1
|
Baek CH, Kim H, Moon SY, Lee EK, Yang WS. AKT activation triggers Rab14-mediated ADAM10 translocation to the cell surface in human aortic endothelial cells. Sci Rep 2025; 15:7448. [PMID: 40032916 PMCID: PMC11876668 DOI: 10.1038/s41598-025-90624-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 02/14/2025] [Indexed: 03/05/2025] Open
Abstract
AKT (protein kinase B) activation reduces the harmful effects of advanced glycation end products (AGEs); however, the protective mechanisms remain unknown. In cultured human aortic endothelial cells (HAECs), we investigated how AKT signaling suppresses AGEs-induced intercellular adhesion molecule-1 (ICAM-1) expression. AGEs of bovine serum albumin (AGE-BSA) increased ICAM-1 expression, but this effect was abolished by pretreatment with the AKT activator SC79. SC79 activated AKT1, AKT2, and AKT3, translocated a disintegrin and metalloprotease 10 (ADAM10) to the cell surface, and induced ectodomain shedding of the receptor for AGEs (RAGE). In contrast, GI 254023X-mediated ADAM10 inhibition and siRNA-mediated ADAM10 knockdown both prevented SC79-induced RAGE ectodomain shedding. On the other hand, MK-2206, a pan-AKT inhibitor, and siRNA-mediated knockdown of AKT1, AKT2, or AKT3 prevented SC79-induced ADAM10 cell surface translocation and RAGE ectodomain shedding. Notably, Rab14 was co-immunoprecipitated with ADAM10. Following SC79 treatment, Rab14 moved to the cell surface, whereas siRNA-mediated Rab14 knockdown prevented SC79 from promoting ADAM10 cell surface translocation and RAGE ectodomain shedding and abolished SC79's ability to inhibit AGE-BSA-induced ICAM-1 expression. In conclusion, upon activation of all three isoforms, AKT suppresses AGE-BSA-induced ICAM-1 expression by inducing ADAM10-mediated RAGE ectodomain shedding. This occurs because AKT signaling boosts Rab14-dependent ADAM10 cell surface translocation.
Collapse
Affiliation(s)
- Chung Hee Baek
- Division of Nephrology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Hyosang Kim
- Division of Nephrology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Soo Young Moon
- Asan Institute for Life Sciences, Seoul, Republic of Korea
| | - Eun Kyoung Lee
- Division of Nephrology, Department of Internal Medicine, Dankook University Hospital, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Won Seok Yang
- Division of Nephrology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
2
|
Parray ZA. A review on evolution, structural characteristics, interactions, and regulation of the membrane transport protein: The family of Rab proteins. Int J Biol Macromol 2025; 296:139828. [PMID: 39809406 DOI: 10.1016/j.ijbiomac.2025.139828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/03/2025] [Accepted: 01/11/2025] [Indexed: 01/16/2025]
Abstract
Rab proteins are a key family of small GTPases that play crucial roles in vesicular trafficking, membrane dynamics, and maintaining cellular homeostasis. Studying this family of proteins is interesting as having many structural isoforms with variable evolutionary trends and wide distribution in cells. The proteins are renowned for their unique structural characteristics, which support their functional adaptability and specificity. Based on these features these proteins show different regulatory pathways and show involvement in dynamic protein-protein interactions, which is essential for intracellular signaling processes and in maintaining cellular functionality and balance. Notably, it is the first review to compile such extensive information about Rabs. Such information related to these proteins explores the molecular mechanisms in medicine based on their phylogenetic development, structural conformation changes, interaction networks, distribution, and regulation-dysregulations discussed in this review. Moreover, this review offers a consolidated resource for researchers and clinicians to understand the Rabs in different magnitudes.
Collapse
Affiliation(s)
- Zahoor Ahmad Parray
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, Hauz Khas Campus, New Delhi 110016, India; Department of Bio-Science and Technology, MM Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133203, India.
| |
Collapse
|
3
|
Rahman F, Johnson JL, Ait Kbaich M, Meneses-Salas E, Shukla A, Chen D, Kiosses WB, Gavathiotis E, Cuervo AM, Cherqui S, Catz SD. Reconstitution of Rab11-FIP4 Expression Rescues Cellular Homeostasis in Cystinosis. Mol Cell Biol 2024; 44:577-589. [PMID: 39434668 PMCID: PMC11583627 DOI: 10.1080/10985549.2024.2410814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Rab11 family interacting protein 4 (Rab11-FIP4) regulates endocytic trafficking. A possible role for Rab11-FIP4 in the regulation of lysosomal function has been proposed, but its precise function in the regulation of cellular homeostasis is unknown. By mRNA array and protein analysis, we found that Rab11-FIP4 is downregulated in the lysosomal storage disease cystinosis, which is caused by genetic defects in the lysosomal cystine transporter, cystinosin. Rescue of Rab11-FIP4 expression in Ctns-/- fibroblasts re-established normal autophagosome levels and decreased LC3B-II expression in cystinotic cells. Furthermore, Rab11-FIP4 reconstitution increased the localization of the chaperone-mediated autophagy receptor LAMP2A at the lysosomal membrane. Treatment with genistein, a phytoestrogen that upregulates macroautophagy, or the CMA activator QX77 (CA77) restored Rab11-FIP4 expression levels in cystinotic cells supporting a cross-regulation between two independent autophagic mechanisms, lysosomal function and Rab11-FIP4. Improved cellular homeostasis in cystinotic cells rescued by Rab11-FIP4 expression correlated with decreased endoplasmic reticulum stress, an effect that was potentiated by Rab11 and partially blocked by expression of a dominant negative Rab11. Restoring Rab11-FIP4 expression in cystinotic proximal tubule cells increased the localization of the endocytic receptor megalin at the plasma membrane, suggesting that Rab11-FIP4 reconstitution has the potential to improve cellular homeostasis and function in cystinosis.
Collapse
Affiliation(s)
- Farhana Rahman
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Jennifer L. Johnson
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Mouad Ait Kbaich
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Elsa Meneses-Salas
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Aparna Shukla
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Danni Chen
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - William B. Kiosses
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Stephanie Cherqui
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Sergio D. Catz
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
4
|
Abstract
Vesicles mediate the trafficking of membranes/proteins in the endocytic and secretory pathways. These pathways are regulated by small GTPases of the Rab family. Rab proteins belong to the Ras superfamily of GTPases, which are significantly involved in various intracellular trafficking and signaling processes in the nervous system. Rab11 is known to play a key role especially in recycling many proteins, including receptors important for signal transduction and preservation of functional activities of nerve cells. Rab11 activity is controlled by GEFs (guanine exchange factors) and GAPs (GTPase activating proteins), which regulate its function through modulating GTP/GDP exchange and the intrinsic GTPase activity, respectively. Rab11 is involved in the transport of several growth factor molecules important for the development and repair of neurons. Overexpression of Rab11 has been shown to significantly enhance vesicle trafficking. On the other hand, a reduced expression of Rab11 was observed in several neurodegenerative diseases. Current evidence appears to support the notion that Rab11 and its cognate proteins may be potential targets for therapeutic intervention. In this review, we briefly discuss the function of Rab11 and its related interaction partners in intracellular pathways that may be involved in neurodegenerative processes.
Collapse
Affiliation(s)
| | - Jiri Novotny
- Jiri Novotny, Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
5
|
Gao N, Zheng Q, Wang Y, Li X, Li Z, Xiao H. Wun2-mediated integrin recycling promotes apoptotic cell clearance in Drosophila melanogaster. Cell Death Differ 2022; 29:2545-2561. [PMID: 35840760 PMCID: PMC9751302 DOI: 10.1038/s41418-022-01039-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 06/25/2022] [Accepted: 07/04/2022] [Indexed: 01/31/2023] Open
Abstract
Apoptotic cell (AC) clearance is a complex process in which phagocytes recognize, engulf, and digest ACs during organismal development and tissue homeostasis. Impaired efferocytosis results in developmental defects and autoimmune diseases. In the current study, we performed RNA-sequencing to systematically identify regulators involved in the phagocytosis of ACs by Drosophila melanogaster macrophage-like S2 cells, followed by targeted RNA interference screening. Wunen2 (Wun2), a homolog of mammalian lipid phosphate phosphatase (LPP), was deemed as required for efferocytosis both in vitro and in vivo. However, efferocytosis was independent of Wun2 phosphatase activity. Proteomic analysis further revealed that Rab11 and its effector Rip11 are interaction partners of Wun2. Therefore, Wun2 collaborates with Rip11 and Rab11 to mediate efficient recycling of the phagocytic receptor βν integrin subunit to the plasma membrane. The loss of Wun2 results in the routing of βv integrin subunit (Itgbn) into lysosomes, leading to its degradation. The deficiency of βv integrin subunit on the cell surface leads to aberrant and disorganized actin cytoskeleton, thereby influencing the formation of macrophage pseudopodia toward ACs and thus failure to engulf them. The findings of this study provide insights that clarify how phagocytes coordinate AC signals and adopt a precise mechanism for the maintenance of engulfment receptors at their cell membrane surface to regulate efferocytosis.
Collapse
Affiliation(s)
- Ning Gao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
- Medical College of Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Qian Zheng
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Yanzhe Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Xiaowen Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Zhi Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Hui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China.
| |
Collapse
|
6
|
Rathan-Kumar S, Roland JT, Momoh M, Goldstein A, Lapierre LA, Manning E, Mitchell L, Norman J, Kaji I, Goldenring JR. Rab11FIP1-deficient mice develop spontaneous inflammation and show increased susceptibility to colon damage. Am J Physiol Gastrointest Liver Physiol 2022; 323:G239-G254. [PMID: 35819177 PMCID: PMC9423785 DOI: 10.1152/ajpgi.00042.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 01/31/2023]
Abstract
The small GTPase, Rab11a, regulates vesicle trafficking and cell polarity in epithelial cells through interaction with Rab11 family-interacting proteins (Rab11-FIPs). We hypothesized that deficiency of Rab11-FIP1 would affect mucosal integrity in the intestine. Global Rab11FIP1 knockout (KO) mice were generated by deletion of the second exon. Pathology of intestinal tissues was analyzed by immunostaining of colonic sections and RNA-sequencing of isolated colonic epithelial cells. A low concentration of dextran sodium sulfate (DSS, 2%) was added to drinking water for 5 days, and injury score was compared between Rab11FIP1 KO, Rab11FIP2 KO, and heterozygous littermates. Rab11FIP1 KO mice showed normal fertility and body weight gain. More frequent lymphoid patches and infiltration of macrophages and neutrophils were identified in Rab11FIP1 KO mice before the development of rectal prolapse compared with control mice. The population of trefoil factor 3 (TFF3)-positive goblet cells was significantly lower, and the ratio of proliferative to nonproliferative cells was higher in Rab11FIP1 KO colons. Transcription signatures indicated that Rab11FIP1 deletion downregulated genes that mediate stress tolerance response, whereas genes mediating the response to infection were significantly upregulated, consistent with the inflammatory responses in the steady state. Lack of Rab11FIP1 also resulted in abnormal accumulation of subapical vesicles in colonocytes and the internalization of transmembrane mucin, MUC13, with Rab14. After DSS treatment, Rab11FIP1 KO mice showed greater body weight loss and more severe mucosal damage than those in heterozygous littermates. These findings suggest that Rab11FIP1 is important for cytoprotection mechanisms and for the maintenance of colonic mucosal integrity.NEW & NOTEWORTHY Although Rab11FIP1 is important in membrane trafficking in epithelial cells, the gastrointestinal phenotype of Rab11FIP1 knockout (KO) mice had never been reported. This study demonstrated that Rab11FIP1 loss induces mistrafficking of Rab14 and MUC13 and decreases in colonic goblet cells, resulting in impaired mucosal integrity.
Collapse
Affiliation(s)
- Sudiksha Rathan-Kumar
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Joseph T Roland
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Michael Momoh
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anna Goldstein
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lynne A Lapierre
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Elizabeth Manning
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Louise Mitchell
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Jim Norman
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Izumi Kaji
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - James R Goldenring
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Nashville Veterans Affairs Medical Center, Nashville, Tennessee
| |
Collapse
|
7
|
ARHGAP1 Transported with Influenza Viral Genome Ensures Integrity of Viral Particle Surface through Efficient Budozone Formation. mBio 2022; 13:e0072122. [PMID: 35475647 PMCID: PMC9239208 DOI: 10.1128/mbio.00721-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Influenza viral particles are assembled at the plasma membrane concomitantly with Rab11a-mediated endocytic transport of viral ribonucleoprotein complexes (vRNPs). The mechanism of spatiotemporal regulation of viral budozone formation and its regulatory molecules on the endocytic vesicles remain unclear. Here, we performed a proximity-based proteomics approach for Rab11a and found that ARHGAP1, a Rho GTPase-activating protein, is transported through the Rab11a-mediated apical transport of vRNP. ARHGAP1 stabilized actin filaments in infected cells for the lateral clustering of hemagglutinin (HA) molecules, a viral surface membrane protein, to the budozone. Disruption of the HA clustering results in the production of virions with low HA content, and such virions were less resistant to protease and had enhanced antigenicity, presumably because reduced clustering of viral membrane proteins exposes hidden surfaces. Collectively, these results demonstrate that Rab11a-mediated endocytic transport of ARHGAP1 with vRNPs stimulates budozone formation to ensure the integrity of virion surface required for viral survival.
Collapse
|
8
|
Hartman EJ, Asady B, Romano JD, Coppens I. The Rab11-Family Interacting Proteins reveal selective interaction of mammalian recycling endosomes with the Toxoplasma parasitophorous vacuole in a Rab11- and Arf6-dependent manner. Mol Biol Cell 2022; 33:ar34. [PMID: 35274991 PMCID: PMC9282008 DOI: 10.1091/mbc.e21-06-0284] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
After mammalian cell invasion, the parasite Toxoplasma multiplies in a self-made membrane-bound compartment, the parasitophorous vacuole (PV). We previously showed that Toxoplasma interacts with many host cell organelles, especially from recycling pathways, and sequestrates Rab11A and Rab11B vesicles into the PV. Here, we examine the specificity of host Rab11 vesicle interaction with the PV by focusing on the recruitment of subpopulations of Rab11 vesicles characterized by different effectors, for example, Rab11-family interacting roteins (FIPs) or Arf6. Our quantitative microscopic analysis illustrates the presence of intra-PV vesicles with FIPs from class I (FIP1C, FIP2, FIP5) and class II (FIP3, FIP4) but to various degrees. The intra-PV delivery of vesicles with class I, but not class II, FIPs is dependent on Rab11 binding. Cell depletion of Rab11A results in a significant decrease in intra-PV FIP5, but not FIP3 vesicles. Class II FIPs also bind to Arf6, and we observe vesicles associated with FIP3-Rab11A or FIP3-Arf6 complexes concomitantly within the PV. Abolishing FIP3 binding to both Rab11 and Arf6 reduces the number of intra-PV FIP3 vesicles. These data point to a selective process of mammalian Rab11 vesicle recognition and scavenging mediated by Toxoplasma, suggesting that specific parasite PV proteins may be involved in these processes.
Collapse
Affiliation(s)
- Eric J Hartman
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615N Wolfe Street, Baltimore, MD 21205, USA
| | - Beejan Asady
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615N Wolfe Street, Baltimore, MD 21205, USA
| | - Julia D Romano
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615N Wolfe Street, Baltimore, MD 21205, USA
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615N Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
9
|
PKD-dependent PARP12-catalyzed mono-ADP-ribosylation of Golgin-97 is required for E-cadherin transport from Golgi to plasma membrane. Proc Natl Acad Sci U S A 2022; 119:2026494119. [PMID: 34969853 PMCID: PMC8740581 DOI: 10.1073/pnas.2026494119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2021] [Indexed: 11/18/2022] Open
Abstract
Adenosine diphosphate (ADP)-ribosylation is a posttranslational modification involved in key regulatory events catalyzed by ADP-ribosyltransferases (ARTs). Substrate identification and localization of the mono-ADP-ribosyltransferase PARP12 at the trans-Golgi network (TGN) hinted at the involvement of ARTs in intracellular traffic. We find that Golgin-97, a TGN protein required for the formation and transport of a specific class of basolateral cargoes (e.g., E-cadherin and vesicular stomatitis virus G protein [VSVG]), is a PARP12 substrate. PARP12 targets an acidic cluster in the Golgin-97 coiled-coil domain essential for function. Its mutation or PARP12 depletion, delays E-cadherin and VSVG export and leads to a defect in carrier fission, hence in transport, with consequent accumulation of cargoes in a trans-Golgi/Rab11-positive intermediate compartment. In contrast, PARP12 does not control the Golgin-245-dependent traffic of cargoes such as tumor necrosis factor alpha (TNFα). Thus, the transport of different basolateral proteins to the plasma membrane is differentially regulated by Golgin-97 mono-ADP-ribosylation by PARP12. This identifies a selective regulatory mechanism acting on the transport of Golgin-97- vs. Golgin-245-dependent cargoes. Of note, PARP12 enzymatic activity, and consequently Golgin-97 mono-ADP-ribosylation, depends on the activation of protein kinase D (PKD) at the TGN during traffic. PARP12 is directly phosphorylated by PKD, and this is essential to stimulate PARP12 catalytic activity. PARP12 is therefore a component of the PKD-driven regulatory cascade that selectively controls a major branch of the basolateral transport pathway. We propose that through this mechanism, PARP12 contributes to the maintenance of E-cadherin-mediated cell polarity and cell-cell junctions.
Collapse
|
10
|
von Grabowiecki Y, Phatak V, Aschauer L, Muller PAJ. Rab11-FIP1/RCP Functions as a Major Signalling Hub in the Oncogenic Roles of Mutant p53 in Cancer. Front Oncol 2021; 11:804107. [PMID: 35757381 PMCID: PMC9231559 DOI: 10.3389/fonc.2021.804107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/03/2021] [Indexed: 12/22/2022] Open
Abstract
Rab11-FIP1 is a Rab effector protein that is involved in endosomal recycling and trafficking of various molecules throughout the endocytic compartments of the cell. The consequence of this can be increased secretion or increased membrane expression of those molecules. In general, expression of Rab11-FIP1 coincides with more tumourigenic and metastatic cell behaviour. Rab11-FIP1 can work in concert with oncogenes such as mutant p53, but has also been speculated to be an oncogene in its own right. In this perspective, we will discuss and speculate upon our observations that mutant p53 promotes Rab11-FIP1 function to not only promote invasive behaviour, but also chemoresistance by regulating a multitude of different proteins.
Collapse
Affiliation(s)
- Yannick von Grabowiecki
- Tumour Suppressors Group, Cancer Research United Kingdom (UK) Manchester Institute, The University of Manchester, Macclesfield, United Kingdom
| | - Vinaya Phatak
- Medical Research Council (MRC) Toxicology Unit, Cambridge, United Kingdom
- Avacta Life Sciences, Cambridge, United Kingdom
| | - Lydia Aschauer
- Medical Research Council (MRC) Toxicology Unit, Cambridge, United Kingdom
- Orbit Discovery, Oxford, United Kingdom
| | - Patricia A. J. Muller
- Tumour Suppressors Group, Cancer Research United Kingdom (UK) Manchester Institute, The University of Manchester, Macclesfield, United Kingdom
- Department of Biosciences, Faculty of Science, Durham University, Durham, United Kingdom
- *Correspondence: Patricia A. J. Muller,
| |
Collapse
|
11
|
Iannantuono NVG, Emery G. Rab11FIP1 maintains Rab35 at the intercellular bridge to promote actin removal and abscission. J Cell Sci 2021; 134:jcs244384. [PMID: 34152390 DOI: 10.1242/jcs.244384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/20/2021] [Indexed: 11/20/2022] Open
Abstract
Cytokinesis occurs at the end of mitosis/meiosis wherein the cytoplasms of daughter cells are separated. Before abscission, an intercellular bridge containing the remaining furrowing machinery, mitotic spindle and actin cytoskeleton connects the two daughter cells. To remove this actin and allow for the separation of daughter cells, Rab35 vesicles, loaded with the actin oxidizer MICAL1 and the inositol polyphosphate 5-phosphatase OCRL, are recruited to the midbody in a fine-tuned spatiotemporal manner. However, importantly, the means by which these vesicles are recruited is currently unclear. Here, we demonstrate that Rab11FIP1 is recruited to the midbody after Rab35 to scaffold it at the bridge and maintain Rab35 in this region. In the absence of Rab11FIP1, Rab35 dramatically drops from the midbody, inducing defects, such as cytokinetic delays and binucleation due to actin overaccumulation at the intercellular bridge, which can be rescued with Latrunculin A treatment. Importantly, we show that Rab11FIP1 is critical for Rab35 function in actin removal prior to cytokinesis. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Nicholas V G Iannantuono
- Vesicular Trafficking and Cell Signalling Research Unit, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown station, Montréal, Québec H3C 3J7, Canada
| | - Gregory Emery
- Vesicular Trafficking and Cell Signalling Research Unit, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown station, Montréal, Québec H3C 3J7, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
12
|
Gutiérrez Y, López-García S, Lario A, Gutiérrez-Eisman S, Delevoye C, Esteban JA. KIF13A drives AMPA receptor synaptic delivery for long-term potentiation via endosomal remodeling. J Cell Biol 2021; 220:212112. [PMID: 33999113 PMCID: PMC8129809 DOI: 10.1083/jcb.202003183] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 02/16/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
The regulated trafficking of AMPA-type glutamate receptors (AMPARs) from dendritic compartments to the synaptic membrane in response to neuronal activity is a core mechanism for long-term potentiation (LTP). However, the contribution of the microtubule cytoskeleton to this synaptic transport is still unknown. In this work, using electrophysiological, biochemical, and imaging techniques, we have found that one member of the kinesin-3 family of motor proteins, KIF13A, is specifically required for the delivery of AMPARs to the spine surface during LTP induction. Accordingly, KIF13A depletion from hippocampal slices abolishes LTP expression. We also identify the vesicular protein centaurin-α1 as part of a motor transport machinery that is engaged with KIF13A and AMPARs upon LTP induction. Finally, we determine that KIF13A is responsible for the remodeling of Rab11-FIP2 endosomal structures in the dendritic shaft during LTP. Overall, these results identify specific kinesin molecular motors and endosomal transport machinery that catalyzes the dendrite-to-synapse translocation of AMPA receptors during synaptic plasticity.
Collapse
Affiliation(s)
- Yolanda Gutiérrez
- Molecular Neuropathology Unit, Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Madrid, Spain
| | - Sergio López-García
- Molecular Neuropathology Unit, Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Madrid, Spain
| | - Argentina Lario
- Molecular Neuropathology Unit, Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Madrid, Spain
| | - Silvia Gutiérrez-Eisman
- Molecular Neuropathology Unit, Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Madrid, Spain
| | - Cédric Delevoye
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Structure and Membrane Compartments, Paris, France.,Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Cell and Tissue Imaging Facility, Paris, France
| | - José A Esteban
- Molecular Neuropathology Unit, Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Madrid, Spain
| |
Collapse
|
13
|
Anand IS, Choi W, Isberg RR. Components of the endocytic and recycling trafficking pathways interfere with the integrity of the Legionella-containing vacuole. Cell Microbiol 2021; 22:e13151. [PMID: 32096265 PMCID: PMC7154685 DOI: 10.1111/cmi.13151] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/10/2019] [Accepted: 12/03/2019] [Indexed: 12/27/2022]
Abstract
Legionella pneumophila requires the Dot/Icm translocation system to replicate in a vacuolar compartment within host cells. Strains lacking the translocated substrate SdhA form a permeable vacuole during residence in the host cell, exposing bacteria to the host cytoplasm. In primary macrophages, mutants are defective for intracellular growth, with a pyroptotic cell death response mounted due to bacterial exposure to the cytosol. To understand how SdhA maintains vacuole integrity during intracellular growth, we performed high-throughput RNAi screens against host membrane trafficking genes to identify factors that antagonise vacuole integrity in the absence of SdhA. Depletion of host proteins involved in endocytic uptake and recycling resulted in enhanced intracellular growth and lower levels of permeable vacuoles surrounding the ΔsdhA mutant. Of interest were three different Rab GTPases involved in these processes: Rab11b, Rab8b and Rab5 isoforms, that when depleted resulted in enhanced vacuole integrity surrounding the sdhA mutant. Proteins regulated by these Rabs are responsible for interfering with proper vacuole membrane maintenance, as depletion of the downstream effectors EEA1, Rab11FIP1, or VAMP3 rescued vacuole integrity and intracellular growth of the sdhA mutant. To test the model that specific vesicular components associated with these effectors could act to destabilise the replication vacuole, EEA1 and Rab11FIP1 showed increased density about the sdhA mutant vacuole compared with the wild type (WT) vacuole. Depletion of Rab5 isoforms or Rab11b reduced this aberrant redistribution. These findings are consistent with SdhA interfering with both endocytic and recycling membrane trafficking events that act to destabilise vacuole integrity during infection.
Collapse
Affiliation(s)
- Ila S Anand
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts
| | - Wonyoung Choi
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts
| | - Ralph R Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
14
|
McKenna M, Balasuriya N, Zhong S, Li SSC, O'Donoghue P. Phospho-Form Specific Substrates of Protein Kinase B (AKT1). Front Bioeng Biotechnol 2021; 8:619252. [PMID: 33614606 PMCID: PMC7886700 DOI: 10.3389/fbioe.2020.619252] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/29/2020] [Indexed: 11/17/2022] Open
Abstract
Protein kinase B (AKT1) is hyper-activated in diverse human tumors. AKT1 is activated by phosphorylation at two key regulatory sites, Thr308 and Ser473. Active AKT1 phosphorylates many, perhaps hundreds, of downstream cellular targets in the cytosol and nucleus. AKT1 is well-known for phosphorylating proteins that regulate cell survival and apoptosis, however, the full catalog of AKT1 substrates remains unknown. Using peptide arrays, we recently discovered that each phosphorylated form of AKT1 (pAKT1S473, pAKT1T308, and ppAKT1S473,T308) has a distinct substrate specificity, and these data were used to predict potential new AKT1 substrates. To test the high-confidence predictions, we synthesized target peptides representing putative AKT1 substrates. Peptides substrates were synthesized by solid phase synthesis and their purity was confirmed by mass spectrometry. Most of the predicted peptides showed phosphate accepting activity similar to or greater than that observed with a peptide derived from a well-established AKT1 substrate, glycogen synthase kinase 3β (GSK-3β). Among the novel substrates, AKT1 was most active with peptides representing PIP3-binding protein Rab11 family-interacting protein 2 and cysteinyl leukotriene receptor 1, indicating their potential role in AKT1-dependent cellular signaling. The ppAKT1S473,T308 enzyme was highly selective for peptides containing a patch of basic residues at −5, −4, −3 and aromatic residues (Phe/Tyr) at +1 positions from the phosphorylation site. The pAKT1S473 variant preferred more acidic peptides, Ser or Pro at +4, and was agnostic to the residue at −5. The data further support our hypothesis that Ser473 phosphorylation plays a key role in modulating AKT1 substrate selectivity.
Collapse
Affiliation(s)
- McShane McKenna
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Nileeka Balasuriya
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Shanshan Zhong
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Shawn Shun-Cheng Li
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada.,Department of Chemistry, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
15
|
Li D, Bradley T, Cain DW, Pedroza-Pacheco I, Aggelakopoulou M, Parks R, Barr M, Xia SM, Scearce R, Bowman C, Stevens G, Newman A, Hora B, Chen Y, Riebe K, Wang Y, Sempowski G, Saunders KO, Borrow P, Haynes BF. RAB11FIP5-Deficient Mice Exhibit Cytokine-Related Transcriptomic Signatures. Immunohorizons 2020; 4:713-728. [PMID: 33172842 PMCID: PMC8050958 DOI: 10.4049/immunohorizons.2000088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 11/19/2022] Open
Abstract
Rab11 recycling endosomes are involved in immunological synaptic functions, but the roles of Rab11 family–interacting protein 5 (Rab11Fip5), one of the Rab11 effectors, in the immune system remain obscure. Our previous study demonstrated that RAB11FIP5 transcripts are significantly elevated in PBMCs from HIV-1–infected individuals, making broadly HIV-1–neutralizing Abs compared with those without broadly neutralizing Abs; however, the role of Rab11FiP5 in immune functions remains unclear. In this study, a RAB11FIP5 gene knockout (RAB11FIP5−/−) mouse model was employed to study the role of Rab11Fip5 in immune responses. RAB11FIP5−/− mice exhibited no perturbation in lymphoid tissue cell subsets, and Rab11Fip5 was not required for serum Ab induction following HIV-1 envelope immunization, Ab transcytosis to mucosal sites, or survival after influenza challenge. However, differences were observed in multiple transcripts, including cytokine genes, in lymphocyte subsets from envelope-immunized RAB11FIP5−/− versus control mice. These included alterations in several genes in NK cells that mirrored observations in NKs from HIV-infected humans expressing less RAB11FIP5, although Rab11Fip5 was dispensable for NK cell cytolytic activity. Notably, immunized RAB11FIP5−/− mice had lower IL4 expression in CD4+ T follicular helper cells and showed lower TNF expression in CD8+ T cells. Likewise, TNF-α production by human CD8+ T cells correlated with PBMC RAB11FIP5 expression. These observations in RAB11FIP5−/− mice suggest a role for Rab11Fip5 in regulating cytokine responses.
Collapse
Affiliation(s)
- Dapeng Li
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710;
| | - Todd Bradley
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710.,Department of Medicine, Duke University School of Medicine, Durham, NC 27710
| | - Derek W Cain
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710.,Department of Medicine, Duke University School of Medicine, Durham, NC 27710
| | - Isabela Pedroza-Pacheco
- Nuffield Department of Clinical Medicine, University of Oxford, OX3 7FZ Oxford, United Kingdom
| | - Maria Aggelakopoulou
- Nuffield Department of Clinical Medicine, University of Oxford, OX3 7FZ Oxford, United Kingdom
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710
| | - Shi-Mao Xia
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710
| | - Richard Scearce
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710
| | - Cindy Bowman
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710
| | - Grace Stevens
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710
| | - Amanda Newman
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710
| | - Bhavna Hora
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710
| | - Yue Chen
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710
| | - Kristina Riebe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710
| | - Yunfei Wang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710
| | - Gregory Sempowski
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710.,Department of Immunology, Duke University School of Medicine, Durham, NC 27710; and.,Department of Surgery, Duke University, Durham, NC 27710
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, OX3 7FZ Oxford, United Kingdom
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710; .,Department of Medicine, Duke University School of Medicine, Durham, NC 27710.,Department of Immunology, Duke University School of Medicine, Durham, NC 27710; and
| |
Collapse
|
16
|
Thrombin-activated PAR1 membrane expression is regulated by Rab11a-RCP complex dissociation. Cell Signal 2020; 75:109748. [PMID: 32860953 DOI: 10.1016/j.cellsig.2020.109748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 11/22/2022]
Abstract
PAR1 activation by thrombin promotes intracellular signaling leading to RPE cell transformation, proliferation, and migration, characteristic of fibroproliferative eye diseases. Due to the cleavage of PAR1 N-terminal domain, carried by thrombin, the arrest of PAR1 signaling is achieved by transport into lysosomes and degradation. Recent findings suggest that the GTPase Rab11a in conjunction with its effector RCP may direct PAR1 to lysosomes. Hereby we demonstrate that thrombin-induced PAR1 internalization and lysosomal targeting requires the disassembly of the Rab11a/RCP complex, and that this process depends on thrombin-induced intracellular calcium increase and calpain activation. These findings unveil a novel mechanism that regulates thrombin activated PAR1 internalization and degradation.
Collapse
|
17
|
Kearney AM, Khan AR. Crystal structure of the Rab-binding domain of Rab11 family-interacting protein 2. Acta Crystallogr F Struct Biol Commun 2020; 76:357-363. [PMID: 32744247 PMCID: PMC7397465 DOI: 10.1107/s2053230x20009164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/05/2020] [Indexed: 11/10/2022] Open
Abstract
The small GTPases Rab11, Rab14 and Rab25 regulate membrane trafficking through the recruitment of Rab11 family-interacting proteins (FIPs) to endocytic compartments. FIPs are multi-domain effector proteins that have a highly conserved Rab-binding domain (RBD) at their C-termini. Several structures of complexes of Rab11 with RBDs have previously been determined, including those of Rab11-FIP2 and Rab11-FIP3. In addition, the structures of the Rab14-FIP1 and Rab25-FIP2 complexes have been determined. All of the RBD structures contain a central parallel coiled coil in the RBD that binds to the switch 1 and switch 2 regions of the Rab. Here, the crystal structure of the uncomplexed RBD of FIP2 is presented at 2.3 Å resolution. The structure reveals antiparallel α-helices that associate through polar interactions. These include a remarkable stack of arginine residues within a four-helix bundle in the crystal lattice.
Collapse
Affiliation(s)
- Aoife Mairead Kearney
- School of Biochemistry and Immunology, Trinity College Dublin, 152–160 Pearse Street, Dublin D2, Ireland
| | - Amir Rafiq Khan
- School of Biochemistry and Immunology, Trinity College Dublin, 152–160 Pearse Street, Dublin D2, Ireland
- Division of Newborn Medicine, Boston Children’s Hospital, Center for Life Sciences, 3 Blackfan Circle, Boston, MA 02446, USA
| |
Collapse
|
18
|
Feng G, Qin L, Liao Z, Xiao X, Li B, Cui W, Liang L, Mo Y, Huang G, Li P, Zhou X, Zhang Z, Xiao X. Knockdown Rab11-FIP2 inhibits migration and invasion of nasopharyngeal carcinoma via suppressing Rho GTPase signaling. J Cell Biochem 2019; 121:1072-1086. [PMID: 31452257 DOI: 10.1002/jcb.29344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023]
Abstract
Rab11 family interacting protein 2 (Rab11-FIP2) is a conserved protein and effector molecule for the small GTPase Rab11. By interacting with Rab11 and MYO5B, Rab11-FIP2 regulates endosome trafficking of plasma membrane proteins, promoting cellular motility. The endosomal trafficking system in nasopharyngeal carcinoma (NPC) remains unclear. Here, an outlier analysis using the Oncomine database suggested that Rab11-FIP2 but not Rab11 and MYO5B was overexpressed in NPC. We confirmed that the transcription of Rab11-FIP2 was upregulated in NPC cell lines and primary tumor tissues as compared with a normal nasopharyngeal epithelial cell line and normal nasopharynx tissues. We further confirmed the elevated protein expression level of Rab11-FIP2 in NPC biopsies. Instead of regulating the epithelial-mesenchymal transition or Akt signaling pathway, knockdown of Rab11-FIP2 inhibited the migration and invasion ability of NPC cell lines by decreasing the expression of Rac and Cdc42. In summary, Rab11-FIP2 could be an oncogene in NPC, mainly contributing to metastatic capacity by activating Rho GTPase signaling.
Collapse
Affiliation(s)
- Guofei Feng
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Liting Qin
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhipeng Liao
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiling Xiao
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Bo Li
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wanmeng Cui
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Libin Liang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yingxi Mo
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Guangwu Huang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ping Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoying Zhou
- Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhe Zhang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xue Xiao
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
19
|
Skjesol A, Yurchenko M, Bösl K, Gravastrand C, Nilsen KE, Grøvdal LM, Agliano F, Patane F, Lentini G, Kim H, Teti G, Kumar Sharma A, Kandasamy RK, Sporsheim B, Starheim KK, Golenbock DT, Stenmark H, McCaffrey M, Espevik T, Husebye H. The TLR4 adaptor TRAM controls the phagocytosis of Gram-negative bacteria by interacting with the Rab11-family interacting protein 2. PLoS Pathog 2019; 15:e1007684. [PMID: 30883606 PMCID: PMC6438586 DOI: 10.1371/journal.ppat.1007684] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 03/28/2019] [Accepted: 03/07/2019] [Indexed: 02/06/2023] Open
Abstract
Phagocytosis is a complex process that eliminates microbes and is performed by specialised cells such as macrophages. Toll-like receptor 4 (TLR4) is expressed on the surface of macrophages and recognizes Gram-negative bacteria. Moreover, TLR4 has been suggested to play a role in the phagocytosis of Gram-negative bacteria, but the mechanisms remain unclear. Here we have used primary human macrophages and engineered THP-1 monocytes to show that the TLR4 sorting adapter, TRAM, is instrumental for phagocytosis of Escherichia coli as well as Staphylococcus aureus. We find that TRAM forms a complex with Rab11 family interacting protein 2 (FIP2) that is recruited to the phagocytic cups of E. coli. This promotes activation of the actin-regulatory GTPases Rac1 and Cdc42. Our results show that FIP2 guided TRAM recruitment orchestrates actin remodelling and IRF3 activation, two events that are both required for phagocytosis of Gram-negative bacteria. The Gram-negative bacteria E. coli is the most common cause of severe human pathological conditions like sepsis. Sepsis is a clinical syndrome defined by pathological changes due to systemic inflammation, resulting in paralysis of adaptive T-cell immunity with IFN-β as a critical factor. TLR4 is a key sensing receptor of lipopolysaccharide on Gram-negative bacteria. Inflammatory signalling by TLR4 is initiated by the use of alternative pair of TIR-adapters, MAL-MyD88 or TRAM-TRIF. MAL-MyD88 signaling occurs mainly from the plasma membrane giving pro-inflammatory cytokines like TNF, while TRAM-TRIF signaling occurs from vacuoles like endosomes and phagosomes to give type I interferons like IFN-β. It has previously been shown that TLR4 can control phagocytosis and phagosomal maturation through MAL-MyD88 in mice, however, these data have been disputed and published before the role of TRAM was defined in the induction of IFN-β. A role for TRAM or TRIF in phagocytosis has not previously been reported. Here we describe a novel mechanism where TRAM and its binding partner Rab11-FIP2 control phagocytosis of E. coli and regulate IRF3 dependent production of IFN-β. The significance of these results is that we define Rab11-FIP2 as a potential target for modulation of TLR4-dependent signalling in different pathological states.
Collapse
Affiliation(s)
- Astrid Skjesol
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mariia Yurchenko
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Korbinian Bösl
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Caroline Gravastrand
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kaja Elisabeth Nilsen
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lene Melsæther Grøvdal
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Federica Agliano
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Francesco Patane
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Germana Lentini
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Hera Kim
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Giuseppe Teti
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Aditya Kumar Sharma
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Richard K. Kandasamy
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bjørnar Sporsheim
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristian K. Starheim
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Douglas T. Golenbock
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Harald Stenmark
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department for Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo Norway
| | - Mary McCaffrey
- Molecular Cell Biology Laboratory, Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland
| | - Terje Espevik
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- The Central Norway Regional Health Authority, St. Olavs Hospital HF, Trondheim, Norway
| | - Harald Husebye
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- The Central Norway Regional Health Authority, St. Olavs Hospital HF, Trondheim, Norway
- * E-mail:
| |
Collapse
|
20
|
Rab25 and RCP in cancer progression. Arch Pharm Res 2019; 42:101-112. [DOI: 10.1007/s12272-019-01129-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/29/2019] [Indexed: 01/10/2023]
|
21
|
He K, Ma X, Xu T, Li Y, Hodge A, Zhang Q, Torline J, Huang Y, Zhao J, Ling K, Hu J. Axoneme polyglutamylation regulated by Joubert syndrome protein ARL13B controls ciliary targeting of signaling molecules. Nat Commun 2018; 9:3310. [PMID: 30120249 PMCID: PMC6098020 DOI: 10.1038/s41467-018-05867-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/02/2018] [Indexed: 12/12/2022] Open
Abstract
Tubulin polyglutamylation is a predominant axonemal post-translational modification. However, if and how axoneme polyglutamylation is essential for primary cilia and contribute to ciliopathies are unknown. Here, we report that Joubert syndrome protein ARL13B controls axoneme polyglutamylation, which is marginally required for cilia stability but essential for cilia signaling. ARL13B interacts with RAB11 effector FIP5 to promote cilia import of glutamylase TTLL5 and TTLL6. Hypoglutamylation caused by a deficient ARL13B-RAB11-FIP5 trafficking pathway shows no effect on ciliogenesis, but promotes cilia disassembly and, importantly, impairs cilia signaling by disrupting the proper anchoring of sensory receptors and trafficking of signaling molecules. Remarkably, depletion of deglutamylase CCP5, the predominant cilia deglutamylase, effectively restores hypoglutamylation-induced cilia defects. Our study reveals a paradigm that tubulin polyglutamylation is a major contributor for cilia signaling and suggests a potential therapeutic strategy by targeting polyglutamylation machinery to promote ciliary targeting of signaling machineries and correct signaling defects in ciliopathies.
Collapse
Affiliation(s)
- Kai He
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, 55905, USA
- Mayo Translational PKD Center, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xiaoyu Ma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, 55905, USA
- Mayo Translational PKD Center, Mayo Clinic, Rochester, MN, 55905, USA
| | - Tao Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, 55905, USA
- Mayo Translational PKD Center, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yan Li
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, 55905, USA
- Mayo Translational PKD Center, Mayo Clinic, Rochester, MN, 55905, USA
| | - Allen Hodge
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Qing Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Julia Torline
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yan Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jian Zhao
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA.
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, 55905, USA.
- Mayo Translational PKD Center, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
22
|
Jue NK, Foley RJ, Reznick DN, O'Neill RJ, O'Neill MJ. Tissue-Specific Transcriptome for Poeciliopsis prolifica Reveals Evidence for Genetic Adaptation Related to the Evolution of a Placental Fish. G3 (BETHESDA, MD.) 2018; 8:2181-2192. [PMID: 29720394 PMCID: PMC6027864 DOI: 10.1534/g3.118.200270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/11/2018] [Indexed: 11/18/2022]
Abstract
The evolution of the placenta is an excellent model to examine the evolutionary processes underlying adaptive complexity due to the recent, independent derivation of placentation in divergent animal lineages. In fishes, the family Poeciliidae offers the opportunity to study placental evolution with respect to variation in degree of post-fertilization maternal provisioning among closely related sister species. In this study, we present a detailed examination of a new reference transcriptome sequence for the live-bearing, matrotrophic fish, Poeciliopsis prolifica, from multiple-tissue RNA-seq data. We describe the genetic components active in liver, brain, late-stage embryo, and the maternal placental/ovarian complex, as well as associated patterns of positive selection in a suite of orthologous genes found in fishes. Results indicate the expression of many signaling transcripts, "non-coding" sequences and repetitive elements in the maternal placental/ovarian complex. Moreover, patterns of positive selection in protein sequence evolution were found associated with live-bearing fishes, generally, and the placental P. prolifica, specifically, that appear independent of the general live-bearer lifestyle. Much of the observed patterns of gene expression and positive selection are congruent with the evolution of placentation in fish functionally converging with mammalian placental evolution and with the patterns of rapid evolution facilitated by the teleost-specific whole genome duplication event.
Collapse
Affiliation(s)
- Nathaniel K Jue
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| | - Robert J Foley
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| | - David N Reznick
- Department of Biology, University of California, Riverside, CA 92521
| | - Rachel J O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| | - Michael J O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| |
Collapse
|
23
|
Pandit S, Dalal V, Mishra G. Identification of novel phosphatidic acid binding domain on sphingosine kinase 1 of Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 128:178-184. [PMID: 29783183 DOI: 10.1016/j.plaphy.2018.04.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/25/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
Phosphatidic acid (PA) is an important lipid signaling molecule which interacts with Arabidopsis thaliana Sphingosine kinase1 (AtSPHK1) during several abiotic stresses particularly drought stress as a result of Abscisic acid (ABA) signaling in guard cells. PA molecules respond by generating lipid signal and/or by binding and translocating target proteins to membrane. However, site of interaction and role of PA binding to AtSPHK1 is not clear yet. Owing to the importance of AtSPHK1 during stress signaling it is imperative to decipher the site of PA interaction with AtSPHK1. To identify the PA binding region of AtSPHK1, various deletion fragments from N-terminal and C-terminal region were prepared. Results from protein lipid overlay assay using various truncated proteins of AtSPHK1 suggested the involvement of N-terminal region, between 110 and 205 amino acids, in binding with PA. In-silico analyses performed to build homologous structure of AtSPHK1 revealed that PA docking occurs in the hydrophobic cavity of DAG-Kinase domain. Deletion of amino acids 182VSGDGI187 perturbed PA-AtSPHK1 binding, indicating an essential role of these six amino acids in PA-AtSPHK1 binding.
Collapse
Affiliation(s)
- Shatakshi Pandit
- - Department of Botany, University of Delhi, Delhi 110007, India
| | - Vikram Dalal
- - Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Girish Mishra
- - Department of Botany, University of Delhi, Delhi 110007, India.
| |
Collapse
|
24
|
Das L, Gard JMC, Prekeris R, Nagle RB, Morrissey C, Knudsen BS, Miranti CK, Cress AE. Novel Regulation of Integrin Trafficking by Rab11-FIP5 in Aggressive Prostate Cancer. Mol Cancer Res 2018; 16:1319-1331. [PMID: 29759989 DOI: 10.1158/1541-7786.mcr-17-0589] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/07/2018] [Accepted: 04/23/2018] [Indexed: 11/16/2022]
Abstract
The laminin-binding integrins, α3β1 and α6β1, are needed for tumor metastasis and their surface expression is regulated by endocytic recycling. β1 integrins share the Rab11 recycling machinery, but the trafficking of α3β1 and α6β1 are distinct by an unknown mechanism. Using a mouse PDX tumor model containing human metastatic prostate cancer, Rab11 family interacting protein 5 (Rab11-FIP5) was identified as a lead candidate for α6β1 trafficking. Rab11-FIP5 and its membrane-binding domain were required for α6β1 recycling, without affecting the other laminin-binding integrin (i.e., α3β1) or unrelated membrane receptors like CD44, transferrin receptor, or E-cadherin. Depletion of Rab11-FIP5 resulted in the intracellular accumulation of α6β1 in the Rab11 recycling compartment, loss of cell migration on laminin, and an unexpected loss of α6β1 recycling in cell-cell locations. Taken together, these data demonstrate that α6β1 is distinct from α3β1 via Rab11-FIP5 recycling and recycles in an unexpected cell-cell location.Implications: Rab11-FIP5-dependent α6β1 integrin recycling may be selectively targeted to limit migration of prostate cancer cells into laminin-rich tissues. Mol Cancer Res; 16(8); 1319-31. ©2018 AACR.
Collapse
Affiliation(s)
- Lipsa Das
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona
| | - Jaime M C Gard
- The University of Arizona Cancer Center, University of Arizona, Tucson, Arizona
| | - Rytis Prekeris
- University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Raymond B Nagle
- The University of Arizona Cancer Center, University of Arizona, Tucson, Arizona.,Pathology, University of Washington, Seattle, Washington
| | | | | | - Cindy K Miranti
- Cellular and Molecular Medicine, The University of Arizona Cancer Center, University of Arizona, Tucson, Arizona
| | - Anne E Cress
- The University of Arizona Cancer Center, University of Arizona, Tucson, Arizona. .,Cellular and Molecular Medicine, The University of Arizona Cancer Center, University of Arizona, Tucson, Arizona.,Molecular and Cellular Biology, The University of Arizona Cancer Center, University of Arizona, Tucson, Arizona
| |
Collapse
|
25
|
Yurchenko M, Skjesol A, Ryan L, Richard GM, Kandasamy RK, Wang N, Terhorst C, Husebye H, Espevik T. SLAMF1 is required for TLR4-mediated TRAM-TRIF-dependent signaling in human macrophages. J Cell Biol 2018; 217:1411-1429. [PMID: 29440514 PMCID: PMC5881497 DOI: 10.1083/jcb.201707027] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/31/2017] [Accepted: 12/20/2017] [Indexed: 12/24/2022] Open
Abstract
Yurchenko et al. discover that the Ig-like receptor molecule SLAMF1 enhances production of type I interferon induced by Gram-negative bacteria through modulation of MyD88-independent TLR4 signaling. This makes SLAMF1 a potential target for controlling inflammatory responses against Gram-negative bacteria. Signaling lymphocytic activation molecule family 1 (SLAMF1) is an Ig-like receptor and a costimulatory molecule that initiates signal transduction networks in a variety of immune cells. In this study, we report that SLAMF1 is required for Toll-like receptor 4 (TLR4)-mediated induction of interferon β (IFNβ) and for killing of Gram-negative bacteria by human macrophages. We found that SLAMF1 controls trafficking of the Toll receptor–associated molecule (TRAM) from the endocytic recycling compartment (ERC) to Escherichia coli phagosomes. In resting macrophages, SLAMF1 is localized to ERC, but upon addition of E. coli, it is trafficked together with TRAM from ERC to E. coli phagosomes in a Rab11-dependent manner. We found that endogenous SLAMF1 protein interacted with TRAM and defined key interaction domains as amino acids 68 to 95 of TRAM as well as 15 C-terminal amino acids of SLAMF1. Interestingly, the SLAMF1–TRAM interaction was observed for human but not mouse proteins. Overall, our observations suggest that SLAMF1 is a new target for modulation of TLR4–TRAM–TRIF inflammatory signaling in human cells.
Collapse
Affiliation(s)
- Maria Yurchenko
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway .,The Central Norway Regional Health Authority, St. Olavs Hospital HF, Trondheim, Norway
| | - Astrid Skjesol
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Liv Ryan
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gabriel Mary Richard
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Richard Kumaran Kandasamy
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ninghai Wang
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Harald Husebye
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway.,The Central Norway Regional Health Authority, St. Olavs Hospital HF, Trondheim, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway.,The Central Norway Regional Health Authority, St. Olavs Hospital HF, Trondheim, Norway
| |
Collapse
|
26
|
Ufer G, Gertzmann A, Gasulla F, Röhrig H, Bartels D. Identification and characterization of the phosphatidic acid-binding A. thaliana phosphoprotein PLDrp1 that is regulated by PLDα1 in a stress-dependent manner. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:276-290. [PMID: 28755507 DOI: 10.1111/tpj.13651] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/12/2017] [Accepted: 07/24/2017] [Indexed: 05/08/2023]
Abstract
Phospholipase D (PLD) and its cleavage product phosphatidic acid (PA) are crucial in plant stress-signalling. Although some targets of PLD and PA have been identified, the signalling pathway is still enigmatic. This study demonstrates that the phosphoprotein At5g39570, now called PLD-regulated protein1 (PLDrp1), from Arabidopsis thaliana is directly regulated by PLDα1. The protein PLDrp1 can be divided into two regions with distinct properties. The conserved N-terminal region specifically binds PA, while the repeat-rich C-terminal domain suggests interactions with RNAs. The expression of PLDrp1 depends on PLDα1 and the plant water status. Water stress triggers a pldα1-like phenotype in PLDrp1 mutants and induces the expression of PLDrp1 in pldα1 mutants. The regulation of PLDrp1 by PLDα1 and environmental stressors contributes to the understanding of the complex PLD regulatory network and presents a new member of the PA-signalling chain in plants.
Collapse
Affiliation(s)
- Guido Ufer
- Institute of Molecular Physiology and Biotechnology of Planta (IMBIO), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Anke Gertzmann
- Institute of Molecular Physiology and Biotechnology of Planta (IMBIO), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Francisco Gasulla
- Institute of Molecular Physiology and Biotechnology of Planta (IMBIO), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Horst Röhrig
- Institute of Molecular Physiology and Biotechnology of Planta (IMBIO), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Planta (IMBIO), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| |
Collapse
|
27
|
Acquisition of Rab11 and Rab11-Fip2-A novel strategy for Chlamydia pneumoniae early survival. PLoS Pathog 2017; 13:e1006556. [PMID: 28787457 PMCID: PMC5560749 DOI: 10.1371/journal.ppat.1006556] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/17/2017] [Accepted: 07/27/2017] [Indexed: 11/30/2022] Open
Abstract
The initial steps in chlamydial infection involve adhesion and internalization into host cells and, most importantly, modification of the nascent inclusion to establish the intracellular niche. Here, we show that Chlamydia pneumoniae enters host cells via EGFR-dependent endocytosis into an early endosome with a phosphatidylinositol 3-phosphate (PI3P) membrane identity. Immediately after entry, the early chlamydial inclusion acquires early endosomal Rab GTPases including Rab4, Rab5, Rab7, as well as the two recycling-specific Rabs Rab11 and Rab14. While Rab5, Rab11 and Rab14 are retained in the vesicular membrane, Rab4 and Rab7 soon disappear. Loss of Rab7 enables the C. pneumoniae inclusion to escape delivery to, and degradation in lysosomes. Loss of Rab4 and retention of Rab11/ Rab14 designates the inclusion as a slowly recycling endosome—that is protected from degradation. Furthermore, we show that the Rab11/ Rab14 adaptor protein Rab11-Fip2 (Fip2) is recruited to the nascent inclusion upon internalization and retained in the membrane throughout infection. siRNA knockdown of Fip2 demonstrated that the protein is essential for internalization and infection, and expression of various deletion variants revealed that Fip2 regulates the intracellular positioning of the inclusion. Additionally, we show that binding to Rab11 and Fip2 recruits the unconventional actin motor protein myosin Vb to the early inclusion and that together they regulate the relocation of the nascent inclusion from the cell periphery to the perinuclear region, its final destination. Here, we characterize for the first time inclusion identity and inclusion-associated proteins to delineate how C. pneumoniae establishes the intracellular niche essential for its survival. Here, we show for the first time how Chlamydia pneumoniae an obligate intracellular pathogen establishes its intracellular niche. After EGFR-dependent endocytosis into host cells, the nascent chlamydial inclusion acquires early endosomal membrane identity and the Rab GTPases Rab4, Rab5 and Rab7, as well as the recycling-specific Rab11 and Rab14. We show that Rab5, Rab11 and Rab14 are retained in the vesicular membrane, while Rab4 and Rab7 subsequently disappear. Thus, C. pneumoniae escapes lysosomal degradation by hiding in a recycling endosome vesicle. Furthermore, we show that the Rab11/Rab14 adaptor protein Rab11-Fip2 (Fip2), together with the unconventional actin motor protein myosin Vb, is recruited to the nascent inclusion. Both are essential for internalization and infection, as they regulate the intracellular positioning of the inclusion, which is essential for intracellular transport from the cell periphery to the perinuclear region. Here, we characterize for the first time inclusion identity and inclusion-associated proteins to understand how C. pneumoniae establishes the intracellular niche, which is essential for its survival.
Collapse
|
28
|
McRae R, Lapierre LA, Manning EH, Goldenring JR. Rab11-FIP1 phosphorylation by MARK2 regulates polarity in MDCK cells. CELLULAR LOGISTICS 2017; 7:e1271498. [PMID: 28396819 DOI: 10.1080/21592799.2016.1271498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/30/2016] [Accepted: 12/06/2016] [Indexed: 10/20/2022]
Abstract
MARK2/Par1b/EMK1, a serine/threonine kinase, is required for correct apical/basolateral membrane polarization in epithelial cells. However, the specific substrates mediating MARK2 action are less well understood. We have now found that MARK2 phosphorylates Rab11-FIP1B/C at serine 234 in a consensus site similar to that previously identified in Rab11-FIP2. In MDCK cells undergoing repolarization after a calcium switch, antibodies specific for pS234-Rab11-FIP1 or pS227-Rab11-FIP2 demonstrate that the spatial and temporal activation of Rab11-FIP1 phosphorylation is distinct from that for Rab11-FIP2. Phosphorylation of Rab11-FIP1 persists through calcium switch and remains high after polarity has been reestablished whereas FIP2 phosphorylation is highest early in reestablishment of polarity but significantly reduced once polarity has been re-established. MARK2 colocalized with FIP1B/C/D and p(S234)-FIP1 in vivo. Overexpression of GFP-Rab11-FIP1C wildtype or non-phosphorylatable GFP-Rab11-FIP1C(S234A) induced two significant phenotypes following calcium switch. Overexpression of FIP1C wildtype and FIP1C(S234A) caused a psuedo-stratification of cells in early time points following calcium switch. At later time points most prominently observed in cells expressing FIP1C(S234A) a significant lateral lumen phenotype was observed, where F-actin-rich lateral lumens appeared demarcated by a ring of ZO1 and also containing ezrin, syntaxin 3 and podocalyxin. In contrast, p120 and E-Cadherin were excluded from the new apical surface at the lateral lumens and now localized to the new lateral surface oriented toward the media. GFP-FIP1C(S234A) localized to membranes deep to the lateral lumens, and immunostaining demonstrated the reorientation of the centrosome and the Golgi apparatus toward the lateral lumen. These results suggest that both Rab11-FIP1B/C and Rab11-FIP2 serve as critical substrates mediating aspects of MARK2 regulation of epithelial polarity.
Collapse
Affiliation(s)
- Rebecca McRae
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Lynne A Lapierre
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA; Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA; Nashville VA Medical Center, Nashville, TN, USA
| | - Elizabeth H Manning
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA; Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA; Nashville VA Medical Center, Nashville, TN, USA
| | - James R Goldenring
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA; Nashville VA Medical Center, Nashville, TN, USA; Vanderbilt Ingram Cancer Center, Nashville, TN, USA
| |
Collapse
|
29
|
Baldanzi G, Bettio V, Malacarne V, Graziani A. Diacylglycerol Kinases: Shaping Diacylglycerol and Phosphatidic Acid Gradients to Control Cell Polarity. Front Cell Dev Biol 2016; 4:140. [PMID: 27965956 PMCID: PMC5126041 DOI: 10.3389/fcell.2016.00140] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 11/14/2016] [Indexed: 12/24/2022] Open
Abstract
Diacylglycerol kinases (DGKs) terminate diacylglycerol (DAG) signaling and promote phosphatidic acid (PA) production. Isoform specific regulation of DGKs activity and localization allows DGKs to shape the DAG and PA gradients. The capacity of DGKs to constrain the areas of DAG signaling is exemplified by their role in defining the contact interface between T cells and antigen presenting cells: the immune synapse. Upon T cell receptor engagement, both DGK α and ζ metabolize DAG at the immune synapse thus constraining DAG signaling. Interestingly, their activity and localization are not fully redundant because DGKζ activity metabolizes the bulk of DAG in the cell, whereas DGKα limits the DAG signaling area localizing specifically at the periphery of the immune synapse. When DGKs terminate DAG signaling, the local PA production defines a new signaling domain, where PA recruits and activates a second wave of effector proteins. The best-characterized example is the role of DGKs in protrusion elongation and cell migration. Indeed, upon growth factor stimulation, several DGK isoforms, such as α, ζ, and γ, are recruited and activated at the plasma membrane. Here, local PA production controls cell migration by finely modulating cytoskeletal remodeling and integrin recycling. Interestingly, DGK-produced PA also controls the localization and activity of key players in cell polarity such as aPKC, Par3, and integrin β1. Thus, T cell polarization and directional migration may be just two instances of the general contribution of DGKs to the definition of cell polarity by local specification of membrane identity signaling.
Collapse
Affiliation(s)
- Gianluca Baldanzi
- Department of Translational Medicine, University of Piemonte OrientaleNovara, Italy; Institute for Research and Cure of Autoimmune DiseasesNovara, Italy
| | - Valentina Bettio
- Department of Translational Medicine, University of Piemonte OrientaleNovara, Italy; Institute for Research and Cure of Autoimmune DiseasesNovara, Italy
| | - Valeria Malacarne
- Department of Translational Medicine, University of Piemonte OrientaleNovara, Italy; Division of Experimental Oncology, School of Medicine, University Vita e Salute San RaffaeleMilan, Italy
| | - Andrea Graziani
- Department of Translational Medicine, University of Piemonte OrientaleNovara, Italy; Division of Experimental Oncology, School of Medicine, University Vita e Salute San RaffaeleMilan, Italy
| |
Collapse
|
30
|
Rab11 and phosphoinositides: A synergy of signal transducers in the control of vesicular trafficking. Adv Biol Regul 2016; 63:132-139. [PMID: 27658318 DOI: 10.1016/j.jbior.2016.09.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 09/13/2016] [Indexed: 12/11/2022]
Abstract
Rab11 and phosphoinositides are signal transducers able to direct the delivery of membrane components to the cell surface. Rab11 is a small GTPase that, by cycling from an active to an inactive state, controls key events of vesicular transport, while phosphoinositides are major determinants of membrane identity, modulating compartmentalized small GTPase function. By sharing common effectors, these two signal transducers synergistically direct vesicular traffic to specific intracellular membranes. This review focuses on the latest advances regarding the mechanisms that ensure the compartmentalized regulation of Rab11 function through its interaction with phosphoinositides.
Collapse
|
31
|
Lindsay AJ, McCaffrey MW. Rab coupling protein mediated endosomal recycling of N-cadherin influences cell motility. Oncotarget 2016; 8:104717-104732. [PMID: 29285208 PMCID: PMC5739595 DOI: 10.18632/oncotarget.10513] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 05/13/2016] [Indexed: 12/18/2022] Open
Abstract
Rab coupling protein (RCP) is a Rab GTPase effector that functions in endosomal recycling. The RCP gene is frequently amplified in breast cancer, leading to increased cancer aggressiveness. Furthermore, RCP enhances the motility of ovarian cancer cells by coordinating the recycling of α5β1 integrin and EGF receptor to the leading edge of migrating cells. Here we report that RCP also influences the motility of lung adenocarcinoma cells. Knockdown of RCP inhibits the motility of A549 cells in 2D and 3D migration assays, while its overexpression enhances migration in these assays. Depletion of RCP leads to a reduction in N-cadherin protein levels, which could be restored with lysosomal inhibitors. Trafficking assays revealed that RCP knockdown inhibits the return of endocytosed N-cadherin to the cell surface. We propose that RCP regulates the endosomal recycling of N-cadherin, and in its absence N-cadherin is diverted to the degradative pathway. The increased aggressiveness of tumour cells that overexpress RCP may be due to biased recycling of N-cadherin in metastatic cancer cells.
Collapse
Affiliation(s)
- Andrew J Lindsay
- Molecular Cell Biology Laboratory, School of Biochemistry and Cell Biology, Biosciences Institute, University College Cork, Cork, Ireland
| | - Mary W McCaffrey
- Molecular Cell Biology Laboratory, School of Biochemistry and Cell Biology, Biosciences Institute, University College Cork, Cork, Ireland
| |
Collapse
|
32
|
Zheng C, Diaz-Cuadros M, Chalfie M. Hox Genes Promote Neuronal Subtype Diversification through Posterior Induction in Caenorhabditis elegans. Neuron 2016; 88:514-27. [PMID: 26539892 DOI: 10.1016/j.neuron.2015.09.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/05/2015] [Accepted: 09/19/2015] [Indexed: 10/22/2022]
Abstract
Although Hox genes specify the differentiation of neuronal subtypes along the anterior-posterior axis, their mode of action is not entirely understood. Using two subtypes of the touch receptor neurons (TRNs) in C. elegans, we found that a "posterior induction" mechanism underlies the Hox control of terminal neuronal differentiation. The anterior subtype maintains a default TRN state, whereas the posterior subtype undergoes further morphological and transcriptional specification induced by the posterior Hox proteins, mainly EGL-5/Abd-B. Misexpression of the posterior Hox proteins transformed the anterior TRN subtype toward a posterior identity both morphologically and genetically. The specification of the posterior subtype requires EGL-5-induced repression of TALE cofactors, which antagonize EGL-5 functions, and the activation of rfip-1, a component of recycling endosomes, which mediates Hox activities by promoting subtype-specific neurite outgrowth. Finally, EGL-5 is required for subtype-specific circuit formation by acting in both the sensory neuron and downstream interneuron to promote functional connectivity.
Collapse
Affiliation(s)
- Chaogu Zheng
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | - Martin Chalfie
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
33
|
Schafer JC, McRae RE, Manning EH, Lapierre LA, Goldenring JR. Rab11-FIP1A regulates early trafficking into the recycling endosomes. Exp Cell Res 2016; 340:259-73. [PMID: 26790954 PMCID: PMC4744548 DOI: 10.1016/j.yexcr.2016.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 12/19/2015] [Accepted: 01/10/2016] [Indexed: 12/31/2022]
Abstract
The Rab11 family of small GTPases, along with the Rab11-family interacting proteins (Rab11-FIPs), are critical regulators of intracellular vesicle trafficking and recycling. We have identified a point mutation of Threonine-197 site to an Alanine in Rab11-FIP1A, which causes a dramatic dominant negative phenotype when expressed in HeLa cells. The normally perinuclear distribution of GFP-Rab11-FIP1A was condensed into a membranous cisternum with almost no GFP-Rab11-FIP1A(T197A) remaining outside of this central locus. Also, this condensed GFP-FIP1A(T197A) altered the distribution of proteins in the Rab11a recycling pathway including endogenous Rab11a, Rab11-FIP1C, and transferrin receptor (CD71). Furthermore, this condensed GFP-FIP1A(T197A)-containing structure exhibited little movement in live HeLa cells. Expression of GFP-FIP1A(T197A) caused a strong blockade of transferrin recycling. Treatment of cells expressing GFP-FIP1A(T197A) with nocodazole did not disperse the Rab11a-containing recycling system. We also found that Rab5 and EEA1 were accumulated in membranes by GFP-Rab11-FIP1A but Rab4 was unaffected, suggesting that a direct pathway may exist from early endosomes into the Rab11a-containing recycling system. Our study of a potent inhibitory trafficking mutation in Rab11-FIP1A shows that Rab11-FIP1A associates with and regulates trafficking at an early step in the process of membrane recycling.
Collapse
Affiliation(s)
- Jenny C Schafer
- Departments of Surgery, Nashville, TN, USA; Epithelial Biology Center, Nashville, TN, USA
| | - Rebecca E McRae
- Departments of Surgery, Nashville, TN, USA; Cell & Developmental Biology, Nashville, TN, USA; Epithelial Biology Center, Nashville, TN, USA
| | - Elizabeth H Manning
- Departments of Surgery, Nashville, TN, USA; Epithelial Biology Center, Nashville, TN, USA
| | - Lynne A Lapierre
- Departments of Surgery, Nashville, TN, USA; Epithelial Biology Center, Nashville, TN, USA
| | - James R Goldenring
- Departments of Surgery, Nashville, TN, USA; Cell & Developmental Biology, Nashville, TN, USA; Epithelial Biology Center, Nashville, TN, USA; Vanderbilt University School of Medicine and the Nashville VA Medical Center, Nashville, TN, USA.
| |
Collapse
|
34
|
Johnson JL, He J, Ramadass M, Pestonjamasp K, Kiosses WB, Zhang J, Catz SD. Munc13-4 Is a Rab11-binding Protein That Regulates Rab11-positive Vesicle Trafficking and Docking at the Plasma Membrane. J Biol Chem 2015; 291:3423-38. [PMID: 26637356 DOI: 10.1074/jbc.m115.705871] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Indexed: 11/06/2022] Open
Abstract
The small GTPase Rab11 and its effectors control trafficking of recycling endosomes, receptor replenishment and the up-regulation of adhesion and adaptor molecules at the plasma membrane. Despite recent advances in the understanding of Rab11-regulated mechanisms, the final steps mediating docking and fusion of Rab11-positive vesicles at the plasma membrane are not fully understood. Munc13-4 is a docking factor proposed to regulate fusion through interactions with SNAREs. In hematopoietic cells, including neutrophils, Munc13-4 regulates exocytosis in a Rab27a-dependent manner, but its possible regulation of other GTPases has not been explored in detail. Here, we show that Munc13-4 binds to Rab11 and regulates the trafficking of Rab11-containing vesicles. Using a novel Time-resolved Fluorescence Resonance Energy Transfer (TR-FRET) assay, we demonstrate that Munc13-4 binds to Rab11a but not to dominant negative Rab11a. Immunoprecipitation analysis confirmed the specificity of the interaction between Munc13-4 and Rab11, and super-resolution microscopy studies support the interaction of endogenous Munc13-4 with Rab11 at the single molecule level in neutrophils. Vesicular dynamic analysis shows the common spatio-temporal distribution of Munc13-4 and Rab11, while expression of a calcium binding-deficient mutant of Munc13-4 significantly affected Rab11 trafficking. Munc13-4-deficient neutrophils showed normal endocytosis, but the trafficking, up-regulation, and retention of Rab11-positive vesicles at the plasma membrane was significantly impaired. This correlated with deficient NADPH oxidase activation at the plasma membrane in response to Rab11 interference. Our data demonstrate that Munc13-4 is a Rab11-binding partner that regulates the final steps of Rab11-positive vesicle docking at the plasma membrane.
Collapse
Affiliation(s)
| | - Jing He
- From the Department of Molecular and Experimental Medicine and
| | | | - Kersi Pestonjamasp
- Cancer Center Microscopy Shared Resource, University of California San Diego, La Jolla, California 92093
| | - William B Kiosses
- Light Microscopy Core Facility, The Scripps Research Institute, La Jolla, California 92037 and
| | - Jinzhong Zhang
- From the Department of Molecular and Experimental Medicine and
| | - Sergio D Catz
- From the Department of Molecular and Experimental Medicine and
| |
Collapse
|
35
|
Boal F, Hodgson LR, Reed SE, Yarwood SE, Just VJ, Stephens DJ, McCaffrey MW, Tavaré JM. Insulin promotes Rip11 accumulation at the plasma membrane by inhibiting a dynamin- and PI3-kinase-dependent, but Akt-independent, internalisation event. Cell Signal 2015; 28:74-82. [PMID: 26515129 PMCID: PMC4678287 DOI: 10.1016/j.cellsig.2015.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/23/2015] [Indexed: 12/11/2022]
Abstract
Rip11 is a Rab11 effector protein that has been shown to be important in controlling the trafficking of several intracellular cargoes, including the fatty acid transporter FAT/CD36, V-ATPase and the glucose transporter GLUT4. We have previously demonstrated that Rip11 translocates to the plasma membrane in response to insulin and here we examine the basis of this regulated phenomenon in more detail. We show that Rip11 rapidly recycles between the cell interior and surface, and that the ability of insulin to increase the appearance of Rip11 at the cell surface involves an inhibition of Rip11 internalisation from the plasma membrane. By contrast the hormone has no effect on the rate of Rip11 translocation towards the plasma membrane. The ability of insulin to inhibit Rip11 internalisation requires dynamin and class I PI3-kinases, but is independent of the activation of the protein kinase Akt; characteristics which are very similar to the mechanism by which insulin inhibits GLUT4 endocytosis.
Collapse
Affiliation(s)
- Frédéric Boal
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Lorna R Hodgson
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Sam E Reed
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Sophie E Yarwood
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Victoria J Just
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - David J Stephens
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Mary W McCaffrey
- Molecular Cell Biology Laboratory, School of Biochemistry and Cell Biology, Biosciences Institute, University College Cork, Cork, Ireland
| | - Jeremy M Tavaré
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
36
|
Tropomyosin Tm5NM1 spatially restricts src kinase activity through perturbation of Rab11 vesicle trafficking. Mol Cell Biol 2014; 34:4436-46. [PMID: 25288639 DOI: 10.1128/mcb.00796-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In order for cells to stop moving, they must synchronously stabilize actin filaments and their associated focal adhesions. How these two structures are coordinated in time and space is not known. We show here that the actin association protein Tm5NM1, which induces stable actin filaments, concurrently suppresses the trafficking of focal-adhesion-regulatory molecules. Using combinations of fluorescent biosensors and fluorescence recovery after photobleaching (FRAP), we demonstrate that Tm5NM1 reduces the level of delivery of Src kinase to focal adhesions, resulting in reduced phosphorylation of adhesion-resident Src substrates. Live imaging of Rab11-positive recycling endosomes that carry Src to focal adhesions reveals disruption of this pathway. We propose that tropomyosin synchronizes adhesion dynamics with the cytoskeleton by regulating actin-dependent trafficking of essential focal-adhesion molecules.
Collapse
|
37
|
Yashiro H, Loza AJ, Skeath JB, Longmore GD. Rho1 regulates adherens junction remodeling by promoting recycling endosome formation through activation of myosin II. Mol Biol Cell 2014; 25:2956-69. [PMID: 25079692 PMCID: PMC4230585 DOI: 10.1091/mbc.e14-04-0894] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Once adherens junctions (AJs) are formed between polarized epithelial cells they must be maintained because AJs are constantly remodeled in dynamic epithelia. AJ maintenance involves endocytosis and subsequent recycling of E-cadherin to a precise location along the basolateral membrane. In the Drosophila pupal eye epithelium, Rho1 GTPase regulates AJ remodeling through Drosophila E-cadherin (DE-cadherin) endocytosis by limiting Cdc42/Par6/aPKC complex activity. We demonstrate that Rho1 also influences AJ remodeling by regulating the formation of DE-cadherin-containing, Rab11-positive recycling endosomes in Drosophila postmitotic pupal eye epithelia. This effect of Rho1 is mediated through Rok-dependent, but not MLCK-dependent, stimulation of myosin II activity yet independent of its effects upon actin remodeling. Both Rho1 and pMLC localize on endosomal vesicles, suggesting that Rho1 might regulate the formation of recycling endosomes through localized myosin II activation. This work identifies spatially distinct functions for Rho1 in the regulation of DE-cadherin-containing vesicular trafficking during AJ remodeling in live epithelia.
Collapse
Affiliation(s)
- Hanako Yashiro
- ICCE Institute, Washington University School of Medicine, St. Louis, MO 63110 Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110 Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - Andrew J Loza
- ICCE Institute, Washington University School of Medicine, St. Louis, MO 63110 Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - James B Skeath
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Gregory D Longmore
- ICCE Institute, Washington University School of Medicine, St. Louis, MO 63110 Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110 Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110 BRIGHT Institute, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
38
|
Baetz NW, Goldenring JR. Distinct patterns of phosphatidylserine localization within the Rab11a-containing recycling system. CELLULAR LOGISTICS 2014; 4:e28680. [PMID: 25210648 PMCID: PMC4156484 DOI: 10.4161/cl.28680] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/21/2014] [Accepted: 03/27/2014] [Indexed: 01/04/2023]
Abstract
The Rab11 GTPases and Rab11 family-interacting proteins (Rab11-FIPs) define integrated yet distinct compartments within the slow recycling pathway. The lipid content of these compartments is less well understood, although past studies have indicated phosphatidylserine (PS) is an integral component of recycling membranes. We sought to identify key differences in the presence of PS within Rab and Rab11-FIP containing membranes. We used live cell fluorescence microscopy and structured illumination microscopy to determine whether the previously published LactC2 probe for PS displays differential patterns of overlap with various Rab GTPases and Rab11-FIPs. Selective overlap was observed between the LactC2 probe and Rab GTPases when co-expressed in HeLa cells. Rab11-FIP1 proteins consistently overlapped with LactC2 along peripheral and pericentriolar compartments. The specificity of Rab11-FIP1 association with LactC2 was further confirmed by demonstrating that additional Rab11-FIPs (FIP2, FIP3, and FIP5) exhibited selective association with LactC2 containing compartments. Live cell dual expression studies of Rab11-FIPs with LactC2 indicated that PS is enriched along tubular compartments of the Rab11a-dependent recycling system. Additionally, we found that the removal of C2 domains from the Rab11-FIPs induced an accumulation of LactC2 probe in the pericentriolar region, suggesting that inhibition of trafficking through the recycling system can influence the distribution of PS within cells. Finally, we confirmed these findings using structured illumination microscopy suggesting that the overlapping fluorescent signals were on the same membranes. These results suggest distinct associations of Rab GTPases and Rab11-FIPs with PS-containing recycling system membrane domains.
Collapse
Affiliation(s)
- Nicholas W Baetz
- Section of Surgical Sciences and the Epithelial Biology Center; Vanderbilt University Medical Center; Nashville, TN
| | - James R Goldenring
- Section of Surgical Sciences and the Epithelial Biology Center; Vanderbilt University Medical Center; Nashville, TN
- Department of Cell & Developmental Biology; Vanderbilt University School of Medicine; Nashville, TN
- Vanderbilt-Ingram Cancer Center; Vanderbilt University Medical Center; Nashville, TN
- Nashville Veterans Affairs Medical Center; Nashville, TN
| |
Collapse
|
39
|
Landry MC, Champagne C, Boulanger MC, Jetté A, Fuchs M, Dziengelewski C, Lavoie JN. A functional interplay between the small GTPase Rab11a and mitochondria-shaping proteins regulates mitochondrial positioning and polarization of the actin cytoskeleton downstream of Src family kinases. J Biol Chem 2013; 289:2230-49. [PMID: 24302731 DOI: 10.1074/jbc.m113.516351] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
It is believed that mitochondrial dynamics is coordinated with endosomal traffic rates during cytoskeletal remodeling, but the mechanisms involved are largely unknown. The adenovirus early region 4 ORF4 protein (E4orf4) subverts signaling by Src family kinases (SFK) to perturb cellular morphology, membrane traffic, and organellar dynamics and to trigger cell death. Using E4orf4 as a model, we uncovered a functional connection between mitochondria-shaping proteins and the small GTPase Rab11a, a key regulator of polarized transport via recycling endosomes. We found that E4orf4 induced dramatic changes in the morphology of mitochondria along with their mobilization at the vicinity of a polarized actin network typifying E4orf4 action, in a manner controlled by SFK and Rab11a. Mitochondrial remodeling was associated with increased proximity between Rab11a and mitochondrial membranes, changes in fusion-fission dynamics, and mitochondrial relocalization of the fission factor dynamin-related protein 1 (Drp1), which was regulated by the Rab11a effector protein FIP1/RCP. Knockdown of FIP1/RCP or inhibition of Drp1 markedly impaired mitochondrial remodeling and actin assembly, involving Rab11a-mediated mitochondrial dynamics in E4orf4-induced signaling. A similar mobilization of mitochondria near actin-rich structures was mediated by Rab11 and Drp1 in viral Src-transformed cells and contributed to the biogenesis of podosome rosettes. These findings suggest a role for Rab11a in the trafficking of Drp1 to mitochondria upon SFK activation and unravel a novel functional interplay between Rab11a and mitochondria during reshaping of the cell cytoskeleton, which would facilitate mitochondria redistribution near energy-requiring actin-rich structures.
Collapse
Affiliation(s)
- Marie-Claude Landry
- From the Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Axe Oncologie, Québec G1R 3S3 and
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Specific recognition of the cargo that molecular motors transport or tether to cytoskeleton tracks allows them to perform precise cellular functions at particular times and positions in cells. However, very little is known about how evolution has favored conservation of functions for some isoforms, while also allowing for the generation of new recognition sites and specialized cellular functions. Here we present several crystal structures of the myosin Va or the myosin Vb globular tail domain (GTD) that gives insights into how the motor is linked to the recycling membrane compartments via Rab11 or to the melanosome membrane via recognition of the melanophilin adaptor that binds to Rab27a. The structures illustrate how the Rab11-binding site has been conserved during evolution and how divergence at another site of the GTD allows more specific interactions such as the specific recognition of melanophilin by the myosin Va isoform. With atomic structural insights, these structures also show how either the partner or the GTD structural plasticity upon association is critical for selective recruitment of the motor.
Collapse
|
41
|
Carson BP, Del Bas JM, Moreno-Navarrete JM, Fernandez-Real JM, Mora S. The rab11 effector protein FIP1 regulates adiponectin trafficking and secretion. PLoS One 2013; 8:e74687. [PMID: 24040321 PMCID: PMC3770573 DOI: 10.1371/journal.pone.0074687] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 08/07/2013] [Indexed: 12/28/2022] Open
Abstract
Adiponectin is an adipokine secreted by white adipocytes involved in regulating insulin sensitivity in peripheral tissues. Secretion of adiponectin in adipocytes relies on the endosomal system, however, the intracellular machinery involved in mediating adiponectin release is unknown. We have previously reported that intracellular adiponectin partially compartmentalizes with rab 5 and rab11, markers for the early/sorting and recycling compartments respectively. Here we have examined the role of several rab11 downstream effector proteins (rab11 FIPs) in regulating adiponectin trafficking and secretion. Overexpression of wild type rab11 FIP1, FIP3 and FIP5 decreased the amount of secreted adiponectin expressed in HEK293 cells, whereas overexpression of rab11 FIP2 or FIP4 had no effect. Furthermore shRNA-mediated depletion of FIP1 enhanced adiponectin release whereas knock down of FIP5 decreased adiponectin secretion. Knock down of FIP3 had no effect. In 3T3L1 adipocytes, endogenous FIP1 co-distributed intracellularly with endogenous adiponectin and FIP1 depletion enhanced adiponectin release without altering insulin-mediated trafficking of the glucose transporter Glut4. While adiponectin receptors internalized with transferrin receptors, there were no differences in transferrin receptor recycling between wild type and FIP1 depleted adipocytes. Consistent with its inhibitory role, FIP1 expression was decreased during adipocyte differentiation, by treatment with thiazolidinediones, and with increased BMI in humans. In contrast, FIP1 expression increased upon exposure of adipocytes to TNFα. In all, our findings identify FIP1 as a novel protein involved in the regulation of adiponectin trafficking and release.
Collapse
Affiliation(s)
- Brian P. Carson
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, the University of Liverpool, Liverpool, United Kingdom
| | - Josep Maria Del Bas
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, the University of Liverpool, Liverpool, United Kingdom
| | | | | | - Silvia Mora
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, the University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
Abstract
Virus budding is a complex, multistep process in which viral proteins make specific alterations in membrane curvature. Many different viral proteins can deform the membrane and form a budding virion, but very few can mediate membrane scission to complete the budding process. As a result, enveloped viruses have developed numerous ways of facilitating membrane scission, including hijacking host cellular scission machinery and expressing their own scission proteins. These proteins mediate scission in very different ways, though the biophysical mechanics underlying their actions may be similar. In this review, we explore the mechanisms of membrane scission and the ways in which enveloped viruses use these systems to mediate the release of budding virions.
Collapse
Affiliation(s)
- Jeremy S Rossman
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, United Kingdom;
| | | |
Collapse
|
43
|
Baetz NW, Goldenring JR. Rab11-family interacting proteins define spatially and temporally distinct regions within the dynamic Rab11a-dependent recycling system. Mol Biol Cell 2013; 24:643-58. [PMID: 23283983 PMCID: PMC3583667 DOI: 10.1091/mbc.e12-09-0659] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Rab11-family interacting proteins (Rab11-FIPs) facilitate Rab11-dependent vesicle recycling. We hypothesized that Rab11-FIPs define discrete subdomains and carry out temporally distinct roles within the recycling system. We used live-cell deconvolution microscopy of HeLa cells expressing chimeric fluorescent Rab11-FIPs to examine Rab11-FIP localization, transferrin passage through Rab11-FIP-containing compartments, and overlap among Rab11-FIPs within the recycling system. FIP1A, FIP2, and FIP5 occupy widely distributed mobile tubules and vesicles, whereas FIP1B, FIP1C, and FIP3 localize to perinuclear tubules. Internalized transferrin entered Rab11-FIP-containing compartments within 5 min, reaching maximum colocalization with FIP1B and FIP2 early in the time course, whereas localization with FIP1A, FIP1C, FIP3, and FIP5 was delayed until 10 min or later. Whereas direct interactions with FIP1A were only observed for FIP1B and FIP1C, FIP1A also associated with membranes containing FIP3. Live-cell dual-expression studies of Rab11-FIPs revealed the tubular dynamics of Rab11-FIP-containing compartments and demonstrated a series of selective associations among Rab11-FIPs in real time. These findings suggest that Rab11-FIP1 proteins participate in spatially and temporally distinct steps of the recycling process along a complex and dynamic tubular network in which Rab11-FIPs occupy discrete domains.
Collapse
Affiliation(s)
- Nicholas W Baetz
- Section of Surgical Sciences and Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
44
|
Khan AR. Oligomerization of rab/effector complexes in the regulation of vesicle trafficking. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:579-614. [PMID: 23663983 DOI: 10.1016/b978-0-12-386931-9.00021-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rabs comprise the largest member of the Ras superfamily of small GTPases with over 60 proteins in mammals and 11 proteins in yeast. Like all small GTPases, Rabs oscillate between an inactive GDP-bound conformation and an active GTP-bound state that is tethered to lipid membranes via a C-terminal prenylation site on conserved cysteine residues. In their active state, Rabs regulate various aspects of membrane trafficking, including vesicle formation, transport, docking, and fusion. The critical element of biological activity is the recruitment of cytosolic effector proteins to specific endomembranes by active Rabs. The importance of Rabs in cellular processes is apparent from their links to genetic disorders, immunodeficiency, cancer, and pathogen invasion. During the last decade, numerous structures of complexes have shed light on the molecular basis for Rab/effector specificity and their topological organization on subcellular membranes. Here, I review the known structures of Rab/effector complexes and their modes of oligomerization. This is followed by a brief discussion on the thermodynamics of effector recruitment, which has not been documented sufficiently in previous reviews. A summary of diseases associated with Rab/effector trafficking pathways concludes this chapter.
Collapse
Affiliation(s)
- Amir R Khan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
45
|
Leiva N, Capmany A, Damiani MT. Rab11-family of interacting protein 2 associates with chlamydial inclusions through its Rab-binding domain and promotes bacterial multiplication. Cell Microbiol 2012; 15:114-29. [PMID: 23006599 DOI: 10.1111/cmi.12035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 09/17/2012] [Accepted: 09/18/2012] [Indexed: 01/16/2023]
Abstract
Chlamydia trachomatis, an obligate intracellular pathogen, survives within host cells in a special compartment named 'inclusion' and takes advantage of host vesicular transport pathways for its growth and replication. Rab GTPases are key regulatory proteins of intracellular trafficking. Several Rabs, among them Rab11 and Rab14, are implicated in chlamydial development. FIP2, a member of the Rab11-Family of Interacting Proteins, presents at the C-terminus a Rab-binding domain that interacts with both Rab11 and Rab14. In this study, we determined and characterized the recruitment of endogenous and GFP-tagged FIP2 to the chlamydial inclusions. The recruitment of FIP2 is specific since other members of the Rab11-Family of Interacting Proteins do not associate with the chlamydial inclusions. The Rab-binding domain of FIP2 is essential for its association. Our results indicate that FIP2 binds to Rab11 at the chlamydial inclusion membrane through its Rab-binding domain. The presence of FIP2 at the chlamydial inclusion favours the recruitment of Rab14. Furthermore, our results show that FIP2 promotes inclusion development and bacterial replication. In agreement, the silencing of FIP2 decreases the bacterial progeny. C. trachomatis likely recruits FIP2 to hijack host intracellular trafficking to redirect vesicles full of nutrients towards the inclusion.
Collapse
Affiliation(s)
- Natalia Leiva
- Laboratory of Phagocytosis and Intracellular Trafficking, IHEM-CONICET, School of Medicine, University of Cuyo, Mendoza, Argentina
| | | | | |
Collapse
|
46
|
Gidon A, Bardin S, Cinquin B, Boulanger J, Waharte F, Heliot L, Salle H, Hanau D, Kervrann C, Goud B, Salamero J. A Rab11A/Myosin Vb/Rab11-FIP2 Complex Frames Two Late Recycling Steps of Langerin from the ERC to the Plasma Membrane. Traffic 2012; 13:815-33. [DOI: 10.1111/j.1600-0854.2012.01354.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 03/13/2012] [Accepted: 03/15/2012] [Indexed: 01/29/2023]
Affiliation(s)
- Alexandre Gidon
- UMR 144, Molecular Mechanisms of Intracellular Transport Laboratory; CNRS-Institut Curie; 26 rue d'Ulm; 75248; Paris cedex 05; France
| | - Sabine Bardin
- UMR 144, Molecular Mechanisms of Intracellular Transport Laboratory; CNRS-Institut Curie; 26 rue d'Ulm; 75248; Paris cedex 05; France
| | | | - Jerome Boulanger
- Cell and Tissue Imaging Facility, PICT-IBiSA & Nikon Imaging Center; UMR 144 CNRS-Institut Curie; 26 rue d'Ulm; 75248; Paris cedex 05; France
| | - François Waharte
- Cell and Tissue Imaging Facility, PICT-IBiSA & Nikon Imaging Center; UMR 144 CNRS-Institut Curie; 26 rue d'Ulm; 75248; Paris cedex 05; France
| | - Laurent Heliot
- Interdisciplinary Research Institute, Molecular Dynamics and Interaction in Living Cell; 59658; Villeneuve d'Ascq; France
| | - Henri Salle
- INSERM U 725, Biology of Human Dendritic Cells; Strasbourg; France
| | - Daniel Hanau
- INSERM U 725, Biology of Human Dendritic Cells; Strasbourg; France
| | - Charles Kervrann
- INRIA Rennes - Bretagne Atlantique. Team SERPICO; Campus de Beaulieu; 35042; Rennes cedex; France
| | - Bruno Goud
- UMR 144, Molecular Mechanisms of Intracellular Transport Laboratory; CNRS-Institut Curie; 26 rue d'Ulm; 75248; Paris cedex 05; France
| | | |
Collapse
|
47
|
Rainero E, Caswell PT, Muller PAJ, Grindlay J, McCaffrey MW, Zhang Q, Wakelam MJO, Vousden KH, Graziani A, Norman JC. Diacylglycerol kinase α controls RCP-dependent integrin trafficking to promote invasive migration. ACTA ACUST UNITED AC 2012; 196:277-95. [PMID: 22270919 PMCID: PMC3265946 DOI: 10.1083/jcb.201109112] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphatidic acid generation by DGK-α is essential for the localization of Rab11-coupling protein to invasive pseudopods and subsequent invasive migration by tumor cells. Inhibition of αvβ3 integrin or expression of oncogenic mutants of p53 promote invasive cell migration by enhancing endosomal recycling of α5β1 integrin under control of the Rab11 effector Rab-coupling protein (RCP). In this paper, we show that diacylglycerol kinase α (DGK-α), which phosphorylates diacylglycerol to phosphatidic acid (PA), was required for RCP to be mobilized to and tethered at the tips of invasive pseudopods and to allow RCP-dependent α5β1 recycling and the resulting invasiveness of tumor cells. Expression of a constitutive-active mutant of DGK-α drove RCP-dependent invasion in the absence of mutant p53 expression or αvβ3 inhibition, and conversely, an RCP mutant lacking the PA-binding C2 domain was not capable of being tethered at pseudopod tips. These data demonstrate that generation of PA downstream of DGK-α is essential to connect expression of mutant p53s or inhibition of αvβ3 to RCP and for this Rab11 effector to drive the trafficking of α5β1 that is required for tumor cell invasion through three-dimensional matrices.
Collapse
Affiliation(s)
- Elena Rainero
- Beatson Institute for Cancer Research, G61 1BD Glasgow, Scotland, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Willenborg C, Jing J, Wu C, Matern H, Schaack J, Burden J, Prekeris R. Interaction between FIP5 and SNX18 regulates epithelial lumen formation. ACTA ACUST UNITED AC 2011; 195:71-86. [PMID: 21969467 PMCID: PMC3187708 DOI: 10.1083/jcb.201011112] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Rab11 GTPase-binding protein FIP5 collaborates with the sorting nexin 18 to transport proteins to the apical surface and to tubulate membranes during epithelial apical lumen formation. During the morphogenesis of the epithelial lumen, apical proteins are thought to be transported via endocytic compartments to the site of the forming lumen, although the machinery mediating this transport remains to be elucidated. Rab11 GTPase and its binding protein, FIP5, are important regulators of polarized endocytic transport. In this study, we identify sorting nexin 18 as a novel FIP5-interacting protein and characterize the role of FIP5 and SNX18 in epithelial lumen morphogenesis. We show that FIP5 mediates the transport of apical proteins from apical endosomes to the apical plasma membrane and, along with SNX18, is required for the early stages of apical lumen formation. Furthermore, both proteins bind lipids, and FIP5 promotes the capacity of SNX18 to tubulate membranes, which implies a role for FIP5 and SNX18 in endocytic carrier formation and/or scission. In summary, the present findings support the hypothesis that this FIP5-SNX18 complex plays a pivotal role in the polarized transport of apical proteins during apical lumen initiation in epithelial cells.
Collapse
Affiliation(s)
- Carly Willenborg
- Department of Cell and Developmental Biology, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
The C2 domain of Tollip, a Toll-like receptor signalling regulator, exhibits broad preference for phosphoinositides. Biochem J 2011; 435:597-608. [DOI: 10.1042/bj20102160] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TLRs (Toll-like receptors) provide a mechanism for host defence immune responses. Activated TLRs lead to the recruitment of adaptor proteins to their cytosolic tails, which in turn promote the activation of IRAKs (interleukin-1 receptor-associated kinases). IRAKs act upon their transcription factor targets to influence the expression of genes involved in the immune response. Tollip (Toll-interacting protein) modulates IRAK function in the TLR signalling pathway. Tollip is multimodular, with a conserved C2 domain of unknown function. We found that the Tollip C2 domain preferentially interacts with phosphoinositides, most notably with PtdIns3P (phosphatidylinositol 3-phosphate) and PtdIns(4,5)P2 (phosphatidylinositol 4,5-bisphosphate), in a Ca2+-independent manner. However, NMR analysis demonstrates that the Tollip C2 domain binds Ca2+, which may be required to target the membrane interface. NMR and lipid–protein overlay analyses suggest that PtdIns3P and PtdIns(4,5)P2 share interacting residues in the protein. Kinetic studies reveal that the C2 domain reversibly binds PtdIns3P and PtdIns(4,5)P2, with affinity values in the low micromolar range. Mutational analysis identifies key PtdIns3P- and PtdIns(4,5)P2-binding conserved basic residues in the protein. Our findings suggest that basic residues of the C2 domain mediate membrane targeting of Tollip by interaction with phosphoinositides, which contribute to the observed partition of the protein in different subcellular compartments.
Collapse
|
50
|
Foley K, Boguslavsky S, Klip A. Endocytosis, recycling, and regulated exocytosis of glucose transporter 4. Biochemistry 2011; 50:3048-61. [PMID: 21405107 DOI: 10.1021/bi2000356] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glucose transporter 4 (GLUT4) is responsible for the uptake of glucose into muscle and adipose tissues. Under resting conditions, GLUT4 is dynamically retained through idle cycling among selective intracellular compartments, from whence it undergoes slow recycling to the plasma membrane (PM). This dynamic retention can be released by command from intracellular signals elicited by insulin and other stimuli, which result in 2-10-fold increases in the surface level of GLUT4. Insulin-derived signals promote translocation of GLUT4 to the PM from a specialized compartment termed GLUT4 storage vesicles (GSV). Much effort has been devoted to the characterization of the intracellular compartments and dynamics of GLUT4 cycling and to the signals by which GLUT4 is sorted into, and recruited from, GSV. This review summarizes our understanding of intracellular GLUT4 traffic during its internalization from the membrane, its slow, constitutive recycling, and its regulated exocytosis in response to insulin. In spite of specific differences in GLUT4 dynamic behavior in adipose and muscle cells, the generalities of its endocytic and exocytic itineraries are consistent and an array of regulatory proteins that regulate each vesicular traffic event emerges from these cell systems.
Collapse
Affiliation(s)
- Kevin Foley
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M4G 1X8, Canada
| | | | | |
Collapse
|