1
|
Wei X, Ge Y, Zheng Y, Zhao S, Zhou Y, Chang Y, Wang N, Wang X, Zhang J, Zhang X, Hu L, Tan Y, Jia Q. Hybrid EMT Phenotype and Cell Membrane Tension Promote Colorectal Cancer Resistance to Ferroptosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413882. [PMID: 39985376 PMCID: PMC12005738 DOI: 10.1002/advs.202413882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/26/2025] [Indexed: 02/24/2025]
Abstract
Intratumoral heterogeneity, including epithelial-mesenchymal transition (EMT), is one major cause of therapeutic resistance. The induction of ferroptosis, an iron-dependent death, has the potential in overcoming this resistance to traditional treatment modalities. However, the roles of distinct EMT phenotypes in ferroptosis remain an enigma. This study reports that 3D soft fibrin microenvironment confers colorectal cancer (CRC) cells hybrid EMT phenotype and high level of resistance to ferroptosis. The activation of histone acetylation and WNT/β-catenin signaling drives this EMT phenotypic transition, which promotes the defense of 3D CRCs against ferroptosis via glutathione peroxidases/ferritin signaling axis. Unexpectedly, E-cadherin knockout in 3D but not 2D CRCs mediates an integrin β3 marked-late hybrid EMT state and further enhances the resistance to ferroptosis via integrin-mediated tension and mitochondrial reprogramming. The inhibition of integrin αvβ3-mediated tension and WNT/β-catenin-mediated hybrid EMT sensitizes 3D CRCs with and without E-cadherin deficiency to ferroptosis in vivo, respectively. Further, the EMT phenotype of patient-derived tumoroids is associated with CRC therapeutic resistance. In summary, this study uncovers previously unappreciated roles of hybrid EMT and cell membrane tension in ferroptosis, which not only predict the treatment efficacy but also potentiate the development of new ferroptosis-based targeted therapeutic strategies.
Collapse
Affiliation(s)
- Xiaowei Wei
- Department of OncologyNanjing First HospitalNanjing Medical UniversityNanjing210006China
| | - Yutong Ge
- Department of OncologyNanjing First HospitalNanjing Medical UniversityNanjing210006China
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Yaolin Zheng
- Department of RespiratoryCritical Care and Sleep MedicineXiang'an Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamen361102China
| | - Sunyan Zhao
- Department of OncologyNanjing First HospitalNanjing Medical UniversityNanjing210006China
| | - Yuhan Zhou
- Department of OncologyNanjing First HospitalNanjing Medical UniversityNanjing210006China
| | - Yuhan Chang
- Cancer CenterZhongshan HospitalFudan UniversityShanghai200032China
| | - Nuofan Wang
- School of MedicineSoutheast UniversityNanjing210009China
| | - Xiumei Wang
- Department of OncologyNanjing First HospitalNanjing Medical UniversityNanjing210006China
| | - Juan Zhang
- Department of OncologyNanjing First HospitalNanjing Medical UniversityNanjing210006China
| | - Xuanchang Zhang
- Department of OncologyNanjing First HospitalNanjing Medical UniversityNanjing210006China
| | - Liqiao Hu
- Guangzhou National LaboratoryGuangzhou510005China
| | - Youhua Tan
- The Hong Kong Polytechnic UniversityShenzhen Research InstituteShenzhen518000China
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong Kong999077China
| | - Qiong Jia
- Department of OncologyNanjing First HospitalNanjing Medical UniversityNanjing210006China
| |
Collapse
|
2
|
Luo M, Almeida D, Dallacasagrande V, Hedhli N, Gupta M, D'Amico DJ, Kiss S, Hajjar KA. Annexin A2 promotes proliferative vitreoretinopathy in response to a macrophage inflammatory signal in mice. Nat Commun 2024; 15:8757. [PMID: 39384746 PMCID: PMC11464875 DOI: 10.1038/s41467-024-52675-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/13/2024] [Indexed: 10/11/2024] Open
Abstract
Proliferative vitreoretinopathy is a vision-threatening response to penetrating ocular injury, for which there is no satisfactory treatment. In this disorder, retinal pigment epithelial cells, abandon their attachment to Bruch's membrane on the scleral side of the retina, transform into motile fibroblast-like cells, and migrate through the retinal wound to the vitreal surface of the retina, where they secrete membrane-forming proteins. Annexin A2 is a calcium-regulated protein that, in complex with S100A10, assembles plasmin-forming proteins at cell surfaces. Here, we show that, in proliferative vitreoretinopathy, recruitment of macrophages and directed migration of retinal pigment epithelial cells are annexin A2-dependent, and stimulated by macrophage inflammatory protein-1α/β. These factors induce translocation of annexin A2 to the cell surface, thus enabling retinal pigment epithelial cell migration following injury; our studies reveal further that treatment of mice with intraocular antibody to either annexin A2 or macrophage inflammatory protein dampens the development of proliferative vitreoretinopathy in mice.
Collapse
Affiliation(s)
- Min Luo
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Dena Almeida
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | | | - Nadia Hedhli
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
- Hudson Community College, Jersey City, NJ, USA
| | - Mrinali Gupta
- Department of Ophthalmology, Weill Cornell Medicine, New York, NY, USA
| | - Donald J D'Amico
- Department of Ophthalmology, Weill Cornell Medicine, New York, NY, USA
| | - Szilárd Kiss
- Department of Ophthalmology, Weill Cornell Medicine, New York, NY, USA
| | | |
Collapse
|
3
|
Jing J. The Relevance, Predictability, and Utility of Annexin A5 for Human Physiopathology. Int J Mol Sci 2024; 25:2865. [PMID: 38474114 PMCID: PMC10932194 DOI: 10.3390/ijms25052865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
As an important functional protein molecule in the human body, human annexin A5 (hAnxA5) is widely found in human cells and body fluids. hAnxA5, the smallest type of annexin, performs a variety of biological functions by reversibly and specifically binding phosphatidylserine (PS) in a calcium-dependent manner and plays an important role in many human physiological and pathological processes. The free state hAnxA5 exists in the form of monomers and usually forms a polymer in a specific self-assembly manner when exerting biological activity. This review systematically discusses the current knowledge and understanding of hAnxA5 from three perspectives: physiopathological relevance, diagnostic value, and therapeutic utility. hAnxA5 affects the occurrence and development of many physiopathological processes. Moreover, hAnxA5 can be used independently or in combination as a biomarker of physiopathological phenomena for the diagnosis of certain diseases. Importantly, based on the properties of hAnxA5, many novel drug candidates have been designed and prepared for application in actual medical practice. However, there are also some gaps and shortcomings in hAnxA5 research. This in-depth study will not only expand the understanding of structural and functional relationships but also promote the application of hAnxA5 in the field of biomedicine.
Collapse
Affiliation(s)
- Jian Jing
- Beijing Key Laboratory of Biotechnology and Genetic Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Wada T, Gando S. Phenotypes of Disseminated Intravascular Coagulation. Thromb Haemost 2024; 124:181-191. [PMID: 37657485 PMCID: PMC10890912 DOI: 10.1055/a-2165-1142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023]
Abstract
Two phenotypes of disseminated intravascular coagulation (DIC) are systematically reviewed. DIC is classified into thrombotic and fibrinolytic phenotypes characterized by thrombosis and hemorrhage, respectively. Major pathology of DIC with thrombotic phenotype is the activation of coagulation, insufficient anticoagulation with endothelial injury, and plasminogen activator inhibitor-1-mediated inhibition of fibrinolysis, leading to microvascular fibrin thrombosis and organ dysfunction. DIC with fibrinolytic phenotype is defined as massive thrombin generation commonly observed in any type of DIC, combined with systemic pathologic hyperfibrinogenolysis caused by underlying disorder that results in severe bleeding due to excessive plasmin formation. Three major pathomechanisms of systemic hyperfibrinogenolysis have been considered: (1) acceleration of tissue-type plasminogen activator (t-PA) release from hypoxic endothelial cells and t-PA-rich storage pools, (2) enhancement of the conversion of plasminogen to plasmin due to specific proteins and receptors that are expressed on cancer cells and endothelial cells, and (3) alternative pathways of fibrinolysis. DIC with fibrinolytic phenotype can be diagnosed by DIC diagnosis followed by the recognition of systemic pathologic hyperfibrin(ogen)olysis. Low fibrinogen levels, high fibrinogen and fibrin degradation products (FDPs), and the FDP/D-dimer ratio are important for the diagnosis of systemic pathologic hyperfibrin(ogen)olysis. Currently, evidence-based treatment strategies for DIC with fibrinolytic phenotypes are lacking. Tranexamic acid appears to be one of the few methods to be effective in the treatment of systemic pathologic hyperfibrin(ogen)olysis. International cooperation for the elucidation of pathomechanisms, establishment of diagnostic criteria, and treatment strategies for DIC with fibrinolytic phenotype are urgent issues in the field of thrombosis and hemostasis.
Collapse
Affiliation(s)
- Takeshi Wada
- Department of Anesthesiology and Critical Care Medicine, Division of Acute and Critical Care Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Satoshi Gando
- Department of Anesthesiology and Critical Care Medicine, Division of Acute and Critical Care Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
- Department of Acute and Critical Care Medicine, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| |
Collapse
|
5
|
Wang C, Paiva TO, Motta C, Speziale P, Pietrocola G, Dufrêne YF. Catch Bond-Mediated Adhesion Drives Staphylococcus aureus Host Cell Invasion. NANO LETTERS 2023. [PMID: 37267288 DOI: 10.1021/acs.nanolett.3c01387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Various viruses and pathogenic bacteria interact with annexin A2 to invade mammalian cells. Here, we show that Staphylococcus aureus engages in extremely strong catch bonds for host cell invasion. By means of single-molecule atomic force microscopy, we find that bacterial surface-located clumping factors bind annexin A2 with extraordinary strength, indicating that these bonds are extremely resilient to mechanical tension. By determining the lifetimes of the complexes under increasing mechanical stress, we demonstrate that the adhesins form catch bonds with their ligand that are capable to sustain forces of 1500-1700 pN. The force-dependent adhesion mechanism identified here provides a molecular framework to explain how S. aureus pathogens tightly attach to host cells during invasion and shows promise for the design of new therapeutics against intracellular S. aureus.
Collapse
Affiliation(s)
- Can Wang
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Telmo O Paiva
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Chiara Motta
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Viale Taramelli 3/b, 27100 Pavia, Italy
| | - Pietro Speziale
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Viale Taramelli 3/b, 27100 Pavia, Italy
| | - Giampiero Pietrocola
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Viale Taramelli 3/b, 27100 Pavia, Italy
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
6
|
Hsing DD, Stock AC, Greenwald BM, Bacha EA, Flynn PA, Carroll SJ, Dayton JD, Prockop SE, Qiu Y, Almeida D, Tamura S, Hajjar KA. Annexin A2 Loss After Cardiopulmonary Bypass and Development of Acute Postoperative Respiratory Dysfunction in Children. Crit Care Explor 2023; 5:e0862. [PMID: 36798534 PMCID: PMC9925105 DOI: 10.1097/cce.0000000000000862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
The primary objective of this study was to determine whether expression of the multifunctional and adherens junction-regulating protein, annexin A2 (A2), is altered following cardiopulmonary bypass (CPB). A secondary objective was to determine whether depletion of A2 is associated with post-CPB organ dysfunction in children. DESIGN In a prospective, observational study conducted over a 1-year period in children undergoing cardiac surgery requiring CPB, we analyzed A2 expression in peripheral blood mononuclear cells at different time points. We then assessed the relationship of A2 expression with organ function at each time point in the early postoperative period. SETTING Twenty-three-bed mixed PICU in a tertiary academic center. PARTICIPANTS Patients 1 month to 18 years old undergoing cardiac surgery requiring CPB. MEAN OUTCOME MEASUREMENTS AND RESULTS We analyzed A2 expression in 22 enrolled subjects (n = 9, 1-23 mo old; n = 13, 2-18 yr old) and found a proteolysis-mediated decline in intact A2 immediately after bypass (p = 0.0009), reaching a median of 4% of baseline at 6 hours after bypass (p < 0.0001), and recovery by postoperative day 1. The degree of A2 depletion immediately after bypass in 1-23-month-olds correlated strongly with the extent of organ dysfunction, as measured by PICU admission Vasoactive-Ventilation-Renal (p = 0.004) and PEdiatric Logistic Organ Dysfunction-2 (p = 0.039) scores on postoperative day 1. A2 depletion immediately after bypass also correlated with more protracted requirement for both respiratory support (p = 0.007) and invasive ventilation (p = 0.013) in the 1-23-month-olds. CONCLUSIONS AND RELEVANCE The degree of depletion of A2 following CPB correlates with more severe organ dysfunction, especially acute respiratory compromise in children under 2 years. These findings suggest that loss of A2 may contribute to pulmonary microvascular leak in young children following CPB.
Collapse
Affiliation(s)
- Deyin D. Hsing
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Weill Cornell Medicine, New York City, NY
| | - Arabela C. Stock
- Division of Cardiac Critical Care Medicine, Heart Institute, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Bruce M. Greenwald
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Weill Cornell Medicine, New York City, NY
| | - Emile A. Bacha
- Division of Cardiac, Thoracic and Vascular Surgery, Department of Surgery, Columbia University College of Physicians and Surgeons, New York City, NY
| | - Patrick A. Flynn
- Division of Pediatric Cardiology, Department of Pediatrics, Weill Cornell Medicine, New York City, NY
| | - Sheila J. Carroll
- Division of Pediatric Cardiology, Department of Pediatrics, Weill Cornell Medicine, New York City, NY
| | - Jeffrey D. Dayton
- Division of Pediatric Cardiology, Department of Pediatrics, Weill Cornell Medicine, New York City, NY
| | - Susan E. Prockop
- Stem Cell Transplant Program, Division of Hematology-Oncology, Boston Children’s Hospital, Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, MA
| | - Yuqing Qiu
- Division of Biostatistics and Epidemiology, Department of Population Health Sciences, Weill Cornell Medicine, New York City, NY
| | - Dena Almeida
- Division of Hematology-Oncology, Department of Pediatrics, Weill Cornell Medicine, New York City, NY
| | - Shoran Tamura
- Medical School, Class of 2024, Albert Einstein College of Medicine, Bronx, NY
| | - Katherine A. Hajjar
- Division of Hematology-Oncology, Department of Pediatrics, Weill Cornell Medicine, New York City, NY
| |
Collapse
|
7
|
Fassel H, Chen H, Ruisi M, Kumar N, DeSancho M, Hajjar KA. Reduced expression of annexin A2 is associated with impaired cell surface fibrinolysis and venous thromboembolism. Blood 2021; 137:2221-2230. [PMID: 33512476 PMCID: PMC8063089 DOI: 10.1182/blood.2020008123] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/03/2020] [Indexed: 01/04/2023] Open
Abstract
Reduced plasma fibrinolysis has been identified as a potential risk factor for venous thromboembolism (VTE), but the role of cell surface fibrinolysis in VTE is unknown. The annexin A2/S100A10 complex serves as a coreceptor for plasminogen and tissue plasminogen activator (tPA), augmenting plasmin generation by 60-fold on the endothelial cell surface. Several studies in both mice and humans support the concept that A2 regulates fibrin homeostasis and intravascular thrombosis in vivo. Here, we examined A2 protein expression and function in 115 adult subjects with VTE and 87 healthy controls. Using peripheral blood mononuclear cells as a surrogate for endothelial cells, we found a 41% mean decrease in cell surface tPA-dependent fibrinolytic activity in subjects who had a positive personal and family history of VTE but tested negative for known inherited thrombophilias (ITs). A2 protein was reduced on average by 70% and messenger RNA levels by 30%, but neither decrease correlated with anticoagulant therapy. Neither cell A2 protein nor cell surface plasmin generation correlated with plasma-based clot lysis times, suggesting that the plasma and cell surface fibrinolytic systems operate independently of one another. These data suggest that reduced expression of annexin A2 protein is associated with cell surface hypofibrinolysis and may represent a novel risk factor for IT.
Collapse
Affiliation(s)
| | | | | | | | - Maria DeSancho
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Katherine A Hajjar
- Department of Pediatrics and
- Department of Medicine, Weill Cornell Medicine, New York, NY
| |
Collapse
|
8
|
Shavit-Stein E, Mindel E, Gofrit SG, Chapman J, Maggio N. Ischemic stroke in PAR1 KO mice: Decreased brain plasmin and thrombin activity along with decreased infarct volume. PLoS One 2021; 16:e0248431. [PMID: 33720950 PMCID: PMC7959388 DOI: 10.1371/journal.pone.0248431] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/25/2021] [Indexed: 12/01/2022] Open
Abstract
Background Ischemic stroke is a common and debilitating disease with limited treatment options. Protease activated receptor 1 (PAR1) is a fundamental cell signaling mediator in the central nervous system (CNS). It can be activated by many proteases including thrombin and plasmin, with various down-stream effects, following brain ischemia. Methods A permanent middle cerebral artery occlusion (PMCAo) model was used in PAR1 KO and WT C57BL/6J male mice. Mice were evaluated for neurological deficits (neurological severity score, NSS), infarct volume (Tetrazolium Chloride, TTC), and for plasmin and thrombin activity in brain slices. Results Significantly low levels of plasmin and thrombin activities were found in PAR1 KO compared to WT (1.6±0.4 vs. 3.2±0.6 ng/μl, p<0.05 and 17.2±1.0 vs. 21.2±1.0 mu/ml, p<0.01, respectively) along with a decreased infarct volume (178.9±14.3, 134.4±13.3 mm3, p<0.05). Conclusions PAR1 KO mice have smaller infarcts, with lower thrombin and plasmin activity levels. These findings may suggest that modulation of PAR1 is a potential target for future pharmacological treatment of ischemic stroke.
Collapse
Affiliation(s)
- Efrat Shavit-Stein
- Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
- * E-mail:
| | - Ekaterina Mindel
- Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shany Guly Gofrit
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Joab Chapman
- Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nicola Maggio
- Department of Neurology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
9
|
Matsunaga H, Halder SK, Ueda H. Annexin A2 Flop-Out Mediates the Non-Vesicular Release of DAMPs/Alarmins from C6 Glioma Cells Induced by Serum-Free Conditions. Cells 2021; 10:cells10030567. [PMID: 33807671 PMCID: PMC7998613 DOI: 10.3390/cells10030567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
Prothymosin alpha (ProTα) and S100A13 are released from C6 glioma cells under serum-free conditions via membrane tethering mediated by Ca2+-dependent interactions between S100A13 and p40 synaptotagmin-1 (Syt-1), which is further associated with plasma membrane syntaxin-1 (Stx-1). The present study revealed that S100A13 interacted with annexin A2 (ANXA2) and this interaction was enhanced by Ca2+ and p40 Syt-1. Amlexanox (Amx) inhibited the association between S100A13 and ANXA2 in C6 glioma cells cultured under serum-free conditions in the in situ proximity ligation assay. In the absence of Amx, however, the serum-free stress results in a flop-out of ANXA2 through the membrane, without the extracellular release. The intracellular delivery of anti-ANXA2 antibody blocked the serum-free stress-induced cellular loss of ProTα, S100A13, and Syt-1. The stress-induced externalization of ANXA2 was inhibited by pretreatment with siRNA for P4-ATPase, ATP8A2, under serum-free conditions, which ablates membrane lipid asymmetry. The stress-induced ProTα release via Stx-1A, ANXA2 and ATP8A2 was also evidenced by the knock-down strategy in the experiments using oxygen glucose deprivation-treated cultured neurons. These findings suggest that starvation stress-induced release of ProTα, S100A13, and p40 Syt-1 from C6 glioma cells is mediated by the ANXA2-flop-out via energy crisis-dependent recovery of membrane lipid asymmetry.
Collapse
Affiliation(s)
- Hayato Matsunaga
- Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan; (H.M.); (S.K.H.)
- Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Sebok Kumar Halder
- Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan; (H.M.); (S.K.H.)
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Hiroshi Ueda
- Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan; (H.M.); (S.K.H.)
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- Correspondence: ; Tel.: +81-75-753-4536
| |
Collapse
|
10
|
Sathler PC. Hemostatic abnormalities in COVID-19: A guided review. AN ACAD BRAS CIENC 2020; 92:e20200834. [PMID: 32844987 DOI: 10.1590/0001-3765202020200834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has already taken on pandemic proportions, affecting over 213 countries in a matter of weeks. In this context, several studies correlating hemostatic disorders with the infection dynamics of the new coronavirus have emerged. These studies have shown that a portion of the patients affected by Coronavirus Disease 2019 (COVID-19) have prolonged prothrombin time (PT) and activated partial thromboplastin time (APTT), elevated D-dimer levels and other fibrinolytic products, antithrombin (AT) activity reduced and decrease of platelet count. Based on these hallmarks, this review proposes to present possible pathophysiological mechanisms involved in the hemostatic changes observed in the pathological progression of COVID-19. In this analysis, it is pointed the relationship between the downregulation of angiotensin-converting enzyme 2 (ACE2) and storm cytokines action with the onset of hypercoagulability state, other than the clinical events involved in thrombocytopenia and hyperfibrinolysis progression.
Collapse
Affiliation(s)
- PlÍnio C Sathler
- Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
11
|
Sluzalska KD, Slawski J, Sochacka M, Lampart A, Otlewski J, Zakrzewska M. Intracellular partners of fibroblast growth factors 1 and 2 - implications for functions. Cytokine Growth Factor Rev 2020; 57:93-111. [PMID: 32475760 DOI: 10.1016/j.cytogfr.2020.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 01/01/2023]
Abstract
Fibroblast growth factors 1 and 2 (FGF1 and FGF2) are mainly considered as ligands of surface receptors through which they regulate a broad spectrum of biological processes. They are secreted in non-canonical way and, unlike other growth factors, they are able to translocate from the endosome to the cell interior. These unique features, as well as the role of the intracellular pool of FGF1 and FGF2, are far from being fully understood. An increasing number of reports address this problem, focusing on the intracellular interactions of FGF1 and 2. Here, we summarize the current state of knowledge of the FGF1 and FGF2 binding partners inside the cell and the possible role of these interactions. The partner proteins are grouped according to their function, including proteins involved in secretion, cell signaling, nucleocytoplasmic transport, binding and processing of nucleic acids, ATP binding, and cytoskeleton assembly. An in-depth analysis of the network of these binding partners could indicate novel, non-classical functions of FGF1 and FGF2 and uncover an additional level of a fine control of the well-known FGF-regulated cellular processes.
Collapse
Affiliation(s)
- Katarzyna Dominika Sluzalska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Jakub Slawski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Martyna Sochacka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Agata Lampart
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
12
|
Baudier J, Deloulme JC, Shaw GS. The Zn 2+ and Ca 2+ -binding S100B and S100A1 proteins: beyond the myths. Biol Rev Camb Philos Soc 2020; 95:738-758. [PMID: 32027773 DOI: 10.1111/brv.12585] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 01/06/2020] [Accepted: 01/20/2020] [Indexed: 12/17/2022]
Abstract
The S100 genes encode a conserved group of 21 vertebrate-specific EF-hand calcium-binding proteins. Since their discovery in 1965, S100 proteins have remained enigmatic in terms of their cellular functions. In this review, we summarize the calcium- and zinc-binding properties of the dimeric S100B and S100A1 proteins and highlight data that shed new light on the extracellular and intracellular regulation and functions of S100B. We point out that S100B and S100A1 homodimers are not functionally interchangeable and that in a S100A1/S100B heterodimer, S100A1 acts as a negative regulator for the ability of S100B to bind Zn2+ . The Ca2+ and Zn2+ -dependent interactions of S100B with a wide array of proteins form the basis of its activities and have led to the derivation of some initial rules for S100B recognition of protein targets. However, recent findings have strongly suggested that these rules need to be revisited. Here, we describe a new consensus S100B binding motif present in intracellular and extracellular vertebrate-specific proteins and propose a new model for stable interactions of S100B dimers with full-length target proteins. A chaperone-associated function for intracellular S100B in adaptive cellular stress responses is also discussed. This review may help guide future studies on the functions of S100 proteins in general.
Collapse
Affiliation(s)
- Jacques Baudier
- Institut de Biologie du Développement de Marseille-UMR CNRS 7288, Aix Marseille Université, 13288, Marseille Cedex 9, France
| | - Jean Christophe Deloulme
- Grenoble Institut des Neurosciences, INSERM U1216, Université Grenoble Alpes, 38000, Grenoble, France
| | - Gary S Shaw
- Department of Biochemistry, University of Western Ontario, London, Ontario, N6A5C1, Canada
| |
Collapse
|
13
|
Cell-surface translocation of annexin A2 contributes to bleomycin-induced pulmonary fibrosis by mediating inflammatory response in mice. Clin Sci (Lond) 2020; 133:789-804. [PMID: 30902828 DOI: 10.1042/cs20180687] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 02/07/2023]
Abstract
Bleomycin, a widely used anti-cancer drug, may give rise to pulmonary fibrosis, a serious side effect which is associated with significant morbidity and mortality. Despite the intensive efforts, the precise pathogenic mechanisms of pulmonary fibrosis still remain to be clarified. Our previous study showed that bleomycin bound directly to annexin A2 (ANXA2, or p36), leading to development of pulmonary fibrosis by impeding transcription factor EB (TFEB)-induced autophagic flux. Here, we demonstrated that ANXA2 also played a critical role in bleomycin-induced inflammation, which represents another major cause of bleomycin-induced pulmonary fibrosis. We found that bleomycin could induce the cell surface translocation of ANXA2 in lung epithelial cells through exosomal secretion, associated with enhanced interaction between ANXA2 and p11. Knockdown of ANXA2 or blocking membrane ANXA2 mitigated bleomycin-induced activation of nuclear factor (NF)-κB pathway and production of pro-inflammatory cytokine IL-6 in lung epithelial cells. ANXA2-deficient (ANXA2-/-) mice treated with bleomycin exhibit reduced pulmonary fibrosis along with decreased cytokine production compared with bleomycin-challenged wild-type mice. Further, the surface ANXA2 inhibitor TM601 could ameliorate fibrotic and inflammatory response in bleomycin-treated mice. Taken together, our results indicated that, in addition to disturbing autophagic flux, ANXA2 can contribute to bleomycin-induced pulmonary fibrosis by mediating inflammatory response.
Collapse
|
14
|
Popa SJ, Stewart SE, Moreau K. Unconventional secretion of annexins and galectins. Semin Cell Dev Biol 2018; 83:42-50. [PMID: 29501720 PMCID: PMC6565930 DOI: 10.1016/j.semcdb.2018.02.022] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 12/31/2022]
Abstract
Eukaryotic cells have a highly evolved system of protein secretion, and dysfunction in this pathway is associated with many diseases including cancer, infection, metabolic disease and neurological disorders. Most proteins are secreted using the conventional endoplasmic reticulum (ER)/Golgi network and as such, this pathway is well-characterised. However, several cytosolic proteins have now been documented as secreted by unconventional transport pathways. This review focuses on two of these proteins families: annexins and galectins. The extracellular functions of these proteins are well documented, as are associations of their perturbed secretion with several diseases. However, the mechanisms and regulation of their secretion remain poorly characterised, and are discussed in this review. This review is part of a Special Issues of SCDB on 'unconventional protein secretion' edited by Walter Nickel and Catherine Rabouille.
Collapse
Affiliation(s)
- Stephanie J Popa
- University of Cambridge, Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
| | - Sarah E Stewart
- University of Cambridge, Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge, CB2 0QQ, UK
| | - Kevin Moreau
- University of Cambridge, Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
15
|
Yang W, Mei FC, Cheng X. EPAC1 regulates endothelial annexin A2 cell surface translocation and plasminogen activation. FASEB J 2018; 32:2212-2222. [PMID: 29217666 DOI: 10.1096/fj.201701027r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Annexins, a family of highly conserved calcium- and phospholipid-binding proteins, play important roles in a wide range of physiologic functions. Among the 12 known annexins in humans, annexin A2 (AnxA2) is one of the most extensively studied and has been implicated in various human diseases. AnxA2 can exist as a monomer or a heterotetrameric complex with S100A10 (P11) and plays a critical role in many cellular processes, including exocytosis, endocytosis, and membrane organization. At the endothelial cell surface, the (AnxA2⋅P11)2 tetramer-acting as a coreceptor for plasminogen and tissue plasminogen activator (tPA)-accelerates tPA-dependent activation of the fibrinolytic protease, plasmin, the enzyme that is responsible for thrombus dissolution and the degradation of fibrin. This study demonstrates that EPAC1 (exchange proteins directly activated by cAMP isoform 1) interacts with AnxA2 and regulates its biologic functions by modulating its membrane translocation in endothelial cells. By using genetic and pharmacologic approaches, we demonstrate that EPAC1-acting via the PLCε-PKC pathway-inhibits AnxA2 surface translocation and plasminogen activation. These results suggest that EPAC1 plays a role in the regulation of fibrinolysis in endothelial cells and may represent a novel therapeutic target for disorders of fibrinolysis.-Yang, W., Mei, F. C., Cheng, X. EPAC1 regulates endothelial annexin A2 cell surface translocation and plasminogen activation.
Collapse
Affiliation(s)
- Wenli Yang
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas, USA
| | - Fang C Mei
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas, USA
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
16
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
17
|
Liu W, Hajjar KA. The annexin A2 system and angiogenesis. Biol Chem 2017; 397:1005-16. [PMID: 27366903 DOI: 10.1515/hsz-2016-0166] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/28/2016] [Indexed: 01/23/2023]
Abstract
The formation of new blood vessels from pre-existing vasculature, the process known as angiogenesis, is highly regulated by pro- and anti-angiogenic signaling molecules including growth factors and proteases. As an endothelial cell-surface co-receptor for plasminogen and tissue plasminogen activator, the annexin A2 (ANXA2) complex accelerates plasmin generation and facilitates fibrinolysis. Plasmin can subsequently activate a downstream proteolytic cascade involving multiple matrix metalloproteinases. Thus, in addition to maintaining blood vessel patency, the ANXA2 complex can also promote angiogenesis via its pro-fibrinolytic activity. The generation of ANXA2-deficient mice allowed us to first observe the pro-angiogenic role of ANXA2 in vivo. Further investigations have provided additional details regarding the mechanism for ANXA2 regulation of retinal and corneal angiogenesis. Other studies have reported that ANXA2 supports angiogenesis in specific tumor-related settings. Here, we summarize results from in vivo studies that illustrate the pro-angiogenic role of ANXA2, and discuss the critical questions that may lead to an advanced understanding of the molecular mechanisms for ANXA2-mediated angiogenesis. Finally, highlights from studies on ANXA2-interacting agents offer potential therapeutic opportunities for the application of ANXA2-centered pharmaceuticals in angiogenesis-related disorders.
Collapse
|
18
|
Salle V, Cordonnier C, Schmidt J, Mazière C, Smail A, Attencourt C, Mabille MP, Mazière JC, Makdassi R, Choukroun G, Diouf M, Duhaut P, Ducroix JP. Vascular expression of annexin A2 in lupus nephritis. J Clin Pathol 2015; 69:533-6. [PMID: 26511441 DOI: 10.1136/jclinpath-2015-203139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/05/2015] [Indexed: 11/04/2022]
Abstract
AIMS To evaluate vascular expression of annexin A2 (ANXA2) and its subunit S100A10 in lupus nephritis (LN). METHODS The present histological study included 14 patients with LN and 11 controls (patients with non-lupus kidney diseases). Kidney biopsies from patients with lupus were scored for lupus glomerulonephritis (according to the International Society of Nephrology/Renal Pathology Society 2003 classification) and vascular lesions (such as microthrombi and antiphospholipid syndrome nephropathy (APSN)). ANXA2 and S100A10 expression in glomerular and peritubular capillaries was evaluated by immunohistochemistry on tissue sections. The staining intensity score ranged from 0 (no expression) to 4 (intense expression). RESULTS In patients with LN, the median age (range) at first kidney biopsy was 36 (18-49). Vascular lesions were observed in six patients (including two with APSN). We observed intense expression of ANXA2 in glomerular and peritubular capillaries while expression of S100A10 was weaker. However, one of the patients with APSN showed strong S100A10 expression. Patients with LN and controls differed significantly in terms of S100A10 expression in peritubular capillaries. We also observed a statistical difference between patients who had LN with renal vascular lesions and those without renal vascular lesions in terms of ANXA2 expression in peritubular capillaries. CONCLUSIONS The presence of vascular lesions in LN appears to be associated with significant differences in the vascular expression of ANXA2. Vascular expression of ANXA2 was somewhat higher in LN. Vascular expression of S100A10 was somewhat lower in LN (except one of the two patients with APSN). Further studies of ANXA2's putative value as a biomarker of active LN or of vascular lesions in LN are required.
Collapse
Affiliation(s)
- V Salle
- Department of Internal Medicine, Amiens University Hospital, Amiens, France
| | - C Cordonnier
- Department of Pathology, Amiens University Hospital, Amiens, France
| | - J Schmidt
- Department of Internal Medicine, Amiens University Hospital, Amiens, France
| | - C Mazière
- INSERM U1088 Biochemistry Laboratory, Amiens University Hospital, Amiens, France
| | - A Smail
- Department of Internal Medicine, Amiens University Hospital, Amiens, France
| | - C Attencourt
- Department of Pathology, Amiens University Hospital, Amiens, France
| | - M P Mabille
- Department of Pathology, Amiens University Hospital, Amiens, France
| | - J C Mazière
- INSERM U1088 Biochemistry Laboratory, Amiens University Hospital, Amiens, France
| | - R Makdassi
- Department of Nephrology, Amiens University Hospital, Amiens, France
| | - G Choukroun
- Department of Nephrology, Amiens University Hospital, Amiens, France
| | - M Diouf
- Division of Clinical Research and Innovation, Amiens University Hospital, Amiens, France
| | - P Duhaut
- Department of Internal Medicine, Amiens University Hospital, Amiens, France
| | - J P Ducroix
- Department of Internal Medicine, Amiens University Hospital, Amiens, France
| |
Collapse
|
19
|
Jiang SL, Pan DY, Gu C, Qin HF, Zhao SH. Annexin A2 silencing enhances apoptosis of human umbilical vein endothelial cells in vitro. ASIAN PAC J TROP MED 2015; 8:952-957. [PMID: 26614996 DOI: 10.1016/j.apjtm.2015.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 09/20/2015] [Accepted: 09/30/2015] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE To study the effects of inhibited Annexin A2 (ANXA2) on human umbilical vein endothelial cells (HUVECs) in vitro. METHODS Short hairpin RNA (shRNA) targeting ANXA2 was designed and cloned into double marked lentivirial vector GV248 for RNAi to generate the recombinant expression plasmids, which were stably transfected into HUVECs. The protein and mRNA expression levels of ANXA2 were analyzed by western blotting and real-time polymerase chain reaction, respectively. Cell proliferation (cell counting kit-8 assay), apoptosis (flow cytometry analysis), the expression (western blotting) and the activity of caspases (enzyme-linked immunosorbent assay) were used to assess the effects of silencing ANXA2 on HUVECs in vitro. RESULTS The plasmids to express ANXA2-specific shRNA were constructed and were infected into HUVEC resulting in the stably transfected experimental (ANXA2-shRNA), control (control-shRNA) and mock (no plasmid) cell lines, which were verified with western blot and real-time PCR. HUVEC/ANXA2-shRNA showed an inhibition rate 91.89% of ANXA2 expression compared to the mock HUVEC. ANXA2 silencing cell strain obviously presented a lower cell proliferation activity compared to the control and mock HUVECs, with an inhibition rate 82.35% on day 7 in vitro. FACS analysis indicated that the HUVEC/ANXA2-shRNA cells undergoing apoptosis increased by 102.61% compared to the mock HUVECs (P < 0.01). Moreover, the activity levels of caspase-3, caspase-8 and caspase-9 in HUVEC/ANXA2-shRNA cells were increased and the activated cleaved caspase-3, cleaved caspase-8 and cleaved caspase-9 were upregulated evidently compared with that of the control and mock HUVECs by 56.29%, 89.59% and 144.58% (P < 0.01). CONCLUSIONS shRNA-mediated silencing of ANXA2 could not only be able to suppress HUVECs proliferation but to upregulate the enzyme activity of caspases, which bring to an increase of cell apoptosis. This work suggested that ANXA2 may represent a useful target of future molecular therapies.
Collapse
Affiliation(s)
- Shu-Le Jiang
- Department of Ophthalmology, Affiliated Changhai Hospital of Second Military Medical University, Shanghai, 200433, China
| | - Dong-Yan Pan
- Department of Ophthalmology, Affiliated Changhai Hospital of Second Military Medical University, Shanghai, 200433, China
| | - Chao Gu
- Department of Ophthalmology, Affiliated Changhai Hospital of Second Military Medical University, Shanghai, 200433, China
| | - Hai-Feng Qin
- Department of Ophthalmology, Affiliated Changhai Hospital of Second Military Medical University, Shanghai, 200433, China
| | - Shi-Hong Zhao
- Department of Ophthalmology, Affiliated Changhai Hospital of Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
20
|
Annexin A2 mediates Mycoplasma pneumoniae community-acquired respiratory distress syndrome toxin binding to eukaryotic cells. mBio 2014; 5:mBio.01497-14. [PMID: 25139904 PMCID: PMC4147866 DOI: 10.1128/mbio.01497-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mycoplasma pneumoniae synthesizes a novel human surfactant protein A (SP-A)-binding cytotoxin, designated community-acquired respiratory distress syndrome (CARDS) toxin, that exhibits ADP-ribosylating and vacuolating activities in mammalian cells and is directly linked to a range of acute and chronic airway diseases, including asthma. In our attempt to detect additional CARDS toxin-binding proteins, we subjected the membrane fraction of human A549 airway cells to affinity chromatography using recombinant CARDS toxin as bait. A 36-kDa A549 cell membrane protein bound to CARDS toxin and was identified by time of flight (TOF) mass spectroscopy as annexin A2 (AnxA2) and verified by immunoblotting with anti-AnxA2 monoclonal antibody. Dose-dependent binding of CARDS toxin to recombinant AnxA2 reinforced the specificity of the interaction, and further studies revealed that the carboxy terminus of CARDS toxin mediated binding to AnxA2. In addition, pretreatment of viable A549 cells with anti-AnxA2 monoclonal antibody or AnxA2 small interfering RNA (siRNA) reduced toxin binding and internalization. Immunofluorescence analysis of CARDS toxin-treated A549 cells demonstrated the colocalization of CARDS toxin with cell surface-associated AnxA2 upon initial binding and with intracellular AnxA2 following toxin internalization. HepG2 cells, which express low levels of AnxA2, were transfected with a plasmid expressing AnxA2 protein, resulting in enhanced binding of CARDS toxin and increased vacuolization. In addition, NCI-H441 cells, which express both AnxA2 and SP-A, upon AnxA2 siRNA transfection, showed decreased binding and subsequent vacuolization. These results indicate that CARDS toxin recognizes AnxA2 as a functional receptor, leading to CARDS toxin-induced changes in mammalian cells. Host cell susceptibility to bacterial toxins is usually determined by the presence and abundance of appropriate receptors, which provides a molecular basis for toxin target cell specificities. To perform its ADP-ribosylating and vacuolating activities, community-acquired respiratory distress syndrome (CARDS) toxin must bind to host cell surfaces via receptor-mediated events in order to be internalized and trafficked effectively. Earlier, we reported the binding of CARDS toxin to surfactant protein A (SP-A), and here we show how CARDS toxin uses an alternative receptor to execute its pathogenic properties. CARDS toxin binds selectively to annexin A2 (AnxA2), which exists both on the cell surface and intracellularly. Since AnxA2 regulates membrane dynamics at early stages of endocytosis and trafficking, it serves as a distinct receptor for CARDS toxin binding and internalization and enhances CARDS toxin-induced vacuolization in mammalian cells.
Collapse
|
21
|
Abstract
Annexin A2 (A2) is a multicompartmental, multifunctional protein that orchestrates a growing spectrum of biologic processes. At the endothelial cell surface, A2 and S100A10 (p11) form a heterotetramer, which accelerates tissue plasminogen activator-dependent activation of the fibrinolytic protease, plasmin. In antiphospholipid syndrome, anti-A2 antibodies are associated with clinical thrombosis, whereas overexpression of A2 in acute promyelocytic leukemia promotes hyperfibrinolytic bleeding. A2 is upregulated in hypoxia, and mice deficient in A2 are resistant to oxygen-induced retinal neovascularization, suggesting a role for A2 in human retinal vascular proliferation. In solid malignancies, the (A2•p11)(2) tetramer may promote cancer cell invasion, whereas in multiple myeloma A2 enables malignant plasmacyte growth and predicts prognosis. In the central nervous system, the p11 enables membrane insertion of serotonin receptors that govern mood. In the peripheral nervous system, p11 directs sodium channels to the plasma membrane, enabling pain perception. In cerebral cortex neurons, A2 stabilizes the microtubule-associated tau protein, which, when mutated, is associated with frontotemporal dementia. In inflammatory dendritic cells, A2 maintains late endosomal/lysosomal membrane integrity, thus modulating inflammasome activation and cytokine secretion in a model of aseptic arthritis. Together, these findings suggest an emerging, multifaceted role for A2 in human health and disease.
Collapse
Affiliation(s)
- Min Luo
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York
| | - Katherine A. Hajjar
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York
| |
Collapse
|
22
|
Prudovsky I, Kumar TKS, Sterling S, Neivandt D. Protein-phospholipid interactions in nonclassical protein secretion: problem and methods of study. Int J Mol Sci 2013; 14:3734-72. [PMID: 23396106 PMCID: PMC3588068 DOI: 10.3390/ijms14023734] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 12/30/2022] Open
Abstract
Extracellular proteins devoid of signal peptides use nonclassical secretion mechanisms for their export. These mechanisms are independent of the endoplasmic reticulum and Golgi. Some nonclassically released proteins, particularly fibroblast growth factors (FGF) 1 and 2, are exported as a result of their direct translocation through the cell membrane. This process requires specific interactions of released proteins with membrane phospholipids. In this review written by a cell biologist, a structural biologist and two membrane engineers, we discuss the following subjects: (i) Phenomenon of nonclassical protein release and its biological significance; (ii) Composition of the FGF1 multiprotein release complex (MRC); (iii) The relationship between FGF1 export and acidic phospholipid externalization; (iv) Interactions of FGF1 MRC components with acidic phospholipids; (v) Methods to study the transmembrane translocation of proteins; (vi) Membrane models to study nonclassical protein release.
Collapse
Affiliation(s)
- Igor Prudovsky
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| | | | - Sarah Sterling
- Department of Chemical and Biological Engineering, University of Maine, Orono, ME 04469, USA; E-Mails: (S.S.); (D.N.)
| | - David Neivandt
- Department of Chemical and Biological Engineering, University of Maine, Orono, ME 04469, USA; E-Mails: (S.S.); (D.N.)
| |
Collapse
|
23
|
Abstract
Many secreted polypeptide regulators of angiogenesis are devoid of signal peptides. These proteins are released through nonclassical pathways independent of endoplasmic reticulum and Golgi. In most cases, the nonclassical protein export is induced by stress. It usually serves to stimulate repair or inflammation in damaged tissues. We review the secreted signal peptide-less regulators of angiogenesis and discuss the mechanisms and biological significance of their unconventional export.
Collapse
Affiliation(s)
- Igor Prudovsky
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| |
Collapse
|
24
|
Khoufache K, Berri F, Nacken W, Vogel AB, Delenne M, Camerer E, Coughlin SR, Carmeliet P, Lina B, Rimmelzwaan GF, Planz O, Ludwig S, Riteau B. PAR1 contributes to influenza A virus pathogenicity in mice. J Clin Invest 2012. [PMID: 23202729 DOI: 10.1172/jci61667] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Influenza causes substantial morbidity and mortality, and highly pathogenic and drug-resistant strains are likely to emerge in the future. Protease-activated receptor 1 (PAR1) is a thrombin-activated receptor that contributes to inflammatory responses at mucosal surfaces. The role of PAR1 in pathogenesis of virus infections is unknown. Here, we demonstrate that PAR1 contributed to the deleterious inflammatory response after influenza virus infection in mice. Activating PAR1 by administering the agonist TFLLR-NH2 decreased survival and increased lung inflammation after influenza infection. Importantly, both administration of a PAR1 antagonist and PAR1 deficiency protected mice from infection with influenza A viruses (IAVs). Treatment with the PAR1 agonist did not alter survival of mice deficient in plasminogen (PLG), which suggests that PLG permits and/or interacts with a PAR1 function in this model. PAR1 antagonists are in human trials for other indications. Our findings suggest that PAR1 antagonism might be explored as a treatment for influenza, including that caused by highly pathogenic H5N1 and oseltamivir-resistant H1N1 viruses.
Collapse
Affiliation(s)
- Khaled Khoufache
- Virologie et Pathologie Humaine, EA 4610, Université Lyon1, Faculté de Médecine RTH Laennec, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Plasminogen and plasmin tether to cell surfaces through ubiquitously expressed and structurally quite dissimilar family of proteins, as well as some nonproteins, that are collectively referred to as plasminogen receptors. Of the more than one dozen plasminogen receptors that have been identified, many have been shown to facilitate plasminogen activation to plasmin and to protect bound plasmin from inactivation by inhibitors. The generation of such localized and sustained protease activity is utilized to facilitate numerous cellular responses, including responses that depend on cellular migration. However, many cells express multiple plasminogen receptors and numerous plasminogen receptors are expressed on many different cell types. Furthermore, several different plasminogen receptors can be used to support the same cellular response, such as inflammatory cell migration. Here, we discuss the perplexing issue: why are there so many different Plg-Rs?
Collapse
|
26
|
The biochemistry and regulation of S100A10: a multifunctional plasminogen receptor involved in oncogenesis. J Biomed Biotechnol 2012; 2012:353687. [PMID: 23118506 PMCID: PMC3479961 DOI: 10.1155/2012/353687] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/01/2012] [Indexed: 12/16/2022] Open
Abstract
The plasminogen receptors mediate the production and localization to the cell surface of the broad spectrum proteinase, plasmin. S100A10 is a key regulator of cellular plasmin production and may account for as much as 50% of cellular plasmin generation. In parallel to plasminogen, the plasminogen-binding site on S100A10 is highly conserved from mammals to fish. S100A10 is constitutively expressed in many cells and is also induced by many diverse factors and physiological stimuli including dexamethasone, epidermal growth factor, transforming growth factor-α, interferon-γ, nerve growth factor, keratinocyte growth factor, retinoic acid, and thrombin. Therefore, S100A10 is utilized by cells to regulate plasmin proteolytic activity in response to a wide diversity of physiological stimuli. The expression of the oncogenes, PML-RARα and KRas, also stimulates the levels of S100A10, suggesting a role for S100A10 in pathophysiological processes such as in the oncogenic-mediated increases in plasmin production. The S100A10-null mouse model system has established the critical role that S100A10 plays as a regulator of fibrinolysis and oncogenesis. S100A10 plays two major roles in oncogenesis, first as a regulator of cancer cell invasion and metastasis and secondly as a regulator of the recruitment of tumor-associated cells, such as macrophages, to the tumor site.
Collapse
|
27
|
Characterization of plasminogen binding to NB4 promyelocytic cells using monoclonal antibodies against receptor-induced binding sites in cell-bound plasminogen. J Biomed Biotechnol 2012; 2012:984589. [PMID: 23118518 PMCID: PMC3480257 DOI: 10.1155/2012/984589] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 06/06/2012] [Indexed: 11/17/2022] Open
Abstract
The NB4 promyelocytic cell line exhibits many of the characteristics of acute promyelocytic leukemia blast cells, including the translocation (15 : 17) that fuses the PML gene on chromosome 15 to the RARα gene on chromosome 17. These cells have a very high fibrinolytic capacity. In addition to a high secretion of urokinase, NB4 cells exhibit a 10-fold higher plasminogen binding capacity compared with other leukemic cell lines. When tissue-type plasminogen activator was added to acid-treated cells, plasmin generation was 20–26-fold higher than that generated by U937 cells or peripheral blood neutrophils, respectively. We found that plasminogen bound to these cells can be detected by fluorescence-activated cell sorting using an antiplasminogen monoclonal antibody that specifically reacts with this antigen when it is bound to cell surfaces. All-trans retinoid acid treatment of NB4 cells markedly decreased the binding of this monoclonal antibody. This cell line constitutes a unique model to explore plasminogen binding and activation on cell surfaces that can be modulated by all-trans retinoid acid treatment.
Collapse
|
28
|
The annexin A2/S100A10 system in health and disease: emerging paradigms. J Biomed Biotechnol 2012; 2012:406273. [PMID: 23193360 PMCID: PMC3496855 DOI: 10.1155/2012/406273] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 05/15/2012] [Indexed: 12/31/2022] Open
Abstract
Since its discovery as a src kinase substrate more than three decades ago, appreciation for the physiologic functions of annexin A2 and its associated proteins has increased dramatically. With its binding partner S100A10 (p11), A2 forms a cell surface complex that regulates generation of the primary fibrinolytic protease, plasmin, and is dynamically regulated in settings of hemostasis and thrombosis. In addition, the complex is transcriptionally upregulated in hypoxia and promotes pathologic neoangiogenesis in the tissues such as the retina. Dysregulation of both A2 and p11 has been reported in examples of rodent and human cancer. Intracellularly, A2 plays a critical role in endosomal repair in postarthroplastic osteolysis, and intracellular p11 regulates serotonin receptor activity in psychiatric mood disorders. In human studies, the A2 system contributes to the coagulopathy of acute promyelocytic leukemia, and is a target of high-titer autoantibodies in patients with antiphospholipid syndrome, cerebral thrombosis, and possibly preeclampsia. Polymorphisms in the human ANXA2 gene have been associated with stroke and avascular osteonecrosis of bone, two severe complications of sickle cell disease. Together, these new findings suggest that manipulation of the annexin A2/S100A10 system may offer promising new avenues for treatment of a spectrum of human disorders.
Collapse
|
29
|
Tissue factor and glycoprotein C on herpes simplex virus type 1 are protease-activated receptor 2 cofactors that enhance infection. Blood 2012; 119:3638-45. [PMID: 22374699 DOI: 10.1182/blood-2011-08-376814] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The coagulation system provides physiologic host defense, but it can also be exploited by pathogens for infection. On the HSV1 surface, host-cell-derived tissue factor (TF) and virus-encoded glycoprotein C (gC) can stimulate protease activated receptor 1 (PAR1)-enhanced infection by triggering thrombin production. Using novel engineered HSV1 variants deficient in either TF and/or gC, in the present study, we show that activated coagulation factors X (FXa) or VII (FVIIa) directly affect HSV1 infection of human umbilical vein endothelial cells in a manner that is dependent on viral TF and gC. The combination of FXa and FVIIa maximally enhanced infection for TF(+)/gC(+) HSV1 and receptor desensitization and Ab inhibition demonstrated that both proteases act on PAR2. Inhibitory TF Abs showed that the required TF source was viral. Individually, TF or gC partly enhanced the effect of FXa, but not FVIIa, revealing gC as a novel PAR2 cofactor for FVIIa. In sharp contrast, thrombin enhanced infection via PAR1 independently of viral TF and gC. Thrombin combined with FXa/FVIIa enhanced infection, suggesting that PAR1 and PAR2 are independently involved in virus propagation. These results show that HSV1 surface cofactors promote cellular PAR2-mediated infection, indicating a novel mode by which pathogens exploit the initiation phase of the host hemostatic system.
Collapse
|
30
|
Fang YT, Lin CF, Wang CY, Anderson R, Lin YS. Interferon-γ stimulates p11-dependent surface expression of annexin A2 in lung epithelial cells to enhance phagocytosis. J Cell Physiol 2012; 227:2775-87. [DOI: 10.1002/jcp.23026] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
31
|
Gershom ES, Vanden Hoek AL, Meixner SC, Sutherland MR, Pryzdial ELG. Herpesviruses enhance fibrin clot lysis. Thromb Haemost 2012; 107:760-8. [PMID: 22318336 DOI: 10.1160/th11-08-0601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 01/04/2012] [Indexed: 01/01/2023]
Abstract
The incorporation of virus- and host-derived procoagulant factors initiates clotting directly on the surface of herpesviruses, which is an explanation for their correlation to vascular disease. The virus exploits the resulting thrombin to enhance infection by modulating the host cell through protease activated receptor (PAR) 1 signalling. Prior reports demonstrated that at least one herpesvirus expresses surface annexin A2 (A2), a cofactor for tissue plasminogen activator (tPA)-dependent activation of plasminogen to plasmin. Since plasmin is both a fibrinolytic protease and PAR agonist, we investigated whether herpesviruses enhance fibrinolysis and the effect of plasmin on cell infection. Herpes simplex virus types 1 (HSV1) and 2, and cytomegalovirus (CMV) purified from various cell lines each accelerated the proteolytic activation of plasminogen to plasmin by tPA. Ligand blots identified A2 as one of several plasminogen binding partners associated with the virus when compared to an A2-deficient virus. This was confirmed with inhibitory A2-antibodies. However, A2 was not required for virus-enhanced plasmin generation. HSV1, HSV2 and CMV accelerated tPA-dependent fibrin clot lysis by up to 2.8-fold. Modest plasmin generation and fibrinolysis was detected independent of exogenous tPA, which was inhibited by plasminogen activator inhibitor type-1 and ε-aminocaproic acid; however, the molecular basis remains speculative. Up to a ~6-fold enhancement of infection was provided by plasmin-mediated cell infection. Inhibitory antibodies revealed that plasmin increased HSV1 infection through a mechanism involving PAR2. Thus, virus-enhanced fibrinolysis may help explain the paradox of the highly procoagulant in vitro herpesvirus surface eliciting only relatively weak independent vascular disease risk.
Collapse
Affiliation(s)
- E S Gershom
- Department of Pathology and Laboratory Medicine, Centre for Blood Research, University of British Columbia; Canadian Blood Services, Research and Development Department,Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
32
|
Siller-Matula JM, Schwameis M, Blann A, Mannhalter C, Jilma B. Thrombin as a multi-functional enzyme. Focus on in vitro and in vivo effects. Thromb Haemost 2011; 106:1020-33. [PMID: 21979864 DOI: 10.1160/th10-11-0711] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 09/11/2011] [Indexed: 12/16/2022]
Abstract
Thrombin is the central protease in the coagulation cascade and one of the most extensively studied of all enzymes. In addition to its recognised role in the coagulation cascade and haemostasis, thrombin is known to have multiple pleiotropic effects, which mostly have been shown only in in vitro studies: it plays a role in inflammation and cellular proliferation and displays a mitogen activity on smooth muscle cells and endothelial cells, predominantly by activation of angiogenesis. In vivo , thrombin effects were examined in animal models of intravenous or intraarterial thrombin infusion. An extensive literature search regarding in vivo data showed that i) thrombin administered as a bolus causes microembolism, ii) thrombin infused slowly at steady-state conditions (up to 1.6 U/kg/min) leads to bleeds but not to intravascular clotting, iii) large quantity of thrombin infused at low rates (0.05 U/kg/min) does not have any measurable effect, and iv) thrombin increases vascular permeability leading to tissue damage. Although several decades of research on thrombin functions have provided a framework for understanding the biology of thrombin, animal and human studies with use of newer laboratory techniques are still needed to confirm the pleiotropic thrombin functions shown in in vitro studies.
Collapse
Affiliation(s)
- Jolanta M Siller-Matula
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | | | | | | | | |
Collapse
|
33
|
Das R, Pluskota E, Plow EF. Plasminogen and its receptors as regulators of cardiovascular inflammatory responses. Trends Cardiovasc Med 2011; 20:120-4. [PMID: 21335281 DOI: 10.1016/j.tcm.2010.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In addition to its role in fibrinolysis, plasminogen (Plg) influences inflammatory cell migration and thereby plays a prominent role in cardiovascular pathology. The contribution of Plg to inflammatory cell recruitment depends on its tethering to the surface of responding cells. Plasminogen receptors (Plg-Rs) are heterogeneous and can be classified as tailless, lacking cytoplasmic tails, or tailed (having cytoplasmic tails). In vivo observations implicate several tailless Plg-Rs in inflammatory responses. Tailed Plg-Rs on leukocytes include several integrins, which have also been implicated in Plg-dependent responses. Surface expression of both tailless and tailed Plg-Rs can be modulated in number and/or function. A common mechanism involving intracellular calcium mobilization and calcium channels regulates expression of both classes of Plg-Rs. Data are emerging to indicate that targeting Plg and Plg-Rs may limit inflammation and cardiovascular pathology.
Collapse
Affiliation(s)
- Riku Das
- Departmentof Molecular Cardiology, Lerner ResearchInstitute, Cleveland Clinic, Cleveland, OH 44130, USA
| | | | | |
Collapse
|
34
|
Valapala M, Thamake SI, Vishwanatha JK. A competitive hexapeptide inhibitor of annexin A2 prevents hypoxia-induced angiogenic events. J Cell Sci 2011; 124:1453-64. [PMID: 21486955 DOI: 10.1242/jcs.079236] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Extracellular proteolysis is an indispensable requirement for the formation of new blood vessels during neovascularization and is implicated in the generation of several angiogenic regulatory molecules. Anti-proteolytic agents have become attractive therapeutic strategies in diseases associated with excessive neovascularization. Annexin A2 (AnxA2) is an endothelial cell-surface receptor for the generation of active proteolytic factors, such as plasmin. Here, we show that AnxA2 is abundantly expressed in the neovascular tufts in a murine model of neovascularization. Exposure to hypoxic conditions results in elevation of AnxA2 and tissue plasminogen activator (tPA) in human retinal microvascular endothelial cells (RMVECs). We show that the hexapeptide competitive inhibitor LCKLSL, which targets the N-terminal tPA-binding site of AnxA2, binds efficiently to cell-surface AnxA2 compared with binding of the control peptide LGKLSL. Treatment with the competitive peptide inhibits the generation of plasmin and suppresses the VEGF-induced activity of tPA under hypoxic conditions. Application of the competitive peptide in two in vivo models of angiogenesis demonstrated suppression of the angiogenic responses, which was also associated with significant changes in the vascular sprouting. These results suggest that AnxA2-mediated plasmin generation is an important event in angiogenesis and is inhibited by a specific competitive peptide that inhibits the binding of tPA to AnxA2.
Collapse
Affiliation(s)
- Mallika Valapala
- Department of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | | |
Collapse
|
35
|
Abstract
Unconventional secretory proteins represent a subpopulation of extracellular factors that are exported from eukaryotic cells by mechanisms that do not depend on the endoplasmic reticulum and the Golgi complex. Various pathways have been implicated in unconventional secretion including those involving intracellular membrane-bound intermediates and others that are based on direct protein translocation across plasma membranes. Interleukin 1β (IL1β) and fibroblast growth factor 2 (FGF2) are classical examples of unconventional secretory proteins with IL1β believed to be present in intracellular vesicles prior to secretion. By contrast, FGF2 represents an example of a non-vesicular mechanism of unconventional secretion. Here, the author discusses the current knowledge about the molecular machinery being involved in FGF2 secretion. To reveal both differential and common requirements, this review further aims at a comprehensive comparison of this mechanism with other unconventional secretory processes. In particular, a potentially general role of tyrosine phosphorylation as a regulatory signal in unconventional protein secretion will be discussed.
Collapse
Affiliation(s)
- Walter Nickel
- Heidelberg University Biochemistry Center, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
36
|
Flood EC, Hajjar KA. The annexin A2 system and vascular homeostasis. Vascul Pharmacol 2011; 54:59-67. [PMID: 21440088 PMCID: PMC3109204 DOI: 10.1016/j.vph.2011.03.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 03/14/2011] [Accepted: 03/17/2011] [Indexed: 01/21/2023]
Abstract
Optimal fibrin balance requires precisely controlled plasmin generation on the surface of endothelial cells, which line the blood vessel wall. As a co-receptor for plasminogen and tissue plasminogen activator (tPA), which are key factors in plasmin generation, the annexin A2 (A2) complex promotes vascular fibrinolysis. The intracellular A2 complex is a heterotetramer of two A2 monomers and two copies of the associated protein, p11. In response to endothelial cell activation, A2 is phosphorylated by src-kinase, and translocated to the cell surface in a highly regulated manner. Over-expression of A2 is seen in acute promyelocytic leukemia during the early hemorrhagic phase, while high titer antibodies to A2, as in antiphospholipid syndrome or cerebral venous thrombosis, are associated with thrombosis. In experimental hyperhomocysteinemia, moreover, derivatization of A2 by homocysteine leads to intravascular fibrin accumulation and dysangiogenesis, features that phenocopy the Anxa2(-/-) mouse. Exogenous A2 may also offer a novel therapeutic approach to ischemic thrombotic stroke, as administration of A2 in conjunction with conventional tPA-based thrombolytic therapy improved outcome in an animal model. Here, we discuss the role of the A2 system in vascular homeostasis, the molecular interactions that regulate its profibrinolytic activity, and its potential role in the pathogenesis and treatment of vascular disease.
Collapse
Affiliation(s)
- Elle C. Flood
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York, USA
| | - Katherine A. Hajjar
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
37
|
He KL, Sui G, Xiong H, Broekman MJ, Huang B, Marcus AJ, Hajjar KA. Feedback regulation of endothelial cell surface plasmin generation by PKC-dependent phosphorylation of annexin A2. J Biol Chem 2010; 286:15428-39. [PMID: 21115493 DOI: 10.1074/jbc.m110.185058] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In response to blood vessel injury, hemostasis is initiated by platelet activation, advanced by thrombin generation, and tempered by fibrinolysis. The primary fibrinolytic protease, plasmin, can be activated either on a fibrin-containing thrombus or on cells. Annexin A2 (A2) heterotetramer (A2·p11)(2) is a key profibrinolytic complex that assembles plasminogen and tissue plasminogen activator and promotes plasmin generation. We now report that, in endothelial cells, plasmin specifically induces activation of conventional PKC, which phosphorylates serine 11 and serine 25 of A2, triggering dissociation of the (A2·p11)(2) tetramer. The resulting free p11 undergoes ubiquitin-mediated proteasomal degradation, thus preventing further translocation of A2 to the cell surface. In vivo, pretreatment of A2(+/+) but not A2(-/-) mice with a conventional PKC inhibitor significantly reduced thrombosis in a carotid artery injury model. These results indicate that augmentation of fibrinolytic vascular surveillance by blockade of serine phosphorylation is A2-dependent. We also demonstrate that plasmin-induced phosphorylation of A2 requires both cleavage of A2 and activation of Toll-like receptor 4 on the cell surface. We propose that plasmin can limit its own generation by triggering a finely tuned "feedback" mechanism whereby A2 becomes serine-phosphorylated, dissociates from p11, and fails to translocate to the cell surface.
Collapse
Affiliation(s)
- Kai-Li He
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York 10065, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Hoki S, Suzuki Y, Umemura K, Urano T. Enhancement of fibrinolysis by gel-filtered platelets and its quenching by cytochalasin B and GPIIb/IIIa antagonists. Pharmacol Rep 2009; 61:877-84. [DOI: 10.1016/s1734-1140(09)70144-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 09/25/2009] [Indexed: 11/15/2022]
|
39
|
Zhang NN, Liu X, Sun J, Wu Y, Li QW. [Nonclassical mechanisms of secretory protein in eukaryotic cells]. YI CHUAN = HEREDITAS 2009; 31:29-35. [PMID: 19138898 DOI: 10.3724/sp.j.1005.2009.00029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Intercellular communication is fundamental in many biological processes involved in cell growth, differentiation, development, and reproduction of living organisms and secretory proteins are among the most important messengers in this network of information. The vast majority of extracellular proteins are exported from cells by the endoplasmic reticulum/Golgi-dependent secretory pathway. However, increasing evidence shows that there are a group of secretory proteins without signal peptides, defined as nonclassical secretory proteins, which are exported via an ER/Golgi-independent pathway to perform extracellular functions. This pathway has been termed nonclassical or unconventional secretion, which is an essential and beneficial supplement of the ER-Golgi secretion pathway. The nonclassical secretion pathway has close relation with cell multiplication, immune response, tumor formation, infection pathology and so on. Here, the characters, the possible secretory mechanism, and the biological significance of nonclassical secretory proteins were reviewed.
Collapse
Affiliation(s)
- Nan-Nan Zhang
- College of Life Sciences, Liaoning Normal University, Dalian 116029, China.
| | | | | | | | | |
Collapse
|
40
|
Graziani I, Doyle A, Sterling S, Kirov A, Tarantini F, Landriscina M, Kumar TKS, Neivandt D, Prudovsky I. Protein folding does not prevent the nonclassical export of FGF1 and S100A13. Biochem Biophys Res Commun 2009; 381:350-4. [PMID: 19233122 DOI: 10.1016/j.bbrc.2009.02.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 02/10/2009] [Indexed: 11/18/2022]
Abstract
Newly synthesized proteins are usually exported through the endoplasmic reticulum (ER) and Golgi due to the presence in their primary sequence of a hydrophobic signal peptide that is recognized by the ER translocation system. However, some secreted proteins lack a signal peptide and are exported independently of ER-Golgi. Fibroblast growth factor (FGF)1 is included in this group of polypeptides, as well as S100A13 that is a small calcium-binding protein critical for FGF1 export. Classically secreted proteins are transported into ER in their unfolded states. To determine the role of protein tertiary structure in FGF1 export through the cell membrane, we produced the chimeras of FGF1 and S100A13 with dihydrofolate reductase (DHFR). The specific DHFR inhibitor, aminopterin, prevents its unfolding. We found that aminopterin did not inhibit the release of FGF1:DHFR and S100A13:DHFR. Thus, FGF1 and S100A13 can be exported in folded conformation.
Collapse
Affiliation(s)
- Irene Graziani
- Maine Medical Center Research Institute, Scarborough, 81 Research Dr., Scarborough, ME 04074, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Nickel W, Seedorf M. Unconventional Mechanisms of Protein Transport to the Cell Surface of Eukaryotic Cells. Annu Rev Cell Dev Biol 2008; 24:287-308. [PMID: 18590485 DOI: 10.1146/annurev.cellbio.24.110707.175320] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Walter Nickel
- Heidelberg University Biochemistry Center (BZH) 69120 Heidelberg, Germany
| | - Matthias Seedorf
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), 69120 Heidelberg, Germany;
| |
Collapse
|
42
|
MEEKS SL, ABSHIRE TC. Abnormalities of prothrombin: a review of the pathophysiology, diagnosis, and treatment. Haemophilia 2008; 14:1159-63. [DOI: 10.1111/j.1365-2516.2008.01832.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
43
|
Prudovsky I, Tarantini F, Landriscina M, Neivandt D, Soldi R, Kirov A, Small D, Kathir KM, Rajalingam D, Kumar TKS. Secretion without Golgi. J Cell Biochem 2008; 103:1327-43. [PMID: 17786931 PMCID: PMC2613191 DOI: 10.1002/jcb.21513] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A growing number of proteins devoid of signal peptides have been demonstrated to be released through the non-classical pathways independent of endoplasmic reticulum and Golgi. Among them are two potent proangiogenic cytokines FGF1 and IL1alpha. Stress-induced transmembrane translocation of these proteins requires the assembly of copper-dependent multiprotein release complexes. It involves the interaction of exported proteins with the acidic phospholipids of the inner leaflet of the cell membrane and membrane destabilization. Not only stress, but also thrombin treatment and inhibition of Notch signaling stimulate the export of FGF1. Non-classical release of FGF1 and IL1alpha presents a promising target for treatment of cardiovascular, oncologic, and inflammatory disorders.
Collapse
Affiliation(s)
- Igor Prudovsky
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine 04074, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
He KL, Deora AB, Xiong H, Ling Q, Weksler BB, Niesvizky R, Hajjar KA. Endothelial cell annexin A2 regulates polyubiquitination and degradation of its binding partner S100A10/p11. J Biol Chem 2008; 283:19192-200. [PMID: 18434302 PMCID: PMC2443646 DOI: 10.1074/jbc.m800100200] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 03/14/2008] [Indexed: 01/08/2023] Open
Abstract
The annexin A2 (A2) heterotetramer, consisting of two copies of A2 and two copies of S100A10/p11, promotes fibrinolytic activity on the surface of vascular endothelial cells by assembling plasminogen and tissue plasminogen activator (tPA) and accelerating the generation of plasmin. In humans, overexpression of A2 by acute promyelocytic leukemia cells is associated with excessive fibrinolysis and hemorrhage, whereas anti-A2 autoantibodies appear to accentuate the risk of thrombosis in patients with anti-phospholipid syndrome. Complete deficiency of A2 in mice leads to a lack of tPA cofactor activity, accumulation of intravascular fibrin, and failure to clear arterial thrombi. Within the endothelial cell, p11 is required for Src kinase-mediated tyrosine phosphorylation of A2, which signals translocation of both proteins to the cell surface. Here we show that p11 is expressed at very low levels in the absence of A2 both in vitro and in vivo. We demonstrate further that unpartnered p11 becomes polyubiquitinated and degraded via a proteasome-dependent mechanism. A2 stabilizes intracellular p11 through direct binding, thus masking an autonomous p11 polyubiquitination signal that triggers proteasomal degradation. This interaction requires both the p11-binding N-terminal domain of A2 and the C-terminal domain of p11. This mechanism prevents accumulation of free p11 in the endothelial cell and suggests that regulation of tPA-dependent cell surface fibrinolytic activity is precisely tuned to the intracellular level of p11.
Collapse
Affiliation(s)
- Kai-Li He
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York 10065, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
van Genderen HO, Kenis H, Hofstra L, Narula J, Reutelingsperger CPM. Extracellular annexin A5: functions of phosphatidylserine-binding and two-dimensional crystallization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:953-63. [PMID: 18334229 DOI: 10.1016/j.bbamcr.2008.01.030] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 01/22/2008] [Accepted: 01/23/2008] [Indexed: 02/06/2023]
Abstract
In normal healthy cells phosphatidylserine is located in the inner leaflet of the plasma membrane. However, on activated platelets, dying cells and under specific circumstances also on various types of viable leukocytes phosphatidylserine is actively externalized to the outer leaflet of the plasma membrane. Annexin A5 has the ability to bind in a calcium-dependent manner to phosphatidylserine and to form a membrane-bound two-dimensional crystal lattice. Based on these abilities various functions for extracellular annexin A5 on the phosphatidylserine-expressing plasma membrane have been proposed. In this review we describe possible mechanisms for externalization of annexin A5 and various processes in which extracellular annexin A5 may play a role such as blood coagulation, apoptosis, phagocytosis and formation of plasma membrane-derived microparticles. We further highlight the recent discovery of internalization of extracellular annexin A5 by phosphatidylserine-expressing cells.
Collapse
Affiliation(s)
- Hugo O van Genderen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, University Maastricht, Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
46
|
Mechanisms for Hsp70 secretion: crossing membranes without a leader. Methods 2008; 43:168-75. [PMID: 17920512 DOI: 10.1016/j.ymeth.2007.06.009] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 06/25/2007] [Indexed: 02/02/2023] Open
Abstract
Heat shock protein 70 (Hsp70) is released from cells of many types and plays a significant signaling role, particularly in the inflammatory and immune responses. However, Hsp70 does not contain a consensus secretory signal and thus cannot traverse the plasma membrane by conventional mechanisms. However, Hsp70 can be released from cells by active mechanism that are independent of de novo Hsp70 synthesis or cell death. This pathway is similar to one utilized by the leaderless protein interleukin 1beta. Hsp70 release involves transit through an endolysosomal compartment and is inhibited by lysosomotropic compounds. In addition, the rate of Hsp70 secretion correlates well with the appearance of the lysosomal marker LAMP1 on the cell surface, further suggesting the role for endolysosomes. The entry of Hsp70 into this secretory compartment appears to involve the ABC-family transporter proteins. While the cell signals involved in triggering Hsp70 release through this lysosomal pathway are largely unknown, recent data suggest a regulatory role for extracellular ATP. These mechanisms are also shared by interleukin 1beta secretion. Following release it has been shown that Hsp70 binds to adjacent cells, suggesting that the secreted protein participates in paracrine or autocrine interactions with adjacent cell surfaces. Thus an outline is beginning to of the mechanisms of Hsp70 secretion. Much further study will be required to fully elucidate mechanisms involved in targeting Hsp70 towards the non-canonical secretion pathways and its regulation.
Collapse
|
47
|
Abstract
Annexins comprise a conserved family of proteins characterised by their ability to bind and order charged phospholipids in membranes, often in response to elevated intracellular calcium. The family members (there are at least 12 in humans) have become specialised over evolutionary time and are involved in a diverse range of cellular functions both inside the cell and extracellularly Although a mutation in an annexin has never been categorically proven to be the cause of a disease state, they have been implicated in pathologies as diverse as autoimmunity, infection, heart disease, diabetes and cancer. 'Annexinopathies' were first described by Jacob H. Rand to describe the pathological sequelae in two disease states, the overexpression of annexin 2 in a patients with a haemorrhagic form of acute promyelocytic leukaemia, and the under-expression of annexin 5 on placental trophoblasts in the antiphospholipid syndrome. In this chapter we will outline some of the more recent observations in regard to these conditions, and describe the involvement of annexins in some other major causes of human morbidity.
Collapse
Affiliation(s)
- M J Hayes
- Div of Cell Biology, University College London Institute of Ophthalmology, 11-43 Bath Street, London ECI V 9EL, UK
| | | | | | | |
Collapse
|
48
|
Patchell BJ, Wojcik KR, Yang TL, White SR, Dorscheid DR. Glycosylation and annexin II cell surface translocation mediate airway epithelial wound repair. Am J Physiol Lung Cell Mol Physiol 2007; 293:L354-63. [PMID: 17513451 DOI: 10.1152/ajplung.00412.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glycosylation of cell surface proteins can regulate multiple cellular functions. We hypothesized that glycosylation and expression of glycoproteins after epithelial injury is important in mediating repair. We report the use of an in vitro culture model of human airway epithelial cells (1HAEo(-)) to identify mediators of epithelial repair. We characterized carbohydrate moieties associated with repair by their interaction with the lectin from Cicer arietinum, chickpea agglutinin (CPA). Using CPA, we identified changes in cell surface glycosylation during wound repair. Following mechanical wounding of confluent monolayers of 1HAEo(-) cells, CPA staining increases on the cell surface of groups of cells in proximity to the wound edge. Blocking the CPA carbohydrate ligand inhibited wound repair highlighting the role of the CPA carbohydrate ligand in epithelial repair. Annexin II (AII), a calcium-dependent, membrane-associated protein, was identified as a protein associated with the CPA ligand. By membrane protein biotinylation and immunodetection, we have shown that following mechanical wounding, the presentation of AII on the cell surface increases coordinate with repair. Cell surface AII accumulates in proximity to the wound. Furthermore, translocation of AII to the cell surface is N-glycosylation dependent. We are the first to demonstrate that following injury, N-glycosylation events and AII presentation on the cell surface of airway epithelial cells are important mediators in repair.
Collapse
Affiliation(s)
- Benjamin J Patchell
- James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
49
|
Derry MC, Sutherland MR, Restall CM, Waisman DM, Pryzdial ELG. Annexin 2-mediated enhancement of cytomegalovirus infection opposes inhibition by annexin 1 or annexin 5. J Gen Virol 2007; 88:19-27. [PMID: 17170432 DOI: 10.1099/vir.0.82294-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Biochemical studies have suggested that annexin 2 (A2) may participate in cytomegalovirus (CMV) infection. In the current work, effects of A2 monomer (p36) and heterotetramer (A2t; p36(2)p11(2)) were investigated. Demonstrating a role for endogenous A2, the four stages of infection that were followed were each inhibited by anti-p36 or anti-p11 at 37 degrees C. Immuno-inhibition was attenuated when the virus and cells were pre-incubated at 4 degrees C to coordinate virus entry initiated afterwards at 37 degrees C, reconciling controversy in the literature. As an explanation, CMV-induced phosphorylation of p36 was prevented by the 4 degrees C treatment. Supporting these immuno-inhibition data, purified A2t or p11 increased CMV infectious-progeny generation and CMV gene expression. A specific role for A2t was indicated by purified p36 having no effect. Unlike other steps, primary plaque formation was not enhanced by purified A2t or p11, possibly because of undetectable phosphorylation. As annexins 1 (A1) and 5 (A5) interact with A2, their effect on CMV was also tested. Both purified proteins inhibited CMV infection. In each experiment, the concentration of A1 required for half-maximal inhibition was five- to 10-fold lower than that of A5. Addition of A2 opposed A1- or A5-mediated inhibition of CMV, as did certain A2-specific antibodies that had no effect in the absence of added A1 or A5. Transfection of the p36-deficient cell line HepG2 increased CMV infection and was required for inhibition by the other annexins. These data suggest that CMV exploits A2t at physiological temperature to oppose the protection of cells conferred by A1 or A5.
Collapse
Affiliation(s)
- Mélanie C Derry
- Department of Pathology and Laboratory Medicine, University of British Columbia/Centre for Blood Research, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Research and Development Department, Canadian Blood Services, Ottawa, ON, Canada
| | - Michael R Sutherland
- Department of Pathology and Laboratory Medicine, University of British Columbia/Centre for Blood Research, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Research and Development Department, Canadian Blood Services, Ottawa, ON, Canada
| | - Christina M Restall
- Research and Development Department, Canadian Blood Services, Ottawa, ON, Canada
| | - David M Waisman
- Department of Medical Biochemistry, University of Calgary, Calgary, AB, Canada
| | - Edward L G Pryzdial
- Department of Pathology and Laboratory Medicine, University of British Columbia/Centre for Blood Research, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Research and Development Department, Canadian Blood Services, Ottawa, ON, Canada
| |
Collapse
|
50
|
Mambula SS, Calderwood SK. Heat shock protein 70 is secreted from tumor cells by a nonclassical pathway involving lysosomal endosomes. THE JOURNAL OF IMMUNOLOGY 2007; 177:7849-57. [PMID: 17114456 DOI: 10.4049/jimmunol.177.11.7849] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Heat shock protein (HSP)70 can be released from tumor cells and stimulate a potent antitumor immune response. However, HSP70 does not contain a consensus secretory signal and thus cannot traverse the plasma membrane by conventional mechanisms. We have observed HSP70 release from intact human prostate carcinoma cell lines (PC-3 and LNCaP) by a mechanism independent of de novo HSP70 synthesis or cell death. This pathway is similar to one used by the leaderless protein IL-1beta. Our studies show that HSP70 release involves transit though an endolysosomal compartment and is inhibited by lysosomotropic compounds. In addition, the rate of HSP70 secretion correlates well with the appearance of the lysosomal marker LAMP1 on the cell surface, further suggesting the role for endolysosomes. The entry of HSP70 into this secretory compartment appears to involve the ABC family transporter proteins and ABC transporter inhibitor glibenclamide antagonizes secretion. Although the cell signals involved in triggering stress induced HSP70 release though this lysosomal pathway are largely unknown, our experiments suggest a regulatory role for extracellular ATP. These mechanisms appear to be shared by IL-1beta secretion. Following release, we observed the binding of extracellular HSP70 to the cell surface of the prostate carcinoma cells. These findings suggest that secreted HSP70 can take part in paracrine or autocrine interactions with adjacent cell surfaces. Our experiments therefore suggest a mechanism for HSP70 secretion and binding to the surface of other cells that may be involved in recognition of the tumor cells by the immune system.
Collapse
Affiliation(s)
- Salamatu S Mambula
- Division of Molecular and Cellular Biology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, 21-27 Burlington Avenue, Boston, MA 02215, USA
| | | |
Collapse
|