1
|
Sarvestani FS, Tamaddon AM, Yaghoobi R, Geramizadeh B, Azarpira N. Biocompatible scaffolds based on collagen and oxidized dextran for endothelial cell survival and function in tissue engineering. Eng Life Sci 2023; 23:2200140. [PMID: 37408870 PMCID: PMC10317976 DOI: 10.1002/elsc.202200140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 07/07/2023] Open
Abstract
Angiogenesis is a vital step in tissue regeneration. Hence, the current study aimed to prepare oxidized dextran (Odex)/collagen (Col)-hydrogels with laminin (LMN), as an angiogenic extracellular matrix (ECM) component, for promoting human umbilical vein endothelial cell (HUVEC) proliferation and function. Odex/Col scaffolds were constructed at various concentrations and temperatures. Using oscillatory rheometry, scanning electron microscopy (SEM), and cell viability testing, the scaffolds were characterized, and then HUVEC proliferation and function was compared with or without LMN. The gelation time could be modified by altering the Odex/Col mass ratio as well as the temperature. SEM showed that Odex/Col hydrogels had a more regular three-dimensional (3D) porous structure than the Col hydrogels. Moreover, HUVECs grew faster in the Col scaffold (12 mg/mL), whereas the Odex (30 mg/mL)/Col (6 mg/mL) scaffold exhibited the lowest apoptosis index. Furthermore, the expression level of vascular endothelial growth factor (VEGF) mRNA in the group without LMN was higher than that with LMN, and the Odex (30 mg/mL)/Col (6 mg/mL) scaffold without LMN had the highest VEGF protein secretion, allowing the cells to survive and function effectively. Odex/Col scaffolds, with or without LMN, are proposed as a tissue engineering construct to improve HUVEC survival and function for angiogenesis.
Collapse
Affiliation(s)
| | - Ali-Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology and Center for Nanotechnology in Drug Delivery School of Pharmacy Shiraz University of Medical Sciences Shiraz Iran
| | - Ramin Yaghoobi
- Transplant Research Center Shiraz University of Medical Sciences Shiraz Iran
| | - Bita Geramizadeh
- Transplant Research Center Shiraz University of Medical Sciences Shiraz Iran
| | - Negar Azarpira
- Transplant Research Center Shiraz University of Medical Sciences Shiraz Iran
| |
Collapse
|
2
|
Contribution of Endothelial Laminin-Binding Integrins to Cellular Processes Associated with Angiogenesis. Cells 2022; 11:cells11050816. [PMID: 35269439 PMCID: PMC8909174 DOI: 10.3390/cells11050816] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
Endothelial cells engage extracellular matrix and basement membrane components through integrin-mediated adhesion to promote angiogenesis. Angiogenesis involves the sprouting of endothelial cells from pre-existing vessels, their migration into surrounding tissue, the upregulation of angiogenesis-associated genes, and the formation of new endothelial tubes. To determine whether the endothelial laminin-binding integrins, α6β4, and α3β1 contribute to these processes, we employed RNAi technology in organotypic angiogenesis assays, as well in migration assays, in vitro. The endothelial depletion of either α6β4 or α3β1 inhibited endothelial sprouting, indicating that these integrins have non-redundant roles in this process. Interestingly, these phenotypes were accompanied by overlapping and distinct changes in the expression of angiogenesis-associated genes. Lastly, depletion of α6β4, but not α3β1, inhibited migration. Taken together, these results suggest that laminin-binding integrins regulate processes associated with angiogenesis by distinct and overlapping mechanisms.
Collapse
|
3
|
Dhavalikar P, Robinson A, Lan Z, Jenkins D, Chwatko M, Salhadar K, Jose A, Kar R, Shoga E, Kannapiran A, Cosgriff-Hernandez E. Review of Integrin-Targeting Biomaterials in Tissue Engineering. Adv Healthc Mater 2020; 9:e2000795. [PMID: 32940020 PMCID: PMC7960574 DOI: 10.1002/adhm.202000795] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/27/2020] [Indexed: 12/12/2022]
Abstract
The ability to direct cell behavior has been central to the success of numerous therapeutics to regenerate tissue or facilitate device integration. Biomaterial scientists are challenged to understand and modulate the interactions of biomaterials with biological systems in order to achieve effective tissue repair. One key area of research investigates the use of extracellular matrix-derived ligands to target specific integrin interactions and induce cellular responses, such as increased cell migration, proliferation, and differentiation of mesenchymal stem cells. These integrin-targeting proteins and peptides have been implemented in a variety of different polymeric scaffolds and devices to enhance tissue regeneration and integration. This review first presents an overview of integrin-mediated cellular processes that have been identified in angiogenesis, wound healing, and bone regeneration. Then, research utilizing biomaterials are highlighted with integrin-targeting motifs as a means to direct these cellular processes to enhance tissue regeneration. In addition to providing improved materials for tissue repair and device integration, these innovative biomaterials provide new tools to probe the complex processes of tissue remodeling in order to enhance the rational design of biomaterial scaffolds and guide tissue regeneration strategies.
Collapse
Affiliation(s)
- Prachi Dhavalikar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew Robinson
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ziyang Lan
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Dana Jenkins
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Malgorzata Chwatko
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Karim Salhadar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Anupriya Jose
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ronit Kar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Erik Shoga
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Aparajith Kannapiran
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | | |
Collapse
|
4
|
Integrin β4 Is an Effective and Efficient Marker in Synchronously Highlighting Lymphatic and Blood Vascular Invasion, and Perineural Aggression in Malignancy. Am J Surg Pathol 2020; 44:681-690. [PMID: 32044807 DOI: 10.1097/pas.0000000000001451] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lymphovascular invasion (LVI) and perineural invasion (PNI) are 2 important pathologic parameters and need to be accurately assessed in multiple malignancies. Integrin β4, a member of the integrin family, has been reported to be positively expressed in vascular endothelia, peripheral nerves, and a collection of epithelia. However, little is known about the effectiveness of β4 immunostaining on the recognition of LVI and PNI. Herein, we explored the applicability of β4 immunostaining in stomach, thyroid, and breast cancers. Parallel immunostaining of D2-40, CD34, and S-100 was performed as controls for lymphatic endothelia, vascular endothelia, and neural fibers, respectively. The results demonstrated that β4 concurrently stained the lymphatic and vascular endothelia, and the peripheral nerves. Both LVI and PNI were clearly and accurately outlined by β4 immunostaining. β4 was also expressed in the majority of tumor cells, enabling recognition of LVI and PNI encroached by small tumor clusters. In contrast to D2-40 and CD34, β4 staining was not observed in stromal cells, and therefore it facilitated differentiation between the shrinkage cleft and LVI. According to our results, β4 staining strikingly increased the diagnostic accuracy and interobserver concordance for LVI and PNI compared with hematoxylin and eosin staining alone. Finally, the applicability of β4 was confirmed in 9 other types of malignancies, including cancers of the colon, prostate, esophagus, lung, kidney, uterus, tongue, bladder, and liver. Collectively, β4 is a reliable marker for synchronous detection and diagnosis of LVI and PNI.
Collapse
|
5
|
Xu H, Pumiglia K, LaFlamme SE. Laminin-511 and α6 integrins regulate the expression of CXCR4 to promote endothelial morphogenesis. J Cell Sci 2020; 133:jcs246595. [PMID: 32409567 DOI: 10.1242/jcs.246595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/11/2020] [Indexed: 12/25/2022] Open
Abstract
During angiogenesis, endothelial cells engage components of the extracellular matrix through integrin-mediated adhesion. Endothelial expression of laminin-411 and laminin-511 is known to promote vessel stability. However, little is known about the contribution of these laminins to endothelial morphogenesis. We used two organotypic cell culture angiogenesis assays, in conjunction with RNAi approaches, to demonstrate that depletion of either the α4 chain of laminin-411 (LAMA4) or the α5 chain of laminin-511 (LAMA5) from endothelial cells inhibits sprouting and tube formation. Depletion of α6 (ITGA6) integrins resulted in similar phenotypes. Gene expression analysis indicated that loss of either laminin-511 or α6 integrins inhibited the expression of CXCR4, a gene previously associated with angiogenic endothelial cells. Pharmacological or RNAi-dependent inhibition of CXCR4 suppressed endothelial sprouting and morphogenesis. Importantly, expression of recombinant CXCR4 rescued endothelial morphogenesis when α6 integrin expression was inhibited. Additionally, the depletion of α6 integrins from established tubes resulted in the loss of tube integrity and laminin-511. Taken together, our results indicate that α6 integrins and laminin-511 can promote endothelial morphogenesis by regulating the expression of CXCR4 and suggest that the α6-dependent deposition of laminin-511 protects the integrity of established endothelial tubes.
Collapse
Affiliation(s)
- Hao Xu
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany NY 12208, USA
| | - Kevin Pumiglia
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany NY 12208, USA
| | - Susan E LaFlamme
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany NY 12208, USA
| |
Collapse
|
6
|
Abou-Fadel J, Smith M, Falahati K, Zhang J. Comparative omics of CCM signaling complex (CSC). Chin Neurosurg J 2020; 6:4. [PMID: 32922933 PMCID: PMC7398211 DOI: 10.1186/s41016-019-0183-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cerebral cavernous malformations (CCMs), a major neurosurgical condition, characterized by abnormally dilated intracranial capillaries, result in increased susceptibility to stroke. KRIT1 (CCM1), MGC4607 (CCM2), and PDCD10 (CCM3) have been identified as causes of CCMs in which at least one of them is disrupted in most familial cases. Our goal is to identify potential biomarkers and genetic modifiers of CCMs, using a global comparative omics approach across several in vitro studies and multiple in vivo animal models. We hypothesize that through analysis of the CSC utilizing various omics, we can identify potential biomarkers and genetic modifiers, by systemically evaluating effectors and binding partners of the CSC as well as second layer interactors. METHODS We utilize a comparative omics approach analyzing multiple CCMs deficient animal models across nine independent studies at the genomic, transcriptomic, and proteomic levels to dissect alterations in various signaling cascades. RESULTS Our analysis revealed a large set of genes that were validated across multiple independent studies, suggesting an important role for these identified genes in CCM pathogenesis. CONCLUSION This is currently one of the largest comparative omics analysis of CCM deficiencies across multiple models, allowing us to investigate global alterations among multiple signaling cascades involved in both angiogenic and non-angiogenic events and to also identify potential biomarker candidates of CCMs, which can be used for new therapeutic strategies.
Collapse
Affiliation(s)
- Johnathan Abou-Fadel
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, 5001 El Paso Drive, El Paso, TX 79905 USA
| | - Mark Smith
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, 5001 El Paso Drive, El Paso, TX 79905 USA
| | - Kamran Falahati
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, 5001 El Paso Drive, El Paso, TX 79905 USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, 5001 El Paso Drive, El Paso, TX 79905 USA
| |
Collapse
|
7
|
Abou-Fadel J, Vasquez M, Grajeda B, Ellis C, Zhang J. Systems-wide analysis unravels the new roles of CCM signal complex (CSC). Heliyon 2019; 5:e02899. [PMID: 31872111 PMCID: PMC6909108 DOI: 10.1016/j.heliyon.2019.e02899] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/17/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are characterized by abnormally dilated intracranial capillaries that result in increased susceptibility to stroke. Three genes have been identified as causes of CCMs; KRIT1 (CCM1), MGC4607 (CCM2) and PDCD10 (CCM3); one of them is disrupted in most CCM cases. It was demonstrated that both CCM1 and CCM3 bind to CCM2 to form a CCM signaling complex (CSC) to modulate angiogenesis. In this report, we deployed both RNA-seq and proteomic analysis of perturbed CSC after depletion of one of three CCM genes to generate interactomes for system-wide studies. Our results demonstrated a unique portrait detailing alterations in angiogenesis and vascular integrity. Interestingly, only in-direct overlapped alterations between RNA and protein levels were detected, supporting the existence of multiple layers of regulation in CSC cascades. Notably, this is the first report identifying that both β4 integrin and CAV1 signaling are downstream of CSC, conveying the angiogenic signaling. Our results provide a global view of signal transduction modulated by the CSC, identifies novel regulatory signaling networks and key cellular factors associated with CSC.
Collapse
Affiliation(s)
- Johnathan Abou-Fadel
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Mariana Vasquez
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Brian Grajeda
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Cameron Ellis
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| |
Collapse
|
8
|
The opposing roles of laminin-binding integrins in cancer. Matrix Biol 2017; 57-58:213-243. [DOI: 10.1016/j.matbio.2016.08.007] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/02/2016] [Accepted: 08/17/2016] [Indexed: 02/06/2023]
|
9
|
Desai D, Singh P, Van De Water L, LaFlamme SE. Dynamic Regulation of Integrin α 6β 4 During Angiogenesis: Potential Implications for Pathogenic Wound Healing. Adv Wound Care (New Rochelle) 2013; 2:401-409. [PMID: 24527356 DOI: 10.1089/wound.2013.0455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Angiogenesis is an essential component of normal cutaneous wound repair, but is altered in pathogenic forms of wound healing, such as chronic wounds and fibrosis. We previously reported that endothelial expression of integrin α6β4 is developmentally regulated, with α6β4 expression correlating with tissue maturation and further showed that endothelial α6β4 is downregulated in explant angiogenesis assays. These data support the hypothesis that dynamic regulation of α6β4 may play an important role during new vessel formation in healing wounds. APPROACH To test this hypothesis, we examined the endothelial expression of α6β4 using a murine model of cutaneous wound healing and in vitro cultures of primary human dermal microvascular endothelial cells (HDMECs). RESULTS Expression of α6β4 is downregulated during early stages of wound healing; angiogenic vessels in day 7 wounds do not express α6β4. Endothelial expression of α6β4 is resumed in day 14 wounds. Moreover, explanted HDMECs do not express α6β4, but expression is induced by treatment with histone deacetylase inhibitors. INNOVATION We provide in vivo data supporting a role for the dynamic regulation of α6β4 during vessel formation and remodeling during cutaneous wound repair and in vitro findings that suggest endothelial β4 expression is regulated transcriptionally, providing an important foundation for future studies to understand the transcriptional mechanisms involved in endothelial cell maturation during normal wound repair. CONCLUSION Our data indicate that α6β4 is dynamically regulated during angiogenesis and vessel maturation and suggest that disruption of this regulation may contribute to defective angiogenesis associated with diabetic wounds or cutaneous fibrosis.
Collapse
Affiliation(s)
- Diana Desai
- Department of Pathology, University of Utah Hospital, Salt Lake City, Utah
| | - Purva Singh
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | | | - Susan E. LaFlamme
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York
| |
Collapse
|
10
|
Jeon JH, Suh HN, Kim MO, Han HJ. Glucosamine-induced reduction of integrin β4 and plectin complex stimulates migration and proliferation in mouse embryonic stem cells. Stem Cells Dev 2013; 22:2975-89. [PMID: 23815613 DOI: 10.1089/scd.2013.0158] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We investigated the role of glucosamine (GlcN) on the integrin β4/plectin complex and its role in the regulation of mouse embryonic stem cell (mESC) migration and proliferation. GlcN significantly decreased integrin β4 mRNA/protein expression, whereas plectin protein expression did not change. Also, decrease of integrin β4 expression caused reduction of integrin β4/plectin complex formation, and then increased cell migration. GlcN increased intracellular calcium influx and protein kinase C (PKC) phosphorylation followed by integrin β4 serine phosphorylation and reduction of the integrin β4/plectin complex. GlcN entered into the cell through glucose transporter 1 and then increased O-GlcNAc transferase (OGT) and the level of glycosylation (CTD110.6). Inhibition of OGT (OGT inhibitor; ST045849) increased integrin β4/plectin complex opposite with decreased cell migration. Moreover, GlcN increased O-GlcNAc-specificity protein 1 (Sp1) and nuclear translocated p-Sp1 stimulated calmodulin (CaM) expression, which combined with plectin. In addition, GlcN increased Akt glycosylation and glycogen synthase kinase-3β (GSK-3β) phosphorylation, and then Snail1 glycosylation. Snail small interfering ribonucleic acid (siRNA) reversed the reduction of integrin β4/plectin complex and dissociation of cell junctions (tight and adherent junction). GlcN increased cell migration, cell cycle regulatory proteins [cyclinD1, cyclin-dependent kinase 4 (CDK4), cyclinE, and CDK2], and the percentage of S phase cells, which were inhibited by a PKC inhibitor, CaM siRNA, or Snail1 siRNA. Additionally, GlcN maintained the undifferentiation status of ESCs. In conclusion, GlcN contributed to migration and proliferation of mESCs through integrin β4/plectin complex reduction via Ca²⁺/PKC, as well as the Sp1/CaM and Akt/GSK-3β/Snail1 signaling pathway.
Collapse
Affiliation(s)
- Ji Hoon Jeon
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University , Seoul, Republic of Korea
| | | | | | | |
Collapse
|
11
|
Welser-Alves JV, Boroujerdi A, Tigges U, Wrabetz L, Feltri ML, Milner R. Endothelial β4 integrin is predominantly expressed in arterioles, where it promotes vascular remodeling in the hypoxic brain. Arterioscler Thromb Vasc Biol 2013; 33:943-53. [PMID: 23471230 DOI: 10.1161/atvbaha.112.300566] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Laminin is a major component of the vascular basal lamina, implying that laminin receptors, such as α6β1 and α6β4 integrins, may regulate vascular remodeling and homeostasis. Previous studies in the central nervous system have shown that β4 integrin is expressed by only a fraction of cerebral vessels, but defining the vessel type and cellular source of β4 integrin has proved controversial. The goal of this study was to define the class of vessel and cell type expressing β4 integrin in cerebral vessels and to examine its potential role in vascular remodeling. APPROACH AND RESULTS Dual-immunofluorescence showed that β4 integrin is expressed predominantly in arterioles, both in the central nervous system and in peripheral organs. Cell-specific knockouts of β4 integrin revealed that β4 integrin expression in cerebral vessels is derived from endothelial cells, not astrocytes or smooth muscle cells. Lack of endothelial β4 integrin had no effect on vascular development, integrity, or endothelial proliferation, but in the hypoxic central nervous system, its absence led to defective arteriolar remodeling and associated transforming growth factor-β signaling. CONCLUSIONS These results define high levels of β4 integrin in arteriolar endothelial cells and demonstrate a novel link among β4 integrin, transforming growth factor-β signaling, and arteriolar remodeling in cerebral vessels.
Collapse
Affiliation(s)
- Jennifer V Welser-Alves
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
12
|
Xu S, Olenyuk BZ, Okamoto CT, Hamm-Alvarez SF. Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances. Adv Drug Deliv Rev 2013; 65:121-38. [PMID: 23026636 PMCID: PMC3565049 DOI: 10.1016/j.addr.2012.09.041] [Citation(s) in RCA: 324] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 09/13/2012] [Accepted: 09/20/2012] [Indexed: 12/22/2022]
Abstract
Targeting of drugs and their carrier systems by using receptor-mediated endocytotic pathways was in its nascent stages 25 years ago. In the intervening years, an explosion of knowledge focused on design and synthesis of nanoparticulate delivery systems as well as elucidation of the cellular complexity of what was previously-termed receptor-mediated endocytosis has now created a situation when it has become possible to design and test the feasibility of delivery of highly specific nanoparticle drug carriers to specific cells and tissue. This review outlines the mechanisms governing the major modes of receptor-mediated endocytosis used in drug delivery and highlights recent approaches using these as targets for in vivo drug delivery of nanoparticles. The review also discusses some of the inherent complexity associated with the simple shift from a ligand-drug conjugate versus a ligand-nanoparticle conjugate, in terms of ligand valency and its relationship to the mode of receptor-mediated internalization.
Collapse
Affiliation(s)
- Shi Xu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, USA 90033
| | - Bogdan Z. Olenyuk
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, USA 90033
| | - Curtis T. Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, USA 90033
| | - Sarah F. Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, USA 90033
| |
Collapse
|
13
|
Bouvard C, De Arcangelis A, Dizier B, Galy-Fauroux I, Fischer AM, Georges-Labouesse E, Helley D. Tie2-dependent knockout of α6 integrin subunit in mice reduces post-ischaemic angiogenesis. Cardiovasc Res 2012; 95:39-47. [DOI: 10.1093/cvr/cvs153] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Liadaki K, Casar JC, Wessen M, Luth ES, Jun S, Gussoni E, Kunkel LM. β4 integrin marks interstitial myogenic progenitor cells in adult murine skeletal muscle. J Histochem Cytochem 2012; 60:31-44. [PMID: 22205679 DOI: 10.1369/0022155411428991] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscle growth and its regeneration following injury rely on myogenic progenitor cells, a heterogeneous population that includes the satellite cells and other interstitial progenitors. The present study demonstrates that surface expression of β4 integrin marks a population of vessel-associated interstitial muscle progenitor cells. Muscle β4 integrin-positive cells do not express myogenic markers upon isolation. However, they are capable of undergoing myogenic specification in vitro and in vivo: β4 integrin cells differentiate into multinucleated myotubes in culture dishes and contribute to muscle regeneration upon delivery into diseased mice. Subfractionation of β4 integrin-expressing cells based on CD31 expression does not further enrich for myogenic precursors. These findings support the expression of β4 integrin in interstitial, vessel-associated cells with myogenic activity within adult skeletal muscle.
Collapse
Affiliation(s)
- Kalliopi Liadaki
- Program in Genomics, Division of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Wang L, Dong Z, Zhang Y, Miao J. The roles of integrin β4 in Vascular Endothelial Cells. J Cell Physiol 2011; 227:474-8. [DOI: 10.1002/jcp.22769] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Integrin-mediated cell-matrix interaction in physiological and pathological blood vessel formation. JOURNAL OF ONCOLOGY 2011; 2012:125278. [PMID: 21941547 PMCID: PMC3175391 DOI: 10.1155/2012/125278] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 07/15/2011] [Indexed: 02/07/2023]
Abstract
Physiological as well as pathological blood vessel formation are fundamentally dependent on cell-matrix interaction. Integrins, a family of major cell adhesion receptors, play a pivotal role in development, maintenance, and remodeling of the vasculature. Cell migration, invasion, and remodeling of the extracellular matrix (ECM) are integrin-regulated processes, and the expression of certain integrins also correlates with tumor progression. Recent advances in the understanding of how integrins are involved in the regulation of blood vessel formation and remodeling during tumor progression are highlighted. The increasing knowledge of integrin function at the molecular level, together with the growing repertoire of integrin inhibitors which allow their selective pharmacological manipulation, makes integrins suited as potential diagnostic markers and therapeutic targets.
Collapse
|
17
|
da Silva RG, Tavora B, Robinson SD, Reynolds LE, Szekeres C, Lamar J, Batista S, Kostourou V, Germain MA, Reynolds AR, Jones DT, Watson AR, Jones JL, Harris A, Hart IR, Iruela-Arispe ML, Dipersio CM, Kreidberg JA, Hodivala-Dilke KM. Endothelial alpha3beta1-integrin represses pathological angiogenesis and sustains endothelial-VEGF. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1534-48. [PMID: 20639457 PMCID: PMC2928983 DOI: 10.2353/ajpath.2010.100043] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 05/06/2010] [Indexed: 11/20/2022]
Abstract
Integrin alpha3beta1 is a major receptor for laminin. The expression levels of laminins-8 and -10 in the basement membrane surrounding blood vessels are known to change during tumor angiogenesis. Although some studies have suggested that certain ligands of alpha3beta1 can affect angiogenesis either positively or negatively, either a direct in vivo role for alpha3beta1 in this process or its mechanism of action in endothelial cells during angiogenesis is still unknown. Because the global genetic ablation of alpha3-integrin results in an early lethal phenotype, we have generated conditional-knockout mice where alpha3 is deleted specifically in endothelial cells (ec-alpha3-/-). Here we show that ec-alpha3-/- mice are viable, fertile, and display enhanced tumor growth, elevated tumor angiogenesis, augmented hypoxia-induced retinal angiogenesis, and increased vascular endothelial growth factor (VEGF)-mediated neovascularization ex vivo and in vivo. Furthermore, our data provide a novel method by which an integrin may regulate angiogenesis. We show that alpha3beta1 is a positive regulator of endothelial-VEGF and that, surprisingly, the VEGF produced by endothelial cells can actually repress VEGF-receptor 2 (Flk-1) expression. These data, therefore, identify directly that endothelial alpha3beta1 negatively regulates pathological angiogenesis and implicate an unexpected role for low levels of endothelial-VEGF as an activator of neovascularization.
Collapse
Affiliation(s)
- Rita Graça da Silva
- Adhesion and Angiogenesis Laboratory, Barts Institute of Cancer, Queen Mary University of London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Primo L, Seano G, Roca C, Maione F, Gagliardi PA, Sessa R, Martinelli M, Giraudo E, di Blasio L, Bussolino F. Increased expression of alpha6 integrin in endothelial cells unveils a proangiogenic role for basement membrane. Cancer Res 2010; 70:5759-69. [PMID: 20570893 DOI: 10.1158/0008-5472.can-10-0507] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The integrin alpha6 subunit is part of the alpha6beta1 and alpha6beta4 integrin complexes, which are known to be receptors for laminins and to mediate several biological activities such as embryogenesis, organogenesis, and invasion of carcinoma cells. However, the precise role of alpha6 integrin in angiogenesis has not yet been addressed. We observed that both vascular endothelial growth factor-A and fibroblast growth factor-2 strongly upregulate alpha6 integrin in human endothelial cells. Moreover, alpha6 integrin was positively modulated in angiogenic vessels in pancreatic neuroendocrine carcinoma. In this transgenic mouse model of spontaneous tumorigenesis, alpha6 integrin expression increased in the angiogenic stage, while being expressed at low levels in normal and hyperplastic tissue. We studied the functional role of alpha6 integrin during angiogenesis by lentivirus-mediated gene silencing and blocking antibody. Cell migration and morphogenesis on basement membrane extracts, a laminin-rich matrix, was reduced in endothelial cells expressing low levels of alpha6 integrin. However, we did not observe any differences in collagen matrices. Similar results were obtained in the aortic ring angiogenesis assay. alpha6 integrin was required for vessel sprouting on basement membrane gels but not on collagen gels, as shown by stably silencing this integrin in the murine aorta. Finally, a neutralizing anti-alpha6 integrin antibody inhibited in vivo angiogenesis in chicken chorioallantoic membrane and transgenic tumor mouse model. In summary, we showed that the alpha6 integrin participated in vascular endothelial growth factor-A and fibroblast growth factor-2-driven angiogenesis in vitro and in vivo, suggesting that it might be an attractive target for therapeutic approaches in angiogenesis-dependent diseases such as tumor growth.
Collapse
Affiliation(s)
- Luca Primo
- Department of Clinical and Biological Sciences and Oncological Sciences, University of Torino, and Institute for Cancer Research and Treatment, Candiolo, Turin, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Germain M, De Arcangelis A, Robinson SD, Baker M, Tavora B, D'Amico G, Silva R, Kostourou V, Reynolds LE, Watson A, Jones JL, Georges-Labouesse E, Hodivala-Dilke K. Genetic ablation of the alpha 6-integrin subunit in Tie1Cre mice enhances tumour angiogenesis. J Pathol 2010; 220:370-81. [PMID: 19967723 DOI: 10.1002/path.2654] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Laminins are expressed highly in blood vessel basement membranes and have been implicated in angiogenesis. alpha6beta1- and alpha6beta4-integrins are major receptors for laminins in endothelial cells, but the precise role of endothelial alpha6-integrin in tumour angiogenesis is not clear. We show that blood vessels in human invasive ductal carcinoma of the breast have decreased expression of the alpha6-integrin-subunit when compared with normal breast tissue. These data suggest that a decrease in alpha6-integrin-subunit expression in endothelial cells is associated with tumour angiogenesis. To test whether the loss of the endothelial alpha6-integrin subunit affects tumour growth and angiogenesis, we generated alpha6fl/fl-Tie1Cre+ mice and showed that endothelial deletion of alpha6-integrin is sufficient to enhance tumour size and tumour angiogenesis in both murine B16F0 melanoma and Lewis cell lung carcinoma. Mechanistically, endothelial alpha6-integrin deficiency elevated significantly VEGF-mediated angiogenesis both in vivo and ex vivo. In particular, alpha6-integrin-deficient endothelial cells displayed increased levels of VEGF-receptor 2 (VEGFR2) and VEGF-mediated downstream ERK1/2 activation. By developing the first endothelial-specific alpha6-knockout mice, we show that the expression of the alpha6-integrin subunit in endothelial cells acts as a negative regulator of angiogenesis both in vivo and ex vivo.
Collapse
Affiliation(s)
- Mitchel Germain
- The Adhesion and Angiogenesis Laboratory, Institute of Cancer, Queen Mary, University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Nicosia RF. The aortic ring model of angiogenesis: a quarter century of search and discovery. J Cell Mol Med 2009; 13:4113-36. [PMID: 19725916 PMCID: PMC4496118 DOI: 10.1111/j.1582-4934.2009.00891.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 08/11/2009] [Indexed: 12/14/2022] Open
Abstract
The aortic ring model has become one of the most widely used methods to study angiogenesis and its mechanisms. Many factors have contributed to its popularity including reproducibility, cost effectiveness, ease of use and good correlation with in vivo studies. In this system aortic rings embedded in biomatrix gels and cultured under chemically defined conditions generate arborizing vascular outgrowths which can be stimulated or inhibited with angiogenic regulators. Originally based on the rat aorta, the aortic ring model was later adapted to the mouse for the evaluation of specific molecular alterations in genetically modified animals. Viral transduction of the aortic rings has enabled investigators to overexpress genes of interest in the aortic cultures. Experiments on angiogenic mechanisms have demonstrated that formation of neovessels in aortic cultures is regulated by macrophages, pericytes and fibroblasts through a complex molecular cascade involving growth factors, inflammatory cytokines, axonal guidance cues, extracellular matrix (ECM) molecules and matrix-degrading proteolytic enzymes. These studies have shown that endothelial sprouting can be effectively blocked by depleting the aortic explants of macrophages or by interfering with the angiogenic cascade at multiple levels including growth factor signalling, cell adhesion and proteolytic degradation of the ECM. In this paper, we review the literature in this field and retrace the journey from our first morphological descriptions of the aortic outgrowths to the latest breakthroughs in the cellular and molecular regulation of aortic vessel growth and regression.
Collapse
Affiliation(s)
- R F Nicosia
- Pathology and Laboratory Medicine Services, Veterans Administration Puget Sound Health Care System, Seattle, WA 98108, USA.
| |
Collapse
|
21
|
Alghisi GC, Rüegg C. Vascular Integrins in Tumor Angiogenesis: Mediators and Therapeutic Targets. ACTA ACUST UNITED AC 2009; 13:113-35. [PMID: 16728329 DOI: 10.1080/10623320600698037] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The notion that tumor angiogenesis may have therapeutic implications in the control of tumor growth was introduced by Dr. Judah Folkman in 1971. The approval of Avastin in 2004 as the first antiangiogenic systemic drug to treat cancer patients came as a validation of this visionary concept and opened new perspectives to the treatment of cancer. In addition, this success boosted the field to the quest for new therapeutic targets and antiangiogenic drugs. Preclinical and clinical evidence indicate that vascular integrins may be valid therapeutic targets. In preclinical studies, pharmacological inhibition of integrin function efficiently suppressed angiogenesis and inhibited tumor progression. alphaVbeta3 and alphaVbeta5 were the first vascular integrins targeted to suppress tumor angiogenesis. Subsequent experiments revealed that at least four additional integrins (i.e., alpha1beta1, alpha2beta1, alpha5beta1, and alpha6beta4) might be potential therapeutic targets. In clinical studies low-molecular-weight integrin inhibitors and anti-integrin function-blocking antibodies demonstrated low toxicity and good tolerability and are now being tested in combination with radiotherapy and chemotherapy for anticancer activity in patients. In this article the authors review the role of integrins in angiogenesis, present recent development in the use of alphaVbeta3 and alpha5beta1 integrin antagonists as potential therapeutics in cancer, and discuss future perspectives.
Collapse
Affiliation(s)
- Gian Carlo Alghisi
- Centre Pluridisciplinaire d'Oncologie (CePO), Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | | |
Collapse
|
22
|
Abstract
Angiogenesis is one of the earliest and essential phenotypes acquired by tumors during carcinogenesis and thus might be a potential target for chemoprevention. Key to developing antiangiogenic chemoprevention is to identify new molecular targets and effective angiogenesis inhibitors. HMG-CoA reductase inhibitors, or statins, were originally designed to reduce cholesterol biosynthesis and have been extensively used as prevention drugs against hyperlipidemia and cardiovascular conditions. Recent research has found that statins promote endothelial death and inhibit experimental angiogenesis induced by growth factors or tumor, laying a foundation for developing statin-based angiopreventive strategies. This article reviews the biological effects of statins on endothelial cells and angiogenesis, possible underlying mechanisms and perspectives on future application of statins in preventing pathological angiogenesis.
Collapse
Affiliation(s)
- Chong Feng
- Sun Yat-sen University School of Medicine, Guangzhou GD, PRC
| | | | | | | | | |
Collapse
|
23
|
Meng N, Zhao J, Zhao B, Cheng Y, Wang W, Zhang Y, Zhang S, Miao J. A novel butyrolactone derivative inhibited smooth muscle cell migration and proliferation and maintained endothelial cell functions through selectively affecting Na, K-ATPase activity and mitochondria membrane potential during in vitro angiogenesis. J Cell Biochem 2008; 104:2123-30. [PMID: 18393353 DOI: 10.1002/jcb.21769] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have found that 3-benzyl-5-((2-nitrophenoxy) methyl)-dihydrofuran -2(3H)-one (3BDO), could effectively suppress human umbilical vascular endothelial cell (HUVEC) apoptosis induced by deprivation of fibroblast growth factor-2 and serum. Here, our purpose was to investigate whether 3BDO could modulate angiogenesis and its possible acting mechanism. The effect of 3BDO on angiogenesis was investigated by capillary-like tubule formation and rat aortic ring assay. Proliferation and migration of cells were detected by counting living cell number and scraping cell monolayer, respectively. Na, K-ATPase activity was measured spectrophotometrically. Mitochondrial membrane potential was analyzed using tetramethylrhodamine methylester fluorescence by confocal microscopy. Our results showed that 3BDO inhibited migration and proliferation of vascular smooth muscle cells (VSMCs), but maintained migration and tubule formation of HUVECs. In HUVECs, 3BDO inhibited Na, K-ATPase activity, but had no effect on mitochondria membrane potential. In VSMCs, it did not affect Na, K-ATPase activity, but depressed mitochondria membrane potential obviously. The data showed that 3BDO had selective effects on HUVECs and VSMCs, it might perform its role through the selective effects on the activity of Na, K-ATPase and the mitochondria membrane potential in HUVECs and VSMCs.
Collapse
Affiliation(s)
- Ning Meng
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Angiogenesis, the formation of new blood vessels from preexisting vasculature, contributes to the pathogenesis of many disorders, including ischemic diseases and cancer. Integrins are cell adhesion molecules that are expressed on the surface of endothelial cells and pericytes, making them potential targets for antiangiogenic therapy. Here we review the contribution of endothelial and mural cell integrins to angiogenesis and highlight their potential as antiangiogenesis targets.
Collapse
Affiliation(s)
- Rita Silva
- From the Adhesion and Angiogenesis Group, Centre for Tumour Biology, Cancer Research UK Clinical Centre and the Institute of Cancer, Barts & The London & Queen Mary’s School of Medicine & Dentistry, John Vane Science Centre, Charterhouse Square, London UK
| | - Gabriela D'Amico
- From the Adhesion and Angiogenesis Group, Centre for Tumour Biology, Cancer Research UK Clinical Centre and the Institute of Cancer, Barts & The London & Queen Mary’s School of Medicine & Dentistry, John Vane Science Centre, Charterhouse Square, London UK
| | - Kairbaan M. Hodivala-Dilke
- From the Adhesion and Angiogenesis Group, Centre for Tumour Biology, Cancer Research UK Clinical Centre and the Institute of Cancer, Barts & The London & Queen Mary’s School of Medicine & Dentistry, John Vane Science Centre, Charterhouse Square, London UK
| | - Louise E. Reynolds
- From the Adhesion and Angiogenesis Group, Centre for Tumour Biology, Cancer Research UK Clinical Centre and the Institute of Cancer, Barts & The London & Queen Mary’s School of Medicine & Dentistry, John Vane Science Centre, Charterhouse Square, London UK
| |
Collapse
|
25
|
Integrins in Angiogenesis. Angiogenesis 2008. [DOI: 10.1007/978-0-387-71518-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Dentelli P, Rosso A, Zeoli A, Gambino R, Pegoraro L, Pagano G, Falcioni R, Brizzi MF. Oxidative stress-mediated mesangial cell proliferation requires RAC-1/reactive oxygen species production and beta4 integrin expression. J Biol Chem 2007; 282:26101-10. [PMID: 17604276 DOI: 10.1074/jbc.m703132200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipid abnormalities and oxidative stress, by stimulating mesangial cell (MC) proliferation, can contribute to the development of diabetes-associated renal disease. In this study we investigated the molecular events elicited by oxidized low density lipoproteins (ox-LDL) in MC. We demonstrate that in MC cultured in the presence of ox-LDL, survival and mitogenic signals on Akt and Erk1/2 MAPK pathways are induced, respectively. Moreover, as shown by the expression of the dominant negative Rac-1 construct, we first report that ox-LDL-mediated cell survival and cell cycle progression depend on Rac-1 GTPase-mediated reactive oxygen species production and on epidermal growth factor receptor transactivation. By silencing Akt and blocking Erk1/2 MAPK pathways, we also demonstrate that these signals are downstream to Rac-1/reactive oxygen species production and epidermal growth factor receptor activation. Finally, by endogenous depletion of beta4 integrin, expressed in MC, we provide evidence that the expression of this adhesion molecule is essential for ox-LDL-mediated MC dysfunction. Our data identify a novel signaling pathway involved in oxidative stress-induced diabetes-associated renal disease and provide the rationale for therapeutically targeting beta4 integrin.
Collapse
Affiliation(s)
- Patrizia Dentelli
- Department of Internal Medicine, University of Torino, Corso Dogliotti 14, 10126 Torino, Italy
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Cruz-Monserrate Z, Qiu S, Evers BM, O'Connor KL. Upregulation and redistribution of integrin alpha6beta4 expression occurs at an early stage in pancreatic adenocarcinoma progression. Mod Pathol 2007; 20:656-67. [PMID: 17415382 PMCID: PMC4697742 DOI: 10.1038/modpathol.3800782] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pancreatic adenocarcinomas are highly invasive cancers for reasons that are currently unclear. Here we sought to determine if the proinvasive integrin alpha6beta4 may be related to pancreatic adenocarcinoma tumor progression. Expression of integrin alpha6beta4 was analyzed via immunohistochemistry for the beta4 subunit in normal pancreas, pancreatic intraepithelial neoplasia (PanIN) lesions, pancreatic adenocarcinomas and chronic pancreatitis. In normal pancreatic ducts, integrin alpha6beta4 was noted only at the cell's basal interface with the basement membrane. In pancreatic adenocarcinomas, 92% (104/113) demonstrated overexpression of integrin alpha6beta4 and altered localization to the cytoplasm and membranous regions. This pattern of expression was observed in all PanIN lesions as early as PanIN-1A, and was evident in lesions that were juxtapositioned to normal epithelium. In contrast, 93% (13/14) of chronic pancreatitis samples resembled the staining pattern of normal pancreas. When cancer was present in areas of chronic pancreatitis, this altered expression of alpha6beta4 integrin identified the cancer. We conclude that integrin alpha6beta4 is expressed only on the basal surface of ductal cells in normal pancreas and chronic pancreatitis. During pancreatic adenocarcinoma progression, the alpha6beta4 integrin is dramatically overexpressed and displays altered localization at the earliest stages of PanIN, thus representing an early event in pancreatic adenocarcinoma progression.
Collapse
Affiliation(s)
- Zobeida Cruz-Monserrate
- Sealy Center for Cancer Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-0525, USA
| | | | | | | |
Collapse
|
28
|
Lipscomb EA, Simpson KJ, Lyle SR, Ring JE, Dugan AS, Mercurio AM. The alpha6beta4 integrin maintains the survival of human breast carcinoma cells in vivo. Cancer Res 2006; 65:10970-6. [PMID: 16322245 DOI: 10.1158/0008-5472.can-05-2327] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The alpha6beta4 integrin has been widely implicated in carcinoma function in vitro; however, in vivo data are scarce. To determine the importance of alpha6beta4 in tumor progression, a SUM-159 breast carcinoma cell line that is essentially devoid of alpha6beta4 expression was generated using an RNA interference strategy. Loss of alpha6beta4 expression inhibits colony formation in soft agar assays, suggesting a vital role for alpha6beta4 in survival signaling and anchorage-independent growth. Orthotopic injection of the beta4-deficient cell line into the mammary fat pad of immunocompromised mice yielded significantly fewer and smaller tumors than the control cell line, revealing a role for the alpha6beta4 integrin in tumor formation. Under conditions that mimicked the in vivo environment, decreased expression of the alpha6beta4 integrin led to enhanced apoptosis as determined by the percentage of Annexin V-FITC+, PI- cells and the presence of caspase-3 cleavage products. Recombinant vascular endothelial growth factor (VEGF) significantly inhibited the cell death observed in the beta4-deficient cell line, demonstrating the importance of VEGF expression in this survival pathway. Furthermore, loss of alpha6beta4 expression leads to enhanced apoptosis and reduced expression of VEGF in breast carcinoma cells in vivo. Importantly, the specificity of alpha6beta4 in both the in vitro and in vivo assays showed that reexpression of the beta4 subunit into the beta4-deficient cell line could rescue the functional phenotype. Taken together, these data implicate the alpha6beta4 integrin in tumor formation by regulating tumor cell survival in a VEGF-dependent manner.
Collapse
Affiliation(s)
- Elizabeth A Lipscomb
- Division of Cancer Biology and Angiogenesis, Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
29
|
Zhao J, Miao J, Zhao B, Zhang S. Upregulating of Fas, integrin β4 and P53 and depressing of PC-PLC activity and ROS level in VEC apoptosis by safrole oxide. FEBS Lett 2005; 579:5809-13. [PMID: 16225864 DOI: 10.1016/j.febslet.2005.09.051] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Accepted: 09/15/2005] [Indexed: 12/13/2022]
Abstract
Previously, we found that safrole oxide could trigger vascular endothelial cell (VEC) apoptosis. In this study, to investigate its mechanism to induce apoptosis in VECs, the activities of nitric oxide synthetase and phosphatidylcholine specific phospholipase C, the level of reactive oxygen species and the expressions of Fas, integrin beta4 and P53 were analyzed. The data showed that safrole oxide induced apoptosis by increasing the expressions of Fas, integrin beta4 and P53, and depressing the activity of Ca(2+)-independent phosphatidylcholine-specific phospholipase C and intracellular reactive oxygen species levels in VECs.
Collapse
Affiliation(s)
- Jing Zhao
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, China
| | | | | | | |
Collapse
|
30
|
Zemani F, Benisvy D, Galy-Fauroux I, Lokajczyk A, Colliec-Jouault S, Uzan G, Fischer AM, Boisson-Vidal C. Low-molecular-weight fucoidan enhances the proangiogenic phenotype of endothelial progenitor cells. Biochem Pharmacol 2005; 70:1167-75. [PMID: 16153611 DOI: 10.1016/j.bcp.2005.07.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 07/13/2005] [Accepted: 07/13/2005] [Indexed: 10/25/2022]
Abstract
Endothelial progenitor cell (EPC) transplantation is a potential means of inducing neovascularization in vivo. However, the number of circulating EPC is relatively small, it may thus be necessary to enhance their proangiogenic properties ex vivo prior to injection in vivo. Fucoidan has previously been shown to potentiate in vitro tube formation by mature endothelial cells in the presence of basic fibroblast growth factor (FGF-2). We therefore examined whether fucoidan, alone or combined with FGF-2, could increase EPC proangiogenic potency in vitro. EPC exposure to 10 microg/ml fucoidan induced a proangiogenic phenotype, including cell proliferation (p < 0.01) and migration (p < 0.01); moreover, differentiation into vascular cords occurred in the presence of FGF-2 (p < 0.01). This latter effect correlated with upregulation of the cell-surface #alpha6 integrin subunit of the laminin receptor (p < 0.05). Compared to untreated HUVEC, untreated EPC #alpha6 expression and adhesion to laminin were enhanced two-fold. Fucoidan treatment further enhanced HUVEC but not EPC adhesion to laminin. These results show that fucoidan enhances the proangiogenic properties of EPC and suggest that ex vivo fucoidan preconditioning of EPC might lead to increased neovascularization when injected into ischemic tissues.
Collapse
|
31
|
Abstract
This review advances the hypothesis that the function of vascular endothelial growth factor (VEGF) in breast cancer is not limited to angiogenesis, and that VEGF signaling in breast carcinoma cells is important for the ability of these cells to evade apoptosis and progress towards invasive and metastatic disease. In other terms, VEGF signaling provides a selective advantage for the survival and dissemination of breast carcinoma cells that may be independent of angiogenesis. The key component of this hypothesis is that breast carcinoma cells express specific VEGF receptors and that these receptors respond to autocrine VEGF, resulting in the activation of signaling pathways that impede apoptosis and promote cell migration. A related hypothesis, which is developed in this review, is that the alpha6beta4 integrin, which has been implicated in the survival and motility of breast cancer cells, can stimulate the translation of VEGF mRNA and, consequently, autocrine VEGF signaling. These findings imply that VEGF and VEGF receptor-based therapeutics, in addition to targeting angiogenesis, may also target tumor cells directly.
Collapse
Affiliation(s)
- Arthur M Mercurio
- Department of Cancer Biology and the Cancer Center, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | | | |
Collapse
|
32
|
Nikolopoulos SN, Blaikie P, Yoshioka T, Guo W, Giancotti FG. Integrin beta4 signaling promotes tumor angiogenesis. Cancer Cell 2004; 6:471-83. [PMID: 15542431 DOI: 10.1016/j.ccr.2004.09.029] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Revised: 07/14/2004] [Accepted: 09/10/2004] [Indexed: 01/22/2023]
Abstract
Mice carrying a targeted deletion of the signaling portion of the integrin beta4 subunit display drastically reduced angiogenesis in response to bFGF in the Matrigel plug assay and to hypoxia in the retinal neovascularization model. Molecular cytology indicates that alpha6beta4 signaling promotes branching of beta4+ medium- and small-size vessels into beta4- microvessels without exerting a direct effect on endothelial cell proliferation or survival. Signaling studies reveal that alpha6beta4 signaling induces endothelial cell migration and invasion by promoting nuclear translocation of P-ERK and NF-kappaB. Upon subcutaneous implantation of various cancer cells, the mutant mice develop smaller and significantly less vascularized tumors than wild-type controls. These results provide genetic evidence that alpha6beta4 signaling promotes the onset of the invasive phase of pathological angiogenesis and hence identify a novel target for antiangiogenic therapy.
Collapse
Affiliation(s)
- Sotiris N Nikolopoulos
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
33
|
Feng C, Ye C, Liu X, Ma H, Li M. β4 integrin is involved in statin-induced endothelial cell death. Biochem Biophys Res Commun 2004; 323:858-64. [PMID: 15381079 DOI: 10.1016/j.bbrc.2004.08.171] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Indexed: 01/22/2023]
Abstract
HMG-CoA reductase inhibitors (statins) have been shown to inhibit angiogenesis. The molecular mechanism mediating the anti-endothelial activities of statins remains unclear. The present study demonstrated that the antiangiogenic effect of atorvastatin (ATV) was associated with endothelial death. Molecular profiling data identified a 29-fold upregulation of beta4 integrin mRNA. Western blot and flow cytometry confirmed robust increases of total and cell-surface beta4 integrin. Blockage of beta4 integrin activity by antagonizing antibody abrogated ATV-induced endothelial death. The endothelial death and beta4 integrin upregulation by ATV could be reversed by intermediate metabilites of the HMG-CoA reductase pathway mevalonate or GGPP, but not by FPP, suggesting that these effects were results of specific inhibition of the pathway. These data indicate that the HMG-CoA reductase might represent an important survival pathway in angiogenic endothelial cells and thus, a potential target for antiangiogenic therapy.
Collapse
Affiliation(s)
- Chong Feng
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | | | | | | | | |
Collapse
|