for Integrative Systems Biology - CISBi, NAP/USP, Ribeirão Preto, São Paulo, 14049-900, Brazil.,Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Rui Alberto Ferriani
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil.,National Institute of Hormones and Women's Health, CNPq, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil
| | - Juliana Meola
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil.,National Institute of Hormones and Women's Health, CNPq, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil
| | - Paula Andrea Navarro
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil.,National Institute of Hormones and Women's Health, CNPq, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil
| |
Collapse
|
49
|
Hu T, Liu Y, Li X, Li X, Liu Y, Wang Q, Huang J, Yu J, Wu Y, Chen S, Zeng T, Tan L. Tumor necrosis factor-alpha stimulated gene-6: A biomarker reflecting disease activity in rheumatoid arthritis. J Clin Lab Anal 2022; 36:e24395. [PMID: 35353944 PMCID: PMC9102767 DOI: 10.1002/jcla.24395] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To explore the serum tumor necrosis factor-alpha stimulated gene-6 (TSG-6) level and its association with disease activity in rheumatoid arthritis (RA) patients. METHODS We recruited 176 RA patients, 178 non-RA patients (lupus erythematosus, osteoarthritis, ulcerative colitis, ankylosing spondylitis and psoriasis) and 71 healthy subjects. Serum TSG-6 levels were detected by enzyme-linked immunosorbent assay (ELISA). RA patients were divided into inactive RA and active RA groups by disease activity score of 28 joints based on C-reactive protein (DAS28-CRP). The receiver operating characteristic (ROC) curve and Spearman's rank correlation test analyzed the correlation between TSG-6 concentration and RA disease activity. RESULTS Tumor necrosis factor-alpha stimulated gene-6 levels in the RA group were increased (p < 0.01). TSG-6 concentrations indicated an upward tendency with increased disease activity; The area under the curve (AUC) of TSG-6 for diagnosing RA and assessing the severity of RA were 0.78 and 0.80, respectively; The combination of TSG-6 and anti-mutated citrullinated vimentin antibodies (anti-MCV) (sensitivity:98.4%)improved the diagnostic accuracy of RA. Binary logistic regression analysis showed that TSG-6 was an independent risk factor related to the severity of RA, and OR (95% CI) was 1.2 (1.003-1.453). CONCLUSION The TSG-6 levels in RA patients were elevated and related to disease activity. Therefore, TSG-6 may serve as a new potential biomarker for evaluating RA disease activity.
Collapse
Affiliation(s)
- Tingting Hu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang, China.,School of Public Health of Nanchang University, Nanchang, China
| | - Yuhan Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang, China.,School of Public Health of Nanchang University, Nanchang, China
| | - Xu Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang, China
| | - Xiaohang Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang, China
| | - Yanzhao Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang, China
| | - Qunxia Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang, China
| | - Jiayi Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianlin Yu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang, China
| | - Yang Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang, China
| | - Simei Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang, China
| | - Tingting Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Liming Tan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang, China
| |
Collapse
|
50
|
Theocharidis G, Thomas BE, Sarkar D, Mumme HL, Pilcher WJR, Dwivedi B, Sandoval-Schaefer T, Sîrbulescu RF, Kafanas A, Mezghani I, Wang P, Lobao A, Vlachos IS, Dash B, Hsia HC, Horsley V, Bhasin SS, Veves A, Bhasin M. Single cell transcriptomic landscape of diabetic foot ulcers. Nat Commun 2022; 13:181. [PMID: 35013299 PMCID: PMC8748704 DOI: 10.1038/s41467-021-27801-8] [Citation(s) in RCA: 197] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetic foot ulceration (DFU) is a devastating complication of diabetes whose pathogenesis remains incompletely understood. Here, we profile 174,962 single cells from the foot, forearm, and peripheral blood mononuclear cells using single-cell RNA sequencing. Our analysis shows enrichment of a unique population of fibroblasts overexpressing MMP1, MMP3, MMP11, HIF1A, CHI3L1, and TNFAIP6 and increased M1 macrophage polarization in the DFU patients with healing wounds. Further, analysis of spatially separated samples from the same patient and spatial transcriptomics reveal preferential localization of these healing associated fibroblasts toward the wound bed as compared to the wound edge or unwounded skin. Spatial transcriptomics also validates our findings of higher abundance of M1 macrophages in healers and M2 macrophages in non-healers. Our analysis provides deep insights into the wound healing microenvironment, identifying cell types that could be critical in promoting DFU healing, and may inform novel therapeutic approaches for DFU treatment.
Collapse
Affiliation(s)
- Georgios Theocharidis
- The Rongxiang Xu, MD, Center for Regenerative Therapeutics and Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Beena E Thomas
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Department of Pediatrics and Biomedical Informatics, Emory University, Atlanta, GA, USA
| | - Debasree Sarkar
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Department of Pediatrics and Biomedical Informatics, Emory University, Atlanta, GA, USA
| | - Hope L Mumme
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Department of Pediatrics and Biomedical Informatics, Emory University, Atlanta, GA, USA
| | - William J R Pilcher
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Department of Pediatrics and Biomedical Informatics, Emory University, Atlanta, GA, USA
| | - Bhakti Dwivedi
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | | | - Ruxandra F Sîrbulescu
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Antonios Kafanas
- Lincoln County Hospital, Northern Lincolnshire and Goole NHS Foundation Trust, Scunthorpe, UK
| | - Ikram Mezghani
- The Rongxiang Xu, MD, Center for Regenerative Therapeutics and Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Peng Wang
- The Rongxiang Xu, MD, Center for Regenerative Therapeutics and Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Antonio Lobao
- The Rongxiang Xu, MD, Center for Regenerative Therapeutics and Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Ioannis S Vlachos
- Department of Pathology, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Biraja Dash
- Yale Plastic and Reconstructive Surgery-Wound Center, Yale School of Medicine, New Haven, CT, USA
| | - Henry C Hsia
- Yale Plastic and Reconstructive Surgery-Wound Center, Yale School of Medicine, New Haven, CT, USA
| | - Valerie Horsley
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Swati S Bhasin
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Department of Pediatrics and Biomedical Informatics, Emory University, Atlanta, GA, USA
| | - Aristidis Veves
- The Rongxiang Xu, MD, Center for Regenerative Therapeutics and Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Manoj Bhasin
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Department of Pediatrics and Biomedical Informatics, Emory University, Atlanta, GA, USA.
| |
Collapse
|