1
|
Leerberg DM, Avillion GB, Priya R, Stainier DY, Yelon D. Regionalized regulation of actomyosin organization influences cardiomyocyte cell shape changes during chamber curvature formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631779. [PMID: 39829878 PMCID: PMC11741281 DOI: 10.1101/2025.01.07.631779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Cardiac chambers emerge from a heart tube that balloons and bends to create expanded ventricular and atrial structures, each containing a convex outer curvature (OC) and a recessed inner curvature (IC). A comprehensive understanding of the cellular and molecular mechanisms underlying the formation of these characteristic curvatures remains lacking. Here, we demonstrate in zebrafish that the initially similar populations of OC and IC ventricular cardiomyocytes diverge in the organization of their actomyosin cytoskeleton and subsequently acquire distinct OC and IC cell shapes. Altering actomyosin dynamics hinders cell shape changes in the OC, and mosaic analyses indicate that actomyosin regulates cardiomyocyte shape in a cell-autonomous manner. Additionally, both blood flow and the transcription factor Tbx5a influence the basal enrichment of actomyosin and squamous cell morphologies in the OC. Together, our findings demonstrate that intrinsic and extrinsic factors intersect to control actomyosin organization in OC cardiomyocytes, which in turn promotes the cell shape changes that drive curvature morphogenesis.
Collapse
Affiliation(s)
- Dena M. Leerberg
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Gabriel B. Avillion
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Rashmi Priya
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Didier Y.R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Deborah Yelon
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
2
|
Agarwal P, Berger S, Shemesh T, Zaidel-Bar R. Active nuclear positioning and actomyosin contractility maintain leader cell integrity during gonadogenesis. Curr Biol 2024; 34:2373-2386.e5. [PMID: 38776903 DOI: 10.1016/j.cub.2024.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 02/01/2024] [Accepted: 03/25/2024] [Indexed: 05/25/2024]
Abstract
Proper distribution of organelles can play an important role in a moving cell's performance. During C. elegans gonad morphogenesis, the nucleus of the leading distal tip cell (DTC) is always found at the front, yet the significance of this localization is unknown. Here, we identified the molecular mechanism that keeps the nucleus at the front, despite a frictional force that pushes it backward. The Klarsicht/ANC-1/Syne homology (KASH) domain protein UNC-83 links the nucleus to the motor protein kinesin-1 that moves along a polarized acentrosomal microtubule network. Interestingly, disrupting nuclear positioning on its own did not affect gonad morphogenesis. However, reducing actomyosin contractility on top of nuclear mispositioning led to a dramatic phenotype: DTC splitting and gonad bifurcation. Long-term live imaging of the double knockdown revealed that, while the gonad attempted to perform a planned U-turn, the DTC was stretched due to the lagging nucleus until it fragmented into a nucleated cell and an enucleated cytoplast, each leading an independent gonadal arm. Remarkably, the enucleated cytoplast had polarity and invaded, but it could only temporarily support germ cell proliferation. Based on a qualitative biophysical model, we conclude that the leader cell employs two complementary mechanical approaches to preserve its integrity and ensure proper organ morphogenesis while navigating through a complex 3D environment: active nuclear positioning by microtubule motors and actomyosin-driven cortical contractility.
Collapse
Affiliation(s)
- Priti Agarwal
- Department of Cell and Developmental Biology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Simon Berger
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Tom Shemesh
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Ronen Zaidel-Bar
- Department of Cell and Developmental Biology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
3
|
Quintanilla MA, Patel H, Wu H, Sochacki KA, Chandrasekar S, Akamatsu M, Rotty JD, Korobova F, Bear JE, Taraska JW, Oakes PW, Beach JR. Local monomer levels and established filaments potentiate non-muscle myosin 2 assembly. J Cell Biol 2024; 223:e202305023. [PMID: 38353656 PMCID: PMC10866686 DOI: 10.1083/jcb.202305023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/02/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
The ability to dynamically assemble contractile networks is required throughout cell physiology, yet direct biophysical mechanisms regulating non-muscle myosin 2 filament assembly in living cells are lacking. Here, we use a suite of dynamic, quantitative imaging approaches to identify deterministic factors that drive myosin filament appearance and amplification. We find that actin dynamics regulate myosin assembly, but that the static actin architecture plays a less clear role. Instead, remodeling of actin networks modulates the local myosin monomer levels and facilitates assembly through myosin:myosin-driven interactions. Using optogenetically controlled myosin, we demonstrate that locally concentrating myosin is sufficient to both form filaments and jump-start filament amplification and partitioning. By counting myosin monomers within filaments, we demonstrate a myosin-facilitated assembly process that establishes filament stacks prior to partitioning into clusters that feed higher-order networks. Together, these findings establish the biophysical mechanisms regulating the assembly of non-muscle contractile structures that are ubiquitous throughout cell biology.
Collapse
Affiliation(s)
- Melissa A. Quintanilla
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Hiral Patel
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Huini Wu
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Kem A. Sochacki
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shreya Chandrasekar
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Matthew Akamatsu
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Jeremy D. Rotty
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Farida Korobova
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - James E. Bear
- Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Justin W. Taraska
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patrick W. Oakes
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Jordan R. Beach
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
4
|
Brito C, Pereira JM, Mesquita FS, Cabanes D, Sousa S. Src-Dependent NM2A Tyrosine Phosphorylation Regulates Actomyosin Remodeling. Cells 2023; 12:1871. [PMID: 37508535 PMCID: PMC10377941 DOI: 10.3390/cells12141871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Non-muscle myosin 2A (NM2A) is a key cytoskeletal enzyme that, along with actin, assembles into actomyosin filaments inside cells. NM2A is fundamental for cell adhesion and motility, playing important functions in different stages of development and during the progression of viral and bacterial infections. Phosphorylation events regulate the activity and the cellular localization of NM2A. We previously identified the tyrosine phosphorylation of residue 158 (pTyr158) in the motor domain of the NM2A heavy chain. This phosphorylation can be promoted by Listeria monocytogenes infection of epithelial cells and is dependent on Src kinase; however, its molecular role is unknown. Here, we show that the status of pTyr158 defines cytoskeletal organization, affects the assembly/disassembly of focal adhesions, and interferes with cell migration. Cells overexpressing a non-phosphorylatable NM2A variant or expressing reduced levels of Src kinase display increased stress fibers and larger focal adhesions, suggesting an altered contraction status consistent with the increased NM2A activity that we also observed. We propose NM2A pTyr158 as a novel layer of regulation of actomyosin cytoskeleton organization.
Collapse
Affiliation(s)
- Cláudia Brito
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC, Instituto de Biologia Celular e Molecular, 4200-135 Porto, Portugal
- MCBiology PhD Program-Instituto de Ciências Biomédicas Abel Salazar-ICBAS, University of Porto, 4050-313 Porto, Portugal
| | - Joana M Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC, Instituto de Biologia Celular e Molecular, 4200-135 Porto, Portugal
- MCBiology PhD Program-Instituto de Ciências Biomédicas Abel Salazar-ICBAS, University of Porto, 4050-313 Porto, Portugal
| | - Francisco S Mesquita
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC, Instituto de Biologia Celular e Molecular, 4200-135 Porto, Portugal
| | - Didier Cabanes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC, Instituto de Biologia Celular e Molecular, 4200-135 Porto, Portugal
| | - Sandra Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC, Instituto de Biologia Celular e Molecular, 4200-135 Porto, Portugal
| |
Collapse
|
5
|
Li D, Yang Y, Lv C, Wang Y, Chao X, Huang J, Singh SP, Yuan Y, Zhang C, Lou J, Gao P, Huang S, Li B, Cai H. GxcM-Fbp17/RacC-WASP signaling regulates polarized cortex assembly in migrating cells via Arp2/3. J Cell Biol 2023; 222:e202208151. [PMID: 37010470 PMCID: PMC10072221 DOI: 10.1083/jcb.202208151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/02/2023] [Accepted: 03/17/2023] [Indexed: 04/04/2023] Open
Abstract
The actin-rich cortex plays a fundamental role in many cellular processes. Its architecture and molecular composition vary across cell types and physiological states. The full complement of actin assembly factors driving cortex formation and how their activities are spatiotemporally regulated remain to be fully elucidated. Using Dictyostelium as a model for polarized and rapidly migrating cells, we show that GxcM, a RhoGEF localized specifically in the rear of migrating cells, functions together with F-BAR protein Fbp17, a small GTPase RacC, and the actin nucleation-promoting factor WASP to coordinately promote Arp2/3 complex-mediated cortical actin assembly. Overactivation of this signaling cascade leads to excessive actin polymerization in the rear cortex, whereas its disruption causes defects in cortical integrity and function. Therefore, apart from its well-defined role in the formation of the protrusions at the cell front, the Arp2/3 complex-based actin carries out a previously unappreciated function in building the rear cortical subcompartment in rapidly migrating cells.
Collapse
Affiliation(s)
- Dong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yihong Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chenglin Lv
- Department of Engineering Mechanics, Applied Mechanics Laboratory, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing, China
| | - Yingjie Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaoting Chao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiafeng Huang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | - Ye Yuan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chengyu Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jizhong Lou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Pu Gao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Bo Li
- Department of Engineering Mechanics, Applied Mechanics Laboratory, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing, China
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Quintanilla MA, Patel H, Wu H, Sochacki KA, Akamatsu M, Rotty JD, Korobova F, Bear JE, Taraska JW, Oakes PW, Beach JR. Local Monomer Levels and Established Filaments Potentiate Non-Muscle Myosin 2 Assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538303. [PMID: 37162845 PMCID: PMC10168331 DOI: 10.1101/2023.04.26.538303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The ability to dynamically assemble contractile networks is required throughout cell physiology, yet the biophysical mechanisms regulating non-muscle myosin 2 filament assembly in living cells are lacking. Here we use a suite of dynamic, quantitative imaging approaches to identify deterministic factors that drive myosin filament appearance and amplification. We find that actin dynamics regulate myosin assembly, but that the actin architecture plays a minimal direct role. Instead, remodeling of actin networks modulates the local myosin monomer levels and facilitates assembly through myosin:myosin driven interactions. Using optogenetically controlled myosin, we demonstrate that locally concentrating myosin is sufficient to both form filaments and jump-start filament amplification and partitioning. By counting myosin monomers within filaments, we demonstrate a myosin-facilitated assembly process that establishes sub-resolution filament stacks prior to partitioning into clusters that feed higher-order networks. Together these findings establish the biophysical mechanisms regulating the assembly of non-muscle contractile structures that are ubiquitous throughout cell biology.
Collapse
Affiliation(s)
- Melissa A Quintanilla
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL
| | - Hiral Patel
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL
| | - Huini Wu
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL
| | - Kem A Sochacki
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | | | - Jeremy D Rotty
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Farida Korobova
- Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - James E Bear
- Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill, Chapel Hill, NC
| | - Justin W Taraska
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Patrick W Oakes
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL
| | - Jordan R Beach
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL
| |
Collapse
|
7
|
Abstract
Non-muscle myosin 2 (NM2) motors are the major contractile machines in most cell types. Unsurprisingly, these ubiquitously expressed actin-based motors power a plethora of subcellular, cellular and multicellular processes. In this Cell Science at a Glance article and the accompanying poster, we review the biochemical properties and mechanisms of regulation of this myosin. We highlight the central role of NM2 in multiple fundamental cellular processes, which include cell migration, cytokinesis, epithelial barrier function and tissue morphogenesis. In addition, we highlight recent studies using advanced imaging technologies that have revealed aspects of NM2 assembly hitherto inaccessible. This article will hopefully appeal to both cytoskeletal enthusiasts and investigators from outside the cytoskeleton field who have interests in one of the many basic cellular processes requiring actomyosin force production.
Collapse
Affiliation(s)
- Melissa A. Quintanilla
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60525, USA
| | - John A. Hammer
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jordan R. Beach
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60525, USA
| |
Collapse
|
8
|
Lehne F, Pokrant T, Parbin S, Salinas G, Großhans J, Rust K, Faix J, Bogdan S. Calcium bursts allow rapid reorganization of EFhD2/Swip-1 cross-linked actin networks in epithelial wound closure. Nat Commun 2022; 13:2492. [PMID: 35524157 PMCID: PMC9076686 DOI: 10.1038/s41467-022-30167-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Changes in cell morphology require the dynamic remodeling of the actin cytoskeleton. Calcium fluxes have been suggested as an important signal to rapidly relay information to the actin cytoskeleton, but the underlying mechanisms remain poorly understood. Here, we identify the EF-hand domain containing protein EFhD2/Swip-1 as a conserved lamellipodial protein strongly upregulated in Drosophila macrophages at the onset of metamorphosis when macrophage behavior shifts from quiescent to migratory state. Loss- and gain-of-function analysis confirm a critical function of EFhD2/Swip-1 in lamellipodial cell migration in fly and mouse melanoma cells. Contrary to previous assumptions, TIRF-analyses unambiguously demonstrate that EFhD2/Swip-1 proteins efficiently cross-link actin filaments in a calcium-dependent manner. Using a single-cell wounding model, we show that EFhD2/Swip-1 promotes wound closure in a calcium-dependent manner. Mechanistically, our data suggest that transient calcium bursts reduce EFhD2/Swip-1 cross-linking activity and thereby promote rapid reorganization of existing actin networks to drive epithelial wound closure.
Collapse
Affiliation(s)
- Franziska Lehne
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps-University Marburg, Marburg, Germany
| | - Thomas Pokrant
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Sabnam Parbin
- NGS-Integrative Genomics Core Unit, Department of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Gabriela Salinas
- NGS-Integrative Genomics Core Unit, Department of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Jörg Großhans
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Katja Rust
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps-University Marburg, Marburg, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Sven Bogdan
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
9
|
Gaertner F, Reis-Rodrigues P, de Vries I, Hons M, Aguilera J, Riedl M, Leithner A, Tasciyan S, Kopf A, Merrin J, Zheden V, Kaufmann WA, Hauschild R, Sixt M. WASp triggers mechanosensitive actin patches to facilitate immune cell migration in dense tissues. Dev Cell 2022; 57:47-62.e9. [PMID: 34919802 PMCID: PMC8751638 DOI: 10.1016/j.devcel.2021.11.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 09/06/2021] [Accepted: 11/24/2021] [Indexed: 12/26/2022]
Abstract
When crawling through the body, leukocytes often traverse tissues that are densely packed with extracellular matrix and other cells, and this raises the question: How do leukocytes overcome compressive mechanical loads? Here, we show that the actin cortex of leukocytes is mechanoresponsive and that this responsiveness requires neither force sensing via the nucleus nor adhesive interactions with a substrate. Upon global compression of the cell body as well as local indentation of the plasma membrane, Wiskott-Aldrich syndrome protein (WASp) assembles into dot-like structures, providing activation platforms for Arp2/3 nucleated actin patches. These patches locally push against the external load, which can be obstructing collagen fibers or other cells, and thereby create space to facilitate forward locomotion. We show in vitro and in vivo that this WASp function is rate limiting for ameboid leukocyte migration in dense but not in loose environments and is required for trafficking through diverse tissues such as skin and lymph nodes.
Collapse
Affiliation(s)
- Florian Gaertner
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria.
| | | | - Ingrid de Vries
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Miroslav Hons
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Juan Aguilera
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Michael Riedl
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Alexander Leithner
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Saren Tasciyan
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Aglaja Kopf
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Jack Merrin
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Vanessa Zheden
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | | | - Robert Hauschild
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Michael Sixt
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria.
| |
Collapse
|
10
|
Franco A, Vidal V, Gómez M, Gutiérrez O, Martino M, González F, Moreno F, Fernández-Luna JL. A label-free optical system with a nanohole array biosensor for discriminating live single cancer cells from normal cells. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:315-328. [PMID: 39633886 PMCID: PMC11501809 DOI: 10.1515/nanoph-2021-0499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/17/2021] [Indexed: 12/07/2024]
Abstract
Developing a simple, fast, and label-free method for discrimination between live cancer cells and normal cells in biological samples still remains a challenge. Here, a system is described that fulfills these features to analyze individual living cells. The system consists of a gold nanohole array biosensor plus a microscope optical design to isolate the spectral response of a single cell. It is demonstrated that differences in the spectral behavior between tumor (colorectal cancer cell lines and primary cells from colorectal cancer tissue) and non-tumor cells (peripheral blood mononuclear cells, skin fibroblasts and colon epithelial cells) are influenced by the actin cortex, which lies within the short penetration depth of the surface plasmon electromagnetic field. The efficacy of this system was assessed by the analysis of about one thousand single cells showing the highest discrimination capacity between normal colon epithelial cells and colorectal cancer cells from surgical specimens, with values of sensitivity and specificity ranging 80-100% and 87-100%, respectively. It is also demonstrated that cell discrimination capacity of the system is highly reduced by disrupting the formation of actin cortex. This plasmonic system may find wide applications in biomedicine and to study key cellular processes that involve the actin cortex, including proliferation, differentiation, and migration.
Collapse
Affiliation(s)
- Alfredo Franco
- Department of Applied Physics, Faculty of Sciences, University of Cantabria, Santander39013, Spain
| | - Verónica Vidal
- Genetics Unit, Valdecilla University Hospital, Santander39008, Spain
| | - Marcos Gómez
- Department of Surgery, Valdecilla University Hospital, Santander39008, Spain
| | - Olga Gutiérrez
- Genetics Unit, Valdecilla University Hospital, Santander39008, Spain
| | - María Martino
- Department of Pathology, Valdecilla University Hospital, Santander39008, Spain
| | - Francisco González
- Department of Applied Physics, Faculty of Sciences, University of Cantabria, Santander39013, Spain
| | - Fernando Moreno
- Department of Applied Physics, Faculty of Sciences, University of Cantabria, Santander39013, Spain
| | | |
Collapse
|
11
|
Brazill D, Knecht DA. Chemotaxis: Under Agarose Assay. Methods Mol Biol 2022; 2364:327-338. [PMID: 34542861 DOI: 10.1007/978-1-0716-1661-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The unicellular eukaryotic amoeba, Dictyostelium discoideum, represents a superb model for examining the molecular mechanism of chemotaxis. Under vegetative conditions, the amoebae are chemotactically responsive to pterins, such as folic acid. Under starved conditions, they lose their sensitivity to pterins and become chemotactically responsive to cAMP. As an NIH model system, Dictyostelium offers a variety of advantages in studying chemotaxis, including ease of growth, genetic tractability, and the conservation of mammalian signaling pathways. In this chapter, we describe the use of the under-agarose chemotaxis assay to understand the signaling pathways controlling directional sensing and motility in Dictyostelium discoideum. Given the similarities between Dictyostelium and mammalian cells, this allows us to dissect conserved pathways involved in eukaryotic chemotaxis.
Collapse
Affiliation(s)
- Derrick Brazill
- Department of Biological Sciences, Hunter College, New York, NY, USA. .,The Graduate Center, City University of New York, New York, NY, USA.
| | - David A Knecht
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
12
|
Zhovmer AS, Manning A, Smith C, Hayes JB, Burnette DT, Wang J, Cartagena-Rivera AX, Dokholyan NV, Singh RK, Tabdanov ED. Mechanical Counterbalance of Kinesin and Dynein Motors in a Microtubular Network Regulates Cell Mechanics, 3D Architecture, and Mechanosensing. ACS NANO 2021; 15:17528-17548. [PMID: 34677937 PMCID: PMC9291236 DOI: 10.1021/acsnano.1c04435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Microtubules (MTs) and MT motor proteins form active 3D networks made of unstretchable cables with rod-like bending mechanics that provide cells with a dynamically changing structural scaffold. In this study, we report an antagonistic mechanical balance within the dynein-kinesin microtubular motor system. Dynein activity drives the microtubular network inward compaction, while isolated activity of kinesins bundles and expands MTs into giant circular bands that deform the cell cortex into discoids. Furthermore, we show that dyneins recruit MTs to sites of cell adhesion, increasing the topographic contact guidance of cells, while kinesins antagonize it via retraction of MTs from sites of cell adhesion. Actin-to-microtubule translocation of septin-9 enhances kinesin-MT interactions, outbalances the activity of kinesins over that of dyneins, and induces the discoid architecture of cells. These orthogonal mechanisms of MT network reorganization highlight the existence of an intricate mechanical balance between motor activities of kinesins and dyneins that controls cell 3D architecture, mechanics, and cell-microenvironment interactions.
Collapse
Affiliation(s)
- Alexander S. Zhovmer
- Center
for Biologics Evaluation and Research, U.S.
Food and Drug Administration, Silver Spring, Maryland 20903, United States
| | - Alexis Manning
- Center
for Biologics Evaluation and Research, U.S.
Food and Drug Administration, Silver Spring, Maryland 20903, United States
| | - Chynna Smith
- Section
on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - James B. Hayes
- Department
of Cell and Developmental Biology, Vanderbilt Medical Center, University of Vanderbilt, Nashville, Tennessee 37232, United States
| | - Dylan T. Burnette
- Department
of Cell and Developmental Biology, Vanderbilt Medical Center, University of Vanderbilt, Nashville, Tennessee 37232, United States
| | - Jian Wang
- Department
of Pharmacology, Penn State College of Medicine, Pennsylvania State University, Hummelstown, Pennsylvania 17036, United States
| | - Alexander X. Cartagena-Rivera
- Section
on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Nikolay V. Dokholyan
- Department
of Pharmacology, Penn State College of Medicine, Pennsylvania State University, Hummelstown, Pennsylvania 17036, United States
- Department
of Biochemistry & Molecular Biology, Penn State College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033, United States
| | - Rakesh K. Singh
- Department
of Obstetrics and Gynecology, University
of Rochester Medical Center, Rochester, New York 14620, United States
| | - Erdem D. Tabdanov
- Department
of Pharmacology, Penn State College of Medicine, Pennsylvania State University, Hummelstown, Pennsylvania 17036, United States
| |
Collapse
|
13
|
Hollósi A, Pászty K, Kellermayer M, Charras G, Varga A. BRAF Modulates Stretch-Induced Intercellular Gap Formation through Localized Actin Reorganization. Int J Mol Sci 2021; 22:ijms22168989. [PMID: 34445693 PMCID: PMC8396467 DOI: 10.3390/ijms22168989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 01/02/2023] Open
Abstract
Mechanical forces acting on cell–cell adhesion modulate the barrier function of endothelial cells. The actively remodeled actin cytoskeleton impinges on cell–cell adhesion to counteract external forces. We applied stress on endothelial monolayers by mechanical stretch to uncover the role of BRAF in the stress-induced response. Control cells responded to external forces by organizing and stabilizing actin cables in the stretched cell junctions. This was accompanied by an increase in intercellular gap formation, which was prevented in BRAF knockdown monolayers. In the absence of BRAF, there was excess stress fiber formation due to the enhanced reorganization of actin fibers. Our findings suggest that stretch-induced intercellular gap formation, leading to a decrease in barrier function of blood vessels, can be reverted by BRAF RNAi. This is important when the endothelium experiences changes in external stresses caused by high blood pressure, leading to edema, or by immune or cancer cells in inflammation or metastasis.
Collapse
Affiliation(s)
- Anna Hollósi
- Department of Biophysics and Radiation Biology, Semmelweis University, H-1094 Budapest, Hungary; (A.H.); (K.P.); (M.K.)
| | - Katalin Pászty
- Department of Biophysics and Radiation Biology, Semmelweis University, H-1094 Budapest, Hungary; (A.H.); (K.P.); (M.K.)
| | - Miklós Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, H-1094 Budapest, Hungary; (A.H.); (K.P.); (M.K.)
| | - Guillaume Charras
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK;
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Andrea Varga
- Department of Biophysics and Radiation Biology, Semmelweis University, H-1094 Budapest, Hungary; (A.H.); (K.P.); (M.K.)
- Correspondence:
| |
Collapse
|
14
|
Kollimada S, Senger F, Vignaud T, Théry M, Blanchoin L, Kurzawa L. The biochemical composition of the actomyosin network sets the magnitude of cellular traction forces. Mol Biol Cell 2021; 32:1737-1748. [PMID: 34410837 PMCID: PMC8684728 DOI: 10.1091/mbc.e21-03-0109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The regulation of cellular force production relies on the complex interplay between a well-conserved set of proteins of the cytoskeleton: actin, myosin, and α-actinin. Despite our deep knowledge of the role of these proteins in force production at the molecular scale, our understanding of the biochemical regulation of the magnitude of traction forces generated at the entire-cell level has been limited, notably by the technical challenge of measuring traction forces and the endogenous biochemical composition in the same cell. In this study, we developed an alternative Traction-Force Microscopy (TFM) assay, which used a combination of hydrogel micropatterning to define cell adhesion and shape and an intermediate fixation/immunolabeling step to characterize strain energies and the endogenous protein contents in single epithelial cells. Our results demonstrated that both the signal intensity and the area of the Focal Adhesion (FA)–associated protein vinculin showed a strong positive correlation with strain energy in mature FAs. Individual contents from actin filament and phospho-myosin displayed broader deviation in their linear relationship to strain energies. Instead, our quantitative analyzes demonstrated that their relative amount exhibited an optimum ratio of phospho-myosin to actin, allowing maximum force production by cells. By contrast, although no correlation was identified between individual α-actinin content and strain energy, the ratio of α-actinin to actin filaments was inversely related to strain energy. Hence, our results suggest that, in the cellular model studied, traction-force magnitude is dictated by the relative numbers of molecular motors and cross-linkers per actin filament, rather than the amounts of an individual component in the cytoskeletal network. This assay offers new perspectives to study in more detail the complex interplay between the endogenous biochemical composition of individual cells and the force they produce.
Collapse
Affiliation(s)
- Somanna Kollimada
- Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France
| | - Fabrice Senger
- Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France
| | - Timothée Vignaud
- Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France.,Clinique de chirurgie digestive et endocrinienne, Hôtel Dieu, Nantes, 44093, France
| | - Manuel Théry
- Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France.,Institut de Recherche Saint Louis, U976 Human Immunology Pathophysiology Immunotherapy (HIPI), CytoMorpho Lab, University of Paris, INSERM, CEA, Paris, France
| | - Laurent Blanchoin
- Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France.,Institut de Recherche Saint Louis, U976 Human Immunology Pathophysiology Immunotherapy (HIPI), CytoMorpho Lab, University of Paris, INSERM, CEA, Paris, France
| | - Laëtitia Kurzawa
- Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France
| |
Collapse
|
15
|
Fiorenza SA, Steckhahn DG, Betterton MD. Modeling spatiotemporally varying protein-protein interactions in CyLaKS, the Cytoskeleton Lattice-based Kinetic Simulator. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:105. [PMID: 34406510 PMCID: PMC10202044 DOI: 10.1140/epje/s10189-021-00097-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/21/2021] [Indexed: 05/24/2023]
Abstract
Interaction of cytoskeletal filaments, motor proteins, and crosslinking proteins drives important cellular processes such as cell division and cell movement. Cytoskeletal networks also exhibit nonequilibrium self-assembly in reconstituted systems. An emerging problem in cytoskeletal modeling and simulation is spatiotemporal alteration of the dynamics of filaments, motors, and associated proteins. This can occur due to motor crowding, obstacles along the filament, motor interactions and direction switching, and changes, defects, or heterogeneity in the filament binding lattice. How such spatiotemporally varying cytoskeletal filaments and motor interactions affect their collective properties is not fully understood. We developed the Cytoskeleton Lattice-based Kinetic Simulator (CyLaKS) to investigate such problems. The simulation model builds on previous work by incorporating motor mechanochemistry into a simulation with many interacting motors and/or associated proteins on a discretized lattice. CyLaKS also includes detailed balance in binding kinetics, movement, and lattice heterogeneity. The simulation framework is flexible and extensible for future modeling work and is available on GitHub for others to freely use or build upon. Here we illustrate the use of CyLaKS to study long-range motor interactions, microtubule lattice heterogeneity, motion of a heterodimeric motor, and how changing crosslinker number affects filament separation.
Collapse
Affiliation(s)
- Shane A Fiorenza
- Department of Physics, University of Colorado Boulder, Boulder, USA
| | | | | |
Collapse
|
16
|
Homophilic and heterophilic cadherin bond rupture forces in homo- or hetero-cellular systems measured by AFM-based single-cell force spectroscopy. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:543-559. [PMID: 33880610 PMCID: PMC8190030 DOI: 10.1007/s00249-021-01536-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/30/2021] [Accepted: 04/09/2021] [Indexed: 11/24/2022]
Abstract
Cadherins enable intercellular adherens junctions to withstand tensile forces in tissues, e.g. generated by intracellular actomyosin contraction. In-vitro single molecule force spectroscopy experiments can reveal cadherin–cadherin extracellular region binding dynamics such as bond formation and strength. However, characterization of cadherin-presenting cell homophilic and heterophilic binding in the proteins’ native conformational and functional states in living cells has rarely been done. Here, we used atomic force microscopy (AFM) based single-cell force spectroscopy (SCFS) to measure rupture forces of homophilic and heterophilic bond formation of N- (neural), OB- (osteoblast) and E- (epithelial) cadherins in living fibroblast and epithelial cells in homo- and hetero-cellular arrangements, i.e., between cells and cadherins of the same and different types. In addition, we used indirect immunofluorescence labelling to study and correlate the expression of these cadherins in intercellular adherens junctions. We showed that N/N and E/E-cadherin homophilic binding events are stronger than N/OB heterophilic binding events. Disassembly of intracellular actin filaments affects the cadherin bond rupture forces suggesting a contribution of actin filaments in cadherin extracellular binding. Inactivation of myosin did not affect the cadherin rupture force in both homo- and hetero-cellular arrangements, but particularly strengthened the N/OB heterophilic bond and reinforced the other cadherins’ homophilic bonds.
Collapse
|
17
|
Lamson AR, Moore JM, Fang F, Glaser MA, Shelley MJ, Betterton MD. Comparison of explicit and mean-field models of cytoskeletal filaments with crosslinking motors. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:45. [PMID: 33779863 PMCID: PMC8220871 DOI: 10.1140/epje/s10189-021-00042-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/20/2021] [Indexed: 05/17/2023]
Abstract
In cells, cytoskeletal filament networks are responsible for cell movement, growth, and division. Filaments in the cytoskeleton are driven and organized by crosslinking molecular motors. In reconstituted cytoskeletal systems, motor activity is responsible for far-from-equilibrium phenomena such as active stress, self-organized flow, and spontaneous nematic defect generation. How microscopic interactions between motors and filaments lead to larger-scale dynamics remains incompletely understood. To build from motor-filament interactions to predict bulk behavior of cytoskeletal systems, more computationally efficient techniques for modeling motor-filament interactions are needed. Here, we derive a coarse-graining hierarchy of explicit and continuum models for crosslinking motors that bind to and walk on filament pairs. We compare the steady-state motor distribution and motor-induced filament motion for the different models and analyze their computational cost. All three models agree well in the limit of fast motor binding kinetics. Evolving a truncated moment expansion of motor density speeds the computation by [Formula: see text]-[Formula: see text] compared to the explicit or continuous-density simulations, suggesting an approach for more efficient simulation of large networks. These tools facilitate further study of motor-filament networks on micrometer to millimeter length scales.
Collapse
Affiliation(s)
- Adam R Lamson
- Department of Physics, University of Colorado Boulder, Boulder, USA.
| | - Jeffrey M Moore
- Department of Physics, University of Colorado Boulder, Boulder, USA
| | - Fang Fang
- Courant Institute, New York University, New York, USA
| | - Matthew A Glaser
- Department of Physics, University of Colorado Boulder, Boulder, USA
| | - Michael J Shelley
- Courant Institute, New York University, New York, USA
- Center for Computational Biology, Flatiron Institute, New York, USA
| | | |
Collapse
|
18
|
Galea GL, Maniou E, Edwards TJ, Marshall AR, Ampartzidis I, Greene NDE, Copp AJ. Cell non-autonomy amplifies disruption of neurulation by mosaic Vangl2 deletion in mice. Nat Commun 2021; 12:1159. [PMID: 33608529 PMCID: PMC7895924 DOI: 10.1038/s41467-021-21372-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/22/2021] [Indexed: 01/31/2023] Open
Abstract
Post-zygotic mutations that generate tissue mosaicism are increasingly associated with severe congenital defects, including those arising from failed neural tube closure. Here we report that neural fold elevation during mouse spinal neurulation is vulnerable to deletion of the VANGL planar cell polarity protein 2 (Vangl2) gene in as few as 16% of neuroepithelial cells. Vangl2-deleted cells are typically dispersed throughout the neuroepithelium, and each non-autonomously prevents apical constriction by an average of five Vangl2-replete neighbours. This inhibition of apical constriction involves diminished myosin-II localisation on neighbour cell borders and shortening of basally-extending microtubule tails, which are known to facilitate apical constriction. Vangl2-deleted neuroepithelial cells themselves continue to apically constrict and preferentially recruit myosin-II to their apical cell cortex rather than to apical cap localisations. Such non-autonomous effects can explain how post-zygotic mutations affecting a minority of cells can cause catastrophic failure of morphogenesis leading to clinically important birth defects.
Collapse
Affiliation(s)
- Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK.
- Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK.
| | - Eirini Maniou
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Timothy J Edwards
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Abigail R Marshall
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Ioakeim Ampartzidis
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Nicholas D E Greene
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| | - Andrew J Copp
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK
| |
Collapse
|
19
|
van Haastert PJM. Short- and long-term memory of moving amoeboid cells. PLoS One 2021; 16:e0246345. [PMID: 33571271 PMCID: PMC7877599 DOI: 10.1371/journal.pone.0246345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/15/2021] [Indexed: 11/19/2022] Open
Abstract
Amoeboid cells constantly change shape and extend protrusions. The direction of movement is not random, but is correlated with the direction of movement in the preceding minutes. The basis of this correlation is an underlying memory of direction. The presence of memory in movement is known for many decades, but its molecular mechanism is still largely unknown. This study reports in detail on the information content of directional memory, the kinetics of learning and forgetting this information, and the molecular basis for memory using Dictyostelium mutants. Two types of memory were characterized. A short-term memory stores for ~20 seconds the position of the last pseudopod using a local modification of the branched F-actin inducer SCAR/WAVE, which enhances one new pseudopod to be formed at the position of the previous pseudopod. A long term memory stores for ~2 minutes the activity of the last ~10 pseudopods using a cGMP-binding protein that induces myosin filaments in the rear of the cell; this inhibits pseudopods in the rear and thereby enhances pseudopods in the global front. Similar types of memory were identified in human neutrophils and mesenchymal stem cells, the protist Dictyostelium and the fungus B.d. chytrid. The synergy of short- and long-term memory explains their role in persistent movement for enhanced cell dispersal, food seeking and chemotaxis.
Collapse
|
20
|
Abstract
Actin is a conserved cytoskeletal protein with essential functions. Here, we review the state-of-the-art reagents, tools and methods used to probe actin biology and functions in zebrafish embryo and larvae. We also discuss specific cell types and tissues where the study of actin in zebrafish has provided new insights into its functions.
Collapse
|
21
|
Liebman C, McColloch A, Rabiei M, Bowling A, Cho M. Mechanics of the cell: Interaction mechanisms and mechanobiological models. CURRENT TOPICS IN MEMBRANES 2020; 86:143-184. [PMID: 33837692 DOI: 10.1016/bs.ctm.2020.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The importance of cell mechanics has long been recognized for the cell development and function. Biomechanics plays an important role in cell metabolism, regulation of mechanotransduction pathways and also modulation of nuclear response. The mechanical properties of the cell are likely determined by, among many others, the cytoskeleton elasticity, membrane tension and cell-substrate adhesion. This coordinated but complex mechanical interplay is required however, for the cell to respond to and influence in a reciprocal manner the chemical and mechanical signals from the extracellular matrix (ECM). In an effort to better and more fully understand the cell mechanics, the role of nuclear mechanics has emerged as an important contributor to the overall cellular mechanics. It is not too difficult to appreciate the physical connection between the nucleus and the cytoskeleton network that may be connected to the ECM through the cell membrane. Transmission of forces from ECM through this connection is essential for a wide range of cellular behaviors and functions such as cytoskeletal reorganization, nuclear movement, cell migration and differentiation. Unlike the cellular mechanics that can be measured using a number of biophysical techniques that were developed in the past few decades, it still remains a daunting challenge to probe the nuclear mechanics directly. In this paper, we therefore aim to provide informative description of the cell membrane and cytoskeleton mechanics, followed by unique computational modeling efforts to elucidate the nucleus-cytoskeleton coupling. Advances in our knowledge of complete cellular biomechanics and mechanotransduction may lead to clinical relevance and applications in mechano-diseases such as atherosclerosis, stem cell-based therapies, and the development of tissue engineered products.
Collapse
Affiliation(s)
- Caleb Liebman
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Andrew McColloch
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Manoochehr Rabiei
- Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, TX, United States
| | - Alan Bowling
- Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, TX, United States.
| | - Michael Cho
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States.
| |
Collapse
|
22
|
Nguyen AV, Trompetto B, Tan XHM, Scott MB, Hu KHH, Deeds E, Butte MJ, Chiou PY, Rowat AC. Differential Contributions of Actin and Myosin to the Physical Phenotypes and Invasion of Pancreatic Cancer Cells. Cell Mol Bioeng 2020; 13:27-44. [PMID: 32030106 PMCID: PMC6981337 DOI: 10.1007/s12195-019-00603-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Metastasis is a fundamentally physical process in which cells deform through narrow gaps and generate forces to invade surrounding tissues. While it is commonly thought that increased cell deformability is an advantage for invading cells, we previously found that more invasive pancreatic ductal adenocarcinoma (PDAC) cells are stiffer than less invasive PDAC cells. Here we investigate potential mechanisms of the simultaneous increase in PDAC cell stiffness and invasion, focusing on the contributions of myosin II, Arp2/3, and formins. METHOD We measure cell invasion using a 3D scratch wound invasion assay and cell stiffness using atomic force microscopy (AFM). To determine the effects of actin- and myosin-mediated force generation on cell stiffness and invasion, we treat cells with pharmacologic inhibitors of myosin II (blebbistatin), Arp2/3 (CK-666), and formins (SMIFH2). RESULTS We find that the activity of myosin II, Arp2/3, and formins all contribute to the stiffness of PDAC cells. Interestingly, we find that the invasion of PDAC cell lines is differentially affected when the activity of myosin II, Arp2/3, or formins is inhibited, suggesting that despite having similar tissue origins, different PDAC cell lines may rely on different mechanisms for invasion. CONCLUSIONS These findings deepen our knowledge of the factors that regulate cancer cell mechanotype and invasion, and incite further studies to develop therapeutics that target multiple mechanisms of invasion for improved clinical benefit.
Collapse
Affiliation(s)
- Angelyn V. Nguyen
- Department of Integrative Biology and Physiology, University of California, 610 Charles E Young Dr. East, Los Angeles, CA 90095 USA
| | - Brittany Trompetto
- Department of Integrative Biology and Physiology, University of California, 610 Charles E Young Dr. East, Los Angeles, CA 90095 USA
| | | | - Michael B. Scott
- Department of Integrative Biology and Physiology, University of California, 610 Charles E Young Dr. East, Los Angeles, CA 90095 USA
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, USA
- Present Address: Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Biomedical Engineering, Northwestern McCormick School of Engineering, Evanston, USA
| | | | - Eric Deeds
- Department of Integrative Biology and Physiology, University of California, 610 Charles E Young Dr. East, Los Angeles, CA 90095 USA
- Institute for Quantitative and Computational Biology, University of California, Los Angeles, USA
| | - Manish J. Butte
- Department of Pediatrics, University of California, Los Angeles, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, USA
| | - Pei Yu Chiou
- Department of Bioengineering, University of California, Los Angeles, USA
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, USA
| | - Amy C. Rowat
- Department of Integrative Biology and Physiology, University of California, 610 Charles E Young Dr. East, Los Angeles, CA 90095 USA
- Department of Bioengineering, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| |
Collapse
|
23
|
Abstract
Cells are nonequilibrium systems that exchange matter and energy with the environment to sustain their metabolic needs. The nonequilibrium nature of this system presents considerable challenges to developing a general theory describing its behavior; however, when studied at appropriate spatiotemporal scales, the behavior of ensembles of nonequilibrium systems can resemble that of a system at equilibrium. Here we apply this principle to a population of cells within a cytomorphological state space and demonstrate that cellular transition dynamics within this space can be described using equilibrium formalisms. We use this framework to map the effective energy landscape underlying the cytomorphological state space of a population of mouse embryonic fibroblasts (MEFs) and identify topographical nonuniformity in this space, indicating nonuniform occupation of cytomorphological states within an isogenic population. The introduction of exogenous apoptotic agents fundamentally altered this energy landscape, inducing formation of additional energy minima that correlated directly with changes in sensitivity to apoptosis induction. An equilibrium framework allows us to describe the behavior of an ensemble of single cells, suggesting that although cells are complex nonequilibrium systems, the application of formalisms derived from equilibrium thermodynamics can provide insight into the basis of nongenetic heterogeneities within cell populations, as well as the relationship between cytomorphological and functional heterogeneity.
Collapse
|
24
|
Cell Adhesion-Mediated Actomyosin Assembly Regulates the Activity of Cubitus Interruptus for Hematopoietic Progenitor Maintenance in Drosophila. Genetics 2019; 212:1279-1300. [PMID: 31138608 PMCID: PMC6707476 DOI: 10.1534/genetics.119.302209] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
The actomyosin network is involved in crucial cellular processes including morphogenesis, cell adhesion, apoptosis, proliferation, differentiation, and collective cell migration in Drosophila, Caenorhabditiselegans, and mammals. Here, we demonstrate that Drosophila larval blood stem-like progenitors require actomyosin activity for their maintenance. Genetic loss of the actomyosin network from progenitors caused a decline in their number. Likewise, the progenitor population increased upon sustained actomyosin activation via phosphorylation by Rho-associated kinase. We show that actomyosin positively regulates larval blood progenitors by controlling the maintenance factor Cubitus interruptus (Ci). Overexpression of the maintenance signal via a constitutively activated construct (ci.HA) failed to sustain Ci-155 in the absence of actomyosin components like Zipper (zip) and Squash (sqh), thus favoring protein kinase A (PKA)-independent regulation of Ci activity. Furthermore, we demonstrate that a change in cortical actomyosin assembly mediated by DE-cadherin modulates Ci activity, thereby determining progenitor status. Thus, loss of cell adhesion and downstream actomyosin activity results in desensitization of the progenitors to Hh signaling, leading to their differentiation. Our data reveal how cell adhesion and the actomyosin network cooperate to influence patterning, morphogenesis, and maintenance of the hematopoietic stem-like progenitor pool in the developing Drosophila hematopoietic organ.
Collapse
|
25
|
Abstract
The interactions of cytoskeletal actin filaments with myosin family motors are essential for the integrity and function of eukaryotic cells. They support a wide range of force-dependent functions. These include mechano-transduction, directed transcellular transport processes, barrier functions, cytokinesis, and cell migration. Despite the indispensable role of tropomyosins in the generation and maintenance of discrete actomyosin-based structures, the contribution of individual cytoskeletal tropomyosin isoforms to the structural and functional diversification of the actin cytoskeleton remains a work in progress. Here, we review processes that contribute to the dynamic sorting and targeted distribution of tropomyosin isoforms in the formation of discrete actomyosin-based structures in animal cells and their effects on actin-based motility and contractility.
Collapse
|
26
|
Schaks M, Singh SP, Kage F, Thomason P, Klünemann T, Steffen A, Blankenfeldt W, Stradal TE, Insall RH, Rottner K. Distinct Interaction Sites of Rac GTPase with WAVE Regulatory Complex Have Non-redundant Functions in Vivo. Curr Biol 2018; 28:3674-3684.e6. [PMID: 30393033 PMCID: PMC6264382 DOI: 10.1016/j.cub.2018.10.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/30/2018] [Accepted: 10/01/2018] [Indexed: 12/31/2022]
Abstract
Cell migration often involves the formation of sheet-like lamellipodia generated by branched actin filaments. The branches are initiated when Arp2/3 complex [1] is activated by WAVE regulatory complex (WRC) downstream of small GTPases of the Rac family [2]. Recent structural studies defined two independent Rac binding sites on WRC within the Sra-1/PIR121 subunit of the pentameric WRC [3, 4], but the functions of these sites in vivo have remained unknown. Here we dissect the mechanism of WRC activation and the in vivo relevance of distinct Rac binding sites on Sra-1, using CRISPR/Cas9-mediated gene disruption of Sra-1 and its paralog PIR121 in murine B16-F1 cells combined with Sra-1 mutant rescue. We show that the A site, positioned adjacent to the binding region of WAVE-WCA mediating actin and Arp2/3 complex binding, is the main site for allosteric activation of WRC. In contrast, the D site toward the C terminus is dispensable for WRC activation but required for optimal lamellipodium morphology and function. These results were confirmed in evolutionarily distant Dictyostelium cells. Moreover, the phenotype seen in D site mutants was recapitulated in Rac1 E31 and F37 mutants; we conclude these residues are important for Rac-D site interaction. Finally, constitutively activated WRC was able to induce lamellipodia even after both Rac interaction sites were lost, showing that Rac interaction is not essential for membrane recruitment. Our data establish that physical interaction with Rac is required for WRC activation, in particular through the A site, but is not mandatory for WRC accumulation in the lamellipodium.
Collapse
Affiliation(s)
- Matthias Schaks
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany; Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Shashi P Singh
- CRUK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK; University of Glasgow Institute of Cancer Sciences, Switchback Road, Glasgow G61 1BD, UK
| | - Frieda Kage
- Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Peter Thomason
- CRUK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK; University of Glasgow Institute of Cancer Sciences, Switchback Road, Glasgow G61 1BD, UK
| | - Thomas Klünemann
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Anika Steffen
- Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Wulf Blankenfeldt
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Theresia E Stradal
- Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Robert H Insall
- CRUK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK; University of Glasgow Institute of Cancer Sciences, Switchback Road, Glasgow G61 1BD, UK.
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany; Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany.
| |
Collapse
|
27
|
Davidson AJ, Amato C, Thomason PA, Insall RH. WASP family proteins and formins compete in pseudopod- and bleb-based migration. J Cell Biol 2018; 217:701-714. [PMID: 29191847 PMCID: PMC5800805 DOI: 10.1083/jcb.201705160] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/03/2017] [Accepted: 11/06/2017] [Indexed: 11/24/2022] Open
Abstract
Actin pseudopods induced by SCAR/WAVE drive normal migration and chemotaxis in eukaryotic cells. Cells can also migrate using blebs, in which the edge is driven forward by hydrostatic pressure instead of actin. In Dictyostelium discoideum, loss of SCAR is compensated by WASP moving to the leading edge to generate morphologically normal pseudopods. Here we use an inducible double knockout to show that cells lacking both SCAR and WASP are unable to grow, make pseudopods or, unexpectedly, migrate using blebs. Remarkably, amounts and dynamics of actin polymerization are normal. Pseudopods are replaced in double SCAR/WASP mutants by aberrant filopods, induced by the formin dDia2. Further disruption of the gene for dDia2 restores cells' ability to initiate blebs and thus migrate, though pseudopods are still lost. Triple knockout cells still contain near-normal F-actin levels. This work shows that SCAR, WASP, and dDia2 compete for actin. Loss of SCAR and WASP causes excessive dDia2 activity, maintaining F-actin levels but blocking pseudopod and bleb formation and migration.
Collapse
Affiliation(s)
| | - Clelia Amato
- Cancer Research UK Beatson Institute, Glasgow, Scotland, UK
| | | | | |
Collapse
|
28
|
Jahan MGS, Yumura S. Traction force and its regulation during cytokinesis in Dictyostelium cells. Eur J Cell Biol 2017. [PMID: 28633918 DOI: 10.1016/j.ejcb.2017.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cytokinesis is the final stage of cell division. Dictyostelium cells have multiple modes of cytokinesis, including cytokinesis A, B and C. Cytokinesis A is a conventional mode, which depends on myosin II in the contractile ring. Myosin II null cells divide depending on substratum-attachment (cytokinesis B) or in a multi-polar fashion independent of the cell cycle (cytokinesis C). We investigated the traction stress exerted by dividing cells in the three different modes using traction force microscopy. In all cases, the traction forces were directed inward from both poles. Interestingly, the traction stress of cytokinesis A was the smallest of the three modes. Latrunculin B, an inhibitor of actin polymerization, completely diminished the traction stress of dividing cells, but blebbistatin, an inhibitor of myosin II ATPase, increased the traction stress. Myosin II is proposed to contribute to the detachment of cell body from the substratum. When the cell-substratum attachment was artificially strengthened by a poly-lysine coating, wild type cells increased their traction stress in contrast to myosin II null and other cytokinesis-deficient mutant cells, which suggests that wild type cells may increase their own power to conduct their cytokinesis. The cytokinesis-deficient mutants frequently divided unequally, whereas wild type cells divided equally. A traction stress imbalance between two daughter halves was correlated with cytokinesis failure. We discuss the regulation of cell shape changes during cell division through mechanosensing.
Collapse
Affiliation(s)
- Md Golam Sarowar Jahan
- Department of Functional Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan; Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Shigehiko Yumura
- Department of Functional Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan.
| |
Collapse
|
29
|
Tanja Mierke C. Physical role of nuclear and cytoskeletal confinements in cell migration mode selection and switching. AIMS BIOPHYSICS 2017. [DOI: 10.3934/biophy.2017.4.615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
30
|
Ibo M, Srivastava V, Robinson DN, Gagnon ZR. Cell Blebbing in Confined Microfluidic Environments. PLoS One 2016; 11:e0163866. [PMID: 27706201 PMCID: PMC5051935 DOI: 10.1371/journal.pone.0163866] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 09/15/2016] [Indexed: 11/18/2022] Open
Abstract
Migrating cells can extend their leading edge by forming myosin-driven blebs and F-actin-driven pseudopods. When coerced to migrate in resistive environments, Dictyostelium cells switch from using predominately pseudopods to blebs. Bleb formation has been shown to be chemotactic and can be influenced by the direction of the chemotactic gradient. In this study, we determine the blebbing responses of developed cells of Dictyostelium discoideum to cAMP gradients of varying steepness produced in microfluidic channels with different confining heights, ranging between 1.7 μm and 3.8 μm. We show that microfluidic confinement height, gradient steepness, buffer osmolarity and Myosin II activity are important factors in determining whether cells migrate with blebs or with pseudopods. Dictyostelium cells were observed migrating within the confines of microfluidic gradient channels. When the cAMP gradient steepness is increased from 0.7 nM/μm to 20 nM/μm, cells switch from moving with a mixture of blebs and pseudopods to moving only using blebs when chemotaxing in channels with confinement heights less than 2.4 μm. Furthermore, the size of the blebs increases with gradient steepness and correlates with increases in myosin-II localization at the cell cortex. Reduction of intracellular pressure by high osmolarity buffer or inhibition of myosin-II by blebbistatin leads to a decrease in bleb formation and bleb size. Together, our data reveal that the protrusion type formed by migrating cells can be influenced by the channel height and the steepness of the cAMP gradient, and suggests that a combination of confinement-induced myosin-II localization and cAMP-regulated cortical contraction leads to increased intracellular fluid pressure and bleb formation.
Collapse
Affiliation(s)
- Markela Ibo
- Johns Hopkins University, Department of Chemical and Biomolecular Engineering, Baltimore, MD, 21218, United States of America
| | - Vasudha Srivastava
- Johns Hopkins University School of Medicine, Department of Cell Biology, Baltimore, MD, 21205, United States of America
| | - Douglas N. Robinson
- Johns Hopkins University School of Medicine, Department of Cell Biology, Baltimore, MD, 21205, United States of America
| | - Zachary R. Gagnon
- Johns Hopkins University, Department of Chemical and Biomolecular Engineering, Baltimore, MD, 21218, United States of America
- * E-mail:
| |
Collapse
|
31
|
Abstract
Cellular motility is essential for many processes such as embryonic development, wound healing processes, tissue assembly and regeneration, immune cell trafficing and diseases such as cancer. The migration efficiency and the migratory potential depend on the type of migration mode. The previously established migration modes such as epithelial (non-migratory) and mesenchymal (migratory) as well as amoeboid (squeezing motility) relay mainly on phenomenological criteria such as cell morphology and molecular biological criteria such as gene expression. However, the physical view on the migration modes is still not well understood. As the process of malignant cancer progression such as metastasis depends on the migration of single cancer cells and their migration mode, this review focuses on the different migration strategies and discusses which mechanical prerequisites are necessary to perform a special migration mode through a 3-dimensional microenvironment. In particular, this review discusses how cells can distinguish and finally switch between the migration modes and what impact do the physical properties of cells and their microenvironment have on the transition between the novel migration modes such as blebbing and protrusive motility.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- a Faculty of Physics and Earth Science; Institute of Experimental Physics I; Biological Physics Division; University of Leipzig ; Leipzig , Germany
| |
Collapse
|
32
|
Aranjuez G, Burtscher A, Sawant K, Majumder P, McDonald JA. Dynamic myosin activation promotes collective morphology and migration by locally balancing oppositional forces from surrounding tissue. Mol Biol Cell 2016; 27:1898-910. [PMID: 27122602 PMCID: PMC4907723 DOI: 10.1091/mbc.e15-10-0744] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/21/2016] [Indexed: 12/24/2022] Open
Abstract
A challenge for migrating collectives is to respond to physical changes in local environments. Border cells migrate collectively in the Drosophila ovary and require dynamic myosin to maintain their morphology. Border cells elevate active myosin in response to tissue compression. Myosin tension counteracts tissue constraints for collective movement. Migrating cells need to overcome physical constraints from the local microenvironment to navigate their way through tissues. Cells that move collectively have the additional challenge of negotiating complex environments in vivo while maintaining cohesion of the group as a whole. The mechanisms by which collectives maintain a migratory morphology while resisting physical constraints from the surrounding tissue are poorly understood. Drosophila border cells represent a genetic model of collective migration within a cell-dense tissue. Border cells move as a cohesive group of 6−10 cells, traversing a network of large germ line–derived nurse cells within the ovary. Here we show that the border cell cluster is compact and round throughout their entire migration, a shape that is maintained despite the mechanical pressure imposed by the surrounding nurse cells. Nonmuscle myosin II (Myo-II) activity at the cluster periphery becomes elevated in response to increased constriction by nurse cells. Furthermore, the distinctive border cell collective morphology requires highly dynamic and localized enrichment of Myo-II. Thus, activated Myo-II promotes cortical tension at the outer edge of the migrating border cell cluster to resist compressive forces from nurse cells. We propose that dynamic actomyosin tension at the periphery of collectives facilitates their movement through restrictive tissues.
Collapse
Affiliation(s)
- George Aranjuez
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Ashley Burtscher
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Ketki Sawant
- Division of Biology, Kansas State University, Manhattan, KS 66506
| | - Pralay Majumder
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Jocelyn A McDonald
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 Division of Biology, Kansas State University, Manhattan, KS 66506
| |
Collapse
|
33
|
Seyedpour SM, Pachenari M, Janmaleki M, Alizadeh M, Hosseinkhani H. Effects of an antimitotic drug on mechanical behaviours of the cytoskeleton in distinct grades of colon cancer cells. J Biomech 2014; 48:1172-8. [PMID: 25678199 DOI: 10.1016/j.jbiomech.2014.11.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 11/17/2014] [Accepted: 11/20/2014] [Indexed: 11/28/2022]
Abstract
Biomechanical behaviours of cells change during cancer progression due to alterations in the main cytoskeletal proteins. Microtubules play a vital role in mitosis and in supporting the integrity of the cell due to their ability to withstand high compressive loads. Accordingly, microtubule-targeting agents (MTAs) have become one of the most promising classes of drugs in cancer therapy. This study evaluated changes in visco-elastic parameters induced by an appropriate concentration of an antimitotic drug in two different grades of colon cancer cells. Actin microfilaments and microtubules contents in the cells were evaluated by Western blot analysis and fluorescence intensity calculation. Micropipette aspiration experiments showed that the MTA had distinct mechanical effects on different cell lines. The more aggressive the cells, the greater the reduction in elasticity and viscosity. Invasive cells had a higher initial instantaneous Young's modulus than primary cells, but this reduced to approximately one half of the values for primary cells after 48 h of drug treatment. A considerable association was seen between the changes in mechanical properties and the microtubule to F-actin microfilament content ratio, which decreased with MTA treatment.
Collapse
Affiliation(s)
- S M Seyedpour
- Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran; Medical Nanotechnology and Tissue Engineering Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Pachenari
- Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran; Medical Nanotechnology and Tissue Engineering Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Janmaleki
- Medical Nanotechnology and Tissue Engineering Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - M Alizadeh
- Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - H Hosseinkhani
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| |
Collapse
|
34
|
DeMali KA, Sun X, Bui GA. Force transmission at cell-cell and cell-matrix adhesions. Biochemistry 2014; 53:7706-17. [PMID: 25474123 DOI: 10.1021/bi501181p] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
All cells are subjected to mechanical forces throughout their lifetimes. These forces are sensed by cell surface adhesion receptors and trigger robust actin cytoskeletal rearrangements and growth of the associated adhesion complex to counter the applied force. In this review, we discuss how integrins and cadherins sense force and transmit these forces into the cell interior. We focus on the complement of proteins each adhesion complex recruits to bear the force and the signal transduction pathways activated to allow the cell to tune its contractility. A discussion of the similarities, differences, and crosstalk between cadherin- and integrin-mediated force transmission is also presented.
Collapse
Affiliation(s)
- Kris A DeMali
- Department of Biochemistry and Interdisciplinary Program in Molecular and Cellular Biology, Roy J. and Lucille A. Carver College of Medicine , Iowa City, Iowa 52242, United States
| | | | | |
Collapse
|
35
|
Salvany L, Muller J, Guccione E, Rørth P. The core and conserved role of MAL is homeostatic regulation of actin levels. Genes Dev 2014; 28:1048-53. [PMID: 24831700 PMCID: PMC4035534 DOI: 10.1101/gad.237743.114] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The transcription cofactor MAL is regulated by actin dynamics and, together with its DNA-binding partner, SRF, is required for invasive cell migration. Salvany et al. show in Drosophila and human cellular models that actin is the key target that must be regulated by MAL/SRF for invasive cell migration. By regulating MAL/SRF, actin feeds back on the production of actin mRNA to ensure sufficient actin supply. Actin and MAL thus form a homeostatic feedback system that provides the foundation for actin dynamics required for complex cell behavior. The transcription cofactor MAL is regulated by free actin levels and thus by actin dynamics. MAL, together with its DNA-binding partner, SRF, is required for invasive cell migration and in experimental metastasis. Although MAL/SRF has many targets, we provide genetic evidence in both Drosophila and human cellular models that actin is the key target that must be regulated by MAL/SRF for invasive cell migration. By regulating MAL/SRF activity, actin protein feeds back on production of actin mRNA to ensure sufficient supply of actin. This constitutes a dedicated homeostatic feedback system that provides a foundation for cellular actin dynamics.
Collapse
Affiliation(s)
- Lara Salvany
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Julius Muller
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Pernille Rørth
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| |
Collapse
|
36
|
Álvarez-González B, Bastounis E, Meili R, del Álamo JC, Firtel R, Lasheras JC. Cytoskeletal Mechanics Regulating Amoeboid Cell Locomotion. APPLIED MECHANICS REVIEWS 2014; 66. [PMID: 25328163 PMCID: PMC4201387 DOI: 10.1115/1.4026249] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Migrating cells exert traction forces when moving. Amoeboid cell migration is a common type of cell migration that appears in many physiological and pathological processes and is performed by a wide variety of cell types. Understanding the coupling of the biochemistry and mechanics underlying the process of migration has the potential to guide the development of pharmacological treatment or genetic manipulations to treat a wide range of diseases. The measurement of the spatiotemporal evolution of the traction forces that produce the movement is an important aspect for the characterization of the locomotion mechanics. There are several methods to calculate the traction forces exerted by the cells. Currently the most commonly used ones are traction force microscopy methods based on the measurement of the deformation induced by the cells on elastic substrate on which they are moving. Amoeboid cells migrate by implementing a motility cycle based on the sequential repetition of four phases. In this paper we review the role that specific cytoskeletal components play in the regulation of the cell migration mechanics. We investigate the role of specific cytoskeletal components regarding the ability of the cells to perform the motility cycle effectively and the generation of traction forces. The actin nucleation in the leading edge of the cell, carried by the ARP2/3 complex activated through the SCAR/WAVE complex, has shown to be fundamental to the execution of the cyclic movement and to the generation of the traction forces. The protein PIR121, a member of the SCAR/WAVE complex, is essential to the proper regulation of the periodic movement and the protein SCAR, also included in the SCAR/WAVE complex, is necessary for the generation of the traction forces during migration. The protein Myosin II, an important F-actin cross-linker and motor protein, is essential to cytoskeletal contractility and to the generation and proper organization of the traction forces during migration.
Collapse
Affiliation(s)
- Begoña Álvarez-González
- Mechanical and Aerospace
Engineering Department,
University of California, San Diego,
La Jolla, CA 92093-0411
e-mail:
| | - Effie Bastounis
- Postdoctoral Fellow
Division of Cell and Developmental Biology,
University of California, San Diego,
La Jolla, CA 92093-0411
| | - Ruedi Meili
- Mechanical and Aerospace
Engineering Department,
Division of Cell and Developmental Biology,
University of California, San Diego,
La Jolla, CA 92093-0411
| | - Juan C. del Álamo
- Associate Professor
Mechanical and Aerospace
Engineering Department,
Institute for Engineering in Medicine,
University of California, San Diego,
La Jolla, CA 92093-0411
| | - Richard Firtel
- Distinguished Professor
Division of Cell and Developmental Biology,
University of California, San Diego,
La Jolla, CA 92093-0411
| | | |
Collapse
|
37
|
Bastounis E, Meili R, Álvarez-González B, Francois J, del Álamo JC, Firtel RA, Lasheras JC. Both contractile axial and lateral traction force dynamics drive amoeboid cell motility. ACTA ACUST UNITED AC 2014; 204:1045-61. [PMID: 24637328 PMCID: PMC3998796 DOI: 10.1083/jcb.201307106] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chemotaxing Dictyostelium discoideum cells adapt their morphology and migration speed in response to intrinsic and extrinsic cues. Using Fourier traction force microscopy, we measured the spatiotemporal evolution of shape and traction stresses and constructed traction tension kymographs to analyze cell motility as a function of the dynamics of the cell's mechanically active traction adhesions. We show that wild-type cells migrate in a step-wise fashion, mainly forming stationary traction adhesions along their anterior-posterior axes and exerting strong contractile axial forces. We demonstrate that lateral forces are also important for motility, especially for migration on highly adhesive substrates. Analysis of two mutant strains lacking distinct actin cross-linkers (mhcA(-) and abp120(-) cells) on normal and highly adhesive substrates supports a key role for lateral contractions in amoeboid cell motility, whereas the differences in their traction adhesion dynamics suggest that these two strains use distinct mechanisms to achieve migration. Finally, we provide evidence that the above patterns of migration may be conserved in mammalian amoeboid cells.
Collapse
Affiliation(s)
- Effie Bastounis
- Department of Mechanical and Aerospace Engineering and 2 Department of Bioengineering, Jacobs School of Engineering; 3 Section of Cell and Developmental Biology, Division of Biological Sciences; and 4 Institute for Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093
| | | | | | | | | | | | | |
Collapse
|
38
|
Moving towards a paradigm: common mechanisms of chemotactic signaling in Dictyostelium and mammalian leukocytes. Cell Mol Life Sci 2014; 71:3711-47. [PMID: 24846395 DOI: 10.1007/s00018-014-1638-8] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/24/2014] [Accepted: 04/29/2014] [Indexed: 12/31/2022]
Abstract
Chemotaxis, or directed migration of cells along a chemical gradient, is a highly coordinated process that involves gradient sensing, motility, and polarity. Most of our understanding of chemotaxis comes from studies of cells undergoing amoeboid-type migration, in particular the social amoeba Dictyostelium discoideum and leukocytes. In these amoeboid cells the molecular events leading to directed migration can be conceptually divided into four interacting networks: receptor/G protein, signal transduction, cytoskeleton, and polarity. The signal transduction network occupies a central position in this scheme as it receives direct input from the receptor/G protein network, as well as feedback from the cytoskeletal and polarity networks. Multiple overlapping modules within the signal transduction network transmit the signals to the actin cytoskeleton network leading to biased pseudopod protrusion in the direction of the gradient. The overall architecture of the networks, as well as the individual signaling modules, is remarkably conserved between Dictyostelium and mammalian leukocytes, and the similarities and differences between the two systems are the subject of this review.
Collapse
|
39
|
Sakamoto Y, Prudhomme S, Zaman MH. Modeling of adhesion, protrusion, and contraction coordination for cell migration simulations. J Math Biol 2012; 68:267-302. [PMID: 23263301 DOI: 10.1007/s00285-012-0634-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 11/12/2012] [Indexed: 01/07/2023]
Abstract
Cell migration is a highly complex, dynamical biological phenomenon that involves precise spatio-temporal coordination of distinctive sub-processes including adhesion, protrusion, and contraction of the cell. Observations of individual tumor cell migration reveal that cells generally exhibit either mesenchymal-type or amoeboid-type migration modes in native like environments. However, it has also been observed that some migrating cells are capable of morphologically adapting to their environment by modifying their type of migration. Recent studies suggest in fact that changes in biophysical and biomechanical properties of tumor cells can reversibly control their transition from one type of migration to the other. These changes may be caused by internal cell biomechanical mechanisms as well as mechanical and topological properties of the extracellular matrix. In order to understand the complex transition between the two modes and the role played by internal cellular mechanics during migration, we have developed a novel axisymmetric hyperviscoelastic cell model to simulate the dynamical behavior of a migrating cell. Numerical results from our study quantitatively demonstrate that the biomechanical properties of the cell may play an important role in the amoeboid-mesenchymal transition during migration. Our study will therefore not only help in creating a new platform for simulating cellular processes but will also provide insights into the role of sub-cellular mechanics in regulating various modes of migration during tumor invasion and metastasis.
Collapse
Affiliation(s)
- Y Sakamoto
- Institute for Computational Engineering and Sciences, The University of Texas at Austin, 1 University Station, Austin, TX, 78712, USA,
| | | | | |
Collapse
|
40
|
Wessels D, Lusche DF, Steimle PA, Scherer A, Kuhl S, Wood K, Hanson B, Egelhoff TT, Soll DR. Myosin heavy chain kinases play essential roles in Ca2+, but not cAMP, chemotaxis and the natural aggregation of Dictyostelium discoideum. J Cell Sci 2012; 125:4934-44. [PMID: 22899719 DOI: 10.1242/jcs.112474] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Behavioral analyses of the deletion mutants of the four known myosin II heavy chain (Mhc) kinases of Dictyostelium discoideum revealed that all play a minor role in the efficiency of basic cell motility, but none play a role in chemotaxis in a spatial gradient of cAMP generated in vitro. However, the two kinases MhckA and MhckC were essential for chemotaxis in a spatial gradient of Ca(2+), shear-induced directed movement, and reorientation in the front of waves of cAMP during natural aggregation. The phenotypes of the mutants mhckA(-) and mhckC(-) were highly similar to that of the Ca(2+) channel/receptor mutant iplA(-) and the myosin II phosphorylation mutant 3XALA, which produces constitutively unphosphorylated myosin II. These results demonstrate that IplA, MhckA and MhckC play a selective role in chemotaxis in a spatial gradient of Ca(2+), but not cAMP, and suggest that Ca(2+) chemotaxis plays a role in the orientation of cells in the front of cAMP waves during natural aggregation.
Collapse
Affiliation(s)
- Deborah Wessels
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Talin couples the actomyosin cortex to the plasma membrane during rear retraction and cytokinesis. Proc Natl Acad Sci U S A 2012; 109:12992-7. [PMID: 22826231 DOI: 10.1073/pnas.1208296109] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Contraction of the cortical actin cytoskeleton underlies both rear retraction in directed cell migration and cytokinesis. Here, we show that talin, a central component of focal adhesions, has a major role in these processes. We found that Dictyostelium talin A colocalized with myosin II in the rear of migrating cells and the cleavage furrow. During directed cell migration, talin A-null cells displayed a long thin tail devoid of actin filaments, whereas additional depletion of SibA, a transmembrane adhesion molecule that binds to talin A, reverted this phenotype, suggesting a requirement of the link between actomyosin and SibA by talin A for rear retraction. Disruptions of talin A also resulted in detachment of the actomyosin contractile ring from the cell membrane and concomitant regression of the cleavage furrow under certain conditions. The C-terminal actin-binding domain (ABD) of talin A exhibited a localization pattern identical to that of full-length talin A. The N-terminal FERM domain was found to bind phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] and phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] in vitro. In vivo, however, PtdIns(4,5)P2, which is known to activate talin, is believed to be enriched in the rear of migrating cells and the cleavage furrow in Dictyostelium. From these results, we propose that talin A activated by PtdIns(4,5)P2 in the cell posterior or cleavage furrow links actomyosin cytoskeleton to adhesion molecules or other membrane proteins, and that the force is transmitted through these links to retract the tail during cell migration or to cause efficient ingression of the equator during cytokinesis.
Collapse
|
42
|
Pietrosimone KM, Yin X, Knecht DA, Lynes MA. Measurement of cellular chemotaxis with ECIS/Taxis. J Vis Exp 2012:3840. [PMID: 22491349 DOI: 10.3791/3840] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Cellular movement in response to external stimuli is fundamental to many cellular processes including wound healing, inflammation and the response to infection. A common method to measure chemotaxis is the Boyden chamber assay, in which cells and chemoattractant are separated by a porous membrane. As cells migrate through the membrane toward the chemoattractant, they adhere to the underside of the membrane, or fall into the underlying media, and are subsequently stained and visually counted (1). In this method, cells are exposed to a steep and transient chemoattractant gradient, which is thought to be a poor representation of gradients found in tissues (2). Another assay system, the under-agarose chemotaxis assay, (3, 4) measures cell movement across a solid substrate in a thin aqueous film that forms under the agarose layer. The gradient that develops in the agarose is shallow and is thought to be an appropriate representation of naturally occurring gradients. Chemotaxis can be evaluated by microscopic imaging of the distance traveled. Both the Boyden chamber assay and the under-agarose assay are usually configured as endpoint assays. The automated ECIS/Taxis system combines the under-agarose approach with Electric Cell-substrate Impedance Sensing (ECIS) (5, 6). In this assay, target electrodes are located in each of 8 chambers. A large counter-electrode runs through each of the 8 chambers (Figure 2). Each chamber is filled with agarose and two small wells are the cut in the agarose on either side of the target electrode. One well is filled with the test cell population, while the other holds the sources of diffusing chemoattractant (Figure 3). Current passed through the system can be used to determine the change in resistance that occurs as cells pass over the target electrode. Cells on the target electrode increase the resistance of the system (6). In addition, rapid fluctuations in the resistance represent changes in the interactions of cells with the electrode surface and are indicative of ongoing cellular shape changes. The ECIS/Taxis system can measure movement of the cell population in real-time over extended periods of time, but is also sensitive enough to detect the arrival of a single cell at the target electrode. Dictyostelium discoidium is known to migrate in the presence of a folate gradient (7, 8) and its chemotactic response can be accurately measured by ECIS/Taxis (9). Leukocyte chemotaxis, in response to SDF1α and to chemotaxis antagonists has also been measured with ECIS/Taxis (10, 11). An example of the leukocyte response to SDF1α is shown in Figure 1.
Collapse
|
43
|
Doyle AD, Kutys ML, Conti MA, Matsumoto K, Adelstein RS, Yamada KM. Micro-environmental control of cell migration--myosin IIA is required for efficient migration in fibrillar environments through control of cell adhesion dynamics. J Cell Sci 2012; 125:2244-56. [PMID: 22328520 DOI: 10.1242/jcs.098806] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Recent evidence suggests that organization of the extracellular matrix (ECM) into aligned fibrils or fibril-like ECM topographies promotes rapid migration in fibroblasts. However, the mechanisms of cell migration that are altered by these changes in micro-environmental topography remain unknown. Here, using 1D fibrillar migration as a model system for oriented fibrillar 3D matrices, we find that fibroblast leading-edge dynamics are enhanced by 1D fibrillar micropatterns and demonstrate a dependence on the spatial positioning of cell adhesions. Although 1D, 2D and 3D matrix adhesions have similar assembly kinetics, both 1D and 3D adhesions are stabilized for prolonged periods, whereas both paxillin and vinculin show slower turnover rates in 1D adhesions. Moreover, actin in 1D adhesions undergoes slower retrograde flow than the actin that is present in 2D lamellipodia. These data suggest an increase in mechanical coupling between adhesions and protrusive machinery. Experimental reduction of contractility resulted in the loss of 1D adhesion structure and stability, with scattered small and unstable adhesions, and an uncoupling of adhesion protein-integrin stability. Genetic ablation of myosin IIA (MIIA) or myosin IIB (MIIB) isoforms revealed that MIIA is required for efficient migration in restricted environments as well as adhesion maturation, whereas MIIB helps to stabilize adhesions beneath the cell body. These data suggest that restricted cell environments, such as 1D patterns, require cellular contraction through MIIA to enhance adhesion stability and coupling to integrins behind the leading edge. This increase in mechanical coupling allows for greater leading-edge protrusion and rapid cell migration.
Collapse
Affiliation(s)
- Andrew D Doyle
- Laboratory of Cell and Developmental Biology, Cell Biology Section, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Carey SP, D'Alfonso TM, Shin SJ, Reinhart-King CA. Mechanobiology of tumor invasion: engineering meets oncology. Crit Rev Oncol Hematol 2011; 83:170-83. [PMID: 22178415 DOI: 10.1016/j.critrevonc.2011.11.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 11/14/2011] [Accepted: 11/16/2011] [Indexed: 12/21/2022] Open
Abstract
The physical sciences and engineering have introduced novel perspectives into the study of cancer through model systems, tools, and metrics that enable integration of basic science observations with clinical data. These methods have contributed to the identification of several overarching mechanisms that drive processes during cancer progression including tumor growth, angiogenesis, and metastasis. During tumor cell invasion - the first clinically observable step of metastasis - cells demonstrate diverse and evolving physical phenotypes that cannot typically be defined by any single molecular mechanism, and mechanobiology has been used to study the physical cell behaviors that comprise the "invasive phenotype". In this review, we discuss the continually evolving pathological characterization and in vitro mechanobiological characterization of tumor invasion, with emphasis on emerging physical biology and mechanobiology strategies that have contributed to a more robust mechanistic understanding of tumor cell invasion. These physical approaches may ultimately help to better predict and identify tumor metastasis.
Collapse
Affiliation(s)
- Shawn P Carey
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
45
|
MANNHERZ HANSGEORG, MACH MONIKA, NOWAK DOROTA, MALICKA-BLASZKIEWICZ MARIA, MAZUR ANTONINA. LAMELLIPODIAL AND AMOEBOID CELL LOCOMOTION: THE ROLE OF ACTIN-CYCLING AND BLEB FORMATION. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s1793048007000404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cell migration depends on the rapid changes of the organization of actin filaments and generation of force by motor proteins. Vertebrate cells use two different mechanisms: mesenchymal or amoeboid migration. Cells migrating in mesenchymal mode are elongated and move over a two-dimensional substratum. They extend thin veil-like extensions at their leading face — lamellipodia, whose protrusion depend on polymerization and depolymerization processes of actin. During mesenchymal migration actin filaments are firmly connected by integrins to the extracellular matrix (ECM) at focal contacts, which serve as points of fixation for subsequent cell body traction by force producing actomyosin interactions. Cells migrating in amoeboid fashion are rounded and move through a three-dimensional ECM-network undergoing considerable shape changes and generating vesicle-like surface extensions — so-called blebs. These blebs and the migrating cells exhibit no or strongly reduced affinity to the ECM. Bleb formation depends on a transient decrease of plasma membrane stiffness and locally increased hydrostatic pressure, which is generated by actin-myosin interactions. Formation of numerous surface blebs is also typical of cells that undergo apoptotic cell death. Since these share a number of properties to blebs of amoeboid cells, an analysis is given of the distribution of some cytoskeletal components in apoptotic blebs.
Collapse
Affiliation(s)
- HANS GEORG MANNHERZ
- Department of Anatomy and Embryology, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - MONIKA MACH
- Department of Anatomy and Embryology, Ruhr-University Bochum, D-44780 Bochum, Germany
- Faculty of Biotechnology, Przybyszewskiego 63, PL-51-148 Wroclaw, Poland
| | - DOROTA NOWAK
- Department of Cell Pathology, Faculty of Biotechnology, Przybyszewskiego 63, PL-51-148 Wroclaw, Poland
| | | | - ANTONINA MAZUR
- Department of Anatomy and Embryology, Ruhr-University Bochum, D-44780 Bochum, Germany
- Max-Planck-Institute for Molecular Physiology, Otto-Hahn-Str. 11, D-44227-Dortmund, Germany
| |
Collapse
|
46
|
Abstract
Most experiments observing cell migration use planar plastic or glass surfaces despite these conditions being considerably different from physiological ones. On such planar surfaces, cells take a dorsal-ventral polarity to move two-dimensionally. Cells in tissues, however, interact with surrounding cells and the extracellular matrix such that they transverse three-dimensionally. For this reason, three-dimensional matrices have become more and more popular for cell migration experiments. In addition, recent developments in imaging techniques have enabled high resolution observations of in vivo cell migration. The combination of three-dimensional matrices and such imaging techniques has revealed motile mechanisms in tissues not observable in studies using planar surfaces. Regarding models for such cell migration studies, the cellular slime mould Dictyostelium discoideum is ideal. Single amoeboid cells aggregate into hemispherical mound structures upon starvation to begin a multicellular morphogenesis. These tiny and simple multicellular bodies are suitable for observing the behaviors of individual cells in multicellular structures. Furthermore, the unique life cycle can be exploited to identify which genes are involved in cell migration in multicellular environments. Since mutants lacking such genes are expected to fail to undergo morphogenesis, easy and systematic gene screening is possible by isolating mutants whose developments arrest around the mound stage, which is the case for several mutants lacking specific cytoskeletal proteins. In this article, I discuss the basic elements required for cell migration in multicellular environments and how Dictyostelium can be used to elucidate them.
Collapse
Affiliation(s)
- Masatsune Tsujioka
- Special Research Promotion Group, Graduate School of Frontier Bioscience, Osaka University, 1-3 Yamadaoka, Suita, Japan.
| |
Collapse
|
47
|
Direct detection of cellular adaptation to local cyclic stretching at the single cell level by atomic force microscopy. Biophys J 2011; 100:564-572. [PMID: 21281570 DOI: 10.1016/j.bpj.2010.12.3693] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 10/29/2010] [Accepted: 12/02/2010] [Indexed: 01/13/2023] Open
Abstract
The cellular response to external mechanical forces has important effects on numerous biological phenomena. The sequences of molecular events that underlie the observed changes in cellular properties have yet to be elucidated in detail. Here we have detected the responses of a cultured cell against locally applied cyclic stretching and compressive forces, after creating an artificial focal adhesion under a glass bead attached to the cantilever of an atomic force microscope. The cell tension initially increased in response to the tensile stress and then decreased within ∼1 min as a result of viscoelastic properties of the cell. This relaxation was followed by a gradual increase in tension extending over several minutes. The slow recovery of tension ceased after several cycles of force application. This tension-recovering activity was inhibited when cells were treated with cytochalasin D, an inhibitor of actin polymerization, or with (-)-blebbistatin, an inhibitor of myosin II ATPase activity, suggesting that the activity was driven by actin-myosin interaction. To our knowledge, this is the first quantitative analysis of cellular mechanical properties during the process of adaptation to locally applied cyclic external force.
Collapse
|
48
|
Nhe1 is essential for potassium but not calcium facilitation of cell motility and the monovalent cation requirement for chemotactic orientation in Dictyostelium discoideum. EUKARYOTIC CELL 2011; 10:320-31. [PMID: 21239624 DOI: 10.1128/ec.00255-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In Dictyostelium discoideum, extracellular K+ or Ca2+ at a concentration of 40 or 20 mM, respectively, facilitates motility in the absence or presence of a spatial gradient of chemoattractant. Facilitation results in maximum velocity, cellular elongation, persistent translocation, suppression of lateral pseudopod formation, and myosin II localization in the posterior cortex. A lower threshold concentration of 15 mM K+ or Na or 5 mM Ca2+ is required for chemotactic orientation. Although the common buffer solutions used by D. discoideum researchers to study chemotaxis contain sufficient concentrations of cations for chemotactic orientation, the majority contain insufficient levels to facilitate motility. Here it has been demonstrated that Nhe1, a plasma membrane protein, is required for K+ but not Ca2+ facilitation of cell motility and for the lower K+ but not Ca2+ requirement for chemotactic orientation.
Collapse
|
49
|
Eckly A, Rinckel JY, Laeuffer P, Cazenave JP, Lanza F, Gachet C, Léon C. Proplatelet formation deficit and megakaryocyte death contribute to thrombocytopenia in Myh9 knockout mice. J Thromb Haemost 2010; 8:2243-51. [PMID: 20695978 DOI: 10.1111/j.1538-7836.2010.04009.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Inactivation of the mouse Myh9 gene (Myh9Δ) or its mutation in MYH9-related diseases leads to macrothrombocytopenia. Paradoxically, previous studies using in vitro differentiated megakaryocytes showed an increased capacity for proplatelet formation when myosin was absent or inhibited. METHODS To explore the origin of the thrombocytopenia induced by myosin deficiency, we studied proplatelet formation using bone marrow explants of wild-type (WT) and Myh9Δ mouse where megakaryocytes have matured in their native environment. RESULTS AND DISCUSSION A dramatic decrease in the number and complexity of proplatelets was observed in megakaryocytes from Myh9Δ mice, while inhibition of myosin activity by blebbistatin increased proplatelet formation from WT mature megakaryocytes. Moreover, Myh9Δ megakaryocytes had a smaller size than the WT cells. These data indicate that myosin deficiency acts negatively on proplatelet formation, probably by impairing in situ megakaryocyte maturation, while myosin activity is dispensable at the latest stage of proplatelet formation. In addition, ultrastructural examination of Myh9Δ bone marrow revealed an increased proportion of megakaryocytes exhibiting signs of non-apoptotic cell death as compared with the WT mice. CONCLUSION These data indicate that thrombocytopenia in Myh9Δ mice results from defective development of megakaryocyte size, impaired proplatelet formation and increased cell death.
Collapse
Affiliation(s)
- A Eckly
- UMR_S949 INSERM-Université de Strasbourg, Etablissement Français du Sang-Alsace, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
50
|
Lee S, Shen Z, Robinson DN, Briggs S, Firtel RA. Involvement of the cytoskeleton in controlling leading-edge function during chemotaxis. Mol Biol Cell 2010; 21:1810-24. [PMID: 20375144 PMCID: PMC2877640 DOI: 10.1091/mbc.e10-01-0009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cells activate signaling pathways at the site closest to the chemoattractant source that lead to pseudopod formation and directional movement up the gradient. We demonstrate that cytoskeletal components required for cortical tension, including MyoII and IQGAP/cortexillins help regulate the level and timing of leading-edge pathways. In response to directional stimulation by a chemoattractant, cells rapidly activate a series of signaling pathways at the site closest to the chemoattractant source that leads to F-actin polymerization, pseudopod formation, and directional movement up the gradient. Ras proteins are major regulators of chemotaxis in Dictyostelium; they are activated at the leading edge, are required for chemoattractant-mediated activation of PI3K and TORC2, and are one of the most rapid responders, with activity peaking at ∼3 s after stimulation. We demonstrate that in myosin II (MyoII) null cells, Ras activation is highly extended and is not restricted to the site closest to the chemoattractant source. This causes elevated, extended, and spatially misregulated activation of PI3K and TORC2 and their effectors Akt/PKB and PKBR1, as well as elevated F-actin polymerization. We further demonstrate that disruption of specific IQGAP/cortexillin complexes, which also regulate cortical mechanics, causes extended activation of PI3K and Akt/PKB but not Ras activation. Our findings suggest that MyoII and IQGAP/cortexillin play key roles in spatially and temporally regulating leading-edge activity and, through this, the ability of cells to restrict the site of pseudopod formation.
Collapse
Affiliation(s)
- Susan Lee
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0380, USA
| | | | | | | | | |
Collapse
|