1
|
Carvalho AM, Reis RL, Pashkuleva I. Hyaluronan Receptors as Mediators and Modulators of the Tumor Microenvironment. Adv Healthc Mater 2023; 12:e2202118. [PMID: 36373221 PMCID: PMC11469756 DOI: 10.1002/adhm.202202118] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/28/2022] [Indexed: 11/16/2022]
Abstract
The tumor microenvironment (TME) is a dynamic and complex matter shaped by heterogenous cancer and cancer-associated cells present at the tumor site. Hyaluronan (HA) is a major TME component that plays pro-tumorigenic and carcinogenic functions. These functions are mediated by different hyaladherins expressed by cancer and tumor-associated cells triggering downstream signaling pathways that determine cell fate and contribute to TME progression toward a carcinogenic state. Here, the interaction of HA is reviewed with several cell-surface hyaladherins-CD44, RHAMM, TLR2 and 4, LYVE-1, HARE, and layilin. The signaling pathways activated by these interactions and the respective response of different cell populations within the TME, and the modulation of the TME, are discussed. Potential cancer therapies via targeting these interactions are also briefly discussed.
Collapse
Affiliation(s)
- Ana M. Carvalho
- 3Bs Research Group, I3Bs ‐ Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineBarco4805‐017Portugal
- ICVS/3B's – PT Government Associate LaboratoryUniversity of MinhoBraga4710‐057Portugal
| | - Rui L. Reis
- 3Bs Research Group, I3Bs ‐ Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineBarco4805‐017Portugal
- ICVS/3B's – PT Government Associate LaboratoryUniversity of MinhoBraga4710‐057Portugal
| | - Iva Pashkuleva
- 3Bs Research Group, I3Bs ‐ Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineBarco4805‐017Portugal
- ICVS/3B's – PT Government Associate LaboratoryUniversity of MinhoBraga4710‐057Portugal
| |
Collapse
|
2
|
Hedberg-Oldfors C, Meyer R, Nolte K, Abdul Rahim Y, Lindberg C, Karason K, Thuestad IJ, Visuttijai K, Geijer M, Begemann M, Kraft F, Lausberg E, Hitpass L, Götzl R, Luna EJ, Lochmüller H, Koschmieder S, Gramlich M, Gess B, Elbracht M, Weis J, Kurth I, Oldfors A, Knopp C. Loss of supervillin causes myopathy with myofibrillar disorganization and autophagic vacuoles. Brain 2020; 143:2406-2420. [PMID: 32779703 PMCID: PMC7447519 DOI: 10.1093/brain/awaa206] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/16/2020] [Accepted: 05/07/2020] [Indexed: 01/01/2023] Open
Abstract
The muscle specific isoform of the supervillin protein (SV2), encoded by the SVIL gene, is a large sarcolemmal myosin II- and F-actin-binding protein. Supervillin (SV2) binds and co-localizes with costameric dystrophin and binds nebulin, potentially attaching the sarcolemma to myofibrillar Z-lines. Despite its important role in muscle cell physiology suggested by various in vitro studies, there are so far no reports of any human disease caused by SVIL mutations. We here report four patients from two unrelated, consanguineous families with a childhood/adolescence onset of a myopathy associated with homozygous loss-of-function mutations in SVIL. Wide neck, anteverted shoulders and prominent trapezius muscles together with variable contractures were characteristic features. All patients showed increased levels of serum creatine kinase but no or minor muscle weakness. Mild cardiac manifestations were observed. Muscle biopsies showed complete loss of large supervillin isoforms in muscle fibres by western blot and immunohistochemical analyses. Light and electron microscopic investigations revealed a structural myopathy with numerous lobulated muscle fibres and considerable myofibrillar alterations with a coarse and irregular intermyofibrillar network. Autophagic vacuoles, as well as frequent and extensive deposits of lipoproteins, including immature lipofuscin, were observed. Several sarcolemma-associated proteins, including dystrophin and sarcoglycans, were partially mis-localized. The results demonstrate the importance of the supervillin (SV2) protein for the structural integrity of muscle fibres in humans and show that recessive loss-of-function mutations in SVIL cause a distinctive and novel myopathy.
Collapse
Affiliation(s)
- Carola Hedberg-Oldfors
- Department of Pathology and Genetics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Robert Meyer
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Kay Nolte
- Institute of Neuropathology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Yassir Abdul Rahim
- Department of Pathology and Genetics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christopher Lindberg
- Department of Neurology, Neuromuscular Centre, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kristjan Karason
- Department of Cardiology and Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Kittichate Visuttijai
- Department of Pathology and Genetics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mats Geijer
- Department of Radiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Matthias Begemann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Florian Kraft
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Eva Lausberg
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Lea Hitpass
- Department of Diagnostic and Interventional Radiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Rebekka Götzl
- Department of Plastic Surgery, Hand and Burn Surgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Elizabeth J Luna
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, USA
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michael Gramlich
- Department of Invasive Electrophysiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Burkhard Gess
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Miriam Elbracht
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Joachim Weis
- Institute of Neuropathology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Anders Oldfors
- Department of Pathology and Genetics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cordula Knopp
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
3
|
Smith TC, Saul RG, Barton ER, Luna EJ. Generation and characterization of monoclonal antibodies that recognize human and murine supervillin protein isoforms. PLoS One 2018; 13:e0205910. [PMID: 30332471 PMCID: PMC6192639 DOI: 10.1371/journal.pone.0205910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 10/02/2018] [Indexed: 01/06/2023] Open
Abstract
Supervillin isoforms have been implicated in cell proliferation, actin filament-based motile processes, vesicle trafficking, and signal transduction. However, an understanding of the roles of these proteins in cancer metastasis and physiological processes has been limited by the difficulty of obtaining specific antibodies against these highly conserved membrane-associated proteins. To facilitate research into the biological functions of supervillin, monoclonal antibodies were generated against the bacterially expressed human supervillin N-terminus. Two chimeric monoclonal antibodies with rabbit Fc domains (clones 1E2/CPTC-SVIL-1; 4A8/CPTC-SVIL-2) and two mouse monoclonal antibodies (clones 5A8/CPTC-SVIL-3; 5G3/CPTC-SVIL-4) were characterized with respect to their binding sites, affinities, and for efficacy in immunoblotting, immunoprecipitation, immunofluorescence microscopy and immunohistochemical staining. Two antibodies (1E2, 5G3) recognize a sequence found only in primate supervillins, whereas the other two antibodies (4A8, 5A8) are specific for a more broadly conserved conformational epitope(s). All antibodies function in immunoblotting, immunoprecipitation and in immunofluorescence microscopy under the fixation conditions identified here. We also show that the 5A8 antibody works on immunohistological sections. These antibodies should provide useful tools for the study of mammalian supervillins.
Collapse
Affiliation(s)
- Tara C. Smith
- Department of Radiology, Division of Cell Biology & Imaging, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Richard G. Saul
- Antibody Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research ATRF, Frederick, MD, United States of America
| | - Elisabeth R. Barton
- Applied Physiology & Kinesiology, College of Health & Human Performance, University of Florida, Gainesville, FL, United States of America
| | - Elizabeth J. Luna
- Department of Radiology, Division of Cell Biology & Imaging, University of Massachusetts Medical School, Worcester, MA, United States of America
- * E-mail:
| |
Collapse
|
4
|
Chen X, Zhang S, Wang Z, Wang F, Cao X, Wu Q, Zhao C, Ma H, Ye F, Wang H, Fang Z. Supervillin promotes epithelial-mesenchymal transition and metastasis of hepatocellular carcinoma in hypoxia via activation of the RhoA/ROCK-ERK/p38 pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:128. [PMID: 29954442 PMCID: PMC6025706 DOI: 10.1186/s13046-018-0787-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 06/07/2018] [Indexed: 01/27/2023]
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world and metastasis is the leading cause of death associated with HCC. Hypoxia triggers the epithelial-mesenchymal transition (EMT) of cancer cells, which enhances their malignant character and elevates metastatic risk. Supervillin associates tightly with the membrane and cytoskeleton, promoting cell motility, invasiveness, and cell survival. However, the roles of supervillin in HCC metastasis remain unclear. Methods Tissue microarray technology was used to immunohistochemically stain for supervillin antibody in 173 HCC tissue specimens and expression levels correlated with the clinicopathological variables. Tumor cell motility and invasiveness, as well as changes in the mRNA expression levels of genes associated with cancer cell EMT, were investigated. The relationship between supervillin and Rho GTPases was examined using Co-IP and GST pull-down. Results Hypoxia-induced upregulation of supervillin promoted cancer cell migration and invasion via the activation of the ERK/p38 pathway downstream of RhoA/ROCK signaling. Furthermore, supervillin regulated the expression of EMT genes during hypoxia and accelerated the metastasis of HCC in vivo. Conclusions Hypoxia-induced increase in supervillin expression is a significant and independent predictor of cancer metastasis, which leads to poor survival in HCC patients. Our results suggest that supervillin may be a candidate prognostic factor for HCC and a valuable target for therapy. Electronic supplementary material The online version of this article (10.1186/s13046-018-0787-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xueran Chen
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Shangrong Zhang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Zhen Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, 230026, Anhui, China
| | - Fengsong Wang
- School of Life Science, Anhui Medical University, No. 81, Mei Shan Road, Hefei, 230032, Anhui, China
| | - Xinwang Cao
- School of Life Science, Anhui Medical University, No. 81, Mei Shan Road, Hefei, 230032, Anhui, China
| | - Quan Wu
- Central Laboratory of Medical Research Center, Anhui Provincial Hospital, No. 17, Lu Jiang Road, Hefei, 230001, Anhui, China
| | - Chenggang Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, 230026, Anhui, China
| | - Huihui Ma
- University of Science and Technology of China, No. 96, Jin Zhai Road, Hefei, 230026, Anhui, China.,Department of Radiation Oncology, First Affiliated Hospital, Anhui Medical University, No. 81, Mei Shan Road, Hefei, 230032, Anhui, China
| | - Fang Ye
- Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Zhiyou Fang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China. .,Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.
| |
Collapse
|
5
|
Chen X, Yang H, Zhang S, Wang Z, Ye F, Liang C, Wang H, Fang Z. A novel splice variant of supervillin, SV5, promotes carcinoma cell proliferation and cell migration. Biochem Biophys Res Commun 2016; 482:43-49. [PMID: 27825967 DOI: 10.1016/j.bbrc.2016.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/04/2016] [Indexed: 10/20/2022]
Abstract
Supervillin is an actin-associated protein that regulates actin dynamics by interacting with Myosin II, F-actin, and Cortactin to promote cell contractility and cell motility. Two splicing variants of human Supervillin (SV1 and SV4) have been reported in non-muscle cells; SV1 lacks 3 exons present in the larger isoform SV4. SV2, also called archvillin, is present in striated muscle; SV3, also called smooth muscle archvillin or SmAV, was cloned from smooth muscle. In the present study, we identify a novel splicing variant of Supervillin (SV5). SV5 contains a new splicing pattern. In the mouse tissues and cell lines examined, SV5 was predominantly expressed in skeletal and cardiac muscles and in proliferating cells, but was virtually undetectable in most normal tissues. Using RNAi and rescue experiments, we show here that SV5 displays altered functional properties in cancer cells, and regulates cell proliferation and cell migration.
Collapse
Affiliation(s)
- Xueran Chen
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, PR China; Cancer Hospital, Chinese Academy of Sciences, Hefei, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, PR China
| | - Haoran Yang
- Cancer Hospital, Chinese Academy of Sciences, Hefei, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, PR China
| | - Shangrong Zhang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, PR China
| | - Zhen Wang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, PR China
| | - Fang Ye
- Cancer Hospital, Chinese Academy of Sciences, Hefei, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, PR China
| | - Chaozhao Liang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, PR China
| | - Hongzhi Wang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, PR China; Cancer Hospital, Chinese Academy of Sciences, Hefei, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, PR China
| | - Zhiyou Fang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, PR China; Cancer Hospital, Chinese Academy of Sciences, Hefei, No. 350, Shushan Hu Road, Hefei, Anhui, 230031, PR China.
| |
Collapse
|
6
|
Abstract
ERK1/2 MAP Kinases become activated in response to multiple intra- and extra-cellular stimuli through a signaling module composed of sequential tiers of cytoplasmic kinases. Scaffold proteins regulate ERK signals by connecting the different components of the module into a multi-enzymatic complex by which signal amplitude and duration are fine-tuned, and also provide signal fidelity by isolating this complex from external interferences. In addition, scaffold proteins play a central role as spatial regulators of ERKs signals. In this respect, depending on the subcellular localization from which the activating signals emanate, defined scaffolds specify which substrates are amenable to be phosphorylated. Recent evidence has unveiled direct interactions among different scaffold protein species. These scaffold-scaffold macro-complexes could constitute an additional level of regulation for ERK signals and may serve as nodes for the integration of incoming signals and the subsequent diversification of the outgoing signals with respect to substrate engagement.
Collapse
Affiliation(s)
- Berta Casar
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria Santander, Spain
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria Santander, Spain
| |
Collapse
|
7
|
Brozovich FV, Nicholson CJ, Degen CV, Gao YZ, Aggarwal M, Morgan KG. Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders. Pharmacol Rev 2016; 68:476-532. [PMID: 27037223 PMCID: PMC4819215 DOI: 10.1124/pr.115.010652] [Citation(s) in RCA: 346] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The smooth muscle cell directly drives the contraction of the vascular wall and hence regulates the size of the blood vessel lumen. We review here the current understanding of the molecular mechanisms by which agonists, therapeutics, and diseases regulate contractility of the vascular smooth muscle cell and we place this within the context of whole body function. We also discuss the implications for personalized medicine and highlight specific potential target molecules that may provide opportunities for the future development of new therapeutics to regulate vascular function.
Collapse
Affiliation(s)
- F V Brozovich
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C J Nicholson
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C V Degen
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - Yuan Z Gao
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - M Aggarwal
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - K G Morgan
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| |
Collapse
|
8
|
Preparation and Affinity-Purification of Supervillin Isoform 4 (SV4) Specific Polyclonal Antibodies. Protein J 2016; 35:107-14. [DOI: 10.1007/s10930-016-9658-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Hong Z, Reeves KJ, Sun Z, Li Z, Brown NJ, Meininger GA. Vascular smooth muscle cell stiffness and adhesion to collagen I modified by vasoactive agonists. PLoS One 2015; 10:e0119533. [PMID: 25745858 PMCID: PMC4351978 DOI: 10.1371/journal.pone.0119533] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/22/2015] [Indexed: 11/25/2022] Open
Abstract
In vascular smooth muscle cells (VSMCs) integrin-mediated adhesion to extracellular matrix (ECM) proteins play important roles in sustaining vascular tone and resistance. The main goal of this study was to determine whether VSMCs adhesion to type I collagen (COL-I) was altered in parallel with the changes in the VSMCs contractile state induced by vasoconstrictors and vasodilators. VSMCs were isolated from rat cremaster skeletal muscle arterioles and maintained in primary culture without passage. Cell adhesion and cell E-modulus were assessed using atomic force microscopy (AFM) by repetitive nano-indentation of the AFM probe on the cell surface at 0.1 Hz sampling frequency and 3200 nm Z-piezo travelling distance (approach and retraction). AFM probes were tipped with a 5 μm diameter microbead functionalized with COL-I (1mg\ml). Results showed that the vasoconstrictor angiotensin II (ANG-II; 10−6) significantly increased (p<0.05) VSMC E-modulus and adhesion probability to COL-I by approximately 35% and 33%, respectively. In contrast, the vasodilator adenosine (ADO; 10−4) significantly decreased (p<0.05) VSMC E-modulus and adhesion probability by approximately −33% and −17%, respectively. Similarly, the NO donor (PANOate, 10−6 M), a potent vasodilator, also significantly decreased (p<0.05) the VSMC E-modulus and COL-I adhesion probability by −38% and −35%, respectively. These observations support the hypothesis that integrin-mediated VSMC adhesion to the ECM protein COL-I is dynamically regulated in parallel with VSMC contractile activation. These data suggest that the signal transduction pathways modulating VSMC contractile activation and relaxation, in addition to ECM adhesion, interact during regulation of contractile state.
Collapse
Affiliation(s)
- Zhongkui Hong
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States of America
| | - Kimberley J. Reeves
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
| | - Zhe Sun
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States of America
| | - Zhaohui Li
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
| | - Nicola J. Brown
- Department of Oncology, University of Sheffield, Sheffield, United Kingdom
| | - Gerald A. Meininger
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
10
|
Son K, Smith TC, Luna EJ. Supervillin binds the Rac/Rho-GEF Trio and increases Trio-mediated Rac1 activation. Cytoskeleton (Hoboken) 2015; 72:47-64. [PMID: 25655724 DOI: 10.1002/cm.21210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/21/2015] [Indexed: 01/06/2023]
Abstract
We investigated cross-talk between the membrane-associated, myosin II-regulatory protein supervillin and the actin-regulatory small GTPases Rac1, RhoA, and Cdc42. Supervillin knockdown reduced Rac1-GTP loading, but not the GTP loading of RhoA or Cdc42, in HeLa cells with normal levels of the Rac1-activating protein Trio. No reduction in Rac1-GTP loading was observed when supervillin levels were reduced in Trio-depleted cells. Conversely, overexpression of supervillin isoform 1 (SV1) or, especially, isoform 4 (SV4) increased Rac1 activation. Inhibition of the Trio-mediated Rac1 guanine nucleotide exchange activity with ITX3 partially blocked the SV4-mediated increase in Rac1-GTP. Both SV4 and SV1 co-localized with Trio at or near the plasma membrane in ruffles and cell surface projections. Two sequences within supervillin bound directly to Trio spectrin repeats 4-7: SV1-171, which contains N-terminal residues found in both SV1 and SV4 and the SV4-specific differentially spliced coding exons 3, 4, and 5 within SV4 (SV4-E345; SV4 amino acids 276-669). In addition, SV4-E345 interacted with the homologous sequence in rat kalirin (repeats 4-7, amino acids 531-1101). Overexpressed SV1-174 and SV4-E345 affected Rac1-GTP loading, but only in cells with endogenous levels of Trio. Trio residues 771-1057, which contain both supervillin-interaction sites, exerted a dominant-negative effect on cell spreading. Supervillin and Trio knockdowns, separately or together, inhibited cell spreading, suggesting that supervillin regulates the Rac1 guanine nucleotide exchange activity of Trio, and potentially also kalirin, during cell spreading and lamellipodia extension.
Collapse
Affiliation(s)
- Kyonghee Son
- Department of Cell and Developmental Biology, Program in Cell & Developmental Dynamics, University of Massachusetts Medical School, Worcester, Massachusetts
| | | | | |
Collapse
|
11
|
Spinazzola JM, Smith TC, Liu M, Luna EJ, Barton ER. Gamma-sarcoglycan is required for the response of archvillin to mechanical stimulation in skeletal muscle. Hum Mol Genet 2015; 24:2470-81. [PMID: 25605665 DOI: 10.1093/hmg/ddv008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/13/2015] [Indexed: 01/23/2023] Open
Abstract
Loss of gamma-sarcoglycan (γ-SG) induces muscle degeneration and signaling defects in response to mechanical load, and its absence is common to both Duchenne and limb girdle muscular dystrophies. Growing evidence suggests that aberrant signaling contributes to the disease pathology; however, the mechanisms of γ-SG-mediated mechanical signaling are poorly understood. To uncover γ-SG signaling pathway components, we performed yeast two-hybrid screens and identified the muscle-specific protein archvillin as a γ-SG and dystrophin interacting protein. Archvillin protein and message levels were significantly upregulated at the sarcolemma of murine γ-SG-null (gsg(-/-)) muscle but delocalized in dystrophin-deficient mdx muscle. Similar elevation of archvillin protein was observed in human quadriceps muscle lacking γ-SG. Reintroduction of γ-SG in gsg(-/-) muscle by rAAV injection restored archvillin levels to that of control C57 muscle. In situ eccentric contraction of tibialis anterior (TA) muscles from C57 mice caused ERK1/2 phosphorylation, nuclear activation of P-ERK1/2 and stimulus-dependent archvillin association with P-ERK1/2. In contrast, TA muscles from gsg(-/-) and mdx mice exhibited heightened P-ERK1/2 and increased nuclear P-ERK1/2 localization following eccentric contractions, but the archvillin-P-ERK1/2 association was completely ablated. These results position archvillin as a mechanically sensitive component of the dystrophin complex and demonstrate that signaling defects caused by loss of γ-SG occur both at the sarcolemma and in the nucleus.
Collapse
Affiliation(s)
- Janelle M Spinazzola
- Department of Anatomy and Cell Biology, School of Dental Medicine, Pennsylvania Muscle Institute, and
| | - Tara C Smith
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Min Liu
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA and
| | - Elizabeth J Luna
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Elisabeth R Barton
- Department of Anatomy and Cell Biology, School of Dental Medicine, Pennsylvania Muscle Institute, and
| |
Collapse
|
12
|
Hyaluronan and RHAMM in wound repair and the "cancerization" of stromal tissues. BIOMED RESEARCH INTERNATIONAL 2014; 2014:103923. [PMID: 25157350 PMCID: PMC4137499 DOI: 10.1155/2014/103923] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/04/2014] [Indexed: 12/12/2022]
Abstract
Tumors and wounds share many similarities including loss of tissue architecture, cell polarity and cell differentiation, aberrant extracellular matrix (ECM) remodeling (Ballard et al., 2006) increased inflammation, angiogenesis, and elevated cell migration and proliferation. Whereas these changes are transient in repairing wounds, tumors do not regain tissue architecture but rather their continued progression is fueled in part by loss of normal tissue structure. As a result tumors are often described as wounds that do not heal. The ECM component hyaluronan (HA) and its receptor RHAMM have both been implicated in wound repair and tumor progression. This review highlights the similarities and differences in their roles during these processes and proposes that RHAMM-regulated wound repair functions may contribute to “cancerization” of the tumor microenvironment.
Collapse
|
13
|
Fedechkin SO, Brockerman J, Pfaff DA, Burns L, Webb T, Nelson A, Zhang F, Sabantsev AV, Melnikov AS, McKnight CJ, Smirnov SL. Gelsolin-like activation of villin: calcium sensitivity of the long helix in domain 6. Biochemistry 2013; 52:7890-900. [PMID: 24070253 DOI: 10.1021/bi400699s] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Villin is a gelsolin-like cytoskeleton regulator localized in the brush border at the apical end of epithelial cells. Villin regulates microvilli by bundling F-actin at low calcium levels and severing it at high calcium levels. The villin polypeptide consists of six gelsolin-like repeats (V1-V6) and the unique, actin binding C-terminal headpiece domain (HP). Villin modular fragment V6-HP requires calcium to stay monomeric and bundle F-actin. Our data show that isolated V6 is monomeric and does not bind F-actin at any level of calcium. We propose that the 40-residue unfolded V6-to-HP linker can be a key regulatory element in villin's functions such as its interactions with F-actin. Here we report a calcium-bound solution nuclear magnetic resonance (NMR) structure of V6, which has a gelsolin-like fold with the long α-helix in the extended conformation. Intrinsic tryptophan fluorescence quenching reveals two-Kd calcium binding in V6 (Kd1 of 22 μM and Kd2 of 2.8 mM). According to our NMR data, the conformation of V6 responds the most to micromolar calcium. We show that the long α-helix and the adjacent residues form the calcium-sensitive elements in V6. These observations are consistent with the calcium activation of F-actin severing by villin analogous to the gelsolin helix-straightening mechanism.
Collapse
Affiliation(s)
- Stanislav O Fedechkin
- Department of Chemistry, Western Washington University , 516 High Street, Bellingham, Washington 98225-9150, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nag S, Larsson M, Robinson RC, Burtnick LD. Gelsolin: The tail of a molecular gymnast. Cytoskeleton (Hoboken) 2013; 70:360-84. [DOI: 10.1002/cm.21117] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/24/2013] [Indexed: 12/14/2022]
Affiliation(s)
| | - Mårten Larsson
- Institute of Molecular and Cell Biology, A*STAR; Singapore
| | | | - Leslie D. Burtnick
- Department of Chemistry and Centre for Blood Research; Life Sciences Institute, University of British Columbia; Vancouver; British Columbia; Canada
| |
Collapse
|
15
|
Fang Z, Luna EJ. Supervillin-mediated suppression of p53 protein enhances cell survival. J Biol Chem 2013; 288:7918-7929. [PMID: 23382381 DOI: 10.1074/jbc.m112.416842] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Integrin-based adhesions promote cell survival as well as cell motility and invasion. We show here that the adhesion regulatory protein supervillin increases cell survival by decreasing levels of the tumor suppressor protein p53 and downstream target genes. RNAi-mediated knockdown of a new splice form of supervillin (isoform 4) or both isoforms 1 and 4 increases the amount of p53 and cell death, whereas p53 levels decrease after overexpression of either supervillin isoform. Cellular responses to DNA damage induced by etoposide or doxorubicin include down-regulation of endogenous supervillin coincident with increases in p53. In DNA-damaged supervillin knockdown cells, p53 knockdown or inhibition partially rescues the loss of cell metabolic activity, a measure of cell proliferation. Knockdown of the p53 deubiquitinating enzyme USP7/HAUSP also reverses the supervillin phenotype, blocking the increase in p53 levels seen after supervillin knockdown and accentuating the decrease in p53 levels triggered by supervillin overexpression. Conversely, supervillin overexpression decreases the association of USP7 and p53 and attenuates USP7-mediated p53 deubiquitination. USP7 binds directly to the supervillin N terminus and can deubiquitinate and stabilize supervillin. Supervillin also is stabilized by derivatization with the ubiquitin-like protein SUMO1. These results show that supervillin regulates cell survival through control of p53 levels and suggest that supervillin and its interaction partners at sites of cell-substrate adhesion constitute a locus for cross-talk between survival signaling and cell motility pathways.
Collapse
Affiliation(s)
- Zhiyou Fang
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605.
| | - Elizabeth J Luna
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605.
| |
Collapse
|
16
|
Siddiqui TA, Lively S, Vincent C, Schlichter LC. Regulation of podosome formation, microglial migration and invasion by Ca(2+)-signaling molecules expressed in podosomes. J Neuroinflammation 2012; 9:250. [PMID: 23158496 PMCID: PMC3551664 DOI: 10.1186/1742-2094-9-250] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/25/2012] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Microglia migrate during brain development and after CNS injury, but it is not known how they degrade the extracellular matrix (ECM) to accomplish this. Podosomes are tiny structures with the unique ability to adhere to and dissolve ECM. Podosomes have a two-part architecture: a core that is rich in F-actin and actin-regulatory molecules (for example, Arp2/3), surrounded by a ring with adhesion and structural proteins (for example, talin, vinculin). We recently discovered that the lamellum at the leading edge of migrating microglia contains a large F-actin-rich superstructure ('podonut') composed of many podosomes. Microglia that expressed podosomes could degrade ECM molecules. Finely tuned Ca(2+) signaling is important for cell migration, cell-substrate adhesion and contraction of the actomyosin network. Here, we hypothesized that podosomes contain Ca(2+)-signaling machinery, and that podosome expression and function depend on Ca(2+) influx and specific ion channels. METHODS High-resolution immunocytochemistry was used on rat microglia to identify podosomes and novel molecular components. A pharmacological toolbox was applied to functional assays. We analyzed roles of Ca(2+)-entry pathways and ion channels in podosome expression, microglial migration into a scratch-wound, transmigration through pores in a filter, and invasion through Matrigel™-coated filters. RESULTS Microglial podosomes were identified using well-known components of the core (F-actin, Arp2) and ring (talin, vinculin). We discovered four novel podosome components related to Ca(2+) signaling. The core contained calcium release activated calcium (CRAC; Orai1) channels, calmodulin, small-conductance Ca(2+)-activated SK3 channels, and ionized Ca(2+) binding adapter molecule 1 (Iba1), which is used to identify microglia in the CNS. The Orai1 accessory molecule, STIM1, was also present in and around podosomes. Podosome formation was inhibited by removing external Ca(2+) or blocking CRAC channels. Blockers of CRAC channels inhibited migration and invasion, and SK3 inhibition reduced invasion. CONCLUSIONS Microglia podosome formation, migration and/or invasion require Ca(2+) influx, CRAC, and SK3 channels. Both channels were present in microglial podosomes along with the Ca(2+)-regulated molecules, calmodulin, Iba1 and STIM1. These results suggest that the podosome is a hub for sub-cellular Ca(2+)-signaling to regulate ECM degradation and cell migration. The findings have broad implications for understanding migration mechanisms of cells that adhere to, and dissolve ECM.
Collapse
Affiliation(s)
- Tamjeed A Siddiqui
- Toronto Western Research Institute, 399 Bathurst Street, Toronto, Ontario, M5T 2S8, Canada
| | | | | | | |
Collapse
|
17
|
Fedechkin SO, Brockerman J, Luna EJ, Lobanov MY, Galzitskaya OV, Smirnov SL. An N-terminal, 830 residues intrinsically disordered region of the cytoskeleton-regulatory protein supervillin contains Myosin II- and F-actin-binding sites. J Biomol Struct Dyn 2012; 31:1150-9. [PMID: 23075227 DOI: 10.1080/07391102.2012.726531] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Supervillin, the largest member of the villin/gelsolin family, is a cytoskeleton regulating, peripheral membrane protein. Supervillin increases cell motility and promotes invasive activity in tumors. Major cytoskeletal interactors, including filamentous actin and myosin II, bind within the unique supervillin amino terminus, amino acids 1-830. The structural features of this key region of the supervillin polypeptide are unknown. Here, we utilize circular dichroism and bioinformatics sequence analysis to demonstrate that the N-terminal part of supervillin forms an extended intrinsically disordered region (IDR). Our combined data indicate that the N-terminus of human and bovine supervillin sequences (positions 1-830) represents an IDR, which is the largest IDR known to date in the villin/gelsolin family. Moreover, this result suggests a potentially novel mechanism of regulation of myosin II and F-actin via the intrinsically disordered N-terminal region of hub protein supervillin.
Collapse
Affiliation(s)
- Stanislav O Fedechkin
- a Department of Chemistry , Western Washington University , MS-9150, 516 High Street , Bellingham , WA , 98225-9150 , USA
| | | | | | | | | | | |
Collapse
|
18
|
Edelstein LC, Luna EJ, Gibson IB, Bray M, Jin Y, Kondkar A, Nagalla S, Hadjout-Rabi N, Smith TC, Covarrubias D, Jones SN, Ahmad F, Stolla M, Kong X, Fang Z, Bergmeier W, Shaw C, Leal SM, Bray PF. Human genome-wide association and mouse knockout approaches identify platelet supervillin as an inhibitor of thrombus formation under shear stress. Circulation 2012; 125:2762-71. [PMID: 22550155 DOI: 10.1161/circulationaha.112.091462] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND High shear force critically regulates platelet adhesion and thrombus formation during ischemic vascular events. To identify genetic factors that influence platelet thrombus formation under high shear stress, we performed a genome-wide association study and confirmatory experiments in human and animal platelets. METHODS AND RESULTS Closure times in the shear-dependent platelet function analyzer (PFA)-100 were measured on healthy, nondiabetic European Americans (n=125) and blacks (n=116). A genome-wide association (P<5×10(-8)) was identified with 2 single-nucleotide polymorphisms within the SVIL gene (chromosome 10p11.23) in African Americans but not European Americans. Microarray analyses of human platelet RNA demonstrated the presence of SVIL isoform 1 (supervillin) but not muscle-specific isoforms 2 and 3 (archvillin, SmAV). SVIL mRNA levels were associated with SVIL genotypes (P≤0.02) and were inversely correlated with PFA-100 closure times (P<0.04) and platelet volume (P<0.02). Leukocyte-depleted platelets contained abundant levels of the ≈205-kDa supervillin polypeptide. To assess functionality, mice lacking platelet supervillin were generated and back-crossed onto a C57BL/6 background. Compared with controls, murine platelets lacking supervillin were larger by flow cytometry and confocal microscopy and exhibited enhanced platelet thrombus formation under high-shear but not low-shear conditions. CONCLUSIONS We show for the first time that (1) platelets contain supervillin; (2) platelet thrombus formation in the PFA-100 is associated with human SVIL variants and low SVIL expression; and (3) murine platelets lacking supervillin exhibit enhanced platelet thrombus formation at high shear stress. These data are consistent with an inhibitory role for supervillin in platelet adhesion and arterial thrombosis.
Collapse
Affiliation(s)
- Leonard C Edelstein
- Cardeza Foundation for Hematologic Research, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Curtis Building, Room 324, 1015 Walnut St, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bhuwania R, Cornfine S, Fang Z, Krüger M, Luna EJ, Linder S. Supervillin couples myosin-dependent contractility to podosomes and enables their turnover. J Cell Sci 2012; 125:2300-14. [PMID: 22344260 DOI: 10.1242/jcs.100032] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Podosomes are actin-rich adhesion and invasion structures. Especially in macrophages, podosomes exist in two subpopulations, large precursors at the cell periphery and smaller podosomes (successors) in the cell interior. To date, the mechanisms that differentially regulate these subpopulations are largely unknown. Here, we show that the membrane-associated protein supervillin localizes preferentially to successor podosomes and becomes enriched at precursors immediately before their dissolution. Consistently, podosome numbers are inversely correlated with supervillin protein levels. Using deletion constructs, we find that the myosin II regulatory N-terminus of supervillin [SV(1-174)] is crucial for these effects. Phosphorylated myosin light chain (pMLC) localizes at supervillin-positive podosomes, and time-lapse analyses show that enrichment of GFP-supervillin at podosomes coincides with their coupling to contractile myosin-IIA-positive cables. We also show that supervillin binds only to activated myosin IIA, and a dysregulated N-terminal construct [SV(1-830)] enhances pMLC levels at podosomes. Thus, preferential recruitment of supervillin to podosome subpopulations might both require and induce actomyosin contractility. Using siRNA and pharmacological inhibition, we demonstrate that supervillin and myosin IIA cooperate to regulate podosome lifetime, podosomal matrix degradation and cell polarization. In sum, we show here that podosome subpopulations differ in their molecular composition and identify supervillin, in cooperation with myosin IIA, as a crucial factor in the regulation of podosome turnover and function.
Collapse
Affiliation(s)
- Ridhirama Bhuwania
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Liu HP, Yu MC, Jiang MH, Chen JX, Yan DP, Liu F, Ge BX. Association of supervillin with KIR2DL1 regulates the inhibitory signaling of natural killer cells. Cell Signal 2011; 23:487-96. [DOI: 10.1016/j.cellsig.2010.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Revised: 10/25/2010] [Accepted: 11/02/2010] [Indexed: 01/06/2023]
|
21
|
Xiao D, Huang X, Yang S, Longo LD, Zhang L. Pregnancy downregulates actin polymerization and pressure-dependent myogenic tone in ovine uterine arteries. Hypertension 2010; 56:1009-15. [PMID: 20855655 DOI: 10.1161/hypertensionaha.110.159137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pregnancy is associated with significantly decreased uterine vascular tone and increased uterine blood flow. The present study tested the hypothesis that the downregulation of actin polymerization plays a key role in reduced vascular tone of uterine arteries in the pregnant state. Uterine arteries were isolated from nonpregnant and near-term pregnant sheep. Activation of protein kinase C significantly increased the filamentous:globular actin ratio and contractions in the uterine arteries, which were inhibited by an actin polymerization inhibitor cytochalasin B. The basal levels of filamentous:globular actin were significantly higher in nonpregnant uterine arteries than those in near-term pregnant sheep. Prolonged treatment (48 hours) of nonpregnant sheep with 17β-estradiol (0.3 nmol/L) and progesterone (100.0 nmol/L) caused a significant decrease in the filamentous:globular actin. In accordance, the treatment of near-term pregnant sheep for 48 hours with an estrogen antagonist ICI 182 780 (10.0 μmol/L) and progesterone antagonist RU 486 (1.0 μmol/L) significantly increased the levels of filamentous:globular actin. Increased intraluminal pressure from 20 to 100 mm Hg resulted in an initial increase in uterine arterial diameter and vascular wall Ca(2+) concentrations, followed by a decrease in the diameter at a constant steady-state level of Ca(2+). Cytochalasin B blocked pressure-induced myogenic constrictions without effect on vascular wall Ca(2+) levels and eliminated the differences in pressure-dependent myogenic tone between nonpregnant sheep and near-term pregnant sheep. The results indicate a key role of actin polymerization in protein kinase C-induced myogenic contractions and suggest a novel mechanism of sex steroid hormone-mediated downregulation of actin polymerization underlying the decreased myogenic tone of uterine arteries in pregnancy.
Collapse
Affiliation(s)
- Daliao Xiao
- Center for Perinatal Biology, Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | | | |
Collapse
|
22
|
Fang Z, Takizawa N, Wilson KA, Smith TC, Delprato A, Davidson MW, Lambright DG, Luna EJ. The membrane-associated protein, supervillin, accelerates F-actin-dependent rapid integrin recycling and cell motility. Traffic 2010; 11:782-99. [PMID: 20331534 PMCID: PMC2888608 DOI: 10.1111/j.1600-0854.2010.01062.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In migrating cells, the cytoskeleton coordinates signal transduction and redistribution of transmembrane proteins, including integrins and growth factor receptors. Supervillin is an F-actin- and myosin II-binding protein that tightly associates with signaling proteins in cholesterol-rich, 'lipid raft' membrane microdomains. We show here that supervillin also can localize with markers for early and sorting endosomes (EE/SE) and with overexpressed components of the Arf6 recycling pathway in the cell periphery. Supervillin tagged with the photoswitchable fluorescent protein, tdEos, moves both into and away from dynamic structures resembling podosomes at the basal cell surface. Rapid integrin recycling from EE/SE is inhibited in supervillin-knockdown cells, but the rates of integrin endocytosis and recycling from the perinuclear recycling center (PNRC) are unchanged. A lack of synergy between supervillin knockdown and the actin filament barbed-end inhibitor, cytochalasin D, suggests that both treatments affect actin-dependent rapid recycling. Supervillin also enhances signaling from the epidermal growth factor receptor (EGFR) to extracellular signal-regulated kinases (ERKs) 1 and 2 and increases the velocity of cell translocation. These results suggest that supervillin, F-actin and associated proteins coordinate a rapid, basolateral membrane recycling pathway that contributes to ERK signaling and actin-based cell motility.
Collapse
Affiliation(s)
- Zhiyou Fang
- Department of Cell Biology, University of Massachusetts Medical School, Biotech 4, Suite 306, 377 Plantation Street, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Smith TC, Fang Z, Luna EJ. Novel interactors and a role for supervillin in early cytokinesis. Cytoskeleton (Hoboken) 2010; 67:346-64. [PMID: 20309963 PMCID: PMC2901166 DOI: 10.1002/cm.20449] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 03/15/2010] [Indexed: 01/05/2023]
Abstract
Supervillin, the largest member of the villin/gelsolin/flightless family, is a peripheral membrane protein that regulates each step of cell motility, including cell spreading. Most known interactors bind within its amino (N)-terminus. We show here that the supervillin carboxy (C)-terminus can be modeled as supervillin-specific loops extending from gelsolin-like repeats plus a villin-like headpiece. We have identified 27 new candidate interactors from yeast two-hybrid screens. The interacting sequences from 12 of these proteins (BUB1, EPLIN/LIMA1, FLNA, HAX1, KIF14, KIFC3, MIF4GD/SLIP1, ODF2/Cenexin, RHAMM, STARD9/KIF16A, Tks5/SH3PXD2A, TNFAIP1) co-localize with and mis-localize EGFP-supervillin in mammalian cells, suggesting associations in vivo. Supervillin-interacting sequences within BUB1, FLNA, HAX1, and MIF4GD also mimic supervillin over-expression by inhibiting cell spreading. Most new interactors have known roles in supervillin-associated processes, e.g. cell motility, membrane trafficking, ERK signaling, and matrix invasion; three (KIF14, KIFC3, STARD9/KIF16A) have kinesin motor domains; and five (EPLIN, KIF14, BUB1, ODF2/cenexin, RHAMM) are important for cell division. GST fusions of the supervillin G2-G3 or G4-G6 repeats co-sediment KIF14 and EPLIN, respectively, consistent with a direct association. Supervillin depletion leads to increased numbers of bi- and multi-nucleated cells. Cytokinesis failure occurs predominately during early cytokinesis. Supervillin localizes with endogenous myosin II and EPLIN in the cleavage furrow, and overlaps with the oncogenic kinesin, KIF14, at the midbody. We conclude that supervillin, like its interactors, is important for efficient cytokinesis. Our results also suggest that supervillin and its interaction partners coordinate actin and microtubule motor functions throughout the cell cycle.
Collapse
Affiliation(s)
- Tara C. Smith
- Department of Cell Biology and Cell Dynamics Program, University of Massachusetts Medical School, Worcester, MA 01605
| | - Zhiyou Fang
- Department of Cell Biology and Cell Dynamics Program, University of Massachusetts Medical School, Worcester, MA 01605
| | - Elizabeth J. Luna
- Department of Cell Biology and Cell Dynamics Program, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
24
|
Kim HR, Graceffa P, Ferron F, Gallant C, Boczkowska M, Dominguez R, Morgan KG. Actin polymerization in differentiated vascular smooth muscle cells requires vasodilator-stimulated phosphoprotein. Am J Physiol Cell Physiol 2009; 298:C559-71. [PMID: 20018948 DOI: 10.1152/ajpcell.00431.2009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Our group has previously shown that vasoconstrictors increase net actin polymerization in differentiated vascular smooth muscle cells (dVSMC) and that increased actin polymerization is linked to contractility of vascular tissue (Kim et al., Am J Physiol Cell Physiol 295: C768-778, 2008). However, the underlying mechanisms are largely unknown. Here, we evaluated the possible functions of the Ena/vasodilator-stimulated phosphoprotein (VASP) family of actin filament elongation factors in dVSMC. Inhibition of actin filament elongation by cytochalasin D decreases contractility without changing myosin light-chain phosphorylation levels, suggesting that actin filament elongation is necessary for dVSM contraction. VASP is the only Ena/VASP protein highly expressed in aorta tissues, and VASP knockdown decreased smooth muscle contractility. VASP partially colocalizes with alpha-actinin and vinculin in dVSMC. Profilin, known to associate with G actin and VASP, also colocalizes with alpha-actinin and vinculin, potentially identifying the dense bodies and the adhesion plaques as hot spots of actin polymerization. The EVH1 domain of Ena/VASP is known to target these proteins to their sites of action. Introduction of an expressed EVH1 domain as a dominant negative inhibits stimulus-induced increases in actin polymerization. VASP phosphorylation, known to inhibit actin polymerization, is decreased during phenylephrine stimulation in dVSMC. We also directly visualized, for the first time, rhodamine-labeled actin incorporation in dVSMC and identified hot spots of actin polymerization in the cell cortex that colocalize with VASP. These results indicate a role for VASP in actin filament assembly, specifically at the cell cortex, that modulates contractility in dVSMC.
Collapse
Affiliation(s)
- Hak Rim Kim
- Dept. of Health Sciences, Boston Univ., 635 Commonwealth Ave, Boston MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Stretch activates human myometrium via ERK, caldesmon and focal adhesion signaling. PLoS One 2009; 4:e7489. [PMID: 19834610 PMCID: PMC2759504 DOI: 10.1371/journal.pone.0007489] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 09/24/2009] [Indexed: 12/12/2022] Open
Abstract
An incomplete understanding of the molecular mechanisms responsible for myometrial activation from the quiescent pregnant state to the active contractile state during labor has hindered the development of effective therapies for preterm labor. Myometrial stretch has been implicated clinically in the initiation of labor and the etiology of preterm labor, but the molecular mechanisms involved in the human have not been determined. We investigated the mechanisms by which gestation-dependent stretch contributes to myometrial activation, by using human uterine samples from gynecologic hysterectomies and Cesarean sections. Here we demonstrate that the Ca requirement for activation of the contractile filaments in human myometrium increases with caldesmon protein content during gestation and that an increase in caldesmon phosphorylation can reverse this inhibitory effect during labor. By using phosphotyrosine screening and mass spectrometry of stretched human myometrial samples, we identify 3 stretch-activated focal adhesion proteins, FAK, p130Cas, and alpha actinin. FAK-Y397, which signals integrin engagement, is constitutively phosphorylated in term human myometrium whereas FAK-Y925, which signals downstream ERK activation, is phosphorylated during stretch. We have recently identified smooth muscle Archvillin (SmAV) as an ERK regulator. A newly produced SmAV-specific antibody demonstrates gestation-specific increases in SmAV protein levels and stretch-specific increases in SmAV association with focal adhesion proteins. Thus, whereas increases in caldesmon levels suppress human myometrium contractility during pregnancy, stretch-dependent focal adhesion signaling, facilitated by the ERK activator SmAV, can contribute to myometrial activation. These results suggest that focal adhesion proteins may present new targets for drug discovery programs aimed at regulation of uterine contractility.
Collapse
|
26
|
Brown JW, Vardar-Ulu D, McKnight CJ. How to arm a supervillin: designing F-actin binding activity into supervillin headpiece. J Mol Biol 2009; 393:608-18. [PMID: 19683541 DOI: 10.1016/j.jmb.2009.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 07/30/2009] [Accepted: 08/10/2009] [Indexed: 11/16/2022]
Abstract
Villin-type headpiece domains are compact motifs that have been used extensively as model systems for protein folding. Although the majority of headpiece domains bind actin, there are some that lack this activity. Here, we present the first NMR solution structure and (15)N-relaxation analysis of a villin-type headpiece domain natively devoid of F-actin binding activity, that of supervillin headpiece (SVHP). The structure was found to be similar to that of other headpiece domains that bind F-actin. Our NMR analysis demonstrates that SVHP lacks a conformationally flexible region (V-loop) present in all other villin-type headpiece domains and which is essential to the phosphoryl regulation of dematin headpiece. In comparing the electrostatic surface potential map of SVHP to that of other villin-type headpiece domains with significant affinity for F-actin, we identified a positive surface potential conserved among headpiece domains that bind F-actin but absent from SVHP. A single point mutation (L38K) in SVHP, which creates a similar positive surface potential, endowed SVHP with specific affinity for F-actin that is within an order of magnitude of the tightest binding headpiece domains. We propose that this effect is likely conferred by a specific buried salt bridge between headpiece and actin. As no high-resolution structural information exists for the villin-type headpiece F-actin complex, our results demonstrate that through positive mutagenesis, it is possible to design binding activity into homologous proteins without structural information of the counterpart's binding surface.
Collapse
Affiliation(s)
- Jeffrey W Brown
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA 02118, USA
| | | | | |
Collapse
|
27
|
Vetterkind S, Morgan KG. The pro-apoptotic protein Par-4 facilitates vascular contractility by cytoskeletal targeting of ZIPK. J Cell Mol Med 2009; 13:887-95. [PMID: 18505470 PMCID: PMC2700217 DOI: 10.1111/j.1582-4934.2008.00374.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 04/30/2008] [Indexed: 12/26/2022] Open
Abstract
Par-4 (prostate apoptosis response 4) is a pro-apoptotic protein and tumour suppressor that was originally identified as a gene product up-regulated during apoptosis in prostate cancer cells. Here, we show, for the first time, that Par-4 is expressed and co-localizes with the actin filament bundles in vascular smooth muscle. Furthermore, we demonstrate that targeting of ZIPK to the actin filaments, as observed upon PGF-2alpha stimulation, is inhibited by the presence of a cell permeant Par-4 decoy peptide. The same decoy peptide also significantly inhibits PGF-2alpha induced contractions of smooth muscle tissue. Moreover, knockdown of Par-4 using antisense morpholino nucleotides results in significantly reduced contractility, and myosin light chain and myosin phosphatase target subunit phosphorylation. These results indicate that Par-4 facilitates contraction by targeting ZIPK to the vicinity of its substrates, myosin light chain and MYPT, which are located on the actin filaments. These results identify Par-4 as a novel regulator of myosin light chain phosphorylation in differentiated, contractile vascular smooth muscle.
Collapse
Affiliation(s)
- Susanne Vetterkind
- Boston Biomedical Research Institute, Watertown, MA, USA
- Department of Health Sciences, Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, USA
| | - Kathleen G Morgan
- Boston Biomedical Research Institute, Watertown, MA, USA
- Department of Health Sciences, Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, USA
| |
Collapse
|
28
|
Gangopadhyay SS, Kengni E, Appel S, Gallant C, Kim HR, Leavis P, DeGnore J, Morgan KG. Smooth muscle archvillin is an ERK scaffolding protein. J Biol Chem 2009; 284:17607-15. [PMID: 19406750 DOI: 10.1074/jbc.m109.002386] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
ERK influences a number of pathways in all cells, but how ERK activities are segregated between different pathways has not been entirely clear. Using immunoprecipitation and pulldown experiments with domain-specific recombinant fragments, we show that smooth muscle archvillin (SmAV) binds ERK and members of the ERK signaling cascade in a domain-specific, stimulus-dependent, and pathway-specific manner. MEK binds specifically to the first 445 residues of SmAV. B-Raf, an upstream regulator of MEK, constitutively interacts with residues 1-445 and 446-1250. Both ERK and 14-3-3 bind to both fragments, but in a stimulus-specific manner. Phosphorylated ERK is associated only with residues 1-445. An ERK phosphorylation site was determined by mass spectrometry to reside at Ser132. A phospho-antibody raised to this site shows that the site is phosphorylated during alpha-agonist-mediated ERK activation in smooth muscle tissue. Phosphorylation of SmAV by ERK decreases the association of phospho-ERK with SmAV. These results, combined with previous observations, indicate that SmAV serves as a new ERK scaffolding protein and provide a mechanism for regulation of ERK binding, activation, and release from the signaling complex.
Collapse
|
29
|
Kim HR, Appel S, Vetterkind S, Gangopadhyay SS, Morgan KG. Smooth muscle signalling pathways in health and disease. J Cell Mol Med 2009. [PMID: 19120701 DOI: 10.1111/j.1582-4934.2008.00552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Smooth muscle contractile activity is a major regulator of function of the vascular system, respiratory system, gastrointestinal system and the genitourinary systems. Malfunction of contractility in these systems leads to a host of clinical disorders, and yet, we still have major gaps in our understanding of the molecular mechanisms by which contractility of the differentiated smooth muscle cell is regulated. This review will summarize recent advances in the molecular understanding of the regulation of smooth muscle myosin activity via phosphorylation/dephosphorylation of myosin, the regulation of the accessibility of actin to myosin via the actin-binding proteins calponin and caldesmon, and the remodelling of the actin cytoskeleton. Understanding of the molecular 'players' should identify target molecules that could point the way to novel drug discovery programs for the treatment of smooth muscle disorders such as cardiovascular disease, asthma, functional bowel disease and pre-term labour.
Collapse
Affiliation(s)
- H R Kim
- Department of Health Sciences, Boston University, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
30
|
Kreipke CW, Rafols JA. Calponin control of cerebrovascular reactivity: therapeutic implications in brain trauma. J Cell Mol Med 2009; 13:262-9. [PMID: 19278456 PMCID: PMC3823353 DOI: 10.1111/j.1582-4934.2008.00508.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 09/25/2008] [Indexed: 01/04/2023] Open
Abstract
Calponin (Cp) is an actin-binding protein first characterized in chicken gizzard smooth muscle (SM). This review discusses the role of Cp in mediating SM contraction, the biochemical process by which Cp facilitates SM contraction and the function of Cp in the brain. Recent work on the role of Cp in pathological states with emphasis on traumatic brain injury is also discussed. Based on past and present data, the case is presented for targeting Cp for novel genetic and pharmacological therapies aimed at improving outcome following traumatic brain injury (TBI).
Collapse
Affiliation(s)
- Christian W Kreipke
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Jose A Rafols
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, MI, USA
| |
Collapse
|
31
|
Crowley JL, Smith TC, Fang Z, Takizawa N, Luna EJ. Supervillin reorganizes the actin cytoskeleton and increases invadopodial efficiency. Mol Biol Cell 2008; 20:948-62. [PMID: 19109420 DOI: 10.1091/mbc.e08-08-0867] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Tumor cells use actin-rich protrusions called invadopodia to degrade extracellular matrix (ECM) and invade tissues; related structures, termed podosomes, are sites of dynamic ECM interaction. We show here that supervillin (SV), a peripheral membrane protein that binds F-actin and myosin II, reorganizes the actin cytoskeleton and potentiates invadopodial function. Overexpressed SV induces redistribution of lamellipodial cortactin and lamellipodin/RAPH1/PREL1 away from the cell periphery to internal sites and concomitantly increases the numbers of F-actin punctae. Most punctae are highly dynamic and colocalize with the podosome/invadopodial proteins, cortactin, Tks5, and cdc42. Cortactin binds SV sequences in vitro and contributes to the formation of enhanced green fluorescent protein (EGFP)-SV induced punctae. SV localizes to the cores of Src-generated podosomes in COS-7 cells and with invadopodia in MDA-MB-231 cells. EGFP-SV overexpression increases average numbers of ECM holes per cell; RNA interference-mediated knockdown of SV decreases these numbers. Although SV knockdown alone has no effect, simultaneous down-regulation of SV and the closely related protein gelsolin reduces invasion through ECM. Together, our results show that SV is a component of podosomes and invadopodia and that SV plays a role in invadopodial function, perhaps as a mediator of cortactin localization, activation state, and/or dynamics of metalloproteinases at the ventral cell surface.
Collapse
Affiliation(s)
- Jessica L Crowley
- Department of Cell Biology and Cell Dynamics Program, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
32
|
Kim HR, Appel S, Vetterkind S, Gangopadhyay SS, Morgan KG. Smooth muscle signalling pathways in health and disease. J Cell Mol Med 2008; 12:2165-80. [PMID: 19120701 PMCID: PMC2692531 DOI: 10.1111/j.1582-4934.2008.00552.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 10/08/2008] [Indexed: 12/24/2022] Open
Abstract
Smooth muscle contractile activity is a major regulator of function of the vascular system, respiratory system, gastrointestinal system and the genitourinary systems. Malfunction of contractility in these systems leads to a host of clinical disorders, and yet, we still have major gaps in our understanding of the molecular mechanisms by which contractility of the differentiated smooth muscle cell is regulated. This review will summarize recent advances in the molecular understanding of the regulation of smooth muscle myosin activity via phosphorylation/dephosphorylation of myosin, the regulation of the accessibility of actin to myosin via the actin-binding proteins calponin and caldesmon, and the remodelling of the actin cytoskeleton. Understanding of the molecular 'players' should identify target molecules that could point the way to novel drug discovery programs for the treatment of smooth muscle disorders such as cardiovascular disease, asthma, functional bowel disease and pre-term labour.
Collapse
Affiliation(s)
- H R Kim
- Department of Health Sciences, Boston UniversityBoston, MA, USA
| | - S Appel
- Department of Health Sciences, Boston UniversityBoston, MA, USA
| | - S Vetterkind
- Department of Health Sciences, Boston UniversityBoston, MA, USA
| | | | - K G Morgan
- Department of Health Sciences, Boston UniversityBoston, MA, USA
- Boston Biomedical Research InstituteWatertown, MA, USA
| |
Collapse
|
33
|
Gangopadhyay SS, Gallant C, Sundberg EJ, Lane WS, Morgan KG. Regulation of Ca2+/calmodulin kinase II by a small C-terminal domain phosphatase. Biochem J 2008; 412:507-16. [PMID: 18338982 PMCID: PMC2724867 DOI: 10.1042/bj20071582] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We present here the identification and characterization of an SCP3 (small C-terminal domain phosphatase-3) homologue in smooth muscle and show, for the first time, that it dephosphorylates CaMKII [Ca(2+)/CaM (calmodulin)-dependent protein kinase II]. SCP3 is a PP2C (protein phosphatase 2C)-type phosphatase that is primarily expressed in vascular smooth muscle tissues and specifically binds to the association domain of the CaMKIIgamma G-2 variant. The dephosphorylation is site-specific, excluding the Thr(287) associated with Ca(2+)/CaM-independent activation of the kinase. As a result, the autonomous activity of CaMKIIgamma G-2 is not affected by the phosphatase activity of SCP3. SCP3 co-localizes with CaMKIIgamma G-2 on cytoskeletal filaments, but is excluded from the nucleus in differentiated vascular smooth muscle cells. Upon depolarization-induced Ca(2+) influx, CaMKIIgamma G-2 is activated and dissociates from SCP3. Subsequently, CaMKIIgamma G-2 is targeted to cortical adhesion plaques. We show here that SCP3 regulates phosphorylation sites in the catalytic domain, but not those involved in regulation of kinase activation. This selective dephosphorylation by SCP3 creates a constitutively active kinase that can then be differentially regulated by other phosphorylation-dependent regulatory mechanisms.
Collapse
Affiliation(s)
- Samudra S. Gangopadhyay
- Department of Health Sciences, Sargent College, Boston University, 635 Commonwealth Avenue, Boston, MA 02215
- Boston Biomedical Research Institute, 64 Grove Street, Watertown, MA 02472
| | - Cynthia Gallant
- Department of Health Sciences, Sargent College, Boston University, 635 Commonwealth Avenue, Boston, MA 02215
- Boston Biomedical Research Institute, 64 Grove Street, Watertown, MA 02472
| | - Eric J. Sundberg
- Department of Health Sciences, Sargent College, Boston University, 635 Commonwealth Avenue, Boston, MA 02215
| | - William S. Lane
- Microchemistry & Proteomics Analysis Facility, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138
| | - Kathleen G. Morgan
- Department of Health Sciences, Sargent College, Boston University, 635 Commonwealth Avenue, Boston, MA 02215
- Boston Biomedical Research Institute, 64 Grove Street, Watertown, MA 02472
| |
Collapse
|
34
|
Takizawa N, Ikebe R, Ikebe M, Luna EJ. Supervillin slows cell spreading by facilitating myosin II activation at the cell periphery. J Cell Sci 2007; 120:3792-803. [DOI: 10.1242/jcs.008219] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
During cell migration, myosin II modulates adhesion, cell protrusion and actin organization at the leading edge. We show that an F-actin- and membrane-associated scaffolding protein, called supervillin (SV, p205), binds directly to the subfragment 2 domains of nonmuscle myosin IIA and myosin IIB and to the N-terminus of the long form of myosin light chain kinase (L-MLCK). SV inhibits cell spreading via an MLCK- and myosin II-dependent mechanism. Overexpression of SV reduces the rate of cell spreading, and RNAi-mediated knockdown of endogenous SV increases it. Endogenous and EGFP-tagged SV colocalize with, and enhance the formation of, cortical bundles of F-actin and activated myosin II during early cell spreading. The effects of SV are reversed by inhibition of myosin heavy chain (MHC) ATPase (blebbistatin), MLCK (ML-7) or MEK (U0126), but not by inhibiting Rho-kinase with Y-27632. Flag-tagged L-MLCK co-localizes in cortical bundles with EGFP-SV, and kinase-dead L-MLCK disorganizes these bundles. The L-MLCK- and myosin-binding site in SV, SV1-171, rearranges and co-localizes with mono- and di-phosphorylated myosin light chain and with L-MLCK, but not with the short form of MLCK (S-MLCK) or with myosin phosphatase. Thus, the membrane protein SV apparently contributes to myosin II assembly during cell spreading by modulating myosin II regulation by L-MLCK.
Collapse
Affiliation(s)
- Norio Takizawa
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Cell Dynamics Program, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Reiko Ikebe
- Department of Physiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Cell Dynamics Program, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Mitsuo Ikebe
- Department of Physiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Cell Dynamics Program, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Elizabeth J. Luna
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Cell Dynamics Program, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
35
|
Senetar MA, Moncman CL, McCann RO. Talin2 is induced during striated muscle differentiation and is targeted to stable adhesion complexes in mature muscle. CELL MOTILITY AND THE CYTOSKELETON 2007; 64:157-73. [PMID: 17183545 DOI: 10.1002/cm.20173] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The cytoskeletal protein talin serves as an essential link between integrins and the actin cytoskeleton in several similar, but functionally distinct, adhesion complexes, including focal adhesions, costameres, and intercalated disks. Vertebrates contain two talin genes, TLN1 and TLN2, but the different roles of Talin1 and Talin2 in cell adhesion are unclear. In this report we have analyzed Talin1 and Talin2 in striated muscle. Using isoform-specific antibodies, we found that Talin2 is highly expressed in mature striated muscle. Using mouse C2C12 cells and primary human skeletal muscle myoblasts as models of muscle differentiation, we show that Talin1 is expressed in undifferentiated myoblasts and that Talin2 expression is upregulated during muscle differentiation at both the mRNA and protein levels. We have also identified regulatory sequences that may be responsible for the differential expression of Talin1 and Talin2. Using GFP-tagged Talin1 and Talin2 constructs, we found that GFP-Talin1 targets to focal adhesions while GFP-Talin2 targets to abnormally large adhesions in myoblasts. We also found that ectopic expression of Talin2 in myoblasts, which do not contain appreciable levels of Talin2, dysregulates the actin cytoskeleton. Finally we demonstrate that Talin2, but not Talin1, localizes to costameres and intercalated disks, which are stable adhesions required for the assembly of mature striated muscle. Our results suggest that Talin1 is the primary link between integrins and actin in dynamic focal adhesions in undifferentiated, motile cells, but that Talin2 may serve as the link between integrins and the sarcomeric cytoskeletonin stable adhesion complexes in mature striated muscle.
Collapse
Affiliation(s)
- Melissa A Senetar
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0509, USA
| | | | | |
Collapse
|
36
|
Cooper SJ, Trinklein ND, Nguyen L, Myers RM. Serum response factor binding sites differ in three human cell types. Genome Res 2007; 17:136-44. [PMID: 17200232 PMCID: PMC1781345 DOI: 10.1101/gr.5875007] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The serum response factor (SRF) is essential for embryonic development and maintenance of muscle cells and neurons. The mechanism by which this factor controls these divergent pathways is unclear. Here we present a genome-wide view of occupancy of SRF at its binding sites with a focus on those that vary with cell type. We used chromatin immunoprecipitation (ChIP) in combination with human promoter microarrays to identify 216 putative SRF binding sites in the human genome. We performed independent quantitative PCR validation at over half of these sites that resulted in 146 sites we assert to be true binding sites at over 90% confidence. Nearly half of the sites are bound by SRF in only one of the three cell types we tested, providing strong evidence for the diverse roles for SRF in different cell types. We also explore possible mechanisms controlling differential binding of SRF in these cell types by assaying cofactor binding, DNA methylation, histone methylation, and histone acetylation at a subset of sites bound preferentially in smooth muscle cells. Although we did not see a strong correlation between SRF binding and epigenetics modifications, at these sites, we propose that SRF cofactors may play an important role in determining cell-dependent SRF binding sites. ELK4 (previously known as SAP-1 [SRF-associated protein-1]) is ubiquitously expressed. Therefore, we expected it to occupy sites where SRF binding is common in all cell types. Indeed, 90% of SRF sites also bound by ELK4 were common to all three cell types. Together, our data provide a more complete understanding of the regulatory network controlled by SRF.
Collapse
Affiliation(s)
- Sara J. Cooper
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120, USA
| | - Nathan D. Trinklein
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120, USA
| | - Loan Nguyen
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120, USA
| | - Richard M. Myers
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120, USA
- Corresponding author.E-mail ; fax (650) 725-9689
| |
Collapse
|
37
|
Ono S. Mechanism of depolymerization and severing of actin filaments and its significance in cytoskeletal dynamics. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 258:1-82. [PMID: 17338919 DOI: 10.1016/s0074-7696(07)58001-0] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The actin cytoskeleton is one of the major structural components of the cell. It often undergoes rapid reorganization and plays crucial roles in a number of dynamic cellular processes, including cell migration, cytokinesis, membrane trafficking, and morphogenesis. Actin monomers are polymerized into filaments under physiological conditions, but spontaneous depolymerization is too slow to maintain the fast actin filament dynamics observed in vivo. Gelsolin, actin-depolymerizing factor (ADF)/cofilin, and several other actin-severing/depolymerizing proteins can enhance disassembly of actin filaments and promote reorganization of the actin cytoskeleton. This review presents advances as well as a historical overview of studies on the biochemical activities and cellular functions of actin-severing/depolymerizing proteins.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
38
|
Takizawa N, Smith TC, Nebl T, Crowley JL, Palmieri SJ, Lifshitz LM, Ehrhardt AG, Hoffman LM, Beckerle MC, Luna EJ. Supervillin modulation of focal adhesions involving TRIP6/ZRP-1. J Cell Biol 2006; 174:447-58. [PMID: 16880273 PMCID: PMC2064240 DOI: 10.1083/jcb.200512051] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Accepted: 06/25/2006] [Indexed: 01/05/2023] Open
Abstract
Cell-substrate contacts, called focal adhesions (FAs), are dynamic in rapidly moving cells. We show that supervillin (SV)--a peripheral membrane protein that binds myosin II and F-actin in such cells--negatively regulates stress fibers, FAs, and cell-substrate adhesion. The major FA regulatory sequence within SV (SV342-571) binds to the LIM domains of two proteins in the zyxin family, thyroid receptor-interacting protein 6 (TRIP6) and lipoma-preferred partner (LPP), but not to zyxin itself. SV and TRIP6 colocalize within large FAs, where TRIP6 may help recruit SV. RNAi-mediated decreases in either protein increase cell adhesion to fibronectin. TRIP6 partially rescues SV effects on stress fibers and FAs, apparently by mislocating SV away from FAs. Thus, SV interactions with TRIP6 at FAs promote loss of FA structure and function. SV and TRIP6 binding partners suggest several specific mechanisms through which the SV-TRIP6 interaction may regulate FA maturation and/or disassembly.
Collapse
Affiliation(s)
- Norio Takizawa
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Marganski WA, Gangopadhyay SS, Je HD, Gallant C, Morgan KG. Targeting of a novel Ca+2/calmodulin-dependent protein kinase II is essential for extracellular signal-regulated kinase-mediated signaling in differentiated smooth muscle cells. Circ Res 2005; 97:541-9. [PMID: 16109919 DOI: 10.1161/01.res.0000182630.29093.0d] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Subcellular targeting of kinases controls their activation and access to substrates. Although Ca2+/calmodulin-dependent protein kinase II (CaMKII) is known to regulate differentiated smooth muscle cell (dSMC) contractility, the importance of targeting in this regulation is not clear. The present study investigated the function in dSMCs of a novel variant of the gamma isoform of CaMKII that contains a potential targeting sequence in its association domain (CaMKIIgamma G-2). Antisense knockdown of CaMKIIgamma G-2 inhibited extracellular signal-related kinase (ERK) activation, myosin phosphorylation, and contractile force in dSMCs. Confocal colocalization analysis revealed that in unstimulated dSMCs CaMKIIgamma G-2 is bound to a cytoskeletal scaffold consisting of interconnected vimentin intermediate filaments and cytosolic dense bodies. On activation with a depolarizing stimulus, CaMKIIgamma G-2 is released into the cytosol and subsequently targeted to cortical dense plaques. Comparison of phosphorylation and translocation time courses indicates that, after CaMKIIgamma G-2 activation, and before CaMKIIgamma G-2 translocation, vimentin is phosphorylated at a CaMKII-specific site. Differential centrifugation demonstrated that phosphorylation of vimentin in dSMCs is not sufficient to cause its disassembly, in contrast to results in cultured cells. Loading dSMCs with a decoy peptide containing the polyproline sequence within the association domain of CaMKIIgamma G-2 inhibited targeting. Furthermore, prevention of CaMKIIgamma G-2 targeting led to significant inhibition of ERK activation as well as contractility. Thus, for the first time, this study demonstrates the importance of CaMKII targeting in dSMC signaling and identifies a novel targeting function for the association domain in addition to its known role in oligomerization.
Collapse
|
40
|
Gallant C, You JY, Sasaki Y, Grabarek Z, Morgan KG. MARCKS is a major PKC-dependent regulator of calmodulin targeting in smooth muscle. J Cell Sci 2005; 118:3595-605. [PMID: 16046479 DOI: 10.1242/jcs.02493] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Calmodulin (CaM) is a ubiquitous transducer of intracellular Ca(2+) signals and plays a key role in the regulation of the function of all cells. The interaction of CaM with a specific target is determined not only by the Ca(2+)-dependent affinity of calmodulin but also by the proximity to that target in the cellular environment. Although a few reports of stimulus-dependent nuclear targeting of CaM have appeared, the mechanisms by which CaM is targeted to non-nuclear sites are less clear. Here, we investigate the hypothesis that MARCKS is a regulator of the spatial distribution of CaM within the cytoplasm of differentiated smooth-muscle cells. In overlay assays with portal-vein homogenates, CaM binds predominantly to the MARCKS-containing band. MARCKS is abundant in portal-vein smooth muscle ( approximately 16 microM) in comparison to total CaM ( approximately 40 microM). Confocal images indicate that calmodulin and MARCKS co-distribute in unstimulated freshly dissociated smooth-muscle cells and are co-targeted simultaneously to the cell interior upon depolarization. Protein-kinase-C (PKC) activation triggers a translocation of CaM that precedes that of MARCKS and causes multisite, sequential MARCKS phosphorylation. MARCKS immunoprecipitates with CaM in a stimulus-dependent manner. A synthetic MARCKS effector domain (ED) peptide labelled with a photoaffinity probe cross-links CaM in smooth-muscle tissue in a stimulus-dependent manner. Both cross-linking and immunoprecipitation increase with increased Ca(2+) concentration, but decrease with PKC activation. Introduction of a nonphosphorylatable MARCKS decoy peptide blocks the PKC-mediated targeting of CaM. These results indicate that MARCKS is a significant, PKC-releasable reservoir of CaM in differentiated smooth muscle and that it contributes to CaM signalling by modulating the intracellular distribution of CaM.
Collapse
Affiliation(s)
- Cynthia Gallant
- Boston Biomedical Research Institute, 64 Grove Street, Watertown, MA 02472, USA
| | | | | | | | | |
Collapse
|