1
|
Wen X, Ma H. Cytoplasmic Vacuolization: A Fascinating Morphological Alteration From Cellular Stress to Cell Death. Cancer Sci 2025; 116:1181-1192. [PMID: 40017124 PMCID: PMC12044657 DOI: 10.1111/cas.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/19/2025] [Accepted: 01/28/2025] [Indexed: 03/01/2025] Open
Abstract
Cytoplasmic vacuolization is a cellular morphological alteration characterized by the presence of substantial vacuole-like structures originating from various cellular organelles. This phenomenon is often observed in various anticancer treatments, including chemotherapeutic drugs, and photodynamic therapy (PDT), and is frequently linked with cell death. Nevertheless, the precise mechanisms underlying cytoplasmic vacuolization and ensuing cell death remain ambiguous. Cytoplasmic vacuolization associated cell death (CVACD) is a complex process characterized by cellular stress, encompassing ER stress, heightened membrane permeability, ion imbalance, and mitochondrial dysfunction. The MAPK signaling pathway is closely associated with the activation of CVACD. This review provides a thorough examination of contemporary studies on cytoplasmic vacuolization in mammalian cells, elucidating its etiology, origins, and molecular pathways. Additionally, it highlights the potential of CVACD as an innovative therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Xiaoxu Wen
- School of StomatologyHenan UniversityKaifengChina
| | - Hongru Ma
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhouChina
| |
Collapse
|
2
|
Chang LC, Chiang SK, Chen SE, Hung MC. Exploring paraptosis as a therapeutic approach in cancer treatment. J Biomed Sci 2024; 31:101. [PMID: 39497143 PMCID: PMC11533606 DOI: 10.1186/s12929-024-01089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024] Open
Abstract
A variety of cell death pathways play critical roles in the onset and progression of multiple diseases. Paraptosis, a unique form of programmed cell death, has gained significant attention in recent years. Unlike apoptosis and necrosis, paraptosis is characterized by cytoplasmic vacuolization, swelling of the endoplasmic reticulum and mitochondria, and the absence of caspase activation. Numerous natural products, synthetic compounds, and newly launched nanomedicines have been demonstrated to prime cell death through the paraptotic program and may offer novel therapeutic strategies for cancer treatment. This review summarizes recent findings, delineates the intricate network of signaling pathways underlying paraptosis, and discusses the potential therapeutic implications of targeting paraptosis in cancer treatment. The aim of this review is to expand our understanding of this unique cell death process and explore the potential therapeutic implications of targeting paraptosis in cancer treatment.
Collapse
Affiliation(s)
- Ling-Chu Chang
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 406040, Taiwan.
- Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan.
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 40402, Taiwan.
| | - Shih-Kai Chiang
- Department of Animal Science, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shuen-Ei Chen
- Department of Animal Science, National Chung Hsing University, Taichung, 40227, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung, 40227, Taiwan
- i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung, 40227, Taiwan
| | - Mien-Chie Hung
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 406040, Taiwan.
- Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan.
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 40402, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan.
| |
Collapse
|
3
|
Kunst C, Tümen D, Ernst M, Tews HC, Müller M, Gülow K. Paraptosis-A Distinct Pathway to Cell Death. Int J Mol Sci 2024; 25:11478. [PMID: 39519031 PMCID: PMC11546839 DOI: 10.3390/ijms252111478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Cell death is a critical biological process necessary for development, tissue maintenance, and defense against diseases. To date, more than 20 forms of cell death have been identified, each defined by unique molecular pathways. Understanding these different forms of cell death is essential for investigating the pathogenesis of diseases such as cancer, neurodegenerative disorders, and autoimmune conditions and developing appropriate therapies. Paraptosis is a distinct form of regulated cell death characterized by cytoplasmic vacuolation and dilatation of cellular organelles like the mitochondria and endoplasmic reticulum (ER). It is regulated by several signaling pathways, for instance, those associated with ER stress, calcium overload, oxidative stress, and specific cascades such as insulin-like growth factor I receptor (IGF-IR) and its downstream signaling pathways comprising mitogen-activated protein kinases (MAPKs) and Jun N-terminal kinase (JNK). Paraptosis has been observed in diverse biological contexts, including development and cellular stress responses in neuronal, retinal, endothelial, and muscle cells. The induction of paraptosis is increasingly important in anticancer therapy, as it targets non-apoptotic stress responses in tumor cells, which can be utilized to induce cell death. This approach enhances treatment efficacy and addresses drug resistance, particularly in cases where cancer cells are resistant to apoptosis. Combining paraptosis-inducing agents with traditional therapies holds promise for enhancing treatment efficacy and overcoming drug resistance, suggesting a valuable strategy in anticancer therapy.
Collapse
Affiliation(s)
- Claudia Kunst
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, Immunology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (D.T.); (M.E.); (H.C.T.); (M.M.); (K.G.)
| | | | | | | | | | | |
Collapse
|
4
|
Nii M, Yamaguchi K, Tojo T, Narushima N, Aoki S. Induction of Paraptotic Cell Death in Cancer Cells by Triptycene-Peptide Hybrids and the Revised Mechanism of Paraptosis II. Biochemistry 2024; 63:2111-2130. [PMID: 39140188 PMCID: PMC11375786 DOI: 10.1021/acs.biochem.4c00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
In previous work, we reported on iridium(III) (Ir(III)) complex-peptide hybrids as amphiphilic conjugates (IPH-ACs) and triptycene-peptide hybrids as amphiphilic conjugates (TPH-ACs) and found that these hybrid compounds containing three cationic KK(K)GG peptide units through C6-C8 alkyl linkers induce paraptosis II, which is one of the nonapoptotic programmed cell death (PCD) types in Jurkat cells and different from previously reported paraptosis. The details of that study revealed that the paraptosis II induced by IPH-ACs (and TPH-ACs) proceeds via a membrane fusion or tethering of the endoplasmic reticulum (ER) and mitochondria, and Ca2+ transfer from the ER to mitochondria, which results in a loss of mitochondrial membrane potential (ΔΨm) in Jurkat cells. However, the detailed mechanistic studies of paraptosis II have been conducted only in Jurkat cells. In the present work, we decided to conduct mechanistic studies of paraptosis II in HeLa-S3 and A549 cells as well as in Jurkat cells to study the general mechanism of paraptosis II. Simultaneously, we designed and synthesized new TPH-ACs functionalized with peptides that contain cyclohexylalanine, which had been reported to enhance the localization of peptides to mitochondria. We found that TPH-ACs containing cyclohexylalanine promote paraptosis II processes in Jurkat, HeLa-S3 and A549 cells. The results of the experiments using fluorescence Ca2+ probes in mitochondria and cytosol, fluorescence staining agents of mitochondria and the ER, and inhibitors of paraptosis II suggest that TPH-ACs induce Ca2+ increase in mitochondria and the membrane fusion between the ER and mitochondria almost simultaneously, suggesting that our previous hypothesis on the mechanism of paraptosis II should be revised.
Collapse
Affiliation(s)
- Mayuka Nii
- Faculty
of Pharmaceutical Sciences, Tokyo University
of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Kohei Yamaguchi
- Faculty
of Pharmaceutical Sciences, Tokyo University
of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Toshifumi Tojo
- Faculty
of Pharmaceutical Sciences, Tokyo University
of Science, 2641 Yamazaki, Noda 278-8510, Japan
- Research
Institute for Science and Technology (RIST), Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Nozomi Narushima
- Faculty
of Pharmaceutical Sciences, Tokyo University
of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Shin Aoki
- Faculty
of Pharmaceutical Sciences, Tokyo University
of Science, 2641 Yamazaki, Noda 278-8510, Japan
- Research
Institute for Science and Technology (RIST), Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Research
Institute for Biomedical Sciences (RIBS), Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
5
|
Ingels A, Scott R, Hooper AR, van der Westhuyzen AE, Wagh SB, de Meester J, Maddau L, Marko D, Aichinger G, Berger W, Vermeersch M, Pérez-Morga D, Maslivetc VA, Evidente A, van Otterlo WAL, Kornienko A, Mathieu V. New hemisynthetic derivatives of sphaeropsidin phytotoxins triggering severe endoplasmic reticulum swelling in cancer cells. Sci Rep 2024; 14:14674. [PMID: 38918539 PMCID: PMC11199504 DOI: 10.1038/s41598-024-65335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
Sphaeropsidins are iso-pimarane diterpenes produced by phytopathogenic fungi that display promising anticancer activities. Sphaeropsidin A, in particular, has been shown to counteract regulatory volume increase, a process used by cancer cells to avoid apoptosis. This study reports the hemi-synthesis of new lipophilic derivatives obtained by modifications of the C15,C16-alkene moiety. Several of these compounds triggered severe ER swelling associated with strong proteasomal inhibition and consequently cell death, a feature that was not observed with respect to mode of action of the natural product. Significantly, an analysis from the National Cancer Institute sixty cell line testing did not reveal any correlations between the most potent derivative and any other compound in the database, except at high concentrations (LC50). This study led to the discovery of a new set of sphaeropsidin derivatives that may be exploited as potential anti-cancer agents, notably due to their maintained activity towards multidrug resistant models.
Collapse
Affiliation(s)
- Aude Ingels
- Department of Pharmacotherapy and Pharmaceutics, Chemistry and Biochemistry, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
- ULB Cancer Research Center, U-CRC, Université Libre de Bruxelles, Brussels, Belgium
| | - Robert Scott
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Annie R Hooper
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Aletta E van der Westhuyzen
- Department of Chemistry and Polymer Science, University of Stellenbosch, Matieland, Stellenbosch, 7600, South Africa
| | - Sachin B Wagh
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Joséphine de Meester
- Department of Chemistry and Polymer Science, University of Stellenbosch, Matieland, Stellenbosch, 7600, South Africa
| | - Lucia Maddau
- Department of Agriculture, Section of Plant Pathology and Entomology, University of Sassari, Sassari, Italy
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Georg Aichinger
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Walter Berger
- Medical University of Vienna Center for Cancer Research, Vienna, Austria
| | - Marjorie Vermeersch
- Electron Microscopy Laboratory, Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - David Pérez-Morga
- Electron Microscopy Laboratory, Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Vladimir A Maslivetc
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Antonio Evidente
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Willem A L van Otterlo
- Department of Chemistry and Polymer Science, University of Stellenbosch, Matieland, Stellenbosch, 7600, South Africa
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA.
| | - Véronique Mathieu
- Department of Pharmacotherapy and Pharmaceutics, Chemistry and Biochemistry, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium.
- ULB Cancer Research Center, U-CRC, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
6
|
Chiang SK, Chang WC, Chen SE, Chang LC. CDK7/CDK9 mediates transcriptional activation to prime paraptosis in cancer cells. Cell Biosci 2024; 14:78. [PMID: 38858714 PMCID: PMC11163730 DOI: 10.1186/s13578-024-01260-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Paraptosis is a programmed cell death characterized by cytoplasmic vacuolation, which has been explored as an alternative method for cancer treatment and is associated with cancer resistance. However, the mechanisms underlying the progression of paraptosis in cancer cells remain largely unknown. METHODS Paraptosis-inducing agents, CPYPP, cyclosporin A, and curcumin, were utilized to investigate the underlying mechanism of paraptosis. Next-generation sequencing and liquid chromatography-mass spectrometry analysis revealed significant changes in gene and protein expressions. Pharmacological and genetic approaches were employed to elucidate the transcriptional events related to paraptosis. Xenograft mouse models were employed to evaluate the potential of paraptosis as an anti-cancer strategy. RESULTS CPYPP, cyclosporin A, and curcumin induced cytoplasmic vacuolization and triggered paraptosis in cancer cells. The paraptotic program involved reactive oxygen species (ROS) provocation and the activation of proteostatic dynamics, leading to transcriptional activation associated with redox homeostasis and proteostasis. Both pharmacological and genetic approaches suggested that cyclin-dependent kinase (CDK) 7/9 drive paraptotic progression in a mutually-dependent manner with heat shock proteins (HSPs). Proteostatic stress, such as accumulated cysteine-thiols, HSPs, ubiquitin-proteasome system, endoplasmic reticulum stress, and unfolded protein response, as well as ROS provocation primarily within the nucleus, enforced CDK7/CDK9-Rpb1 (RNAPII subunit B1) activation by potentiating its interaction with HSPs and protein kinase R in a forward loop, amplifying transcriptional regulation and thereby exacerbating proteotoxicity leading to initiate paraptosis. The xenograft mouse models of MDA-MB-231 breast cancer and docetaxel-resistant OECM-1 head and neck cancer cells further confirmed the induction of paraptosis against tumor growth. CONCLUSIONS We propose a novel regulatory paradigm in which the activation of CDK7/CDK9-Rpb1 by nuclear proteostatic stress mediates transcriptional regulation to prime cancer cell paraptosis.
Collapse
Affiliation(s)
- Shih-Kai Chiang
- Department of Animal Science, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Wei-Chao Chang
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 406040, Taiwan
| | - Shuen-Ei Chen
- Department of Animal Science, National Chung Hsing University, Taichung, 40227, Taiwan.
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan.
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung, 40227, Taiwan.
- i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung, 40227, Taiwan.
| | - Ling-Chu Chang
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 406040, Taiwan.
- Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan.
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 406040, Taiwan.
| |
Collapse
|
7
|
Xu CC, Lin YF, Huang MY, Zhang XL, Wang P, Huang MQ, Lu JJ. Paraptosis: a non-classical paradigm of cell death for cancer therapy. Acta Pharmacol Sin 2024; 45:223-237. [PMID: 37715003 PMCID: PMC10789732 DOI: 10.1038/s41401-023-01159-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/28/2023] [Indexed: 09/17/2023]
Abstract
Due to the sustained proliferative potential of cancer cells, inducing cell death is a potential strategy for cancer therapy. Paraptosis is a mode of cell death characterized by endoplasmic reticulum (ER) and/or mitochondrial swelling and cytoplasmic vacuolization, which is less investigated. Considerable evidence shows that paraptosis can be triggered by various chemical compounds, particularly in cancer cells, thus highlighting the potential application of this non-classical mode of cell death in cancer therapy. Despite these findings, there remain significant gaps in our understanding of the role of paraptosis in cancer. In this review, we summarize the current knowledge on chemical compound-induced paraptosis. The ER and mitochondria are the two major responding organelles in chemical compound-induced paraptosis, which can be triggered by the reduction of protein degradation, disruption of sulfhydryl homeostasis, overload of mitochondrial Ca2+, and increased generation of reactive oxygen species. We also discuss the stumbling blocks to the development of this field and the direction for further research. The rational use of paraptosis might help us develop a new paradigm for cancer therapy.
Collapse
Affiliation(s)
- Chun-Cao Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yi-Fan Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Mu-Yang Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiao-Lei Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Pei Wang
- Department of Pharmacology, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Ming-Qing Huang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao, China.
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, University of Macau, Macao, China.
- Zhuhai UM Science & Technology Research Institute, Zhuhai, 519000, China.
| |
Collapse
|
8
|
Liu S, Tian Y, Liu C, Gui Z, Yu T, Zhang L. TNFRSF19 promotes endoplasmic reticulum stress-induced paraptosis via the activation of the MAPK pathway in triple-negative breast cancer cells. Cancer Gene Ther 2024; 31:217-227. [PMID: 37990061 DOI: 10.1038/s41417-023-00696-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023]
Abstract
TNFRSF19 is a member of the tumor necrosis factor receptor superfamily, and its function exhibits variability among different types of cancers. The influence of TNFRSF19 on triple-negative breast cancer (TNBC) has yet to be definitively established. In this study, bioinformatics analyses revealed that lower TNFRSF19 was associated with the poorer prognosis, higher lymph node metastasis and lower immune infiltration. Subsequently, data obtained from the TCGA database and collection of tissue samples revealed that the mRNA and protein expression levels of TNFRSF19 were observed to be significantly reduced in TNBC tissue compared to normal tissue. Additionally, the results of in vitro experiments have demonstrated that TNFRSF19 possessed the ability to inhibit the proliferation, migration and invasive capabilities of TNBC cells. In vivo trials elucidated that TNFRSF19 could suppress tumor xenografts growth. Mechanistically, TNFRSF19 initiated caspase-independent cell death and induced paraptosis. Moreover, rescue assays demonstrated that TNFRSF19 induced-paraptosis was facilitated by MAPK pathway-mediated endoplasmic reticulum (ER) stress. In conclusion, our findings demonstrated that the upregulation of TNFRSF19 functioned as a tumor suppressor in TNBC by stimulating paraptosis through the activation of the MAPK pathway-mediated ER stress, highlighting its potential to be a new therapeutic target for TNBC.
Collapse
Affiliation(s)
- Shiyang Liu
- Department of Thyroid and Breast Surgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei Province, 430030, China
| | - Yao Tian
- Department of Thyroid and Breast Surgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei Province, 430030, China
| | - Chenguang Liu
- Department of Thyroid and Breast Surgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei Province, 430030, China
| | - Zhengwei Gui
- Department of Thyroid and Breast Surgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei Province, 430030, China
| | - Tianyao Yu
- Department of Thyroid and Breast Surgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei Province, 430030, China
| | - Lin Zhang
- Department of Thyroid and Breast Surgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei Province, 430030, China.
| |
Collapse
|
9
|
Hu L, Shi J, Shen D, Zhai X, Liang D, Wang J, Xie C, Xia Z, Cui J, Liu F, Du S, Meng S, Piao H. Osimertinib induces paraptosis and TRIP13 confers resistance in glioblastoma cells. Cell Death Discov 2023; 9:333. [PMID: 37669963 PMCID: PMC10480197 DOI: 10.1038/s41420-023-01632-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023] Open
Abstract
The efficacy of osimertinib, a third-generation epidermal growth factor receptor tyrosine kinase inhibitor, has been evaluated in glioblastoma (GBM) through preclinical and clinical trials. However, the underlying mechanism of osimertinib-induced GBM cell death and the underlying resistance mechanism to osimertinib remains unclear. Here, we demonstrate that Osimertinib induces paraptosis in GBM cells, as evidenced by the formation of cytoplasmic vacuoles, accumulation of ubiquitinated proteins, and upregulation of endoplasmic reticulum (ER) stress markers like CHOP. Additionally, neither apoptosis nor autophagy was involved in the osimertinib-induced cell death. RNAseq analysis revealed ER stress was the most significantly downregulated pathway upon exposure to osimertinib. Consistently, pharmacologically targeting the PERK-eIF2α axis impaired osimertinib-induced paraptosis. Notably, we show that the expression of thyroid receptor-interacting protein 13 (TRIP13), an AAA+ATPase, alleviated osimertinib-triggered paraptosis, thus conferring resistance. Intriguingly, MK-2206, an AKT inhibitor, downregulated TRIP13 levels and synergized with Osimertinib to suppress TRIP13-induced high GBM cell growth in vitro and in vivo. Together, our findings reveal a novel mechanism of action associated with the anti-GBM effects of osimertinib involving ER stress-regulated paraptosis. Furthermore, we identify a TRIP13-driven resistance mechanism against Osimertinib in GBM and offer a combination strategy using MK-2206 to overcome such resistance.
Collapse
Affiliation(s)
- Lulu Hu
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
- Department of Laboratory Medicine, Affiliated Qingdao Central Hospital, Qingdao University, 266000, Qingdao, China
| | - Ji Shi
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 110042, Shenyang, China
| | - Dachuan Shen
- Department of Oncology, Affliated Zhongshan Hospital of Dalian University, 116001, Dalian, China
| | - Xingyue Zhai
- Clinical Nutrition Department, The Second Hospital of Dalian Medical University, 116023, Dalian, China
| | - Dapeng Liang
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | - Jing Wang
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | - Chunrui Xie
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | - Zhiyu Xia
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | - Jing Cui
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 110042, Shenyang, China
| | - Feng Liu
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 110042, Shenyang, China
| | - Sha Du
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China.
| | - Songshu Meng
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China.
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 110042, Shenyang, China.
| |
Collapse
|
10
|
Hanson S, Dharan A, P. V. J, Pal S, Nair BG, Kar R, Mishra N. Paraptosis: a unique cell death mode for targeting cancer. Front Pharmacol 2023; 14:1159409. [PMID: 37397502 PMCID: PMC10308048 DOI: 10.3389/fphar.2023.1159409] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/15/2023] [Indexed: 07/04/2023] Open
Abstract
Programmed cell death (PCD) is the universal process that maintains cellular homeostasis and regulates all living systems' development, health and disease. Out of all, apoptosis is one of the major PCDs that was found to play a crucial role in many disease conditions, including cancer. The cancer cells acquire the ability to escape apoptotic cell death, thereby increasing their resistance towards current therapies. This issue has led to the need to search for alternate forms of programmed cell death mechanisms. Paraptosis is an alternative cell death pathway characterized by vacuolation and damage to the endoplasmic reticulum and mitochondria. Many natural compounds and metallic complexes have been reported to induce paraptosis in cancer cell lines. Since the morphological and biochemical features of paraptosis are much different from apoptosis and other alternate PCDs, it is crucial to understand the different modulators governing it. In this review, we have highlighted the factors that trigger paraptosis and the role of specific modulators in mediating this alternative cell death pathway. Recent findings include the role of paraptosis in inducing anti-tumour T-cell immunity and other immunogenic responses against cancer. A significant role played by paraptosis in cancer has also scaled its importance in knowing its mechanism. The study of paraptosis in xenograft mice, zebrafish model, 3D cultures, and novel paraptosis-based prognostic model for low-grade glioma patients have led to the broad aspect and its potential involvement in the field of cancer therapy. The co-occurrence of different modes of cell death with photodynamic therapy and other combinatorial treatments in the tumour microenvironment are also summarized here. Finally, the growth, challenges, and future perspectives of paraptosis research in cancer are discussed in this review. Understanding this unique PCD pathway would help to develop potential therapy and combat chemo-resistance in various cancer.
Collapse
Affiliation(s)
- Sweata Hanson
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Aiswarya Dharan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Jinsha P. V.
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Sanjay Pal
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Bipin G. Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Rekha Kar
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, United States
| | - Nandita Mishra
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| |
Collapse
|
11
|
Leak L, Dixon SJ. Surveying the landscape of emerging and understudied cell death mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119432. [PMID: 36690038 PMCID: PMC9969746 DOI: 10.1016/j.bbamcr.2023.119432] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/09/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
Cell death can be a highly regulated process. A large and growing number of mammalian cell death mechanisms have been described over the past few decades. Major pathways with established roles in normal or disease biology include apoptosis, necroptosis, pyroptosis and ferroptosis. However, additional non-apoptotic cell death mechanisms with unique morphological, genetic, and biochemical features have also been described. These mechanisms may play highly specialized physiological roles or only become activated in response to specific lethal stimuli or conditions. Understanding the nature of these emerging and understudied mechanisms may provide new insight into cell death biology and suggest new treatments for diseases such as cancer and neurodegeneration.
Collapse
Affiliation(s)
- Logan Leak
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
12
|
Wei W, Li Y, Wang C, Gao S, Zhao Y, Yang Z, Wang H, Gao Z, Jiang Y, He Y, Zhao L, Gao H, Yao X, Hu Y. Diterpenoid Vinigrol specifically activates ATF4/DDIT3-mediated PERK arm of unfolded protein response to drive non-apoptotic death of breast cancer cells. Pharmacol Res 2022; 182:106285. [PMID: 35662627 DOI: 10.1016/j.phrs.2022.106285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/23/2022] [Accepted: 05/29/2022] [Indexed: 11/26/2022]
Abstract
Vinigrol is a natural diterpenoid with unprecedented chemical structure, driving great efforts into its total synthesis in the past decades. Despite anti-hypertension and anti-clot ever reported, comprehensive investigations on bioactions and molecular mechanisms of Vinigrol are entirely missing. Here we firstly carried out a complete functional prediction of Vinigrol using a transcriptome-based strategy coupled with multiple bioinformatic analyses and identified "anti-cancer" as the most prominent biofunction ahead of anti-hypertension and anti-depression/psychosis. Broad cytotoxicity was subsequently confirmed on multiple cancer types. Further mechanistic investigation on several breast cancer cells revealed that its anti-cancer effect was mainly through activating PERK/eIF2α arm of unfolded protein response (UPR) and subsequent non-apoptotic cell death independent of caspase activities. The other two branches of UPR, IRE1α and ATF6, were functionally irrelevant to Vinigrol-induced cell death. Using CRISPR/Cas9-based gene activation, repression, and knockout systems, we identified the essential contribution of ATF4 and DDIT3, not ATF6, to the death process. This study unraveled a broad anti-cancer function of Vinigrol and its underlying targets and regulatory mechanisms. It paved the way for further inspection on the structure-efficacy relationship of the whole compound family, making them a novel cluster of PERK-specific stress activators for experimental and clinical uses.
Collapse
Affiliation(s)
- Wencheng Wei
- Harbin Institute of Technology, Harbin 150000, China; Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China; Department of pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518005, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China
| | - Yunfei Li
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China; Department of pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518005, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China
| | - Chuanxi Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Sanxing Gao
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China; Department of pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518005, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China
| | - Yan Zhao
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China; Department of pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518005, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China
| | - Zhenyu Yang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China; Department of pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518005, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China
| | - Hao Wang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China; Department of pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518005, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China
| | - Ziying Gao
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China; Department of pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518005, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China
| | - Yanxiang Jiang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China; Department of pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518005, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China
| | - Yuan He
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China; Department of pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518005, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China
| | - Li Zhao
- Department of Head and Neck Surgical Oncology, National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100000, China
| | - Hao Gao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China.
| | - Xinsheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Yuhui Hu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China; Department of pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518005, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China.
| |
Collapse
|
13
|
Huang A, Huang SY, Shah P, Ku WC, Huang KT, Liu YF, Su CL, Huang RFS. Suboptimal folic acid exposure rewires oncogenic metabolism and proteomics signatures to mediate human breast cancer malignancy. J Nutr Biochem 2022; 106:109000. [PMID: 35460832 DOI: 10.1016/j.jnutbio.2022.109000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/25/2021] [Accepted: 02/22/2022] [Indexed: 11/27/2022]
Abstract
Whether treatment with folic acid (FA) affects human breast cancer positively or negatively remains unclear. We subjected human MCF-7 cells, a human breast cancer cell line, to suboptimal FA at low levels (10 nM; LF) and high levels (50 μM; HF) and investigated the molecular mechanisms underlying their effects through metabolic flux and systematic proteomics analyses. The data indicated that LF induced and HF aggravated 2-fold higher mitochondrial toxicity in terms of suppressed oxidative respiration, increased fermented glycolysis, and enhanced anchorage-independent oncospheroid formation. Quantitative proteomics and Gene Ontology enrichment analysis were used to profile LF- and HF-altered proteins involved in metabolism, apoptosis, and malignancy pathways. Through STRING analysis, we identified a connection network between LF- and HF-altered proteins with mTOR. Rapamycin-induced blockage of mTOR complex 1 (mTORC1) signaling, which regulates metabolism, differentially inhibited LF- and HF-modulated protein signatures of mitochondrial NADH dehydrogenase ubiquinone flavoprotein 2, mitochondrial glutathione peroxidase 4, kynureninase, and alpha-crystallin B chain as well as programmed cell death 5 in transcript levels; it subsequently diminished apoptosis and oncospheroid formation in LF/HF-exposed cells. Taken together, our data indicate that suboptimal FA treatment rewired oncogenic metabolism and mTORC1-mediated proteomics signatures to promote breast cancer development.
Collapse
Affiliation(s)
- Angel Huang
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan.
| | - Su-Yu Huang
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan.
| | - Pramod Shah
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan.
| | - Wei-Chi Ku
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
| | - Kuang-Ta Huang
- Ph.D. Program in Nutrition and Food Science, Fu Jen Catholic University, New Taipei City, Taiwan.
| | - Yi-Fang Liu
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan.
| | - Chun-Li Su
- Graduate Program of Nutrition Science, School of Life Science, National Taiwan Normal University, Taiwan.
| | - Rwei-Fen S Huang
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan; Ph.D. Program in Nutrition and Food Science, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
14
|
Behzadi M, Amininasab M, Eghtedardoost M, Bagheri M. Turn-folded magainin lipopeptide analog induces cytoplasmic vacuoles in MDA-MB-231 cells through G2-phase arrest. Biochem Biophys Res Commun 2021; 583:199-205. [PMID: 34752987 DOI: 10.1016/j.bbrc.2021.10.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/30/2021] [Indexed: 02/04/2023]
Abstract
Selective induced non-canonical programmed deaths in the lipid raft type 1-enriched MDA-MB-231 is a promising treatment approach. Cationic amphiphilic peptides conjugated to relatively long fatty acyl chains that tend to self-aggregate are prone to upregulate necroptotic and paraptotic signaling. We investigated the toxic effects of an N-terminally palmitoylated magainin derivate (P1MK5E) in the MDA-MB-231 cells in relation to its structure at molecular level. The modeling showed that the palmitoylation reinforces a turn-like structural motif in the lipopeptide which is likely required for its activity. P1MK5E triggered intracellular generation of reactive oxygen species (ROS), G2-phase arrest, mitochondrial membrane potential (ΔΨmt) disturbance and presumable flopping of phosphatidylserine (PtdSer) to the cancer cell membrane outer surface in a comparable manner to doxorubicin (DOX) that induces apoptotic signaling. Despite forming extensive congregates of different sizes at the cell surface, P1MK5E had little impacts on the MDA-MB-231 membrane integrity. The cell death upon exposure to the lipopeptide was, however, caspase 3 independent and characterized by cytoplasmic vacuolation and no distinct nuclear fragmentation that is to be privileged in the treatment of apoptotic resistance pathways in triple-negative breast cancers (TNBCs).
Collapse
Affiliation(s)
- Malihe Behzadi
- Peptide Chemistry Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, 16 Azar Street, 14176-14335, Tehran, Iran
| | - Mehriar Amininasab
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, 16 Azar Street, 14174-66191, Tehran, Iran
| | - Marzieh Eghtedardoost
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, 14115-111, Tehran, Tehran, Iran
| | - Mojtaba Bagheri
- Peptide Chemistry Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, 16 Azar Street, 14176-14335, Tehran, Iran.
| |
Collapse
|
15
|
Liu X, Gu Y, Bian Y, Cai D, Li Y, Zhao Y, Zhang Z, Xue M, Zhang L. Honokiol induces paraptosis-like cell death of acute promyelocytic leukemia via mTOR & MAPK signaling pathways activation. Apoptosis 2021; 26:195-208. [PMID: 33550458 PMCID: PMC8016806 DOI: 10.1007/s10495-020-01655-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2020] [Indexed: 12/11/2022]
Abstract
Acute promyelocytic leukemia (APL) is a blood system disease caused by the accumulation of a large number of immature blood cells in bone marrow. Although the introduction of all-trans retinoic acid (ATRA) and arsenic has reached a high level of complete remission rate and 5-year disease-free survival rate, the occurrence of various adverse reactions still severely affects the quality of life of patients. As a natural product, honokiol (HNK) has the advantages of low toxicity and high efficiency, and it is a potential drug for the treatment of cancer. Since cancer cells can escape apoptotic cell death through multiple adaptive mechanisms, HNK, a drug that induces cancer cell death in a nonapoptotic way, has attracted much interest. We found that HNK reduced the viability of human APL cell line (NB4 cells) by inducing paraptosis-like cell death. The process was accompanied by excessive reactive oxygen species (ROS), mitochondrial damage, endoplasmic reticulum stress, and increased microtubule-associated protein 1 light chain 3 (LC3) processing. The inactivation of proteasome activity was the main cause of misfolded and unfolded protein accumulation in endoplasmic reticulum, such as LC3II/I and p62. This phenomenon could be alleviated by adding cycloheximide (CHX), a protein synthesis inhibitor. We found that mTOR signaling pathway participated in paraptosis-like cell death induced by HNK in an autophagy-independent process. Moreover, the mitogen-activated protein kinase (MAPK) signaling pathway induced paraptosis of NB4 cells by promoting endoplasmic reticulum stress. In summary, these findings indicate that paraptosis may be a new way to treat APL, and provide novel insights into the potential mechanism of paraptosis-like cell death.
Collapse
Affiliation(s)
- Xiaoli Liu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023 People’s Republic of China
| | - Yan Gu
- Department of Geriatrics, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210003 People’s Republic of China
| | - Yaoyao Bian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023 People’s Republic of China
| | - Danhong Cai
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023 People’s Republic of China
| | - Yu Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023 People’s Republic of China
| | - Ye Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023 People’s Republic of China
| | - Zhaofeng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023 People’s Republic of China
| | - Mei Xue
- College of Basic Medical Sciences, Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023 People’s Republic of China
| | - Liang Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023 People’s Republic of China
| |
Collapse
|
16
|
Nedungadi D, Binoy A, Pandurangan N, Nair BG, Mishra N. Proteasomal dysfunction and ER stress triggers 2'-hydroxy-retrochalcone-induced paraptosis in cancer cells. Cell Biol Int 2020; 45:164-176. [PMID: 33049087 DOI: 10.1002/cbin.11480] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 08/31/2020] [Accepted: 10/11/2020] [Indexed: 12/13/2022]
Abstract
Chalcones are biologically active class of compounds, known for their anticancer activities. Here we show for the first time that out of the six synthetic derivatives of chalcone tested, 2'-hydroxy-retrochalcone (HRC) was the most effective in inducing extensive cytoplasmic vacuolation mediated death called paraptosis in malignant breast and cervical cancer cells. The cell death by HRC is found to be nonapoptotic in nature due to the absence of DNA fragmentation, PARP cleavage, and phosphatidylserine externalization. It was also found to be nonautophagic as there was an increase in the levels of autophagic markers LC3I, LC3II and p62. Immunofluorescence with the endoplasmic reticulum (ER) marker protein calreticulin showed that the cytoplasmic vacuoles formed were derived from the ER. This ER dilation was due to ER stress as evidenced from the increase in polyubiquitinated proteins, Bip and CHOP. Docking studies revealed that HRC could bind to the Thr1 residue on the active site of the chymotrypsin-like subunit of the proteasome. The inhibition of proteasomal activity was further confirmed by the fluorescence based assay of the chymotrypsin-like subunit of the 26S proteasome. The cell death by HRC was also triggered by the collapse of mitochondrial membrane potential and depletion of ATP. Pretreatment with thiol antioxidants and cycloheximide were able to inhibit this programmed cell death. Thus our data suggest that HRC can effectively kill cancer cells via paraptosis, an alternative death pathway and can be a potential lead molecule for anticancer therapy.
Collapse
Affiliation(s)
- Divya Nedungadi
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Anupama Binoy
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Nanjan Pandurangan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Bipin G Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Nandita Mishra
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| |
Collapse
|
17
|
Yu J, Zhong B, Xiao Q, Du L, Hou Y, Sun HS, Lu JJ, Chen X. Induction of programmed necrosis: A novel anti-cancer strategy for natural compounds. Pharmacol Ther 2020; 214:107593. [PMID: 32492512 DOI: 10.1016/j.pharmthera.2020.107593] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2020] [Indexed: 02/08/2023]
Abstract
Cell death plays a critical role in organism development and the pathogenesis of diseases. Necrosis is considered a non-programmed cell death in an extreme environment. Recent advances have provided solid evidence that necrosis could be programmed and quite a few types of programmed necrosis, such as necroptosis, ferroptosis, pyroptosis, paraptosis, mitochondrial permeability transition-driven necrosis, and oncosis, have been identified. The specific biomarkers, detailed signaling, and precise pathophysiological importance of programmed necrosis are yet to be clarified, but these forms of necrosis provide novel strategies for the treatment of various diseases, including cancer. Natural compounds are a unique source of lead compounds for the discovery of anti-cancer drugs. Natural compounds can induce both apoptosis and programmed necrosis. In this review, we summarized the recent progress of programmed necrosis and introduced their natural inducers. Noptosis, which is a novel type of programmed necrosis that is strictly dependent on NAD(P)H: quinone oxidoreductase 1-derived oxidative stress was proposed. Furthermore, the anti-cancer strategies that take advantage of programmed necrosis and the main concerns from the scientific community in this regard were discussed.
Collapse
Affiliation(s)
- Jie Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Bingling Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Qingwen Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Lida Du
- Department of Surgery, University of Toronto, Ontario, Canada
| | - Ying Hou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Hong-Shuo Sun
- Department of Surgery, University of Toronto, Ontario, Canada
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
18
|
Sivandzade F, Alqahtani F, Cucullo L. Traumatic Brain Injury and Blood-Brain Barrier (BBB): Underlying Pathophysiological Mechanisms and the Influence of Cigarette Smoking as a Premorbid Condition. Int J Mol Sci 2020; 21:E2721. [PMID: 32295258 PMCID: PMC7215684 DOI: 10.3390/ijms21082721] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) is among the most pressing global health issues and prevalent causes of cerebrovascular and neurological disorders all over the world. In addition to the brain injury, TBI may also alter the systemic immune response. Thus, TBI patients become vulnerable to infections, have worse neurological outcomes, and exhibit a higher rate of mortality and morbidity. It is well established that brain injury leads to impairments of the blood-brain barrier (BBB) integrity and function, contributing to the loss of neural tissue and affecting the response to neuroprotective drugs. Thus, stabilization/protection of the BBB after TBI could be a promising strategy to limit neuronal inflammation, secondary brain damage, and acute neurodegeneration. Herein, we present a review highlighting the significant post-traumatic effects of TBI on the cerebrovascular system. These include the loss of BBB integrity and selective permeability, impact on BBB transport mechanisms, post-traumatic cerebral edema formation, and significant pathophysiological factors that may further exacerbate post-traumatic BBB dysfunctions. Furthermore, we discuss the post-traumatic impacts of chronic smoking, which has been recently shown to act as a premorbid condition that impairs post-TBI recovery. Indeed, understanding the underlying molecular mechanisms associated with TBI damage is essential to better understand the pathogenesis and progression of post-traumatic secondary brain injury and the development of targeted treatments to improve outcomes and speed up the recovery process. Therapies aimed at restoring/protecting the BBB may reduce the post-traumatic burden of TBI by minimizing the impairment of brain homeostasis and help to restore an optimal microenvironment to support neuronal repair.
Collapse
Affiliation(s)
- Farzane Sivandzade
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA;
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA;
- Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| |
Collapse
|
19
|
The emerging role of paraptosis in tumor cell biology: Perspectives for cancer prevention and therapy with natural compounds. Biochim Biophys Acta Rev Cancer 2020; 1873:188338. [PMID: 31904399 DOI: 10.1016/j.bbcan.2020.188338] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/06/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022]
Abstract
Standard anti-cancer therapies promote tumor growth suppression mainly via induction of apoptosis. However, in most cases cancer cells acquire the ability to escape apoptotic cell death, thus becoming resistant to current treatments. In this setting, the interest in alternative cell death modes has recently increased. Paraptosis is a new form of programmed cell death displaying endoplasmic reticulum (ER) and/or mitochondria dilation, generally due to proteostasis disruption or redox and ion homeostasis alteration. Recent studies have highlighted that several natural compounds can trigger paraptosis in different tumor cell lines. Here, we review the molecular mechanisms underlying paraptotic cell death, as well as the natural products inducing this kind of cell death program. A better understanding of paraptosis should facilitate the development of new therapeutic strategies for cancer prevention and treatment.
Collapse
|
20
|
Nedungadi D, Binoy A, Vinod V, Vanuopadath M, Nair SS, Nair BG, Mishra N. Ginger extract activates caspase independent paraptosis in cancer cells via ER stress, mitochondrial dysfunction, AIF translocation and DNA damage. Nutr Cancer 2019; 73:147-159. [PMID: 31690139 DOI: 10.1080/01635581.2019.1685113] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 01/01/2023]
Abstract
The rhizome of ginger (Zingiber officinale) a common culinary agent is also known for its medicinal activity. We have earlier reported that pure 6-shogaol, an important component of ginger induces paraptosis in triple negative breast cancer (MDA-MB-231) and non small cell lung (A549) cancer cells. However, the chemopreventive potential of the whole ginger extract in food remains to be elucidated. Here, we demonstrate for the first time that ginger extract (GE) triggers similar anticancer activity/paraptosis against the same cell lines but through different molecular mechanisms. Q-TOF LC-MS analysis of the extract showed the presence of several other metabolites along with 6-shogaol and 6-gingerol. GE induces cytoplasmic vacuolation through ER stress and dilation of the ER. Drastic decrease in the mitochondrial membrane potential and ATP production along with the excess generation of ROS contributed to mitochondrial dysfunction. Consequently, GE caused the translocation of apoptosis inducing factor to the nucleus leading to the fragmentation of DNA. Taken together, these show a novel mechanism for ginger extract induced cancer cell death that can be of potential interest for cancer preventive strategies.
Collapse
Affiliation(s)
- Divya Nedungadi
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Anupama Binoy
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Vivek Vinod
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | | | | | - Bipin G Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Nandita Mishra
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| |
Collapse
|
21
|
Wang Y, Wen X, Zhang N, Wang L, Hao D, Jiang X, He G. Small-molecule compounds target paraptosis to improve cancer therapy. Biomed Pharmacother 2019; 118:109203. [PMID: 31306970 DOI: 10.1016/j.biopha.2019.109203] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 02/05/2023] Open
Abstract
According to its different occurrence mechanism, programmed cell death (PCD) is divided into apoptosis, autophagy, necrosis, paraptosis and so on. Paraptosis is morphologically different from apoptosis and autophagy, which exhibit cytoplasmic vacuolation derived from the ER, independent of caspase, absence of apoptotic morphology. Recent researches have implied that a variety of small molecule compounds, such as celastrol, curcumin, can induce paraptosis-associated cell death as the reagent to enhance anti-cancer activity. A better understanding of paraptosis will lay the foundation to develop new therapeutic strategies to treat human cancers that make full use of small-molecule compounds.
Collapse
Affiliation(s)
- Yujia Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiang Wen
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Nan Zhang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Lian Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Hao
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China; State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.
| |
Collapse
|
22
|
Ma Y, Zhao X, Jia J, Yang Y, Fan R, Lv M, Ding F, Wu J, Zhang J. Analysis of Protein Expression in Human Cells Cocultured with Porcine Peripheral Blood Mononuclear Cells. Intervirology 2019; 61:237-246. [PMID: 30889573 DOI: 10.1159/000495179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/15/2018] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Porcine endogenous retroviruses (PERV) involved in pig to human xenotransplantation have raised great concerns because of their ubiquitous nature in pigs and their ability of infecting human cells in vitro. Although no significant cytopathic effect attributed to PERV was evident on PERV-infected human embryonic kidney 293 (HEK293) cells, we did proteomic analysis to investigate the differences of protein profile in order to further characterize the effect of PERV infection. METHODS HEK293 cells were cocultured with porcine peripheral blood mononuclear cells (PBMCs). Protein profiles of PERV-infected and -noninfected HEK293 cells were analyzed by two-dimensional gel electrophoresis (2-DE). Protein spots with at least 1.5-fold alteration were identified by high-definition mass spectrometry (HDMS) analysis. Then real-time RT-PCR and Western blotting were performed to validate the proteomic results. RESULTS Differential analysis of PERV-infected and -noninfected HEK293 cells by 2-DE revealed ten differentially regulated proteins. The proteins identified by HDMS were involved in various cellular pathways including signal transduction, cell apoptosis, and protein synthesis. CONCLUSION The results of this study revealed differentially expressed proteins in HEK293 cells cocultured with porcine PBMCs and implied that these changes were probably induced by PERV infection. These results provide clues and potential links to understanding the molecular effect of the infection by human-tropic PERV.
Collapse
Affiliation(s)
- Yuyuan Ma
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China,
| | - Xiong Zhao
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Junting Jia
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China.,Department of Blood Transfusion, Chinese PLA General Hospital, Beijing, China
| | - Yongxian Yang
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Rui Fan
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Maomin Lv
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Fang Ding
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Jianmin Wu
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China.,Guangxi Veterinary Research Institute, Nanning, China
| | - Jingang Zhang
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
23
|
The impact of photocatalytic Ag/TiO 2 and Ag/N-TiO 2 nanoparticles on human keratinocytes and epithelial lung cells. Toxicology 2019; 416:30-43. [PMID: 30711708 DOI: 10.1016/j.tox.2019.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/12/2018] [Accepted: 01/18/2019] [Indexed: 02/07/2023]
Abstract
The potential human health risks following the exposure to inorganic nanoparticles (NPs) is a very important issue for their application in leather finishing industry. The aim of our study was to investigate the cytotoxic effect of silver (Ag)/titanium dioxide (TiO2) NPs on human cells. Photocatalytic NPs were prepared by electrochemical deposition of Ag on the surface of TiO2 and nitrogen (N)-TiO2 NPs and, subsequently, physico-chemical characterized. Then, a set of experiments have been performed to study the cytotoxicity and cell death mechanisms involved, the changes in cell morphology and the production of ROS induced in human keratinocytes (HaCaT) and human lung epithelial cells (A549) by exposure to NPs. Moreover, the changes in major signaling pathways and the inflammatory response induced by Ag/N-TiO2 NPs in A549 cells were investigated. The data showed that cell death by late apoptosis/necrosis is induced in cells as function of the dose and the type of NPs and is characterized by morphological changes and cytoskeletal disorganization and an increase in reactive oxygen species (ROS) production. The exposure of A549 cells to Ag/N-TiO2 NPs determine the activation of ERK1/2 MAP-kinase pathway and the release of pro-inflammatory mediators CXCL1, GM-CSF and MIF, known to be involved in the recruitment of circulating neutrophils and monocytes.
Collapse
|
24
|
Guo P, Huang J, Zhang J, Meng C, Zhang S, Bai Y, Ning Z, Hu L. The potential role of circRNA_004229 in hair/epidermal regulation after MED1 ablation in keratinocytes. RSC Adv 2019; 9:19095-19103. [PMID: 35516890 PMCID: PMC9065014 DOI: 10.1039/c9ra02322d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/11/2019] [Indexed: 01/03/2023] Open
Abstract
Background/Aims: Mediator complex subunit 1 (MED1) is an important transcriptional co-activator involved in multiple signaling pathways. Previous studies indicated an essential role of MED1 in hair cycling and wound repair through regulating the transcription of mRNAs. Circular RNAs (circRNAs), as a novel class of non-coding RNAs, are involved in various skin biological functions. Our study aimed to investigate the circRNAs expression profile in MED1 epidermal conditional knockout mice (KO), and provide potential candidates as well as the mechanism underlying the circRNAs regulation in both hair follicles and epidermis. Method: Microarray based circRNA expression was determined in MED1 KO mice and wild type mice (WT). The expression level was further confirmed by qRT-PCR. We predicted a possible interaction network of circRNA/microRNA/mRNA by bioinformatics and constructed them with Cytoscape software. Expression of several candidate target mRNAs was verified using qRT-PCR. A TUNEL assay was performed to assess the apoptosis level of MED1 KO and WT skin. Results: Here we identified 109 (34-up, 75-down) distinct circRNAs through microarrays that are differently expressed in MED1 KO mice compared with WT mice (FC > 2 and p-value < 0.05), suggesting a potential role of circRNAs in epidermal regulation. Among these circRNAs, circRNA_004229 was found to decrease significantly after MED1 deletion. The most likely potential targets miRNA for circRNA_004229 include miR-149-5p and miR-207, which possibly further impede the expression of their target mRNA, Tnfrsf19 and Perp, respectively. Apoptosis was suppressed in MED1 KO mice, which implies a potential role of circRNAs in regulating epidermal biological processes including apoptosis. Conclusion: Our study determined the expression profile of circRNAs in MED1 KO skin, and provided hints that circRNA_004229 might be involved in the regulation of keratinocytes in both hair follicles and interfollicular epidermis through a ceRNA mechanism. We demonstrated that circRNA_004229 might inhibit apoptosis through binding miR-207 and miR-149-5p after MED1 deletion in keratinocytes.![]()
Collapse
Affiliation(s)
- Pan Guo
- Immunology Department
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)
- Tianjin Medical University
- Tianjin
- China
| | - Junkai Huang
- Immunology Department
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)
- Tianjin Medical University
- Tianjin
- China
| | - Jing Zhang
- Immunology Department
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)
- Tianjin Medical University
- Tianjin
- China
| | - Chao Meng
- Immunology Department
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)
- Tianjin Medical University
- Tianjin
- China
| | - Shuchang Zhang
- Immunology Department
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)
- Tianjin Medical University
- Tianjin
- China
| | - Yunfeng Bai
- Center of Integrative Medicine
- 302 Hospital of Chinese People's Liberation Army
- Beijing
- China
| | - Zhiwei Ning
- Department of Endocrinology and Metabolism
- Beijing Chaoyang Hospital
- Capital Medical University
- Beijing
- China
| | - Lizhi Hu
- Immunology Department
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)
- Tianjin Medical University
- Tianjin
- China
| |
Collapse
|
25
|
Chen X, Chen X, Zhang X, Wang L, Cao P, Rajamanickam V, Wu C, Zhou H, Cai Y, Liang G, Wang Y. Curcuminoid B63 induces ROS-mediated paraptosis-like cell death by targeting TrxR1 in gastric cells. Redox Biol 2018; 21:101061. [PMID: 30590310 PMCID: PMC6306695 DOI: 10.1016/j.redox.2018.11.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/25/2018] [Accepted: 11/26/2018] [Indexed: 01/07/2023] Open
Abstract
Gastric cancer is one of the leading causes of cancer-related deaths. Chemotherapy has improved long-term survival of patients with gastric cancer. Unfortunately, cancer readily develops resistance to apoptosis-inducing agents. New mechanisms, inducing caspase-independent paraptosis-like cell death in cancer cells is presently emerging as a potential direction. We previously developed a curcumin analog B63 as an anti-cancer agent in pre-clinical evaluation. In the present study, we evaluated the effect and mechanism of B63 on gastric cancer cells. Our studies show that B63 targets TrxR1 protein and increases cellular reactive oxygen species (ROS) level, which results in halting gastric cancer cells and inducing caspase-independent paraptotic modes of death. The paraptosis induced by B63 was mediated by ROS-mediated ER stress and MAPK activation. Either overexpression of TrxR1 or suppression of ROS normalized B63-induced paraptosis in gastric cancer cells. Furthermore, B63 caused paraptosis in 5-fluorouracil-resistant gastric cancer cells, and B63 treatment reduced the growth of gastric cancer xenografts, which was associated with increased ROS and paraptosis. Collectively, our findings provide a novel strategy for the treatment of gastric cancer by utilizing TrxR1-mediated oxidative stress generation and subsequent cell paraptosis.
Collapse
Affiliation(s)
- Xi Chen
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
| | - Xiaoming Chen
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xi Zhang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
| | - Li Wang
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Peihai Cao
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Vinothkumar Rajamanickam
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chao Wu
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huiping Zhou
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuepiao Cai
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China.
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China.
| |
Collapse
|
26
|
Kwak S, Lee S, Han E, Park S, Jeong M, Seo J, Park S, Sung G, Yoo J, Yoon H, Choi K. Serine/threonine kinase 31 promotes PDCD5‐mediated apoptosis in p53‐dependent human colon cancer cells. J Cell Physiol 2018; 234:2649-2658. [DOI: 10.1002/jcp.27079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/29/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Sungmin Kwak
- Department of Biomedical SciencesAsan Medical Center, AMIST, University of Ulsan College of MedicineSeoul Korea
- Department of PharmacologyUniversity of Ulsan College of MedicineSeoul Korea
| | - Seung‐Hyun Lee
- Department of Biochemistry and Molecular BiologyCenter for Chronic Metabolic Disease Research, Brain Korea 21 Plus Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of MedicineSeoul Korea
| | - Eun‐Jung Han
- Department of Biochemistry and Molecular BiologyCenter for Chronic Metabolic Disease Research, Brain Korea 21 Plus Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of MedicineSeoul Korea
| | - Soo‐Yeon Park
- Department of Biochemistry and Molecular BiologyCenter for Chronic Metabolic Disease Research, Brain Korea 21 Plus Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of MedicineSeoul Korea
| | - Mi‐Hyeon Jeong
- Department of Biochemistry and Molecular BiologyCenter for Chronic Metabolic Disease Research, Brain Korea 21 Plus Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of MedicineSeoul Korea
| | - Jaesung Seo
- Department of Biochemistry and Molecular BiologyCenter for Chronic Metabolic Disease Research, Brain Korea 21 Plus Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of MedicineSeoul Korea
| | - Seung‐Ho Park
- Department of Biomedical SciencesAsan Medical Center, AMIST, University of Ulsan College of MedicineSeoul Korea
- Department of PharmacologyUniversity of Ulsan College of MedicineSeoul Korea
| | - Gi‐Jun Sung
- Department of Biomedical SciencesAsan Medical Center, AMIST, University of Ulsan College of MedicineSeoul Korea
- Department of PharmacologyUniversity of Ulsan College of MedicineSeoul Korea
| | - Jung‐Yoon Yoo
- Department of Biochemistry and Molecular BiologyCenter for Chronic Metabolic Disease Research, Brain Korea 21 Plus Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of MedicineSeoul Korea
| | - Ho‐Geun Yoon
- Department of Biochemistry and Molecular BiologyCenter for Chronic Metabolic Disease Research, Brain Korea 21 Plus Project for Medical Sciences, Severance Medical Research Institute, Yonsei University College of MedicineSeoul Korea
| | - Kyung‐Chul Choi
- Department of Biomedical SciencesAsan Medical Center, AMIST, University of Ulsan College of MedicineSeoul Korea
- Department of PharmacologyUniversity of Ulsan College of MedicineSeoul Korea
| |
Collapse
|
27
|
Han H, Chou CC, Li R, Liu J, Zhang L, Zhu W, Hu J, Yang B, Tian J. Chalcomoracin is a potent anticancer agent acting through triggering Oxidative stress via a mitophagy- and paraptosis-dependent mechanism. Sci Rep 2018; 8:9566. [PMID: 29934599 PMCID: PMC6014977 DOI: 10.1038/s41598-018-27724-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/17/2018] [Indexed: 11/24/2022] Open
Abstract
Chalocomoracin (CMR), one of the major secondary metabolites found in fungus-infected mulberry leaves, is a potent anticancer agent. However, its anticancer mechanism remains elusive. Here, we demonstrated the potent anti-tumor activity and molecular mechanism of CMR both in vitro and in vivo. We showed for the first time that CMR treatment markedly promoted paraptosis along with extensive cytoplasmic vacuolation derived from the endoplasmic reticulum, rather than apoptosis, in PC-3 and MDA-MB-231cell lines. Additional studies revealed that ectopic expression of Myc-PINK1 (PTEN-induced kinase 1), a key regulator of mitophagy, rendered LNCap cells susceptible to CMR-induced paraptosis, suggesting that the mitophagy-dependent pathway plays a crucial role in inducing paraptosis by activating PINK1. CMR treatment directly upregulated PINK1 and downregulated Alix genes in MDA-MB-231 and PC-3 cell lines. Furthermore, mitophagy signaling and paraptosis with cytoplasmic vacuolation could be blocked by antioxidant N-acetylcysteine (NAC), indicating the novel pathway was triggered by reactive oxygen species (ROS) production. An in vivo MDA-MB-231 xenograft tumor model revealed that CMR suppressed tumor growth by inducing vacuolation production through the same signal changes as those observed in vitro. These data suggest that CMR is a potential therapeutic entity for cancer treatment through a non-apoptotic pathway.
Collapse
Affiliation(s)
- Haote Han
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, P.R. China.,Zhejiang-Malaysia Joint Research Center for Traditional Medicine, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Chih-Chien Chou
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Ruyi Li
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Jiangyun Liu
- A College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P.R. China
| | - Lin Zhang
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, P.R. China.,Zhejiang-Malaysia Joint Research Center for Traditional Medicine, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Wei Zhu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, P.R. China.,Zhejiang-Malaysia Joint Research Center for Traditional Medicine, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Jin Hu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, P.R. China.,Zhejiang-Malaysia Joint Research Center for Traditional Medicine, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Bingxian Yang
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, P.R. China.,Zhejiang-Malaysia Joint Research Center for Traditional Medicine, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, P.R. China. .,Zhejiang-Malaysia Joint Research Center for Traditional Medicine, Zhejiang University, Hangzhou, 310027, P.R. China.
| |
Collapse
|
28
|
PDCD5 regulates iNKT cell terminal maturation and iNKT1 fate decision. Cell Mol Immunol 2018; 16:746-756. [PMID: 29921968 DOI: 10.1038/s41423-018-0059-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/30/2018] [Indexed: 01/24/2023] Open
Abstract
Invariant natural killer T1 (iNKT1) cells are characterized by the preferential expression of T-box transcription factor T-bet (encoded by Tbx21) and the production of cytokine IFN-γ, but the relationship between the developmental process and iNKT1 lineage diversification in the thymus remains elusive. We report in the present study a crucial role of programmed cell death 5 (PDCD5) in iNKT cell terminal maturation and iNKT1 fate determination. Mice with T cell-specific deletion of PDCD5 had decreased numbers of thymic and peripheral iNKT cells with a predominantly immature phenotype and defects in response to α-galactosylceramide. Loss of PDCD5 also selectively abolished the iNKT1 lineage by reducing T-bet expression in iNKT cells at an early thymic developmental stage (before CD44 upregulation). We further demonstrated that TOX2, one of the high mobility group proteins that was highly expressed in iNKT cells at stage 1 and could be stabilized by PDCD5, promoted the permissive histone H3K4me3 modification in the promoter region of Tbx21. These data indicate a pivotal and unique role of PDCD5/TOX2 in iNKT1 lineage determination. They also suggest that the fate of iNKT1 may be programmed at the developmental stage of iNKT cells in the thymus.
Collapse
|
29
|
Programmed cell death 5 suppresses AKT-mediated cytoprotection of endothelium. Proc Natl Acad Sci U S A 2018; 115:4672-4677. [PMID: 29588416 DOI: 10.1073/pnas.1712918115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Programmed cell death 5 (PDCD5) has been associated with human cancers as a regulator of cell death; however, the role of PDCD5 in the endothelium has not been revealed. Thus, we investigated whether PDCD5 regulates protein kinase B (PKB/AKT)-endothelial nitric oxide synthase (eNOS)-dependent signal transduction in the endothelium and affects atherosclerosis. Endothelial-specific PDCD5 knockout mice showed significantly reduced vascular remodeling compared with wild-type (WT) mice after partial carotid ligation. WT PDCD5 competitively inhibited interaction between histone deacetylase 3 (HDAC3) and AKT, but PDCD5L6R, an HDAC3-binding-deficient mutant, did not. Knockdown of PDCD5 accelerated HDAC3-AKT interaction, AKT and eNOS phosphorylation, and nitric oxide (NO) production in human umbilical vein endothelial cells. Moreover, we found that serum PDCD5 levels reflect endothelial NO production and are correlated with diabetes mellitus, high-density lipoprotein cholesterol, and coronary calcium in human samples obtained from the cardiovascular high-risk cohort. Therefore, we conclude that PDCD5 is associated with endothelial dysfunction and may be a novel therapeutic target in atherosclerosis.
Collapse
|
30
|
Shubin AV, Demidyuk IV, Komissarov AA, Rafieva LM, Kostrov SV. Cytoplasmic vacuolization in cell death and survival. Oncotarget 2018; 7:55863-55889. [PMID: 27331412 PMCID: PMC5342458 DOI: 10.18632/oncotarget.10150] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 06/06/2016] [Indexed: 12/15/2022] Open
Abstract
Cytoplasmic vacuolization (also called cytoplasmic vacuolation) is a well-known morphological phenomenon observed in mammalian cells after exposure to bacterial or viral pathogens as well as to various natural and artificial low-molecular-weight compounds. Vacuolization often accompanies cell death; however, its role in cell death processes remains unclear. This can be attributed to studying vacuolization at the level of morphology for many years. At the same time, new data on the molecular mechanisms of the vacuole formation and structure have become available. In addition, numerous examples of the association between vacuolization and previously unknown cell death types have been reported. Here, we review these data to make a deeper insight into the role of cytoplasmic vacuolization in cell death and survival.
Collapse
Affiliation(s)
- Andrey V Shubin
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia.,Laboratory of Chemical Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia.,Laboratory of Biologically Active Nanostructures, N.F. Gamaleya Institute of Epidemiology and Microbiology, Moscow, Russia
| | - Ilya V Demidyuk
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia
| | - Alexey A Komissarov
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia
| | - Lola M Rafieva
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia
| | - Sergey V Kostrov
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia
| |
Collapse
|
31
|
Kim IY, Kwon M, Choi MK, Lee D, Lee DM, Seo MJ, Choi KS. Ophiobolin A kills human glioblastoma cells by inducing endoplasmic reticulum stress via disruption of thiol proteostasis. Oncotarget 2017; 8:106740-106752. [PMID: 29290985 PMCID: PMC5739770 DOI: 10.18632/oncotarget.22537] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 10/28/2017] [Indexed: 12/25/2022] Open
Abstract
Ophiobolin A (OP-A), a fungal sesterterpene from Bipolaris oryzae, was recently shown to have anti-glioma activity. We show here that OP-A induces paraptosis-like cell death accompanied by dilation of the endoplasmic reticulum (ER) in glioma cells, and that CHOP-mediated ER stress plays a critical role in this process. OP-A-induced ER-derived dilation and cell death were found to be independent of reactive oxygen species, but were effectively blocked by various thiol antioxidants. We observed that OP-A can react with cysteinyl thiols to form Michael adducts, suggesting that the ability of OP-A to covalently modify free sulfhydryl groups on proteins may cause protein misfolding and the accumulation of misfolded proteins, leading to paraptosis-like cell death. Taken together, these results indicate that the disruption of thiol proteostasis may critically contribute to the anti-glioma activity of OP-A.
Collapse
Affiliation(s)
- In Young Kim
- Department of Biochemistry, Ajou University School of Medicine, Suwon, Korea.,BK21 Plus Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - MiRi Kwon
- Department of Biochemistry, Ajou University School of Medicine, Suwon, Korea.,BK21 Plus Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Min-Koo Choi
- College of Pharmacy, Dankook University, Cheonan, Korea
| | - Dongjoo Lee
- College of Pharmacy, Ajou University, Suwon, Korea
| | - Dong Min Lee
- Department of Biochemistry, Ajou University School of Medicine, Suwon, Korea.,BK21 Plus Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Min Ji Seo
- Department of Biochemistry, Ajou University School of Medicine, Suwon, Korea.,BK21 Plus Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Kyeong Sook Choi
- Department of Biochemistry, Ajou University School of Medicine, Suwon, Korea.,BK21 Plus Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
32
|
Li P, Fei H, Wang L, Xu H, Zhang H, Zheng L. PDCD5 regulates cell proliferation, cell cycle progression and apoptosis. Oncol Lett 2017; 15:1177-1183. [PMID: 29403562 DOI: 10.3892/ol.2017.7401] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 08/03/2017] [Indexed: 12/14/2022] Open
Abstract
Programmed cell death (PDCD)5 is cloned from human leukemia cell line TF-1. PDCD5 is one of the members of the programmed cell death protein family that is frequently involved in tumor growth and apoptosis. To investigate the molecular and cellular functions of PDCD5, the present study established a PDCD5 stably overexpressing A431 cell line and examined the role of PDCD5 in cell proliferation, cell cycle progression and apoptosis. The data demonstrated that overexpression of PDCD5 significantly inhibited cell proliferation, induced cell cycle arrest at G2/M phase and apoptosis in A431 cells. The expression profiles of certain key regulators of these cellular events were further investigated, including P53, B cell lymphoma (BCL)-2, BCL-2 associated X protein (BAX) and caspase (CASP)3. The data demonstrated that at the transcript and protein levels, P53, BAX and CASP3 were all upregulated in the PDCD5 stably overexpressing A431 cells whereas BCL-2 was downregulated, indicating that PDCD5 acts as an important upstream regulator of P53, BCL-2, BAX and CASP3. The data suggest that PDCD5 regulates cell proliferation, cell cycle progression and apoptosis in A431 cells. PDCD5 may be a novel tumor suppressor gene, and may be potentially used for cancer treatment in the future.
Collapse
Affiliation(s)
- Penghui Li
- Department of Biogenetics, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Hongxin Fei
- Department of Histology and Embryology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Lihong Wang
- Department of Immunology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Huiyu Xu
- Department of Immunology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Haiyan Zhang
- Department of Histology and Embryology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Lihong Zheng
- Department of Biogenetics, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| |
Collapse
|
33
|
Biazi BI, Zanetti TA, Baranoski A, Corveloni AC, Mantovani MS. Cis-Nerolidol Induces Endoplasmic Reticulum Stress and Cell Death in Human Hepatocellular Carcinoma Cells through Extensive CYP2C19 and CYP1A2 Oxidation. Basic Clin Pharmacol Toxicol 2017; 121:334-341. [PMID: 28256105 DOI: 10.1111/bcpt.12772] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 02/21/2017] [Indexed: 01/04/2025]
Abstract
Of late, many studies are attempting to find new molecules with anticancer properties, especially those with the capability to inhibit cell growth. The aim of this work was to evaluate nerolidol, a plant-based compound, as its cytotoxicity, genotoxicity, antiproliferative and apoptotic induction, cell cycle, mitochondrial membrane potential and RT-qPCR of transcripts related to those pathways in the human hepatocellular carcinoma cell line (HepG2/C3A). Only cis-nerolidol (C-NER) demonstrated cytotoxicity (100-250 μM) activity and was selected to conduct the following experiments. C-NER did not show genotoxic activity, but altered the mitochondrial membrane potential, reduced cell proliferation by arresting cell cycle in G1 phase and induced cell death. RT-qPCR showed that C-NER down-regulated genes related to apoptosis (BAK1, BAX, CAPN1, CASP8, CASP9, PARP1 and TP53), cell cycle (CCND1, CCNE1, CDK1 and CDK2), xenobiotic metabolism (CYP2D6 and CYP3A4) and paraptosis (IGF1R receptor). Up-regulation was seen in case of genes related to cell survival (BBC3 and MYC) and reticulum stress protein response (EIF2AK3 and ERN1) and xenobiotic metabolism (CYP1A2 and CYP2C19). We deduced that the antiproliferative activity of C-NER is attributable to its modulation of the cyclins and cyclin-dependent kinases as these proteins are necessary for G1/S phase transition. EIF2AK3, ERN1, CYP2C19 and CYP1A2 up-regulation suggests that endoplasmic reticulum stress was induced owing to the increased activity of cytochrome P450 enzymes. Caspase-independent cell death was also observed, indicating that another type of cell death, paraptosis, was triggered. Our results indicate that C-NER has considerable potential in anticancer therapy because it modulates important molecular targets of cell survival and proliferation.
Collapse
Affiliation(s)
- Bruna Isabela Biazi
- Laboratory of Toxicological Genetics, Department of General Biology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Paraná, Brazil
| | - Thalita Alves Zanetti
- Laboratory of Toxicological Genetics, Department of General Biology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Paraná, Brazil
| | - Adrivanio Baranoski
- Laboratory of Toxicological Genetics, Department of General Biology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Paraná, Brazil
| | - Amanda Cristina Corveloni
- Laboratory of Toxicological Genetics, Department of General Biology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Paraná, Brazil
| | - Mário Sérgio Mantovani
- Laboratory of Toxicological Genetics, Department of General Biology, Biological Sciences Center, State University of Londrina - UEL, Londrina, Paraná, Brazil
| |
Collapse
|
34
|
Everson TM, Kappil M, Hao K, Jackson BP, Punshon T, Karagas MR, Chen J, Marsit CJ. Maternal exposure to selenium and cadmium, fetal growth, and placental expression of steroidogenic and apoptotic genes. ENVIRONMENTAL RESEARCH 2017; 158:233-244. [PMID: 28662449 PMCID: PMC5554457 DOI: 10.1016/j.envres.2017.06.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/16/2017] [Accepted: 06/18/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Cadmium (Cd) and selenium (Se) antagonistically influence redox balance and apoptotic signaling, with Cd potentially promoting and Se inhibiting oxidative stress and apoptosis. Alterations to placental redox and apoptotic functions by maternal exposure to Cd and Se during pregnancy may explain some of the Cd and Se associations with fetal development. OBJECTIVES Investigate associations between Cd and Se concentrations in maternal toenails with placental expression patterns of tumor necrosis factor (TNF) and steroidogenic genes involved in redox reactions and test associations with fetal growth. METHODS In a sub-sample from the Rhode Island Child Health Study (n = 173), we investigated the relationships between: (1) maternal toenail Cd and Se concentrations and fetal growth using logistic regression, (2) Cd and Se interactions with factor scores from placental TNF and steroidogenic expression patterns (RNAseq) using linear models, and (3) TNF and steroidogenic expression factors with fetal growth via analysis of covariance. RESULTS Se was associated with decreased odds of intrauterine growth restriction (IUGR) (OR = 0.27, p-value = 0.045). Cd was associated with increased odds of IUGR (OR = 1.95, p-value = 0.13) and small for gestational age (SGA) births (OR = 1.46, p-value = 0.11), though not statistically significant. Cd and Se concentrations were antagonistically associated with placental TNF and steroidogenic expression patterns, which also differed by birth size. CONCLUSIONS Se may act as an antagonist to Cd and as a modifiable protective factor in fetal growth restriction, and these data suggest these effects may be due to associated variations in the regulation of genes involved in placental redox balance and/or apoptotic signaling.
Collapse
Affiliation(s)
- Todd M Everson
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Maya Kappil
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ke Hao
- Department of Genome Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian P Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
| | - Tracy Punshon
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carmen J Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
35
|
Chen X, Zhang X, Chen J, Yang Q, Yang L, Xu D, Zhang P, Wang X, Liu J. Hinokitiol copper complex inhibits proteasomal deubiquitination and induces paraptosis-like cell death in human cancer cells. Eur J Pharmacol 2017; 815:147-155. [PMID: 28887042 DOI: 10.1016/j.ejphar.2017.09.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 12/29/2022]
Abstract
The ubiquitin-proteasome system (UPS) plays a central role in the regulation of proteins that control cell growth and apoptosis and has therefore become an important target for anticancer therapy. Several constitutive subunits of the 19S proteasome display deubiquitinase (DUB) activity, suggesting that ubiquitin modification of proteins is dynamically regulated. Our study and others have shown that metal complexes, such as copper complexes, can induce cancer cell apoptosis through inhibiting 19S proteasome-associated DUBs and/or 20S proteasome activity. In this study, we found that (1) Hinokitiol copper complex (HK-Cu) induces striking accumulation of ubiquitinated proteins in A549 and K562 cells (2) HK-Cu potently inhibits the activity of the 19S proteasomal DUBs much more effectively than it does to the chymotrypsin-like activity of the 20S proteasome (3) HK-Cu effectively induces caspase-independent and paraptosis-like cell death in A549 and K562 cells, and (4) HK-Cu-induced cell death depends on ATF4-assosiated ER stress but is apparently not related to ROS generation. Altogether, these data indicate that HK-Cu can inhibit the activity of the 19S proteasomal DUBs and induce paraptosis-like cell death, representing a new drug candidate for cancer treatment.
Collapse
Affiliation(s)
- Xin Chen
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaolan Zhang
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinghong Chen
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China; Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qianqian Yang
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Yang
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dacai Xu
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peiquan Zhang
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuejun Wang
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China; Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA
| | - Jinbao Liu
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
36
|
Ma Z, Chen C, Tang P, Zhang H, Yue J, Yu Z. BNIP3 induces apoptosis and protective autophagy under hypoxia in esophageal squamous cell carcinoma cell lines: BNIP3 regulates cell death. Dis Esophagus 2017; 30:1-8. [PMID: 28859361 DOI: 10.1093/dote/dox059] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Indexed: 12/11/2022]
Abstract
Bcl-2/adenovirus E1B 19-kDa interacting protein (BNIP3), a pro-apoptosis protein regulated by the methylation status of its promoter, has been implicated in inducing autophagy. However, the roles of BNIP3 and BNIP3-induced autophagy under hypoxia remain uncertain in esophageal squamous cell carcinoma (ESCC). Two esophageal squamous cancer cell lines, CAES17 and KYSE140, were selected on the basis of the expression and methylation status of BNIP3 to investigate the features of BNIP3 under hypoxia. Hypoxia increased cell death and the expression of BNIP3, whose promoter status was lower methylation, in a time-dependent manner. BNIP3 knockdown by RNA interference downregulated cell death. These studies demonstrated that the exposure of ESCC cells to hypoxia increased the autophagic punctate distribution of MDC staining and GFP-LC3 and that autophagy rate could be inhibited by BNIP3-siRNA. In addition, under hypoxia, cells transfected with BNIP3-siRNA exhibited a lower apoptosis rate than the control, and the apoptosis induced by BNIP3 exhibited a caspase-independent manner. Furthermore, the administration of the autophagic inhibitor 3-methyladenine (3-MA) could augment BNIP3-induced cell apoptosis and death, suggesting that autophagy plays a protective role under hypoxia. Together, our studies indicated that BNIP3 exerts prodeath effects through the induction of caspase-independent apoptosis under hypoxia in ESCC, though BNIP3-induced autophagy acting as a survival mechanism.
Collapse
Affiliation(s)
- Z Ma
- Department of Esophageal Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - C Chen
- Department of Esophageal Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - P Tang
- Department of Esophageal Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - H Zhang
- Department of Esophageal Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - J Yue
- Department of Esophageal Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Z Yu
- Department of Esophageal Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
37
|
Li C, Ip KW, Man WL, Song D, He ML, Yiu SM, Lau TC, Zhu G. Cytotoxic (salen)ruthenium(iii) anticancer complexes exhibit different modes of cell death directed by axial ligands. Chem Sci 2017; 8:6865-6870. [PMID: 29147511 PMCID: PMC5632802 DOI: 10.1039/c7sc02205k] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/27/2017] [Indexed: 12/12/2022] Open
Abstract
A cancer-cell selective bis(guanidine)-ruthenium(iii) complex induces apoptosis, whereas its amidine analogue effectively kills cancer cells through paraptosis pathways.
Two novel series of (salen)ruthenium(iii) complexes bearing guanidine and amidine axial ligands were synthesized, characterized, and evaluated for anticancer activity. In vitro cytotoxicity tests demonstrate that these complexes are cytotoxic against various cancer cell lines and the leading complexes have remarkable cancer-cell selectivity. A detailed study of the guanidine complex 7 and the amidine complex 13 reveals two distinguished modes of action. Complex 7 weakly binds to DNA and induces DNA damage, cell cycle arrest, and typical apoptosis pathways in MCF-7 cells. In contrast, complex 13 induces paraptosis-like cell death hallmarked by massive vacuole formation, mitochondrial swelling, and ER stress, resulting in significant cytotoxicity against human breast cancer cells. Our results provide an extraordinary example of tuning the mechanism of action of (salen)ruthenium(iii) anticancer complexes by modifying the structure of the axial ligands.
Collapse
Affiliation(s)
- Cai Li
- Department of Chemistry , City University of Hong Kong , 83 Tat Chee Ave , Kowloon Tong , Hong Kong SAR . ; .,City University of Hong Kong Shenzhen Research Institute , Shenzhen , P. R. China
| | - Kwok-Wa Ip
- Department of Chemistry , City University of Hong Kong , 83 Tat Chee Ave , Kowloon Tong , Hong Kong SAR . ;
| | - Wai-Lun Man
- Department of Chemistry , City University of Hong Kong , 83 Tat Chee Ave , Kowloon Tong , Hong Kong SAR . ;
| | - Dan Song
- Department of Biomedical Sciences , City University of Hong Kong , 83 Tat Chee Ave , Kowloon Tong , Hong Kong SAR
| | - Ming-Liang He
- Department of Biomedical Sciences , City University of Hong Kong , 83 Tat Chee Ave , Kowloon Tong , Hong Kong SAR
| | - Shek-Man Yiu
- Department of Chemistry , City University of Hong Kong , 83 Tat Chee Ave , Kowloon Tong , Hong Kong SAR . ;
| | - Tai-Chu Lau
- Department of Chemistry , City University of Hong Kong , 83 Tat Chee Ave , Kowloon Tong , Hong Kong SAR . ; .,Institute of Molecular Functional Materials , City University of Hong Kong , 83 Tat Chee Ave , Kowloon Tong , Hong Kong SAR
| | - Guangyu Zhu
- Department of Chemistry , City University of Hong Kong , 83 Tat Chee Ave , Kowloon Tong , Hong Kong SAR . ; .,City University of Hong Kong Shenzhen Research Institute , Shenzhen , P. R. China
| |
Collapse
|
38
|
Fusaric Acid immunotoxicity and MAPK activation in normal peripheral blood mononuclear cells and Thp-1 cells. Sci Rep 2017; 7:3051. [PMID: 28596589 PMCID: PMC5465181 DOI: 10.1038/s41598-017-03183-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 04/26/2017] [Indexed: 12/18/2022] Open
Abstract
Fusaric acid (FA), a food-borne mycotoxin, is a potent divalent metal chelator. The human immune system is complex and susceptible to environmental insult however, the immunotoxity of FA remains unknown. We investigated the immunotoxicity of FA on human peripheral blood mononuclear cells (PBMCs) and Thp-1 cells. FA was cytotoxic to PBMCs (IC50-240.8 μg/ml) and Thp-1 (IC50-107.7 μg/ml) cells at 24 h. FA induced early apoptosis but significantly decreased caspase activity in PBMCs, a characteristic of paraptosis. In Thp-1 cells, FA induced apoptosis and increased caspase -9 and -3/7 activities. In PBMCs, FA maintained mitochondrial membrane potential and decreased protein expression of Bax whilst increasing expression of p-Bcl-2; FA induced oxidative stress and depleted ATP levels in both cell types. In Thp-1 cells, FA increased mitochondrial membrane depolarization and decreased p-Bcl-2 expression. In PBMCs, FA significantly up-regulated the MAPK protein expression of p-ERK and p-JNK but down-regulated p-p38 expression. In Thp-1 cells, FA up-regulated MAPK protein expression of p-ERK whilst p-JNK and p-p38 expression were down-regulated. In conclusion FA induced programmed cell death and altered MAPK signaling in healthy PBMCs and Thp-1 cells strongly suggesting a possible mechanism of FA induced immunotoxicity in vitro.
Collapse
|
39
|
Li G, Xu C, Lin X, Qu L, Xia D, Hongdu B, Xia Y, Wang X, Lou Y, He Q, Ma D, Chen Y. Deletion of Pdcd5 in mice led to the deficiency of placenta development and embryonic lethality. Cell Death Dis 2017; 8:e2811. [PMID: 28542142 PMCID: PMC5520688 DOI: 10.1038/cddis.2017.124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 02/23/2017] [Accepted: 02/23/2017] [Indexed: 12/31/2022]
Abstract
Programmed cell death 5 (PDCD5) is an apoptosis promoter molecule that displays multiple biological activities. However, the function of PDCD5 in vivo has not yet been investigated. Here, we generated a Pdcd5 knockout mouse model to study the physiological role of PDCD5 in vivo. Knockout of the Pdcd5 gene resulted in embryonic lethality at mid-gestation. Histopathological analysis revealed dysplasia in both the LZs and JZs in Pdcd5–/– placentas with defects in spongiotrophoblasts and trophoblast giant cells. Furthermore, Pdcd5–/– embryos had impaired transplacental passage capacity. We also found that Pdcd5–/– embryos exhibited cardiac abnormalities and defective liver development. The growth defect is linked to impaired placental development and may be caused by insufficient oxygen and nutrient transfer across the placenta. These findings were verified in vitro in Pdcd5 knockout mouse embryonic fibroblasts, which showed increased apoptosis and G0/G1 phase cell cycle arrest. Pdcd5 knockout decreased the Vegf and hepatocyte growth factor (Hgf) levels, downregulated the downstream Pik3ca–Akt–Mtor signal pathway and decreased cell survival. Collectively, our studies demonstrated that Pdcd5 knockout in mouse embryos results in placental defects and embryonic lethality.
Collapse
Affiliation(s)
- Ge Li
- Department of Immunology, Peking University School of Basic Medical Science, No. 38 Xueyuan Road, Beijing 100191, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, No. 38 Xueyuan Road, Beijing 100191, China.,The Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, Inner Mongolia 010050, China.,Center for Human Disease Genomics, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Chentong Xu
- Department of Immunology, Peking University School of Basic Medical Science, No. 38 Xueyuan Road, Beijing 100191, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, No. 38 Xueyuan Road, Beijing 100191, China.,Center for Human Disease Genomics, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Xin Lin
- Department of Immunology, Peking University School of Basic Medical Science, No. 38 Xueyuan Road, Beijing 100191, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, No. 38 Xueyuan Road, Beijing 100191, China.,Center for Human Disease Genomics, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Liujing Qu
- Department of Immunology, Peking University School of Basic Medical Science, No. 38 Xueyuan Road, Beijing 100191, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, No. 38 Xueyuan Road, Beijing 100191, China.,Center for Human Disease Genomics, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Dan Xia
- Department of Immunology, Peking University School of Basic Medical Science, No. 38 Xueyuan Road, Beijing 100191, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, No. 38 Xueyuan Road, Beijing 100191, China.,Center for Human Disease Genomics, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Beiqi Hongdu
- Department of Immunology, Peking University School of Basic Medical Science, No. 38 Xueyuan Road, Beijing 100191, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, No. 38 Xueyuan Road, Beijing 100191, China.,Center for Human Disease Genomics, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Yan Xia
- Department of Immunology, Peking University School of Basic Medical Science, No. 38 Xueyuan Road, Beijing 100191, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, No. 38 Xueyuan Road, Beijing 100191, China.,Center for Human Disease Genomics, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Xiaokun Wang
- Center for Human Disease Genomics, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Yaxin Lou
- Medical and Healthy Analytical Center, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Qihua He
- Medical and Healthy Analytical Center, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Dalong Ma
- Department of Immunology, Peking University School of Basic Medical Science, No. 38 Xueyuan Road, Beijing 100191, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, No. 38 Xueyuan Road, Beijing 100191, China.,Center for Human Disease Genomics, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Yingyu Chen
- Department of Immunology, Peking University School of Basic Medical Science, No. 38 Xueyuan Road, Beijing 100191, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Sciences Center, No. 38 Xueyuan Road, Beijing 100191, China.,Center for Human Disease Genomics, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| |
Collapse
|
40
|
Korsnes MS, Korsnes R. Mitotic Catastrophe in BC3H1 Cells following Yessotoxin Exposure. Front Cell Dev Biol 2017; 5:30. [PMID: 28409150 PMCID: PMC5374163 DOI: 10.3389/fcell.2017.00030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/15/2017] [Indexed: 11/13/2022] Open
Abstract
The marine toxin yessotoxin (YTX) can cause various cytotoxic effects depending on cell type and cell line. It is well known to trigger distinct mechanisms for programmed cell death which may overlap or cross-talk. The present contribution provides the first evidence that YTX can cause genotoxicity and induce mitotic catastrophe which can lead to different types of cell death. This work also demonstrates potential information gain from non-intrusive computer-based tracking of many individual cells during long time. Treatment of BC3H1 cells at their exponential growth phase causes atypical nuclear alterations and formation of giant cells with multiple nuclei. These are the most prominent morphological features of mitotic catastrophe. Giant cells undergo slow cell death in a necrosis-like manner. However, apoptotic-like cell death is also observed in these cells. Electron microscopy of treated BC3H1 cells reveal uncondensed chromatin and cells with double nuclei. Activation of p-p53, p-H2AX, p-Chk1, p-ATM, and p-ATR and down-regulation of p-Chk2 indicate DNA damage response and cell cycle deregulation. Micronuclei formation further support this evidence. Data from tracking single cells reveal that YTX treatment suppresses a second round of cell division in BC3H1 cells. These findings suggest that YTX can induce genomic alterations or imperfections in chromosomal segregation leading to permanent mitotic failure. This understanding extends the list of effects from YTX and which are of interest to control cancer and tumor progression.
Collapse
Affiliation(s)
- Mónica Suárez Korsnes
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life SciencesÅs, Norway.,Nofima ASÅs, Norway
| | - Reinert Korsnes
- Nofima ASÅs, Norway.,Norwegian Defence Research EstablishmentKjeller, Norway.,Norwegian Institute of Bioeconomy ResearchÅs, Norway
| |
Collapse
|
41
|
Ghosh K, De S, Das S, Mukherjee S, Sengupta Bandyopadhyay S. Withaferin A Induces ROS-Mediated Paraptosis in Human Breast Cancer Cell-Lines MCF-7 and MDA-MB-231. PLoS One 2016; 11:e0168488. [PMID: 28033383 PMCID: PMC5199013 DOI: 10.1371/journal.pone.0168488] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/30/2016] [Indexed: 11/18/2022] Open
Abstract
Advancement in cancer therapy requires a better understanding of the detailed mechanisms that induce death in cancer cells. Besides apoptosis, themode of other types of cell death has been increasingly recognized in response to therapy. Paraptosis is a non-apoptotic alternative form of programmed cell death, morphologically) distinct from apoptosis and autophagy. In the present study, Withaferin-A (WA) induced hyperpolarization of mitochondrial membrane potential and formation of many cytoplasmic vesicles. This was due to progressive swelling and fusion of mitochondria and dilation of endoplasmic reticulum (ER), forming large vacuolar structures that eventually filled the cytoplasm in human breast cancer cell-lines MCF-7 and MDA-MB-231. The level of indigenous paraptosis inhibitor, Alix/AIP-1 (Actin Interacting Protein-1) was down-regulated by WA treatment. Additionally, prevention of WA-induced cell death and vacuolation on co-treatment with protein-synthesis inhibitor indicated requirement of de-novo protein synthesis. Co-treatment with apoptosis inhibitor resulted in significant augmentation of WA-induced death in MCF-7 cells, while partial inhibition in MDA-MB-231 cells; implyingthat apoptosis was not solely responsible for the process.WA-mediated cytoplasmic vacuolationcould not be prevented by autophagy inhibitor wortmanninas well, claiming this process to be a non-autophagic one. Early induction of ROS (Reactive Oxygen Species)by WA in both the cell-lines was observed. ROS inhibitorabrogated the effect of WA on: cell-death, expression of proliferation-associated factor andER-stress related proteins,splicing of XBP-1 (X Box Binding Protein-1) mRNA and formation of paraptotic vacuoles.All these results conclusively indicate thatWA induces deathin bothMCF-7 and MDA-MB-231 cell lines byROS-mediated paraptosis.
Collapse
Affiliation(s)
- Kamalini Ghosh
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, India
| | - Soumasree De
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, India
| | - Sayantani Das
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, India
| | - Srimoyee Mukherjee
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, India
| | | |
Collapse
|
42
|
Cini M, Williams H, Fay MW, Searle MS, Woodward S, Bradshaw TD. Enantiopure titanocene complexes--direct evidence for paraptosis in cancer cells. Metallomics 2016; 8:286-97. [PMID: 26806372 DOI: 10.1039/c5mt00297d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tolerated by normal tissues, anti-cancer therapies based on titanium compounds are limited by low efficacy/selectivity and lack of understanding of their mode(s) of action. In vitro antitumour activity and mode of cell death incurred by enantiopure TiCl2{η-C5H4CHEt(2-MeOPh)}2 (abbreviated Cp(R)2TiCl2) has been investigated. The in vitro anti-tumour activity of Cp(R)2TiCl2 is selective for cancer cells; in clonogenic assays, (S,S)-Cp(R)2TiCl2 was twice as effective at inhibiting colony formation than other stereoisomers after 24 h exposure. HPLC, MS and NMR techniques determined hydrolysis of Cp(R)2TiCl2; data strongly correlate with soluble [Cp(R)2Ti(OH)(OH2)](+) being the biological trigger. Treatment of cells with Cp(R)2TiCl2 provoked extensive cytoplasmic vacuolization, endoplasmic reticulum (ER) swelling and activation of MAPKinase signal transduction, consistent with ligand-induced paraptosis, type III cell death, which is morphologically distinct from, and independent of apoptosis. Indeed, distinct from cisplatin, Cp(R)2TiCl2 failed to perturb cell cycle dynamics, induce γH2AX foci or evoke apoptosis in MDA-MB-468 and HCT-116 cells.
Collapse
Affiliation(s)
- Melchior Cini
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK. and School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK. and Nottingham Nanotechnology and Nanoscience Centre, University of Nottingham, University Park, Nottingham NG7 2RD, UK and Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Huw Williams
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK. and Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Mike W Fay
- Nottingham Nanotechnology and Nanoscience Centre, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Mark S Searle
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK. and Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Simon Woodward
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Tracey D Bradshaw
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK. and Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
43
|
Wang W, Song XW, Zhao CH. Roles of programmed cell death protein 5 in inflammation and cancer (Review). Int J Oncol 2016; 49:1801-1806. [PMID: 27826615 DOI: 10.3892/ijo.2016.3706] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/19/2016] [Indexed: 11/06/2022] Open
Abstract
PDCD5 (programmed cell death 5) is an apoptosis related gene cloned in 1999 from a human leukemic cell line. PDCD5 protein containing 125 amino acid (aa) residues sharing significant homology to the corresponding proteins of species. Decreased expression of PDCD5 has been found in many human tumors, including breast, gastric cancer, astrocytic glioma, chronic myelogenous leukemia and hepatocellular carcinoma. In recent years, increased number of studies have shown the functions and mechanisms of PDCD5 protein in cancer cells, such as paraptosis, cell cycle and immunoregulation. In the present review, we provide a comprehensive review on the role of PDCD5 in cancer tissues and cells. This review summarizes the recent studies of the roles of PDCD5 in inflammation and cancer. We mainly focus on discoveries related to molecular mechanisms of PDCD5 protein. We also discuss some discrepancies between the current studies. Overall, the current available data will open new perspectives for a better understanding of PDCD5 in cancer.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xiao-Wen Song
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Cheng-Hai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
44
|
Gaur S, Wen Y, Song JH, Parikh NU, Mangala LS, Blessing AM, Ivan C, Wu SY, Varkaris A, Shi Y, Lopez-Berestein G, Frigo DE, Sood AK, Gallick GE. Chitosan nanoparticle-mediated delivery of miRNA-34a decreases prostate tumor growth in the bone and its expression induces non-canonical autophagy. Oncotarget 2016; 6:29161-77. [PMID: 26313360 PMCID: PMC4745718 DOI: 10.18632/oncotarget.4971] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/11/2015] [Indexed: 12/18/2022] Open
Abstract
While several new therapies are FDA-approved for bone-metastatic prostate cancer (PCa), patient survival has only improved marginally. Here, we report that chitosan nanoparticle-mediated delivery of miR-34a, a tumor suppressive microRNA that downregulates multiple gene products involved in PCa progression and metastasis, inhibited prostate tumor growth and preserved bone integrity in a xenograft model representative of established PCa bone metastasis. Expression of miR-34a induced apoptosis in PCa cells, and, in accord with downregulation of targets associated with PCa growth, including MET and Axl and c-Myc, also induced a form of non-canonical autophagy that is independent of Beclin-1, ATG4, ATG5 and ATG7. MiR-34a-induced autophagy is anti-proliferative in prostate cancer cells, as blocking apoptosis still resulted in growth inhibition of tumor cells. Thus, combined effects of autophagy and apoptosis are responsible for miR-34a-mediated prostate tumor growth inhibition, and have translational impact, as this non-canonical form of autophagy is tumor inhibitory. Together, these results provide a new understanding of the biological effects of miR-34a and highlight the clinical potential for miR-34a delivery as a treatment for bone metastatic prostate cancer.
Collapse
Affiliation(s)
- Sanchaika Gaur
- Department of Genitourinary Medical Oncology, David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.,Program in Cancer Biology and Cancer Metastasis, The University of Texas Graduate School of Biomedical Sciences at Houston, TX, USA.,Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Yunfei Wen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jian H Song
- Department of Genitourinary Medical Oncology, David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Nila U Parikh
- Department of Genitourinary Medical Oncology, David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Lingegowda S Mangala
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alicia M Blessing
- Center for Nuclear Receptors and Cell Signaling, Departments of Biology and Biochemistry, University of Houston, TX, USA
| | - Cristina Ivan
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sherry Y Wu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andreas Varkaris
- Department of Genitourinary Medical Oncology, David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Yan Shi
- Center for Nuclear Receptors and Cell Signaling, Departments of Biology and Biochemistry, University of Houston, TX, USA
| | - Gabriel Lopez-Berestein
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel E Frigo
- Center for Nuclear Receptors and Cell Signaling, Departments of Biology and Biochemistry, University of Houston, TX, USA.,Genomic Medicine Program, The Houston Methodist Research Institute, Houston, TX, USA
| | - Anil K Sood
- Program in Cancer Biology and Cancer Metastasis, The University of Texas Graduate School of Biomedical Sciences at Houston, TX, USA.,Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gary E Gallick
- Department of Genitourinary Medical Oncology, David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.,Program in Cancer Biology and Cancer Metastasis, The University of Texas Graduate School of Biomedical Sciences at Houston, TX, USA
| |
Collapse
|
45
|
Falcone Ferreyra ML, Casati P. AtPDCD5 plays a role during dark-senescence in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2016; 11:e1176820. [PMID: 27096161 PMCID: PMC4973761 DOI: 10.1080/15592324.2016.1176820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In this work, we investigated the role of an Arabidopsis protein, AtPDCD5, during senescence after a 24h-dark period. Previously, we demonstrated that AtPDCD5 participates in programmed cell death (PCD) after UV-B exposure and in age-induced senescence. The results presented here, together with previous data, demonstrate that AtPDCD5 not only plays an important role during DNA damage responses induced by UV-B radiation, but also takes part in PCD programs such as dark-induced senescence in Arabidopsis.
Collapse
Affiliation(s)
| | - Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos Universidad Nacional de Rosario, Rosario, Argentina
- CONTACT Paula Casati
| |
Collapse
|
46
|
Diederich M, Cerella C. Non-canonical programmed cell death mechanisms triggered by natural compounds. Semin Cancer Biol 2016; 40-41:4-34. [PMID: 27262793 DOI: 10.1016/j.semcancer.2016.06.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/11/2022]
Abstract
Natural compounds are the fundament of pharmacological treatments and more than 50% of all anticancer drugs are of natural origins or at least derived from scaffolds present in Nature. Over the last 25 years, molecular mechanisms triggered by natural anticancer compounds were investigated. Emerging research showed that molecules of natural origins are useful for both preventive and therapeutic purposes by targeting essential hallmarks and enabling characteristics described by Hanahan and Weinberg. Moreover, natural compounds were able to change the differentiation status of selected cell types. One of the earliest response of cells treated by pharmacologically active compounds is the change of its morphology leading to ultra-structural perturbations: changes in membrane composition, cytoskeleton integrity, alterations of the endoplasmic reticulum, mitochondria and of the nucleus lead to formation of morphological alterations that are a characteristic of both compound and cancer type preceding cell death. Apoptosis and autophagy were traditionally considered as the most prominent cell death or cell death-related mechanisms. By now multiple other cell death modalities were described and most likely involved in response to chemotherapeutic treatment. It can be hypothesized that especially necrosis-related phenotypes triggered by various treatments or evolving from apoptotic or autophagic mechanisms, provide a more efficient therapeutic outcome depending on cancer type and genetic phenotype of the patient. In fact, the recent discovery of multiple regulated forms of necrosis and the initial elucidation of the corresponding cell signaling pathways appear nowadays as important tools to clarify the immunogenic potential of non-canonical forms of cell death induction.
Collapse
Affiliation(s)
- Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea.
| | - Claudia Cerella
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| |
Collapse
|
47
|
Lee D, Kim IY, Saha S, Choi KS. Paraptosis in the anti-cancer arsenal of natural products. Pharmacol Ther 2016; 162:120-33. [DOI: 10.1016/j.pharmthera.2016.01.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
48
|
Cell Death in the Epithelia of the Intestine and Hepatopancreas in Neocaridina heteropoda (Crustacea, Malacostraca). PLoS One 2016; 11:e0147582. [PMID: 26844766 PMCID: PMC4741826 DOI: 10.1371/journal.pone.0147582] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/04/2016] [Indexed: 11/19/2022] Open
Abstract
The endodermal region of the digestive system in the freshwater shrimp Neocaridina heteropoda (Crustacea, Malacostraca) consists of a tube-shaped intestine and large hepatopancreas, which is formed by numerous blind-ended tubules. The precise structure and ultrastructure of these regions were presented in our previous studies, while here we focused on the cell death processes and their effect on the functioning of the midgut. We used transmission electron microscopy, light and confocal microscopes to describe and detect cell death, while a quantitative assessment of cells with depolarized mitochondria helped us to establish whether there is the relationship between cell death and the inactivation of mitochondria. Three types of the cell death were observed in the intestine and hepatopancreas-apoptosis, necrosis and autophagy. No differences were observed in the course of these processes in males and females and or in the intestine and hepatopancreas of the shrimp that were examined. Our studies revealed that apoptosis, necrosis and autophagy only involves the fully developed cells of the midgut epithelium that have contact with the midgut lumen-D-cells in the intestine and B- and F-cells in hepatopancreas, while E-cells (midgut stem cells) did not die. A distinct correlation between the accumulation of E-cells and the activation of apoptosis was detected in the anterior region of the intestine, while necrosis was an accidental process. Degenerating organelles, mainly mitochondria were neutralized and eventually, the activation of cell death was prevented in the entire epithelium due to autophagy. Therefore, we state that autophagy plays a role of the survival factor.
Collapse
|
49
|
Li G, Ma D, Chen Y. Cellular functions of programmed cell death 5. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:572-80. [PMID: 26775586 DOI: 10.1016/j.bbamcr.2015.12.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/24/2015] [Accepted: 12/29/2015] [Indexed: 01/01/2023]
Abstract
Programmed cell death 5 (PDCD5) was originally identified as an apoptosis-accelerating protein that is widely expressed and has been well conserved during the process of evolution. PDCD5 has complex biological functions, including programmed cell death and immune regulation. It can accelerate apoptosis in different type of cells in response to different stimuli. During this process, PDCD5 rapidly translocates from the cytoplasm to the nucleus. PDCD5 regulates the activities of TIP60, HDAC3, MDM2 and TP53 transcription factors. These proteins form part of a signaling network that is disrupted in most, if not all, cancer cells. Recent evidence suggests that PDCD5 participates in immune regulation by promoting regulatory T cell function via the PDCD5-TIP60-FOXP3 pathway. The stability and expression of PDCD5 are finely regulated by other molecules, such as NF-κB p65, OTUD5, YAF2 and DNAJB1. PDCD5 is phosphorylated by CK2 at Ser119, which is required for nuclear translocation in response to genotoxic stress. In this review, we describe what is known about PDCD5 and its cellular functions.
Collapse
Affiliation(s)
- Ge Li
- Department of Immunology, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Beijing 100191, China; Center for Human Disease Genomics, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Dalong Ma
- Department of Immunology, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Beijing 100191, China; Center for Human Disease Genomics, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Yingyu Chen
- Department of Immunology, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Beijing 100191, China; Center for Human Disease Genomics, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
50
|
Zhuge C, Sun X, Chen Y, Lei J. PDCD5 functions as a regulator of p53 dynamics in the DNA damage response. J Theor Biol 2016; 388:1-10. [DOI: 10.1016/j.jtbi.2015.09.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 09/16/2015] [Accepted: 09/22/2015] [Indexed: 12/26/2022]
|