1
|
Zhou Q, Nguyen PV, Li Z. A putative cAMP-binding protein in Trypanosoma brucei cooperates with FLAM3 to promote flagellar connection and cell morphogenesis. J Biol Chem 2024; 300:107856. [PMID: 39369991 PMCID: PMC11555346 DOI: 10.1016/j.jbc.2024.107856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024] Open
Abstract
Trypanosoma brucei is a flagellated parasitic protozoan, and within the insect vector the parasite transitions from the trypomastigote form to the epimastigote form by repositioning its mitochondrial genome and relocating the flagellum. The mechanisms underlying such morphology changes are still poorly understood, but several flagellum-localized proteins are involved in this process by modulating the flagellum attachment zone (FAZ) that adheres the flagellum to the cell membrane. We report here a putative cAMP-binding protein named cAMP-BP1, which promotes flagellar connection and morphology transition. cAMP-BP1 contains two cyclic nucleotide-binding domains and five calcium-binding C2 domains and localizes to the flagella connector and the new FAZ tip. Depletion of cAMP-BP1 in the trypomastigote form of T. brucei causes major morphology changes, generating epimastigote-like cells with repositioned kinetoplast and relocated flagellum. At the flagella connector and the new FAZ tip, cAMP-BP1 associates with FLAM3, a regulator of morphology transition, depends on the latter for localization, and is required for FLAM3 localization to the flagella connector. Knockdown of cAMP-BP1 inhibits FAZ elongation and disrupts flagellar connection by impairing flagella connector structural integrity. These results identify a flagella connector- and new FAZ tip-localized protein as a regulator of morphology transition and flagellar connection in trypanosomes and uncover its functional interplay with FLAM3 to promote FAZ elongation for maintaining trypomastigote morphology.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Phu Van Nguyen
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA.
| |
Collapse
|
2
|
Albisetti AC, Douglas RL, Welch MD. FAZ assembly in bloodstream form Trypanosoma brucei requires kinesin KIN-E. Mol Biol Cell 2023; 34:ar103. [PMID: 37531263 PMCID: PMC10551704 DOI: 10.1091/mbc.e23-01-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023] Open
Abstract
Trypanosoma brucei, the causative agent of African sleeping sickness, uses its flagellum for movement, cell division, and signaling. The flagellum is anchored to the cell body membrane via the flagellum attachment zone (FAZ), a complex of proteins, filaments, and microtubules that spans two membranes with elements on both flagellum and cell body sides. How FAZ components are carried into place to form this complex is poorly understood. Here, we show that the trypanosome-specific kinesin KIN-E is required for building the FAZ in bloodstream-form parasites. KIN-E is localized along the flagellum with a concentration at its distal tip. Depletion of KIN-E by RNAi rapidly inhibits flagellum attachment and leads to cell death. A detailed analysis reveals that KIN-E depletion phenotypes include failure in cytokinesis completion, kinetoplast DNA missegregation, and transport vesicle accumulation. Together with previously published results in procyclic form parasites, these data suggest KIN-E plays a critical role in FAZ assembly in T. brucei.
Collapse
Affiliation(s)
- Anna C. Albisetti
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Robert L. Douglas
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Matthew D. Welch
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
3
|
Smithson L, Ihuoma Akazue P, Findlater L, Gwira TM, Vaughan S, Sunter JD. Diversity in new flagellum tip attachment in bloodstream form African trypanosomes. Mol Microbiol 2022; 118:510-525. [PMID: 36056717 PMCID: PMC9826329 DOI: 10.1111/mmi.14979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/11/2023]
Abstract
The closely related parasites Trypanosoma brucei, T. congolense, and T. vivax cause neglected tropical diseases collectively known as African Trypanosomiasis. A characteristic feature of bloodstream form T. brucei is the flagellum that is laterally attached to the side of the cell body. During the cell cycle, the new flagellum is formed alongside the old flagellum, with the new flagellum tip embedded within a mobile transmembrane junction called the groove. The molecular composition of the groove is currently unknown, which limits the analysis of this junction and assessment of its conservation in related trypanosomatids. Here, we identified 13 proteins that localize to the flagellar groove through a small-scale tagging screen. Functional analysis of a subset of these proteins by RNAi and gene deletion revealed three proteins, FCP4/TbKin15, FCP7, and FAZ45, that are involved in new flagellum tip attachment to the groove. Despite possessing orthologues of all 13 groove proteins, T. congolense and T. vivax did not assemble a canonical groove around the new flagellum tip according to 3D electron microscopy. This diversity in new flagellum tip attachment points to the rapid evolution of membrane-cytoskeleton structures that can occur without large changes in gene complement and likely reflects the niche specialization of each species.
Collapse
Affiliation(s)
- Laura Smithson
- Department of Biological and Medical SciencesOxford Brookes UniversityOxfordUK
| | - Pearl Ihuoma Akazue
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied SciencesUniversity of GhanaAccraGhana,Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied SciencesUniversity of GhanaAccraGhana,Department of Biochemistry, Faculty of Life SciencesUniversity of BeninBenin CityNigeria
| | - Lucy Findlater
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Theresa Manful Gwira
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied SciencesUniversity of GhanaAccraGhana,Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied SciencesUniversity of GhanaAccraGhana
| | - Sue Vaughan
- Department of Biological and Medical SciencesOxford Brookes UniversityOxfordUK
| | - Jack D. Sunter
- Department of Biological and Medical SciencesOxford Brookes UniversityOxfordUK
| |
Collapse
|
4
|
Sáez Conde J, Dean S. Structure, function and druggability of the African trypanosome flagellum. J Cell Physiol 2022; 237:2654-2667. [PMID: 35616248 PMCID: PMC9323424 DOI: 10.1002/jcp.30778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022]
Abstract
African trypanosomes are early branching protists that cause human and animal diseases, termed trypanosomiases. They have been under intensive study for more than 100 years and have contributed significantly to our understanding of eukaryotic biology. The combination of conserved and parasite-specific features mean that their flagellum has gained particular attention. Here, we discuss the different structural features of the flagellum and their role in transmission and virulence. We highlight the possibilities of targeting flagellar function to cure trypanosome infections and help in the fight to eliminate trypanosomiases.
Collapse
Affiliation(s)
- Julia Sáez Conde
- Division of Biomedical Sciences, Warwick Medical SchoolUniversity of WarwickCoventryUK
| | - Samuel Dean
- Division of Biomedical Sciences, Warwick Medical SchoolUniversity of WarwickCoventryUK
| |
Collapse
|
5
|
Muniz RS, Campbell PC, Sladewski TE, Renner LD, de Graffenried CL. Revealing spatio-temporal dynamics with long-term trypanosomatid live-cell imaging. PLoS Pathog 2022; 18:e1010218. [PMID: 35041719 PMCID: PMC8797261 DOI: 10.1371/journal.ppat.1010218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/28/2022] [Accepted: 12/17/2021] [Indexed: 11/19/2022] Open
Abstract
Trypanosoma brucei, the causative agent of human African trypanosomiasis, is highly motile and must be able to move in all three dimensions for reliable cell division. These characteristics make long-term microscopic imaging of live T. brucei cells challenging, which has limited our understanding of important cellular events. To address this issue, we devised an imaging approach that confines cells in small volumes within cast agarose microwells that can be imaged continuously for up to 24 h. Individual T. brucei cells were imaged through multiple rounds of cell division with high spatial and temporal resolution. We developed a strategy that employs in-well “sentinel” cells to monitor potential imaging toxicity during loss-of-function experiments such as small-molecule inhibition and RNAi. Using our approach, we show that the asymmetric daughter cells produced during T. brucei division subsequently divide at different rates, with the old-flagellum daughter cell dividing first. The flagellar detachment phenotype that appears during inhibition of the Polo-like kinase homolog TbPLK occurs in a stepwise fashion, with the new flagellum initially linked by its tip to the old, attached flagellum. We probe the feasibility of a previously proposed “back-up” cytokinetic mechanism and show that cells that initiate this process do not appear to complete cell division. This live-cell imaging method will provide a novel avenue for studying a wide variety of cellular events in trypanosomatids that have previously been inaccessible.
Collapse
Affiliation(s)
- Richard S. Muniz
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Paul C. Campbell
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Thomas E. Sladewski
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Lars D. Renner
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, Dresden, Germany
| | - Christopher L. de Graffenried
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
6
|
Zuma AA, Dos Santos Barrias E, de Souza W. Basic Biology of Trypanosoma cruzi. Curr Pharm Des 2021; 27:1671-1732. [PMID: 33272165 DOI: 10.2174/1381612826999201203213527] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 11/22/2022]
Abstract
The present review addresses basic aspects of the biology of the pathogenic protozoa Trypanosoma cruzi and some comparative information of Trypanosoma brucei. Like eukaryotic cells, their cellular organization is similar to that of mammalian hosts. However, these parasites present structural particularities. That is why the following topics are emphasized in this paper: developmental stages of the life cycle in the vertebrate and invertebrate hosts; the cytoskeleton of the protozoa, especially the sub-pellicular microtubules; the flagellum and its attachment to the protozoan body through specialized junctions; the kinetoplast-mitochondrion complex, including its structural organization and DNA replication; glycosome and its role in the metabolism of the cell; acidocalcisome, describing its morphology, biochemistry, and functional role; cytostome and the endocytic pathway; the organization of the endoplasmic reticulum and Golgi complex; the nucleus, describing its structural organization during interphase and division; and the process of interaction of the parasite with host cells. The unique characteristics of these structures also make them interesting chemotherapeutic targets. Therefore, further understanding of cell biology aspects contributes to the development of drugs for chemotherapy.
Collapse
Affiliation(s)
- Aline A Zuma
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emile Dos Santos Barrias
- Laboratorio de Metrologia Aplicada a Ciencias da Vida, Diretoria de Metrologia Aplicada a Ciencias da Vida - Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
APEX2 Proximity Proteomics Resolves Flagellum Subdomains and Identifies Flagellum Tip-Specific Proteins in Trypanosoma brucei. mSphere 2021; 6:6/1/e01090-20. [PMID: 33568455 PMCID: PMC8141408 DOI: 10.1128/msphere.01090-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Sleeping sickness is a neglected tropical disease caused by the protozoan parasite Trypanosoma brucei. The disease disrupts the sleep-wake cycle, leading to coma and death if left untreated. T. brucei motility, transmission, and virulence depend on its flagellum (cilium), which consists of several different specialized subdomains. Trypanosoma brucei is the protozoan parasite responsible for sleeping sickness, a lethal vector-borne disease. T. brucei has a single flagellum (cilium) that plays critical roles in transmission and pathogenesis. An emerging concept is that the flagellum is organized into subdomains, each having specialized composition and function. The overall flagellum proteome has been well studied, but a critical knowledge gap is the protein composition of individual subdomains. We have tested whether APEX-based proximity proteomics could be used to examine the protein composition of T. brucei flagellum subdomains. As APEX-based labeling has not previously been described in T. brucei, we first fused APEX2 to the DRC1 subunit of the nexin-dynein regulatory complex, a well-characterized axonemal complex. We found that DRC1-APEX2 directs flagellum-specific biotinylation, and purification of biotinylated proteins yields a DRC1 “proximity proteome” having good overlap with published proteomes obtained from purified axonemes. Having validated the use of APEX2 in T. brucei, we next attempted to distinguish flagellar subdomains by fusing APEX2 to a flagellar membrane protein that is restricted to the flagellum tip, AC1, and another one that is excluded from the tip, FS179. Fluorescence microscopy demonstrated subdomain-specific biotinylation, and principal-component analysis showed distinct profiles between AC1-APEX2 and FS179-APEX2. Comparing these two profiles allowed us to identify an AC1 proximity proteome that is enriched for tip proteins, including proteins involved in signaling. Our results demonstrate that APEX2-based proximity proteomics is effective in T. brucei and can be used to resolve the proteome composition of flagellum subdomains that cannot themselves be readily purified. IMPORTANCE Sleeping sickness is a neglected tropical disease caused by the protozoan parasite Trypanosoma brucei. The disease disrupts the sleep-wake cycle, leading to coma and death if left untreated. T. brucei motility, transmission, and virulence depend on its flagellum (cilium), which consists of several different specialized subdomains. Given the essential and multifunctional role of the T. brucei flagellum, there is need for approaches that enable proteomic analysis of individual subdomains. Our work establishes that APEX2 proximity labeling can, indeed, be implemented in the biochemical environment of T. brucei and has allowed identification of proximity proteomes for different flagellar subdomains that cannot be purified. This capacity opens the possibility to study the composition and function of other compartments. We expect this approach may be extended to other eukaryotic pathogens and will enhance the utility of T. brucei as a model organism to study ciliopathies, heritable human diseases in which cilium function is impaired.
Collapse
|
8
|
Kostygov AY, Frolov AO, Malysheva MN, Ganyukova AI, Chistyakova LV, Tashyreva D, Tesařová M, Spodareva VV, Režnarová J, Macedo DH, Butenko A, d'Avila-Levy CM, Lukeš J, Yurchenko V. Vickermania gen. nov., trypanosomatids that use two joined flagella to resist midgut peristaltic flow within the fly host. BMC Biol 2020; 18:187. [PMID: 33267865 PMCID: PMC7712620 DOI: 10.1186/s12915-020-00916-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/04/2020] [Indexed: 01/05/2023] Open
Abstract
Background The family Trypanosomatidae encompasses parasitic flagellates, some of which cause serious vector-transmitted diseases of humans and domestic animals. However, insect-restricted parasites represent the ancestral and most diverse group within the family. They display a range of unusual features and their study can provide insights into the biology of human pathogens. Here we describe Vickermania, a new genus of fly midgut-dwelling parasites that bear two flagella in contrast to other trypanosomatids, which are unambiguously uniflagellate. Results Vickermania has an odd cell cycle, in which shortly after the division the uniflagellate cell starts growing a new flagellum attached to the old one and preserves their contact until the late cytokinesis. The flagella connect to each other throughout their whole length and carry a peculiar seizing structure with a paddle-like apex and two lateral extensions at their tip. In contrast to typical trypanosomatids, which attach to the insect host’s intestinal wall, Vickermania is separated from it by a continuous peritrophic membrane and resides freely in the fly midgut lumen. Conclusions We propose that Vickermania developed a survival strategy that relies on constant movement preventing discharge from the host gut due to intestinal peristalsis. Since these parasites cannot attach to the midgut wall, they were forced to shorten the period of impaired motility when two separate flagella in dividing cells interfere with each other. The connection between the flagella ensures their coordinate movement until the separation of the daughter cells. We propose that Trypanosoma brucei, a severe human pathogen, during its development in the tsetse fly midgut faces the same conditions and follows the same strategy as Vickermania by employing an analogous adaptation, the flagellar connector.
Collapse
Affiliation(s)
- Alexei Y Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czechia. .,Zoological Institute of the Russian Academy of Sciences, St. Petersburg, 199034, Russia.
| | - Alexander O Frolov
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, 199034, Russia
| | - Marina N Malysheva
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, 199034, Russia
| | - Anna I Ganyukova
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, 199034, Russia
| | | | - Daria Tashyreva
- Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice, Czechia
| | - Martina Tesařová
- Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice, Czechia
| | - Viktoria V Spodareva
- Life Science Research Centre, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czechia.,Zoological Institute of the Russian Academy of Sciences, St. Petersburg, 199034, Russia
| | - Jana Režnarová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czechia
| | - Diego H Macedo
- Life Science Research Centre, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czechia
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czechia.,Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice, Czechia
| | | | - Julius Lukeš
- Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice, Czechia.,Faculty of Sciences, University of South Bohemia, 370 05, České Budějovice, Czechia
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czechia.,Martsinovsky Institute of Medical Parasitology, Sechenov University, Moscow, 119435, Russia
| |
Collapse
|
9
|
Kurasawa Y, An T, Li Z. Polo-like kinase in trypanosomes: an odd member out of the Polo family. Open Biol 2020; 10:200189. [PMID: 33050792 PMCID: PMC7653357 DOI: 10.1098/rsob.200189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Polo-like kinases (Plks) are evolutionarily conserved serine/threonine protein kinases playing crucial roles during multiple stages of mitosis and cytokinesis in yeast and animals. Plks are characterized by a unique Polo-box domain, which plays regulatory roles in controlling Plk activation, interacting with substrates and targeting Plk to specific subcellular locations. Plk activity and protein abundance are subject to temporal and spatial control through transcription, phosphorylation and proteolysis. In the early branching protists, Plk orthologues are present in some taxa, such as kinetoplastids and Giardia, but are lost in apicomplexans, such as Plasmodium. Works from characterizing a Plk orthologue in Trypanosoma brucei, a kinetoplastid protozoan, discover its essential roles in regulating the inheritance of flagellum-associated cytoskeleton and the initiation of cytokinesis, but not any stage of mitosis. These studies reveal evolutionarily conserved and species-specific features in the control of Plk activation, substrate recognition and protein abundance, and suggest the divergence of Plk function and regulation for specialized needs in this flagellated unicellular eukaryote.
Collapse
Affiliation(s)
| | | | - Ziyin Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
10
|
Lemos M, Mallet A, Bertiaux E, Imbert A, Rotureau B, Bastin P. Timing and original features of flagellum assembly in trypanosomes during development in the tsetse fly. Parasit Vectors 2020; 13:169. [PMID: 32248844 PMCID: PMC7132888 DOI: 10.1186/s13071-020-04026-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Background Trypanosoma brucei exhibits a complex life-cycle alternating between tsetse flies and mammalian hosts. When parasites infect the fly, cells differentiate to adapt to life in various tissues, which is accompanied by drastic morphological and biochemical modifications especially in the proventriculus. This key step represents a bottleneck for salivary gland infection. Methods Here, we monitored flagellum assembly in trypanosomes during differentiation from the trypomastigote to the epimastigote stage, i.e. when the nucleus migrates to the posterior end of the cell, by using three-dimensional electron microscopy (focused ion beam scanning electron microscopy, FIB-SEM) and immunofluorescence assays. Results The combination of light and electron microscopy approaches provided structural and molecular evidence that the new flagellum is assembled while the nucleus migrates towards the posterior region of the body. Two major differences with well-known procyclic cells are reported. First, growth of the new flagellum begins when the associated basal body is found in a posterior position relative to the mature flagellum. Secondly, the new flagellum acquires its own flagellar pocket before rotating on the left side of the anterior-posterior axis. FIB-SEM revealed the presence of a structure connecting the new and mature flagellum and serial sectioning confirmed morphological similarities with the flagella connector of procyclic cells. We discuss the potential function of the flagella connector in trypanosomes from the proventriculus. Conclusions These findings show that T. brucei finely modulates its cytoskeletal components to generate highly variable morphologies.![]()
Collapse
Affiliation(s)
- Moara Lemos
- Trypanosome Cell Biology Unit, Institut Pasteur & INSERM U1201, 25, rue du Docteur Roux, 75015, Paris, France
| | - Adeline Mallet
- Trypanosome Cell Biology Unit, Institut Pasteur & INSERM U1201, 25, rue du Docteur Roux, 75015, Paris, France.,UtechS Ultrastructural Bioimaging (Ultrapole), C2RT, Institut Pasteur, 75015, Paris, France.,Sorbonne Université école doctorale Complexité du Vivant, ED 515, 7, quai Saint-Bernard, case 32, 75252, Paris Cedex 05, France
| | - Eloïse Bertiaux
- Trypanosome Cell Biology Unit, Institut Pasteur & INSERM U1201, 25, rue du Docteur Roux, 75015, Paris, France.,Sorbonne Université école doctorale Complexité du Vivant, ED 515, 7, quai Saint-Bernard, case 32, 75252, Paris Cedex 05, France
| | | | - Brice Rotureau
- Trypanosome Cell Biology Unit, Institut Pasteur & INSERM U1201, 25, rue du Docteur Roux, 75015, Paris, France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, Institut Pasteur & INSERM U1201, 25, rue du Docteur Roux, 75015, Paris, France.
| |
Collapse
|
11
|
Touching the Surface: Diverse Roles for the Flagellar Membrane in Kinetoplastid Parasites. Microbiol Mol Biol Rev 2020; 84:84/2/e00079-19. [PMID: 32238446 DOI: 10.1128/mmbr.00079-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
While flagella have been studied extensively as motility organelles, with a focus on internal structures such as the axoneme, more recent research has illuminated the roles of the flagellar surface in a variety of biological processes. Parasitic protists of the order Kinetoplastida, which include trypanosomes and Leishmania species, provide a paradigm for probing the role of flagella in host-microbe interactions and illustrate that this interface between the flagellar surface and the host is of paramount importance. An increasing body of knowledge indicates that the flagellar membrane serves a multitude of functions at this interface: attachment of parasites to tissues within insect vectors, close interactions with intracellular organelles of vertebrate cells, transactions between flagella from different parasites, junctions between the flagella and the parasite cell body, emergence of nanotubes and exosomes from the parasite directed to either host or microbial targets, immune evasion, and sensing of the extracellular milieu. Recent whole-organelle or genome-wide studies have begun to identify protein components of the flagellar surface that must mediate these diverse host-parasite interactions. The increasing corpus of knowledge on kinetoplastid flagella will likely prove illuminating for other flagellated or ciliated pathogens as well.
Collapse
|
12
|
Abeywickrema M, Vachova H, Farr H, Mohr T, Wheeler RJ, Lai DH, Vaughan S, Gull K, Sunter JD, Varga V. Non-equivalence in old- and new-flagellum daughter cells of a proliferative division in Trypanosoma brucei. Mol Microbiol 2019; 112:1024-1040. [PMID: 31286583 PMCID: PMC6771564 DOI: 10.1111/mmi.14345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2019] [Indexed: 12/15/2022]
Abstract
Differentiation of Trypanosoma brucei, a flagellated protozoan parasite, between life cycle stages typically occurs through an asymmetric cell division process, producing two morphologically distinct daughter cells. Conversely, proliferative cell divisions produce two daughter cells, which look similar but are not identical. To examine in detail differences between the daughter cells of a proliferative division of procyclic T. brucei we used the recently identified constituents of the flagella connector. These segregate asymmetrically during cytokinesis allowing the new‐flagellum and the old‐flagellum daughters to be distinguished. We discovered that there are distinct morphological differences between the two daughters, with the new‐flagellum daughter in particular re‐modelling rapidly and extensively in early G1. This re‐modelling process involves an increase in cell body, flagellum and flagellum attachment zone length and is accompanied by architectural changes to the anterior cell end. The old‐flagellum daughter undergoes a different G1 re‐modelling, however, despite this there was no difference in G1 duration of their respective cell cycles. This work demonstrates that the two daughters of a proliferative division of T. brucei are non‐equivalent and enables more refined morphological analysis of mutant phenotypes. We suggest all proliferative divisions in T. brucei and related organisms will involve non‐equivalence.
Collapse
Affiliation(s)
- Movin Abeywickrema
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Hana Vachova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic
| | - Helen Farr
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Timm Mohr
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Richard J Wheeler
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX1 3SY, UK
| | - De-Hua Lai
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Jack D Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Vladimir Varga
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic
| |
Collapse
|
13
|
Functional Analyses of Cytokinesis Regulators in Bloodstream Stage Trypanosoma brucei Parasites Identify Functions and Regulations Specific to the Life Cycle Stage. mSphere 2019; 4:4/3/e00199-19. [PMID: 31043517 PMCID: PMC6495339 DOI: 10.1128/msphere.00199-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The early divergent protozoan parasite Trypanosoma brucei is the causative agent of sleeping sickness in humans and nagana in cattle in sub-Saharan Africa. This parasite has a complex life cycle by alternating between the insect vector and the mammalian hosts and proliferates by binary cell fission. The control of cell division in trypanosomes appears to be distinct from that in its human host and differs substantially between two life cycle stages, the procyclic (insect) form and the bloodstream form. Cytokinesis, the final step of binary cell fission, is regulated by a novel signaling cascade consisting of two evolutionarily conserved protein kinases and a cohort of trypanosome-specific regulators in the procyclic form, but whether this signaling pathway operates in a similar manner in the bloodstream form is unclear. In this report, we performed a functional analysis of multiple cytokinesis regulators and discovered their distinct functions and regulations in the bloodstream form. The early divergent protozoan parasite Trypanosoma brucei alternates between the insect vector and the mammalian hosts during its life cycle and proliferates through binary cell fission. The cell cycle control system in T. brucei differs substantially from that in its mammalian hosts and possesses distinct mitosis-cytokinesis checkpoint controls between two life cycle stages, the procyclic form and the bloodstream form. T. brucei undergoes an unusual mode of cytokinesis, which is controlled by a novel signaling cascade consisting of evolutionarily conserved protein kinases and trypanosome-specific regulatory proteins in the procyclic form. However, given the distinct mitosis-cytokinesis checkpoints between the two forms, it is unclear whether the cytokinesis regulatory pathway discovered in the procyclic form also operates in a similar manner in the bloodstream form. Here, we showed that the three regulators of cytokinesis initiation, cytokinesis initiation factor 1 (CIF1), CIF2, and CIF3, are interdependent for subcellular localization but not for protein stability as in the procyclic form. Further, we demonstrated that KLIF, a regulator of cytokinesis completion in the procyclic form, plays limited roles in cytokinesis in the bloodstream form. Finally, we showed that the cleavage furrow-localizing protein FRW1 is required for cytokinesis initiation in the bloodstream form but is nonessential for cytokinesis in the procyclic form. Together, these results identify conserved and life cycle-specific functions of cytokinesis regulators, highlighting the distinction in the regulation of cytokinesis between different life cycle stages of T. brucei. IMPORTANCE The early divergent protozoan parasite Trypanosoma brucei is the causative agent of sleeping sickness in humans and nagana in cattle in sub-Saharan Africa. This parasite has a complex life cycle by alternating between the insect vector and the mammalian hosts and proliferates by binary cell fission. The control of cell division in trypanosomes appears to be distinct from that in its human host and differs substantially between two life cycle stages, the procyclic (insect) form and the bloodstream form. Cytokinesis, the final step of binary cell fission, is regulated by a novel signaling cascade consisting of two evolutionarily conserved protein kinases and a cohort of trypanosome-specific regulators in the procyclic form, but whether this signaling pathway operates in a similar manner in the bloodstream form is unclear. In this report, we performed a functional analysis of multiple cytokinesis regulators and discovered their distinct functions and regulations in the bloodstream form.
Collapse
|
14
|
An T, Li Z. An orphan kinesin controls trypanosome morphology transitions by targeting FLAM3 to the flagellum. PLoS Pathog 2018; 14:e1007101. [PMID: 29813136 PMCID: PMC5993322 DOI: 10.1371/journal.ppat.1007101] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 06/08/2018] [Accepted: 05/15/2018] [Indexed: 02/05/2023] Open
Abstract
Trypanosoma brucei undergoes life cycle form transitions from trypomastigotes to epimastigotes in the insect vector by re-positioning the mitochondrial genome and re-locating the flagellum and flagellum-associated cytoskeletal structures. The mechanism underlying these dramatic morphology transitions remains poorly understood. Here we report the regulatory role of the orphan kinesin KIN-E in controlling trypanosome morphology transitions. KIN-E localizes to the flagellum and is enriched at the flagellar tip, and this localization depends on the C-terminal m-calpain domain III-like domains. Depletion of KIN-E in the trypomastigote form of T. brucei causes major morphology changes and a gradual increase in the level of EP procyclin, generating epimastigote-like cells. Mechanistically, through its C-terminal importin α-like domain, KIN-E targets FLAM3, a flagellar protein involved in morphology transitions, to the flagellum to promote elongation of the flagellum attachment zone and positioning of the flagellum and flagellum-associated cytoskeletal structure, thereby maintaining trypomastigote cell morphology. Our findings suggest that morphology transitions in trypanosomes require KIN-E-mediated transport of FLAM3 to the flagellum. Trypanosoma brucei, the causative agent of sleeping sickness in humans and nagana in cattle in sub-Saharan Africa, has a complex life cycle by alternating between the tsetse fly vector and the mammalian hosts. In the gut of tsetse flies, trypanosomes undergo life cycle transitions from the trypomastigote form to the epimastigote form by re-positioning the mitochondrial genome and re-locating the flagellum and flagellum-associated cytoskeletal structures. Previous work demonstrated that elongation of the flagellum attachment zone plays an important role in controlling morphology transitions, but how it is regulated remains poorly understood. This work discovered that an orphan kinesin plays an essential role in regulating trypanosome morphology transitions. This novel kinesin localizes to the flagellum and targets FLAM3, one of the two flagellar proteins involved in morphology transitions, to the flagellum. This work suggests that trypanosome morphology transitions require kinesin-mediated transport of FLAM3 to the flagellum to promote the elongation of the flagellum attachment zone, thereby maintaining flagellum-cell body attachment and positioning the flagellum and flagellum-associated cytoskeletal structures to assume trypomastigote cell morphology.
Collapse
Affiliation(s)
- Tai An
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
15
|
Zhou Q, Dong G, Li Z. Flagellum inheritance in Trypanosoma brucei requires a kinetoplastid-specific protein phosphatase. J Biol Chem 2018; 293:8508-8520. [PMID: 29666191 DOI: 10.1074/jbc.ra118.002106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/16/2018] [Indexed: 11/06/2022] Open
Abstract
Trypanosoma brucei causes sleeping sickness in humans and nagana in cattle in sub-Saharan Africa and alternates between its mammalian hosts and its insect vector, the tsetse fly. T. brucei uses a flagellum for motility, cell division, and cell-cell communication. Proper positioning and attachment of the newly assembled flagellum rely on the faithful duplication and segregation of flagellum-associated cytoskeletal structures. These processes are regulated by the polo-like kinase homolog TbPLK, whose activity and abundance are under stringent control to ensure spatiotemporally regulated phosphorylation of its substrates. However, it remains unclear whether a protein phosphatase that counteracts TbPLK activity is also involved in this regulation. Here, we report that a putative kinetoplastid-specific protein phosphatase, named KPP1, has essential roles in regulating flagellum positioning and attachment in T. brucei KPP1 localized to multiple flagellum-associated cytoskeletal structures and co-localized with TbPLK in several cytoskeletal structures at different cell-cycle stages. KPP1 depletion abolished basal body segregation, inhibited the duplication of the centrin arm and the hook complex of the bilobe structure, and disrupted the elongation of the flagellum attachment zone, leading to flagellum misplacement and detachment and cytokinesis arrest. Importantly, KPP1-depleted cells lacked dephosphorylation of TbCentrin2, a TbPLK substrate, at late cell-cycle stages. Together, these results suggest that KPP1-mediated protein dephosphorylation regulates the duplication and segregation of flagellum-associated cytoskeletal structures, thereby promoting flagellum positioning and attachment. These findings highlight the requirement of reversible protein phosphorylation, mediated by TbPLK and KPP1, in regulating flagellum inheritance in T. brucei.
Collapse
Affiliation(s)
- Qing Zhou
- From the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030 and
| | - Gang Dong
- the Max F. Perutz Laboratories, Vienna Bio-center, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Ziyin Li
- From the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030 and
| |
Collapse
|
16
|
Morriswood B, Engstler M. Let's get fISSical: fast in silico synchronization as a new tool for cell division cycle analysis. Parasitology 2018; 145:196-209. [PMID: 28166845 PMCID: PMC5964468 DOI: 10.1017/s0031182017000038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 12/23/2022]
Abstract
Cell cycle progression is a question of fundamental biological interest. The coordinated duplication and segregation of all cellular structures and organelles is however an extremely complex process, and one which remains only partially understood even in the most intensively researched model organisms. Trypanosomes are in an unusual position in this respect - they are both outstanding model systems for fundamental questions in eukaryotic cell biology, and pathogens that are the causative agents of three of the neglected tropical diseases. As a failure to successfully complete cell division will be deleterious or lethal, analysis of the cell division cycle is of relevance both to basic biology and drug design efforts. Cell division cycle analysis is however experimentally challenging, as the analysis of phenotypes associated with it remains hypothesis-driven and therefore biased. Current methods of analysis are extremely labour-intensive, and cell synchronization remains difficult and unreliable. Consequently, there exists a need - both in basic and applied trypanosome biology - for a global, unbiased, standardized and high-throughput analysis of cell division cycle progression. In this review, the requirements - both practical and computational - for such a system are considered and compared with existing techniques for cell cycle analysis.
Collapse
Affiliation(s)
- Brooke Morriswood
- Department of Cell & Developmental Biology,University of Würzburg,Biocentre, Am Hubland, 97074 Würzburg,Germany
| | - Markus Engstler
- Department of Cell & Developmental Biology,University of Würzburg,Biocentre, Am Hubland, 97074 Würzburg,Germany
| |
Collapse
|
17
|
Trépout S, Tassin AM, Marco S, Bastin P. STEM tomography analysis of the trypanosome transition zone. J Struct Biol 2017; 202:51-60. [PMID: 29248600 DOI: 10.1016/j.jsb.2017.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 11/20/2017] [Accepted: 12/10/2017] [Indexed: 02/06/2023]
Abstract
The protist Trypanosoma brucei is an emerging model for the study of cilia and flagella. Here, we used scanning transmission electron microscopy (STEM) tomography to describe the structure of the trypanosome transition zone (TZ). At the base of the TZ, nine transition fibres irradiate from the B microtubule of each doublet towards the membrane. The TZ adopts a 9 + 0 structure throughout its length of ∼300 nm and its lumen contains an electron-dense structure. The proximal portion of the TZ has an invariant length of 150 nm and is characterised by a collarette surrounding the membrane and the presence of electron-dense material between the membrane and the doublets. The distal portion exhibits more length variation (from 55 to 235 nm) and contains typical Y-links. STEM analysis revealed a more complex organisation of the Y-links compared to what was reported by conventional transmission electron microscopy. Observation of the very early phase of flagellum assembly demonstrated that the proximal portion and the collarette are assembled early during construction. The presence of the flagella connector that maintains the tip of the new flagellum to the side of the old was confirmed and additional filamentous structures making contact with the membrane of the flagellar pocket were also detected. The structure and potential functions of the TZ in trypanosomes are discussed, as well as its mode of assembly.
Collapse
Affiliation(s)
- Sylvain Trépout
- Université Paris Sud, Université Paris-Saclay, CNRS UMR9187, F-91405 Orsay, France; INSERM U1196, Institut Curie, PSL Research University, F-91405 Orsay, France
| | - Anne-Marie Tassin
- Université Paris Sud, Université Paris-Saclay, CNRS UMR9187, F-91405 Orsay, France; INSERM U1196, Institut Curie, PSL Research University, F-91405 Orsay, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Sergio Marco
- Université Paris Sud, Université Paris-Saclay, CNRS UMR9187, F-91405 Orsay, France; INSERM U1196, Institut Curie, PSL Research University, F-91405 Orsay, France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France.
| |
Collapse
|
18
|
Protein diversity in discrete structures at the distal tip of the trypanosome flagellum. Proc Natl Acad Sci U S A 2017; 114:E6546-E6555. [PMID: 28724725 DOI: 10.1073/pnas.1703553114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The distal end of the eukaryotic flagellum/cilium is important for axonemal growth and signaling and has distinct biomechanical properties. Specific flagellum tip structures exist, yet their composition, dynamics, and functions are largely unknown. We used biochemical approaches to identify seven constituents of the flagella connector at the tip of an assembling trypanosome flagellum and three constituents of the axonemal capping structure at the tips of both assembling and mature flagella. Both tip structures contain evolutionarily conserved as well as kinetoplastid-specific proteins, and component assembly into the structures occurs very early during flagellum extension. Localization and functional studies reveal that the flagella connector membrane junction is attached to the tips of extending microtubules of the assembling flagellum by a kinesin-15 family member. On the opposite side, a kinetoplastid-specific kinesin facilitates attachment of the junction to the microtubules in the mature flagellum. Functional studies also suggest roles of several other components and the definition of subdomains in the tip structures.
Collapse
|
19
|
McAllaster MR, Sinclair-Davis AN, Hilton NA, de Graffenried CL. A unified approach towards Trypanosoma brucei functional genomics using Gibson assembly. Mol Biochem Parasitol 2016; 210:13-21. [PMID: 27496178 DOI: 10.1016/j.molbiopara.2016.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/28/2016] [Accepted: 08/02/2016] [Indexed: 12/27/2022]
Abstract
Trypanosoma brucei is the causative agent of human African trypanosomiasis and nagana in cattle. Recent advances in high throughput phenotypic and interaction screens have identified a wealth of novel candidate proteins for diverse functions such as drug resistance, life cycle progression, and cytoskeletal biogenesis. Characterization of these proteins will allow a more mechanistic understanding of the biology of this important pathogen and could identify novel drug targets. However, methods for rapidly validating and prioritizing these potential targets are still being developed. While gene tagging via homologous recombination and RNA interference are available in T. brucei, a general strategy for creating the most effective constructs for these approaches is lacking. Here, we adapt Gibson assembly, a one-step isothermal process that rapidly assembles multiple DNA segments in a single reaction, to create endogenous tagging, overexpression, and long hairpin RNAi constructs that are compatible with well-established T. brucei vectors. The generality of the Gibson approach has several advantages over current methodologies and substantially increases the speed and ease with which these constructs can be assembled.
Collapse
Affiliation(s)
- Michael R McAllaster
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, United States
| | - Amy N Sinclair-Davis
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, United States
| | - Nicholas A Hilton
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, United States
| | | |
Collapse
|
20
|
Zhou Q, Hu H, Li Z. An EF-hand-containing Protein in Trypanosoma brucei Regulates Cytokinesis Initiation by Maintaining the Stability of the Cytokinesis Initiation Factor CIF1. J Biol Chem 2016; 291:14395-409. [PMID: 27226595 DOI: 10.1074/jbc.m116.726133] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Indexed: 11/06/2022] Open
Abstract
Trypanosoma brucei undergoes cytokinesis uni-directionally from the anterior tip of the new flagellum attachment zone (FAZ) toward the posterior end of the cell. We recently delineated a novel signaling pathway composed of polo-like kinase, cytokinesis initiation factor 1 (CIF1), and aurora B kinase that acts in concert at the new FAZ tip to regulate cytokinesis initiation. To identify new cytokinesis regulators, we carried out proximity-dependent biotin identification and identified many CIF1 binding partners and near neighbors. Here we report a novel CIF1-binding protein, named CIF2, and its mechanistic role in cytokinesis initiation. CIF2 interacts with CIF1 in vivo and co-localizes with CIF1 at the new FAZ tip during early cell cycle stages. RNAi of CIF2 inhibited the normal, anterior-to-posterior cytokinesis but activated an alternative, posterior-to-anterior cytokinesis. CIF2 depletion destabilized CIF1 and disrupted the localization of polo-like kinase and aurora B kinase to the new FAZ tip, thus revealing the mechanistic role of CIF2 in cytokinesis initiation. Surprisingly, overexpression of CIF2 also inhibited the normal, anterior-to-posterior cytokinesis and triggered the alternative, posterior-to-anterior cytokinesis, suggesting a tight control of CIF2 protein abundance. These results identified a new regulator in the cytokinesis regulatory pathway and reiterated that a backup cytokinesis pathway is activated by inhibiting the normal cytokinesis pathway.
Collapse
Affiliation(s)
- Qing Zhou
- From the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Huiqing Hu
- From the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Ziyin Li
- From the Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
| |
Collapse
|
21
|
Perdomo D, Bonhivers M, Robinson DR. The Trypanosome Flagellar Pocket Collar and Its Ring Forming Protein-TbBILBO1. Cells 2016; 5:cells5010009. [PMID: 26950156 PMCID: PMC4810094 DOI: 10.3390/cells5010009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 12/11/2022] Open
Abstract
Sub-species of Trypanosoma brucei are the causal agents of human African sleeping sickness and Nagana in domesticated livestock. These pathogens have developed an organelle-like compartment called the flagellar pocket (FP). The FP carries out endo- and exocytosis and is the only structure this parasite has evolved to do so. The FP is essential for parasite viability, making it an interesting structure to evaluate as a drug target, especially since it has an indispensible cytoskeleton component called the flagellar pocket collar (FPC). The FPC is located at the neck of the FP where the flagellum exits the cell. The FPC has a complex architecture and division cycle, but little is known concerning its organization. Recent work has focused on understanding how the FP and the FPC are formed and as a result of these studies an important calcium-binding, polymer-forming protein named TbBILBO1 was identified. Cellular biology analysis of TbBILBO1 has demonstrated its uniqueness as a FPC component and until recently, it was unknown what structural role it played in forming the FPC. This review summarizes the recent data on the polymer forming properties of TbBILBO1 and how these are correlated to the FP cytoskeleton.
Collapse
Affiliation(s)
- Doranda Perdomo
- CNRS, Microbiology Fundamental and Pathogenicity, UMR 5234, F-33000 Bordeaux, France.
| | - Mélanie Bonhivers
- CNRS, Microbiology Fundamental and Pathogenicity, UMR 5234, F-33000 Bordeaux, France.
| | - Derrick R Robinson
- CNRS, Microbiology Fundamental and Pathogenicity, UMR 5234, F-33000 Bordeaux, France.
| |
Collapse
|
22
|
Höög JL, Lacomble S, Bouchet-Marquis C, Briggs L, Park K, Hoenger A, Gull K. 3D Architecture of the Trypanosoma brucei Flagella Connector, a Mobile Transmembrane Junction. PLoS Negl Trop Dis 2016; 10:e0004312. [PMID: 26820516 PMCID: PMC4731218 DOI: 10.1371/journal.pntd.0004312] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/29/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Cellular junctions are crucial for the formation of multicellular organisms, where they anchor cells to each other and/or supportive tissue and enable cell-to-cell communication. Some unicellular organisms, such as the parasitic protist Trypanosoma brucei, also have complex cellular junctions. The flagella connector (FC) is a three-layered transmembrane junction that moves with the growing tip of a new flagellum and attaches it to the side of the old flagellum. The FC moves via an unknown molecular mechanism, independent of new flagellum growth. Here we describe the detailed 3D architecture of the FC suggesting explanations for how it functions and its mechanism of motility. METHODOLOGY/PRINCIPAL FINDINGS We have used a combination of electron tomography and cryo-electron tomography to reveal the 3D architecture of the FC. Cryo-electron tomography revealed layers of repetitive filamentous electron densities between the two flagella in the interstitial zone. Though the FC does not change in length and width during the growth of the new flagellum, the interstitial zone thickness decreases as the FC matures. This investigation also shows interactions between the FC layers and the axonemes of the new and old flagellum, sufficiently strong to displace the axoneme in the old flagellum. We describe a novel filament, the flagella connector fibre, found between the FC and the axoneme in the old flagellum. CONCLUSIONS/SIGNIFICANCE The FC is similar to other cellular junctions in that filamentous proteins bridge the extracellular space and are anchored to underlying cytoskeletal structures; however, it is built between different portions of the same cell and is unique because of its intrinsic motility. The detailed description of its structure will be an important tool to use in attributing structure / function relationships as its molecular components are discovered in the future. The FC is involved in the inheritance of cell shape, which is important for the life cycle of this human parasite.
Collapse
Affiliation(s)
- Johanna L. Höög
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- The Boulder Laboratory for 3D Electron Microscopy of Cells, Department of MCD Biology, University of Colorado, Boulder, Colorado, United States of America
- * E-mail: ,
| | - Sylvain Lacomble
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | - Laura Briggs
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Kristin Park
- The Boulder Laboratory for 3D Electron Microscopy of Cells, Department of MCD Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Andreas Hoenger
- The Boulder Laboratory for 3D Electron Microscopy of Cells, Department of MCD Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
Hu H, Zhou Q, Li Z. A Novel Basal Body Protein That Is a Polo-like Kinase Substrate Is Required for Basal Body Segregation and Flagellum Adhesion in Trypanosoma brucei. J Biol Chem 2015; 290:25012-22. [PMID: 26272611 PMCID: PMC4599006 DOI: 10.1074/jbc.m115.674796] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/29/2015] [Indexed: 01/02/2023] Open
Abstract
The Polo-like kinase (PLK) in Trypanosoma brucei plays multiple roles in basal body segregation, flagellum attachment, and cytokinesis. However, the mechanistic role of TbPLK remains elusive, mainly because most of its substrates are not known. Here, we report a new substrate of TbPLK, SPBB1, and its essential roles in T. brucei. SPBB1 was identified through yeast two-hybrid screening with the kinase-dead TbPLK as the bait. It interacts with TbPLK in vitro and in vivo, and is phosphorylated by TbPLK in vitro. SPBB1 localizes to both the mature basal body and the probasal body throughout the cell cycle, and co-localizes with TbPLK at the basal body during early cell cycle stages. RNAi against SPBB1 in procyclic trypanosomes inhibited basal body segregation, disrupted the new flagellum attachment zone filament, detached the new flagellum, and caused defective cytokinesis. Moreover, RNAi of SPBB1 confined TbPLK at the basal body and the bilobe structure, resulting in constitutive phosphorylation of TbCentrin2 at the bilobe. Altogether, these results identified a basal body protein as a TbPLK substrate and its essential role in promoting basal body segregation and flagellum attachment zone filament assembly for flagellum adhesion and cytokinesis initiation.
Collapse
Affiliation(s)
- Huiqing Hu
- From the Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas 77030
| | - Qing Zhou
- From the Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas 77030
| | - Ziyin Li
- From the Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas 77030
| |
Collapse
|
24
|
McAllaster MR, Ikeda KN, Lozano-Núñez A, Anrather D, Unterwurzacher V, Gossenreiter T, Perry JA, Crickley R, Mercadante CJ, Vaughan S, de Graffenried CL. Proteomic identification of novel cytoskeletal proteins associated with TbPLK, an essential regulator of cell morphogenesis in Trypanosoma brucei. Mol Biol Cell 2015; 26:3013-29. [PMID: 26133384 PMCID: PMC4551316 DOI: 10.1091/mbc.e15-04-0219] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/16/2015] [Accepted: 06/24/2015] [Indexed: 01/06/2023] Open
Abstract
Trypanosoma brucei is the causative agent of African sleeping sickness, a devastating disease endemic to sub-Saharan Africa with few effective treatment options. The parasite is highly polarized, including a single flagellum that is nucleated at the posterior of the cell and adhered along the cell surface. These features are essential and must be transmitted to the daughter cells during division. Recently we identified the T. brucei homologue of polo-like kinase (TbPLK) as an essential morphogenic regulator. In the present work, we conduct proteomic screens to identify potential TbPLK binding partners and substrates to better understand the molecular mechanisms of kinase function. These screens identify a cohort of proteins, most of which are completely uncharacterized, which localize to key cytoskeletal organelles involved in establishing cell morphology, including the flagella connector, flagellum attachment zone, and bilobe structure. Depletion of these proteins causes substantial changes in cell division, including mispositioning of the kinetoplast, loss of flagellar connection, and prevention of cytokinesis. The proteins identified in these screens provide the foundation for establishing the molecular networks through which TbPLK directs cell morphogenesis in T. brucei.
Collapse
Affiliation(s)
- Michael R McAllaster
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912
| | - Kyojiro N Ikeda
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, 1030 Vienna, Austria
| | - Ana Lozano-Núñez
- Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, 1030 Vienna, Austria
| | - Dorothea Anrather
- Max F. Perutz Laboratories, Mass Spectrometry Facility, University of Vienna, 1030 Vienna, Austria
| | - Verena Unterwurzacher
- Max F. Perutz Laboratories, Mass Spectrometry Facility, University of Vienna, 1030 Vienna, Austria
| | - Thomas Gossenreiter
- Max F. Perutz Laboratories, Mass Spectrometry Facility, University of Vienna, 1030 Vienna, Austria
| | - Jenna A Perry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912
| | - Robbie Crickley
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Courtney J Mercadante
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | | |
Collapse
|
25
|
Sunter JD, Benz C, Andre J, Whipple S, McKean PG, Gull K, Ginger ML, Lukeš J. Modulation of flagellum attachment zone protein FLAM3 and regulation of the cell shape in Trypanosoma brucei life cycle transitions. J Cell Sci 2015; 128:3117-30. [PMID: 26148511 PMCID: PMC4541047 DOI: 10.1242/jcs.171645] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/29/2015] [Indexed: 11/25/2022] Open
Abstract
The cell shape of Trypanosoma brucei is influenced by flagellum-to-cell-body attachment through a specialised structure – the flagellum attachment zone (FAZ). T. brucei exhibits numerous morphological forms during its life cycle and, at each stage, the FAZ length varies. We have analysed FLAM3, a large protein that localises to the FAZ region within the old and new flagellum. Ablation of FLAM3 expression causes a reduction in FAZ length; however, this has remarkably different consequences in the tsetse procyclic form versus the mammalian bloodstream form. In procyclic form cells FLAM3 RNAi results in the transition to an epimastigote-like shape, whereas in bloodstream form cells a severe cytokinesis defect associated with flagellum detachment is observed. Moreover, we demonstrate that the amount of FLAM3 and its localisation is dependent on ClpGM6 expression and vice versa. This evidence demonstrates that FAZ is a key regulator of trypanosome shape, with experimental perturbations being life cycle form dependent. An evolutionary cell biology explanation suggests that these differences are a reflection of the division process, the cytoskeleton and intrinsic structural plasticity of particular life cycle forms. Summary:Trypanosoma brucei FLAM3 is a flagellar FAZ protein. Its depletion leads to a reduction in FAZ length, which has different consequences depending on the life cycle stage of the parasite.
Collapse
Affiliation(s)
- Jack D Sunter
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Corinna Benz
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis) 37005, Czech Republic
| | - Jane Andre
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK
| | - Sarah Whipple
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK
| | - Paul G McKean
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Michael L Ginger
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK
| | - Julius Lukeš
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis) 37005, Czech Republic Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis) 37005, Czech Republic Canadian Institute for Advanced Research, Toronto, Ontario, Canada M5G 1Z8
| |
Collapse
|
26
|
Gluenz E, Wheeler RJ, Hughes L, Vaughan S. Scanning and three-dimensional electron microscopy methods for the study of Trypanosoma brucei and Leishmania mexicana flagella. Methods Cell Biol 2015; 127:509-42. [PMID: 25837406 PMCID: PMC4419368 DOI: 10.1016/bs.mcb.2014.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Three-dimensional electron microscopy tools have revolutionized our understanding of cell structure and molecular complexes in biology. Here, we describe methods for studying flagellar ultrastructure and biogenesis in two unicellular parasites-Trypanosoma brucei and Leishmania mexicana. We describe methods for the preparation of these parasites for scanning electron microscopy cellular electron tomography, and serial block face scanning electron microscopy (SBFSEM). These parasites have a highly ordered cell shape and form, with a defined positioning of internal cytoskeletal structures and organelles. We show how knowledge of these can be used to dissect cell cycles in both parasites and identify the old flagellum from the new in T. brucei. Finally, we demonstrate the use of SBFSEM three-dimensional models for analysis of individual whole cells, demonstrating the excellent potential this technique has for future studies of mutant cell lines.
Collapse
Affiliation(s)
- Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Louise Hughes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| |
Collapse
|
27
|
Abstract
Trypanosoma brucei is a pathogenic unicellular eukaryote that infects humans and other mammals in sub-Saharan Africa. A central feature of trypanosome biology is the single flagellum of the parasite, which is an essential and multifunctional organelle that facilitates cell propulsion, controls cell morphogenesis and directs cytokinesis. Moreover, the flagellar membrane is a specialized subdomain of the cell surface that mediates attachment to host tissues and harbours multiple virulence factors. In this Review, we discuss the structure, assembly and function of the trypanosome flagellum, including canonical roles in cell motility as well as novel and emerging roles in cell morphogenesis and host-parasite interactions.
Collapse
Affiliation(s)
- Gerasimos Langousis
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Kent L. Hill
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
| |
Collapse
|
28
|
Höög JL, Lacomble S, O'Toole ET, Hoenger A, McIntosh JR, Gull K. Modes of flagellar assembly in Chlamydomonas reinhardtii and Trypanosoma brucei. eLife 2014; 3:e01479. [PMID: 24448408 PMCID: PMC3896119 DOI: 10.7554/elife.01479] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Defects in flagella growth are related to a number of human diseases. Central to flagellar growth is the organization of microtubules that polymerize from basal bodies to form the axoneme, which consists of hundreds of proteins. Flagella exist in all eukaryotic phyla, but neither the mechanism by which flagella grow nor the conservation of this process in evolution are known. Here, we study how protein complexes assemble onto the growing axoneme tip using (cryo) electron tomography. In Chlamydomonas reinhardtii microtubules and associated proteins are added simultaneously. However, in Trypanosoma brucei, disorganized arrays of microtubules are arranged into the axoneme structure by the later addition of preformed protein complexes. Post assembly, the T. brucei transition zone alters structure and its association with the central pair loosens. We conclude that there are multiple ways to form a flagellum and that species-specific structural knowledge is critical before evaluating flagellar defects. DOI:http://dx.doi.org/10.7554/eLife.01479.001 Some cells have a whip-like appendage called a flagellum. This is most often used to propel the cell, notably in sperm cells, but it can also be involved in sensing cues in the surrounding environment. Flagella are found in all three domains of life—the eukaryotes (which include the animals), bacteria and ancient, single-celled organisms called Archaea—and they perform similar functions in each domain. However, they also differ significantly in their protein composition, overall structure, and mechanism of propulsion. The core of the flagellum in eukaryotes is made up of 20 hollow filaments called ‘microtubules’ arranged so that nine pairs of microtubules form a ring around two central microtubules. The core also contains many other proteins, but it is not clear how all these components come together to make a working flagellum. Moreover, it is not known if the flagella of different groups of eukaryotes are all assembled in the same way. Now, Höög et al. have discovered that although the core structure of the eukaryote flagellum is highly conserved, it can be assembled in markedly different ways. Some species of eukaryote—such as Chlamydomonas reinhardtii, a single-celled green alga, and Trypanosoma brucei, the protist parasite that causes African sleeping sickness—must grow new flagella when their cells divide, so that each new cell can swim. Using a form of electron microscopy called electron tomography, Höög et al. could see the detailed structure of the growing flagella in three dimensions. At first the cores of the flagella in these two distantly related species grow in the same way. However as the flagella get longer their cores grow in completely different ways. The microtubule filaments in longer flagella grow in a synchronized manner in the alga, but in a disorganized way in the protist. The results of Höög et al. illustrate that it is not advisable to draw generalised conclusions based on studies of a few model species. However, since defects in flagella are known to cause several diseases in humans, this knowledge might inform future studies aimed at developing treatments for infertility, respiratory problems, and certain kinds of cancer. DOI:http://dx.doi.org/10.7554/eLife.01479.002
Collapse
Affiliation(s)
- Johanna L Höög
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|
29
|
Zhou Q, Hu H, Li Z. New insights into the molecular mechanisms of mitosis and cytokinesis in trypanosomes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 308:127-66. [PMID: 24411171 DOI: 10.1016/b978-0-12-800097-7.00004-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Trypanosoma brucei, a unicellular eukaryote and the causative agent of human sleeping sickness, possesses multiple single-copy organelles that all need to be duplicated and segregated during cell division. Trypanosomes undergo a closed mitosis in which the mitotic spindle is anchored on the nuclear envelope and connects the kinetochores made of novel protein components. Cytokinesis in trypanosomes is initiated from the anterior tip of the new flagellum attachment zone, and proceeds along the longitudinal axis without the involvement of the actomyosin contractile ring, the well-recognized cytokinesis machinery conserved from yeast to humans. Trypanosome appears to employ both evolutionarily conserved and trypanosome-specific proteins to regulate its cell cycle, and has evolved certain cell cycle regulatory pathways that are either distinct between its life cycle stages or different from its human host. Understanding the mechanisms of mitosis and cytokinesis in trypanosomes not only would shed novel light on the evolution of cell cycle control, but also could provide new drug targets for chemotherapy.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Huiqing Hu
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, Texas, USA.
| |
Collapse
|
30
|
Morga B, Bastin P. Getting to the heart of intraflagellar transport using Trypanosoma and Chlamydomonas models: the strength is in their differences. Cilia 2013; 2:16. [PMID: 24289478 PMCID: PMC4015504 DOI: 10.1186/2046-2530-2-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/11/2013] [Indexed: 11/22/2022] Open
Abstract
Cilia and flagella perform diverse roles in motility and sensory perception, and defects in their construction or their function are responsible for human genetic diseases termed ciliopathies. Cilia and flagella construction relies on intraflagellar transport (IFT), the bi-directional movement of ‘trains’ composed of protein complexes found between axoneme microtubules and the flagellum membrane. Although extensive information about IFT components and their mode of action were discovered in the green algae Chlamydomonas reinhardtii, other model organisms have revealed further insights about IFT. This is the case of Trypanosoma brucei, a flagellated protist responsible for sleeping sickness that is turning out to be an emerging model for studying IFT. In this article, we review different aspects of IFT, based on studies of Chlamydomonas and Trypanosoma. Data available from both models are examined to ask challenging questions about IFT such as the initiation of flagellum construction, the setting-up of IFT and the mode of formation of IFT trains, and their remodeling at the tip as well as their recycling at the base. Another outstanding question is the individual role played by the multiple IFT proteins. The use of different models, bringing their specific biological and experimental advantages, will be invaluable in order to obtain a global understanding of IFT.
Collapse
Affiliation(s)
- Benjamin Morga
- Trypanosome Cell Biology Unit, Institut Pasteur and CNRS, URA 2581, 25 rue du Docteur Roux, 75015, Paris, France.
| | | |
Collapse
|
31
|
Wheeler RJ, Scheumann N, Wickstead B, Gull K, Vaughan S. Cytokinesis in Trypanosoma brucei differs between bloodstream and tsetse trypomastigote forms: implications for microtubule-based morphogenesis and mutant analysis. Mol Microbiol 2013; 90:1339-55. [PMID: 24164479 PMCID: PMC4159584 DOI: 10.1111/mmi.12436] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2013] [Indexed: 01/01/2023]
Abstract
Trypanosomes use a microtubule‐focused mechanism for cell morphogenesis and cytokinesis. We used scanning electron and video microscopy of living cells to provide the first detailed description of cell morphogenesis and cytokinesis in the early‐branching eukaryote Trypanosoma brucei. We outline four distinct stages of cytokinesis and show that an asymmetric division fold bisects the two daughter cells, with a cytoplasmic bridge‐like structure connecting the two daughters immediately prior to abscission. Using detection of tyrosinated α‐tubulin as a marker for new or growing microtubules and expression of XMAP215, a plus end binding protein, as a marker for microtubule plus ends we demonstrate spatial asymmetry in the underlying microtubule cytoskeleton throughout the cell division cycle. This leads to inheritance of different microtubule cytoskeletal patterns and demonstrates the major role of microtubules in achieving cytokinesis. RNA interference techniques have led to a large set of mutants, often with variations in phenotype between procyclic and bloodstream life cycle forms. Here, we show morphogenetic differences between these two life cycle forms of this parasite during new flagellum growth and cytokinesis. These discoveries are important tools to explain differences between bloodstream and procyclic form RNAi phenotypes involving organelle mis‐positioning during cell division and cytokinesis defects.
Collapse
Affiliation(s)
- Richard J Wheeler
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | | | | | | | | |
Collapse
|
32
|
Ooi CP, Bastin P. More than meets the eye: understanding Trypanosoma brucei morphology in the tsetse. Front Cell Infect Microbiol 2013; 3:71. [PMID: 24312899 PMCID: PMC3826061 DOI: 10.3389/fcimb.2013.00071] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/14/2013] [Indexed: 11/13/2022] Open
Abstract
T. brucei, the causative parasite for African trypanosomiasis, faces an interesting dilemma in its life cycle. It has to successfully complete its infection cycle in the tsetse vector to be able to infect other vertebrate hosts. T. brucei has to undergo multiple morphological changes as it invades the alimentary canal of the tsetse to finally achieve infectivity in the salivary glands. In this review, we attempt to elucidate how these morphological changes are possible for a parasite that has evolved a highly robust cell structure to survive the chemically and physically diverse environments it finds itself in. To achieve this, we juxtaposed the experimental evidence that has been collected from T. brucei forms that are cultured in vitro with the observations that have been carried out on tsetse-infective forms in vivo. Although the accumulated knowledge on T. brucei biology is by no means trivial, several outstanding questions remain for how the parasite mechanistically changes its morphology as it traverses the tsetse and how those changes are triggered. However, we conclude that with recent breakthroughs allowing for the replication of the tsetse-infection process of T. brucei in vitro, these outstanding questions can finally be addressed.
Collapse
Affiliation(s)
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, CNRS URA2581, Institut PasteurParis, France
| |
Collapse
|
33
|
Hughes L, Towers K, Starborg T, Gull K, Vaughan S. A cell-body groove housing the new flagellum tip suggests an adaptation of cellular morphogenesis for parasitism in the bloodstream form of Trypanosoma brucei. J Cell Sci 2013; 126:5748-57. [PMID: 24127564 PMCID: PMC3860315 DOI: 10.1242/jcs.139139] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Flagella are highly conserved organelles present in a wide variety of species. In Trypanosoma brucei the single flagellum is necessary for morphogenesis, cell motility and pathogenesis, and is attached along the cell body. A new flagellum is formed alongside the old during the cell division cycle. In the (insect) procyclic form, the flagella connector (FC) attaches the tip of the new flagellum to the side of the old flagellum, ensuring faithful replication of cell architecture. The FC is not present in the bloodstream form of the parasite. We show here, using new imaging techniques including serial block-face scanning electron microscopy (SBF-SEM), that the distal tip of the new flagellum in the bloodstream form is embedded within an invagination in the cell body plasma membrane, named the groove. We suggest that the groove has a similar function to the flagella connector. The groove is a mobile junction located alongside the microtubule quartet (MtQ) and occurred within a gap in the subpellicular microtubule corset, causing significant modification of microtubules during elongation of the new flagellum. It appears likely that this novel form of morphogenetic structure has evolved to withstand the hostile immune response in the mammalian blood.
Collapse
Affiliation(s)
- Louise Hughes
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Oxford OX3 0BP, UK
| | | | | | | | | |
Collapse
|
34
|
Wei Y, Hu H, Lun ZR, Li Z. The cooperative roles of two kinetoplastid-specific kinesins in cytokinesis and in maintaining cell morphology in bloodstream trypanosomes. PLoS One 2013; 8:e73869. [PMID: 24069240 PMCID: PMC3772034 DOI: 10.1371/journal.pone.0073869] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 07/23/2013] [Indexed: 11/19/2022] Open
Abstract
The cytoskeleton of Trypanosoma brucei, a unicellular eukaryote and a parasitic protozoan, is defined by the subpellicular microtubule corset that is arranged underneath the plasma membrane. We recently identified two orphan kinesins, TbKIN-C and TbKIN-D, that cooperate to regulate the organization of the subpellicular microtubule corset and thereby maintain cell morphology in the procyclic form of T. brucei. In this report, we characterize the function of TbKIN-C and TbKIN-D in the bloodstream form of T. brucei and investigate their functional cooperation in both the bloodstream and procyclic forms. TbKIN-C and TbKIN-D form a tight complex in vivo in the bloodstream form. TbKIN-C is strongly enriched at the posterior tip of the cell, whereas TbKIN-D is distributed throughout the cell body at all cell cycle stages. RNAi of TbKIN-C or TbKIN-D in the bloodstream form inhibits cell proliferation and leads to cell death, due to cytokinesis defects. RNAi of TbKIN-C and TbKIN-D also results in defects in basal body segregation, but does not affect the synthesis and segregation of the flagellum and the flagellum attachment zone (FAZ) filament. Knockdown of TbKIN-C and TbKIN-D does not disrupt the organization of the subpellicular microtubule corset, but produces multinucleated cells with an enlarged flagellar pocket and misplaced flagella. Interestingly, depletion of TbKIN-C results in rapid degradation of TbKIN-D and, similarly, knockdown of TbKIN-C destabilizes TbKIN-D, suggesting that formation of TbKIN-C/TbKIN-D complex stabilizes both kinesins and is required for the two kinesins to execute their essential cellular functions. Altogether, our results demonstrate the essential role of the two kinesins in cell morphogenesis and cytokinesis in the bloodstream form and the requirement of heteromeric complex formation for maintaining the stability of the two kinesins.
Collapse
Affiliation(s)
- Ying Wei
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas, United States of America
| | - Huiqing Hu
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas, United States of America
| | - Zhao-Rong Lun
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
35
|
Identification and characterization of a stage specific membrane protein involved in flagellar attachment in Trypanosoma brucei. PLoS One 2013; 8:e52846. [PMID: 23335957 PMCID: PMC3546053 DOI: 10.1371/journal.pone.0052846] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 11/21/2012] [Indexed: 11/19/2022] Open
Abstract
Flagellar attachment is a visibly striking morphological feature of African trypanosomes but little is known about the requirements for attachment at a molecular level. This study characterizes a previously undescribed membrane protein, FLA3, which plays an essential role in flagellar attachment in Trypanosoma brucei. FLA3 is heavily N-glycosylated, locates to the flagellar attachment zone and appears to be a bloodstream stage specific protein. Ablation of the FLA3 mRNA rapidly led to flagellar detachment and a concomitant failure of cytokinesis in the long slender bloodstream form but had no effect on the procyclic form. Flagellar detachment was obvious shortly after induction of the dsRNA and the newly synthesized flagellum was often completely detached after it emerged from the flagellar pocket. Within 12 h most cells possessed detached flagella alongside the existing attached flagellum. These results suggest that proteins involved in attachment are not shared between the new and old attachment zones. In other respects the detached flagella appear normal, they beat rapidly although directional motion was lost, and they possess an apparently normal axoneme and paraflagellar rod structure. The flagellar attachment zone appeared to be disrupted when FLA3 was depleted. Thus, while flagellar attachment is a constitutive feature of the life cycle of trypanosomes, attachment requires stage specific elements at the protein level.
Collapse
|
36
|
Trypanosoma brucei FKBP12 differentially controls motility and cytokinesis in procyclic and bloodstream forms. EUKARYOTIC CELL 2012; 12:168-81. [PMID: 23104568 DOI: 10.1128/ec.00077-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
FKBP12 proteins are able to inhibit TOR kinases or calcineurin phosphatases upon binding of rapamycin or FK506 drugs, respectively. The Trypanosoma brucei FKBP12 homologue (TbFKBP12) was found to be a cytoskeleton-associated protein with specific localization in the flagellar pocket area of the bloodstream form. In the insect procyclic form, RNA interference-mediated knockdown of TbFKBP12 affected motility. In bloodstream cells, depletion of TbFKBP12 affected cytokinesis and cytoskeleton architecture. These last effects were associated with the presence of internal translucent cavities limited by an inside-out configuration of the normal cell surface, with a luminal variant surface glycoprotein coat lined up by microtubules. These cavities, which recreated the streamlined shape of the normal trypanosome cytoskeleton, might represent unsuccessful attempts for cell abscission. We propose that TbFKBP12 differentially affects stage-specific processes through association with the cytoskeleton.
Collapse
|
37
|
Abstract
Trypanosoma brucei is the etiological agent of devastating parasitic disease in humans and livestock in sub-saharan Africa. The pathogenicity and growth of the parasite are intimately linked to its shape and form. This is in turn derived from a highly ordered microtubule cytoskeleton that forms a tightly arrayed cage directly beneath the pellicular membrane and numerous other cytoskeletal structures such as the flagellum. The parasite undergoes extreme changes in cellular morphology during its life cycle and cell cycles which require a high level of integration and coordination of cytoskeletal processes. In this review we will discuss the role that proteomics techniques have had in advancing our understanding of the molecular composition of the cytoskeleton and its functions. We then consider future opportunities for the application of these techniques in terms of addressing some of the unanswered questions of trypanosome cytoskeletal cell biology with particular focus on the differences in the composition and organisation of the cytoskeleton through the trypanosome life-cycle.
Collapse
|
38
|
Silverman JS, Bangs JD. Form and function in the trypanosomal secretory pathway. Curr Opin Microbiol 2012; 15:463-8. [PMID: 22445359 DOI: 10.1016/j.mib.2012.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 03/01/2012] [Indexed: 01/31/2023]
Abstract
Recent advances in secretory biology of African trypanosomes reveal both similarities and striking differences with other model eukaryotic organisms. Secretion is streamlined for rapid and selective transport of the major cargo, VSG. Selectivity in the early and post-Golgi compartments is dependent on glycosylphosphatidyl inositol anchors. Streamlining includes reduced organellar abundance, and close association of ER exit sites with Golgi and with unique flagellar cytoskeletal elements that govern organellar replication and segregation. These elements include a novel centrin containing bilobe structure. Innate signals for post-Golgi sorting of biosynthetic lysosomal cargo trafficking have been defined, as have pathways for both biosynthetic and endocytic trafficking to the lysosome. Less well-defined secretory organelles such as the multivesicular body and acidocalcisomes are receiving closer scrutiny.
Collapse
Affiliation(s)
- Jason S Silverman
- Department of Medical Microbiology & Immunology, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI 53706, United States
| | | |
Collapse
|
39
|
Ikeda KN, de Graffenried CL. Polo-like kinase is necessary for flagellum inheritance in Trypanosoma brucei. J Cell Sci 2012; 125:3173-84. [PMID: 22427687 DOI: 10.1242/jcs.101162] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polo-like kinases play an important role in a variety of mitotic events in mammalian cells, ranging from centriole separation and chromosome congression to abscission. To fulfill these roles, Polo-like kinase homologs move to different cellular locations as the cell cycle progresses, starting at the centrosome, progressing to the spindle poles and then the midbody. In the protist parasite Trypanosoma brucei, the single polo-like kinase homolog T. brucei PLK (TbPLK) is essential for cytokinesis and is necessary for the correct duplication of a centrin-containing cytoskeletal structure known as the bilobe. We show that TbPLK has a dynamic localization pattern during the cell cycle. The kinase localizes to the basal body, which nucleates the flagellum, and then successively localizes to a series of cytoskeletal structures that regulate the position and attachment of the flagellum to the cell body. The kinase localizes to each of these structures as they are duplicating. TbPLK associates with a specialized set of microtubules, known as the microtubule quartet, which might transport the kinase during its migration. Depletion of TbPLK causes defects in basal body segregation and blocks the duplication of the regulators that position the flagellum, suggesting that its presence on these structures might be necessary for their proper biogenesis. TbPLK migrates throughout the cell in T. brucei, but the specific locations to which it targets and its functions are geared towards the inheritance of a properly positioned and attached flagellum.
Collapse
Affiliation(s)
- Kyojiro N Ikeda
- Department of Medical Biochemistry, Medical University of Vienna, Max F. Perutz Laboratories, Vienna, Austria
| | | |
Collapse
|
40
|
Yu Z, Liu Y, Li Z. Structure-function relationship of the Polo-like kinase in Trypanosoma brucei. J Cell Sci 2012; 125:1519-30. [PMID: 22275435 PMCID: PMC3336379 DOI: 10.1242/jcs.094243] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2011] [Indexed: 12/19/2022] Open
Abstract
Polo-like kinases (Plks) play multiple roles in mitosis and cytokinesis in eukaryotes and are characterized by the C-terminal Polo-box domain (PBD), which is implicated in binding to Plk substrates, targeting Plk and regulating Plk activity. The Plk homolog in Trypanosoma brucei (TbPLK) possesses a similar architecture, but it lacks the crucial residues involved in substrate binding and regulates cytokinesis but not mitosis. Little is known about the regulation of TbPLK and the role of the PBD in TbPLK localization and function. Here, we addressed the requirement of the kinase activity and the PBD for TbPLK localization and function through coupling RNAi of endogenous TbPLK with ectopic expression of TbPLK mutants. We demonstrate that the kinase activity and phosphorylation of two threonine residues, Thr198 and Thr202, in the activation loop (T-loop) of the kinase domain are essential for TbPLK function but not for TbPLK localization. Deletion of the PBD abolishes TbPLK localization, but the PBD itself is not correctly targeted, indicating that TbPLK localization requires both the PBD and the kinase domain. Surprisingly, the kinase domain of TbPLK, but not the PBD, binds to its substrates TbCentrin2 and p110, suggesting that TbPLK might interact with its substrate through different mechanisms. Finally, the PBD interacts with the kinase domain of TbPLK and inhibits its activity, and this inhibition is relieved when Thr198 is phosphorylated. Together, these results suggest an essential role of T-loop phosphorylation in TbPLK activation and crucial roles of the PBD in regulating TbPLK activity and localization.
Collapse
Affiliation(s)
- Zhonglian Yu
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Yi Liu
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| |
Collapse
|
41
|
Abstract
The biogenesis of the ER Exit Site/Golgi Junction (EGJ) in bloodstream-form African trypanosomes is investigated using tagged markers for ER Exit Sites, the Golgi and the bilobe structure. The typical pattern is two EGJ in G1 phase (1 kinetoplast/1 nucleus, 1K1N) through S-phase (2K1N), duplication to four EGJ in post-mitotic cells (2K2N) and segregation of two EGJ to each daughter. Lesser cell percentages have elevated EGJ copy numbers in all stages, and blocking cell cycle progression results in even higher copy numbers. EGJs are closely aligned with the flagellar attachment zone (FAZ) indicating nucleation on the FAZ-associated ER (FAZ:ER). Only the most posterior EGJ in each cell is in proximity to the bilobe, which is located at the base of the FAZ filament near the mouth of the flagellar pocket. These results indicate that EGJ replication in bloodstream trypanosomes is not tightly coupled to the cell cycle. Furthermore, segregation of EGJ is not obligately mediated by the bilobe, rather assembly of the EGJ on the FAZ:ER, which is coupled to the flagellar cytoskeleton, apparently ensures segregation with fidelity during cytokinesis. These findings differ markedly from procyclic-form trypanosomes, and models highlighting these stage-specific differences in EGJ biogenesis are proposed.
Collapse
Affiliation(s)
- James D Bangs
- Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA.
| |
Collapse
|
42
|
Abstract
Vector-borne parasites cause major human diseases of the developing world, including malaria, human African trypanosomiasis, Chagas disease, leishmaniasis, filariasis, and schistosomiasis. Although the life cycles of these parasites were defined over 100 years ago, the strategies they use to optimize their successful transmission are only now being understood in molecular terms. Parasites are now known to monitor their environment in both their host and vector and in response to other parasites. This allows them to adapt their developmental cycles and to counteract any unfavorable conditions they encounter. Here, I review the interactions that parasites engage in with their hosts and vectors to maximize their survival and spread.
Collapse
Affiliation(s)
- Keith R Matthews
- Centre for Immunity, Infection, and Evolution, Institute for Immunology and Infection Research, Ashworth Laboratories, School of Biological Sciences, King's Buildings, University of Edinburgh, Edinburgh EH9 3JT, UK
| |
Collapse
|
43
|
Wheeler RJ, Gluenz E, Gull K. The cell cycle of Leishmania: morphogenetic events and their implications for parasite biology. Mol Microbiol 2010; 79:647-62. [PMID: 21255109 PMCID: PMC3166656 DOI: 10.1111/j.1365-2958.2010.07479.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cell cycle is central to understanding fundamental biology of Leishmania, a group of human-infective protozoan parasites. Leishmania have two main life cycle morphologies: the intracellular amastigote in the mammalian host and the promastigote in the fly. We have produced the first comprehensive and quantitative description of a Leishmania promastigote cell cycle taking a morphometric approach to position any cell within the cell cycle based on its length and DNA content. We describe timings of cell cycle phases and rates of morphological changes; kinetoplast and nucleus S phase, division and position, cell body growth and morphology changes, flagellum growth and basal body duplication. We have shown that Leishmania mexicana undergoes large changes in morphology through the cell cycle and that the wide range of morphologies present in cultures during exponential growth represent different cell cycle stages. We also show promastigote flagellum growth occurs over multiple cell cycles. There are clear implications for the mechanisms of flagellum length regulation, life cycle stage differentiation and trypanosomatid division in general. This data set therefore provides a platform which will be of use for post-genomic analyses of Leishmania cell biology in relation to differentiation and infection.
Collapse
Affiliation(s)
- Richard J Wheeler
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | |
Collapse
|
44
|
Straschil U, Talman AM, Ferguson DJP, Bunting KA, Xu Z, Bailes E, Sinden RE, Holder AA, Smith EF, Coates JC. The Armadillo repeat protein PF16 is essential for flagellar structure and function in Plasmodium male gametes. PLoS One 2010; 5:e12901. [PMID: 20886115 PMCID: PMC2944832 DOI: 10.1371/journal.pone.0012901] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 08/20/2010] [Indexed: 12/30/2022] Open
Abstract
Malaria, caused by the apicomplexan parasite Plasmodium, threatens 40% of the world's population. Transmission between vertebrate and insect hosts depends on the sexual stages of the life-cycle. The male gamete of Plasmodium parasite is the only developmental stage that possesses a flagellum. Very little is known about the identity or function of proteins in the parasite's flagellar biology. Here, we characterise a Plasmodium PF16 homologue using reverse genetics in the mouse malaria parasite Plasmodium berghei. PF16 is a conserved Armadillo-repeat protein that regulates flagellar structure and motility in organisms as diverse as green algae and mice. We show that P. berghei PF16 is expressed in the male gamete flagellum, where it plays a crucial role maintaining the correct microtubule structure in the central apparatus of the axoneme as studied by electron microscopy. Disruption of the PF16 gene results in abnormal flagellar movement and reduced fertility, but does not lead to complete sterility, unlike pf16 mutations in other organisms. Using homology modelling, bioinformatics analysis and complementation studies in Chlamydomonas, we show that some regions of the PF16 protein are highly conserved across all eukaryotes, whereas other regions may have species-specific functions. PF16 is the first ARM-repeat protein characterised in the malaria parasite genus Plasmodium and this study opens up a novel model for analysis of Plasmodium flagellar biology that may provide unique insights into an ancient organelle and suggest novel intervention strategies to control the malaria parasite.
Collapse
Affiliation(s)
- Ursula Straschil
- Institute of Genetics, School of Biology, University of Nottingham, Nottingham, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lacomble S, Vaughan S, Gadelha C, Morphew MK, Shaw MK, McIntosh JR, Gull K. Basal body movements orchestrate membrane organelle division and cell morphogenesis in Trypanosoma brucei. J Cell Sci 2010; 123:2884-91. [PMID: 20682637 DOI: 10.1242/jcs.074161] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The defined shape and single-copy organelles of Trypanosoma brucei mean that it provides an excellent model in which to study how duplication and segregation of organelles is interfaced with morphogenesis of overall cell shape and form. The centriole or basal body of eukaryotic cells is often seen to be at the centre of such processes. We have used a combination of electron microscopy and electron tomography techniques to provide a detailed three-dimensional view of duplication of the basal body in trypanosomes. We show that the basal body duplication and maturation cycle exerts an influence on the intimately associated flagellar pocket membrane system that is the portal for secretion and uptake from this cell. At the start of the cell cycle, a probasal body is positioned anterior to the basal body of the existing flagellum. At the G1-S transition, the probasal body matures, elongates and invades the pre-existing flagellar pocket to form the new flagellar axoneme. The new basal body undergoes a spectacular anti-clockwise rotation around the old flagellum, while its short new axoneme is associated with the pre-existing flagellar pocket. This rotation and subsequent posterior movements results in division of the flagellar pocket and ultimately sets parameters for subsequent daughter cell morphogenesis.
Collapse
Affiliation(s)
- Sylvain Lacomble
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | | | | | | | | | | | | |
Collapse
|
46
|
Katta SS, Tammana TVS, Sahasrabuddhe AA, Bajpai VK, Gupta CM. Trafficking activity of myosin XXI is required in assembly of Leishmania flagellum. J Cell Sci 2010; 123:2035-44. [PMID: 20501700 DOI: 10.1242/jcs.064725] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actin-based myosin motors have a pivotal role in intracellular trafficking in eukaryotic cells. The parasitic protozoan organism Leishmania expresses a novel class of myosin, myosin XXI (Myo21), which is preferentially localized at the proximal region of the flagellum. However, its function in this organism remains largely unknown. Here, we show that Myo21 interacts with actin, and its expression is dependent of the growth stage. We further reveal that depletion of Myo21 levels results in impairment of the flagellar assembly and intracellular trafficking. These defects are, however, reversed by episomal complementation. Additionally, it is shown that deletion of the Myo21 gene leads to generation of ploidy, suggesting an essential role of Myo21 in survival of Leishmania cells. Together, these results indicate that actin-dependent trafficking activity of Myo21 is essentially required during assembly of the Leishmania flagellum.
Collapse
Affiliation(s)
- Santharam S Katta
- Molecular and Structural Biology Division, Central Drug Research Institute, CSIR, Uttar Pradesh, Lucknow, India
| | | | | | | | | |
Collapse
|
47
|
|
48
|
|
49
|
Liu W, Apagyi K, McLeavy L, Ersfeld K. Expression and cellular localisation of calpain-like proteins in Trypanosoma brucei. Mol Biochem Parasitol 2009; 169:20-6. [PMID: 19766148 DOI: 10.1016/j.molbiopara.2009.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 09/07/2009] [Accepted: 09/08/2009] [Indexed: 01/01/2023]
Abstract
Calpains are a ubiquitous family of calcium-dependent cysteine proteases involved in a wide range of cell regulatory and differentiation processes. In many protozoan organisms, atypical calpains have been discovered that lack the characteristic calcium-binding penta-EF-hand motif of typical vertebrate calpains and most of these novel calpain-like proteins are non-enzymatic homologues of typical calpains. The gene family is particularly expanded in ciliates and kinetoplastids, comprising 25 members in the parasite Trypanosoma brucei. Unique to kinetoplastids, some calpain-like proteins contain N-terminal dual myristoylation/palmitoylation signals, a protein modification involved in protein-membrane associations. We analyzed the expression of calpain-like proteins in the insect (procyclic) and bloodstream-stage of T. brucei using quantitative real time PCR and identified the differential expression of some of the calpain genes. We also present a comprehensive analysis of the subcellular localisation of selected members of this protein family in trypanosomes. Here, of particular interest is the role of protein acylation for targeting to the flagellum. We show that, although acylation is important for flagellar targeting, additional signals are required to specify the precise subcellular localisation.
Collapse
Affiliation(s)
- Wen Liu
- Department of Biological Sciences, University of Hull, UK
| | | | | | | |
Collapse
|
50
|
Sharma R, Gluenz E, Peacock L, Gibson W, Gull K, Carrington M. The heart of darkness: growth and form of Trypanosoma brucei in the tsetse fly. Trends Parasitol 2009; 25:517-24. [PMID: 19747880 PMCID: PMC3770903 DOI: 10.1016/j.pt.2009.08.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 07/14/2009] [Accepted: 08/03/2009] [Indexed: 01/24/2023]
Abstract
The first description of African trypanosomes was made over a century ago. The importance of the tsetse in transmission and cyclic development of trypanosomes was discovered soon afterwards, and has been the focus of numerous studies since. However, investigation of trypanosomes in tsetse flies requires high resource investment and unusual patience; hence, many facets of trypanosome biology in the tsetse remain to be characterised despite the long history of research. Here, current knowledge and questions about some of the developmental changes in trypanosomes that occur in tsetse flies are summarised, along with recent technical advances that can now be used to provide some answers.
Collapse
Affiliation(s)
- Reuben Sharma
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| | | | | | | | | | | |
Collapse
|