1
|
Hultmark D, Andó I. Hematopoietic plasticity mapped in Drosophila and other insects. eLife 2022; 11:e78906. [PMID: 35920811 PMCID: PMC9348853 DOI: 10.7554/elife.78906] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/20/2022] [Indexed: 12/12/2022] Open
Abstract
Hemocytes, similar to vertebrate blood cells, play important roles in insect development and immunity, but it is not well understood how they perform their tasks. New technology, in particular single-cell transcriptomic analysis in combination with Drosophila genetics, may now change this picture. This review aims to make sense of recently published data, focusing on Drosophila melanogaster and comparing to data from other drosophilids, the malaria mosquito, Anopheles gambiae, and the silkworm, Bombyx mori. Basically, the new data support the presence of a few major classes of hemocytes: (1) a highly heterogenous and plastic class of professional phagocytes with many functions, called plasmatocytes in Drosophila and granular cells in other insects. (2) A conserved class of cells that control melanin deposition around parasites and wounds, called crystal cells in D. melanogaster, and oenocytoids in other insects. (3) A new class of cells, the primocytes, so far only identified in D. melanogaster. They are related to cells of the so-called posterior signaling center of the larval hematopoietic organ, which controls the hematopoiesis of other hemocytes. (4) Different kinds of specialized cells, like the lamellocytes in D. melanogaster, for the encapsulation of parasites. These cells undergo rapid evolution, and the homology relationships between such cells in different insects are uncertain. Lists of genes expressed in the different hemocyte classes now provide a solid ground for further investigation of function.
Collapse
Affiliation(s)
- Dan Hultmark
- Department of Molecular Biology, Umeå UniversityUmeåSweden
| | - István Andó
- Biological Research Centre, Institute of Genetics, Innate Immunity Group, Eötvös Loránd Research NetworkSzegedHungary
| |
Collapse
|
2
|
Mai Le N, Li J. Ras-related C3 botulinum toxin substrate 1 role in Pathophysiology of Neurological diseases. BRAIN HEMORRHAGES 2022. [DOI: 10.1016/j.hest.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
3
|
Wan B, Belghazi M, Lemauf S, Poirié M, Gatti JL. Proteomics of purified lamellocytes from Drosophila melanogaster HopT um-l identifies new membrane proteins and networks involved in their functions. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 134:103584. [PMID: 34033897 DOI: 10.1016/j.ibmb.2021.103584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
In healthy Drosophila melanogaster larvae, plasmatocytes and crystal cells account for 95% and 5% of the hemocytes, respectively. A third type of hemocytes, lamellocytes, are rare, but their number increases after oviposition by parasitoid wasps. The lamellocytes form successive layers around the parasitoid egg, leading to its encapsulation and melanization, and finally the death of this intruder. However, the total number of lamellocytes per larva remains quite low even after parasitoid infestation, making direct biochemical studies difficult. Here, we used the HopTum-l mutant strain that constitutively produces large numbers of lamellocytes to set up a purification method and analyzed their major proteins by 2D gel electrophoresis and their plasma membrane surface proteins by 1D SDS-PAGE after affinity purification. Mass spectrometry identified 430 proteins from 2D spots and 344 affinity-purified proteins from 1D bands, for a total of 639 unique proteins. Known lamellocyte markers such as PPO3 and the myospheroid integrin were among the components identified with specific chaperone proteins. Affinity purification detected other integrins, as well as a wide range of integrin-associated proteins involved in the formation and function of cell-cell junctions. Overall, the newly identified proteins indicate that these cells are highly adapted to the encapsulation process (recognition, motility, adhesion, signaling), but may also have several other physiological functions (such as secretion and internalization of vesicles) under different signaling pathways. These results provide the basis for further in vivo and in vitro studies of lamellocytes, including the development of new markers to identify coexisting populations and their respective origins and functions in Drosophila immunity.
Collapse
Affiliation(s)
- Bin Wan
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Maya Belghazi
- Institute of NeuroPhysiopathology (INP), UMR7051, CNRS, Aix-Marseille Université, Marseille, 13015, France
| | - Séverine Lemauf
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Marylène Poirié
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Jean-Luc Gatti
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France.
| |
Collapse
|
4
|
Coates JA, Brooks E, Brittle AL, Armitage EL, Zeidler MP, Evans IR. Identification of functionally distinct macrophage subpopulations in Drosophila. eLife 2021; 10:e58686. [PMID: 33885361 PMCID: PMC8062135 DOI: 10.7554/elife.58686] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 03/30/2021] [Indexed: 12/24/2022] Open
Abstract
Vertebrate macrophages are a highly heterogeneous cell population, but while Drosophila blood is dominated by a macrophage-like lineage (plasmatocytes), until very recently these cells were considered to represent a homogeneous population. Here, we present our identification of enhancer elements labelling plasmatocyte subpopulations, which vary in abundance across development. These subpopulations exhibit functional differences compared to the overall population, including more potent injury responses and differential localisation and dynamics in pupae and adults. Our enhancer analysis identified candidate genes regulating plasmatocyte behaviour: pan-plasmatocyte expression of one such gene (Calnexin14D) improves wound responses, causing the overall population to resemble more closely the subpopulation marked by the Calnexin14D-associated enhancer. Finally, we show that exposure to increased levels of apoptotic cell death modulates subpopulation cell numbers. Taken together this demonstrates macrophage heterogeneity in Drosophila, identifies mechanisms involved in subpopulation specification and function and facilitates the use of Drosophila to study macrophage heterogeneity in vivo.
Collapse
Affiliation(s)
- Jonathon Alexis Coates
- Department of Biomedical Science and the Bateson Centre, University of SheffieldSheffieldUnited Kingdom
| | - Elliot Brooks
- Department of Infection, Immunity and Cardiovascular Disease and the Bateson Centre, University of SheffieldSheffieldUnited Kingdom
| | - Amy Louise Brittle
- Department of Infection, Immunity and Cardiovascular Disease and the Bateson Centre, University of SheffieldSheffieldUnited Kingdom
| | - Emma Louise Armitage
- Department of Infection, Immunity and Cardiovascular Disease and the Bateson Centre, University of SheffieldSheffieldUnited Kingdom
| | - Martin Peter Zeidler
- Department of Biomedical Science and the Bateson Centre, University of SheffieldSheffieldUnited Kingdom
| | - Iwan Robert Evans
- Department of Infection, Immunity and Cardiovascular Disease and the Bateson Centre, University of SheffieldSheffieldUnited Kingdom
| |
Collapse
|
5
|
Tardy OR, Armitage EL, Prince LR, Evans IR. The Epidermal Growth Factor Ligand Spitz Modulates Macrophage Efferocytosis, Wound Responses and Migration Dynamics During Drosophila Embryogenesis. Front Cell Dev Biol 2021; 9:636024. [PMID: 33898424 PMCID: PMC8060507 DOI: 10.3389/fcell.2021.636024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/19/2021] [Indexed: 12/31/2022] Open
Abstract
How multifunctional cells such as macrophages interpret the different cues within their environment and undertake an appropriate response is a key question in developmental biology. Understanding how cues are prioritized is critical to answering this - both the clearance of apoptotic cells (efferocytosis) and the migration toward damaged tissue is dependent on macrophages being able to interpret and prioritize multiple chemoattractants, polarize, and then undertake an appropriate migratory response. Here, we investigate the role of Spitz, the cardinal Drosophila epidermal growth factor (EGF) ligand, in regulation of macrophage behavior in the developing fly embryo, using activated variants with differential diffusion properties. Our results show that misexpression of activated Spitz can impact macrophage polarity and lead to clustering of cells in a variant-specific manner, when expressed either in macrophages or the developing fly heart. Spitz can also alter macrophage distribution and perturb apoptotic cell clearance undertaken by these phagocytic cells without affecting the overall levels of apoptosis within the embryo. Expression of active Spitz, but not a membrane-bound variant, can also increase macrophage migration speeds and impair their inflammatory responses to injury. The fact that the presence of Spitz specifically undermines the recruitment of more distal cells to wound sites suggests that Spitz desensitizes macrophages to wounds or is able to compete for their attention where wound signals are weaker. Taken together these results suggest this molecule regulates macrophage migration and their ability to dispose of apoptotic cells. This work identifies a novel regulator of Drosophila macrophage function and provides insights into signal prioritization and integration in vivo. Given the importance of apoptotic cell clearance and inflammation in human disease, this work may help us to understand the role EGF ligands play in immune cell recruitment during development and at sites of disease pathology.
Collapse
Affiliation(s)
- Olivier R. Tardy
- Department of Infection, Immunity and Cardiovascular Disease, The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
| | - Emma L. Armitage
- Department of Infection, Immunity and Cardiovascular Disease, The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
| | - Lynne R. Prince
- Department of Infection, Immunity and Cardiovascular Disease, The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
| | - Iwan R. Evans
- Department of Infection, Immunity and Cardiovascular Disease, The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
6
|
Cattenoz PB, Monticelli S, Pavlidaki A, Giangrande A. Toward a Consensus in the Repertoire of Hemocytes Identified in Drosophila. Front Cell Dev Biol 2021; 9:643712. [PMID: 33748138 PMCID: PMC7969988 DOI: 10.3389/fcell.2021.643712] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/12/2021] [Indexed: 01/16/2023] Open
Abstract
The catalog of the Drosophila immune cells was until recently limited to three major cell types, based on morphology, function and few molecular markers. Three recent single cell studies highlight the presence of several subgroups, revealing a large diversity in the molecular signature of the larval immune cells. Since these studies rely on somewhat different experimental and analytical approaches, we here compare the datasets and identify eight common, robust subgroups associated to distinct functions such as proliferation, immune response, phagocytosis or secretion. Similar comparative analyses with datasets from different stages and tissues disclose the presence of larval immune cells resembling embryonic hemocyte progenitors and the expression of specific properties in larval immune cells associated with peripheral tissues.
Collapse
Affiliation(s)
- Pierre B. Cattenoz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Sara Monticelli
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Alexia Pavlidaki
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Angela Giangrande
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
| |
Collapse
|
7
|
Chen HM, Yao X, Ren Q, Chang CC, Liu LY, Miyares RL, Lee T. Enhanced Golic+: highly effective CRISPR gene targeting and transgene HACKing in Drosophila. Development 2020; 147:dev181974. [PMID: 32467238 DOI: 10.1242/dev.181974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 05/04/2020] [Indexed: 11/20/2022]
Abstract
Gene targeting is an incredibly valuable technique. Sometimes, however, it can also be extremely challenging for various intrinsic reasons (e.g. low target accessibility or nature/extent of gene modification). To bypass these barriers, we designed a transgene-based system in Drosophila that increases the number of independent gene targeting events while at the same time enriching for correctly targeted progeny. Unfortunately, with particularly challenging gene targeting experiments, our original design yielded numerous false positives. Here, we deliver a much-improved technique, named Enhanced Golic+ (E-Golic+). E-Golic+ incorporates genetic modifications to tighten lethality-based selection while simultaneously boosting efficiency. With E-Golic+, we easily achieve previously unattainable gene targeting. Additionally, we built an E-Golic+-based, high-efficiency genetic pipeline for transgene swapping. We demonstrate its utility by transforming GAL4 enhancer-trap lines into tissue-specific Cas9-expressing lines. Given the superior efficiency, specificity and scalability, E-Golic+ promises to expedite development of additional sophisticated genetic/genomic tools in Drosophila.
Collapse
Affiliation(s)
- Hui-Min Chen
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Xiaohao Yao
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Qingzhong Ren
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Chuan-Chie Chang
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Ling-Yu Liu
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Rosa Linda Miyares
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Tzumin Lee
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| |
Collapse
|
8
|
Ahmed S, Kim Y. PGE 2 mediates cytoskeletal rearrangement of hemocytes via Cdc42, a small G protein, to activate actin-remodeling factors in Spodoptera exigua (Lepidoptera: Noctuidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 102:e21607. [PMID: 31338878 DOI: 10.1002/arch.21607] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
Prostaglandin E2 (PGE2 ) mediates cellular immune responses in insects by stimulating hemocyte-spreading behavior that is driven by actin remodeling to form filopodial or lamellipodial cytoplasmic extensions. In Spodoptera exigua (Lepidoptera: Noctuidae), Cdc42, a small G protein, played a crucial role in mediating PGE2 signal on hemocyte-spreading behavior. Hemocyte-spreading behavior requires actin cytoskeletal rearrangement. A plethora of actin-related proteins have been predicted to have functional links with Cdc42. Here, we selected four actin-associated genes (Actin-related protein 2 [Arp2], Profilin, Cofilin, and Fascin) and evaluated their influences on cytoskeletal rearrangement in S. exigua. Bioinformatic analysis confirmed their gene identities. Transcript analysis using reverse-transcription polymerase chain reaction indicated that all four actin-associated genes were expressed in most developmental stages, showing high expression levels in larval hemocytes. RNA interference (RNAi) against these genes was performed by injecting double-stranded RNA (dsRNA) to hemocoel. Under RNAi condition, the hemocyte-spreading behavior was significantly impaired except for dsRNA treatment against Cofilin, an actin-depolymerizing factor. Alteration of cytoskeletal rearrangement appeared to vary after different RNAi treatments. RNAi against Arp2 markedly suppressed lamellipodial extension while RNAi against Profilin or Fascin adversely influenced filopodial extension. RNAi of these actin-associated factors prevented cellular immune responses measured by nodule formation against bacterial challenge. Under RNAi conditions, addition of PGE2 did not well induce hemocyte-spreading behavior, suggesting that these actin-associated factors might act downstream of the hormone signaling pathway. These results suggest that PGE2 can mediate hemocyte-spreading behavior via Cdc42 to activate downstream actin polymerization/branching/bundling factors, thus inducing actin cytoskeletal rearrangement.
Collapse
Affiliation(s)
- Shabbir Ahmed
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, Korea
| | - Yonggyun Kim
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, Korea
| |
Collapse
|
9
|
Hao Y, Yu S, Luo F, Jin LH. Jumu is required for circulating hemocyte differentiation and phagocytosis in Drosophila. Cell Commun Signal 2018; 16:95. [PMID: 30518379 PMCID: PMC6280549 DOI: 10.1186/s12964-018-0305-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/19/2018] [Indexed: 11/15/2022] Open
Abstract
Background The regulatory mechanisms of hematopoiesis and cellular immunity show a high degree of similarity between insects and mammals, and Drosophila has become a good model for investigating cellular immune responses. Jumeau (Jumu) is a member of the winged-helix/forkhead (FKH) transcription factor family and is required for Drosophila development. Adult jumu mutant flies show defective hemocyte phagocytosis and a weaker defense capability against pathogen infection. Here, we further investigated the role of jumu in the regulation of larval hemocyte development and phagocytosis. Methods In vivo phagocytosis assays, immunohistochemistry, Real-time quantitative PCR and immunoblotting were performed to investigate the effect of Jumu on hemocyte phagocytosis. 5-Bromo-2-deoxyUridine (BrdU) labeling, phospho-histone H3 (PH3) and TdT-mediated dUTP Nick-End Labeling (TUNEL) staining were performed to analyze the proliferation and apoptosis of hemocyte; immunohistochemistry and Mosaic analysis with a repressible cell marker (MARCM) clone analysis were performed to investigate the role of Jumu in the activation of Toll pathway. Results Jumu indirectly controls hemocyte phagocytosis by regulating the expression of NimC1 and cytoskeleton reorganization. The loss of jumu also causes abnormal proliferation and differentiation in circulating hemocytes. Our results suggest that a severe deficiency of jumu leads to the generation of enlarged multinucleate hemocytes by affecting the normal cell mitosis process and induces numerous lamellocytes by activating the Toll pathway. Conclusions Jumu regulates circulating hemocyte differentiation and phagocytosis in Drosophila. Our findings provide new insight into the mechanistic roles of cytoskeleton regulatory proteins in phagocytosis and establish a basis for further analyses of the regulatory mechanism of the mammalian ortholog of Jumu in mammalian innate immunity. Electronic supplementary material The online version of this article (10.1186/s12964-018-0305-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yangguang Hao
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, 150040, People's Republic of China.,Department of Translational medicine research center, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Shichao Yu
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, 150040, People's Republic of China
| | - Fangzhou Luo
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, 150040, People's Republic of China
| | - Li Hua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, 150040, People's Republic of China.
| |
Collapse
|
10
|
Wood W, Martin P. Macrophage Functions in Tissue Patterning and Disease: New Insights from the Fly. Dev Cell 2017; 40:221-233. [PMID: 28171746 PMCID: PMC5300050 DOI: 10.1016/j.devcel.2017.01.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/02/2016] [Accepted: 01/04/2017] [Indexed: 12/19/2022]
Abstract
Macrophages are multifunctional innate immune cells that seed all tissues within the body and play disparate roles throughout development and in adult tissues, both in health and disease. Their complex developmental origins and many of their functions are being deciphered in mammalian tissues, but opportunities for live imaging and the genetic tractability of Drosophila are offering complementary insights into how these fascinating cells integrate a multitude of guidance cues to fulfill their many tasks and migrate to distant sites to either direct developmental patterning or raise an inflammatory response.
Collapse
Affiliation(s)
- Will Wood
- Department of Cellular and Molecular Medicine, Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| | - Paul Martin
- Departments of Biochemistry and Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK; School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Lee Kong Chiang School of Medicine, Nanyang Technological University, Singapore 636921, Singapore.
| |
Collapse
|
11
|
An evolutionary conserved interaction between the Gcm transcription factor and the SF1 nuclear receptor in the female reproductive system. Sci Rep 2016; 6:37792. [PMID: 27886257 PMCID: PMC5122895 DOI: 10.1038/srep37792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/01/2016] [Indexed: 01/08/2023] Open
Abstract
NR5A1 is essential for the development and for the function of steroid producing glands of the reproductive system. Moreover, its misregulation is associated with endometriosis, which is the first cause of infertility in women. Hr39, the Drosophila ortholog of NR5A1, is expressed and required in the secretory cells of the spermatheca, the female exocrine gland that ensures fertility by secreting substances that attract and capacitate the spermatozoids. We here identify a direct regulator of Hr39 in the spermatheca: the Gcm transcription factor. Furthermore, lack of Gcm prevents the production of the secretory cells and leads to female sterility in Drosophila. Hr39 regulation by Gcm seems conserved in mammals and involves the modification of the DNA methylation profile of mNr5a1. This study identifies a new molecular pathway in female reproductive system development and suggests a role for hGCM in the progression of reproductive tract diseases in humans.
Collapse
|
12
|
Charafeddine RA, Nosanchuk JD, Sharp DJ. Targeting Microtubules for Wound Repair. Adv Wound Care (New Rochelle) 2016; 5:444-454. [PMID: 27785378 DOI: 10.1089/wound.2015.0658] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/08/2015] [Indexed: 12/16/2022] Open
Abstract
Significance: Fast and seamless healing is essential for both deep and chronic wounds to restore the skin and protect the body from harmful pathogens. Thus, finding new targets that can both expedite and enhance the repair process without altering the upstream signaling milieu and causing serious side effects can improve the way we treat wounds. Since cell migration is key during the different stages of wound healing, it presents an ideal process and intracellular structural machineries to target. Recent Advances and Critical Issues: The microtubule (MT) cytoskeleton is rising as an important structural and functional regulator of wound healing. MTs have been reported to play different roles in the migration of the various cell types involved in wound healing. Specific microtubule regulatory proteins (MRPs) can be targeted to alter a section or subtype of the MT cytoskeleton and boost or hinder cell motility. However, inhibiting intracellular components can be challenging in vivo, especially using unstable molecules, such as small interfering RNA. Nanoparticles can be used to protect these unstable molecules and topically deliver them to the wound. Utilizing this approach, we recently showed that fidgetin-like 2, an uncharacterized MRP, can be targeted to enhance cell migration and wound healing. Future Directions: To harness the full potential of the current MRP therapeutic targets, studies should test them with different delivery platforms, dosages, and skin models. Screening for new MT effectors that boost cell migration in vivo would also help find new targets for skin repair.
Collapse
Affiliation(s)
- Rabab A. Charafeddine
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York
| | - Joshua D. Nosanchuk
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - David J. Sharp
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
13
|
Cattenoz PB, Giangrande A. Revisiting the role of the Gcm transcription factor, from master regulator to Swiss army knife. Fly (Austin) 2016; 10:210-8. [PMID: 27434165 DOI: 10.1080/19336934.2016.1212793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Master genes are known to induce the differentiation of a multipotent cell into a specific cell type. These molecules are often transcription factors that switch on the regulatory cascade that triggers cell specification. Gcm was first described as the master gene of the glial fate in Drosophila as it induces the differentiation of neuroblasts into glia in the developing nervous system. Later on, Gcm was also shown to regulate the differentiation of blood, tendon and peritracheal cells as well as that of neuronal subsets. Thus, the glial master gene is used in at least 4 additional systems to promote differentiation. To understand the numerous roles of Gcm, we recently reported a genome-wide screen of Gcm direct targets in the Drosophila embryo. This screen provided new insight into the role and mode of action of this powerful transcription factor, notably on the interactions between Gcm and major differentiation pathways such as the Hedgehog, Notch and JAK/STAT. Here, we discuss the mode of action of Gcm in the different systems, we present new tissues that require Gcm and we revise the concept of 'master gene'.
Collapse
Affiliation(s)
- Pierre B Cattenoz
- a Department of Functional Genomics and Cancer , Institut de Génétique et de Biologie Moléculaire et Cellulaire , Illkirch , France
| | - Angela Giangrande
- a Department of Functional Genomics and Cancer , Institut de Génétique et de Biologie Moléculaire et Cellulaire , Illkirch , France
| |
Collapse
|
14
|
Parsons B, Foley E. Cellular immune defenses of Drosophila melanogaster. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:95-101. [PMID: 26748247 DOI: 10.1016/j.dci.2015.12.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 06/05/2023]
Abstract
Drosophila melanogaster is a widely used model for the characterization of blood cell development and function, with an array of protocols for the manipulation and visualization of fixed or live cells in vitro or in vivo. Researchers have deployed these techniques to reveal Drosophila hemocytes as a remarkably versatile cell type that engulfs apoptotic corpses; neutralizes invading parasites; seals epithelial wounds; and deposits extracellular matrix proteins. In this review, we will discuss the key features of Drosophila hemocyte development and function, and identify similarities with vertebrate counterparts.
Collapse
Affiliation(s)
- Brendon Parsons
- 1B3.14, 8440-112 Street, Walter Mackenzie Health Sciences Centre, University of Alberta, Edmonton, AB, T6G 2J2, Canada
| | - Edan Foley
- University of Alberta, Department of Medical Microbiology and Immunology, Canada.
| |
Collapse
|
15
|
The Drosophila histone demethylase dKDM5/LID regulates hematopoietic development. Dev Biol 2015; 405:260-8. [DOI: 10.1016/j.ydbio.2015.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 06/12/2015] [Accepted: 07/12/2015] [Indexed: 01/08/2023]
|
16
|
Peng T, Wang WN, Gu MM, Xie CY, Xiao YC, Liu Y, Wang L. Essential roles of Cdc42 and MAPK in cadmium-induced apoptosis in Litopenaeus vannamei. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 163:89-96. [PMID: 25863597 DOI: 10.1016/j.aquatox.2015.03.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/28/2015] [Accepted: 03/30/2015] [Indexed: 06/04/2023]
Abstract
Cadmium, one of the most toxic heavy metals in aquatic environments, has severe effects on marine invertebrates and fishes. The MAPK signaling pathway plays a vital role in stress responses of animals. The mitogen-activated protein kinase (MAPK) signaling pathway plays a vital role in animals' stress responses, including mediation of apoptosis induced by the Rho GTPase Cdc42. However, there is limited knowledge about its function in shrimps, although disorders exacerbated by environmental stresses (including heavy metal pollution) have caused serious mortality in commercially cultured shrimps. Thus, we probed roles of Cdc42 in Litopenaeus vannamei shrimps (LvCdc42) during cadmium exposure by inhibiting its expression using dsRNA-mediated RNA interference. The treatment successfully reduced expression levels of MAPKs (including p38, JNK, and ERK). Cadmium exposure induced significant increases in expression levels of LvCdc42 and MAPKs, accompanied by reductions in total hemocyte counts (THC) and increases in apoptotic hemocyte ratios and ROS production. However, all of these responses were much weaker in LvCdc42-suppressed shrimps, in which mortality rates were higher than in controls. Our results suggest that the MAPK pathway plays a vital role in shrimps' responses to Cd(2+). They also indicate that LvCdc42 in shrimps participates in its regulation, and thus plays key roles in ROS production, regulation of apoptosis and associated stress responses.
Collapse
Affiliation(s)
- Ting Peng
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Wei-Na Wang
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China.
| | - Mei-Mei Gu
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Chen-Ying Xie
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Yu-Chao Xiao
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Yuan Liu
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Lei Wang
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| |
Collapse
|
17
|
Vlisidou I, Wood W. Drosophila blood cells and their role in immune responses. FEBS J 2015; 282:1368-82. [PMID: 25688716 DOI: 10.1111/febs.13235] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/02/2015] [Accepted: 02/12/2015] [Indexed: 12/17/2022]
Abstract
Drosophila melanogaster has been extensively used to study the humoral arm of innate immunity because of the developmental and functional parallels with mammalian innate immunity. However, the fly cellular response to infection is far less understood. Investigative work on Drosophila haemocytes, the immunosurveillance cells of the insect, has revealed that they fulfil roles similar to mammalian monocytes and macrophages. They respond to wound signals and orchestrate the coagulation response. In addition, they phagocytose and encapsulate invading pathogens, and clear up apoptotic bodies controlling inflammation. This review briefly describes the Drosophila haematopoietic system and discusses what is currently known about the contribution of haemocytes to the immune response upon infection and wounding, during all stages of development.
Collapse
Affiliation(s)
- Isabella Vlisidou
- School of Cellular and Molecular Medicine, University of Bristol, UK
| | | |
Collapse
|
18
|
Gold KS, Brückner K. Drosophila as a model for the two myeloid blood cell systems in vertebrates. Exp Hematol 2014; 42:717-27. [PMID: 24946019 PMCID: PMC5013032 DOI: 10.1016/j.exphem.2014.06.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/14/2014] [Accepted: 06/05/2014] [Indexed: 12/23/2022]
Abstract
Fish, mice, and humans rely on two coexisting myeloid blood cell systems. One is sustained by hematopoietic progenitor cells, which reside in specialized microenvironments (niches) in hematopoietic organs and give rise to cells of the monocyte lineage. The other system corresponds to the independent lineage of self-renewing tissue macrophages, which colonize organs during embryonic development and are maintained during later life by proliferation in local tissue microenvironments. However, little is known about the nature of these microenvironments and their regulation. Moreover, many vertebrate tissues contain a mix of both tissue-resident and monocyte-derived macrophages, posing a challenge to the study of lineage-specific regulatory mechanisms and function. This review highlights how research in the simple model organism Drosophila melanogaster can address many of these outstanding questions in the field. Drawing parallels between hematopoiesis in Drosophila and vertebrates, we illustrate the evolutionary conservation of the two myeloid systems across animal phyla. Much like vertebrates, Drosophila possesses a lineage of self-renewing tissue-resident macrophages, which we refer to as tissue hemocytes, as well as a "definitive" lineage of macrophages that derive from hematopoiesis in the progenitor-based lymph gland. We summarize key findings from Drosophila hematopoiesis that illustrate how local microenvironments, systemic signals, immune challenges, and nervous inputs regulate adaptive responses of tissue-resident macrophages and progenitor-based hematopoiesis to maximize fitness of the animal.
Collapse
Affiliation(s)
| | - Katja Brückner
- Department of Cell and Tissue Biology; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
19
|
Abstract
Integrin-mediated adhesion used by Drosophila blood cells to migrate in vivo. SCAR/WAVE is required for lamellipodia but also for clearance of apoptotic cells. The formins Fhos and Diaphanous regulate Drosophila macrophage migration and morphology. Calcium waves drive hydrogen peroxide production to regulate inflammatory migrations. The steroid hormone Ecdysone controls the onset of immune competence.
Drosophila melanogaster contains a population of blood cells called hemocytes that represent the functional equivalent of vertebrate macrophages. These cells undergo directed migrations to disperse during development and reach sites of tissue damage or altered self. These chemotactic behaviors are controlled by the expression of PDGF/Vegf-related ligands in developing embryos and local production of hydrogen peroxide at wounds. Recent work reveals that many molecules important in vertebrate cell motility, including integrins, formins, Ena/VASP proteins and the SCAR/WAVE complex, have a conserved function in these innate immune cells. The use of this model organism has elucidated how damage signals are activated by calcium signaling during inflammation and that the steroid hormone ecdysone activates immune competence at key developmental stages.
Collapse
Affiliation(s)
- Iwan Robert Evans
- Department of Infection and Immunity, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; The Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Will Wood
- Faculty of Medical and Veterinary Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|
20
|
Eom S, Park Y, Kim Y. Sequential immunosuppressive activities of bacterial secondary metabolites from the entomopahogenic bacterium Xenorhabdus nematophila. J Microbiol 2014; 52:161-8. [DOI: 10.1007/s12275-014-3251-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/19/2013] [Accepted: 08/23/2013] [Indexed: 01/29/2023]
|
21
|
Wang L, Kounatidis I, Ligoxygakis P. Drosophila as a model to study the role of blood cells in inflammation, innate immunity and cancer. Front Cell Infect Microbiol 2014; 3:113. [PMID: 24409421 PMCID: PMC3885817 DOI: 10.3389/fcimb.2013.00113] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/21/2013] [Indexed: 01/07/2023] Open
Abstract
Drosophila has a primitive yet effective blood system with three types of haemocytes which function throughout different developmental stages and environmental stimuli. Haemocytes play essential roles in tissue modeling during embryogenesis and morphogenesis, and also in innate immunity. The open circulatory system of Drosophila makes haemocytes ideal signal mediators to cells and tissues in response to events such as infection and wounding. The application of recently developed and sophisticated genetic tools to the relatively simple genome of Drosophila has made the fly a popular system for modeling human tumorigensis and metastasis. Drosophila is now used for screening and investigation of genes implicated in human leukemia and also in modeling development of solid tumors. This second line of research offers promising opportunities to determine the seemingly conflicting roles of blood cells in tumor progression and invasion. This review provides an overview of the signaling pathways conserved in Drosophila during haematopoiesis, haemostasis, innate immunity, wound healing and inflammation. We also review the most recent progress in the use of Drosophila as a cancer research model with an emphasis on the roles haemocytes can play in various cancer models and in the links between inflammation and cancer.
Collapse
Affiliation(s)
- Lihui Wang
- Laboratory of Genes and Development, Department of Biochemistry, University of Oxford Oxford, UK
| | - Ilias Kounatidis
- Laboratory of Genes and Development, Department of Biochemistry, University of Oxford Oxford, UK
| | - Petros Ligoxygakis
- Laboratory of Genes and Development, Department of Biochemistry, University of Oxford Oxford, UK
| |
Collapse
|
22
|
Abstract
Drosophila hemocytes compose the cellular arm of the fly's innate immune system. Plasmatocytes, putative homologues to mammalian macrophages, represent ∼95% of the migratory hemocyte population in circulation and are responsible for the phagocytosis of bacteria and apoptotic tissues that arise during metamorphosis. It is not known as to how hemocytes become activated from a sessile state in response to such infectious and developmental cues, although the hormone ecdysone has been suggested as the signal that shifts hemocyte behaviour from quiescent to migratory at metamorphosis. Here, we corroborate this hypothesis by showing the activation of hemocyte motility by ecdysone. We induce motile behaviour in larval hemocytes by culturing them with 20-hydroxyecdysone ex vivo. Moreover, we also determine that motile cell behaviour requires the ecdysone receptor complex and leads to asymmetrical redistribution of both actin and tubulin cytoskeleton.
Collapse
|
23
|
Bausek N, Zeidler MP. Gα73B is a downstream effector of JAK/STAT signalling and a regulator of Rho1 in Drosophila haematopoiesis. J Cell Sci 2013; 127:101-10. [PMID: 24163435 DOI: 10.1242/jcs.132852] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
JAK/STAT signalling regulates many essential developmental processes including cell proliferation and haematopoiesis, whereas its inappropriate activation is associated with the majority of myeloproliferative neoplasias and numerous cancers. Furthermore, high levels of JAK/STAT pathway signalling have also been associated with enhanced metastatic invasion by cancerous cells. Strikingly, gain-of-function mutations in the single Drosophila JAK homologue, Hopscotch, result in haemocyte neoplasia, inappropriate differentiation and the formation of melanised haemocyte-derived 'tumour' masses; phenotypes that are partly orthologous to human gain-of-function JAK2-associated pathologies. Here we show that Gα73B, a novel JAK/STAT pathway target gene, is necessary for JAK/STAT-mediated tumour formation in flies. In addition, although Gα73B does not affect haemocyte differentiation, it does regulate haemocyte morphology and motility under non-pathological conditions. We show that Gα73B is required for constitutive, but not injury-induced, activation of Rho1 and for the localisation of Rho1 into filopodia upon haemocyte activation. Consistent with these results, we also show that Rho1 interacts genetically with JAK/STAT signalling, and that wild-type levels of Rho1 are necessary for tumour formation. Our findings link JAK/STAT transcriptional outputs, Gα73B activity and Rho1-dependent cytoskeletal rearrangements and cell motility, therefore connecting a pathway associated with cancer with a marker indicative of invasiveness. As such, we suggest a mechanism by which JAK/STAT pathway signalling may promote metastasis.
Collapse
Affiliation(s)
- Nina Bausek
- MRC Centre for Development and Biomedical Genetics, and The Department of Biomedical Science, The University of Sheffield, Sheffield S10 2TN, UK
| | | |
Collapse
|
24
|
Parsons B, Foley E. The Drosophila platelet-derived growth factor and vascular endothelial growth factor-receptor related (Pvr) protein ligands Pvf2 and Pvf3 control hemocyte viability and invasive migration. J Biol Chem 2013; 288:20173-83. [PMID: 23737520 DOI: 10.1074/jbc.m113.483818] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) family members are essential and evolutionary conserved determinants of blood cell development and dispersal. In addition, VEGFs are integral to vascular growth and permeability with detrimental contributions to ischemic diseases and metastatic cancers. The PDGF/VEGF-receptor related (Pvr) protein is implicated in the migration and trophic maintenance of macrophage-like hemocytes in Drosophila melanogaster embryos. pvr mutants have a depleted hemocyte population and a breakdown in hemocyte distribution. Previous studies suggested redundant functions for the Pvr ligands, Pvf2 and Pvf3 in the regulation of hemocyte migration, proliferation, and size. However, the precise roles that Pvf2 and Pvf3 play in hematopoiesis remain unclear due to the lack of available mutants. To determine Pvf2 and Pvf3 functions in vivo, we generated a genomic deletion that simultaneously disrupts Pvf2 and Pvf3. From our studies, we identified contributions of Pvf2 and Pvf3 to the Pvr trophic maintenance of hemocytes. Furthermore, we uncovered a novel role for Pvfs in invasive migrations. We showed that Pvf2 and Pvf3 are not required for the directed migration of hemocytes, but act locally in epithelial cells to coordinate trans-epithelial migration of hemocytes. Our findings redefine Pvf roles in hemocyte migration and highlight novel Pvf roles in hemocyte invasive migration. These new parallels between the Pvr and PDGF/VEGF pathways extend the utility of the Drosophila embryonic system to dissect physiological and pathological roles of PDGF/VEGF-like growth factors.
Collapse
Affiliation(s)
- Brendon Parsons
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | |
Collapse
|
25
|
Takashima S, Paul M, Aghajanian P, Younossi-Hartenstein A, Hartenstein V. Migration of Drosophila intestinal stem cells across organ boundaries. Development 2013; 140:1903-11. [PMID: 23571215 DOI: 10.1242/dev.082933] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
All components of the Drosophila intestinal tract, including the endodermal midgut and ectodermal hindgut/Malpighian tubules, maintain populations of dividing stem cells. In the midgut and hindgut, these stem cells originate from within larger populations of intestinal progenitors that proliferate during the larval stage and form the adult intestine during metamorphosis. The origin of stem cells found in the excretory Malpighian tubules ('renal stem cells') has not been established. In this paper, we investigate the migration patterns of intestinal progenitors that take place during metamorphosis. Our data demonstrate that a subset of adult midgut progenitors (AMPs) move posteriorly to form the adult ureters and, consecutively, the renal stem cells. Inhibiting cell migration by AMP-directed expression of a dominant-negative form of Rac1 protein results in the absence of stem cells in the Malpighian tubules. As the majority of the hindgut progenitor cells migrate posteriorly and differentiate into hindgut enterocytes, a group of the progenitor cells, unexpectedly, invades anteriorly into the midgut territory. Consequently, these progenitor cells differentiate into midgut enterocytes. The midgut determinant GATAe is required for the differentiation of midgut enterocytes derived from hindgut progenitors. Wingless signaling acts to balance the proportion of hindgut progenitors that differentiate as midgut versus hindgut enterocytes. Our findings indicate that a stable boundary between midgut and hindgut/Malpighian tubules is not established during early embryonic development; instead, pluripotent progenitor populations cross in between these organs in both directions, and are able to adopt the fate of the organ in which they come to reside.
Collapse
Affiliation(s)
- Shigeo Takashima
- Department of Molecular Cell and Developmental Biology, University of California-Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
26
|
Integrative approach reveals composition of endoparasitoid wasp venoms. PLoS One 2013; 8:e64125. [PMID: 23717546 PMCID: PMC3662768 DOI: 10.1371/journal.pone.0064125] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/10/2013] [Indexed: 11/24/2022] Open
Abstract
The fruit fly Drosophila melanogaster and its endoparasitoid wasps are a developing model system for interactions between host immune responses and parasite virulence mechanisms. In this system, wasps use diverse venom cocktails to suppress the conserved fly cellular encapsulation response. Although numerous genetic tools allow detailed characterization of fly immune genes, lack of wasp genomic information has hindered characterization of the parasite side of the interaction. Here, we use high-throughput nucleic acid and amino acid sequencing methods to describe the venoms of two related Drosophila endoparasitoids with distinct infection strategies, Leptopilina boulardi and L. heterotoma. Using RNA-seq, we assembled and quantified libraries of transcript sequences from female wasp abdomens. Next, we used mass spectrometry to sequence peptides derived from dissected venom gland lumens. We then mapped the peptide spectral data against the abdomen transcriptomes to identify a set of putative venom genes for each wasp species. Our approach captured the three venom genes previously characterized in L. boulardi by traditional cDNA cloning methods as well as numerous new venom genes that were subsequently validated by a combination of RT-PCR, blast comparisons, and secretion signal sequence search. Overall, 129 proteins were found to comprise L. boulardi venom and 176 proteins were found to comprise L. heterotoma venom. We found significant overlap in L. boulardi and L. heterotoma venom composition but also distinct differences that may underlie their unique infection strategies. Our joint transcriptomic-proteomic approach for endoparasitoid wasp venoms is generally applicable to identification of functional protein subsets from any non-genome sequenced organism.
Collapse
|
27
|
Popkova A, Bernardoni R, Diebold C, Van de Bor V, Schuettengruber B, González I, Busturia A, Cavalli G, Giangrande A. Polycomb controls gliogenesis by regulating the transient expression of the Gcm/Glide fate determinant. PLoS Genet 2012; 8:e1003159. [PMID: 23300465 PMCID: PMC3531469 DOI: 10.1371/journal.pgen.1003159] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 10/26/2012] [Indexed: 11/19/2022] Open
Abstract
The Gcm/Glide transcription factor is transiently expressed and required in the Drosophila nervous system. Threshold Gcm/Glide levels control the glial versus neuronal fate choice, and its perdurance triggers excessive gliogenesis, showing that its tight and dynamic regulation ensures the proper balance between neurons and glia. Here, we present a genetic screen for potential gcm/glide interactors and identify genes encoding chromatin factors of the Trithorax and of the Polycomb groups. These proteins maintain the heritable epigenetic state, among others, of HOX genes throughout development, but their regulatory role on transiently expressed genes remains elusive. Here we show that Polycomb negatively affects Gcm/Glide autoregulation, a positive feedback loop that allows timely accumulation of Gcm/Glide threshold levels. Such temporal fine-tuning of gene expression tightly controls gliogenesis. This work performed at the levels of individual cells reveals an undescribed mode of Polycomb action in the modulation of transiently expressed fate determinants and hence in the acquisition of specific cell identity in the nervous system.
Collapse
Affiliation(s)
- Anna Popkova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UDS, Illkirch, France
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Boulanger A, Farge M, Ramanoudjame C, Wharton K, Dura JM. Drosophila motor neuron retraction during metamorphosis is mediated by inputs from TGF-β/BMP signaling and orphan nuclear receptors. PLoS One 2012; 7:e40255. [PMID: 22792255 PMCID: PMC3390346 DOI: 10.1371/journal.pone.0040255] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 06/04/2012] [Indexed: 11/19/2022] Open
Abstract
Larval motor neurons remodel during Drosophila neuro-muscular junction dismantling at metamorphosis. In this study, we describe the motor neuron retraction as opposed to degeneration based on the early disappearance of β-Spectrin and the continuing presence of Tubulin. By blocking cell dynamics with a dominant-negative form of Dynamin, we show that phagocytes have a key role in this process. Importantly, we show the presence of peripheral glial cells close to the neuro-muscular junction that retracts before the motor neuron. We show also that in muscle, expression of EcR-B1 encoding the steroid hormone receptor required for postsynaptic dismantling, is under the control of the ftz-f1/Hr39 orphan nuclear receptor pathway but not the TGF-β signaling pathway. In the motor neuron, activation of EcR-B1 expression by the two parallel pathways (TGF-β signaling and nuclear receptor) triggers axon retraction. We propose that a signal from a TGF-β family ligand is produced by the dismantling muscle (postsynapse compartment) and received by the motor neuron (presynaptic compartment) resulting in motor neuron retraction. The requirement of the two pathways in the motor neuron provides a molecular explanation for the instructive role of the postsynapse degradation on motor neuron retraction. This mechanism insures the temporality of the two processes and prevents motor neuron pruning before postsynaptic degradation.
Collapse
Affiliation(s)
- Ana Boulanger
- Neurogenetics and Memory, Department of Genetics and Development, Institute of Human Genetics, CNRS UPR1142, Montpellier, France
- * E-mail: (AB); (JMD)
| | - Morgane Farge
- Neurogenetics and Memory, Department of Genetics and Development, Institute of Human Genetics, CNRS UPR1142, Montpellier, France
| | - Christophe Ramanoudjame
- Neurogenetics and Memory, Department of Genetics and Development, Institute of Human Genetics, CNRS UPR1142, Montpellier, France
| | - Kristi Wharton
- Neurogenetics and Memory, Department of Genetics and Development, Institute of Human Genetics, CNRS UPR1142, Montpellier, France
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Jean-Maurice Dura
- Neurogenetics and Memory, Department of Genetics and Development, Institute of Human Genetics, CNRS UPR1142, Montpellier, France
- * E-mail: (AB); (JMD)
| |
Collapse
|
29
|
Kelsey EM, Luo X, Brückner K, Jasper H. Schnurri regulates hemocyte function to promote tissue recovery after DNA damage. J Cell Sci 2012; 125:1393-400. [PMID: 22275438 DOI: 10.1242/jcs.095323] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissue recovery after injury requires coordinated regulation of cell repair and apoptosis, removal of dead cells and regeneration. A critical step in this process is the recruitment of blood cells that mediate local inflammatory and immune responses, promoting tissue recovery. Here we identify a new role for the transcriptional regulator Schnurri (Shn) in the recovery of UV-damaged Drosophila retina. Using an experimental paradigm that allows precise quantification of tissue recovery after a defined dose of UV, we find that Shn activity in the retina is required to limit tissue damage. This function of Shn relies on its transcriptional induction of the PDGF-related growth factor Pvf1, which signals to tissue-associated hemocytes. We show that the Pvf1 receptor PVR acts in hemocytes to induce a macrophage-like morphology and that this is required to limit tissue loss after irradiation. Our results identify a new Shn-regulated paracrine signaling interaction between damaged retinal cells and hemocytes that ensures recovery and homeostasis of the challenged tissue.
Collapse
Affiliation(s)
- Ellen Miriam Kelsey
- Department of Biomedical Genetics, University of Rochester Medical Center, Box 633, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
30
|
Sampson CJ, Williams MJ. Real-time analysis of Drosophila post-embryonic haemocyte behaviour. PLoS One 2012; 7:e28783. [PMID: 22242151 PMCID: PMC3252279 DOI: 10.1371/journal.pone.0028783] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 11/15/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The larval stage of the model organism Drosophila is frequently used to study host-pathogen interactions. During embryogenesis the cellular arm of the immune response, consisting of macrophage-like cells known as plasmatocytes, is extremely motile and functions to phagocytise pathogens and apoptotic bodies, as well as produce extracellular matrix. The cellular branch of the larval (post-embryonic) innate immune system consists of three cell types--plasmatocytes, crystal cells and lamellocytes--which are involved in the phagocytosis, encapsulation and melanisation of invading pathogens. Post-embryonic haemocyte motility is poorly understood thus further characterisation is required, for the purpose of standardisation. METHODOLOGY In order to examine post-embryonic haemocyte cytoskeletal dynamics or migration, the most commonly used system is in vitro cell lines. The current study employs an ex vivo system (an adaptation of in vitro cell incubation using primary cells), in which primary larval or pre-pupal haemocytes are isolated for short term analysis, in order to discover various aspects of their behaviour during events requiring cytoskeleton dynamics. SIGNIFICANCE The ex vivo method allows for real-time analysis and manipulation of primary post-embryonic haemocytes. This technique was used to characterise, and potentially standardised, larval and pre-pupal haemocyte cytoskeleton dynamics, assayed on different extracellular matrices. Using this method it was determined that, while larval haemocytes are unable to migrate, haemocytes recovered from pre-pupae are capable of migration.
Collapse
Affiliation(s)
- Christopher J. Sampson
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Michael J. Williams
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
31
|
Elucidating the in vivo targets of photorhabdus toxins in real-time using Drosophila embryos. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 710:49-57. [PMID: 22127885 DOI: 10.1007/978-1-4419-5638-5_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The outcome of any bacterial infection, whether it is clearance of the infecting pathogen, establishment of a persistent infection, or even death of the host, is as dependent on the host as on the pathogen (Finlay and Falkow 1989). To infect a susceptible host bacterial pathogens express virulence factors, which alter host cell physiology and allow the pathogen to establish a nutrient-rich niche for growth and avoid clearance by the host immune response. However survival within the host often results in tissue damage, which to some cases accounts for the disease-specific pathology. For many bacterial pathogens the principal determinants of virulence and elicitors of host tissue damage are soluble exotoxins, which allow bacteria to penetrate into deeper tissue or pass through a host epithelial or endothelial barrier. Therefore, exploring the complex interplay between host tissue and bacterial toxins can help us to understand infectious disease and define the contributions of the host immune system to bacterial virulence. In this chapter, we describe a new model, the Drosophila embryo, for addressing a fundamental issue in bacterial pathogenesis, the elucidation of the in vivo targets of bacterial toxins and the monitoring of the first moments of the infection process in real-time. To develop this model, we used the insect and emerging human pathogen Photorhabdus asymbiotica and more specifically we characterised the initial cross-talk between the secreted cytotoxin Mcf1 and the embryonic hemocytes. Mcf1 is a potent cytotoxin which has been detected in all Photorhabdus strains isolated so far, which can rapidly kill insects upon injection. Despite several in vitro tissue culture studies, the biology of Mcf1 in vivo is not well understood. Furthermore, despite the identification of many Photorhabdus toxins using recombinant expression in E. coli (Waterfield et al. 2008), very few studies address the molecular mechanism of action of these toxins in relation to specific immune responses in vivo in the insect model.
Collapse
|
32
|
Stork T, Bernardos R, Freeman MR. Analysis of glial cell development and function in Drosophila. Cold Spring Harb Protoc 2012; 2012:1-17. [PMID: 22194269 DOI: 10.1101/pdb.top067587] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Glial cells are the most abundant cell type in our brains, yet we understand very little about their development and function. An accumulating body of work over the last decade has revealed that glia are critical regulators of nervous system development, function, and health. Based on morphological and molecular criteria, glia in Drosophila melanogaster are very similar to their mammalian counterparts, suggesting that a detailed investigation of fly glia has the potential to add greatly to our understanding of fundamental aspects of glial cell biology. In this article, we provide an overview of the subtypes of glial cells found in Drosophila and discuss our current understanding of their functions, the development of a subset of well-defined glial lineages, and the molecular-genetic tools available for manipulating glial subtypes in vivo.
Collapse
|
33
|
Abstract
Cultured Drosophila melanogaster S2 and S2R+ cell lines have become important tools for uncovering fundamental aspects of cell biology as well as for gene discovery. Despite their utility, these cell lines are nonmotile and cannot build polarized structures or cell-cell contacts. Here we outline a previously isolated, but uncharacterized, Drosophila cell line named Dm-D17-c3 (or D17). These cells spread and migrate in culture, form cell-cell junctions and are susceptible to RNA interference (RNAi). Using this protocol, we describe how investigators, upon receiving cells from the Bloomington stock center, can culture cells and prepare the necessary reagents to plate and image migrating D17 cells; they can then be used to examine intracellular dynamics or observe loss-of-function RNAi phenotypes using an in vitro scratch or wound healing assay. From first thawing frozen ampules of D17 cells, investigators can expect to begin assaying RNAi phenotypes in D17 cells within roughly 2-3 weeks.
Collapse
|
34
|
Fauvarque MO, Williams MJ. Drosophila cellular immunity: a story of migration and adhesion. J Cell Sci 2011; 124:1373-82. [PMID: 21502134 DOI: 10.1242/jcs.064592] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Research during the past 15 years has led to significant breakthroughs, providing evidence of a high degree of similarity between insect and mammalian innate immune responses, both humoural and cellular, and highlighting Drosophila melanogaster as a model system for studying the evolution of innate immunity. In a manner similar to cells of the mammalian monocyte and macrophage lineage, Drosophila immunosurveillance cells (haemocytes) have a number of roles. For example, they respond to wound signals, are involved in wound healing and contribute to the coagulation response. Moreover, they participate in the phagocytosis and encapsulation of invading pathogens, are involved in the removal of apoptotic bodies and produce components of the extracellular matrix. There are several reasons for using the Drosophila cellular immune response as a model to understand cell signalling during adhesion and migration in vivo: many genes involved in the regulation of Drosophila haematopoiesis and cellular immunity have been maintained across taxonomic groups ranging from flies to humans, many aspects of Drosophila and mammalian innate immunity seem to be conserved, and Drosophila is a simplified and well-studied genetic model system. In the present Commentary, we will discuss what is known about cellular adhesion and migration in the Drosophila cellular immune response, during both embryonic and larval development, and where possible compare it with related mechanisms in vertebrates.
Collapse
Affiliation(s)
- Marie-Odile Fauvarque
- Institut de Recherches en Technologies et Sciences pour le Vivant, Grenoble, France.
| | | |
Collapse
|
35
|
Urbano JM, Domínguez-Giménez P, Estrada B, Martín-Bermudo MD. PS integrins and laminins: key regulators of cell migration during Drosophila embryogenesis. PLoS One 2011; 6:e23893. [PMID: 21949686 PMCID: PMC3174947 DOI: 10.1371/journal.pone.0023893] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 07/27/2011] [Indexed: 01/16/2023] Open
Abstract
During embryonic development, there are numerous cases where organ or tissue formation depends upon the migration of primordial cells. In the Drosophila embryo, the visceral mesoderm (vm) acts as a substrate for the migration of several cell populations of epithelial origin, including the endoderm, the trachea and the salivary glands. These migratory processes require both integrins and laminins. The current model is that αPS1βPS (PS1) and/or αPS3βPS (PS3) integrins are required in migrating cells, whereas αPS2βPS (PS2) integrin is required in the vm, where it performs an as yet unidentified function. Here, we show that PS1 integrins are also required for the migration over the vm of cells of mesodermal origin, the caudal visceral mesoderm (CVM). These results support a model in which PS1 might have evolved to acquire the migratory function of integrins, irrespective of the origin of the tissue. This integrin function is highly specific and its specificity resides mainly in the extracellular domain. In addition, we have identified the Laminin α1,2 trimer, as the key extracellular matrix (ECM) component regulating CVM migration. Furthermore, we show that, as it is the case in vertebrates, integrins, and specifically PS2, contributes to CVM movement by participating in the correct assembly of the ECM that serves as tracks for migration.
Collapse
Affiliation(s)
- Jose M. Urbano
- Centro Andaluz de Biología del Desarrollo, (CSIC)-Universidad Pablo de Olavide, Sevilla, Spain
| | - Paloma Domínguez-Giménez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, (CSIC)-Universidad de Sevilla, Sevilla, Spain
| | - Beatriz Estrada
- Centro Andaluz de Biología del Desarrollo, (CSIC)-Universidad Pablo de Olavide, Sevilla, Spain
| | - María D. Martín-Bermudo
- Centro Andaluz de Biología del Desarrollo, (CSIC)-Universidad Pablo de Olavide, Sevilla, Spain
- * E-mail:
| |
Collapse
|
36
|
Parisi F, Vidal M. Epithelial delamination and migration: lessons from Drosophila. Cell Adh Migr 2011; 5:366-72. [PMID: 21836393 DOI: 10.4161/cam.5.4.17524] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Metastasis is the most deadly phase of cancer progression, during which cells detach from their original niche to invade distant tissues, yet the biological processes underlying the spread of cancer are still poorly understood. The fruit fly Drosophila melanogaster provides important insights in our understanding of how epithelial cells migrate from their original location and find their way into surrounding and distant tissues in the metastatic process. Here we review recent studies on the mechanisms of migration of embryonic haemocytes, the macrophage-like immuno-surveillance cells, during normal development and wound healing. We highlight the interesting finding that hydrogen peroxide (H₂O₂) has been identified as the driving force for haemocyte chemotaxis. We also give a special emphasis to studies suggesting the concept that haemocytes, together with the tumor microenvironment, act as potential inducers of the epithelial de-lamination required for tumor invasion. We propose that cell delamination and migration could be uncoupled from loss of cell polarity via a tumor-related inflammatory response.
Collapse
Affiliation(s)
- Federica Parisi
- Beatson Institute for Cancer Research, Bearsden, Glasgow, UK
| | | |
Collapse
|
37
|
Evans IR, Wood W. Understanding in vivo blood cell migration--Drosophila hemocytes lead the way. Fly (Austin) 2011; 5:110-4. [PMID: 21150318 PMCID: PMC3127059 DOI: 10.4161/fly.5.2.14055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 10/28/2010] [Accepted: 10/29/2010] [Indexed: 11/19/2022] Open
Abstract
Drosophila embryonic hemocytes have emerged as a potent system to analyze the roles of key regulators of the actin and microtubule cytoskeletons live and in an in vivo context (see Table I and references therein). The relative ease with which live imaging can be used to visualize the invasive migrations of these highly motile macrophages and their responses to wound and chemoattractant signals make them a particularly appropriate and genetically tractable cell type to study in relation to pathological conditions such as cancer metastasis and inflammation. ( 1-3) In order to understand how signaling pathways are integrated for a coordinated response, a question with direct relevance to autoimmune dysfunction, we have sought to more fully characterize the inputs these cells receive in vivo over the course of their developmental dispersal. These studies have recently revealed that hemocyte migration is intimately associated with the development of the ventral nerve cord (VNC), a structure used by hemocytes to disperse over the embryo that itself requires this association for its correct morphogenesis. Crucially the VNC must separate from the epidermis to create a channel for hemocyte migration, revealing how constriction of extracellular space can be used to control cell migration in vivo. ( 4).
Collapse
Affiliation(s)
- Iwan Robert Evans
- Department of Biology and Biochemistry, University of Bath, Bath, Somerset, UK
| | | |
Collapse
|
38
|
Lee S, Shrestha S, Prasad SV, Kim Y. Role of a small G protein Ras in cellular immune response of the beet armyworm, Spodoptera exigua. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:356-362. [PMID: 21167168 DOI: 10.1016/j.jinsphys.2010.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 12/06/2010] [Accepted: 12/08/2010] [Indexed: 05/30/2023]
Abstract
Insect cellular immune responses accompany cytoskeletal rearrangement of hemocytes to exhibit filopodial and pseudopodial extension of their cytoplasm. Small G proteins are postulated to be implicated in the hemocyte cellular processes to perform phagocytosis, nodulation, and encapsulation behaviors. A small G protein ras gene (Se-Ras) was cloned from cDNAs prepared from hemocytes of the beet armyworm, Spodoptera exigua. The open reading frame of Se-Ras encoded 179 amino acids with a predicted molecular weight of 20.0kDa, in which 114 residues at amino terminus were predicted to be a GTP binding domain. It showed high sequence similarities (86.1-92.8%) with known ras genes in other insects. Se-Ras was constitutively expressed in all developmental stages from egg to adult without any significant change in expression levels in response to bacterial challenge. A specific double strand RNA (dsRNA) could knockdown its expression in the hemocytes after 48h post-injection. While the RNA interference (RNAi) did not show any change in total or differential hemocyte counts, it impaired hemocyte behaviors. The RNAi of Se-Ras significantly suppressed hemocyte spreading, cytoskeleton extension, and nodulation behaviors in response to bacterial challenge. Release of prophenoloxidase from oenocytoids was significantly inhibited by the RNAi, which resulted in significant suppression in PO activation in response to an inducer, PGE(2). These results suggest that Se-Ras is implicated in mediating cellular processes of S. exigua hemocytes. This is the first report of Ras role in insect cellular immune response.
Collapse
Affiliation(s)
- Seeon Lee
- Department of Molecular and Cell Biology, Liberal Arts and Science, University of Illinois, Urbana-Champaign, IL 61801, USA
| | | | | | | |
Collapse
|
39
|
Awasaki T, Lee T. New tools for the analysis of glial cell biology in Drosophila. Glia 2011; 59:1377-86. [PMID: 21305614 DOI: 10.1002/glia.21133] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 12/02/2010] [Indexed: 11/07/2022]
Abstract
Because of its genetic, molecular, and behavioral tractability, Drosophila has emerged as a powerful model system for studying molecular and cellular mechanisms underlying the development and function of nervous systems. The Drosophila nervous system has fewer neurons and exhibits a lower glia:neuron ratio than is seen in vertebrate nervous systems. Despite the simplicity of the Drosophila nervous system, glial organization in flies is as sophisticated as it is in vertebrates. Furthermore, fly glial cells play vital roles in neural development and behavior. In addition, powerful genetic tools are continuously being created to explore cell function in vivo. In taking advantage of these features, the fly nervous system serves as an excellent model system to study general aspects of glial cell development and function in vivo. In this article, we review and discuss advanced genetic tools that are potentially useful for understanding glial cell biology in Drosophila.
Collapse
Affiliation(s)
- Takeshi Awasaki
- Department of Neurobiology, University of Massachusetts, Worcester, Massachusetts, USA. awasakit@ janelia.hhmi.org
| | | |
Collapse
|
40
|
Abstract
The Atg1 Ser/Thr kinase, although now a well-established regulator of autophagy, was first identified genetically in C. elegans as a requirement for axonal elongation. However, possible connections between Atg1 functions in cellular morphogenesis and in autophagy were previously unaddressed. In the recent paper highlighted in this punctum, we reconciled these dual roles for Atg1, demonstrating a requirement for p62-mediated selective autophagy in the dynamic regulation of cell shape, in both fly and mammalian macrophages, with effects on immune cell functions. This work further strengthens the emerging importance of autophagy as a post-translational regulatory mechanism in diverse cell signaling contexts, including the cortical remodeling and function of immune cells.
Collapse
|
41
|
Hemocyte-secreted type IV collagen enhances BMP signaling to guide renal tubule morphogenesis in Drosophila. Dev Cell 2010; 19:296-306. [PMID: 20708591 PMCID: PMC2941037 DOI: 10.1016/j.devcel.2010.07.019] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 07/09/2010] [Accepted: 07/28/2010] [Indexed: 12/17/2022]
Abstract
Details of the mechanisms that determine the shape and positioning of organs in the body cavity remain largely obscure. We show that stereotypic positioning of outgrowing Drosophila renal tubules depends on signaling in a subset of tubule cells and results from enhanced sensitivity to guidance signals by targeted matrix deposition. VEGF/PDGF ligands from the tubules attract hemocytes, which secrete components of the basement membrane to ensheath them. Collagen IV sensitizes tubule cells to localized BMP guidance cues. Signaling results in pathway activation in a subset of tubule cells that lead outgrowth through the body cavity. Failure of hemocyte migration, loss of collagen IV, or abrogation of BMP signaling results in tubule misrouting and defective organ shape and positioning. Such regulated interplay between cell-cell and cell-matrix interactions is likely to have wide relevance in organogenesis and congenital disease.
Collapse
|
42
|
RhoL controls invasion and Rap1 localization during immune cell transmigration in Drosophila. Nat Cell Biol 2010; 12:605-10. [PMID: 20495554 PMCID: PMC3006444 DOI: 10.1038/ncb2063] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 04/29/2010] [Indexed: 12/17/2022]
Abstract
Human immune cells penetrate an endothelial barrier during their beneficial pursuit of infection and their destructive infiltration in autoimmune diseases. This transmigration requires Rap1 GTPase to activate Integrin affinity1. We define a new model system for this process by demonstrating with live imaging and genetics that during embryonic development, Drosophila melanogaster immune cells penetrate an epithelial, DE-Cadherin-based tissue barrier. A mutant in RhoL, a GTPase homolog that is specifically expressed in hemocytes, blocks this invasive step but not other aspects of guided migration. RhoL mediates Integrin adhesion caused by Drosophila Rap1 over-expression and moves Rap1 away from a cytoplasmic concentration to the leading edge during invasive migration. These findings indicate that a programmed migratory step during Drosophila development bears striking molecular similarities to vertebrate immune cell transmigration during inflammation and identify RhoL as a new regulator of invasion, adhesion and Rap1 localization. Our work establishes the utility of Drosophila for identifying novel components of immune cell transmigration and for understanding the in vivo interplay of immune cells with the barriers they penetrate.
Collapse
|
43
|
Stramer B, Moreira S, Millard T, Evans I, Huang CY, Sabet O, Milner M, Dunn G, Martin P, Wood W. Clasp-mediated microtubule bundling regulates persistent motility and contact repulsion in Drosophila macrophages in vivo. J Cell Biol 2010; 189:681-9. [PMID: 20457764 PMCID: PMC2872918 DOI: 10.1083/jcb.200912134] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 04/15/2010] [Indexed: 12/03/2022] Open
Abstract
Drosophila melanogaster macrophages are highly migratory cells that lend themselves beautifully to high resolution in vivo imaging experiments. By expressing fluorescent probes to reveal actin and microtubules, we can observe the dynamic interplay of these two cytoskeletal networks as macrophages migrate and interact with one another within a living organism. We show that before an episode of persistent motility, whether responding to developmental guidance or wound cues, macrophages assemble a polarized array of microtubules that bundle into a compass-like arm that appears to anticipate the direction of migration. Whenever cells collide with one another, their microtubule arms transiently align just before cell-cell repulsion, and we show that forcing depolymerization of microtubules by expression of Spastin leads to their defective polarity and failure to contact inhibit from one another. The same is true in orbit/clasp mutants, indicating a pivotal role for this microtubule-binding protein in the assembly and/or functioning of the microtubule arm during polarized migration and contact repulsion.
Collapse
Affiliation(s)
- Brian Stramer
- Randall Division of Cell and Molecular Biophysics, King’s College London, London SE1 1UL, England, UK
- Department of Biochemistry and Department of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, England, UK
| | - Severina Moreira
- Department of Biochemistry and Department of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, England, UK
| | - Tom Millard
- Department of Biochemistry and Department of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, England, UK
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Iwan Evans
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, England, UK
| | - Chieh-Yin Huang
- Randall Division of Cell and Molecular Biophysics, King’s College London, London SE1 1UL, England, UK
| | - Ola Sabet
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, England, UK
| | - Martin Milner
- School of Biology, University of St. Andrews, St. Andrews KY16 9TS, Scotland, UK
| | - Graham Dunn
- Randall Division of Cell and Molecular Biophysics, King’s College London, London SE1 1UL, England, UK
| | - Paul Martin
- Department of Biochemistry and Department of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, England, UK
| | - Will Wood
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, England, UK
| |
Collapse
|
44
|
Evans IR, Hu N, Skaer H, Wood W. Interdependence of macrophage migration and ventral nerve cord development in Drosophila embryos. Development 2010; 137:1625-33. [PMID: 20392742 PMCID: PMC2860247 DOI: 10.1242/dev.046797] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2010] [Indexed: 11/20/2022]
Abstract
During embryonic development, Drosophila macrophages (haemocytes) undergo a series of stereotypical migrations to disperse throughout the embryo. One major migratory route is along the ventral nerve cord (VNC), where haemocytes are required for the correct development of this tissue. We show, for the first time, that a reciprocal relationship exists between haemocytes and the VNC and that defects in nerve cord development prevent haemocyte migration along this structure. Using live imaging, we demonstrate that the axonal guidance cue Slit and its receptor Robo are both required for haemocyte migration, but signalling is not autonomously required in haemocytes. We show that the failure of haemocyte migration along the VNC in slit mutants is not due to a lack of chemotactic signals within this structure, but rather to a failure in its detachment from the overlying epithelium, creating a physical barrier to haemocyte migration. This block of haemocyte migration in turn disrupts the formation of the dorsoventral channels within the VNC, further highlighting the importance of haemocyte migration for correct neural development. This study illustrates the important role played by the three-dimensional environment in directing cell migration in vivo and reveals an intriguing interplay between the developing nervous system and the blood cells within the fly, demonstrating that their development is both closely coupled and interdependent.
Collapse
Affiliation(s)
- Iwan R. Evans
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Nan Hu
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Helen Skaer
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Will Wood
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| |
Collapse
|
45
|
Evans IR, Zanet J, Wood W, Stramer BM. Live imaging of Drosophila melanogaster embryonic hemocyte migrations. J Vis Exp 2010:1696. [PMID: 20154641 PMCID: PMC2830251 DOI: 10.3791/1696] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Many studies address cell migration using in vitro methods, whereas the physiologically relevant environment is that of the organism itself. Here we present a protocol for the mounting of Drosophila melanogaster embryos and subsequent live imaging of fluorescently labeled hemocytes, the embryonic macrophages of this organism. Using the Gal4-uas system1 we drive the expression of a variety of genetically encoded, fluorescently tagged markers in hemocytes to follow their developmental dispersal throughout the embryo. Following collection of embryos at the desired stage of development, the outer chorion is removed and the embryos are then mounted in halocarbon oil between a hydrophobic, gas-permeable membrane and a glass coverslip for live imaging. In addition to gross migratory parameters such as speed and directionality, higher resolution imaging coupled with the use of fluorescent reporters of F-actin and microtubules can provide more detailed information concerning the dynamics of these cytoskeletal components.
Collapse
Affiliation(s)
- Iwan R Evans
- Department of Biology and Biochemistry, University of Bath
| | | | | | | |
Collapse
|
46
|
Liu R, Linardopoulou EV, Osborn GE, Parkhurst SM. Formins in development: orchestrating body plan origami. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1803:207-25. [PMID: 18996154 PMCID: PMC2838992 DOI: 10.1016/j.bbamcr.2008.09.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 08/21/2008] [Accepted: 09/26/2008] [Indexed: 01/21/2023]
Abstract
Formins, proteins defined by the presence of an FH2 domain and their ability to nucleate linear F-actin de novo, play a key role in the regulation of the cytoskeleton. Initially thought to primarily regulate actin, recent studies have highlighted a role for formins in the regulation of microtubule dynamics, and most recently have uncovered the ability of some formins to coordinate the organization of both the microtubule and actin cytoskeletons. While biochemical analyses of this family of proteins have yielded many insights into how formins regulate diverse cytoskeletal reorganizations, we are only beginning to appreciate how and when these functional properties are relevant to biological processes in a developmental or organismal context. Developmental genetic studies in fungi, Dictyostelium, vertebrates, plants and other model organisms have revealed conserved roles for formins in cell polarity, actin cable assembly and cytokinesis. However, roles have also been discovered for formins that are specific to particular organisms. Thus, formins perform both global and specific functions, with some of these roles concurring with previous biochemical data and others exposing new properties of formins. While not all family members have been examined across all organisms, the analyses to date highlight the significance of the flexibility within the formin family to regulate a broad spectrum of diverse cytoskeletal processes during development.
Collapse
Affiliation(s)
- Raymond Liu
- Division of Basic Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North Seattle, WA 98109 USA
| | - Elena V. Linardopoulou
- Division of Basic Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North Seattle, WA 98109 USA
| | - Gregory E. Osborn
- Division of Basic Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North Seattle, WA 98109 USA
| | - Susan M. Parkhurst
- Division of Basic Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North Seattle, WA 98109 USA
| |
Collapse
|
47
|
Rab35 mediates transport of Cdc42 and Rac1 to the plasma membrane during phagocytosis. Mol Cell Biol 2010; 30:1421-33. [PMID: 20065041 DOI: 10.1128/mcb.01463-09] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phagocytosis of invading microbes requires dynamic rearrangement of the plasma membrane and its associated cytoskeletal actin network. The polarization of Cdc42 and Rac1 Rho GTPases to the site of plasma membrane protrusion is responsible for the remodeling of actin structures. However, the mechanism of Rho GTPase recruitment to these sites and the identities of accessory molecules involved in this process are not well understood. In this study, we uncovered several new components involved in innate immunity in Drosophila melanogaster. Our data demonstrate that Rab35 is a regulator of vesicle transport required specifically for phagocytosis. Moreover, recruitment of Cdc42 and Rac1 to the sites of filopodium and lamellipodium formation is Rab35 dependent and occurs by way of microtubule tracks. These results implicate Rab35 as the immune cell-specific regulator of vesicle transport within the actin-remodeling complex.
Collapse
|
48
|
Zanet J, Stramer B, Millard T, Martin P, Payre F, Plaza S. Fascin is required for blood cell migration during Drosophilaembryogenesis. Development 2009; 136:2557-65. [DOI: 10.1242/dev.036517] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fascin is well characterized in vitro as an actin-bundling protein and its increased expression is correlated with the invasiveness of various cancers. However, the actual roles and regulation of Fascin in vivo remain elusive. Here we show that Fascin is required for the invasive-like migration of blood cells in Drosophila embryos. Fascin expression is highly regulated during embryonic development and, within the blood lineage, is specific to the motile subpopulation of cells, which comprises macrophage-like plasmatocytes. We show that Fascin is required for plasmatocyte migration, both as these cells undergo developmental dispersal and during an inflammatory response to epithelial wounding. Live analyses further demonstrate that Fascin localizes to, and is essential for the assembly of, dynamic actin-rich microspikes within plasmatocyte lamellae that polarize towards the direction of migration. We show that a regulatory serine of Fascin identified from in vitro studies is not required for in vivo cell motility, but is crucial for the formation of actin bundles within epithelial bristles. Together, these results offer a first glimpse into the mechanisms regulating Fascin function during normal development, which might be relevant for understanding the impact of Fascin in cancers.
Collapse
Affiliation(s)
- Jennifer Zanet
- Université de Toulouse, UPS, Centre de Biologie du Développement, Bâtiment 4R3, 118 route de Narbonne, F-31062 Toulouse, France
- CNRS, UMR5547, Centre de Biologie du Développement, F-31062 Toulouse,France
| | - Brian Stramer
- University of Bristol, Departments of Biochemistry and Physiology &Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD,UK
| | - Thomas Millard
- University of Bristol, Departments of Biochemistry and Physiology &Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD,UK
| | - Paul Martin
- University of Bristol, Departments of Biochemistry and Physiology &Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD,UK
| | - François Payre
- Université de Toulouse, UPS, Centre de Biologie du Développement, Bâtiment 4R3, 118 route de Narbonne, F-31062 Toulouse, France
- CNRS, UMR5547, Centre de Biologie du Développement, F-31062 Toulouse,France
| | - Serge Plaza
- Université de Toulouse, UPS, Centre de Biologie du Développement, Bâtiment 4R3, 118 route de Narbonne, F-31062 Toulouse, France
- CNRS, UMR5547, Centre de Biologie du Développement, F-31062 Toulouse,France
| |
Collapse
|
49
|
Vlisidou I, Dowling AJ, Evans IR, Waterfield N, ffrench-Constant RH, Wood W. Drosophila embryos as model systems for monitoring bacterial infection in real time. PLoS Pathog 2009; 5:e1000518. [PMID: 19609447 PMCID: PMC2707623 DOI: 10.1371/journal.ppat.1000518] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 06/19/2009] [Indexed: 01/06/2023] Open
Abstract
Drosophila embryos are well studied developmental microcosms that have been used extensively as models for early development and more recently wound repair. Here we extend this work by looking at embryos as model systems for following bacterial infection in real time. We examine the behaviour of injected pathogenic (Photorhabdus asymbiotica) and non-pathogenic (Escherichia coli) bacteria and their interaction with embryonic hemocytes using time-lapse confocal microscopy. We find that embryonic hemocytes both recognise and phagocytose injected wild type, non-pathogenic E. coli in a Dscam independent manner, proving that embryonic hemocytes are phagocytically competent. In contrast, injection of bacterial cells of the insect pathogen Photorhabdus leads to a rapid 'freezing' phenotype of the hemocytes associated with significant rearrangement of the actin cytoskeleton. This freezing phenotype can be phenocopied by either injection of the purified insecticidal toxin Makes Caterpillars Floppy 1 (Mcf1) or by recombinant E. coli expressing the mcf1 gene. Mcf1 mediated hemocyte freezing is shibire dependent, suggesting that endocytosis is required for Mcf1 toxicity and can be modulated by dominant negative or constitutively active Rac expression, suggesting early and unexpected effects of Mcf1 on the actin cytoskeleton. Together these data show how Drosophila embryos can be used to track bacterial infection in real time and how mutant analysis can be used to genetically dissect the effects of specific bacterial virulence factors.
Collapse
Affiliation(s)
- Isabella Vlisidou
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Andrea J. Dowling
- School of Biological Sciences, University of Exeter in Cornwall, Penryn, United Kingdom
| | - Iwan R. Evans
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Nicholas Waterfield
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | | | - Will Wood
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| |
Collapse
|
50
|
Gcm protein degradation suppresses proliferation of glial progenitors. Proc Natl Acad Sci U S A 2009; 106:6778-83. [PMID: 19346490 DOI: 10.1073/pnas.0808899106] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Gliogenesis in animal development is spatiotemporally regulated so that correct numbers of glia are present to support various neuronal functions. During Drosophila embryonic development, the glial regulatory gene, glial cell missing/glial cell deficient (gcm/glide), promotes glial cell fate and differentiation. Here we describe the ubiquitin-proteasome regulation of the Gcm protein and the consequence in gliogenesis without timely degradation of Gcm. Gcm binds to 2 F-box proteins, Supernumerary limbs (Slimb) and Archipelago (Ago), adaptors of SCF E3 ubiquitin ligases. Ubiquitination and proteasomal degradation of Gcm depend on slimb and ago. In slimb and ago double mutants, Gcm protein levels are enhanced. Concomitantly, glial cell numbers increase owing to proliferation, which can be phenocopied by Gcm overexpression only at the onset of glial differentiation. The glial lineage 5-6A in slimb ago mutants displays excess glial progenies and enhanced Gcm protein levels. We propose that downregulation of Gcm protein levels by Slimb and Ago is required for glial progenitors to exit the cell cycle for differentiation.
Collapse
|