1
|
Zhang B, Hou M, Huang J, Liu Y, Yang C, Lin J. Pax6 regulates neuronal migration and cell proliferation via interacting with Wnt3a during cortical development. Sci Rep 2025; 15:4726. [PMID: 39922861 PMCID: PMC11807113 DOI: 10.1038/s41598-025-88662-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 01/29/2025] [Indexed: 02/10/2025] Open
Abstract
The paired box 6 (Pax6) gene encodes a highly conserved transcription factor, involved in the development of eyes, brain, and endocrine glands. Homozygous loss of Pax6 resulted in neonatal death in mice, plus loss of eyes and malformation of cerebral cortex. In patients with heterozygous Pax6 mutations, a reduction in thickness of the frontoparietal cortex was detected, which was also observed in small eye mice. In this study, we found that Pax6 overexpression increased the cortical thickness, especially in the intermediate zone of the cortex, which conflicts with the report of Manuel et al. Pax6 overexpression appears to detain neurons in the intermediate zone while promoting cell proliferation. It is worth noting that the impact of Pax6 overexpression on cortical thickness and neuronal migration was temporal, explaining the differences with other reports. We postulated that the alteration of Pax6 isoform ratio by autoregulation might be responsible for this. JASPAR analysis together with the results of qPCR, Western blot, CUT&Tag, and rescue experiments revealed that Pax6 regulates neuronal migration and cell proliferation by indirectly mediating Wnt3a expression. Therefore, we propose that Pax6 participates in corticogenesis via interaction with Wnt3a in regulating neuronal migration and cell proliferation.
Collapse
Affiliation(s)
- Bichao Zhang
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, China
- Henan International Joint Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Meihua Hou
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
- Henan International Joint Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jiayan Huang
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
- Henan International Joint Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yunfei Liu
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
- Henan International Joint Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Ciqing Yang
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, China
- Henan International Joint Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Juntang Lin
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, China.
- Henan International Joint Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
2
|
Mondal K, Posa MK, Shenoy RP, Roychoudhury S. KRAS Mutation Subtypes and Their Association with Other Driver Mutations in Oncogenic Pathways. Cells 2024; 13:1221. [PMID: 39056802 PMCID: PMC11274496 DOI: 10.3390/cells13141221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/28/2024] [Accepted: 05/11/2024] [Indexed: 07/28/2024] Open
Abstract
The KRAS mutation stands out as one of the most influential oncogenic mutations, which directly regulates the hallmark features of cancer and interacts with other cancer-causing driver mutations. However, there remains a lack of precise information on their cooccurrence with mutated variants of KRAS and any correlations between KRAS and other driver mutations. To enquire about this issue, we delved into cBioPortal, TCGA, UALCAN, and Uniport studies. We aimed to unravel the complexity of KRAS and its relationships with other driver mutations. We noticed that G12D and G12V are the prevalent mutated variants of KRAS and coexist with the TP53 mutation in PAAD and CRAD, while G12C and G12V coexist with LUAD. We also noticed similar observations in the case of PIK3CA and APC mutations in CRAD. At the transcript level, a positive correlation exists between KRAS and PIK3CA and between APC and KRAS in CRAD. The existence of the co-mutation of KRAS and other driver mutations could influence the signaling pathway in the neoplastic transformation. Moreover, it has immense prognostic and predictive implications, which could help in better therapeutic management to treat cancer.
Collapse
Affiliation(s)
- Koushik Mondal
- Division of Basic & Translational Research, Saroj Gupta Cancer Centre & Research Institute, MG Road, Kolkata 700063, West Bengal, India
- Department of Cancer Immunology, SwasthyaNiketan Integrated Healthcare & Research Foundation, Koramangala, Bengaluru 560034, Karnataka, India
| | - Mahesh Kumar Posa
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur 302017, Rajasthan, India;
| | - Revathi P. Shenoy
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| | - Susanta Roychoudhury
- Division of Basic & Translational Research, Saroj Gupta Cancer Centre & Research Institute, MG Road, Kolkata 700063, West Bengal, India
- CSIR-Indian Institute of Chemical Biology, 4 Raja S.C.Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
3
|
Bjorklund GR, Rees KP, Balasubramanian K, Hewitt LT, Nishimura K, Newbern JM. Hyperactivation of MEK1 in cortical glutamatergic neurons results in projection axon deficits and aberrant motor learning. Dis Model Mech 2024; 17:dmm050570. [PMID: 38826084 PMCID: PMC11247507 DOI: 10.1242/dmm.050570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/21/2024] [Indexed: 06/04/2024] Open
Abstract
Abnormal extracellular signal-regulated kinase 1/2 (ERK1/2, encoded by Mapk3 and Mapk1, respectively) signaling is linked to multiple neurodevelopmental diseases, especially the RASopathies, which typically exhibit ERK1/2 hyperactivation in neurons and non-neuronal cells. To better understand how excitatory neuron-autonomous ERK1/2 activity regulates forebrain development, we conditionally expressed a hyperactive MEK1 (MAP2K1) mutant, MEK1S217/221E, in cortical excitatory neurons of mice. MEK1S217/221E expression led to persistent hyperactivation of ERK1/2 in cortical axons, but not in soma/nuclei. We noted reduced axonal arborization in multiple target domains in mutant mice and reduced the levels of the activity-dependent protein ARC. These changes did not lead to deficits in voluntary locomotion or accelerating rotarod performance. However, skilled motor learning in a single-pellet retrieval task was significantly diminished in these MEK1S217/221E mutants. Restriction of MEK1S217/221E expression to layer V cortical neurons recapitulated axonal outgrowth deficits but did not affect motor learning. These results suggest that cortical excitatory neuron-autonomous hyperactivation of MEK1 is sufficient to drive deficits in axon outgrowth, which coincide with reduced ARC expression, and deficits in skilled motor learning. Our data indicate that neuron-autonomous decreases in long-range axonal outgrowth may be a key aspect of neuropathogenesis in RASopathies.
Collapse
Affiliation(s)
- George R. Bjorklund
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Katherina P. Rees
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | - Lauren T. Hewitt
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Kenji Nishimura
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Jason M. Newbern
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
4
|
Singh L, Bhatti R. Signaling Pathways Involved in the Neuroprotective Effect of Osthole: Evidence and Mechanisms. Mol Neurobiol 2024; 61:1100-1118. [PMID: 37682453 DOI: 10.1007/s12035-023-03580-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023]
Abstract
Neurodegenerative diseases constitute a major threat to human health and are usually accompanied by progressive structural and functional loss of neurons. Abnormalities in synaptic plasticity are involved in neurodegenerative disorders. Aberrant cell signaling cascades play a predominant role in the initiation, progress as well as in the severity of these ailments. Notch signaling is a pivotal role in the maintenance of neural stem cells and also participates in neurogenesis. PI3k/Akt cascade regulates different biological processes including cell proliferation, apoptosis, and metabolism. It regulates neurotoxicity and mediates the survival of neurons. Moreover, the activated BDNF/TrkB cascade is involved in promoting the transcription of genes responsible for cell survival and neurogenesis. Despite significant progress made in delineating the underlying pathological mechanisms involved and derangements in cellular metabolic promenades implicated in these diseases, satisfactory strategies for the clinical management of these ailments are yet to be achieved. Therefore, the molecules targeting these cell signaling cascades may emerge as useful leads in developing newer management strategies. Osthole is an important ingredient of traditional Chinese medicinal plants, often found in various plants of the Apiaceae family and has been observed to target these aforementioned mediators. Until now, no review has been aimed to discuss the possible molecular signaling cascades involved in osthole-mediated neuroprotection at one platform. The current review aimed to explore the interplay of various mediators and the modulation of the different molecular signaling cascades in osthole-mediated neuroprotection. This review could open new insights into research involving diseases of neuronal origin, especially the effect on neurodegeneration, neurogenesis, and synaptic plasticity. The articles gathered to compose the current review were extracted by using the PubMed, Scopus, Science Direct, and Web of Science databases. A methodical approach was used to integrate and discuss all published original reports describing the modulation of different mediators by osthole to confer neuroprotection at one platform to provide possible molecular pathways. Based on the inclusion and exclusion criteria, 32 articles were included in the systematic review. Moreover, literature evidence was also used to construct the biosynthetic pathway of osthole. The current review reveals that osthole promotes neurogenesis and neuronal functioning via stimulation of Notch, BDNF/Trk, and P13k/Akt signaling pathways. It upregulates the expression of various proteins, such as BDNF, TrkB, CREB, Nrf-2, P13k, and Akt. Activation of Wnt by osthole, in turn, regulates downstream GSK-1β to inhibit tau phosphorylation and β-catenin degradation to prevent neuronal apoptosis. The activation of Wnt and inhibition of oxidative stress, Aβ, and GSK-3β mediated β-catenin degradation by osthole might also be involved in mediating the protection against neurodegenerative diseases. Furthermore, it also inhibits neuroinflammation by suppressing MAPK/NF-κB-mediated transcription of genes involved in the generation of inflammatory cytokines and NLRP-3 inflammasomes. This review delineates the various underlying signaling pathways involved in mediating the neuroprotective effect of osthole. Modulation of Notch, BDNF/Trk, MAPK/NF-κB, and P13k/Akt signaling pathways by osthole confers protection against neurodegenerative diseases. The preclinical effects of osthole suggest that it could be a valuable molecule in inspiring the development of new drugs for the management of neurodegenerative diseases and demands clinical studies to explore its potential. An effort has been made to unify the varied mechanisms and target sites involved in the neuroprotective effect of osthole. The comprehensive description of the molecular pathways in the present work reflects its originality and thoroughness. The reviewed literature findings may be extrapolated to suggest the role of othole as a "biological response modifier" which contributes to neuroprotection through kinase modulatory, immunomodulatory, and anti-oxidative activity, which is documented even at lower doses. The current review attempts to emphasize the gaps in the existing literature which can be explored in the future.
Collapse
Affiliation(s)
- Lovedeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
- University Institute of Pharma Sciences, Chandigarh University, Mohali, 140413, Punjab, India.
| | - Rajbir Bhatti
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
5
|
Ginsenoside Rg1 attenuation of neurogenesis disorder and neuronal apoptosis in the rat hippocampus after spinal cord injury may involve brain-derived neurotrophic factor/extracellular signal-regulated kinase signaling. Neuroreport 2023; 34:290-298. [PMID: 36881751 DOI: 10.1097/wnr.0000000000001891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
OBJECTIVE We previously demonstrated that spinal cord injury (SCI) induced hippocampus injury and depression in rodents. Ginsenoside Rg1 effectively prevents neurodegenerative disorders. Here, we investigated the effects of ginsenoside Rg1 on the hippocampus after SCI. METHODS We used a rat compression SCI model. Western blotting and morphologic assays were used to investigate the protective effects of ginsenoside Rg1 in the hippocampus. RESULTS Brain-derived neurotrophic factor/extracellular signal-regulated kinases (BDNF/ERK) signaling was altered in the hippocampus at 5 weeks after SCI. SCI attenuated neurogenesis and enhanced the expression of cleaved caspase-3 in the hippocampus; however, ginsenoside Rg1 attenuated cleaved caspase-3 expression and improved neurogenesis and BDNF/ERK signaling in the rat hippocampus. The results suggest that SCI affects BDNF/ERK signaling, and ginsenoside Rg1 can attenuate hippocampal damage after SCI. CONCLUSION We speculate that the protective effects of ginsenoside Rg1 in hippocampal pathophysiology after SCI may involve BDNF/ERK signaling. Ginsenoside Rg1 shows promise as a therapeutic pharmaceutical product when seeking to counter SCI-induced hippocampal damage.
Collapse
|
6
|
Landscape of Well-Coordinated Fracture Healing in a Mouse Model Using Molecular and Cellular Analysis. Int J Mol Sci 2023; 24:ijms24043569. [PMID: 36834981 PMCID: PMC9964763 DOI: 10.3390/ijms24043569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The success of fracture healing relies on overlapping but coordinated cellular and molecular events. Characterizing an outline of differential gene regulation throughout successful healing is essential for identifying crucial phase-specific markers and may serve as the basis for engineering these in challenging healing situations. This study analyzed the healing progression of a standard closed femoral fracture model in C57BL/6N (age = 8 weeks) wild-type male mice. The fracture callus was assessed across various days post fracture (D = days 0, 3, 7, 10, 14, 21, and 28) by microarray, with D0 serving as a control. Histological analyses were carried out on samples from D7 until D28 to support the molecular findings. Microarray analysis revealed a differential regulation of immune response, angiogenesis, ossification, extracellular matrix regulation, mitochondrial and ribosomal genes during healing. In-depth analysis showed differential regulation of mitochondrial and ribosomal genes during the initial phase of healing. Furthermore, the differential gene expression showed an essential role of Serpin Family F Member 1 over the well-known Vascular Endothelial Growth Factor in angiogenesis, especially during the inflammatory phase. The significant upregulation of matrix metalloproteinase 13 and bone sialoprotein from D3 until D21 asserts their importance in bone mineralization. The study also shows type I collagen around osteocytes located in the ossified region at the periosteal surface during the first week of healing. Histological analysis of matrix extracellular phosphoglycoprotein and extracellular signal-regulated kinase stressed their roles in bone homeostasis and the physiological bone-healing process. This study reveals previously unknown and novel candidates, that could serve as a target for specific time points in healing and to remedy cases of impaired healing.
Collapse
|
7
|
Ahangar Davoodi N, Najafi S, Naderi Ghale-Noie Z, Piranviseh A, Mollazadeh S, Ahmadi Asouri S, Asemi Z, Morshedi M, Tamehri Zadeh SS, Hamblin MR, Sheida A, Mirzaei H. Role of non-coding RNAs and exosomal non-coding RNAs in retinoblastoma progression. Front Cell Dev Biol 2022; 10:1065837. [PMID: 36619866 PMCID: PMC9816416 DOI: 10.3389/fcell.2022.1065837] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Retinoblastoma (RB) is a rare aggressive intraocular malignancy of childhood that has the potential to affect vision, and can even be fatal in some children. While the tumor can be controlled efficiently at early stages, metastatic tumors lead to high mortality. Non-coding RNAs (ncRNAs) are implicated in a number of physiological cellular process, including differentiation, proliferation, migration, and invasion, The deregulation of ncRNAs is correlated with several diseases, particularly cancer. ncRNAs are categorized into two main groups based on their length, i.e. short and long ncRNAs. Moreover, ncRNA deregulation has been demonstrated to play a role in the pathogenesis and development of RB. Several ncRNAs, such as miR-491-3p, miR-613,and SUSD2 have been found to act as tumor suppressor genes in RB, but other ncRNAs, such as circ-E2F3, NEAT1, and TUG1 act as tumor promoter genes. Understanding the regulatory mechanisms of ncRNAs can provide new opportunities for RB therapy. In the present review, we discuss the functional roles of the most important ncRNAs in RB, their interaction with the genes responsible for RB initiation and progression, and possible future clinical applications as diagnostic and prognostic tools or as therapeutic targets.
Collapse
Affiliation(s)
- Nasrin Ahangar Davoodi
- Eye Research Center, Rassoul Akram Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zari Naderi Ghale-Noie
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ashkan Piranviseh
- Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammadamin Morshedi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran,*Correspondence: Amirhossein Sheida, ; Hamed Mirzaei, ,
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran,*Correspondence: Amirhossein Sheida, ; Hamed Mirzaei, ,
| |
Collapse
|
8
|
Kale HT, Rajpurohit RS, Jana D, Vishnu VV, Srivastava M, Mourya PR, Srinivas G, Shekar PC. A NANOG‐pERK reciprocal regulatory circuit regulates
Nanog
autoregulation and ERK signaling dynamics. EMBO Rep 2022; 23:e54421. [PMID: 36066347 PMCID: PMC9638859 DOI: 10.15252/embr.202154421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022] Open
Abstract
The self‐renewal and differentiation potential of embryonic stem cells (ESCs) is maintained by the regulated expression of core pluripotency factors. Expression levels of the core pluripotency factor Nanog are tightly regulated by a negative feedback autorepression loop. However, it remains unclear how ESCs perceive NANOG levels and execute autorepression. Here, we show that a dose‐dependent induction of Fgfbp1 and Fgfr2 by NANOG activates autocrine‐mediated ERK signaling in Nanog‐high cells to trigger autorepression. pERK recruits NONO to the Nanog locus to repress transcription by preventing POL2 loading. This Nanog autorepression process establishes a self‐perpetuating reciprocal NANOG‐pERK regulatory circuit. We further demonstrate that this reciprocal regulatory circuit induces pERK heterogeneity and ERK signaling dynamics in pluripotent stem cells. Collectively our data suggest that NANOG induces Fgfr2 and Fgfbp1 to activate ERK signaling in Nanog‐high cells to establish a NANOG‐pERK reciprocal regulatory circuit. This circuit regulates ERK signaling dynamics and Nanog autoregulation in pluripotent cells.
Collapse
Affiliation(s)
- Hanuman T Kale
- CSIR‐Centre for Cellular and Molecular Biology Hyderabad India
| | | | - Debabrata Jana
- CSIR‐Centre for Cellular and Molecular Biology Hyderabad India
| | - Vijay V Vishnu
- CSIR‐Centre for Cellular and Molecular Biology Hyderabad India
| | - Mansi Srivastava
- CSIR‐Centre for Cellular and Molecular Biology Hyderabad India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Preeti R Mourya
- CSIR‐Centre for Cellular and Molecular Biology Hyderabad India
| | - Gunda Srinivas
- CSIR‐Centre for Cellular and Molecular Biology Hyderabad India
| | - P Chandra Shekar
- CSIR‐Centre for Cellular and Molecular Biology Hyderabad India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
9
|
HER2 G776S mutation promotes oncogenic potential in colorectal cancer cells when accompanied by loss of APC function. Sci Rep 2022; 12:9213. [PMID: 35654814 PMCID: PMC9163061 DOI: 10.1038/s41598-022-13189-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 05/04/2022] [Indexed: 12/03/2022] Open
Abstract
Clinical cancer genome sequencing detects oncogenic variants that are potential targets for cancer treatment, but it also detects variants of unknown significance. These variants may interact with each other to influence tumor pathophysiology, however, such interactions have not been fully elucidated. Additionally, the effect of target therapy for those variants also unclarified. In this study, we investigated the biological functions of a HER2 mutation (G776S mutation) of unknown pathological significance, which was detected together with APC mutation by cancer genome sequencing of samples from a colorectal cancer (CRC) patient. Transfection of the HER2 G776S mutation alone slightly increased the kinase activity and phosphorylation of HER2 protein, but did not activate HER2 downstream signaling or alter the cell phenotype. On the other hand, the HER2 G776S mutation was shown to have strong oncogenic potential when loss of APC function was accompanied. We revealed that loss of APC function increased Wnt pathway activity but also increased RAS–GTP, which increased ERK phosphorylation triggered by HER2 G776S transfection. In addition, afatinib, a pan-HER tyrosine kinase inhibitor, suppressed tumor growth in xenografts derived from HER2 G776S-transfected CRC cells. These findings suggest that this HER2 mutation in CRC may be a potential therapeutic target.
Collapse
|
10
|
Lojk J, Marc J. Roles of Non-Canonical Wnt Signalling Pathways in Bone Biology. Int J Mol Sci 2021; 22:10840. [PMID: 34639180 PMCID: PMC8509327 DOI: 10.3390/ijms221910840] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 01/15/2023] Open
Abstract
The Wnt signalling pathway is one of the central signalling pathways in bone development, homeostasis and regulation of bone mineral density. It consists of numerous Wnt ligands, receptors and co-receptors, which ensure tight spatiotemporal regulation of Wnt signalling pathway activity and thus tight regulation of bone tissue homeostasis. This enables maintenance of optimal mineral density, tissue healing and adaptation to changes in bone loading. While the role of the canonical/β-catenin Wnt signalling pathway in bone homeostasis is relatively well researched, Wnt ligands can also activate several non-canonical, β-catenin independent signalling pathways with important effects on bone tissue. In this review, we will provide a thorough overview of the current knowledge on different non-canonical Wnt signalling pathways involved in bone biology, focusing especially on the pathways that affect bone cell differentiation, maturation and function, processes involved in bone tissue structure regulation. We will describe the role of the two most known non-canonical pathways (Wnt/planar cell polarity pathways and Wnt/Ca2+ pathway), as well as other signalling pathways with a strong role in bone biology that communicate with the Wnt signalling pathway through non-canonical Wnt signalling. Our goal is to bring additional attention to these still not well researched but important pathways in the regulation of bone biology in the hope of prompting additional research in the area of non-canonical Wnt signalling pathways.
Collapse
Affiliation(s)
- Jasna Lojk
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Janja Marc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia;
- University Clinical Center Ljubljana, Clinical Department of Clinical Chemistry and Biochemistry, 1000 Ljubljana, Slovenia
| |
Collapse
|
11
|
Truong VL, Jeong WS. Hair Growth-Promoting Mechanisms of Red Ginseng Extract through Stimulating Dermal Papilla Cell Proliferation and Enhancing Skin Health. Prev Nutr Food Sci 2021; 26:275-284. [PMID: 34737988 PMCID: PMC8531430 DOI: 10.3746/pnf.2021.26.3.275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/21/2021] [Accepted: 05/30/2021] [Indexed: 01/24/2023] Open
Abstract
This study aimed to investigate the underlying mechanisms of red ginseng extract (RGE) on regulating hair growth and hair follicle development. Results from in vitro studies showed that RGE treatment simultaneously enhanced viability and inhibited apoptosis in human hair dermal papilla cells. Moreover, RGE administration promoted telogen-to-anagen transition, prolonged anagen in hair follicular cycling, and increased the size of hair follicles and skin thickness in a C57BL/6 mouse model. Furthermore, RGE treatment significantly upregulated the expression of β-catenin, phospho-glycogen synthase kinase 3β, cyclin D1, cyclin E, and Bcl-2, phospho-extracellular signal-regulated protein kinase, and phospho-Akt, which are associated with promoting hair growth. In addition, RGE enhanced skin health by activation of antiox-idant defense systems. Our data demonstrates that hair regenerative mechanisms of RGE may be mediated by stimulating dermal papilla cell proliferation and enhancing skin functions.
Collapse
Affiliation(s)
- Van-Long Truong
- Food and Bio-industry Research Institute, School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Woo-Sik Jeong
- Food and Bio-industry Research Institute, School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
12
|
Scavo MP, Rizzi F, Depalo N, Armentano R, Coletta S, Serino G, Fanizza E, Pesole PL, Cervellera A, Carella N, Curri ML, Giannelli G. Exosome Released FZD10 Increases Ki-67 Expression via Phospho-ERK1/2 in Colorectal and Gastric Cancer. Front Oncol 2021; 11:730093. [PMID: 34671555 PMCID: PMC8522497 DOI: 10.3389/fonc.2021.730093] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022] Open
Abstract
Frizzled (FZD) proteins are primary receptors for Wnt signaling that activates the mitogen-activated protein kinase (MAPK) pathways. Dysfunction of Wnt signals with consequently abnormal activation of MAPK3 pathways was found in colorectal cancer (CRC) and gastric cancer (GC). Upregulation of FZD10 protein, localized in the exosomes isolated from plasma of CRC and GC patients, was associated with a poor prognosis. Herein, the expression levels of circulating FZD10 were found to be strongly correlated to their expression levels in the corresponding tissues in CRC and GC patients. Bioinformatic prediction revealed a link between FZD10 and Ki-67 through MAPK3. In both CRC and GC tissues, pERK1/2 levels were significantly increased at more advanced disease stages, and pERK1/2 and Ki-67 were correlated. Silencing of FZD10 in CRC and GC cells resulted in a significant reduction of pERK1/2 and Ki-67 expression, while subsequent treatment with exogenous exosomes partially restored their expression levels. The strong correlation between the expression of Ki-67 in tissues and of FZD10 in exosomes suggests that the exosome-delivered FZD10 may be a promising novel prognostic and diagnostic biomarker for CRC and GC.
Collapse
Affiliation(s)
- Maria Principia Scavo
- Personalized Medicine Laboratory, National Institute of Gastroenterology “S. De Bellis” Research Hospital, Bari, Italy
| | - Federica Rizzi
- University of Bari “A. Moro,” Chemistry Department, Bari, Italy
- Institute for Chemical–Physical Processes (IPCF)–National Research Council Secondary Site (CNR SS) Bari, Bari, Italy
| | - Nicoletta Depalo
- Institute for Chemical–Physical Processes (IPCF)–National Research Council Secondary Site (CNR SS) Bari, Bari, Italy
| | - Raffaele Armentano
- Department of Pathology, National Institute of Gastroenterology “S. de Bellis,” Research Hospital, Bari, Italy
| | - Sergio Coletta
- Department of Pathology, National Institute of Gastroenterology “S. de Bellis,” Research Hospital, Bari, Italy
| | - Grazia Serino
- Experimental Immunopathology Laboratory, National Institute of Gastroenterology “S. de Bellis,” Research Hospital, Bari, Italy
| | - Elisabetta Fanizza
- University of Bari “A. Moro,” Chemistry Department, Bari, Italy
- Institute for Chemical–Physical Processes (IPCF)–National Research Council Secondary Site (CNR SS) Bari, Bari, Italy
| | - Pasqua Letizia Pesole
- Laboratory of Clinical Pathology, National Institute of Gastroenterology, “S de Bellis” Research Hospital, Bari, Italy
| | - Alessandra Cervellera
- Laboratory of Clinical Pathology, National Institute of Gastroenterology, “S de Bellis” Research Hospital, Bari, Italy
| | - Nicola Carella
- Laboratory of Clinical Pathology, National Institute of Gastroenterology, “S de Bellis” Research Hospital, Bari, Italy
| | - Maria Lucia Curri
- University of Bari “A. Moro,” Chemistry Department, Bari, Italy
- Institute for Chemical–Physical Processes (IPCF)–National Research Council Secondary Site (CNR SS) Bari, Bari, Italy
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology “S. De Bellis” Research Hospital, Bari, Italy
| |
Collapse
|
13
|
Predicting Agents That Can Overcome 5-FU Resistance in Colorectal Cancers via Pharmacogenomic Analysis. Biomedicines 2021; 9:biomedicines9080882. [PMID: 34440086 PMCID: PMC8389646 DOI: 10.3390/biomedicines9080882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/05/2023] Open
Abstract
5-Fluorouracil (5-FU) is one of several chemotherapeutic agents in clinical use as a standard of care to treat colorectal cancers (CRCs). As an antimetabolite, 5-FU inhibits thymidylate synthase to disrupt the synthesis and repair of DNA and RNA. However, only a small proportion of patients benefit from 5-FU treatment due to the development of drug resistance. This study applied pharmacogenomic analysis using two public resources, the Genomics of Drug Sensitivity in Cancer (GDSC) and the Connectivity Map, to predict agents overcoming 5-FU resistance in CRC cells based on their genetic background or gene expression profile. Based on the genetic status of adenomatous polyposis coli (APC), the most frequent mutated gene found in CRC, we found that combining a MEK inhibitor with 5-FU exhibited synergism effects on CRC cells with APC truncations. While considering the gene expression in 5-FU resistant cells, we demonstrated that targeting ROCK is a potential avenue to restore 5-FU response to resistant cells with wild-type APC background. Our results reveal MEK signaling plays a pivotal role in loss-of-function, APC-mediated 5-FU resistance, and ROCK activation serves as a signature in APC-independent 5-FU resistance. Through the use of these available database resources, we highlight possible approaches to predict potential drugs for combinatorial therapy for patients developing resistance to 5-FU treatment.
Collapse
|
14
|
Wnt-Dependent Activation of ERK Mediates Repression of Chondrocyte Fate during Calvarial Development. J Dev Biol 2021; 9:jdb9030023. [PMID: 34199092 PMCID: PMC8293402 DOI: 10.3390/jdb9030023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 01/05/2023] Open
Abstract
Wnt signaling regulates cell fate decisions in diverse contexts during development, and loss of Wnt signaling in the cranial mesenchyme results in a robust and binary cell fate switch from cranial bone to ectopic cartilage. The Extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) and Wnt signaling pathways are activated during calvarial osteoblast cell fate selection. Here, we test the hypothesis that ERK signaling is a mediator of Wnt-dependent cell fate decisions in the cranial mesenchyme. First, we show that loss of Erk1/2 in the cranial mesenchyme results in a diminished domain of osteoblast marker expression and increased expression of cartilage fate markers and ectopic cartilage formation in the frontal bone primordia. Second, we show that mesenchyme Wnt/β-catenin signaling and Wntless are required for ERK activation in calvarial osteoblasts. Third, we demonstrate that Wnt and ERK signaling pathways function together to repress SOX9 expression in mouse cranial mesenchyme. Our results demonstrate an interaction between the Wnt and ERK signaling pathways in regulating lineage selection in a subset of calvarial cells and provide new insights into Wnt-dependent cell fate decisions.
Collapse
|
15
|
El Sabeh M, Saha SK, Afrin S, Islam MS, Borahay MA. Wnt/β-catenin signaling pathway in uterine leiomyoma: role in tumor biology and targeting opportunities. Mol Cell Biochem 2021; 476:3513-3536. [PMID: 33999334 DOI: 10.1007/s11010-021-04174-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
Uterine leiomyoma is the most common tumor of the female reproductive system and originates from a single transformed myometrial smooth muscle cell. Despite the immense medical, psychosocial, and financial impact, the exact underlying mechanisms of leiomyoma pathobiology are poorly understood. Alterations of signaling pathways are thought to be instrumental in leiomyoma biology. Wnt/β-catenin pathway appears to be involved in several aspects of the genesis of leiomyomas. For example, Wnt5b is overexpressed in leiomyoma, and the Wnt/β-catenin pathway appears to mediate the role of MED12 mutations, the most common mutations in leiomyoma, in tumorigenesis. Moreover, Wnt/β-catenin pathway plays a paracrine role where estrogen/progesterone treatment of mature myometrial or leiomyoma cells leads to increased expression of Wnt11 and Wnt16, which induces proliferation of leiomyoma stem cells and tumor growth. Constitutive activation of β-catenin leads to myometrial hyperplasia and leiomyoma-like lesions in animal models. Wnt/β-catenin signaling is also closely involved in mechanotransduction and extracellular matrix regulation and relevant alterations in leiomyoma, and crosstalk is noted between Wnt/β-catenin signaling and other pathways known to regulate leiomyoma development and growth such as estrogen, progesterone, TGFβ, PI3K/Akt/mTOR, Ras/Raf/MEK/ERK, IGF, Hippo, and Notch signaling. Finally, evidence suggests that inhibition of the canonical Wnt pathway using β-catenin inhibitors inhibits leiomyoma cell proliferation. Understanding the molecular mechanisms of leiomyoma development is essential for effective treatment. The specific Wnt/β-catenin pathway molecules discussed in this review constitute compelling candidates for therapeutic targeting.
Collapse
Affiliation(s)
- Malak El Sabeh
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Subbroto Kumar Saha
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Sadia Afrin
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Md Soriful Islam
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Mostafa A Borahay
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA.
| |
Collapse
|
16
|
Li X, Huang K, Liu X, Ruan H, Ma L, Liang J, Cui Y, Wang Y, Wu S, Li H, Wei Y, Li Z, Gao J, Yang B, Li X, Yang G, Zhou H, Yang C. Ellagic Acid Attenuates BLM-Induced Pulmonary Fibrosis via Inhibiting Wnt Signaling Pathway. Front Pharmacol 2021; 12:639574. [PMID: 33912053 PMCID: PMC8072668 DOI: 10.3389/fphar.2021.639574] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/23/2021] [Indexed: 12/25/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive lung disease with high mortality and limited therapy that is characterized by epithelial cell damage and fibroblast activation. Ellagic acid is a natural polyphenol compound widely found in fruits and nuts that has multiple pharmacological activities. In this study, we explored the potential effects and mechanisms of Ellagic acid on pulmonary fibrosis in vivo and in vitro. In vivo studies showed that Ellagic acid significantly alleviated bleomycin (BLM)-induced pulmonary fibrosis in mice. In vitro experiments indicated that Ellagic acid could suppress Wnt signaling and attenuate Wnt3a-induced myofibroblast activation and the phosphorylation of Erk2 and Akt. Further studies showed that Ellagic acid could induce autophagy formation in myofibroblasts mainly by suppressing mTOR signaling and promoting apoptosis of myofibroblasts. In vivo experiments revealed that Ellagic acid significantly inhibited myofibroblast activation and promoted autophagy formation. Taken together, our results show that Ellagic acid effectively attenuates BLM-induced pulmonary fibrosis in mice by suppressing myofibroblast activation and promoting autophagy and apoptosis of myofibroblasts by inhibiting the Wnt signaling pathway.
Collapse
Affiliation(s)
- Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Kai Huang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Xiaowei Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Hao Ruan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Ling Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Jingjing Liang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yunyao Cui
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yanhua Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Shuyang Wu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Hailong Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yuli Wei
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Zeping Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Jingjing Gao
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Bo Yang
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Xiaoping Li
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Guang Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| |
Collapse
|
17
|
BCL9/BCL9L promotes tumorigenicity through immune-dependent and independent mechanisms in triple negative breast cancer. Oncogene 2021; 40:2982-2997. [PMID: 33767438 DOI: 10.1038/s41388-021-01756-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/01/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
Abstract
Treatment of patients with triple-negative breast cancer (TNBC) has been challenging due to a lack of well-defined molecular targets. The Wnt/β-catenin pathway is known to be activated in many TNBC patients and BCL9 and BCL9L are important transcriptional co-activators of β-catenin, but whether inhibition of BCL9/BCL9L can suppress TNBC growth and the underlying mechanism are not fully understood. Here we demonstrate that the expression of BCL9 and BCL9L is directly correlated with malignancy in TNBC patient tumors and that BCL9 and BCL9L promote tumor cell growth, cell migration and metastasis in TNBC models. Mechanistically, we found that BCL9/BCL9L promotes tumorigenicity through both the Wnt and TGF-β pathways. Besides, BCL9/BCL9L expression inversely correlates with CD8+ T cell infiltration in TNBC and BCL9/BCL9L inhibits the infiltration of CD8+ T cells in the tumor microenvironment. hsBCL9CT-24, an inhibitor of BCL9/β-catenin peptides, promotes intratumoral infiltration of cytotoxic T cells, reducing regulatory T cells (Treg) and increasing dendritic cells (DCs). Inhibition of BCL9/BCL9L and TGF-β suppresses activity of Treg. TGF-β signaling increases tumor infiltration of cytotoxic CD8+ T cells. In accordance, genetic or pharmacological inhibition of BCL9/BCL9L synergizes with PD-1/L1 antibodies to inhibit tumor growth. In summary, these results suggest that targeting BCL9/BCL9L has a direct anti-tumor effect and also unleashes an anti-cancer immune response through inhibition of both Wnt and TGF-β signaling, suggesting a viable therapeutic approach for TNBC treatment.
Collapse
|
18
|
Fundamental insights into the interaction between telomerase/TERT and intracellular signaling pathways. Biochimie 2020; 181:12-24. [PMID: 33232793 DOI: 10.1016/j.biochi.2020.11.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 11/07/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Telomerase activity is critical for cancer cells to provide unrestricted proliferation and cellular immortality through maintaining telomeres. Telomerase enzymatic activity is regulatable at the level of DNA, mRNA, post translational modifications, cellular transport and enzyme assembly. More recent studies confirm the interaction of the telomerase with various intracellular signaling pathways including PI3K/AKT/mTOR, NF-κB and Wnt/β-catenin which mainly participating in inflammation, epithelial to mesenchymal transition (EMT) and tumor cell invasion and metastasis. Furthermore, hTERT protein has been detected in non-nuclear sites such as the mitochondria and cytoplasm in cells. Mitochondrial TERT indicates various non-telomere-related functions such as decreasing reactive oxygen species (ROS) generation, boosting the respiration rate, protecting mtDNA by direct binding, interacting with mitochondrial tRNAs and increasing mitochondrial membrane potential which can lead to higher chemoresistance rate in cancer cells during therapies. Understanding the molecular mechanisms of the TERT function and depended interactions in tumor cells can suggest novel therapeutic approaches. Hence, in this review we will explain the telomerase activity regulation in translational and post translational levels besides the established correlations with various cell signaling pathways with possible pathways for therapeutic targeting.
Collapse
|
19
|
Wang H, Li M, Cui H, Song X, Sha Q. CircDHDDS/miR-361-3p/WNT3A Axis Promotes the Development of Retinoblastoma by Regulating Proliferation, Cell Cycle, Migration, and Invasion of Retinoblastoma Cells. Neurochem Res 2020; 45:2691-2702. [DOI: 10.1007/s11064-020-03112-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023]
|
20
|
Zhang X, Bandyopadhyay S, Araujo LP, Tong K, Flores J, Laubitz D, Zhao Y, Yap G, Wang J, Zou Q, Ferraris R, Zhang L, Hu W, Bonder EM, Kiela PR, Coffey R, Verzi MP, Ivanov II, Gao N. Elevating EGFR-MAPK program by a nonconventional Cdc42 enhances intestinal epithelial survival and regeneration. JCI Insight 2020; 5:135923. [PMID: 32686657 PMCID: PMC7455142 DOI: 10.1172/jci.insight.135923] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/09/2020] [Indexed: 01/05/2023] Open
Abstract
The regulatory mechanisms enabling the intestinal epithelium to maintain a high degree of regenerative capacity during mucosal injury remain unclear. Ex vivo survival and clonogenicity of intestinal stem cells (ISCs) strictly required growth response mediated by cell division control 42 (Cdc42) and Cdc42-deficient enteroids to undergo rapid apoptosis. Mechanistically, Cdc42 engaging with EGFR was required for EGF-stimulated, receptor-mediated endocytosis and sufficient to promote MAPK signaling. Proteomics and kinase analysis revealed that a physiologically, but nonconventionally, spliced Cdc42 variant 2 (V2) exhibited stronger MAPK-activating capability. Human CDC42-V2 is transcriptionally elevated in some colon tumor tissues. Accordingly, mice engineered to overexpress Cdc42-V2 in intestinal epithelium showed elevated MAPK signaling, enhanced regeneration, and reduced mucosal damage in response to irradiation. Overproducing Cdc42-V2 specifically in mouse ISCs enhanced intestinal regeneration following injury. Thus, the intrinsic Cdc42-MAPK program is required for intestinal epithelial regeneration, and elevating this signaling cascade is capable of initiating protection from genotoxic injury.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Biological Sciences, Division of Life Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey, USA
| | - Sheila Bandyopadhyay
- Department of Biological Sciences, Division of Life Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey, USA
| | - Leandro Pires Araujo
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Kevin Tong
- Department of Genetics, Division of Life Sciences, School of Arts and Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Juan Flores
- Department of Biological Sciences, Division of Life Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey, USA
| | - Daniel Laubitz
- Department of Pediatrics, University of Arizona, Tucson, Arizona, USA
| | - Yanlin Zhao
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - George Yap
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Jingren Wang
- Department of Mechanical and Aerospace Engineering, School of Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Qingze Zou
- Department of Mechanical and Aerospace Engineering, School of Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Ronaldo Ferraris
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Lanjing Zhang
- Department of Biological Sciences, Division of Life Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey, USA
- Department of Pathology, University Medical Center of Princeton, Plainsboro, New Jersey, USA
| | - Wenwei Hu
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Edward M. Bonder
- Department of Biological Sciences, Division of Life Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey, USA
| | - Pawel R. Kiela
- Department of Pediatrics, University of Arizona, Tucson, Arizona, USA
| | - Robert Coffey
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael P. Verzi
- Department of Genetics, Division of Life Sciences, School of Arts and Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Ivaylo I. Ivanov
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Nan Gao
- Department of Biological Sciences, Division of Life Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
21
|
Yuan S, Gopal JV, Ren S, Chen L, Liu L, Gao Z. Anticancer fungal natural products: Mechanisms of action and biosynthesis. Eur J Med Chem 2020; 202:112502. [PMID: 32652407 DOI: 10.1016/j.ejmech.2020.112502] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 01/07/2023]
Abstract
Many fungal metabolites show promising anticancer properties both in vitro and in animal models, and some synthetic analogs of those metabolites have progressed into clinical trials. However, currently, there are still no fungi-derived agents approved as anticancer drugs. Two potential reasons could be envisioned: 1) lacking a clear understanding of their anticancer mechanism of action, 2) unable to supply enough materials to support the preclinical and clinic developments. In this review, we will summarize recent efforts on elucidating the anticancer mechanisms and biosynthetic pathways of several promising anticancer fungal natural products.
Collapse
Affiliation(s)
- Siwen Yuan
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jannu Vinay Gopal
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shuya Ren
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Litong Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Zhizeng Gao
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
22
|
Hu C, Zhao YT, Cui YB, Zhang HH, Huang GL, Liu Y, Liu YF. Wnt/beta-Catenin Signaling Contributes to Vincristine-Induced Neuropathic Pain. Physiol Res 2020; 69:701-710. [PMID: 32584132 DOI: 10.33549/physiolres.934314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chemotherapy-induced neuropathic pain (CNP) is the major dose-limiting factor in cancer chemotherapy. However, the mechanisms underlying CNP remain elusive. In the present study, CNP was induced by repeated intraperitoneal injection of vincristine (VCR) into male C57BL/6J mice. VCR administration caused significant activation of Wnt/beta-catenin signaling, which led to the activation of astrocytes, microglia, the release of inflammatory cytokines tumour necrosis factor (TNF)-alpha, monocyte chemoattractant protein-1 (MCP-1) and the activation of subsequent mitogen-activated protein kinase (MAPK)/extracellular signal-regulated protein kinase (ERK) signaling pathway in CNP mice. Blocking Wnt/beta-catenin signaling by intrathecal administration of the inhibitors of Wnt response (IWR) effectively attenuated VCR-induced neuropathic pain. Furthermore, IWR inhibited the activation of astrocytes, microglia, TNF-alpha, MCP-1 and MAPK/ERK signaling in the spinal cord, which was triggered by VCR-induced Wnt/beta-catenin signaling upregulation. These results suggest that Wnt/beta-catenin signaling plays a critical role in VCR-induced neuropathic pain and provides evidence for potential interfering with Wnt/beta-catenin signaling to ameliorate VCR-induced neuropathic pain.
Collapse
Affiliation(s)
- C Hu
- Department of Bioengineering, College of Food Science, Guangdong Ocean University, Zhanjiang, Guangdong, China. , College of Agriculture, Guangdong Ocean University, Zhanjiang, Guangdong, China.
| | | | | | | | | | | | | |
Collapse
|
23
|
Shankar G. M, Alex VV, Nisthul A. A, Bava SV, Sundaram S, Retnakumari AP, Chittalakkottu S, Anto RJ. Pre-clinical evidences for the efficacy of tryptanthrin as a potent suppressor of skin cancer. Cell Prolif 2020; 53:e12710. [PMID: 31663659 PMCID: PMC6985671 DOI: 10.1111/cpr.12710] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/22/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Clinical trials have demonstrated the efficacy of indigo naturalis, a traditional Chinese medicine ingredient, against psoriasis, a skin disease characterized by keratinocyte hyperproliferation and inflammation. The present study investigates the efficacy of tryptanthrin, a bioactive compound in indigo naturalis, against non-melanoma skin cancer (NMSC) and the signalling events involved. METHODS Efficacy of tryptanthrin against NMSC was assessed using DMBA/PMA-induced skin carcinogenesis model in Swiss albino mice. Immunostaining for PCNA and ki-67 was used to mark proliferating cells in tissues. Haematoxylin and eosin staining and toluidine staining were employed to assess inflammation, and TUNEL assay was used to detect apoptosis in tissues. The signalling events were evaluated using Western blot, imunohistochemistry and immunofluorescence staining. MTT assay and clonogenic assay were performed to assess the viability and proliferation of cancer cells, in vitro. RESULTS In mice, topical application of tryptanthrin suppressed skin carcinogenesis. It attenuated inflammation, impeded the proliferation of hair follicle (HF) cells and suppressed the activation of β-catenin, a major driver of HF cell proliferation. Additionally tryptanthrin suppressed the activation of ERK1/2 and p38, both of which promote β-catenin activation and lowered the expression of c-Myc and cyclin-D1. Tryptanthrin suppressed the proliferation of the human NMSC cell line, A431 and abrogated EGF-induced activation of β-catenin and subsequent cytoskeletal rearrangement. CONCLUSION The study demonstrates with molecular evidence that tryptanthrin is an effective suppressor of NMSC.
Collapse
Affiliation(s)
- Mohan Shankar G.
- Division of Cancer ResearchRajiv Gandhi Centre for BiotechnologyThiruvananthapuramKeralaIndia
- Research ScholarManipal Academy of Higher EducationManipalKarnatakaIndia
| | - Vijai V. Alex
- Division of Cancer ResearchRajiv Gandhi Centre for BiotechnologyThiruvananthapuramKeralaIndia
| | - Amrutha Nisthul A.
- Department of Biotechnology and MicrobiologyKannur UniversityKannurKeralaIndia
| | - Smitha V. Bava
- Department of BiotechnologyUniversity of CalicutCalicutKeralaIndia
| | - Sankar Sundaram
- Department of PathologyGovernment Medical CollegeKottayamKeralaIndia
| | - Archana P. Retnakumari
- Division of Cancer ResearchRajiv Gandhi Centre for BiotechnologyThiruvananthapuramKeralaIndia
| | | | - Ruby John Anto
- Division of Cancer ResearchRajiv Gandhi Centre for BiotechnologyThiruvananthapuramKeralaIndia
| |
Collapse
|
24
|
Kim SM, Kim EM, Ji KY, Lee HY, Yee SM, Woo SM, Yi JW, Yun CH, Choi H, Kang HS. TREM2 Acts as a Tumor Suppressor in Colorectal Carcinoma through Wnt1/ β-catenin and Erk Signaling. Cancers (Basel) 2019; 11:cancers11091315. [PMID: 31489935 PMCID: PMC6770495 DOI: 10.3390/cancers11091315] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 01/22/2023] Open
Abstract
TREM2 (triggering receptor expressed on myeloid cells) is involved in the development of malignancies. However, the function of TREM2 in colorectal cancer has not been clearly elucidated. Here, we investigated TREM2 function for the first time in colorectal epithelial cancer cells and demonstrated that TREM2 is a novel tumor suppressor in colorectal carcinoma. Blockade of TREM2 significantly promoted the proliferation of HT29 colorectal carcinoma cells by regulating cell cycle-related factors, such as p53 phosphorylation and p21 and cyclin D1 protein levels. HT29 cell migration was also increased by TREM2 inhibition via MMP9 (matrix metalloproteinase 9) expression upregulation. Furthermore, we found that the tumor suppressor effects of TREM2 were associated with Wnt/β-catenin and extracellular signal-regulated kinase (ERK) signaling. Importantly, the effect of TREM2 in the suppression of tumor development was demonstrated by in vivo and in vitro assays, as well as in human colon cancer patient tissue arrays. Overall, our results identify TREM2 as a potential prognostic biomarker and therapeutic target for colorectal cancer.
Collapse
Affiliation(s)
- Su-Man Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Korea.
| | - Eun-Mi Kim
- Korea Institute of Toxicology, Daejeon, 34114, Korea.
| | - Kon-Young Ji
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Hwa-Youn Lee
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 701-310, Korea.
| | - Su-Min Yee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Korea.
| | - Su-Min Woo
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Korea.
| | - Ja-Woon Yi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Korea.
| | - Chul-Ho Yun
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Korea.
| | - Harim Choi
- Department of Nursing, Nambu University, Gwangju 506-706, Korea.
| | - Hyung-Sik Kang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Korea.
| |
Collapse
|
25
|
Neurokinin-1 Receptor Antagonists against Hepatoblastoma. Cancers (Basel) 2019; 11:cancers11091258. [PMID: 31466222 PMCID: PMC6770178 DOI: 10.3390/cancers11091258] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/03/2019] [Accepted: 08/21/2019] [Indexed: 12/30/2022] Open
Abstract
Hepatoblastoma (HB) is the most common malignant liver tumor that occurs during childhood. The prognosis of children with HB is favorable when a complete surgical resection of the tumor is possible, but for high-risk patients, the prognosis is much worse. New anti-HB strategies must be urgently developed. The undecapeptide substance P (SP) after binding to the neurokinin-1 receptor (NK-1R), regulates cancer cell proliferation, exerts an antiapoptotic effect, induces cell migration for invasion/metastasis, and triggers endothelial cell proliferation for neoangiogenesis. HB samples and cell lines overexpress NK-1R (the truncated form) and SP elicits HB cell proliferation. One of these strategies could be the use of non-peptide NK-1R antagonists. These antagonists exert, in a concentration-dependent manner, an antiproliferative action against HB cells (inhibit cell proliferation and induce the death of HB cells by apoptosis). NK-1R antagonists exerted a dual effect in HB: Decreased both tumor volume and angiogenic activity. Thus, the SP/NK-1R system is an important target in the HB treatment and NK-1R antagonists could act as specific drugs against HB cells. In this review, we update and discuss the use of NK-1R antagonists in the treatment of HB.
Collapse
|
26
|
Jiao R, Chen H, Wan Q, Zhang X, Dai J, Li X, Yan L, Sun Y. Apigenin inhibits fibroblast proliferation and reduces epidural fibrosis by regulating Wnt3a/β-catenin signaling pathway. J Orthop Surg Res 2019; 14:258. [PMID: 31412883 PMCID: PMC6694561 DOI: 10.1186/s13018-019-1305-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Failed back surgery syndrome (FBSS) is a common complication after the laminectomy. Epidural fibrosis is the major cause of lower back pain and other complications. Numerous studies have shown that apigenin (API) could treat various fibrotic diseases by regulating various signaling pathways, whereas no study has discussed whether API can inhibit fibroblast proliferation and reduce epidural fibrosis after the laminectomy by regulating Wnt3a/β-catenin signaling pathway. METHODS Human fibroblasts were cultured and treated with API in different concentrations for 24 h. CCK-8 detection and EdU incorporation assay were performed to detect cell viability and cell proliferation. Western blotting analysis was applied to detect expressions of proliferative proteins, Wnt3a, and its downstream proteins. Moreover, the Wnt3a gene was overexpressed in fibroblasts to define the relationship between Wnt3a/β-catenin signaling pathway and fibroblast proliferation. Wnt3a overexpressed fibroblasts were treated with API to verify if it could reverse the effects of API treatment. Twenty-four Sprague-Dawley rats were randomly divided into four groups. Laminectomy was performed and the rats were gavaged with different doses of API or 5% sodium carboxyl methyl cellulose (CMC-Na) solution for 1 month. The abilities of API to inhibit fibroblast proliferation and to reduce epidural fibrosis were evaluated using histological and immunohistochemical analysis. RESULTS CCK-8 detection and EdU incorporation assay demonstrated that API could inhibit the viability and proliferation rate of fibroblasts in a concentration-dependent manner. The Western blotting analysis revealed that API could inhibit the expressions of PCNA, cyclinD1, Wnt3a, and its downstream proteins. The overexpression of Wnt3a in fibroblasts could upregulate the expressions of proliferative proteins such as PCNA and cyclinD1. The inhibitory effect of API on PCNA, Wnt3a, and its downstream proteins was partially reversed by overexpression of Wnt3a. Moreover, the results of the histological and immunohistochemical analysis revealed that API could reduce the epidural fibrosis in rats by inhibiting fibroblast proliferation in a dose-dependent manner. CONCLUSIONS API can inhibit fibroblast proliferation and reduce epidural fibrosis by suppressing Wnt3a/β-catenin signaling pathway, which can be adopted as a new option to prevent epidural fibrosis after the laminectomy.
Collapse
Affiliation(s)
- Rui Jiao
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Orthopaedic Institute, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Hui Chen
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Orthopaedic Institute, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Qi Wan
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Orthopaedic Institute, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Xiaobo Zhang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Orthopaedic Institute, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Jihang Dai
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Orthopaedic Institute, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Xiaolei Li
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Orthopaedic Institute, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Lianqi Yan
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Orthopaedic Institute, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Yu Sun
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Orthopaedic Institute, Northern Jiangsu People's Hospital, Yangzhou, 225001, China.
| |
Collapse
|
27
|
Role of Wnt3a in the pathogenesis of cancer, current status and prospective. Mol Biol Rep 2019; 46:5609-5616. [PMID: 31236761 DOI: 10.1007/s11033-019-04895-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 05/24/2019] [Indexed: 12/18/2022]
Abstract
The Wnt signaling pathway plays a critical role in initiation, progression, invasion and metastasis of cancer. Wnt3a as a canonical Wnt ligand is strongly implicated in the etiology and pathology of a number of diseases including cancer. Depending on cancer type, Wnt3a enhances or suppresses metastasis, cell proliferation and apoptosis of cancer cells. This review summarizes the role of Wnt3a in the pathogenesis of different cancers including colorectal, prostate, hepatocellular, lung and leukemia, for promoting greater understanding and clinical management of these diseases.
Collapse
|
28
|
Chen D, Yu F, Wu F, Bai M, Lou F, Liao X, Wang C, Ye L. The role of Wnt7B in the mediation of dentinogenesis via the ERK1/2 pathway. Arch Oral Biol 2019; 104:123-132. [PMID: 31181411 DOI: 10.1016/j.archoralbio.2019.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/24/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVES This study investigates the role of Wnt7b in mouse dentin formation. DESIGN C57BL/6 mouse tooth germs at different developmental stages were collected to measure the expression of Wnt7b by immunohistochemical staining. The morphology of mandibles of Dmp1-cre;ROSA26-Wnt7b transgenic mice and ROSA26-Wnt7b littermates was analyzed by Micro-CT and HE staining. The ultramicrostructure of dentin was scanned with an electron microscope. Primary mouse dental papillae cells (MDPCs) and odontoblastic cell line (A11) were cultured and infected with adenovirus to overexpress Wnt7b. Cell proliferation and cell apoptosis were evaluated using CCK-8 and flow cytometry. Osteogenic differentiation of MDPCs and A11 was assessed by Alizarin red staining, and qPCR detection of osteogenic gene expression. The activation of signaling pathways was measured by the use of western blot analysis. The ERK1/2 inhibitor was used to test the effect of Wnt7b regulated cell differentiation. RESULTS Wnt7b was expressed principally in the mouse odontoblast layer after the early bell stage. In transgenic mice, Wnt7b was over-expressed in tooth mesenchyme, with a thinner predentin layer and thicker intertubular dentin. Both the micro-hardness value and the Ca/Pi ratio of dentin of transgenic mice were higher. Wnt7b promoted proliferation and mineralization of MDPCs and A11. The protein level of p-ERK1/2 was found to be higher in A11 infected with Ad-Wnt7b. The ERK signaling pathway inhibitor partly rescued the Wnt7b-induced differentiation of A11. CONCLUSIONS Wnt7b enhances dentinogenesis by increasing the proliferation and differentiation of dental mesenchymal cells partly through ERK1/2 pathway.
Collapse
Affiliation(s)
- Dian Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Chengdu 610041, PR China
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Chengdu 610041, PR China
| | - Fanzi Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Chengdu 610041, PR China
| | - Mingru Bai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Chengdu 610041, PR China
| | - Feng Lou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Chengdu 610041, PR China
| | - Xueyang Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Chengdu 610041, PR China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Chengdu 610041, PR China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Chengdu 610041, PR China.
| |
Collapse
|
29
|
MEK inhibitors activate Wnt signalling and induce stem cell plasticity in colorectal cancer. Nat Commun 2019. [PMID: 31097693 DOI: 10.1038/s41467‐019‐09898‐0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In colorectal cancer (CRC), aberrant Wnt signalling is essential for tumorigenesis and maintenance of cancer stem cells. However, how other oncogenic pathways converge on Wnt signalling to modulate stem cell homeostasis in CRC currently remains poorly understood. Using large-scale compound screens in CRC, we identify MEK1/2 inhibitors as potent activators of Wnt/β-catenin signalling. Targeting MEK increases Wnt activity in different CRC cell lines and murine intestine in vivo. Truncating mutations of APC generated by CRISPR/Cas9 strongly synergize with MEK inhibitors in enhancing Wnt responses in isogenic CRC models. Mechanistically, we demonstrate that MEK inhibition induces a rapid downregulation of AXIN1. Using patient-derived CRC organoids, we show that MEK inhibition leads to increased Wnt activity, elevated LGR5 levels and enrichment of gene signatures associated with stemness and cancer relapse. Our study demonstrates that clinically used MEK inhibitors inadvertently induce stem cell plasticity, revealing an unknown side effect of RAS pathway inhibition.
Collapse
|
30
|
MEK inhibitors activate Wnt signalling and induce stem cell plasticity in colorectal cancer. Nat Commun 2019; 10:2197. [PMID: 31097693 PMCID: PMC6522484 DOI: 10.1038/s41467-019-09898-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 04/05/2019] [Indexed: 12/19/2022] Open
Abstract
In colorectal cancer (CRC), aberrant Wnt signalling is essential for tumorigenesis and maintenance of cancer stem cells. However, how other oncogenic pathways converge on Wnt signalling to modulate stem cell homeostasis in CRC currently remains poorly understood. Using large-scale compound screens in CRC, we identify MEK1/2 inhibitors as potent activators of Wnt/β-catenin signalling. Targeting MEK increases Wnt activity in different CRC cell lines and murine intestine in vivo. Truncating mutations of APC generated by CRISPR/Cas9 strongly synergize with MEK inhibitors in enhancing Wnt responses in isogenic CRC models. Mechanistically, we demonstrate that MEK inhibition induces a rapid downregulation of AXIN1. Using patient-derived CRC organoids, we show that MEK inhibition leads to increased Wnt activity, elevated LGR5 levels and enrichment of gene signatures associated with stemness and cancer relapse. Our study demonstrates that clinically used MEK inhibitors inadvertently induce stem cell plasticity, revealing an unknown side effect of RAS pathway inhibition. Wnt signaling is necessary for colorectal cancer tumorigenesis and stem cell maintenance. Here, the authors identify MEK1/2 inhibitors as potent activators of Wnt/β-catenin signalling and show that clinically approved MEK inhibitors inadvertently induce stem cell plasticity in colorectal cancer
Collapse
|
31
|
Zhang T, Chen H, Zhou Y, Dong W, Cai H, Tan WS. Cooperation of FGF/MEK/ERK and Wnt/β-catenin pathway regulators to promote the proliferation and pluripotency of mouse embryonic stem cells in serum- and feeder-free conditions. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0249-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
32
|
Razak S, Afsar T, Almajwal A, Alam I, Jahan S. Growth inhibition and apoptosis in colorectal cancer cells induced by Vitamin D-Nanoemulsion (NVD): involvement of Wnt/β-catenin and other signal transduction pathways. Cell Biosci 2019; 9:15. [PMID: 30733856 PMCID: PMC6359839 DOI: 10.1186/s13578-019-0277-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 01/23/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND More than the two decades, the question of whether vitamin D has a role in cancer frequency, development, and death has been premeditated in detail. Colorectal, breast, and prostate cancers have been a scrupulous spot of center, altogether, these three malignancies report for approximately 35% of cancer cases and 20% of cancer demises in the United States, and as such are a chief public health apprehension. The aim was to evaluate antitumor activity of Vitamin D-Nanoemulsion (NVD) in colorectal cancer cell lines and HCT116 xenograft model in a comprehensive approach. METHODS Two human colorectal cancer cell lines HCT116 and HT29 (gained from College of Pharmacy, King Saud University, KSA were grown. 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazoliumbromide protocol were performed to show the impact of NVD and β-catenin inhibitor (FH535) on the viability of HCT116 and HT29 cell lines. Apoptosis/cell cycle assay was performed. Analysis was done with a FACScan (Becton-Dickinson, NJ). About 10,000 cells per sample were harvested and Histograms of DNA were analyzed with ModiFitLT software (verity Software House, ME, USA). Western blotting and RT-PCR were performed for protein and gene expression respectively in in vitro and in vivo. RESULTS We found that NVD induced cytotoxicity in colorectal cells in a dose-dependent manner and time dependent approach. Further, our data validated that NVD administration of human colorectal cancer HCT116 and HT29 cells resulted in cell growth arrest, alteration in molecules regulating cell cycle operative in the G2 phase of the cell cycle and apoptosis in a dose dependent approach. Further our results concluded that NVD administration decreases expression of β-catenin gene, AKT gene and Survivin gene and protein expression in in vitro and in vivo. CONCLUSION Our findings suggest that targeting β-catenin gene may encourage the alterations of cell cycle and cell cycle regulators. Wnt/β-catenin signaling pathway possibly takes part in the genesis and progression of colorectal cancer cells through regulating cell cycle and the expression of cell cycle regulators.
Collapse
Affiliation(s)
- Suhail Razak
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Iftikhar Alam
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Sarwat Jahan
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
33
|
Lee SK, Cho YH, Cha PH, Yoon JS, Ro EJ, Jeong WJ, Park J, Kim H, Il Kim T, Min DS, Han G, Choi KY. A small molecule approach to degrade RAS with EGFR repression is a potential therapy for KRAS mutation-driven colorectal cancer resistance to cetuximab. Exp Mol Med 2018; 50:1-12. [PMID: 30459318 PMCID: PMC6244225 DOI: 10.1038/s12276-018-0182-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022] Open
Abstract
Drugs targeting the epidermal growth factor receptor (EGFR), such as cetuximab and panitumumab, have been prescribed for metastatic colorectal cancer (CRC), but patients harboring KRAS mutations are insensitive to them and do not have an alternative drug to overcome the problem. The levels of β-catenin, EGFR, and RAS, especially mutant KRAS, are increased in CRC patient tissues due to mutations of adenomatous polyposis coli (APC), which occur in 90% of human CRCs. The increases in these proteins by APC loss synergistically promote tumorigenesis. Therefore, we tested KYA1797K, a recently identified small molecule that degrades both β-catenin and Ras via GSK3β activation, and its capability to suppress the cetuximab resistance of KRAS-mutated CRC cells. KYA1797K suppressed the growth of tumor xenografts induced by CRC cells as well as tumor organoids derived from CRC patients having both APC and KRAS mutations. Lowering the levels of both β-catenin and RAS as well as EGFR via targeting the Wnt/β-catenin pathway is a therapeutic strategy for controlling CRC and other types of cancer with aberrantly activated the Wnt/β-catenin and EGFR-RAS pathways, including those with resistance to EGFR-targeting drugs attributed to KRAS mutations. A recently identified small molecule shows promise for tackling resistance to a leading colorectal cancer drug. Three proteins that are over-expressed in colorectal cancer are epidermal growth factor receptor (EGFR), RAS and β-catenin. These proteins and their interconnected signaling pathways are therefore important therapeutic targets. EGFR is the target of the drug cetuximab, but many patients are resistant to this drug attributed to mutations in a gene that influences the signaling pathways of the three key proteins. Kang-Yell Choi at Yonsei University in Seoul, South Korea, and co-workers trialed a novel molecular drug on human colorectal cancer tissues and on mice. They confirmed that the new drug leads to reduced EGFR levels by degrading RAS and β-catenin and therefore suppresses the growth of colorectal cancer cells in samples with or without the resistant mutations.
Collapse
Affiliation(s)
- Sang-Kyu Lee
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Yong-Hee Cho
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Pu-Hyeon Cha
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Jeong-Soo Yoon
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Eun Ji Ro
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Woo-Jeong Jeong
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Jieun Park
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Hyuntae Kim
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Tae Il Kim
- Department of Internal Medicine and Institute of Gastroenterology, College of Medicine, Yonsei University, Seoul, Korea
| | - Do Sik Min
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Molecular Biology, College of Natural Science, Pusan National University, Pusan, Korea
| | - Gyoonhee Han
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Kang-Yell Choi
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea. .,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea.
| |
Collapse
|
34
|
Lee SK, Jeong WJ, Cho YH, Cha PH, Yoon JS, Ro EJ, Choi S, Oh JM, Heo Y, Kim H, Min DS, Han G, Lee W, Choi KY. β-Catenin-RAS interaction serves as a molecular switch for RAS degradation via GSK3β. EMBO Rep 2018; 19:embr.201846060. [PMID: 30413483 DOI: 10.15252/embr.201846060] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 12/15/2022] Open
Abstract
RAS proteins play critical roles in various cellular processes, including growth and transformation. RAS proteins are subjected to protein stability regulation via the Wnt/β-catenin pathway, and glycogen synthase kinase 3 beta (GSK3β) is a key player for the phosphorylation-dependent RAS degradation through proteasomes. GSK3β-mediated RAS degradation does not occur in cells that express a nondegradable mutant (MT) β-catenin. Here, we show that β-catenin directly interacts with RAS at the α-interface region that contains the GSK3β phosphorylation sites, threonine 144 and threonine 148 residues. Exposure of these sites by prior β-catenin degradation is required for RAS degradation. The introduction of a peptide that blocks the β-catenin-RAS interaction by binding to β-catenin rescues the GSK3β-mediated RAS degradation in colorectal cancer (CRC) cells that express MT β-catenin. The coregulation of β-catenin and RAS stabilities by the modulation of their interaction provides a mechanism for Wnt/β-catenin and RAS-ERK pathway cross-talk and the synergistic transformation of CRC by both APC and KRAS mutations.
Collapse
Affiliation(s)
- Sang-Kyu Lee
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Woo-Jeong Jeong
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Yong-Hee Cho
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Pu-Hyeon Cha
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Jeong-Su Yoon
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Eun Ji Ro
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Sooho Choi
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Jeong-Min Oh
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Yunseok Heo
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Hyuntae Kim
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Do Sik Min
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Molecular Biology, College of Natural Science, Pusan National University, Pusan, Korea
| | - Gyoonhee Han
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Weontae Lee
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Kang-Yell Choi
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea .,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| |
Collapse
|
35
|
Aggelidakis J, Berdiaki A, Nikitovic D, Papoutsidakis A, Papachristou DJ, Tsatsakis AM, Tzanakakis GN. Biglycan Regulates MG63 Osteosarcoma Cell Growth Through a LPR6/β-Catenin/IGFR-IR Signaling Axis. Front Oncol 2018; 8:470. [PMID: 30406034 PMCID: PMC6206209 DOI: 10.3389/fonc.2018.00470] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/04/2018] [Indexed: 12/23/2022] Open
Abstract
Biglycan, a small leucine rich proteoglycan (SLRP), is an important participant in bone homeostasis and development as well as in bone pathology. In the present study biglycan was identified as a positive regulator of MG63 osteosarcoma cell growth (p ≤ 0.001). IGF-I was shown to increase biglycan expression (p ≤ 0.01), whereas biglycan-deficiency attenuated significantly both basal and IGF-I induced cell proliferation of MG63 cells (p ≤ 0.001; p ≤ 0.01, respectively). These effects were executed through the IGF-IR receptor whose activation was strongly attenuated (p ≤ 0.01) in biglycan-deficient MG63 cells. Biglycan, previously shown to regulate Wnt/β-catenin pathway, was demonstrated to induce a significant increase in β-catenin protein expression evident at cytoplasmic (p ≤ 0.01), membrane (p ≤ 0.01), and nucleus fractions in MG63 cells (p ≤ 0.05). As demonstrated by immunofluorescence, increase in β-catenin expression is attributed to co-localization of biglycan with the Wnt co-receptor low-density lipoprotein receptor-related protein 6 (LRP6) resulting in attenuated β-catenin degradation. Furthermore, applying anti-β-catenin and anti-pIGF-IR antibodies to MG-63 cells demonstrated a cytoplasmic and to the membrane interaction between these molecules that increased upon exogenous biglycan treatment. In parallel, the downregulation of biglycan significantly inhibited both basal and IGF-I-dependent ERK1/2 activation, (p ≤ 0.001). In summary, we report a novel mechanism where biglycan through a LRP6/β-catenin/IGF-IR signaling axis enhances osteosarcoma cell growth.
Collapse
Affiliation(s)
- John Aggelidakis
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Aikaterini Berdiaki
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Antonis Papoutsidakis
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Dionysios J Papachristou
- Unit of Bone and Soft Tissue Studies, Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Patras, Patras, Greece
| | - Aristidis M Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Greece
| | - George N Tzanakakis
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
36
|
HGF promotes HTR-8/SVneo cell migration through activation of MAPK/PKA signaling leading to up-regulation of WNT ligands and integrins that target β-catenin. Mol Cell Biochem 2018; 453:11-32. [DOI: 10.1007/s11010-018-3428-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/16/2018] [Indexed: 02/01/2023]
|
37
|
Wang X, Wang X, Liu Y, Dong Y, Wang Y, Kassab MA, Fan W, Yu X, Wu C. LGR5 regulates gastric adenocarcinoma cell proliferation and invasion via activating Wnt signaling pathway. Oncogenesis 2018; 7:57. [PMID: 30089773 PMCID: PMC6082861 DOI: 10.1038/s41389-018-0071-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/20/2018] [Accepted: 06/29/2018] [Indexed: 12/20/2022] Open
Abstract
LGR5 plays a critical role in tissue development and the maintenance of adult stem cells in gastrointestinal tract. However, the oncogenic role of LGR5 in the development of gastric adenocarcinoma remains elusive. Here, we show that LGR5 promotes gastric adenocarcinoma cell proliferation and metastasis. We find that knock down of LGR5 or suppression of Wnt signaling pathway by inhibitor C59 arrests gastric adenocarcinoma cell proliferation and invasion. Moreover, treatment of Wnt3a, the activator of Wnt signaling pathway, partially recovers the proliferation defect observed in LGR5 knockdown gastric adenocarcinoma cells. Moreover, LGR5 facilitates β-catenin nuclear accumulation, a surrogate marker of the activation of Wnt signaling pathway. In addition, C59 treatment suppresses transcription of Axin2 and TCF1, both of which are the target genes of β-catenin in gastric adenocarcinoma cells. Gastric adenocarcinoma cells with overexpressed LGR5 form a large quantity of visible actin filaments and pseudopods, suggesting that LGR5 significantly enhances the ability of cell movement, which might capacitate gastric adenocarcinoma cells with enhanced LGR5 expression to gain invasive and migratory properties. Taken together, our results show that LGR5 contributes to cell proliferation and invasion through the activation of Wnt/β-catenin-signaling pathway in gastric adenocarcinoma cells.
Collapse
Affiliation(s)
- Xiangfei Wang
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China
| | - Xiumin Wang
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China
| | - Yang Liu
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China
| | - Yating Dong
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China
| | - Yanan Wang
- Affiliated hospital of Hebei University, Baoding, 071002, Hebei, China
| | - Muzaffer Ahmad Kassab
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd, Duarte, CA, 91010, USA
| | - Wufang Fan
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China.
| | - Xiaochun Yu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd, Duarte, CA, 91010, USA.
| | - Chen Wu
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China.
| |
Collapse
|
38
|
Balatskyi VV, Macewicz LL, Gan AM, Goncharov SV, Pawelec P, Portnichenko GV, Lapikova-Bryginska TY, Navrulin VO, Dosenko VE, Olichwier A, Dobrzyn P, Piven OO. Cardiospecific deletion of αE-catenin leads to heart failure and lethality in mice. Pflugers Arch 2018; 470:1485-1499. [DOI: 10.1007/s00424-018-2168-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/26/2018] [Accepted: 06/11/2018] [Indexed: 02/07/2023]
|
39
|
Shin W, Lee SK, Hwang JH, Park JC, Cho YH, Ro EJ, Song Y, Seo HR, Choi KY. Identification of Ras-degrading small molecules that inhibit the transformation of colorectal cancer cells independent of β-catenin signaling. Exp Mol Med 2018; 50:1-10. [PMID: 29884842 PMCID: PMC5994827 DOI: 10.1038/s12276-018-0102-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 03/06/2018] [Indexed: 12/17/2022] Open
Abstract
Although the development of drugs that control Ras is an emerging topic in cancer therapy, no clinically applicable drug is currently available. We have previously utilized knowledge of the Wnt/β-catenin signaling-dependent mechanism of Ras protein stability regulation to identify small molecules that inhibit the proliferation and transformation of various colorectal cancer (CRC) cells via degradation of both β-catenin and Ras. Due to the absence of Ras degradation in cells expressing a nondegradable mutant form of β-catenin and the need to determine an alternative mechanism of Ras degradation, we designed a cell-based system to screen compounds that degrade Ras independent of the Wnt/β-catenin signaling pathway. A cell-based high-content screening (HCS) system that monitors the levels of EGFP-K-RasG12V was established using HCT-116 cells harboring a nondegradable mutant CTNNB1 (ΔS45). Through HCS of a chemical library composed of 10,000 compounds and subsequent characterization of hits, we identified several compounds that degrade Ras without affecting the β-catenin levels. KY7749, one of the most effective compounds, inhibited the proliferation and transformation of CRC cells, especially KRAS-mutant cells that are resistant to the EGFR monoclonal antibody cetuximab. Small molecules that degrade Ras independent of β-catenin may able to be used in treatments for cancers caused by aberrant EGFR and Ras. Mutations in KRAS, a gene regulating cell proliferation, occur in 40–50% of colorectal cancer (CRC) patients. These cancers are usually insensitive to antibody drugs targeting the epidermal growth factor receptor (EGFR) on cancer cells. Kang-Yell Choi at Yonsei University, Seoul, South Korea and co-workers had previously identified small molecules that inhibited CRC by degrading the signaling proteins β-catenin and Ras. However, CRC cells with β-catenin mutations are resistant to Ras-degrading compounds. In this study, they screened 10,000 small molecules that could degrade Ras in CRC cells expressing nondegradable mutant β-catenin. They identified small molecules that inhibited growth of CRC cells resistant to EGFR-mediated antibody therapy. Further investigation of these molecules may help develop new drugs for treating CRC.
Collapse
Affiliation(s)
- Wookjin Shin
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Republic of Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Sang-Kyu Lee
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Republic of Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jeong-Ha Hwang
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Republic of Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jong-Chan Park
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Republic of Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yong-Hee Cho
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Republic of Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Eun Ji Ro
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Republic of Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yeonhwa Song
- Cancer Biology Research Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Haeng Ran Seo
- Cancer Biology Research Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Kang-Yell Choi
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Republic of Korea. .,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
40
|
Li B, Zhao J, Ma JX, Li GM, Zhang Y, Xing GS, Liu J, Ma XL. Overexpression of DNMT1 leads to hypermethylation of H19 promoter and inhibition of Erk signaling pathway in disuse osteoporosis. Bone 2018; 111:82-91. [PMID: 29555308 DOI: 10.1016/j.bone.2018.03.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 12/28/2022]
Abstract
Disuse osteoporosis (DOP) is a common complication of the lack of mechanical loading. The precise mechanism underlying DOP remains unknown, although epigenetic modifications may be a major cause. Recently, cumulative research has revealed that DNA methyltransferase (DNMT) proteins can catalyze the conversion of cytosine to 5-methylcytosine (5mC), altering the epigenetic state of DNA. Here, we report that DNMT1 expression and lncRNA-H19 methylation are upregulated in the femoral tissues of DOP rats, accompanied with inhibited Erk signaling pathway. Overexpression of DNMT1 in UMR-106 cells mimics 5mC enrichment in the H19 promoter, inhibition of Erk signaling and impairment of osteogenesis, which can be rescued by 5'-aza-deoxycytidine (5'-Aza) treatment. Moreover, local intramedullary injection of Dnmt1 siRNA (siDNMT1) in Sprague-Dawley (SD) rats abrogated disuse lncRNA-H19 (H19) downregulation, Erk signaling inhibition, histopathological changes, and bone microstructure declines in the distal femur in vivo. Therefore, our data identify for the first time a new signaling cascade in DOP: mechanical unloading causes upregulation of DNMT1 and hypermethylation of H19 promoter, which subsequently leads to downregulation of lncRNA-H19 and inhibition of the ERK signaling, suggesting a new potential therapeutic target.
Collapse
Affiliation(s)
- Bing Li
- Joint Department, Tianjin Hospital, Tianjin 300211, People's Republic of China
| | - Jie Zhao
- Orthopedic Department, Tianjin Hospital, Tianjin 300211, People's Republic of China
| | - Jian-Xiong Ma
- Orthopedic Research Institute, Tianjin Hospital, Tianjin 300050, People's Republic of China
| | - Guo-Min Li
- Graduate School, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Yang Zhang
- Orthopedic Research Institute, Tianjin Hospital, Tianjin 300050, People's Republic of China
| | - Guo-Sheng Xing
- Orthopedic Research Institute, Tianjin Hospital, Tianjin 300050, People's Republic of China
| | - Jun Liu
- Joint Department, Tianjin Hospital, Tianjin 300211, People's Republic of China.
| | - Xin-Long Ma
- Joint Department, Tianjin Hospital, Tianjin 300211, People's Republic of China; Orthopedic Research Institute, Tianjin Hospital, Tianjin 300050, People's Republic of China.
| |
Collapse
|
41
|
Wnt3a promotes differentiation of human bone marrow-derived mesenchymal stem cells into cementoblast-like cells. In Vitro Cell Dev Biol Anim 2018; 54:468-476. [DOI: 10.1007/s11626-018-0265-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/07/2018] [Indexed: 12/20/2022]
|
42
|
A Boolean network of the crosstalk between IGF and Wnt signaling in aging satellite cells. PLoS One 2018; 13:e0195126. [PMID: 29596489 PMCID: PMC5875862 DOI: 10.1371/journal.pone.0195126] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/16/2018] [Indexed: 12/29/2022] Open
Abstract
Aging is a complex biological process, which determines the life span of an organism. Insulin-like growth factor (IGF) and Wnt signaling pathways govern the process of aging. Both pathways share common downstream targets that allow competitive crosstalk between these branches. Of note, a shift from IGF to Wnt signaling has been observed during aging of satellite cells. Biological regulatory networks necessary to recreate aging have not yet been discovered. Here, we established a mathematical in silico model that robustly recapitulates the crosstalk between IGF and Wnt signaling. Strikingly, it predicts critical nodes following a shift from IGF to Wnt signaling. These findings indicate that this shift might cause age-related diseases.
Collapse
|
43
|
circFGFR4 Promotes Differentiation of Myoblasts via Binding miR-107 to Relieve Its Inhibition of Wnt3a. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 11:272-283. [PMID: 29858062 PMCID: PMC5992882 DOI: 10.1016/j.omtn.2018.02.012] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 02/25/2018] [Accepted: 02/27/2018] [Indexed: 12/19/2022]
Abstract
Muscle development is regulated under a series of complicate processes, and non-coding RNAs, such as microRNAs (miRNAs) and circular RNAs (circRNAs), have been reported to play important roles in regulating myoblast proliferation and differentiation. We found that miR-107 expression was high in skeletal muscle of Qinchuan cattle. Overexpression of miR-107 inhibited bovine myoblasts differentiation and protected cells from apoptosis. Wnt3a was identified as a target of miR-107 by luciferase activity, real-time qPCR, and western blotting assays. Knockdown of Wnt3a inhibited bovine myoblasts differentiation and apoptosis, and this effect was similar to miR-107 overexpression. We also found circFGFR4 to promote myoblasts differentiation and to induce cell apoptosis. Via luciferase screening and RNA pull-down assays, circFGFR4 was observed to sponge miR-107. Overexpression of circFGFR4 increased the expression of Wnt3a, whereas this effect was abolished by miR-107. These results demonstrated that circFGFR4 binding miR-107 promotes cell differentiation via targeting Wnt3a in bovine primary myoblasts.
Collapse
|
44
|
Aznar N, Ear J, Dunkel Y, Sun N, Satterfield K, He F, Kalogriopoulos NA, Lopez-Sanchez I, Ghassemian M, Sahoo D, Kufareva I, Ghosh P. Convergence of Wnt, growth factor, and heterotrimeric G protein signals on the guanine nucleotide exchange factor Daple. Sci Signal 2018; 11:11/519/eaao4220. [PMID: 29487190 DOI: 10.1126/scisignal.aao4220] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cellular proliferation, differentiation, and morphogenesis are shaped by multiple signaling cascades, and their dysregulation plays an integral role in cancer progression. Three cascades that contribute to oncogenic potential are those mediated by Wnt proteins and the receptor Frizzled (FZD), growth factor receptor tyrosine kinases (RTKs), and heterotrimeric G proteins and associated GPCRs. Daple is a guanine nucleotide exchange factor (GEF) for the G protein Gαi Daple also binds to FZD and the Wnt/FZD mediator Dishevelled (Dvl), and it enhances β-catenin-independent Wnt signaling in response to Wnt5a-FZD7 signaling. We identified Daple as a substrate of multiple RTKs and non-RTKs and, hence, as a point of convergence for the three cascades. We found that phosphorylation near the Dvl-binding motif in Daple by both RTKs and non-RTKs caused Daple/Dvl complex dissociation and augmented the ability of Daple to bind to and activate Gαi, which potentiated β-catenin-independent Wnt signals and stimulated epithelial-mesenchymal transition (EMT) similarly to Wnt5a/FZD7 signaling. Although Daple acts as a tumor suppressor in the healthy colon, the concurrent increased abundance of Daple and epidermal growth factor receptor (EGFR) in colorectal tumors was associated with poor patient prognosis. Thus, the Daple-dependent activation of Gαi and the Daple-dependent enhancement of β-catenin-independent Wnt signals are not only stimulated by Wnt5a/FZD7 to suppress tumorigenesis but also hijacked by growth factor-activated RTKs to enhance tumor progression. These findings identify a cross-talk paradigm among growth factor RTKs, heterotrimeric G proteins, and the Wnt/FZD pathway in cancer.
Collapse
Affiliation(s)
- Nicolas Aznar
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Jason Ear
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ying Dunkel
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nina Sun
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kendall Satterfield
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Fang He
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | - Majid Ghassemian
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Debashis Sahoo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA.,Department of Computer Science and Engineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Irina Kufareva
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Pradipta Ghosh
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA. .,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA.,Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
45
|
Jeong WJ, Ro EJ, Choi KY. Interaction between Wnt/β-catenin and RAS-ERK pathways and an anti-cancer strategy via degradations of β-catenin and RAS by targeting the Wnt/β-catenin pathway. NPJ Precis Oncol 2018; 2:5. [PMID: 29872723 PMCID: PMC5871897 DOI: 10.1038/s41698-018-0049-y] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 12/27/2022] Open
Abstract
Aberrant activation of the Wnt/β-catenin and RAS-extracellular signal-regulated kinase (ERK) pathways play important roles in the tumorigenesis of many different types of cancer, most notably colorectal cancer (CRC). Genes for these two pathways, such as adenomatous polyposis coli (APC) and KRAS are frequently mutated in human CRC, and involved in the initiation and progression of the tumorigenesis, respectively. Moreover, recent studies revealed interaction of APC and KRAS mutations in the various stages of colorectal tumorigenesis and even in metastasis accompanying activation of the cancer stem cells (CSCs). A key event in the synergistic cooperation between Wnt/β-catenin and RAS-ERK pathways is a stabilization of both β-catenin and RAS especially mutant KRAS by APC loss, and pathological significance of this was indicated by correlation of increased β-catenin and RAS levels in human CRC where APC mutations occur as high as 90% of CRC patients. Together with the notion of the protein activity reduction by lowering its level, inhibition of both β-catenin and RAS especially by degradation could be a new ideal strategy for development of anti-cancer drugs for CRC. In this review, we will discuss interaction between the Wnt/β-catenin and RAS-ERK pathways in the colorectal tumorigenesis by providing the mechanism of RAS stabilization by aberrant activation of Wnt/β-catenin. We will also discuss our small molecular anti-cancer approach controlling CRC by induction of specific degradations of both β-catenin and RAS via targeting Wnt/β-catenin pathway especially for the KYA1797K, a small molecule specifically binding at the regulator of G-protein signaling (RGS)-domain of Axin.
Collapse
Affiliation(s)
- Woo-Jeong Jeong
- 1Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,2Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Eun Ji Ro
- 1Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,2Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Kang-Yell Choi
- 1Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea.,2Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| |
Collapse
|
46
|
KY1022, a small molecule destabilizing Ras via targeting the Wnt/β-catenin pathway, inhibits development of metastatic colorectal cancer. Oncotarget 2018; 7:81727-81740. [PMID: 27835580 PMCID: PMC5348425 DOI: 10.18632/oncotarget.13172] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 10/19/2016] [Indexed: 01/08/2023] Open
Abstract
APC (80-90%) and K-Ras (40-50%) mutations frequently occur in human colorectal cancer (CRC) and these mutations cooperatively accelerate tumorigenesis including metastasis. In addition, both β-catenin and Ras levels are highly increased in CRC, especially in metastatic CRC (mCRC). Therefore, targeting both the Wnt/β-catenin and Ras pathways could be an ideal therapeutic approach for treating mCRC patients. In this study, we characterized the roles of KY1022, a small molecule that destabilizes both β-catenin and Ras via targeting the Wnt/β-catenin pathway, in inhibiting the cellular events, including EMT, an initial process of metastasis, and apoptosis. As shown by in vitro and in vivo studies using APCMin/+/K-RasG12DLA2 mice, KY1022 effectively suppressed the development of mCRC at an early stage of tumorigenesis. A small molecular approach degrading both β-catenin and Ras via inhibition of the Wnt/β-catenin signaling would be an ideal strategy for treatment of mCRC.
Collapse
|
47
|
Padala RR, Karnawat R, Viswanathan SB, Thakkar AV, Das AB. Cancerous perturbations within the ERK, PI3K/Akt, and Wnt/β-catenin signaling network constitutively activate inter-pathway positive feedback loops. MOLECULAR BIOSYSTEMS 2018; 13:830-840. [PMID: 28367561 DOI: 10.1039/c6mb00786d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Perturbations in molecular signaling pathways are a result of genetic or epigenetic alterations, which may lead to malignant transformation of cells. Despite cellular robustness, specific genetic or epigenetic changes of any gene can trigger a cascade of failures, which result in the malfunctioning of cell signaling pathways and lead to cancer phenotypes. The extent of cellular robustness has a link with the architecture of the network such as feedback and feedforward loops. Perturbation in components within feedback loops causes a transition from a regulated to a persistently activated state and results in uncontrolled cell growth. This work represents the mathematical and quantitative modeling of ERK, PI3K/Akt, and Wnt/β-catenin signaling crosstalk to show the dynamics of signaling responses during genetic and epigenetic changes in cancer. ERK, PI3K/Akt, and Wnt/β-catenin signaling crosstalk networks include both intra and inter-pathway feedback loops which function in a controlled fashion in a healthy cell. Our results show that cancerous perturbations of components such as EGFR, Ras, B-Raf, PTEN, and components of the destruction complex cause extreme fragility in the network and constitutively activate inter-pathway positive feedback loops. We observed that the aberrant signaling response due to the failure of specific network components is transmitted throughout the network via crosstalk, generating an additive effect on cancer growth and proliferation.
Collapse
Affiliation(s)
- Rahul Rao Padala
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana 506004, India.
| | | | | | | | | |
Collapse
|
48
|
Xie Z, Khair M, Shaukat I, Netter P, Mainard D, Barré L, Ouzzine M. Non-canonical Wnt induces chondrocyte de-differentiation through Frizzled 6 and DVL-2/B-raf/CaMKIIα/syndecan 4 axis. Cell Death Differ 2018; 25:1442-1456. [PMID: 29352270 DOI: 10.1038/s41418-017-0050-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/20/2017] [Accepted: 11/29/2017] [Indexed: 01/22/2023] Open
Abstract
Dysregulation of Wnt signaling has been implicated in developmental defects and in the pathogenesis of many diseases such as osteoarthritis; however, the underlying mechanisms are poorly understood. Here, we report that non-canonical Wnt signaling induced loss of chondrocyte phenotype through activation of Fz-6/DVL-2/SYND4/CaMKIIα/B-raf/ERK1/2 cascade. We show that in response to Wnt-3a, Frizzled 6 (Fz-6) triggers the docking of CaMKIIα to syndecan 4 (SYND4) and that of B-raf to DVL-2, leading to the phosphorylation of B-raf by CaMKIIα and activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling, which leads to chondrocyte de-differentiation. We demonstrate that CaMKIIα associates and phosphorylates B-raf in vitro and in vivo. Our study reveals the mechanism by which non-canonical Wnt activates ERK1/2 signaling that induces loss of chondrocyte phenotype, and demonstrates a direct functional relationship between CaMKIIα and B-raf during chondrocyte de-differentiation. The identification of Fz-6, SYND4, and B-raf as novel physiological regulators of chondrocyte phenotype may provide new potential anti-osteoarthritic targets.
Collapse
Affiliation(s)
- Zhe Xie
- UMR7365 CNRS-University of Lorraine, Biopôle, Faculty of Medicine, 54505, Vandoeuvre-lès-Nancy, France
| | - Mostafa Khair
- UMR7365 CNRS-University of Lorraine, Biopôle, Faculty of Medicine, 54505, Vandoeuvre-lès-Nancy, France
| | - Irfan Shaukat
- UMR7365 CNRS-University of Lorraine, Biopôle, Faculty of Medicine, 54505, Vandoeuvre-lès-Nancy, France
| | - Patrick Netter
- UMR7365 CNRS-University of Lorraine, Biopôle, Faculty of Medicine, 54505, Vandoeuvre-lès-Nancy, France
| | - Didier Mainard
- UMR7365 CNRS-University of Lorraine, Biopôle, Faculty of Medicine, 54505, Vandoeuvre-lès-Nancy, France
| | - Lydia Barré
- UMR7365 CNRS-University of Lorraine, Biopôle, Faculty of Medicine, 54505, Vandoeuvre-lès-Nancy, France
| | - Mohamed Ouzzine
- UMR7365 CNRS-University of Lorraine, Biopôle, Faculty of Medicine, 54505, Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
49
|
Lee SK, Hwang JH, Choi KY. Interaction of the Wnt/β-catenin and RAS-ERK pathways involving co-stabilization of both β-catenin and RAS plays important roles in the colorectal tumorigenesis. Adv Biol Regul 2018; 68:46-54. [PMID: 29449169 DOI: 10.1016/j.jbior.2018.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 12/21/2022]
Abstract
Cancer development is usually driven by multiple genetic and molecular alterations rather than by a single defect. In the human colorectal cancer (CRC), series of mutations of genes are involved in the different stages of tumorigenesis. For example, adenomatous polyposis coli (APC) and KRAS mutations have been known to play roles in the initiation and progression of the tumorigenesis, respectively. However, many studies indicate that mutations of these two genes, which play roles in the Wnt/β-catenin and RAS-extra-cellular signal regulated kinase (ERK) pathways, respectively, cooperatively interact in the tumorigenesis in several different cancer types including CRC. Both Apc and Kras mutations critically increase number and growth rate of tumors although single mutation of these genes does not significantly enhance the small intestinal tumorigenesis of mice. Both APC and KRAS mutations even result in the liver metastasis with inductions of the cancer stem cells (CSCs) markers in a mice xenograft model. In this review, we are going to describe the history for interaction between the Wnt/β-catenin and RAS/ERK pathways especially related with CRC, and provide the mechanical basis for the cross-talk between the two pathways. The highlight of the crosstalk involving the stability regulation of RAS protein via the Wnt/β-catenin signaling which is directly related with the cellular proliferation and transformation will be discussed. Activation status of GSK3β, a key enzyme involving both β-catenin and RAS degradations, is regulated by the status of the Wnt/β-catenin signaling dependent upon extracellular stimuli or intracellular abnormalities of the signaling components. The levels of both β-catenin and RAS proteins are co-regulated by the Wnt/β-catenin signaling, and these proteins are overexpressed with a positive correlation in the tumor tissues of CRC patients. These results indicate that the elevation of both β-catenin and RAS proteins is pathologically significant in CRC. In this review, we also will discuss further involvement of the increments of both β-catenin and RAS especially mutant KRAS in the activation of CSCs and metastasis. Overall, the increments of β-catenin and RAS especially mutant KRAS by APC loss play important roles in the cooperative tumorigenesis of CRC.
Collapse
Affiliation(s)
- Sang-Kyu Lee
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea; Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jeong-Ha Hwang
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea; Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Kang-Yell Choi
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, South Korea; Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.
| |
Collapse
|
50
|
Zins K, Schäfer R, Paulus P, Dobler S, Fakhari N, Sioud M, Aharinejad S, Abraham D. Frizzled2 signaling regulates growth of high-risk neuroblastomas by interfering with β-catenin-dependent and β-catenin-independent signaling pathways. Oncotarget 2018; 7:46187-46202. [PMID: 27323822 PMCID: PMC5216790 DOI: 10.18632/oncotarget.10070] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/30/2016] [Indexed: 12/11/2022] Open
Abstract
Frizzled2 (FZD2) is a receptor for Wnts and may activate both canonical and non-canonical Wnt signaling pathways in cancer. However, no studies have reported an association between FZD2 signaling and high-risk NB so far. Here we report that FZD2 signaling pathways are critical to NB growth in MYCN-single copy SK-N-AS and MYCN-amplified SK-N-DZ high-risk NB cells. We demonstrate that stimulation of FZD2 by Wnt3a and Wnt5a regulates β-catenin-dependent and -independent Wnt signaling factors. FZD2 blockade suppressed β-catenin-dependent signaling activity and increased phosphorylation of PKC, AKT and ERK in vitro, consistent with upregulation of β-catenin-independent signaling activity. Finally, FZD2 small interfering RNA knockdown suppressed tumor growth in murine NB xenograft models associated with suppressed β-catenin-dependent signaling and a less vascularized phenotype in both NB xenografts. Together, our study suggests a role for FZD2 in high-risk NB cell growth and provides a potential candidate for therapeutic inhibition in FZD2-expressing NB patients.
Collapse
Affiliation(s)
- Karin Zins
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, A-1090, Austria
| | | | - Patrick Paulus
- Department of Anesthesiology and Operative Intensive Care Medicine, Kepler University Hospital, Linz, A-4040, Austria
| | - Silvia Dobler
- Department of Anesthesiology and Operative Intensive Care Medicine, Kepler University Hospital, Linz, A-4040, Austria
| | - Nazak Fakhari
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, A-1090, Austria
| | - Mouldy Sioud
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, N-0310, Norway
| | - Seyedhossein Aharinejad
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, A-1090, Austria
| | - Dietmar Abraham
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, A-1090, Austria.,Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, A-1090, Austria
| |
Collapse
|