1
|
McCombs AM, Armendariz JR, Falke JJ. Ras signaling mechanisms: New insights from single-molecule biophysics. Biophys J 2024; 123:3277-3280. [PMID: 39217418 PMCID: PMC11480753 DOI: 10.1016/j.bpj.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Affiliation(s)
- Anne Marie McCombs
- Molecular Biophysics Program and Department of Biochemistry, University of Colorado, Boulder, Colorado
| | - Joy R Armendariz
- Molecular Biophysics Program and Department of Biochemistry, University of Colorado, Boulder, Colorado
| | - Joseph J Falke
- Molecular Biophysics Program and Department of Biochemistry, University of Colorado, Boulder, Colorado.
| |
Collapse
|
2
|
Doerries TJ, Chechkin AV, Schumer R, Metzler R. Rate equations, spatial moments, and concentration profiles for mobile-immobile models with power-law and mixed waiting time distributions. Phys Rev E 2022; 105:014105. [PMID: 35193292 DOI: 10.1103/physreve.105.014105] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
We present a framework for systems in which diffusion-advection transport of a tracer substance in a mobile zone is interrupted by trapping in an immobile zone. Our model unifies different model approaches based on distributed-order diffusion equations, exciton diffusion rate models, and random-walk models for multirate mobile-immobile mass transport. We study various forms for the trapping time dynamics and their effects on the tracer mass in the mobile zone. Moreover, we find the associated breakthrough curves, the tracer density at a fixed point in space as a function of time, and the mobile and immobile concentration profiles and the respective moments of the transport. Specifically, we derive explicit forms for the anomalous transport dynamics and an asymptotic power-law decay of the mobile mass for a Mittag-Leffler trapping time distribution. In our analysis we point out that even for exponential trapping time densities, transient anomalous transport is observed. Our results have direct applications in geophysical contexts, but also in biological, soft matter, and solid state systems.
Collapse
Affiliation(s)
- Timo J Doerries
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| | - Aleksei V Chechkin
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
- Faculty of Pure and Applied Mathematica, Hugo Steinhaus Center, Wrocław University of Science and Technology, Wyspianskiego 27, 50-370 Wrocław, Poland
- Akhiezer Institute for Theoretical Physics, 61108 Kharkov, Ukraine
| | - Rina Schumer
- Desert Research Institute, Reno, Nevada 89512, USA
| | - Ralf Metzler
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
3
|
Gora RJ, de Jong B, van Hage P, Rhiemus MA, van Steenis F, van Noort J, Schmidt T, Schaaf MJM. Analysis of the H-Ras mobility pattern in vivo shows cellular heterogeneity inside epidermal tissue. Dis Model Mech 2021; 15:274496. [PMID: 34927194 PMCID: PMC8891639 DOI: 10.1242/dmm.049099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 12/14/2021] [Indexed: 12/04/2022] Open
Abstract
Developments in single-molecule microscopy (SMM) have enabled imaging individual proteins in biological systems, focusing on the analysis of protein mobility patterns inside cultured cells. In the present study, SMM was applied in vivo, using the zebrafish embryo model. We studied dynamics of the membrane protein H-Ras, its membrane-anchoring domain, C10H-Ras, and mutants, using total internal reflection fluorescence microscopy. Our results consistently confirm the presence of fast- and slow-diffusing subpopulations of molecules, which confine to microdomains within the plasma membrane. The active mutant H-RasV12 exhibits higher diffusion rates and is confined to larger domains than the wild-type H-Ras and its inactive mutant H-RasN17. Subsequently, we demonstrate that the structure and composition of the plasma membrane have an imperative role in modulating H-Ras mobility patterns. Ultimately, we establish that differences between cells within the same embryo largely contribute to the overall data variability. Our findings agree with a model in which the cell architecture and the protein activation state determine protein mobility, underlining the importance of SMM imaging for studying factors influencing protein dynamics in an intact living organism. This article has an associated First Person interview with the first author of the paper. Summary: Single-molecule microscopy analysis of factors altering the in vivo dynamics of H-Ras proteins in epidermal cells in living zebrafish embryos revealed that cell architecture and protein activation state determine protein mobility.
Collapse
Affiliation(s)
- Radoslaw J Gora
- Animal Sciences and Health Cluster, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Babette de Jong
- Biological, Soft and Complex Systems, Leiden Institute of Physics, Leiden University, Bohrweg 2, 2333 CA, Leiden, the Netherlands
| | - Patrick van Hage
- Animal Sciences and Health Cluster, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Mary Ann Rhiemus
- Animal Sciences and Health Cluster, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Fjodor van Steenis
- Animal Sciences and Health Cluster, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - John van Noort
- Biological, Soft and Complex Systems, Leiden Institute of Physics, Leiden University, Bohrweg 2, 2333 CA, Leiden, the Netherlands
| | - Thomas Schmidt
- Biological, Soft and Complex Systems, Leiden Institute of Physics, Leiden University, Bohrweg 2, 2333 CA, Leiden, the Netherlands
| | - Marcel J M Schaaf
- Animal Sciences and Health Cluster, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| |
Collapse
|
4
|
Soteriou C, Kalli AC, Connell SD, Tyler AII, Thorne JL. Advances in understanding and in multi-disciplinary methodology used to assess lipid regulation of signalling cascades from the cancer cell plasma membrane. Prog Lipid Res 2020; 81:101080. [PMID: 33359620 DOI: 10.1016/j.plipres.2020.101080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022]
Abstract
The lipid bilayer is a functional component of cells, forming a stable platform for the initiation of key biological processes, including cell signalling. There are distinct changes in the lipid composition of cell membranes during oncogenic transformation resulting in aberrant activation and inactivation of signalling transduction pathways. Studying the role of the cell membrane in cell signalling is challenging, since techniques are often limited to by timescale, resolution, sensitivity, and averaging. To overcome these limitations, combining 'computational', 'wet-lab' and 'semi-dry' approaches offers the best opportunity to resolving complex biological processes involved in membrane organisation. In this review, we highlight analytical tools that have been applied for the study of cell signalling initiation from the cancer cell membranes through computational microscopy, biological assays, and membrane biophysics. The cancer therapeutic potential of extracellular membrane-modulating agents, such as cholesterol-reducing agents is also discussed, as is the need for future collaborative inter-disciplinary research for studying the role of the cell membrane and its components in cancer therapy.
Collapse
Affiliation(s)
- C Soteriou
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK; Leeds Institute of Cardiovascular and Metabolic Medicine and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK; Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - A C Kalli
- Leeds Institute of Cardiovascular and Metabolic Medicine and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - S D Connell
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - A I I Tyler
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK
| | - J L Thorne
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK.
| |
Collapse
|
5
|
Abankwa D, Gorfe AA. Mechanisms of Ras Membrane Organization and Signaling: Ras Rocks Again. Biomolecules 2020; 10:E1522. [PMID: 33172116 PMCID: PMC7694788 DOI: 10.3390/biom10111522] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/17/2022] Open
Abstract
Ras is the most frequently mutated oncogene and recent drug development efforts have spurred significant new research interest. Here we review progress toward understanding how Ras functions in nanoscale, proteo-lipid signaling complexes on the plasma membrane, called nanoclusters. We discuss how G-domain reorientation is plausibly linked to Ras-nanoclustering and -dimerization. We then look at how these mechanistic features could cooperate in the engagement and activation of RAF by Ras. Moreover, we show how this structural information can be integrated with microscopy data that provide nanoscale resolution in cell biological experiments. Synthesizing the available data, we propose to distinguish between two types of Ras nanoclusters, an active, immobile RAF-dependent type and an inactive/neutral membrane anchor-dependent. We conclude that it is possible that Ras reorientation enables dynamic Ras dimerization while the whole Ras/RAF complex transits into an active state. These transient di/oligomer interfaces of Ras may be amenable to pharmacological intervention. We close by highlighting a number of open questions including whether all effectors form active nanoclusters and whether there is an isoform specific composition of Ras nanocluster.
Collapse
Affiliation(s)
- Daniel Abankwa
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg
| | - Alemayehu A. Gorfe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| |
Collapse
|
6
|
Luo F, Qin G, Xia T, Fang X. Single-Molecule Imaging of Protein Interactions and Dynamics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2020; 13:337-361. [PMID: 32228033 DOI: 10.1146/annurev-anchem-091619-094308] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Live-cell single-molecule fluorescence imaging has become a powerful analytical tool to investigate cellular processes that are not accessible to conventional biochemical approaches. This has greatly enriched our understanding of the behaviors of single biomolecules in their native environments and their roles in cellular events. Here, we review recent advances in fluorescence-based single-molecule bioimaging of proteins in living cells. We begin with practical considerations of the design of single-molecule fluorescence imaging experiments such as the choice of imaging modalities, fluorescent probes, and labeling methods. We then describe analytical observables from single-molecule data and the associated molecular parameters along with examples of live-cell single-molecule studies. Lastly, we discuss computational algorithms developed for single-molecule data analysis.
Collapse
Affiliation(s)
- Fang Luo
- Beijing National Research Center for Molecular Sciences, CAS Key Laboratory of Molecule Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- Department of Chemistry, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Gege Qin
- Beijing National Research Center for Molecular Sciences, CAS Key Laboratory of Molecule Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- Department of Chemistry, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Tie Xia
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaohong Fang
- Beijing National Research Center for Molecular Sciences, CAS Key Laboratory of Molecule Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- Department of Chemistry, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Griffié J, Peters R, Owen DM. An agent-based model of molecular aggregation at the cell membrane. PLoS One 2020; 15:e0226825. [PMID: 32032349 PMCID: PMC7006917 DOI: 10.1371/journal.pone.0226825] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/04/2019] [Indexed: 12/22/2022] Open
Abstract
Molecular clustering at the plasma membrane has long been identified as a key process and is associated with regulating signalling pathways across cell types. Recent advances in microscopy, in particular the rise of super-resolution, have allowed the experimental observation of nanoscale molecular clusters in the plasma membrane. However, modelling approaches capable of recapitulating these observations are in their infancy, partly because of the extremely complex array of biophysical factors which influence molecular distributions and dynamics in the plasma membrane. We propose here a highly abstracted approach: an agent-based model dedicated to the study of molecular aggregation at the plasma membrane. We show that when molecules are modelled as though they can act (diffuse) in a manner which is influenced by their molecular neighbourhood, many of the distributions observed in cells can be recapitulated, even though such sensing and response is not possible for real membrane molecules. As such, agent-based offers a unique platform which may lead to a new understanding of how molecular clustering in extremely complex molecular environments can be abstracted, simulated and interpreted using simple rules.
Collapse
Affiliation(s)
- Juliette Griffié
- Department of Physics and Randall Centre for Cell and Molecular Biophysics, King’s College London, London, England, United Kingdom
- * E-mail: (JG); (DO)
| | - Ruby Peters
- Department of Physics and Randall Centre for Cell and Molecular Biophysics, King’s College London, London, England, United Kingdom
| | - Dylan M. Owen
- Department of Physics and Randall Centre for Cell and Molecular Biophysics, King’s College London, London, England, United Kingdom
- * E-mail: (JG); (DO)
| |
Collapse
|
8
|
Goswami D, Chen D, Yang Y, Gudla PR, Columbus J, Worthy K, Rigby M, Wheeler M, Mukhopadhyay S, Powell K, Burgan W, Wall V, Esposito D, Simanshu DK, Lightstone FC, Nissley DV, McCormick F, Turbyville T. Membrane interactions of the globular domain and the hypervariable region of KRAS4b define its unique diffusion behavior. eLife 2020; 9:47654. [PMID: 31958057 PMCID: PMC7060043 DOI: 10.7554/elife.47654] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 01/02/2020] [Indexed: 01/16/2023] Open
Abstract
The RAS proteins are GTP-dependent switches that regulate signaling pathways and are frequently mutated in cancer. RAS proteins concentrate in the plasma membrane via lipid-tethers and hypervariable region side-chain interactions in distinct nano-domains. However, little is known about RAS membrane dynamics and the details of RAS activation of downstream signaling. Here, we characterize RAS in live human and mouse cells using single-molecule-tracking methods and estimate RAS mobility parameters. KRAS4b exhibits confined mobility with three diffusive states distinct from the other RAS isoforms (KRAS4a, NRAS, and HRAS); and although most of the amino acid differences between RAS isoforms lie within the hypervariable region, the additional confinement of KRAS4b is largely determined by the protein’s globular domain. To understand the altered mobility of an oncogenic KRAS4b, we used complementary experimental and molecular dynamics simulation approaches to reveal a detailed mechanism.
Collapse
Affiliation(s)
- Debanjan Goswami
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
| | - De Chen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
| | - Yue Yang
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, United States
| | - Prabhakar R Gudla
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
| | - John Columbus
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
| | - Karen Worthy
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
| | - Megan Rigby
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
| | - Madeline Wheeler
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
| | - Suman Mukhopadhyay
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
| | - Katie Powell
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
| | - William Burgan
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
| | - Vanessa Wall
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
| | - Felice C Lightstone
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, United States
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
| | - Frank McCormick
- UCSF Helen Diller Family Comprehensive Cancer Center, School of Medicine, University of California, San Francisco, San Francisco, United States
| | - Thomas Turbyville
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
| |
Collapse
|
9
|
Barklis E, Stephen AG, Staubus AO, Barklis RL, Alfadhli A. Organization of Farnesylated, Carboxymethylated KRAS4B on Membranes. J Mol Biol 2019; 431:3706-3717. [PMID: 31330153 PMCID: PMC6733658 DOI: 10.1016/j.jmb.2019.07.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 11/24/2022]
Abstract
Mutations of the Ras proteins HRAS, KRAS4A, KRAS4B, and NRAS are associated with a high percentage of all human cancers. The proteins are composed of highly homologous N-terminal catalytic or globular domains, plus C-terminal hypervariable regions (HVRs). Post-translational modifications of all RAS HVRs helps target RAS proteins to cellular membrane locations where they perform their signaling functions. For the predominant KRAS4 isoform, KRAS4B, post-translational farnesylation and carboxymethylation, along with a patch of HVR basic residues help foster membrane binding. Recent investigations implicate membrane-bound RAS dimers, oligomers, and nanoclusters as landing pads for effector proteins that relay RAS signals. The details of these RAS signaling platforms have not been elucidated completely, in part due to the difficulties in preparing modified proteins. We have employed properly farnesylated and carboxymethylated KRAS4B in lipid monolayer incubations to examine how the proteins assemble on membranes. Our results reveal novel insights into to how KRAS4B may organize on membranes.
Collapse
Affiliation(s)
- Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, 97239, OR, USA.
| | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21072, USA
| | - August O Staubus
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, 97239, OR, USA
| | - Robin Lid Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, 97239, OR, USA
| | - Ayna Alfadhli
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, 97239, OR, USA
| |
Collapse
|
10
|
Functional link between plasma membrane spatiotemporal dynamics, cancer biology, and dietary membrane-altering agents. Cancer Metastasis Rev 2019; 37:519-544. [PMID: 29860560 DOI: 10.1007/s10555-018-9733-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The cell plasma membrane serves as a nexus integrating extra- and intracellular components, which together enable many of the fundamental cellular signaling processes that sustain life. In order to perform this key function, plasma membrane components assemble into well-defined domains exhibiting distinct biochemical and biophysical properties that modulate various signaling events. Dysregulation of these highly dynamic membrane domains can promote oncogenic signaling. Recently, it has been demonstrated that select membrane-targeted dietary bioactives (MTDBs) have the ability to remodel plasma membrane domains and subsequently reduce cancer risk. In this review, we focus on the importance of plasma membrane domain structural and signaling functionalities as well as how loss of membrane homeostasis can drive aberrant signaling. Additionally, we discuss the intricacies associated with the investigation of these membrane domain features and their associations with cancer biology. Lastly, we describe the current literature focusing on MTDBs, including mechanisms of chemoprevention and therapeutics in order to establish a functional link between these membrane-altering biomolecules, tuning of plasma membrane hierarchal organization, and their implications in cancer prevention.
Collapse
|
11
|
Surve SV, Myers PJ, Clayton SA, Watkins SC, Lazzara MJ, Sorkin A. Localization dynamics of endogenous fluorescently labeled RAF1 in EGF-stimulated cells. Mol Biol Cell 2019; 30:506-523. [PMID: 30586319 PMCID: PMC6594441 DOI: 10.1091/mbc.e18-08-0512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Activation of the epidermal growth factor (EGF) receptor (EGFR) at the cell surface initiates signaling through the RAS-RAF-MAPK/ERK1/2 pathway and receptor endocytosis. Whether this signaling continues from endosomes remains unclear, because RAS is predominantly located on the plasma membrane, and the localization of endogenous RAF kinases, downstream effectors of RAS, is not defined. To examine RAF localization, we labeled endogenous RAF1 with mVenus using gene editing. From 10 to 15% of RAF1-mVenus (<2000 molecules/cell), which was initially entirely cytosolic, transiently translocated to the plasma membrane after EGF stimulation. Following an early burst of translocation, the membrane-associated RAF1-mVenus was undetectable by microscopy or subcellular fractionation, and this pool was estimated to be <200 molecules per cell. In contrast, persistent EGF-dependent translocation of RAF1-mVenus to the plasma membrane was driven by the RAF inhibitor sorafenib, which increases the affinity of Ras-GTP:RAF1 interactions. RAF1-mVenus was not found in EGFR-containing endosomes under any conditions. Computational modeling of RAF1 dynamics revealed that RAF1 membrane abundance is controlled most prominently by association and dissociation rates from RAS-GTP and by RAS-GTP concentration. The model further suggested that the relatively protracted activation of the RAF-MEK1/2-ERK1/2 module, in comparison with RAF1 membrane localization, may involve multiple rounds of cytosolic RAF1 rebinding to active RAS at the membrane.
Collapse
Affiliation(s)
- Sachin V Surve
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Paul J Myers
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22904
| | - Samantha A Clayton
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Matthew J Lazzara
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22904.,Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
12
|
Abstract
In the past decades, advances in microscopy have made it possible to study the dynamics of individual biomolecules in vitro and resolve intramolecular kinetics that would otherwise be hidden in ensemble averages. More recently, single-molecule methods have been used to image, localize, and track individually labeled macromolecules in the cytoplasm of living cells, allowing investigations of intermolecular kinetics under physiologically relevant conditions. In this review, we illuminate the particular advantages of single-molecule techniques when studying kinetics in living cells and discuss solutions to specific challenges associated with these methods.
Collapse
Affiliation(s)
- Johan Elf
- Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden;
| | - Irmeli Barkefors
- Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden;
| |
Collapse
|
13
|
Autoinhibition in Ras effectors Raf, PI3Kα, and RASSF5: a comprehensive review underscoring the challenges in pharmacological intervention. Biophys Rev 2018; 10:1263-1282. [PMID: 30269291 PMCID: PMC6233353 DOI: 10.1007/s12551-018-0461-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023] Open
Abstract
Autoinhibition is an effective mechanism that guards proteins against spurious activation. Despite its ubiquity, the distinct organizations of the autoinhibited states and their release mechanisms differ. Signaling is most responsive to the cell environment only if a small shift in the equilibrium is required to switch the system from an inactive (occluded) to an active (exposed) state. Ras signaling follows this paradigm. This underscores the challenge in pharmacological intervention to exploit and enhance autoinhibited states. Here, we review autoinhibition and release mechanisms at the membrane focusing on three representative Ras effectors, Raf protein kinase, PI3Kα lipid kinase, and NORE1A (RASSF5) tumor suppressor, and point to the ramifications to drug discovery. We further touch on Ras upstream and downstream signaling, Ras activation, and the Ras superfamily in this light, altogether providing a broad outlook of the principles and complexities of autoinhibition.
Collapse
|
14
|
Li Y, Shivnaraine RV, Huang F, Wells JW, Gradinaru CC. Ligand-Induced Coupling between Oligomers of the M 2 Receptor and the G i1 Protein in Live Cells. Biophys J 2018; 115:881-895. [PMID: 30131171 DOI: 10.1016/j.bpj.2018.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/23/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023] Open
Abstract
Uncertainty over the mechanism of signaling via G protein-coupled receptors (GPCRs) relates in part to questions regarding their supramolecular structure. GPCRs and heterotrimeric G proteins are known to couple as monomers under various conditions. Many GPCRs form oligomers under many of the same conditions, however, and the biological role of those complexes is unclear. We have used dual-color fluorescence correlation spectroscopy to identify oligomers of the M2 muscarinic receptor and of Gi1 in purified preparations and live Chinese hamster ovary cells. Measurements on differently tagged receptors (i.e., eGFP-M2 and mCherry-M2) and G proteins (i.e., eGFP-Gαi1β1γ2 and mCherry-Gαi1β1γ2) detected significant cross-correlations between the two fluorophores in each case, both in detergent micelles and in live cells, indicating that both the receptor and Gi1 can exist as homo-oligomers. Oligomerization of differently tagged Gi1 decreased upon the activation of co-expressed wild-type M2 receptor by an agonist. Measurements on a tagged M2 receptor (M2-mCherry) and eGFP-Gαi1β1γ2 co-expressed in live cells detected cross-correlations only in the presence of an agonist, which therefore promoted coupling of the receptor and the G protein. The effect of the agonist was retained when a fluorophore-tagged receptor lacking the orthosteric site (i.e., M2(D103A)-mCherry) was co-expressed with the wild-type receptor and eGFP-Gαi1β1γ2, indicating that the ligand acted via an oligomeric receptor. Our results point to a model in which an agonist promotes transient coupling of otherwise independent oligomers of the M2 receptor on the one hand and of Gi1 on the other and that an activated complex leads to a reduction in the oligomeric size of the G protein. They suggest that GPCR-mediated signaling proceeds, at least in part, via oligomers.
Collapse
Affiliation(s)
- Yuchong Li
- Department of Physics, University of Toronto, Toronto, Ontario, Canada; Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Rabindra V Shivnaraine
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Fei Huang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - James W Wells
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Claudiu C Gradinaru
- Department of Physics, University of Toronto, Toronto, Ontario, Canada; Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada.
| |
Collapse
|
15
|
Yasui M, Hiroshima M, Kozuka J, Sako Y, Ueda M. Automated single-molecule imaging in living cells. Nat Commun 2018; 9:3061. [PMID: 30076305 PMCID: PMC6076334 DOI: 10.1038/s41467-018-05524-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 07/11/2018] [Indexed: 01/26/2023] Open
Abstract
An automated single-molecule imaging system developed for live-cell analyses based on artificial intelligence-assisted microscopy is presented. All significant procedures, i.e., searching for cells suitable for observation, detecting in-focus positions, and performing image acquisition and single-molecule tracking, are fully automated, and numerous highly accurate, efficient, and reproducible single-molecule imaging experiments in living cells can be performed. Here, the apparatus is applied for single-molecule imaging and analysis of epidermal growth factor receptors (EGFRs) in 1600 cells in a 96-well plate within 1 day. Changes in the lateral mobility of EGFRs on the plasma membrane in response to various ligands and drug concentrations are clearly detected in individual cells, and several dynamic and pharmacological parameters are determined, including the diffusion coefficient, oligomer size, and half-maximal effective concentration (EC50). Automated single-molecule imaging for systematic cell signaling analyses is feasible and can be applied to single-molecule screening, thus extensively contributing to biological and pharmacological research.
Collapse
Affiliation(s)
- Masato Yasui
- Laboratory for Cell Signaling Dynamics, RIKEN BDR, 6-2-3, Furuedai, Suita, Osaka, 565-0874, Japan
| | - Michio Hiroshima
- Laboratory for Cell Signaling Dynamics, RIKEN BDR, 6-2-3, Furuedai, Suita, Osaka, 565-0874, Japan
- Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-198, Japan
| | - Jun Kozuka
- Laboratory for Cell Signaling Dynamics, RIKEN BDR, 6-2-3, Furuedai, Suita, Osaka, 565-0874, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-198, Japan.
| | - Masahiro Ueda
- Laboratory for Cell Signaling Dynamics, RIKEN BDR, 6-2-3, Furuedai, Suita, Osaka, 565-0874, Japan.
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
16
|
Khalili B, Merlini L, Vincenzetti V, Martin SG, Vavylonis D. Exploration and stabilization of Ras1 mating zone: A mechanism with positive and negative feedbacks. PLoS Comput Biol 2018; 14:e1006317. [PMID: 30028833 PMCID: PMC6070293 DOI: 10.1371/journal.pcbi.1006317] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 08/01/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023] Open
Abstract
In mating fission yeast cells, sensing and response to extracellular pheromone concentrations occurs through an exploratory Cdc42 patch that stochastically samples the cell cortex before stabilizing towards a mating partner. Active Ras1 (Ras1-GTP), an upstream regulator of Cdc42, and Gap1, the GTPase-activating protein for Ras1, localize at the patch. We developed a reaction-diffusion model of Ras1 patch appearance and disappearance with a positive feedback by a Guanine nucleotide Exchange Factor (GEF) and Gap1 inhibition. The model is based on new estimates of Ras1-GDP, Ras1-GTP and Gap1 diffusion coefficients and rates of cytoplasmic exchange studied by FRAP. The model reproduces exploratory patch behavior and lack of Ras1 patch in cells lacking Gap1. Transition to a stable patch can occur by change of Gap1 rates constants or local increase of the positive feedback rate constants. The model predicts that the patch size and number of patches depend on the strength of positive and negative feedbacks. Measurements of Ras1 patch size and number in cells overexpressing the Ras1 GEF or Gap1 are consistent with the model. Unicellular fission yeasts mate by fusing with partners of the opposite mating type. Each pair member grows towards its selected partner that signals its presence through secreted pheromone. The process of partner selection occurs through an exploratory patch (containing activated signaling protein Cdc42 and upstream regulator Ras1) that assembles and disassembles on the cell cortex, stabilizing in regions of higher opposite pheromone concentration. We present a computational model of the molecular mechanisms driving the dynamical pattern of patch exploration and stabilization. The model is based on reaction and diffusion along the curved cell membrane, with diffusion coefficients measured experimentally. In the model, a positive Ras1 activation feedback loop generates a patch containing most of the activating protein (Ras1 GEF). The fast diffusing inhibitor Gap1 that is recruited locally from the cytoplasm spreads on the cell membrane, limiting patch size and causing its decay. Spontaneous reinitiation of Ras1 activation elsewhere on the cortex provides a mechanism for exploration. Transition of the system’s behavior to that of a single stable patch is possible upon simulated pheromone sensing. The computational model provides predictions for the number of patches and patch size dependence on parameters that we tested experimentally.
Collapse
Affiliation(s)
- Bita Khalili
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania, United States of America
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Laura Merlini
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Vincent Vincenzetti
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Sophie G. Martin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Dimitrios Vavylonis
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
17
|
Fu G, Bandaria JN, Le Gall AV, Fan X, Yildiz A, Mignot T, Zusman DR, Nan B. MotAB-like machinery drives the movement of MreB filaments during bacterial gliding motility. Proc Natl Acad Sci U S A 2018; 115:2484-2489. [PMID: 29463706 PMCID: PMC5877941 DOI: 10.1073/pnas.1716441115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
MreB is a bacterial actin that is important for cell shape and cell wall biosynthesis in many bacterial species. MreB also plays crucial roles in Myxococcus xanthus gliding motility, but the underlying mechanism remains unknown. Here we tracked the dynamics of single MreB particles in M. xanthus using single-particle tracking photoactivated localization microscopy. We found that a subpopulation of MreB particles moves rapidly along helical trajectories, similar to the movements of the MotAB-like gliding motors. The rapid MreB motion was stalled in the mutants that carried truncated gliding motors. Remarkably, M. xanthus MreB moves one to two orders of magnitude faster than its homologs that move along with the cell wall synthesis machinery in Bacillus subtilis and Escherichia coli, and this rapid movement was not affected by the inhibitors of cell wall biosynthesis. Our results show that in M. xanthus, MreB provides a scaffold for the gliding motors while the gliding machinery drives the movement of MreB filaments, analogous to the interdependent movements of myosin motors and actin in eukaryotic cells.
Collapse
Affiliation(s)
- Guo Fu
- Department of Biology, Texas A&M University, College Station, TX 77843
| | - Jigar N Bandaria
- Department of Physics, University of California, Berkeley, CA 94720
| | - Anne Valérie Le Gall
- Laboratoire de Chimie Bactérienne, UMR7283, Institut de Microbiologie de la Méditerranée, CNRS-Aix Marseille University, 13009 Marseille, France
| | - Xue Fan
- Department of Statistics, Texas A&M University, College Station, TX 77843
| | - Ahmet Yildiz
- Department of Physics, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, UMR7283, Institut de Microbiologie de la Méditerranée, CNRS-Aix Marseille University, 13009 Marseille, France
| | - David R Zusman
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Beiyan Nan
- Department of Biology, Texas A&M University, College Station, TX 77843;
| |
Collapse
|
18
|
Single-molecule fluorescence-based analysis of protein conformation, interaction, and oligomerization in cellular systems. Biophys Rev 2017; 10:317-326. [PMID: 29243093 PMCID: PMC5899725 DOI: 10.1007/s12551-017-0366-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/19/2017] [Indexed: 12/23/2022] Open
Abstract
Single-molecule imaging (SMI) of proteins in operation has a history of intensive investigations over 20 years and is now widely used in various fields of biology and biotechnology. We review the recent advances in SMI of fluorescently-tagged proteins in structural biology, focusing on technical applicability of SMI to the measurements in living cells. Basic technologies and recent applications of SMI in structural biology are introduced. Distinct from other methods in structural biology, SMI directly observes single molecules and single-molecule events one-by-one, thus, explicitly analyzing the distribution of protein structures and the history of protein dynamics. It also allows one to detect single events of protein interaction. One unique feature of SMI is that it is applicable in complicated and heterogeneous environments, including living cells. The numbers, location, movements, interaction, oligomerization, and conformation of single-protein molecules have been determined using SMI in cellular systems.
Collapse
|
19
|
Effect of probe diffusion on the SOFI imaging accuracy. Sci Rep 2017; 7:44665. [PMID: 28333166 PMCID: PMC5363082 DOI: 10.1038/srep44665] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/13/2017] [Indexed: 01/19/2023] Open
Abstract
Live-cell super-resolution fluorescence imaging is becoming commonplace for exploring biological systems, though sample dynamics can affect the imaging quality. In this work we evaluate the effect of probe diffusion on super-resolution optical fluctuation imaging (SOFI), using a theoretical model and numerical simulations based on the imaging of live cells labelled with photochromic fluorescent proteins. We find that, over a range of physiological conditions, fluorophore diffusion results in a change in the amplitude of the SOFI signal. The magnitude of this change is approximately proportional to the on-time ratio of the fluorophores. However, for photochromic fluorescent proteins this effect is unlikely to present a significant distortion in practical experiments in biological systems. Due to this lack of distortions, probe diffusion strongly enhances the SOFI imaging by avoiding spatial undersampling caused by the limited labeling density.
Collapse
|
20
|
Roob E, Trendel N, Rein Ten Wolde P, Mugler A. Cooperative Clustering Digitizes Biochemical Signaling and Enhances its Fidelity. Biophys J 2016; 110:1661-1669. [PMID: 27074690 DOI: 10.1016/j.bpj.2016.02.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/04/2016] [Accepted: 02/22/2016] [Indexed: 10/21/2022] Open
Abstract
Many membrane-bound molecules in cells form small clusters. It has been hypothesized that these clusters convert an analog extracellular signal into a digital intracellular signal and that this conversion increases signaling fidelity. However, the mechanism by which clusters digitize a signal and the subsequent effects on fidelity remain poorly understood. Here we demonstrate using a stochastic model of cooperative cluster formation that sufficient cooperation leads to digital signaling. We show that despite reducing the number of output states, which decreases fidelity, digitization also reduces noise in the system, which increases fidelity. The tradeoff between these effects leads to an optimal cluster size that agrees with experimental measurements.
Collapse
Affiliation(s)
- Edward Roob
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana
| | - Nicola Trendel
- Systems Biology Doctoral Training Centre, University of Oxford, Oxford, United Kingdom; FOM Institute AMOLF, Amsterdam, the Netherlands
| | | | - Andrew Mugler
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana; FOM Institute AMOLF, Amsterdam, the Netherlands.
| |
Collapse
|
21
|
Arnold AM, Sevcsik E, Schütz GJ. Monte Carlo simulations of protein micropatterning in biomembranes: effects of immobile sticky obstacles. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2016; 49:10.1088/0022-3727/49/36/364002. [PMID: 30880837 PMCID: PMC6417683 DOI: 10.1088/0022-3727/49/36/364002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Single molecule trajectories of lipids and proteins can yield valuable information about the nanoscopic organization of the plasma membrane itself. The interpretation of such trajectories, however, is complicated, as the mobility of molecules can be affected by the presence of immobile obstacles, and the transient binding of the tracers to these obstacles. We have previously developed a micropatterning approach that allows for immobilizing a plasma membrane protein and probing the diffusional behavior of a putative interaction partner in living cells. Here, we provide guidelines on how this micropatterning approach can be extended to quantify interaction parameters between plasma membrane constituents in their natural environment. We simulated a patterned membrane system and evaluated the effect of different surface densities of patterned immobile obstacles on the relative mobility as well as the surface density of diffusing tracers. In the case of inert obstacles, the size of the obstacle can be assessed from its surface density at the percolation threshold, which in turn can be extracted from the diffusion behavior of the tracer. For sticky obstacles, two-dimensional dissociation constants can be determined from the tracer diffusion or surface density.
Collapse
Affiliation(s)
- Andreas M Arnold
- Institute of Applied Physics, Technische Universität Wien, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria
| | - Eva Sevcsik
- Institute of Applied Physics, Technische Universität Wien, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria
| | - Gerhard J Schütz
- Institute of Applied Physics, Technische Universität Wien, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria
| |
Collapse
|
22
|
Patra S, Erwin N, Winter R. Translational Dynamics of Lipidated Ras Proteins in the Presence of Crowding Agents and Compatible Osmolytes. Chemphyschem 2016; 17:2164-9. [PMID: 27028423 DOI: 10.1002/cphc.201600179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Indexed: 11/07/2022]
Abstract
Ras proteins are small GTPases and are involved in transmitting signals that control cell growth, differentiation, and proliferation. Since the cell cytoplasm is crowded with different macromolecules, understanding the translational dynamics of Ras proteins in crowded environments is crucial to yielding deeper insight into their reactivity and function. Herein, the translational dynamics of lipidated N-Ras and K-Ras4B is studied in the bulk and in the presence of a macromolecular crowder (Ficoll) and the compatible osmolyte and microcrowder sucrose by fluorescence correlation spectroscopy. The results reveal that N-Ras forms dimers due to the presence of its lipid moiety in the hypervariable region, whereas K-Ras4B remains in its monomeric form in the bulk. Addition of a macromolecular crowding agent gradually favors clustering of the Ras proteins. In 20 wt % Ficoll N-Ras forms trimers and K-Ras4B dimers. Concentrations of sucrose up to 10 wt % foster formation of N-Ras trimers and K-Ras dimers as well. The results can be rationalized in terms of the excluded-volume effect, which enhances the association of the proteins, and, for the higher concentrations, by limited-hydration conditions. The results of this study shed new light on the association state of these proteins in a crowded environment. This is of particular interest for the Ras proteins, because their solution state-monomeric or clustered-influences their membrane-partitioning behavior and their interplay with cytosolic interaction partners.
Collapse
Affiliation(s)
- Satyajit Patra
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Nelli Erwin
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany.
| |
Collapse
|
23
|
Pezzarossa A, Zosel F, Schmidt T. Visualization of HRas Domains in the Plasma Membrane of Fibroblasts. Biophys J 2016; 108:1870-7. [PMID: 25902427 DOI: 10.1016/j.bpj.2015.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 01/07/2015] [Accepted: 03/04/2015] [Indexed: 11/19/2022] Open
Abstract
The plasma membrane is a highly complex, organized structure where the lateral organization of signaling proteins is tightly regulated. In the case of Ras proteins, it has been suggested that the differential activity of the various isoforms is due to protein localization in separate membrane compartments. To date, direct visualization of such compartmentalization has been achieved only by electron microscopy on membrane sheets. Here, we combine photoactivated light microscopy with quantitative statistical analysis to visualize protein distribution in intact cells. In particular, we focus on the localization of HRas and its minimal anchoring domain, CAAX. We demonstrate the existence of a complex partitioning behavior, where small domains coexist with larger ones. The protein content in these domains varied from two molecules to tens of molecules. We found that 40% of CAAX and 60% of HRas were localized in domains. Subsequently, we were able to manipulate protein distributions by inducing coalescence of supposedly cholesterol-enriched domains. Clustering resulted in an increase of the localized fraction by 15%.
Collapse
Affiliation(s)
- Anna Pezzarossa
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, The Netherlands
| | - Franziska Zosel
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, The Netherlands
| | - Thomas Schmidt
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, The Netherlands.
| |
Collapse
|
24
|
Harkes R, Keizer VIP, Schaaf MJM, Schmidt T. Depth-of-Focus Correction in Single-Molecule Data Allows Analysis of 3D Diffusion of the Glucocorticoid Receptor in the Nucleus. PLoS One 2015; 10:e0141080. [PMID: 26555072 PMCID: PMC4640500 DOI: 10.1371/journal.pone.0141080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/05/2015] [Indexed: 11/18/2022] Open
Abstract
Single-molecule imaging of proteins in a 2D environment like membranes has been frequently used to extract diffusive properties of multiple fractions of receptors. In a 3D environment the apparent fractions however change with observation time due to the movements of molecules out of the depth-of-field of the microscope. Here we developed a mathematical framework that allowed us to correct for the change in fraction size due to the limited detection volume in 3D single-molecule imaging. We applied our findings on the mobility of activated glucocorticoid receptors in the cell nucleus, and found a freely diffusing fraction of 0.49±0.02. Our analysis further showed that interchange between this mobile fraction and an immobile fraction does not occur on time scales shorter than 150 ms.
Collapse
Affiliation(s)
- Rolf Harkes
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, The Netherlands
| | - Veer I. P. Keizer
- Institute of Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
| | - Marcel J. M. Schaaf
- Institute of Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
| | - Thomas Schmidt
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
25
|
Wehrens M, ten Wolde PR, Mugler A. Positive feedback can lead to dynamic nanometer-scale clustering on cell membranes. J Chem Phys 2015; 141:205102. [PMID: 25429963 DOI: 10.1063/1.4901888] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Clustering of molecules on biological membranes is a widely observed phenomenon. A key example is the clustering of the oncoprotein Ras, which is known to be important for signal transduction in mammalian cells. Yet, the mechanism by which Ras clusters form and are maintained remains unclear. Recently, it has been discovered that activated Ras promotes further Ras activation. Here we show using particle-based simulation that this positive feedback is sufficient to produce persistent clusters of active Ras molecules at the nanometer scale via a dynamic nucleation mechanism. Furthermore, we find that our cluster statistics are consistent with experimental observations of the Ras system. Interestingly, we show that our model does not support a Turing regime of macroscopic reaction-diffusion patterning, and therefore that the clustering we observe is a purely stochastic effect, arising from the coupling of positive feedback with the discrete nature of individual molecules. These results underscore the importance of stochastic and dynamic properties of reaction diffusion systems for biological behavior.
Collapse
Affiliation(s)
- Martijn Wehrens
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | | | - Andrew Mugler
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
26
|
Milenkovic L, Weiss LE, Yoon J, Roth TL, Su YS, Sahl SJ, Scott MP, Moerner WE. Single-molecule imaging of Hedgehog pathway protein Smoothened in primary cilia reveals binding events regulated by Patched1. Proc Natl Acad Sci U S A 2015; 112:8320-5. [PMID: 26100903 PMCID: PMC4500289 DOI: 10.1073/pnas.1510094112] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Accumulation of the signaling protein Smoothened (Smo) in the membrane of primary cilia is an essential step in Hedgehog (Hh) signal transduction, yet the molecular mechanisms of Smo movement and localization are poorly understood. Using ultrasensitive single-molecule tracking with high spatial/temporal precision (30 nm/10 ms), we discovered that binding events disrupt the primarily diffusive movement of Smo in cilia at an array of sites near the base. The affinity of Smo for these binding sites was modulated by the Hh pathway activation state. Activation, by either a ligand or genetic loss of the negatively acting Hh receptor Patched-1 (Ptch), reduced the affinity and frequency of Smo binding at the base. Our findings quantify activation-dependent changes in Smo dynamics in cilia and highlight a previously unknown step in Hh pathway activation.
Collapse
Affiliation(s)
- Ljiljana Milenkovic
- Department of Developmental Biology, Genetics and Bioengineering, Stanford University, Stanford, CA 94305
| | - Lucien E Weiss
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Joshua Yoon
- Department of Chemistry, Stanford University, Stanford, CA 94305; Department of Applied Physics, Stanford University, Stanford, CA 94305
| | - Theodore L Roth
- Department of Developmental Biology, Genetics and Bioengineering, Stanford University, Stanford, CA 94305
| | - YouRong S Su
- Department of Developmental Biology, Genetics and Bioengineering, Stanford University, Stanford, CA 94305
| | - Steffen J Sahl
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Matthew P Scott
- Department of Developmental Biology, Genetics and Bioengineering, Stanford University, Stanford, CA 94305
| | - W E Moerner
- Department of Chemistry, Stanford University, Stanford, CA 94305;
| |
Collapse
|
27
|
Guzmán C, Solman M, Abankwa D. Nanoclustering and heterogeneous membrane diffusion of Ras studied by FRAP and RICS analysis. Methods Mol Biol 2014; 1120:307-26. [PMID: 24470034 DOI: 10.1007/978-1-62703-791-4_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fluorescence Recovery After Photobleaching (FRAP) and Raster Image Correlation Spectroscopy (RICS) are two powerful techniques to study the diffusion dynamics of fluorescently labeled proteins. FRAP and RICS can be easily applied on any commercial confocal microscope. In this chapter, we describe the principles of these methods and provide the reader with a detailed guide on how to apply these methods in the study of Ras nanoclustering and diffusion in the plasma membrane of live cells.
Collapse
Affiliation(s)
- Camilo Guzmán
- Turku Centre for Biotechnology, Åbo Akademi University, Turku, Finland
| | | | | |
Collapse
|
28
|
Guzmán C, Šolman M, Ligabue A, Blaževitš O, Andrade DM, Reymond L, Eggeling C, Abankwa D. The efficacy of Raf kinase recruitment to the GTPase H-ras depends on H-ras membrane conformer-specific nanoclustering. J Biol Chem 2014; 289:9519-33. [PMID: 24569991 DOI: 10.1074/jbc.m113.537001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Solution structures and biochemical data have provided a wealth of mechanistic insight into Ras GTPases. However, information on how much the membrane organization of these lipid-modified proteins impacts on their signaling is still scarce. Ras proteins are organized into membrane nanoclusters, which are necessary for Ras-MAPK signaling. Using quantitative conventional and super-resolution fluorescence methods, as well as mathematical modeling, we investigated nanoclustering of H-ras helix α4 and hypervariable region mutants that have different bona fide conformations on the membrane. By following the emergence of conformer-specific nanoclusters in the plasma membrane of mammalian cells, we found that conformers impart distinct nanoclustering responses depending on the cytoplasmic levels of the nanocluster scaffold galectin-1. Computational modeling revealed that complexes containing H-ras conformers and galectin-1 affect both the number and lifetime of nanoclusters and thus determine the specific Raf effector recruitment. Our results show that mutations in Ras can affect its nanoclustering response and thus allosterically effector recruitment and downstream signaling. We postulate that cancer- and developmental disease-linked mutations that are associated with the Ras membrane conformation may exhibit so far unrecognized Ras nanoclustering and therefore signaling alterations.
Collapse
Affiliation(s)
- Camilo Guzmán
- From the Turku Centre for Biotechnology, Åbo Akademi University, Tykistökatu 6B, 20520 Turku, Finland
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Van Royen ME, van Cappellen WA, Geverts B, Schmidt T, Houtsmuller AB, Schaaf MJM. Androgen receptor complexes probe DNA for recognition sequences by short random interactions. J Cell Sci 2014; 127:1406-16. [PMID: 24481814 DOI: 10.1242/jcs.135228] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Owing to the tremendous progress in microscopic imaging of fluorescently labeled proteins in living cells, the insight into the highly dynamic behavior of transcription factors has rapidly increased over the past decade. However, a consistent quantitative scheme of their action is still lacking. Using the androgen receptor (AR) as a model system, we combined three different fluorescence microscopy assays: single-molecule microscopy, photobleaching and correlation spectroscopy, to provide a quantitative model of the action of this transcription factor. This approach enabled us to distinguish two types of AR-DNA binding: very brief interactions, in the order of a few hundred milliseconds, and hormone-induced longer-lasting interactions, with a characteristic binding time of several seconds. In addition, freely mobile ARs were slowed down in the presence of hormone, suggesting the formation of large AR-co-regulator complexes in the nucleoplasm upon hormone activation. Our data suggest a model in which mobile hormone-induced complexes of transcription factors and co-regulators probe DNA by briefly binding at random sites, only forming relatively stable transcription initiation complexes when bound to specific recognition sequences.
Collapse
|
30
|
DE KEERSMAECKER H, ROCHA S, FRON E, UJI-I H, HOFKENS J, MIZUNO H. EGF RECEPTOR DYNAMICS IN EGF-RESPONDING CELLS REVEALED BY FUNCTIONAL IMAGING DURING SINGLE PARTICLE TRACKING. ACTA ACUST UNITED AC 2014. [DOI: 10.1142/s1793048013500070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The epidermal growth factor (EGF) receptor transduces the extracellular EGF signal into the cells. The distribution of these EGF receptors in the plasma membrane is heterogeneous and dynamic, which is proposed to be important for the regulation of cell signaling. The response of the cells to a physiological concentration of EGF is not homogeneous, which makes it difficult to analyze the dynamics related to the response. Here we developed a system to perform functional imaging during single particle tracking (SPT) analysis. This system made it possible to observe the cytosolic Ca 2+ concentration to monitor the cell response while tracking individual EGF molecules and found that about half of the cells responded to the stimulation with 1.6 nM EGF. In the responding cells, the EGF receptor showed 3 modes of movement: fast (the diffusion coefficient of 0.081 ± 0.009 μm2/sec, 29 ± 9%), slow (0.020 ± 0.005 μm2/sec, 22 ± 6%), and stationary (49 ± 13%). The diffusion coefficient of the fast mode movement in the responding cells was significantly larger than that in the nonresponding cells (0.069 ± 0.009 μm2/sec, p < 0.05). The diffusion coefficient of the fast mode movement is thought to reflect the monomer–dimer equilibrium of the EGF receptor. We assumed that the feedback regulation via the Ca 2+ signaling pathway slightly shifts the equilibrium from dimer to monomer in the responding cells. [Formula: see text]Special Issue Comment: This research paper is about the diffusion of EGF receptors in the membrane. It is therefore related with various projects in this Special Issue: the reviews about FRET41 and enzymes,42 and the projects about solving single molecules trajectories.43
Collapse
Affiliation(s)
- H. DE KEERSMAECKER
- Department of Chemistry, Laboratory of Biomolecular Network Dynamics, Biochemistry, Molecular and Structural Biology Section, KU Leuven, Celestijnenlaan 200G Box 2403, 3001 Heverlee, Belgium
| | - S. ROCHA
- Department of Chemistry, Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - E. FRON
- Department of Chemistry, Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - H. UJI-I
- Department of Chemistry, Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - J. HOFKENS
- Department of Chemistry, Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - H. MIZUNO
- Department of Chemistry, Laboratory of Biomolecular Network Dynamics, Biochemistry, Molecular and Structural Biology Section, KU Leuven, Celestijnenlaan 200G Box 2403, 3001 Heverlee, Belgium
| |
Collapse
|
31
|
Metzler R, Jeon JH, Cherstvy AG, Barkai E. Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys Chem Chem Phys 2014; 16:24128-64. [DOI: 10.1039/c4cp03465a] [Citation(s) in RCA: 1046] [Impact Index Per Article: 95.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This Perspective summarises the properties of a variety of anomalous diffusion processes and provides the necessary tools to analyse and interpret recorded anomalous diffusion data.
Collapse
Affiliation(s)
- Ralf Metzler
- Institute of Physics and Astronomy
- University of Potsdam
- Potsdam-Golm, Germany
- Physics Department
- Tampere University of Technology
| | - Jae-Hyung Jeon
- Physics Department
- Tampere University of Technology
- Tampere, Finland
- Korean Institute for Advanced Study (KIAS)
- Seoul, Republic of Korea
| | - Andrey G. Cherstvy
- Institute of Physics and Astronomy
- University of Potsdam
- Potsdam-Golm, Germany
| | - Eli Barkai
- Physics Department and Institute of Nanotechnology and Advanced Materials
- Bar-Ilan University
- Ramat Gan, Israel
| |
Collapse
|
32
|
Werkmüller A, Triola G, Waldmann H, Winter R. Rotational and translational dynamics of ras proteins upon binding to model membrane systems. Chemphyschem 2013; 14:3698-705. [PMID: 24115726 DOI: 10.1002/cphc.201300617] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Indexed: 01/16/2023]
Abstract
Plasma-membrane-associated Ras proteins typically control signal transduction processes. As nanoclustering and membrane viscosity sensing provide plausible signaling mechanisms, determination of the rotational and translational dynamics of membrane-bound Ras isoforms can help to link their dynamic mobility to their function. Herein, by using time-resolved fluorescence anisotropy and correlation spectroscopic measurements, we obtain the rotational-correlation time and the translational diffusion coefficient of lipidated boron-dipyrromethene-labeled Ras, both in bulk Ras and upon membrane binding. The results show that the second lipidation motif of N-Ras triggers dimer formation in bulk solution, whereas K-Ras4B is monomeric. Upon membrane binding, an essentially free rotation of the G-domain is observed, along with a high lateral mobility; the latter is essentially limited by the viscosity of the membrane and by lipid-mediated electrostatic interactions. This high diffusional mobility warrants rapid recognition-binding sequences in the membrane-bound state, thereby facilitating efficient interactions between the Ras proteins and scaffolding or effector proteins. The lipid-like rapid lateral diffusion observed here complies with in vivo data.
Collapse
Affiliation(s)
- Alexander Werkmüller
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227 Dortmund (Germany), Fax: (+49) 231 755 3901
| | | | | | | |
Collapse
|
33
|
Mugler A, ten Wolde PR. The Macroscopic Effects of Microscopic Heterogeneity in Cell Signaling. ADVANCES IN CHEMICAL PHYSICS 2013. [DOI: 10.1002/9781118571767.ch5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
34
|
van den Broek B, Ashcroft B, Oosterkamp TH, van Noort J. Parallel nanometric 3D tracking of intracellular gold nanorods using multifocal two-photon microscopy. NANO LETTERS 2013; 13:980-6. [PMID: 23360249 DOI: 10.1021/nl3040509] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We report a novel technique for long-term parallel three dimensional (3D)-tracking of gold nanorods in live cells with nanometer resolution. Gold nanorods feature a strong plasmon-enhanced two-photon luminescence, can be easily functionalized, and have been shown to be nontoxic. These properties make gold nanorods very suitable for in vivo two-photon luminescence microscopy. By rapid multifocal scanning, we combine the advantages of 3D molecular tracking methods using wide-field imaging with the advantages of two-photon microscopy. Isolated gold nanorods can be localized with a resolution of 4 nm in the xy-plane and 8 nm in the z-direction. The polarization-dependence of the two-photon luminescence signal can be used to resolve the angular orientation, even when two gold nanorods are separated by less than the diffraction limit. Individual nanorods in live U2OS cells could be followed in 3 dimensions for over 30 min, with a photon noise limited accuracy, and a time resolution of 50 ms in 2D and 500 ms in 3D.
Collapse
Affiliation(s)
- Bram van den Broek
- Leiden Institute of Physics, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | | | | | | |
Collapse
|
35
|
Schulz JHP, Barkai E, Metzler R. Aging effects and population splitting in single-particle trajectory averages. PHYSICAL REVIEW LETTERS 2013; 110:020602. [PMID: 23383881 DOI: 10.1103/physrevlett.110.020602] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Indexed: 06/01/2023]
Abstract
We study time averages of single particle trajectories in scale-free anomalous diffusion processes, in which the measurement starts at some time t(a)>0 after initiation of the process at t=0. Using aging renewal theory, we show that for such nonstationary processes a large class of observables are affected by a unique aging function, which is independent of boundary conditions or the external forces. Moreover, we discuss the implications of aging induced population splitting: with growing age t(a) of the process, an increasing fraction of particles remains motionless in a measurement of fixed duration. Consequences for single biomolecule tracking in live cells are discussed.
Collapse
Affiliation(s)
- Johannes H P Schulz
- Physics Department T30g, Technical University of Munich, 85747 Garching, Germany
| | | | | |
Collapse
|
36
|
Kusumi A, Fujiwara TK, Chadda R, Xie M, Tsunoyama TA, Kalay Z, Kasai RS, Suzuki KGN. Dynamic organizing principles of the plasma membrane that regulate signal transduction: commemorating the fortieth anniversary of Singer and Nicolson's fluid-mosaic model. Annu Rev Cell Dev Biol 2012; 28:215-50. [PMID: 22905956 DOI: 10.1146/annurev-cellbio-100809-151736] [Citation(s) in RCA: 296] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The recent rapid accumulation of knowledge on the dynamics and structure of the plasma membrane has prompted major modifications of the textbook fluid-mosaic model. However, because the new data have been obtained in a variety of research contexts using various biological paradigms, the impact of the critical conceptual modifications on biomedical research and development has been limited. In this review, we try to synthesize our current biological, chemical, and physical knowledge about the plasma membrane to provide new fundamental organizing principles of this structure that underlie every molecular mechanism that realizes its functions. Special attention is paid to signal transduction function and the dynamic aspect of the organizing principles. We propose that the cooperative action of the hierarchical three-tiered mesoscale (2-300 nm) domains--actin-membrane-skeleton induced compartments (40-300 nm), raft domains (2-20 nm), and dynamic protein complex domains (3-10 nm)--is critical for membrane function and distinguishes the plasma membrane from a classical Singer-Nicolson-type model.
Collapse
Affiliation(s)
- Akihiro Kusumi
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Kusumi A, Fujiwara TK, Morone N, Yoshida KJ, Chadda R, Xie M, Kasai RS, Suzuki KGN. Membrane mechanisms for signal transduction: the coupling of the meso-scale raft domains to membrane-skeleton-induced compartments and dynamic protein complexes. Semin Cell Dev Biol 2012; 23:126-44. [PMID: 22309841 DOI: 10.1016/j.semcdb.2012.01.018] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 01/24/2012] [Indexed: 01/09/2023]
Abstract
Virtually all biological membranes on earth share the basic structure of a two-dimensional liquid. Such universality and peculiarity are comparable to those of the double helical structure of DNA, strongly suggesting the possibility that the fundamental mechanisms for the various functions of the plasma membrane could essentially be understood by a set of simple organizing principles, developed during the course of evolution. As an initial effort toward the development of such understanding, in this review, we present the concept of the cooperative action of the hierarchical three-tiered meso-scale (2-300 nm) domains in the plasma membrane: (1) actin membrane-skeleton-induced compartments (40-300 nm), (2) raft domains (2-20 nm), and (3) dynamic protein complex domains (3-10nm). Special attention is paid to the concept of meso-scale domains, where both thermal fluctuations and weak cooperativity play critical roles, and the coupling of the raft domains to the membrane-skeleton-induced compartments as well as dynamic protein complexes. The three-tiered meso-domain architecture of the plasma membrane provides an excellent perspective for understanding the membrane mechanisms of signal transduction.
Collapse
Affiliation(s)
- Akihiro Kusumi
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Turing instabilities in a mathematical model for signaling networks. J Math Biol 2011; 65:1215-44. [DOI: 10.1007/s00285-011-0495-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 11/15/2011] [Indexed: 12/11/2022]
|
39
|
Meckel T, Semrau S, Schaaf MJM, Schmidt T. Robust assessment of protein complex formation in vivo via single-molecule intensity distributions of autofluorescent proteins. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:076016. [PMID: 21806277 DOI: 10.1117/1.3600002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The formation of protein complexes or clusters in the plasma membrane is essential for many biological processes, such as signaling. We develop a tool, based on single-molecule microscopy, for following cluster formation in vivo. Detection and tracing of single autofluorescent proteins have become standard biophysical techniques. The determination of the number of proteins in a cluster, however, remains challenging. The reasons are (i) the poor photophysical stability and complex photophysics of fluorescent proteins and (ii) noise and autofluorescent background in live cell recordings. We show that, despite those obstacles, the accurate fraction of signals in which a certain (or set) number of labeled proteins reside, can be determined in an accurate an robust way in vivo. We define experimental conditions under which fluorescent proteins exhibit predictable distributions of intensity and quantify the influence of noise. Finally, we confirm our theoretical predictions by measurements of the intensities of individual enhanced yellow fluorescent protein (EYFP) molecules in living cells. Quantification of the average number of EYFP-C10HRAS chimeras in diffraction-limited spots finally confirm that the membrane anchor of human Harvey rat sarcoma (HRAS) heterogeneously distributes in the plasma membrane of living Chinese hamster ovary cells.
Collapse
Affiliation(s)
- Tobias Meckel
- Technische Universität Darmstadt, Membrane Dynamics, Department of Biology, Darmstadt, Germany
| | | | | | | |
Collapse
|
40
|
Yang Y, Xia T, Zhang W, Fang X. Single-molecule fluorescence imaging of membrane-bound proteins for studies of cell signal transduction. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11434-011-4415-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
41
|
Tian T, Plowman SJ, Parton RG, Kloog Y, Hancock JF. Mathematical modeling of K-Ras nanocluster formation on the plasma membrane. Biophys J 2010; 99:534-43. [PMID: 20643072 DOI: 10.1016/j.bpj.2010.04.055] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 04/20/2010] [Accepted: 04/22/2010] [Indexed: 12/24/2022] Open
Abstract
K-Ras functions as a critical node in the mitogen-activated protein kinase (MAPK) pathway that regulates key cellular functions including proliferation, differentiation, and apoptosis. Following growth factor receptor activation K-Ras.GTP forms nanoclusters on the plasma membrane through interaction with the scaffold protein galectin-3. The generation of nanoclusters is essential for high fidelity signal transduction via the MAPK pathway. To explore the mechanisms underlying K-Ras.GTP nanocluster formation, we developed a mathematical model of K-Ras-galectin-3 interactions. We designed a computational method to calculate protein collision rates based on experimentally determined protein diffusion rates and diffusion mechanisms and used a genetic algorithm to search the values of key model parameters. The optimal estimated model parameters were validated using experimental data. The resulting model accurately replicates critical features of K-Ras nanoclustering, including a fixed ratio of clustered K-Ras.GTP to monomeric K-Ras.GTP that is independent of the concentration of K-Ras.GTP. The model reproduces experimental results showing that the cytosolic level of galectin-3 determines the magnitude of the K-Ras.GTP clustered fraction and illustrates that nanoclustering is regulated by key nonequilibrium processes. Our kinetic model identifies a potential biophysical mechanism for K-Ras nanoclustering and suggests general principles that may be relevant for other plasma-membrane-localized proteins.
Collapse
Affiliation(s)
- Tianhai Tian
- Department of Mathematics, University of Glasgow, Glasgow, United Kingdom
| | | | | | | | | |
Collapse
|
42
|
Piguet J, Schreiter C, Segura JM, Vogel H, Hovius R. Acetylcholine receptor organization in membrane domains in muscle cells: evidence for rapsyn-independent and rapsyn-dependent mechanisms. J Biol Chem 2010; 286:363-9. [PMID: 20978122 DOI: 10.1074/jbc.m110.139782] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChR) in muscle fibers are densely packed in the postsynaptic region at the neuromuscular junction. Rapsyn plays a central role in directing and clustering nAChR during cellular differentiation and neuromuscular junction formation; however, it has not been demonstrated whether rapsyn is the only cause of receptor immobilization. Here, we used single-molecule tracking methods to investigate nAChR mobility in plasma membranes of myoblast cells during their differentiation to myotubes in the presence and absence of rapsyn. We found that in myoblasts the majority of nAChR were immobile and that ∼20% of the receptors showed restricted diffusion in small domains of ∼50 nm. In myoblasts devoid of rapsyn, the fraction of mobile nAChR was considerably increased, accompanied by a 3-fold decrease in the immobile population of nAChR with respect to rapsyn-expressing cells. Half of the mobile receptors were confined to domains of ∼120 nm. Measurements performed in heterologously transfected HEK cells confirmed the direct immobilization of nAChR by rapsyn. However, irrespective of the presence of rapsyn, about one-third of nAChR were confined in 300-nm domains. Our results show (i) that rapsyn efficiently immobilizes nAChR independently of other postsynaptic scaffold components; (ii) nAChR is constrained in confined membrane domains independently of rapsyn; and (iii) in the presence of rapsyn, the size of these domains is strongly reduced.
Collapse
Affiliation(s)
- Joachim Piguet
- Laboratoire de Chimie Physique des Polymères et Membranes, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
43
|
Rotblat B, Belanis L, Liang H, Haklai R, Elad-Zefadia G, Hancock JF, Kloog Y, Plowman SJ. H-Ras nanocluster stability regulates the magnitude of MAPK signal output. PLoS One 2010; 5:e11991. [PMID: 20700538 PMCID: PMC2916832 DOI: 10.1371/journal.pone.0011991] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2009] [Accepted: 07/12/2010] [Indexed: 12/02/2022] Open
Abstract
H-Ras is a binary switch that is activated by multiple co-factors and triggers several key cellular pathways one of which is MAPK. The specificity and magnitude of downstream activation is achieved by the spatio-temporal organization of the active H-Ras in the plasma membrane. Upon activation, the GTP bound H-Ras binds to Galectin-1 (Gal-1) and becomes transiently immobilized in short-lived nanoclusters on the plasma membrane from which the signal is propagated to Raf. In the current study we show that stabilizing the H-Ras-Gal-1 interaction, using bimolecular fluorescence complementation (BiFC), leads to prolonged immobilization of H-Ras.GTP in the plasma membrane which was measured by fluorescence recovery after photobleaching (FRAP), and increased signal out-put to the MAPK module. EM measurements of Raf recruitment to the H-Ras.GTP nanoclusters demonstrated that the enhanced signaling observed in the BiFC stabilized H-Ras.GTP nanocluster was attributed to increased H-Ras immobilization rather than to an increase in Raf recruitment. Taken together these data demonstrate that the magnitude of the signal output from a GTP-bound H-Ras nanocluster is proportional to its stability.
Collapse
Affiliation(s)
- Barak Rotblat
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Gerken M, Krippner-Heidenreich A, Steinert S, Willi S, Neugart F, Zappe A, Wrachtrup J, Tietz C, Scheurich P. Fluorescence correlation spectroscopy reveals topological segregation of the two tumor necrosis factor membrane receptors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1081-9. [DOI: 10.1016/j.bbamem.2010.02.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 02/16/2010] [Accepted: 02/17/2010] [Indexed: 11/15/2022]
|
45
|
Hierarchical organization of the plasma membrane: investigations by single-molecule tracking vs. fluorescence correlation spectroscopy. FEBS Lett 2010; 584:1814-23. [PMID: 20178787 DOI: 10.1016/j.febslet.2010.02.047] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/15/2010] [Accepted: 02/15/2010] [Indexed: 11/20/2022]
Abstract
Single-molecule tracking and fluorescence correlation spectroscopy (FCS) applied to the plasma membrane in living cells have allowed a number of unprecedented observations, thus fostering a new basic understanding of molecular diffusion, interaction, and signal transduction in the plasma membrane. It is becoming clear that the plasma membrane is a heterogeneous entity, containing diverse structures on nano-meso-scales (2-200 nm) with a variety of lifetimes, where certain membrane molecules stay together for limited durations. Molecular interactions occur in the time-dependent inhomogeneous two-dimensional liquid of the plasma membrane, which might be a key for plasma membrane functions.
Collapse
|
46
|
Okumus B, Arslan S, Fengler SM, Myong S, Ha T. Single molecule nanocontainers made porous using a bacterial toxin. J Am Chem Soc 2010; 131:14844-9. [PMID: 19788247 PMCID: PMC2761729 DOI: 10.1021/ja9042356] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Encapsulation of a biological molecule or a molecular complex in a vesicle provides a means of biofriendly immobilization for single molecule studies and further enables new types of analysis if the vesicles are permeable. We previously reported on using DMPC (dimyristoylphosphatidylcholine) vesicles for realizing porous bioreactors. Here, we describe a different strategy for making porous vesicles using a bacterial pore-forming toxin, α-hemolysin. Using RNA folding as a test case, we demonstrate that protein-based pores can allow exchange of magnesium ions through the vesicle wall while keeping the RNA molecule inside. Flow measurements indicate that the encapsulated RNA molecules rapidly respond to the change in the outside buffer condition. The approach was further tested by coencapsulating a helicase protein and its single-stranded DNA track. The DNA translocation activity of E. coli Rep helicase inside vesicles was fueled by ATP provided outside the vesicle, and a dramatically higher number of translocation cycles could be observed due to the minuscule vesicle volume that facilitates rapid rebinding after dissociation. These pores are known to be stable over a wide range of experimental conditions, especially at various temperatures, which is not possible with the previous method using DMPC vesicles. Moreover, engineered mutants of the utilized toxin can potentially be exploited in the future applications.
Collapse
Affiliation(s)
- Burak Okumus
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
47
|
Abraham AV, Ram S, Chao J, Ward ES, Ober RJ. Quantitative study of single molecule location estimation techniques. OPTICS EXPRESS 2009; 17:23352-73. [PMID: 20052043 PMCID: PMC2813811 DOI: 10.1364/oe.17.023352] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Estimating the location of single molecules from microscopy images is a key step in many quantitative single molecule data analysis techniques. Different algorithms have been advocated for the fitting of single molecule data, particularly the nonlinear least squares and maximum likelihood estimators. Comparisons were carried out to assess the performance of these two algorithms in different scenarios. Our results show that both estimators, on average, are able to recover the true location of the single molecule in all scenarios we examined. However, in the absence of modeling inaccuracies and low noise levels, the maximum likelihood estimator is more accurate than the nonlinear least squares estimator, as measured by the standard deviations of its estimates, and attains the best possible accuracy achievable for the sets of imaging and experimental conditions that were tested. Although neither algorithm is consistently superior to the other in the presence of modeling inaccuracies or misspecifications, the maximum likelihood algorithm emerges as a robust estimator producing results with consistent accuracy across various model mismatches and misspecifications. At high noise levels, relative to the signal from the point source, neither algorithm has a clear accuracy advantage over the other. Comparisons were also carried out for two localization accuracy measures derived previously. Software packages with user-friendly graphical interfaces developed for single molecule location estimation (EstimationTool) and limit of the localization accuracy calculations (FandPLimitTool) are also discussed.
Collapse
Affiliation(s)
- Anish V Abraham
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, MC9093, Dallas, TX 75390, USA
| | | | | | | | | |
Collapse
|
48
|
Schaaf MJM, Koopmans WJA, Meckel T, van Noort J, Snaar-Jagalska BE, Schmidt TS, Spaink HP. Single-molecule microscopy reveals membrane microdomain organization of cells in a living vertebrate. Biophys J 2009; 97:1206-14. [PMID: 19686669 DOI: 10.1016/j.bpj.2009.05.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 04/30/2009] [Accepted: 05/22/2009] [Indexed: 12/30/2022] Open
Abstract
It has been possible for several years to study the dynamics of fluorescently labeled proteins by single-molecule microscopy, but until now this technology has been applied only to individual cells in culture. In this study, it was extended to stem cells and living vertebrate organisms. As a molecule of interest we used yellow fluorescent protein fused to the human H-Ras membrane anchor, which has been shown to serve as a model for proteins anchored in the plasma membrane. We used a wide-field fluorescence microscopy setup to visualize individual molecules in a zebrafish cell line (ZF4) and in primary embryonic stem cells. A total-internal-reflection microscopy setup was used for imaging in living organisms, in particular in epidermal cells in the skin of 2-day-old zebrafish embryos. Our results demonstrate the occurrence of membrane microdomains in which the diffusion of membrane proteins in a living organism is confined. This membrane organization differed significantly from that observed in cultured cells, illustrating the relevance of performing single-molecule microscopy in living organisms.
Collapse
Affiliation(s)
- Marcel J M Schaaf
- Molecular Cell Biology, Institute of Biology, Leiden University, Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
49
|
Kofer-Geles M, Gottfried I, Haklai R, Elad-Zefadia G, Kloog Y, Ashery U. Rasosomes spread Ras signals from plasma membrane 'hotspots'. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1691-702. [PMID: 19695294 DOI: 10.1016/j.bbamcr.2009.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 07/28/2009] [Accepted: 08/10/2009] [Indexed: 12/31/2022]
Abstract
Ras proteins regulate cell growth, differentiation, and apoptosis from various cellular platforms. We have recently identified a novel potential signaling platform, the rasosome, which moves rapidly near the plasma membrane (PM) and in the cytosol, carrying multiple copies of palmitoylated Ras proteins. In the present study we demonstrate that rasosomes are unique entities distinct from PM nanoclusters or from endocytotic compartments. In addition, we examine whether rasosomes can act as regulated Ras signaling platforms. We show that a single rasosome simultaneously carries different types of Ras molecules in their active and inactive state, suggesting that rasosomes can upload and download Ras signals. Total internal reflection fluorescence (TIRF) microscopy combined with fast time-lapse and a new spatial analysis algorithm demonstrate that rasosome movement near the PM is restricted to distinctive areas, rasosomal 'hotspots', localized between actin filament cages. In addition, Ras-binding domain of Raf-1 (RBD) is recruited to Ras in rasosomal hotspots as revealed by bimolecular fluorescence complementation experiments. Interestingly, epidermal growth factor stimulates H/NRas activation on rasosomes and the subsequent recruitment of RBD to rasosomes. Moreover, we show that rasosomes are loaded with Ras downstream effectors and modulators. These findings establish that physiological stimulation originating from PM hotspots is transduced to rasosomes, which appear to serve as robust Ras signaling platforms that spread signals across the cell.
Collapse
Affiliation(s)
- Merav Kofer-Geles
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | | | | | | | | | | |
Collapse
|
50
|
Gurry T, Kahramanoğulları O, Endres RG. Biophysical mechanism for ras-nanocluster formation and signaling in plasma membrane. PLoS One 2009; 4:e6148. [PMID: 19587789 PMCID: PMC2704371 DOI: 10.1371/journal.pone.0006148] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 06/07/2009] [Indexed: 01/02/2023] Open
Abstract
Ras GTPases are lipid-anchored G proteins, which play a fundamental role in cell signaling processes. Electron micrographs of immunogold-labeled Ras have shown that membrane-bound Ras molecules segregate into nanocluster domains. Several models have been developed in attempts to obtain quantitative descriptions of nanocluster formation, but all have relied on assumptions such as a constant, expression-level independent ratio of Ras in clusters to Ras monomers (cluster/monomer ratio). However, this assumption is inconsistent with the law of mass action. Here, we present a biophysical model of Ras clustering based on short-range attraction and long-range repulsion between Ras molecules in the membrane. To test this model, we performed Monte Carlo simulations and compared statistical clustering properties with experimental data. We find that we can recover the experimentally-observed clustering across a range of Ras expression levels, without assuming a constant cluster/monomer ratio or the existence of lipid rafts. In addition, our model makes predictions about the signaling properties of Ras nanoclusters in support of the idea that Ras nanoclusters act as an analog-digital-analog converter for high fidelity signaling.
Collapse
Affiliation(s)
- Thomas Gurry
- Centre for Integrated Systems Biology at Imperial College, Imperial College London, London, United Kingdom
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Ozan Kahramanoğulları
- Centre for Integrated Systems Biology at Imperial College, Imperial College London, London, United Kingdom
- Department of Computing, Imperial College London, London, United Kingdom
| | - Robert G. Endres
- Centre for Integrated Systems Biology at Imperial College, Imperial College London, London, United Kingdom
- Division of Molecular Biosciences, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|