1
|
Bhattacharya I, Nalinan LK, Anusree KV, Saleel A, Khamamkar A, Dey S. Evolving Lessons on Metazoan Primordial Germ Cells in Diversity and Development. Mol Reprod Dev 2025; 92:e70027. [PMID: 40349219 PMCID: PMC12066098 DOI: 10.1002/mrd.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 04/15/2025] [Indexed: 05/14/2025]
Abstract
Germ cells are pivotal for the continuation of biological species. The metazoan germline develops from primordial germ cells (PGCs) that undergo multiple rounds of mitotic divisions. The PGCs are specified by either maternal inheritance of asymmetrically polarized cytoplasmic mRNAs/proteins (found in roundworms, flies, fishes, frogs, and fowl) or via direct induction of epiblast cells from adjacent extraembryonic ectoderm in mammals. In all vertebrates, PGCs remain uncommitted to meiosis and migrate to colonize the developing gonadal ridge before sex determination. Multiple RNA-binding proteins (e.g., Vasa, Dnd, Dazl, etc.) play crucial roles in PGC identity, expansion, survival, and migration. Postsex determination in mouse embryos, Gata4, expressing nascent gonads, induces Dazl expression in newly arriving germ cells that supports retinoic acid-mediated induction of meiotic onset. This article briefly discusses the developmental events regulating the PGC specification and commitment in metazoans. We also highlight the recent progress towards the in vitro generation of functional PGC-like cells in rodents and humans.
Collapse
Affiliation(s)
- Indrashis Bhattacharya
- Department of ZoologyThe Central University of KeralaTejaswini Hills, Periye (PO)Kasaragod (DT)KeralaIndia
| | - Lakshmi K. Nalinan
- Department of ZoologyThe Central University of KeralaTejaswini Hills, Periye (PO)Kasaragod (DT)KeralaIndia
| | - K. V. Anusree
- Department of ZoologyThe Central University of KeralaTejaswini Hills, Periye (PO)Kasaragod (DT)KeralaIndia
| | - Ahmed Saleel
- Department of ZoologyThe Central University of KeralaTejaswini Hills, Periye (PO)Kasaragod (DT)KeralaIndia
| | - Aditi Khamamkar
- Manipal Centre for Biotherapeutics ResearchManipal Academy of Higher EducationManipalKarnatakaIndia
| | - Souvik Dey
- Manipal Centre for Biotherapeutics ResearchManipal Academy of Higher EducationManipalKarnatakaIndia
| |
Collapse
|
2
|
Lamb H, Fernholz M, Liro MJ, Myles KM, Anderson H, Rose LS. The Rac1 homolog CED-10 is a component of the MES-1/SRC-1 pathway for asymmetric division of the Caenorhabditis elegans EMS blastomere. Genetics 2025; 229:iyaf020. [PMID: 39891664 PMCID: PMC12005263 DOI: 10.1093/genetics/iyaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025] Open
Abstract
Asymmetric cell division is essential for the creation of cell types with different identities and functions. The endomesodermal precursor cell (EMS) of the 4-cell Caenorhabditis elegans embryo undergoes an asymmetric division in response to partially redundant signaling pathways. One pathway involves a Wnt signal from the neighboring P2 cell, while the other pathway is defined by the receptor-like MES-1 transmembrane protein localized at the EMS-P2 cell contact and the cytoplasmic kinase SRC-1. In response to these signals, the EMS nuclear-centrosome complex rotates, so that the spindle forms on the anterior-posterior axis; after division, the daughter cell contacting P2 becomes the endodermal precursor cell. Here, we identify the Rac1 homolog CED-10 as a new component of the MES-1/SRC-1 pathway. Loss of CED-10 affects both spindle positioning and endoderm specification in the EMS cell. SRC-1 dependent phosphorylation at the EMS-P2 contact is reduced. However, the asymmetric division of the P2 cell, which is also MES-1 and SRC-1 dependent, appears normal in ced-10 mutants. These and other results suggest that CED-10 acts upstream of, or at the level of, SRC-1 activity in the EMS cell. In addition, we find that the branched actin regulator ARX-2 is enriched at the EMS-P2 cell contact site, in a CED-10-dependent manner. Loss of ARX-2 results in EMS spindle orientation defects, suggesting that CED-10 acts through branched actin to promote spindle orientation in the EMS cell.
Collapse
Affiliation(s)
- Helen Lamb
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
- Biochemistry, Molecular, Cell and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - McKenzi Fernholz
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Małgorzata J Liro
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
- Biochemistry, Molecular, Cell and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - Krista M Myles
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Holly Anderson
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Lesilee S Rose
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
- Biochemistry, Molecular, Cell and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
3
|
Riparbelli MG, Migliorini M, Callaini G. Astral Microtubules Are Dispensable for Pavarotti Localization During Drosophila Spermatogonial Mitoses. Cytoskeleton (Hoboken) 2025. [PMID: 39754387 DOI: 10.1002/cm.21986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 01/06/2025]
Abstract
We analysed here the dynamic of the kinesin-like Pavarotti (Pav) during male gametogenesis of wild-type and Sas4 mutant flies. Pav localizes to the equatorial region and the inner central spindle of late anaphase wild-type spermatogonia and displays a strong concentration at the midbody during late telophase. At metaphase of the first meiotic division, Pav shows widespread localization on the equatorial region of the spermatocytes. This unusual distribution restricts and enhances during anaphase where antiparallel cortical microtubules overlap. Additional Pav staining is also found in the inner central spindle where the microtubules overlap between the segregating chromosomes. At late telophase, Pav accumulates to the midbody and on a weak ring that surround the cytoplasmic bridges. Pav localizes in an equatorial discontinuous ring of Sas4 spermatogonia where the non-centrosomal microtubules overlap, but the motor protein is absent in the interior central spindle where the inner microtubules are lacking. However, the anastral spindles properly support cell division, suggesting that astral microtubules are dispensable for Pav localization in the Sas4 spermatogonial cell cortex. This function is presumably replaced by the antiparallel cortical microtubules extending from the acentriolar polar regions. In contrast, the majority of the meiotic spindles in Sas4 mutant testes do not progress beyond late anaphase, and only a small fraction of the primary spermatocytes experienced an abnormal division with the assembly of aberrant telophase spindles. Pav accumulates around the chromatin clusters or enhanced at the plus ends of the antiparallel non-centrosomal cortical bundles of microtubules. However, these bundles are not arranged properly in the equatorial region of the cell and cytokinesis is abnormal or fails. Therefore, the observations in Sas4 mutant testes suggest that the spermatogonial mitoses correctly occur in the absence of astral microtubules, whereas meiotic divisions fail.
Collapse
|
4
|
Sakamoto R, Murrell MP. Mechanical power is maximized during contractile ring-like formation in a biomimetic dividing cell model. Nat Commun 2024; 15:9731. [PMID: 39523366 PMCID: PMC11551154 DOI: 10.1038/s41467-024-53228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
The spatial and temporal dynamics of forces in cells coordinate essential behaviors like division, polarization, and migration. While intracellular signaling initiates contractile ring assembly during cell division, how mechanical forces coordinate division and their energetic costs remain unclear. Here, we develop an in vitro model where myosin-induced stress drives division-like shape changes in giant unilamellar vesicles (GUVs, liposomes). Myosin activity is controlled by light patterns globally or locally at the equator. Global activation causes slow, shallow cleavage furrows due to a tug-of-war between the equatorial and polar forces. By contrast, local activation leads to faster, deeper, and symmetric division as equatorial forces dominate. Dissociating the actin cortex at the poles is crucial for inducing significant furrowing. During furrowing, actomyosin flows align actin filaments parallel to the division plane, forming a contractile ring-like structure. Mechanical power is not greatest during contraction, but is maximized just before furrowing. This study reveals the quantitative relationship between force patterning and mechanical energy during division-like shape changes, providing insights into cell division mechanics.
Collapse
Affiliation(s)
- Ryota Sakamoto
- Department of Biomedical Engineering, Yale University, 10 Hillhouse Avenue, New Haven, CT, USA.
- Systems Biology Institute, 850 West Campus Drive, West Haven, CT, USA.
| | - Michael P Murrell
- Department of Biomedical Engineering, Yale University, 10 Hillhouse Avenue, New Haven, CT, USA.
- Systems Biology Institute, 850 West Campus Drive, West Haven, CT, USA.
- Department of Physics, Yale University, 217 Prospect Street, New Haven, CT, USA.
| |
Collapse
|
5
|
Day CA, Langfald A, Lukes T, Middlebrook H, Vaughan KT, Daniels D, Hinchcliffe EH. Commitment to cytokinetic furrowing requires the coordinate activity of microtubules and Plk1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.612913. [PMID: 39345392 PMCID: PMC11429772 DOI: 10.1101/2024.09.16.612913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
At anaphase, spindle microtubules (MTs) position the cleavage furrow and trigger actomyosin assembly by localizing the small GTPase RhoA and the scaffolding protein anillin to a narrow band along the equatorial cortex [1-6]. Using vertebrate somatic cells we examined the temporal control of furrow assembly. Although its positioning commences at anaphase onset, furrow maturation is not complete until ∼10-11 min later. The maintenance of the RhoA/anillin scaffold initially requires continuous signaling from the spindle; loss of either MTs or polo-like kinase 1 (Plk1) activity prevents proper RhoA/anillin localization to the equator, thereby disrupting furrowing. However, we find that at ∼6 min post-anaphase, the cortex becomes "committed to furrowing"; loss of either MTs or Plk1 after this stage does not prevent eventual furrowing, even though at this point the contractile apparatus has not fully matured. Also at this stage, the RhoA/anillin scaffold at the equator becomes permanent. Surprisingly, concurrent loss of both MTs and Plk1 activity following the "commitment to furrowing" stage results in persistent, asymmetric "half-furrows", with only one cortical hemisphere retaining RhoA/anillin, and undergoing ingression. This phenotype is reminiscent of asymmetric furrows caused by a physical block between spindle and cortex [7-9], or by acentric spindle positioning [10-12]. The formation of these persistent "half-furrows" suggests a potential feedback mechanism between the spindle and the cortex that maintains cortical competency along the presumptive equatorial region prior to the "commitment to furrowing" stage of cytokinesis, thereby ensuring the eventual ingression of a symmetric cleavage furrow.
Collapse
|
6
|
Lamb H, Liro M, Myles K, Fernholz M, Anderson H, Rose LS. The Rac1 homolog CED-10 is a component of the MES-1/SRC-1 pathway for asymmetric division of the C. elegans EMS blastomere. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588162. [PMID: 38645195 PMCID: PMC11030239 DOI: 10.1101/2024.04.04.588162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Asymmetric cell division is essential for the creation of cell types with different identities and functions. The EMS blastomere of the four-cell Caenorhabditis elegans embryo undergoes an asymmetric division in response to partially redundant signaling pathways. One pathway involves a Wnt signal emanating from the neighboring P2 cell, while the other pathway is defined by the receptor-like MES-1 protein localized at the EMS/P2 cell contact, and the cytoplasmic kinase SRC-1. In response to these pathways, the EMS nuclear-centrosome complex rotates so that the spindle forms on the anterior-posterior axis; after division, the daughter cell contacting P2 becomes the endodermal precursor cell. Here we identify the Rac1 homolog, CED-10, as a new component of the MES-1/SRC-1 pathway. Loss of CED-10 affects both spindle positioning and endoderm specification. Although MES-1 is still present at the EMS/P2 contact in ced-10 embryos, SRC-1 dependent phosphorylation is reduced. These and other results suggest that CED-10 acts downstream of MES-1 and upstream of, or at the level of, SRC-1 activity. In addition, we find that the branched actin regulator ARX-2 is enriched at the EMS/P2 cell contact site, in a CED-10 dependent manner. Loss of ARX-2 results in spindle positioning defects, suggesting that CED-10 acts through branched actin to promote the asymmetric division of the EMS cell.
Collapse
Affiliation(s)
- Helen Lamb
- Department of Molecular and Cellular Biology, University of California, Davis One Shields Ave., Davis, CA 95616
| | - Małgorzata Liro
- Department of Molecular and Cellular Biology, University of California, Davis One Shields Ave., Davis, CA 95616
| | - Krista Myles
- Department of Molecular and Cellular Biology, University of California, Davis One Shields Ave., Davis, CA 95616
| | - McKenzi Fernholz
- Department of Molecular and Cellular Biology, University of California, Davis One Shields Ave., Davis, CA 95616
| | - Holly Anderson
- Department of Molecular and Cellular Biology, University of California, Davis One Shields Ave., Davis, CA 95616
| | - Lesilee S. Rose
- Department of Molecular and Cellular Biology, University of California, Davis One Shields Ave., Davis, CA 95616
| |
Collapse
|
7
|
Tong CS, Xǔ XJ, Wu M. Periodicity, mixed-mode oscillations, and multiple timescales in a phosphoinositide-Rho GTPase network. Cell Rep 2023; 42:112857. [PMID: 37494180 DOI: 10.1016/j.celrep.2023.112857] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/01/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023] Open
Abstract
While rhythmic contractile behavior is commonly observed at the cellular cortex, the primary focus has been on excitable or periodic events described by simple activator-delayed inhibitor mechanisms. We show that Rho GTPase activation in nocodazole-treated mitotic cells exhibits both simple oscillations and complex mixed-mode oscillations. Rho oscillations with a 20- to 30-s period are regulated by phosphatidylinositol (3,4,5)-trisphosphate (PIP3) via an activator-delayed inhibitor mechanism, while a slow reaction with period of minutes is regulated by phosphatidylinositol 4-kinase via an activator-substrate depletion mechanism. Conversion from simple to complex oscillations can be induced by modulating PIP3 metabolism or altering membrane contact site protein E-Syt1. PTEN depletion results in a period-doubling intermediate, which, like mixed-mode oscillations, is an intermediate state toward chaos. In sum, this system operates at the edge of chaos. Small changes in phosphoinositide metabolism can confer cells with the flexibility to rapidly enter ordered states with different periodicities.
Collapse
Affiliation(s)
- Chee San Tong
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - X J Xǔ
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Physics, Yale University, New Haven, CT 06511, USA
| | - Min Wu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
8
|
Zhang P, Chen J, Wang X, Geng Y, Sun L, Zhang H. The centralspindlin complex regulates cytokinesis and morphogenesis in the C. elegans spermatheca. Development 2023; 150:286720. [PMID: 36661358 DOI: 10.1242/dev.200840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 12/13/2022] [Indexed: 01/21/2023]
Abstract
Organ morphogenesis needs orchestration of a series of cellular events, including cell division, cell shape change, cell rearrangement and cell death. Cytokinesis, the final step of cell division, is involved in the control of organ size, shape and function. Mechanistically, it is unclear how the molecules involved in cytokinesis regulate organ size and shape. Here, we demonstrate that the centralspindlin complex coordinates cell division and epithelial morphogenesis by regulating cytokinesis. Loss of the centralspindlin components CYK-4 and ZEN-4 disrupts cell division, resulting in altered cell arrangement and malformation of the Caenorhabditis elegans spermatheca. Further investigation revealed that most spermathecal cells undergo nuclear division without completion of cytokinesis. Germline mutant-based analyses suggest that CYK-4 regulates cytokinesis of spermathecal cells in a GTPase activator activity-independent manner. Spermathecal morphology defects can be enhanced by double knockdown of rho-1 and cyk-4, and partially suppressed by double knockdown of cdc-42 and cyk-4. Thus, the centralspindlin components CYK-4 and ZEN-4, together with RHO-1 and CDC-42, are central players of a signaling network that guides spermathecal morphogenesis by enabling completion of cytokinesis.
Collapse
Affiliation(s)
- Pei Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Jiwei Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Xiangchuan Wang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Yingchao Geng
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Liangyu Sun
- Biological Imaging and Stem Cell Core, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Hongjie Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China
| |
Collapse
|
9
|
Liu B, Su J, Fan B, Ni X, Jin T. High expression of KIF20A in bladder cancer as a potential prognostic target for poor survival of renal cell carcinoma. Medicine (Baltimore) 2023; 102:e32667. [PMID: 36637953 PMCID: PMC9839245 DOI: 10.1097/md.0000000000032667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/27/2022] [Indexed: 01/14/2023] Open
Abstract
Urinary system tumors are malignant tumors, including renal cancer and bladder cancer. however, molecular target of them remains unclear. GSE14762 and GSE53757 were downloaded from GEO database to screen differentially expressed genes (DEGs). Weighted gene co-expression network analysis was performed. Gene Ontology (GO) and Kyoto encyclopedia of genes and genomes were used for enrichment analysis. Gene ontology and Kyoto encyclopedia of genes and genomes analyses were performed on whole genome, as formulated by gene set enrichment analysis. Survival analysis was also performed. Comparative toxicogenomics database was used to identify diseases most associated with hub genes. A total of 1517 DEGs were identified. DEGs were mainly enriched in cancer pathway, HIF-1 signaling pathway, organic acid metabolism, glyoxylate and dicarboxylate metabolism, and protein homodimerization activity. Ten hub genes (TPX2, ASPM, NUSAP1, RAD51AP1, CCNA2, TTK, PBK, MELK, DTL, kinesin family member 20A [KIF20A]) were obtained, which were up-regulated in tumor tissue. The expression of KIF20A was related with the overall survival of renal and bladder cancer. KIF20A was up-regulated in the tumor tissue, and might worsen the overall survival of bladder and kidney cancer. KIF20A could be a novel biomarker of bladder and kidney cancer.
Collapse
Affiliation(s)
- Bin Liu
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Hebei, PR China
| | - Jianzhi Su
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Hebei, PR China
| | - Bo Fan
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Hebei, PR China
| | - Xiaochen Ni
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Hebei, PR China
| | - Tingting Jin
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Hebei, PR China
| |
Collapse
|
10
|
Batman U, Deretic J, Firat-Karalar EN. The ciliopathy protein CCDC66 controls mitotic progression and cytokinesis by promoting microtubule nucleation and organization. PLoS Biol 2022; 20:e3001708. [PMID: 35849559 PMCID: PMC9333452 DOI: 10.1371/journal.pbio.3001708] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 07/28/2022] [Accepted: 06/14/2022] [Indexed: 11/23/2022] Open
Abstract
Precise spatiotemporal control of microtubule nucleation and organization is critical for faithful segregation of cytoplasmic and genetic material during cell division and signaling via the primary cilium in quiescent cells. Microtubule-associated proteins (MAPs) govern assembly, maintenance, and remodeling of diverse microtubule arrays. While a set of conserved MAPs are only active during cell division, an emerging group of MAPs acts as dual regulators in dividing and nondividing cells. Here, we elucidated the nonciliary functions and molecular mechanism of action of the ciliopathy-linked protein CCDC66, which we previously characterized as a regulator of ciliogenesis in quiescent cells. We showed that CCDC66 dynamically localizes to the centrosomes, the bipolar spindle, the spindle midzone, the central spindle, and the midbody in dividing cells and interacts with the core machinery of centrosome maturation and MAPs involved in cell division. Loss-of-function experiments revealed its functions during mitotic progression and cytokinesis. Specifically, CCDC66 depletion resulted in defective spindle assembly and orientation, kinetochore fiber stability, chromosome alignment in metaphase as well as central spindle and midbody assembly and organization in anaphase and cytokinesis. Notably, CCDC66 regulates mitotic microtubule nucleation via noncentrosomal and centrosomal pathways via recruitment of gamma-tubulin to the centrosomes and the spindle. Additionally, CCDC66 bundles microtubules in vitro and in cells by its C-terminal microtubule-binding domain. Phenotypic rescue experiments showed that the microtubule and centrosome-associated pools of CCDC66 individually or cooperatively mediate its mitotic and cytokinetic functions. Collectively, our findings identify CCDC66 as a multifaceted regulator of the nucleation and organization of the diverse mitotic and cytokinetic microtubule arrays and provide new insight into nonciliary defects that underlie ciliopathies. The ciliopathy-linked protein CCDC66 is only known for its ciliary functions. This study reveals that CCDC66 also has extensive non-ciliary functions, localizing to the spindle poles, spindle midzone, central spindle and midbody throughout cell division, where it regulates mitosis and cytokinesis by promoting microtubule nucleation and organization.
Collapse
Affiliation(s)
- Umut Batman
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Jovana Deretic
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Elif Nur Firat-Karalar
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
- Koç University School of Medicine, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
11
|
Thomas A, Gallaud E, Pascal A, Serre L, Arnal I, Richard-Parpaillon L, Savoian MS, Giet R. Peripheral astral microtubules ensure asymmetric furrow positioning in neural stem cells. Cell Rep 2021; 37:109895. [PMID: 34706235 DOI: 10.1016/j.celrep.2021.109895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/26/2021] [Accepted: 10/06/2021] [Indexed: 11/18/2022] Open
Abstract
Neuroblast division is characterized by asymmetric positioning of the cleavage furrow, resulting in a large difference in size between the future daughter cells. In animal cells, furrow placement and assembly are governed by centralspindlin that accumulates at the equatorial cell cortex of the future cleavage site and at the spindle midzone. In neuroblasts, these two centralspindlin populations are spatially and temporally separated. A leading pool is located at the basal cleavage site and a second pool accumulates at the midzone before traveling to the cleavage site. The cortical centralspindlin population requires peripheral astral microtubules and the chromosome passenger complex for efficient recruitment. Loss of this pool does not prevent cytokinesis but enhances centralspindlin signaling at the midzone, leading to equatorial furrow repositioning and decreased size asymmetry. These data show that basal furrow positioning in neuroblasts results from a competition between different centralspindlin pools in which the cortical pool is dominant.
Collapse
Affiliation(s)
- Alexandre Thomas
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR17 6290, 35000 Rennes, France
| | - Emmanuel Gallaud
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR17 6290, 35000 Rennes, France
| | - Aude Pascal
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR17 6290, 35000 Rennes, France
| | - Laurence Serre
- Inserm U1216, CEA, CNRS, Grenoble Institut Neurosciences (GIN), Université Grenoble Alpes, 38000 Grenoble, France
| | - Isabelle Arnal
- Inserm U1216, CEA, CNRS, Grenoble Institut Neurosciences (GIN), Université Grenoble Alpes, 38000 Grenoble, France
| | - Laurent Richard-Parpaillon
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR17 6290, 35000 Rennes, France
| | - Matthew Scott Savoian
- School of Fundamental Sciences, Massey University, 4410 Palmerston North, New Zealand
| | - Régis Giet
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR17 6290, 35000 Rennes, France.
| |
Collapse
|
12
|
Hansen CL, Pelegri F. Primordial Germ Cell Specification in Vertebrate Embryos: Phylogenetic Distribution and Conserved Molecular Features of Preformation and Induction. Front Cell Dev Biol 2021; 9:730332. [PMID: 34604230 PMCID: PMC8481613 DOI: 10.3389/fcell.2021.730332] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022] Open
Abstract
The differentiation of primordial germ cells (PGCs) occurs during early embryonic development and is critical for the survival and fitness of sexually reproducing species. Here, we review the two main mechanisms of PGC specification, induction, and preformation, in the context of four model vertebrate species: mouse, axolotl, Xenopus frogs, and zebrafish. We additionally discuss some notable molecular characteristics shared across PGC specification pathways, including the shared expression of products from three conserved germline gene families, DAZ (Deleted in Azoospermia) genes, nanos-related genes, and DEAD-box RNA helicases. Then, we summarize the current state of knowledge of the distribution of germ cell determination systems across kingdom Animalia, with particular attention to vertebrate species, but include several categories of invertebrates - ranging from the "proto-vertebrate" cephalochordates to arthropods, cnidarians, and ctenophores. We also briefly highlight ongoing investigations and potential lines of inquiry that aim to understand the evolutionary relationships between these modes of specification.
Collapse
Affiliation(s)
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
13
|
Liu D, Shaukat Z, Hussain R, Khan M, Gregory SL. Drosophila as a model for chromosomal instability. AIMS GENETICS 2021. [DOI: 10.3934/genet.2015.1.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractChromosomal instability (CIN) is a common feature of tumours that leads to increased genetic diversity in the tumour and poor clinical outcomes. There is considerable interest in understanding how CIN comes about and how its contribution to drug resistance and metastasis might be counteracted. In the last decade a number of CIN model systems have been developed in Drosophila that offer unique benefits both in understanding the development of CIN in a live animal as well as giving the potential to do genome wide screens for therapeutic candidate genes. This review outlines the mechanisms used in several Drosophila CIN model systems and summarizes some significant outcomes and opportunities that they have produced.
Collapse
Affiliation(s)
- Dawei Liu
- School of Molecular and Biomedical Science, University of Adelaide, North Terrace, Adelaide S.A. 5006, Australia
| | - Zeeshan Shaukat
- School of Molecular and Biomedical Science, University of Adelaide, North Terrace, Adelaide S.A. 5006, Australia
| | - Rashid Hussain
- School of Molecular and Biomedical Science, University of Adelaide, North Terrace, Adelaide S.A. 5006, Australia
| | - Mahwish Khan
- School of Molecular and Biomedical Science, University of Adelaide, North Terrace, Adelaide S.A. 5006, Australia
| | - Stephen L. Gregory
- School of Molecular and Biomedical Science, University of Adelaide, North Terrace, Adelaide S.A. 5006, Australia
| |
Collapse
|
14
|
Singh D, Schmidt N, Müller F, Bange T, Bird AW. Destabilization of Long Astral Microtubules via Cdk1-Dependent Removal of GTSE1 from Their Plus Ends Facilitates Prometaphase Spindle Orientation. Curr Biol 2020; 31:766-781.e8. [PMID: 33333009 DOI: 10.1016/j.cub.2020.11.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/25/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022]
Abstract
The precise regulation of microtubule dynamics over time and space in dividing cells is critical for several mitotic mechanisms that ultimately enable cell proliferation, tissue organization, and development. Astral microtubules, which extend from the centrosome toward the cell cortex, must be present for the mitotic spindle to properly orient, as well as for the faithful execution of anaphase and cytokinesis. However, little is understood about how the dynamic properties of astral microtubules are regulated spatiotemporally, or the contribution of astral microtubule dynamics to spindle positioning. The mitotic regulator Cdk1-CyclinB promotes destabilization of centrosomal microtubules and increased microtubule dynamics as cells enter mitosis, but how Cdk1 activity modulates astral microtubule stability, and whether it impacts spindle positioning, is unknown. Here, we uncover a mechanism revealing that Cdk1 destabilizes astral microtubules in prometaphase and thereby influences spindle reorientation. Phosphorylation of the EB1-dependent microtubule plus-end tracking protein GTSE1 by Cdk1 in early mitosis abolishes its interaction with EB1 and recruitment to microtubule plus ends. Loss of Cdk1 activity, or mutation of phosphorylation sites in GTSE1, induces recruitment of GTSE1 to growing microtubule plus ends in mitosis. This decreases the catastrophe frequency of astral microtubules and causes an increase in the number of long astral microtubules reaching the cell cortex, which restrains the ability of cells to reorient spindles along the long cellular axis in early mitosis. Astral microtubules thus must not only be present but also dynamic to allow the spindle to reorient, a state assisted by selective destabilization of long astral microtubules via Cdk1.
Collapse
Affiliation(s)
- Divya Singh
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Nadine Schmidt
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Franziska Müller
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Tanja Bange
- Department for Systems Chronobiology, Institute of Medical Psychology, LMU Munich, Goethestrasse 31/ I, 80336 Munich, Germany
| | - Alexander W Bird
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| |
Collapse
|
15
|
Toledo-Jacobo L, Henson JH, Shuster CB. Cytoskeletal polarization and cytokinetic signaling drives polar lobe formation in spiralian embryos. Dev Biol 2019; 456:201-211. [PMID: 31479647 PMCID: PMC6925573 DOI: 10.1016/j.ydbio.2019.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/15/2019] [Accepted: 08/28/2019] [Indexed: 01/09/2023]
Abstract
In many spiralians, asymmetry in the first two cleavages is achieved through the formation of a polar lobe (PL), which transiently constricts to sequester vegetal cytoplasm into the CD and D blastomeres. While microtubules and actin filaments are required for polar lobe formation, little else is known regarding the structural and functional similarities with the contractile ring, or how the PL constriction is able to form perpendicular to the cleavage plane. Examination of scallop embryos revealed that while activated myosin II could be detected in both the cleavage furrow and early PL constriction, astral or central spindle microtubules were not observed associated with the PL neck until the constriction was nearly complete. Further, inhibition of Aurora B had no effect on polar lobe initiation, but blocked both contractile ring ingression and PL constriction beyond phase II. The cortex destined for PL sequestration was marked by enrichment of the Arp2/3 complex, which was first detected during meiosis and remained enriched at the vegetal pole through the first two cleavages. Inhibition of Arp2/3 affected PL formation and partitioning of cytoplasm into the two daughter cells, suggesting that Arp2/3 plays a functional role in defining the zone of cortex to be sequestered into the polar lobe. Together, these data offer for the first time a mechanism by which a cytoskeletal specialization defines the polar lobe in this atypical form of asymmetric cell division.
Collapse
Affiliation(s)
- Leslie Toledo-Jacobo
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA; University of Washington Friday Harbor Laboratories, Friday Harbor, WA, 98250, USA.
| | - John H Henson
- University of Washington Friday Harbor Laboratories, Friday Harbor, WA, 98250, USA; Department of Biology, Dickinson College, Carlisle, PA, 17013, USA.
| | - Charles B Shuster
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA; University of Washington Friday Harbor Laboratories, Friday Harbor, WA, 98250, USA.
| |
Collapse
|
16
|
Papini D, Fant X, Ogawa H, Desban N, Samejima K, Feizbakhsh O, Askin B, Ly T, Earnshaw WC, Ruchaud S. Cell cycle-independent furrowing triggered by phosphomimetic mutations of the INCENP STD motif requires Plk1. J Cell Sci 2019; 132:jcs234401. [PMID: 31601613 PMCID: PMC7115952 DOI: 10.1242/jcs.234401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/27/2019] [Indexed: 11/20/2022] Open
Abstract
Timely and precise control of Aurora B kinase, the chromosomal passenger complex (CPC) catalytic subunit, is essential for accurate chromosome segregation and cytokinesis. Post-translational modifications of CPC subunits are directly involved in controlling Aurora B activity. Here, we identified a highly conserved acidic STD-rich motif of INCENP that is phosphorylated during mitosis in vivo and by Plk1 in vitro and is involved in controlling Aurora B activity. By using an INCENP conditional-knockout cell line, we show that impairing the phosphorylation status of this region disrupts chromosome congression and induces cytokinesis failure. In contrast, mimicking constitutive phosphorylation not only rescues cytokinesis but also induces ectopic furrows and contractile ring formation in a Plk1- and ROCK1-dependent manner independent of cell cycle and microtubule status. Our experiments identify the phospho-regulation of the INCENP STD motif as a novel mechanism that is key for chromosome alignment and cytokinesis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Diana Papini
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Xavier Fant
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
- Sorbonne Université/CNRS UMR8227, Station Biologique, Place Georges Teissier, CS90074, 29688 ROSCOFF cedex, France
| | - Hiromi Ogawa
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Nathalie Desban
- Sorbonne Université/CNRS UMR8227, Station Biologique, Place Georges Teissier, CS90074, 29688 ROSCOFF cedex, France
| | - Kumiko Samejima
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Omid Feizbakhsh
- Sorbonne Université/CNRS UMR8227, Station Biologique, Place Georges Teissier, CS90074, 29688 ROSCOFF cedex, France
| | - Bilge Askin
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Tony Ly
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - William C. Earnshaw
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Sandrine Ruchaud
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
- Sorbonne Université/CNRS UMR8227, Station Biologique, Place Georges Teissier, CS90074, 29688 ROSCOFF cedex, France
| |
Collapse
|
17
|
Peterman E, Prekeris R. The postmitotic midbody: Regulating polarity, stemness, and proliferation. J Cell Biol 2019; 218:3903-3911. [PMID: 31690620 PMCID: PMC6891101 DOI: 10.1083/jcb.201906148] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/17/2019] [Accepted: 10/18/2019] [Indexed: 12/15/2022] Open
Abstract
Peterman and Prekeris review abscission and discuss the diverse roles for the postmitotic midbody in regulating polarity, tumorigenesis, and stemness. Abscission, the final stage of cell division, requires well-orchestrated changes in endocytic trafficking, microtubule severing, actin clearance, and the physical sealing of the daughter cell membranes. These processes are highly regulated, and any missteps in localized membrane and cytoskeleton dynamics often lead to a delay or a failure in cell division. The midbody, a microtubule-rich structure that forms during cytokinesis, is a key regulator of abscission and appears to function as a signaling platform coordinating cytoskeleton and endosomal dynamics during the terminal stages of cell division. It was long thought that immediately following abscission and the conclusion of cell division, the midbody is either released or rapidly degraded by one of the daughter cells. Recently, the midbody has gained prominence for exerting postmitotic functions. In this review, we detail the role of the midbody in orchestrating abscission, as well as discuss the relatively new field of postabscission midbody biology, particularly focusing on how it may act to regulate cell polarity and its potential to regulate cell tumorigenicity or stemness.
Collapse
Affiliation(s)
- Eric Peterman
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
18
|
Gan H, Xue W, Gao Y, Zhu G, Chan D, Cheah KSE, Huang J. KIF5B modulates central spindle organization in late-stage cytokinesis in chondrocytes. Cell Biosci 2019; 9:85. [PMID: 31636894 PMCID: PMC6794761 DOI: 10.1186/s13578-019-0344-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 09/23/2019] [Indexed: 01/23/2023] Open
Abstract
Background The growth plate is a special region of the cartilage that drives longitudinal growth of long bones. Proliferating chondrocytes in the growth plate, arranged in columns, divide perpendicular to the long axis of the growth plate then intercalate to re-align with parental columns. Which molecular partners maintain growth plate columnar structures and chondrocyte cytokinesis has not been fully revealed. It is reported that kinesin family member 3A (KIF3A), a subunit of kinesin-2, plays an important role in maintaining columnar organization in growth plates via controlling primary cilia formation and cell proliferation. Result Here we identify kinesin family member 5B (KIF5B), the heavy chain of kinesin-1, a ubiquitously expressed motor protein for anterograde intracellular transport along the microtubule network, as a key modulator of cytokinesis in chondrocytes via maintenance of central spindle organization. We show that KIF5B is concentrated in the central spindle during cytokinesis in both primary chondrocytes and chondrogenic ATDC5 cells. Conclusion The failure of cytokinesis in KIF5B null chondrocytes leads to incomplete cell rotation, disrupting proliferation and differentiation, and results in a disorganized growth plate.
Collapse
Affiliation(s)
- Huiyan Gan
- 1School of Biomedical Sciences, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Wenqian Xue
- 1School of Biomedical Sciences, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Ya Gao
- 1School of Biomedical Sciences, The University of Hong Kong, Hong Kong, People's Republic of China.,2Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Guixia Zhu
- 1School of Biomedical Sciences, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Danny Chan
- 1School of Biomedical Sciences, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Kathryn S E Cheah
- 1School of Biomedical Sciences, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Jiandong Huang
- 1School of Biomedical Sciences, The University of Hong Kong, Hong Kong, People's Republic of China.,3Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 People's Republic of China
| |
Collapse
|
19
|
Leone M, Musa G, Engel FB. Cardiomyocyte binucleation is associated with aberrant mitotic microtubule distribution, mislocalization of RhoA and IQGAP3, as well as defective actomyosin ring anchorage and cleavage furrow ingression. Cardiovasc Res 2019. [PMID: 29522098 DOI: 10.1093/cvr/cvy056] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aims After birth mammalian cardiomyocytes initiate a last cell cycle which results in binucleation due to cytokinesis failure. Despite its importance for cardiac regenerative therapies, this process is poorly understood. Here, we aimed at a better understanding of the difference between cardiomyocyte proliferation and binucleation and providing a new tool to distinguish these two processes. Methods and results Monitoring of cell division by time-lapse imaging revealed that rat cardiomyocyte binucleation stems from a failure to properly ingress the cleavage furrow. Astral microtubule required for actomyosin ring anchorage and thus furrow ingression were not symmetrically distributed at the periphery of the equatorial region during anaphase in binucleating cardiomyocytes. Consequently, RhoA, the master regulator of actomyosin ring formation and constriction, non-muscle myosin IIB, a central component of the actomyosin ring, as well as IQGAP3 were abnormally localized during cytokinesis. In agreement with improper furrow ingression, binucleation in vitro and in vivo was associated with a failure of RhoA and IQGAP3 to localize to the stembody of the midbody. Conclusion Taken together, these results indicate that naturally occurring cytokinesis failure in primary cardiomyocytes is due to an aberrant mitotic microtubule apparatus resulting in inefficient anchorage of the actomyosin ring to the plasma cell membrane. Thus, cardiomyocyte binucleation and division can be discriminated by the analysis of RhoA as well as IQGAP3 localization.
Collapse
Affiliation(s)
- Marina Leone
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany.,Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 12, 91054 Erlangen, Germany
| | - Gentian Musa
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 12, 91054 Erlangen, Germany
| | - Felix Benedikt Engel
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany.,Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 12, 91054 Erlangen, Germany.,Muscle Research Center Erlangen
| |
Collapse
|
20
|
Verma V, Mogilner A, Maresca TJ. Classical and Emerging Regulatory Mechanisms of Cytokinesis in Animal Cells. BIOLOGY 2019; 8:biology8030055. [PMID: 31357447 PMCID: PMC6784142 DOI: 10.3390/biology8030055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/05/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
The primary goal of cytokinesis is to produce two daughter cells, each having a full set of chromosomes. To achieve this, cells assemble a dynamic structure between segregated sister chromatids called the contractile ring, which is made up of filamentous actin, myosin-II, and other regulatory proteins. Constriction of the actomyosin ring generates a cleavage furrow that divides the cytoplasm to produce two daughter cells. Decades of research have identified key regulators and underlying molecular mechanisms; however, many fundamental questions remain unanswered and are still being actively investigated. This review summarizes the key findings, computational modeling, and recent advances in understanding of the molecular mechanisms that control the formation of the cleavage furrow and cytokinesis.
Collapse
Affiliation(s)
- Vikash Verma
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA.
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
- Department of Biology, New York University, New York, NY 10012, USA
| | - Thomas J Maresca
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
21
|
KIF20A Affects the Prognosis of Bladder Cancer by Promoting the Proliferation and Metastasis of Bladder Cancer Cells. DISEASE MARKERS 2019; 2019:4863182. [PMID: 31093305 PMCID: PMC6481133 DOI: 10.1155/2019/4863182] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/23/2019] [Accepted: 03/05/2019] [Indexed: 01/16/2023]
Abstract
Objective To investigate the expression of kinesin family member 20A (KIF20A) in bladder cancer, the effect of KIF20A on the proliferation and metastasis of bladder cancer cells, and the effect of KIF20A expression on the prognosis of bladder cancer patients. Methods Bladder cancer tissue and its adjacent tissues were collected from tumour patients. The mRNA and protein expression levels of KIF20A in the tissue samples were detected by qRT-PCR and western blot. Immunohistochemical (IHC) staining was used to identify the expression and distribution of KIF20A proteins in the tissue samples. The relationship between the KIF20A expression and the clinical pathology of bladder cancer was analysed. The effect of the differential expression of KIF20A on the prognosis of patients with bladder cancer was analysed by the TCGA database. The plasmid was transfected into the bladder cell lines T24 and 5637 to construct two stable cell lines with knocked down KIF20A. The effect of KIF20A expression on the proliferation and invasion of T24 and 5637 bladder cells was explored in vitro using the abovementioned stable cell lines. The effect of the KIF20A expression on the proliferation of bladder cancer cells was evaluated by a mouse xenograft model. Results The expression of KIF20A was significantly higher in the bladder cancer tissues than in the adjacent control tissues. The expression of KIF20A was significantly associated with the degree of pathological differentiation of bladder cancer. Patients with a higher expression of KIF20A had a higher tumour grade and a more advanced stage. The mean survival of patients with a high KIF20A expression was significantly lower than the mean survival of patients with a low KIF20A expression. The in vitro experiments demonstrated that the knockdown of KIF20A significantly inhibited T24 and 5637 cell proliferation and invasion. The in vivo experiments showed that the knockdown of KIF20A significantly inhibited the proliferation of the bladder tumours. Conclusion KIF20A promotes the proliferation and metastasis of bladder cancer cells. Bladder cancer patients with a high KIF20A expression have a worse tumour differentiation and a poor prognosis. KIF20A may become an independent factor that affects the prognosis of bladder cancer patients and a therapeutic target for bladder cancer.
Collapse
|
22
|
Lin F, Krishnamoorthy P, Schubert V, Hause G, Heilmann M, Heilmann I. A dual role for cell plate-associated PI4Kβ in endocytosis and phragmoplast dynamics during plant somatic cytokinesis. EMBO J 2019; 38:embj.2018100303. [PMID: 30617084 DOI: 10.15252/embj.2018100303] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 11/09/2022] Open
Abstract
Plant cytokinesis involves membrane trafficking and cytoskeletal rearrangements. Here, we report that the phosphoinositide kinases PI4Kβ1 and PI4Kβ2 integrate these processes in Arabidopsis thaliana (Arabidopsis) roots. Cytokinetic defects of an Arabidopsis pi4kβ1 pi4kβ2 double mutant are accompanied by defects in membrane trafficking. Specifically, we show that trafficking of the proteins KNOLLE and PIN2 at the cell plate, clathrin recruitment, and endocytosis is impaired in pi4kβ1 pi4kβ2 double mutants, accompanied by unfused vesicles at the nascent cell plate and around cell wall stubs. Interestingly, pi4kβ1 pi4kβ2 plants also display ectopic overstabilization of phragmoplast microtubules, which guide membrane trafficking at the cell plate. The overstabilization of phragmoplasts in the double mutant coincides with mislocalization of the microtubule-associated protein 65-3 (MAP65-3), which cross-links microtubules and is a downstream target for inhibition by the MAP kinase MPK4. Based on similar cytokinetic defects of the pi4kβ1 pi4kβ2 and mpk4-2 mutants and genetic and physical interaction of PI4Kβ1 and MPK4, we propose that PI4Kβ and MPK4 influence localization and activity of MAP65-3, respectively, acting synergistically to control phragmoplast dynamics.
Collapse
Affiliation(s)
- Feng Lin
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Praveen Krishnamoorthy
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Gerd Hause
- Biocenter, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Mareike Heilmann
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Ingo Heilmann
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
23
|
Sheng Y, Wang W, Hong B, Jiang X, Sun R, Yan Q, Zhang S, Lu M, Wang S, Zhang Z, Lin W, Li Y. Upregulation of KIF20A correlates with poor prognosis in gastric cancer. Cancer Manag Res 2018; 10:6205-6216. [PMID: 30538567 PMCID: PMC6260125 DOI: 10.2147/cmar.s176147] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background KIF20A is well known as one of the key proteins in mitosis. Recently, a number of studies illustrated that KIF20A might function as an oncogene in some carcinomas. However, its expression levels and clinical value remained unclear in gastric cancer (GC). Patients and methods In this study, we investigated the expression of KIF20A in samples from GC patients and cell lines by quantitative real-time PCR and Western blot. The function of KIF20A in cell proliferation of GC cell lines was examined via cell viability and colony formation assays. Immunohistochemistry assay based on a tissue microarray consisting of 146 cases was performed to evaluate the prognostic value of KIF20A. The overall survival rate of 122 GC patients based on KIF20A expression was analyzed as well. Finally, using KIF20A inhibitor, genistein, and combining it with cisplatin or fluorouracil, the antitumor effects were studied. Results Most GC samples (56.76%) showed higher KIF20A expression level compared to their corresponding normal specimens, which demonstrated the potential oncogenic role of KIF20A in GC. The functional studies elucidated the essential role of KIF20A in GC cell proliferation. Besides, tissue microarray result showed that the expression level of KIF20A was significantly related to the histological grades (P=0.036). Furthermore, we found the expression of KIF20A was related to poor overall survival rate, which is coincident with the results from Kaplan–Meier plotter database. In addition, we found that a KIF20A inhibitor, genistein, could enhance the antitumor activity of cisplatin and fluorouracil, which might be considered as a chemosensitive agent in GC. Conclusion KIF20A can promote cell proliferation in GC, which might be used as an independent prognostic factor and a potential therapeutic target.
Collapse
Affiliation(s)
- Yi Sheng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,
| | - Wei Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China,
| | - Bo Hong
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China,
| | - Xingwang Jiang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,
| | - Ruochuan Sun
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,
| | - Qiang Yan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,
| | - Shangxin Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,
| | - Mingdian Lu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,
| | - Shengyi Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,
| | - Zhen Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,
| | - Wenchu Lin
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China,
| | - Yongxiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,
| |
Collapse
|
24
|
Chen J, Castelvecchi GD, Li-Villarreal N, Raught B, Krezel AM, McNeill H, Solnica-Krezel L. Atypical Cadherin Dachsous1b Interacts with Ttc28 and Aurora B to Control Microtubule Dynamics in Embryonic Cleavages. Dev Cell 2018; 45:376-391.e5. [PMID: 29738714 PMCID: PMC5983389 DOI: 10.1016/j.devcel.2018.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 02/22/2018] [Accepted: 04/09/2018] [Indexed: 01/15/2023]
Abstract
Atypical cadherin Dachsous (Dchs) is a conserved regulator of planar cell polarity, morphogenesis, and tissue growth during animal development. Dchs functions in part by regulating microtubules by unknown molecular mechanisms. Here we show that maternal zygotic (MZ) dchs1b zebrafish mutants exhibit cleavage furrow progression defects and impaired midzone microtubule assembly associated with decreased microtubule turnover. Mechanistically, Dchs1b interacts via a conserved motif in its intracellular domain with the tetratricopeptide motifs of Ttc28 and regulates its subcellular distribution. Excess Ttc28 impairs cleavages and decreases microtubule turnover, while ttc28 inactivation increases turnover. Moreover, ttc28 deficiency in dchs1b mutants suppresses the microtubule dynamics and midzone microtubule assembly defects. Dchs1b also binds to Aurora B, a known regulator of cleavages and microtubules. Embryonic cleavages in MZdchs1b mutants exhibit increased, and in MZttc28 mutants decreased, sensitivity to Aurora B inhibition. Thus, Dchs1b regulates microtubule dynamics and embryonic cleavages by interacting with Ttc28 and Aurora B.
Collapse
Affiliation(s)
- Jiakun Chen
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gina D Castelvecchi
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nanbing Li-Villarreal
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Andrzej M Krezel
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Helen McNeill
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Genetics, University of Toronto, Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
25
|
Lee SR, Jo YJ, Namgoong S, Kim NH. Anillin controls cleavage furrow formation in the course of asymmetric division during mouse oocyte maturation. Mol Reprod Dev 2018; 83:792-801. [PMID: 27508507 DOI: 10.1002/mrd.22688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/08/2016] [Indexed: 12/31/2022]
Abstract
Anillin is a scaffold protein that recruits several proteins involved in cleavage furrow formation during cytokinesis. The role of anilllin in symmetric cell divisions in somatic cells has been intensively studied, yet its involvement in cleavage furrow formation is still elusive. In this study, we investigated the role of anillin in mammalian oocyte maturation and cytokinesis. We found that anillin is localized around the nucleus during the oocyte germinal-vesicle stage, and spreads to the cytoplasm after germinal vesicle breakdown. Thereafter, anillin concentrates at the site of the cleavage furrow from anaphase I to metaphase II. Disruption of anillin activity by microinjecting oocytes with specific siRNAs resulted in a failure of polar body extrusion and asymmetric division, and caused abnormal chromosome segregation during anaphase I. Furthermore, pharmacological inhibition of myosin light chain using Y-27632 or ML-7 resulted in decreased anillin expression. Collectively, our data suggest that anillin is an essential intracellular component that maintains the integrity of asymmetric division in mouse oocytes. Mol. Reprod. Dev. 83: 792-801, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- So-Rim Lee
- Department of Animal Sciences, Chungbuk National University, Cheong-ju, South Korea
| | - Yu-Jin Jo
- Department of Animal Sciences, Chungbuk National University, Cheong-ju, South Korea
| | - Suk Namgoong
- Department of Animal Sciences, Chungbuk National University, Cheong-ju, South Korea.
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheong-ju, South Korea.
| |
Collapse
|
26
|
Price KL, Rose LS. LET-99 functions in the astral furrowing pathway, where it is required for myosin enrichment in the contractile ring. Mol Biol Cell 2017; 28:2360-2373. [PMID: 28701343 PMCID: PMC5576900 DOI: 10.1091/mbc.e16-12-0874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/16/2017] [Accepted: 06/27/2017] [Indexed: 11/11/2022] Open
Abstract
LET-99 is required for furrowing during cytokinesis in both symmetrically and asymmetrically dividing cells. This function is distinct from the role of LET-99 in spindle positioning with Gα signaling. LET-99 is localized to the furrow, where it acts to promote myosin enrichment. The anaphase spindle determines the position of the cytokinesis furrow, such that the contractile ring assembles in an equatorial zone between the two spindle poles. Contractile ring formation is mediated by RhoA activation at the equator by the centralspindlin complex and midzone microtubules. Astral microtubules also inhibit RhoA accumulation at the poles. In the Caenorhabditis elegans one-cell embryo, the astral microtubule–dependent pathway requires anillin, NOP-1, and LET-99. LET-99 is well characterized for generating the asymmetric cortical localization of the Gα-dependent force-generating complex that positions the spindle during asymmetric division. However, whether the role of LET-99 in cytokinesis is specific to asymmetric division and whether it acts through Gα to promote furrowing are unclear. Here we show that LET-99 contributes to furrowing in both asymmetrically and symmetrically dividing cells, independent of its function in spindle positioning and Gα regulation. LET-99 acts in a pathway parallel to anillin and is required for myosin enrichment into the contractile ring. These and other results suggest a positive feedback model in which LET-99 localizes to the presumptive cleavage furrow in response to the spindle and myosin. Once positioned there, LET-99 enhances myosin accumulation to promote furrowing in both symmetrically and asymmetrically dividing cells.
Collapse
Affiliation(s)
- Kari L Price
- Department of Molecular and Cellular Biology and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Program, University of California, Davis, Davis, CA 95616
| | - Lesilee S Rose
- Department of Molecular and Cellular Biology and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Program, University of California, Davis, Davis, CA 95616
| |
Collapse
|
27
|
Frappaolo A, Sechi S, Belloni G, Piergentili R, Giansanti MG. Visualization of cleavage furrow proteins in fixed dividing spermatocytes. Methods Cell Biol 2017; 137:85-103. [PMID: 28065322 DOI: 10.1016/bs.mcb.2016.03.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cytokinesis separates the cytoplasmic organelles and the duplicated genome into two daughter cells at the end of cell division. In animal cell cytokinesis, assembly and constriction of the contractile apparatus must be finely coordinated with plasma membrane remodeling and vesicle trafficking at the cleavage furrow. Accurate control of these events during cell cleavage is a fundamental task in all organisms and is also essential for maintaining ploidy and preventing neoplastic transformation. Drosophila male meiosis provides a well-suited cell system for exploring the molecular mechanisms underlying cytokinesis, combining the powerful tools of Drosophila genetics with unique cytological characteristics. Remarkably the large size of male meiotic cells highly facilitates cytological analysis of cytokinesis. Here we describe the main procedures that we use for fixing and visualizing cleavage furrow proteins in male meiotic cells. Moreover, we detail our protocol to detect protein interactions in fixed dividing spermatocytes by applying in situ proximity ligation assay.
Collapse
Affiliation(s)
- A Frappaolo
- Istituto di Biologia e Patologia Molecolari del CNR, Università di Roma Sapienza, Roma, Italy
| | - S Sechi
- Istituto di Biologia e Patologia Molecolari del CNR, Università di Roma Sapienza, Roma, Italy
| | - G Belloni
- Istituto di Biologia e Patologia Molecolari del CNR, Università di Roma Sapienza, Roma, Italy
| | - R Piergentili
- Istituto di Biologia e Patologia Molecolari del CNR, Università di Roma Sapienza, Roma, Italy
| | - M G Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, Università di Roma Sapienza, Roma, Italy
| |
Collapse
|
28
|
Tormos AM, Rius-Pérez S, Jorques M, Rada P, Ramirez L, Valverde ÁM, Nebreda ÁR, Sastre J, Taléns-Visconti R. p38α regulates actin cytoskeleton and cytokinesis in hepatocytes during development and aging. PLoS One 2017; 12:e0171738. [PMID: 28166285 PMCID: PMC5293263 DOI: 10.1371/journal.pone.0171738] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/25/2017] [Indexed: 12/02/2022] Open
Abstract
Background Hepatocyte poliploidization is an age-dependent process, being cytokinesis failure the main mechanism of polyploid hepatocyte formation. Our aim was to study the role of p38α MAPK in the regulation of actin cytoskeleton and cytokinesis in hepatocytes during development and aging. Methods Wild type and p38α liver-specific knock out mice at different ages (after weaning, adults and old) were used. Results We show that p38α MAPK deficiency induces actin disassembly upon aging and also cytokinesis failure leading to enhanced binucleation. Although the steady state levels of cyclin D1 in wild type and p38α knock out old livers remained unaffected, cyclin B1- a marker for G2/M transition- was significantly overexpressed in p38α knock out mice. Our findings suggest that hepatocytes do enter into S phase but they do not complete cell division upon p38α deficiency leading to cytokinesis failure and binucleation. Moreover, old liver-specific p38α MAPK knock out mice exhibited reduced F-actin polymerization and a dramatic loss of actin cytoskeleton. This was associated with abnormal hyperactivation of RhoA and Cdc42 GTPases. Long-term p38α deficiency drives to inactivation of HSP27, which seems to account for the impairment in actin cytoskeleton as Hsp27-silencing decreased the number and length of actin filaments in isolated hepatocytes. Conclusions p38α MAPK is essential for actin dynamics with age in hepatocytes.
Collapse
Affiliation(s)
- Ana M. Tormos
- Department of Physiology, University of Valencia. Burjassot, Valencia, Spain
| | - Sergio Rius-Pérez
- Department of Physiology, University of Valencia. Burjassot, Valencia, Spain
| | - María Jorques
- Department of Physiology, University of Valencia. Burjassot, Valencia, Spain
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Madrid, Spain
| | - Lorena Ramirez
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ángela M. Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Madrid, Spain
| | - Ángel R. Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Juan Sastre
- Department of Physiology, University of Valencia. Burjassot, Valencia, Spain
| | - Raquel Taléns-Visconti
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia. Burjassot, Valencia, Spain
- * E-mail:
| |
Collapse
|
29
|
Busch A, Hess S. The Cytoskeleton Architecture of Algivorous Protoplast Feeders (Viridiraptoridae, Rhizaria) Indicates Actin-Guided Perforation of Prey Cell Walls. Protist 2017; 168:12-31. [DOI: 10.1016/j.protis.2016.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/14/2016] [Accepted: 10/06/2016] [Indexed: 01/11/2023]
|
30
|
Saito K, Ohta S, Kawakami Y, Yoshida K, Toda M. Functional analysis of KIF20A, a potential immunotherapeutic target for glioma. J Neurooncol 2017; 132:63-74. [DOI: 10.1007/s11060-016-2360-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 12/23/2016] [Indexed: 01/05/2023]
|
31
|
Chávez-Viteri YE, Brown FD, Pérez OD. Deviating from the Norm: Peculiarities of Aplysia cf. californica Early Cleavage Compared to Traditional Spiralian Models. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 328:72-87. [PMID: 28032453 DOI: 10.1002/jez.b.22718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 09/08/2016] [Accepted: 10/03/2016] [Indexed: 11/09/2022]
Abstract
Spiralia represents one of the main clades of bilaterally symmetrical metazoans (Bilateria). This group is of particular interest due to the remarkable conservation of its early developmental pattern despite of the high diversity of larval and adult body plans. Variations during embryogenesis are considered powerful tools to determine ancestral and derived characters under a phylogenetic framework. By direct observation of embryos cultured in vitro, we analyzed the early cleavage of the euopisthobranchs Aplysia cf. californica. We used tubulin immunocytochemistry to stain mitotic spindles during early cleavages, and followed each division with the aid of an autofluorescent compound inside yolk platelets, which differed from the characteristic pink-brownish pigment of the vegetal cytoplasm in zygotes and early embryos. We found that this species exhibits an unequal cleavage characterized by ooplasmic segregation, oblique inclination of mitotic spindles, and differences in size and positioning of the asters in relation to the cellular cortex. Furthermore, we detected asynchrony in cleavage timing between the two large macromeres C and D, which increases the number of cleavage rounds required to reach a particular cell stage in comparison to other spiralians. Here, we report the presence of a transient and previously undescribed U-shaped embryo in this species. The present detailed description of A. californica early development deviates considerably from stereotypical patterns described in other spiralians. Our observations demonstrate that early spiralian development can be more plastic than previously thought.
Collapse
Affiliation(s)
- Yolanda E Chávez-Viteri
- Laboratorio de Biología del Desarrollo 113, Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador.,Centro Nacional de Acuicultura e Investigaciones Marinas, Escuela Politécnica del Litoral, San Pedro, Santa Elena, Ecuador
| | - Federico D Brown
- Centro Nacional de Acuicultura e Investigaciones Marinas, Escuela Politécnica del Litoral, San Pedro, Santa Elena, Ecuador.,Evolutionary Developmental Biology Laboratory, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia.,Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil.,Instituto Nacional de Ciência e Tecnologia em Estudos Interdisciplinares e Transdisciplinares em Ecologia e Evolução (IN-TREE), Salvador, BA, Brazil
| | - Oscar D Pérez
- Laboratorio de Biología del Desarrollo 113, Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| |
Collapse
|
32
|
McKenzie C, Bassi ZI, Debski J, Gottardo M, Callaini G, Dadlez M, D'Avino PP. Cross-regulation between Aurora B and Citron kinase controls midbody architecture in cytokinesis. Open Biol 2016; 6:rsob.160019. [PMID: 27009191 PMCID: PMC4821246 DOI: 10.1098/rsob.160019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cytokinesis culminates in the final separation, or abscission, of the two daughter cells at the end of cell division. Abscission relies on an organelle, the midbody, which forms at the intercellular bridge and is composed of various proteins arranged in a precise stereotypic pattern. The molecular mechanisms controlling midbody organization and function, however, are obscure. Here we show that proper midbody architecture requires cross-regulation between two cell division kinases, Citron kinase (CIT-K) and Aurora B, the kinase component of the chromosomal passenger complex (CPC). CIT-K interacts directly with three CPC components and is required for proper midbody architecture and the orderly arrangement of midbody proteins, including the CPC. In addition, we show that CIT-K promotes Aurora B activity through phosphorylation of the INCENP CPC subunit at the TSS motif. In turn, Aurora B controls CIT-K localization and association with its central spindle partners through phosphorylation of CIT-K's coiled coil domain. Our results identify, for the first time, a cross-regulatory mechanism between two kinases during cytokinesis, which is crucial for establishing the stereotyped organization of midbody proteins.
Collapse
Affiliation(s)
- Callum McKenzie
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Zuni I Bassi
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Janusz Debski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Warszawa 02-106, Poland
| | - Marco Gottardo
- Department of Life Sciences, University of Siena, Via A. Moro 4, Siena 53100, Italy
| | - Giuliano Callaini
- Department of Life Sciences, University of Siena, Via A. Moro 4, Siena 53100, Italy
| | - Michal Dadlez
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Warszawa 02-106, Poland
| | - Pier Paolo D'Avino
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
33
|
Mogilner A, Manhart A. Agent-based modeling: case study in cleavage furrow models. Mol Biol Cell 2016; 27:3379-3384. [PMID: 27811328 PMCID: PMC5221574 DOI: 10.1091/mbc.e16-01-0013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 12/30/2022] Open
Abstract
The number of studies in cell biology in which quantitative models accompany experiments has been growing steadily. Roughly, mathematical and computational techniques of these models can be classified as "differential equation based" (DE) or "agent based" (AB). Recently AB models have started to outnumber DE models, but understanding of AB philosophy and methodology is much less widespread than familiarity with DE techniques. Here we use the history of modeling a fundamental biological problem-positioning of the cleavage furrow in dividing cells-to explain how and why DE and AB models are used. We discuss differences, advantages, and shortcomings of these two approaches.
Collapse
Affiliation(s)
- Alex Mogilner
- Courant Institute and Department of Biology, New York University, New York, NY 10012
| | - Angelika Manhart
- Courant Institute and Department of Biology, New York University, New York, NY 10012
| |
Collapse
|
34
|
An Overview of Alternating Electric Fields Therapy (NovoTTF Therapy) for the Treatment of Malignant Glioma. Curr Neurol Neurosci Rep 2016; 16:8. [PMID: 26739692 PMCID: PMC4703612 DOI: 10.1007/s11910-015-0606-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As with many cancer treatments, tumor treating fields (TTFields) target rapidly dividing tumor cells. During mitosis, TTFields-exposed cells exhibit uncontrolled membrane blebbing at the onset of anaphase, resulting in aberrant mitotic exit. Based on these criteria, at least two protein complexes have been proposed as TTFields’ molecular targets, including α/β-tubulin and the septin 2, 6, 7 heterotrimer. After aberrant mitotic exit, cells exhibited abnormal nuclei and signs of cellular stress, including decreased cellular proliferation and p53 dependence, and exhibit the hallmarks of immunogenic cell death, suggesting that TTFields treatment may induce an antitumor immune response. Clinical trials lead to Food and Drug Administration approval for their treatment of recurrent glioblastoma. Detailed modeling of TTFields within the brain suggests that the location of the tumor may affect treatment efficacy. These observations have a profound impact on the use of TTFields in the clinic, including what co-therapies may be best applied to boost its efficacy.
Collapse
|
35
|
Fortier M, Celton-Morizur S, Desdouets C. Incomplete cytokinesis/binucleation in mammals: The powerful system of hepatocytes. Methods Cell Biol 2016; 137:119-142. [PMID: 28065301 DOI: 10.1016/bs.mcb.2016.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Polyploidy, the state of having greater than a diploid DNA content (tetraploid, octoploid, etc.) is a characteristic feature of mammalian hepatocytes and accompanies late fetal development and postnatal maturation of the liver. During the weaning period, diploid hepatocytes can engage either into normal cell division cycle giving rise to two diploid hepatocytes or follow a scheduled division program characterized by incomplete cytokinesis. In that case, diploid hepatocytes undergo mitosis, but do not form a contractile ring. Indeed, cleavage-plane specification is never established, because of the deficiencies of actin cytoskeleton reorganization. Furthermore, microtubules fail both to contact the cortex and to deliver their molecular signal, preventing localization and activation of RhoA. Therefore, cytokinesis aborts and a binucleate tetraploid liver cell is generated, which subsequently plays a pivotal role in liver progressive polyploidization. In this chapter, we describe detailed protocols to monitor hepatocyte proliferation and cytokinesis process by in situ and dynamic ex vivo approaches.
Collapse
Affiliation(s)
- M Fortier
- Inserm, U1016, Paris, France; CNRS, UMR 8104, Paris, France; Paris Descartes University, Paris, France
| | - S Celton-Morizur
- Inserm, U1016, Paris, France; CNRS, UMR 8104, Paris, France; Paris Descartes University, Paris, France
| | - C Desdouets
- Inserm, U1016, Paris, France; CNRS, UMR 8104, Paris, France; Paris Descartes University, Paris, France
| |
Collapse
|
36
|
Lawrence EJ, Boucher E, Mandato CA. Mitochondria-cytoskeleton associations in mammalian cytokinesis. Cell Div 2016; 11:3. [PMID: 27030796 PMCID: PMC4812650 DOI: 10.1186/s13008-016-0015-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 03/02/2016] [Indexed: 12/27/2022] Open
Abstract
Background The role of the cytoskeleton in regulating mitochondrial distribution in dividing mammalian cells is poorly understood. We previously demonstrated that mitochondria are transported to the cleavage furrow during cytokinesis in a microtubule-dependent manner. However, the exact subset of spindle microtubules and molecular machinery involved remains unknown. Methods We employed quantitative imaging techniques and structured illumination microscopy to analyse the spatial and temporal relationship of mitochondria with microtubules and actin of the contractile ring during cytokinesis in HeLa cells. Results Superresolution microscopy revealed that mitochondria were associated with astral microtubules of the mitotic spindle in cytokinetic cells. Dominant-negative mutants of KIF5B, the heavy chain of kinesin-1 motor, and of Miro-1 disrupted mitochondrial transport to the furrow. Live imaging revealed that mitochondrial enrichment at the cell equator occurred simultaneously with the appearance of the contractile ring in cytokinesis. Inhibiting RhoA activity and contractile ring assembly with C3 transferase, caused mitochondrial mislocalisation during division. Conclusions Taken together, the data suggest a model in which mitochondria are transported by a microtubule-mediated mechanism involving equatorial astral microtubules, Miro-1, and KIF5B to the nascent actomyosin contractile ring in cytokinesis. Electronic supplementary material The online version of this article (doi:10.1186/s13008-016-0015-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- E J Lawrence
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC Canada
| | - E Boucher
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC Canada
| | - C A Mandato
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC Canada
| |
Collapse
|
37
|
The roles of the oncoprotein GOLPH3 in contractile ring assembly and membrane trafficking during cytokinesis. Biochem Soc Trans 2015; 43:117-21. [PMID: 25619256 DOI: 10.1042/bst20140264] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cytokinesis is an intricate process that requires an intimate interplay between actomyosin ring constriction and plasma membrane remodelling at the cleavage furrow. However, the molecular mechanisms involved in coupling the cytoskeleton dynamics with vesicle trafficking during cytokinesis are poorly understood. The highly conserved Golgi phosphoprotein 3 (GOLPH3), functions as a phosphatidylinositol 4-phosphate (PI4P) effector at the Golgi. Recent studies have suggested that GOLPH3 is up-regulated in several cancers and is associated with poor prognosis and more aggressive tumours. In Drosophila melanogaster, GOLPH3 localizes at the cleavage furrow of dividing cells, is required for successful cytokinesis and acts as a key molecule in coupling phosphoinositide (PI) signalling with actomyosin ring dynamics. Because cytokinesis failures have been linked with pre-malignant disease and cancer, the novel connection between GOLPH3 and cytokinesis imposes new fields of investigation in cancer biology and therapy.
Collapse
|
38
|
Dumoux M, Menny A, Delacour D, Hayward RD. A Chlamydia effector recruits CEP170 to reprogram host microtubule organization. J Cell Sci 2015. [PMID: 26220855 PMCID: PMC4582400 DOI: 10.1242/jcs.169318] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The obligate intracellular bacterial pathogen Chlamydia trachomatis deploys virulence effectors to subvert host cell functions enabling its replication within a specialized membrane-bound compartment termed an inclusion. The control of the host cytoskeleton is crucial for Chlamydia uptake, inclusion biogenesis and cell exit. Here, we demonstrate how a Chlamydia effector rearranges the microtubule (MT) network by initiating organization of the MTs at the inclusion surface. We identified an inclusion-localized effector that is sufficient to interfere with MT assembly, which we named inclusion protein acting on MTs (IPAM). We established that IPAM recruits and stimulates the centrosomal protein 170 kDa (CEP170) to hijack the MT organizing functions of the host cell. We show that CEP170 is essential for chlamydial control of host MT assembly, and is required for inclusion morphogenesis and bacterial infectivity. Together, we demonstrate how a pathogen effector reprograms the host MT network to support its intracellular development.
Collapse
Affiliation(s)
- Maud Dumoux
- Institute of Structural and Molecular Biology, Birkbeck and University College London, Malet Street, London WC1E 7HX, UK
| | - Anais Menny
- Institute of Structural and Molecular Biology, Birkbeck and University College London, Malet Street, London WC1E 7HX, UK
| | - Delphine Delacour
- Cell Adhesion and Mechanics Group, Institut Jacques Monod, CNRS UMR7592, Université Paris Diderot, 15 rue Helene Brion, Paris 75013, France
| | - Richard D Hayward
- Institute of Structural and Molecular Biology, Birkbeck and University College London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
39
|
Asano E, Hasegawa H, Hyodo T, Ito S, Maeda M, Chen D, Takahashi M, Hamaguchi M, Senga T. SHCBP1 is required for midbody organization and cytokinesis completion. Cell Cycle 2015; 13:2744-51. [PMID: 25486361 DOI: 10.4161/15384101.2015.945840] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The centralspindlin complex, which is composed of MKLP1 and MgcRacGAP, is one of the crucial factors involved in cytokinesis initiation. Centralspindlin is localized at the middle of the central spindle during anaphase and then concentrates at the midbody to control abscission. A number of proteins that associate with centralspindlin have been identified. These associating factors regulate furrowing and abscission in coordination with centralspindlin. A recent study identified a novel centralspindlin partner, called Nessun Dorma, which is essential for germ cell cytokinesis in Drosophila melanogaster. SHCBP1 is a human ortholog of Nessun Dorma that associates with human centralspindlin. In this report, we analyzed the interaction of SHCBP1 with centralspindlin in detail and determined the regions that are required for the interaction. In addition, we demonstrate that the central region is necessary for the SHCBP1 dimerization. Both MgcRacGAP and MKLP1 are degraded once cells exit mitosis. Similarly, endogenous and exogenous SHCBP1 were degraded with mitosis progression. Interestingly, SHCBP1 expression was significantly reduced in the absence of centralspindlin, whereas centralspindlin expression was not affected by SHCBP1 knockdown. Finally, we demonstrate that SHCBP1 depletion promotes midbody structure disruption and inhibits abscission, a final stage of cytokinesis. Our study gives novel insight into the role of SHCBP in cytokinesis completion.
Collapse
Affiliation(s)
- Eri Asano
- a Division of Cancer Biology ; Nagoya University Graduate School of Medicine ; Nagoya , Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sabino D, Gogendeau D, Gambarotto D, Nano M, Pennetier C, Dingli F, Arras G, Loew D, Basto R. Moesin is a major regulator of centrosome behavior in epithelial cells with extra centrosomes. Curr Biol 2015; 25:879-89. [PMID: 25772448 PMCID: PMC4386030 DOI: 10.1016/j.cub.2015.01.066] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/22/2014] [Accepted: 01/27/2015] [Indexed: 12/20/2022]
Abstract
Centrosome amplification has severe consequences during development and is thought to contribute to a variety of diseases such as cancer and microcephaly. However, the adverse effects of centrosome amplification in epithelia are still not known. Here, we investigate the consequences of centrosome amplification in the Drosophila wing disc epithelium. We found that epithelial cells exhibit mechanisms of clustering but also inactivation of extra centrosomes. Importantly, these mechanisms are not fully efficient, and both aneuploidy and cell death can be detected. Epithelial cells with extra centrosomes generate tumors when transplanted into WT hosts and inhibition of cell death results in tissue over-growth and disorganization. Using SILAC-fly, we found that Moesin, a FERM domain protein, is specifically upregulated in wing discs with extra centrosomes. Moesin localizes to the centrosomes and mitotic spindle during mitosis, and we show that Moesin upregulation influences extra-centrosome behavior and robust bipolar spindle formation. This study provides a mechanistic explanation for the increased aneuploidy and transformation potential primed by centrosome amplification in epithelial tissues. Consequences of centrosome amplification in epithelia are discussed Centrosome clustering or inactivation is not fully efficient High levels of Moesin contribute to defects in bipolar spindle assembly Centrosome amplification generates aneuploidy and epithelial transformation
Collapse
Affiliation(s)
- Dora Sabino
- Institut Curie, CNRS UMR144, 12 Rue Lhomond, 75005 Paris, France
| | | | | | - Maddalena Nano
- Institut Curie, CNRS UMR144, 12 Rue Lhomond, 75005 Paris, France
| | - Carole Pennetier
- Institut Curie, CNRS UMR144, 12 Rue Lhomond, 75005 Paris, France
| | - Florent Dingli
- Institut Curie, CNRS, LSMP, 26 Rue d'Ulm, 75005 Paris, France
| | - Guillaume Arras
- Institut Curie, CNRS, LSMP, 26 Rue d'Ulm, 75005 Paris, France
| | - Damarys Loew
- Institut Curie, CNRS, LSMP, 26 Rue d'Ulm, 75005 Paris, France
| | - Renata Basto
- Institut Curie, CNRS UMR144, 12 Rue Lhomond, 75005 Paris, France.
| |
Collapse
|
41
|
Sechi S, Frappaolo A, Belloni G, Colotti G, Giansanti MG. The multiple cellular functions of the oncoprotein Golgi phosphoprotein 3. Oncotarget 2015; 6:3493-506. [PMID: 25691054 PMCID: PMC4414131 DOI: 10.18632/oncotarget.3051] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/07/2015] [Indexed: 12/13/2022] Open
Abstract
The highly conserved Golgi phosphoprotein 3 (GOLPH3) protein, a component of Trans-Golgi Network (TGN), has been defined as a "first-in-class Golgi oncoprotein" and characterized as a Phosphatidylinositol 4-phosphate [PI(4)P] effector at the Golgi. GOLPH3 is commonly amplified in several solid tumors. Furthermore this protein has been associated with poor prognosis in many cancers. Highly conserved from yeast to humans, GOLPH3 provides an essential function in vesicle trafficking and Golgi structure. Recent data have also implicated this oncoprotein in regulation of cytokinesis, modulation of mitochondrial mass and cellular response to DNA damage. A minute dissection of the molecular pathways that require GOLPH3 protein will be helpful to develop new therapeutic cancer strategies.
Collapse
Affiliation(s)
- Stefano Sechi
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| | - Anna Frappaolo
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| | - Giorgio Belloni
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| | - Gianni Colotti
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche, Sapienza Università di Roma, 00185 Roma, Italy
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| |
Collapse
|
42
|
Abstract
Cell division ends with the physical separation of the two daughter cells, a process known as cytokinesis. This final event ensures that nuclear and cytoplasmic contents are accurately partitioned between the two nascent cells. Cytokinesis is one of the most dramatic changes in cell shape and requires an extensive reorganization of the cell's cytoskeleton. Here, we describe the cytoskeletal structures, factors, and signaling pathways that orchestrate this robust and yet highly dynamic process in animal cells. Finally, we discuss possible future directions in this growing area of cell division research and its implications in human diseases, including cancer.
Collapse
Affiliation(s)
- Pier Paolo D'Avino
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari c/o Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, 00185 Roma, Italy
| | - Mark Petronczki
- Cell Division and Aneuploidy Laboratory, Cancer Research UK-London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| |
Collapse
|
43
|
Taniguchi K, Kokuryo A, Imano T, Minami R, Nakagoshi H, Adachi-Yamada T. Isoform-specific functions of Mud/NuMA mediate binucleation of Drosophila male accessory gland cells. BMC DEVELOPMENTAL BIOLOGY 2014; 14:46. [PMID: 25527079 PMCID: PMC4300151 DOI: 10.1186/s12861-014-0046-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 12/11/2014] [Indexed: 02/01/2023]
Abstract
Background In standard cell division, the cells undergo karyokinesis and then cytokinesis. Some cells, however, such as cardiomyocytes and hepatocytes, can produce binucleate cells by going through mitosis without cytokinesis. This cytokinesis skipping is thought to be due to the inhibition of cytokinesis machinery such as the central spindle or the contractile ring, but the mechanisms regulating it are unclear. We investigated them by characterizing the binucleation event during development of the Drosophila male accessory gland, in which all cells are binucleate. Results The accessory gland cells arrested the cell cycle at 50 hours after puparium formation (APF) and in the middle of the pupal stage stopped proliferating for 5 hours. They then restarted the cell cycle and at 55 hours APF entered the M-phase synchronously. At this stage, accessory gland cells binucleated by mitosis without cytokinesis. Binucleating cells displayed the standard karyokinesis progression but also showed unusual features such as a non-round shape, spindle orientation along the apico-basal axis, and poor assembly of the central spindle. Mud, a Drosophila homolog of NuMA, regulated the processes responsible for these three features, the classical isoform MudPBD and the two newly characterized isoforms MudL and MudS regulated them differently: MudL repressed cell rounding, MudPBD and MudS oriented the spindle along the apico-basal axis, and MudS and MudL repressed central spindle assembly. Importantly, overexpression of MudS induced binucleation even in standard proliferating cells such as those in imaginal discs. Conclusions We characterized the binucleation in the Drosophila male accessory gland and examined mechanisms that regulated unusual morphologies of binucleating cells. We demonstrated that Mud, a microtubule binding protein regulating spindle orientation, was involved in this binucleation. We suggest that atypical functions exerted by three structurally different isoforms of Mud regulate cell rounding, spindle orientation and central spindle assembly in binucleation. We also propose that MudS is a key regulator triggering cytokinesis skipping in binucleation processes. Electronic supplementary material The online version of this article (doi:10.1186/s12861-014-0046-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kiichiro Taniguchi
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, 171-8588, Japan.
| | - Akihiko Kokuryo
- Institute for Biomolecular Science, Gakushuin University, Tokyo, 171-8588, Japan. .,Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501, Japan.
| | - Takao Imano
- Institute for Biomolecular Science, Gakushuin University, Tokyo, 171-8588, Japan. .,Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501, Japan.
| | - Ryunosuke Minami
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| | - Hideki Nakagoshi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| | - Takashi Adachi-Yamada
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, 171-8588, Japan. .,Institute for Biomolecular Science, Gakushuin University, Tokyo, 171-8588, Japan. .,Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501, Japan.
| |
Collapse
|
44
|
Huang Z, Ma L, Wang Y, Pan Z, Ren J, Liu Z, Xue Y. MiCroKiTS 4.0: a database of midbody, centrosome, kinetochore, telomere and spindle. Nucleic Acids Res 2014; 43:D328-34. [PMID: 25392421 PMCID: PMC4383938 DOI: 10.1093/nar/gku1125] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We reported an updated database of MiCroKiTS 4.0 (http://microkit.biocuckoo.org) for proteins temporally and spatially localized in distinct subcellular positions including midbody, centrosome, kinetochore, telomere and mitotic spindle during cell division/mitosis. The database was updated from our previously developed database of MiCroKit 3.0, which contained 1489 proteins mostly forming super-complexes at midbody, centrosome and kinetochore from seven eukaryotes. Since the telomere and spindle apparatus are critical for cell division, the proteins localized at the two positions were also integrated. From the scientific literature, we curated 1872 experimentally identified proteins which at least locate in one of the five positions from eight species. Then the ortholog detection was performed to identify potential MiCroKiTS proteins from 144 eukaryotic organisms, which contains 66, 45 and 33 species of animals, fungi and plants, respectively. In total, 87 983 unique proteins with corresponding localization information were integrated into the database. The primary references of experimentally identified localizations were provided and the fluorescence microscope figures for the localizations of human proteins were shown. The orthologous relations between predicted and experimental localizations were also present. Taken together, we anticipate the database can serve as a useful resource for further analyzing the molecular mechanisms during cell division.
Collapse
Affiliation(s)
- Zhengnan Huang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Lili Ma
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yongbo Wang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhicheng Pan
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jian Ren
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Zexian Liu
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yu Xue
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
45
|
Manukyan A, Ludwig K, Sanchez-Manchinelly S, Parsons SJ, Stukenberg PT. A complex of p190RhoGAP-A and anillin modulates RhoA-GTP and the cytokinetic furrow in human cells. J Cell Sci 2014; 128:50-60. [PMID: 25359885 DOI: 10.1242/jcs.151647] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The cytokinetic furrow is organized by the RhoA GTPase, which recruits actin and myosin II to the furrow and drives contractility. Here, we show that the RhoA GTPase-activting protein (GAP) p190RhoGAP-A (also known as ARHGAP35) has a role in cytokinesis and is involved in regulating levels of RhoA-GTP and contractility. Cells depleted of p190RhoGAP-A accumulate high levels of RhoA-GTP and markers of high RhoA activity in the furrow, resulting in failure of the cytokinetic furrow to progress to abscission. The loss of p190RhoGAP-A can be rescued by a low dose of the myosin II inhibitor blebbistatin, suggesting that cells fail cytokinesis because they have too much myosin activity. p190RhoGAP-A binds the cytokinetic organizer anillin, and mutants of p190RhoGAP-A that are unable to bind anillin or unable to inactivate RhoA fail to rescue cytokinesis defects in p190RhoGAP-A-depleted cells. Taken together, these data demonstrate that a complex of p190RhoGAP-A and anillin modulates RhoA-GTP levels in the cytokinetic furrow to ensure progression of cytokinesis.
Collapse
Affiliation(s)
- Arkadi Manukyan
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, PO Box 800733, Charlottesville, VA 22908, USA Cancer Center, University of Virginia School of Medicine, PO Box 800733, Charlottesville, VA 22908, USA
| | - Kirsten Ludwig
- Cancer Center, University of Virginia School of Medicine, PO Box 800733, Charlottesville, VA 22908, USA Department of Psychiatry and Behavioral Sciences and Jonsson Cancer Center, UCLA, Los Angeles, CA 90095-6900, USA Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, PO Box 800733, Charlottesville, VA 22908, USA
| | - Sergio Sanchez-Manchinelly
- Cancer Center, University of Virginia School of Medicine, PO Box 800733, Charlottesville, VA 22908, USA Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, PO Box 800733, Charlottesville, VA 22908, USA Beckman Corporation, Los Angeles, CA 90025, USA
| | - Sarah J Parsons
- Cancer Center, University of Virginia School of Medicine, PO Box 800733, Charlottesville, VA 22908, USA Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, PO Box 800733, Charlottesville, VA 22908, USA
| | - P Todd Stukenberg
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, PO Box 800733, Charlottesville, VA 22908, USA Cancer Center, University of Virginia School of Medicine, PO Box 800733, Charlottesville, VA 22908, USA
| |
Collapse
|
46
|
Giansanti MG, Sechi S, Frappaolo A, Belloni G, Piergentili R. Cytokinesis in Drosophila male meiosis. SPERMATOGENESIS 2014; 2:185-196. [PMID: 23094234 PMCID: PMC3469441 DOI: 10.4161/spmg.21711] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytokinesis separates the cytoplasm and the duplicated genome into two daughter cells at the end of cell division. This process must be finely regulated to maintain ploidy and prevent tumor formation. Drosophila male meiosis provides an excellent cell system for investigating cytokinesis. Mutants affecting this process can be easily identified and spermatocytes are large cells particularly suitable for cytological analysis of cytokinetic structures. Over the past decade, the powerful tools of Drosophila genetics and the unique characteristics of this cell system have led researchers to identify molecular players of the cell cleavage machinery and to address important open questions. Although spermatocyte cytokinesis is incomplete, resulting in formation of stable intercellular bridges, the molecular mechanisms are largely conserved in somatic cells. Thus, studies of Drosophila male meiosis will shed new light on the complex cell circuits regulating furrow ingression and substantially further our knowledge of cancer and other human diseases.
Collapse
Affiliation(s)
- Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR; Dipartimento di Biologia e Biotecnologie Università Sapienza di Roma; Rome, Italy
| | | | | | | | | |
Collapse
|
47
|
Kitazawa D, Matsuo T, Kaizuka K, Miyauchi C, Hayashi D, Inoue YH. Orbit/CLASP is required for myosin accumulation at the cleavage furrow in Drosophila male meiosis. PLoS One 2014; 9:e93669. [PMID: 24850412 PMCID: PMC4029619 DOI: 10.1371/journal.pone.0093669] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 03/07/2014] [Indexed: 01/24/2023] Open
Abstract
Peripheral microtubules (MTs) near the cell cortex are essential for the positioning and continuous constriction of the contractile ring (CR) in cytokinesis. Time-lapse observations of Drosophila male meiosis showed that myosin II was first recruited along the cell cortex independent of MTs. Then, shortly after peripheral MTs made contact with the equatorial cortex, myosin II was concentrated there in a narrow band. After MT contact, anillin and F-actin abruptly appeared on the equatorial cortex, simultaneously with myosin accumulation. We found that the accumulation of myosin did not require centralspindlin, but was instead dependent on Orbit, a Drosophila ortholog of the MT plus-end tracking protein CLASP. This protein is required for stabilization of central spindle MTs, which are essential for cytokinesis. Orbit was also localized in a mid-zone of peripheral MTs, and was concentrated in a ring at the equatorial cortex during late anaphase. Fluorescence resonance energy transfer experiments indicated that Orbit is closely associated with F-actin in the CR. We also showed that the myosin heavy chain was in close proximity with Orbit in the cleavage furrow region. Centralspindlin was dispensable in Orbit ring formation. Instead, the Polo-KLP3A/Feo complex was required for the Orbit accumulation independently of the Orbit MT-binding domain. However, orbit mutations of consensus sites for the phosphorylation of Cdk1 or Polo did not influence the Orbit accumulation, suggesting an indirect regulatory role of these protein kinases in Orbit localization. Orbit was also necessary for the maintenance of the CR. Our data suggest that Orbit plays an essential role as a connector between MTs and the CR in Drosophila male meiosis.
Collapse
Affiliation(s)
- Daishi Kitazawa
- Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan
| | - Tatsuru Matsuo
- Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan
| | - Kana Kaizuka
- Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan
| | - Chie Miyauchi
- Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan
| | - Daisuke Hayashi
- Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan
| | - Yoshihiro H. Inoue
- Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan
- * E-mail:
| |
Collapse
|
48
|
GOLPH3 is essential for contractile ring formation and Rab11 localization to the cleavage site during cytokinesis in Drosophila melanogaster. PLoS Genet 2014; 10:e1004305. [PMID: 24786584 PMCID: PMC4006750 DOI: 10.1371/journal.pgen.1004305] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/28/2014] [Indexed: 01/02/2023] Open
Abstract
The highly conserved Golgi phosphoprotein 3 (GOLPH3) protein has been described as a Phosphatidylinositol 4-phosphate [PI(4)P] effector at the Golgi. GOLPH3 is also known as a potent oncogene, commonly amplified in several human tumors. However, the molecular pathways through which the oncoprotein GOLPH3 acts in malignant transformation are largely unknown. GOLPH3 has never been involved in cytokinesis. Here, we characterize the Drosophila melanogaster homologue of human GOLPH3 during cell division. We show that GOLPH3 accumulates at the cleavage furrow and is required for successful cytokinesis in Drosophila spermatocytes and larval neuroblasts. In premeiotic spermatocytes GOLPH3 protein is required for maintaining the organization of Golgi stacks. In dividing spermatocytes GOLPH3 is essential for both contractile ring and central spindle formation during cytokinesis. Wild type function of GOLPH3 enables maintenance of centralspindlin and Rho1 at cell equator and stabilization of Myosin II and Septin rings. We demonstrate that the molecular mechanism underlying GOLPH3 function in cytokinesis is strictly dependent on the ability of this protein to interact with PI(4)P. Mutations that abolish PI(4)P binding impair recruitment of GOLPH3 to both the Golgi and the cleavage furrow. Moreover telophase cells from mutants with defective GOLPH3-PI(4)P interaction fail to accumulate PI(4)P-and Rab11-associated secretory organelles at the cleavage site. Finally, we show that GOLPH3 protein interacts with components of both cytokinesis and membrane trafficking machineries in Drosophila cells. Based on these results we propose that GOLPH3 acts as a key molecule to coordinate phosphoinositide signaling with actomyosin dynamics and vesicle trafficking during cytokinesis. Because cytokinesis failures have been associated with premalignant disease and cancer, our studies suggest novel insight into molecular circuits involving the oncogene GOLPH3 in cytokinesis. In animal cell cytokinesis, constriction of an actomyosin ring at the equatorial cortex of dividing cells must be finely coordinated with plasma membrane remodeling and vesicle trafficking at the cleavage furrow. Accurate control of these events during cell cleavage is essential for maintaining ploidy and preventing neoplastic transformation. GOLPH3 has been recognized as a potent oncogene, involved in the development of several human tumors. However, the precise roles played by GOLPH3 in tumorigenesis are not yet understood. In this manuscript we demonstrate for the first time the requirement for GOLPH3 for cytokinesis. GOLPH3 protein localizes at the cleavage site of Drosophila dividing cells and is essential for cytokinesis in male meiotic cells and larval neuroblasts. We show that this protein acts as a key molecule in coupling plasma membrane remodeling with actomyosin ring assembly and stability during cytokinesis. Our studies indicate a novel connection between GOLPH3 and the molecular mechanisms of cytokinesis, opening new fields of investigation into the tumor cell biology of this oncogene.
Collapse
|
49
|
Nam HJ, Lee IJ, Jang S, Bae CD, Kwak SJ, Lee JH. p90 ribosomal S6 kinase 1 (RSK1) isoenzyme specifically regulates cytokinesis progression. Cell Signal 2014; 26:208-19. [DOI: 10.1016/j.cellsig.2013.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 11/08/2013] [Accepted: 11/14/2013] [Indexed: 10/26/2022]
|
50
|
Chan PC, Hsu RYC, Liu CW, Lai CC, Chen HC. Adducin-1 is essential for mitotic spindle assembly through its interaction with myosin-X. ACTA ACUST UNITED AC 2013; 204:19-28. [PMID: 24379415 PMCID: PMC3882790 DOI: 10.1083/jcb.201306083] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The actin-binding protein ADD1 associates with mitotic spindles through Myo10 and is crucial for proper spindle assembly and mitotic progression. Mitotic spindles are microtubule-based structures, but increasing evidence indicates that filamentous actin (F-actin) and F-actin–based motors are components of these structures. ADD1 (adducin-1) is an actin-binding protein that has been shown to play important roles in the stabilization of the membrane cortical cytoskeleton and cell–cell adhesions. In this study, we show that ADD1 associates with mitotic spindles and is crucial for proper spindle assembly and mitotic progression. Phosphorylation of ADD1 at Ser12 and Ser355 by cyclin-dependent kinase 1 enables ADD1 to bind to myosin-X (Myo10) and therefore to associate with mitotic spindles. ADD1 depletion resulted in distorted, elongated, and multipolar spindles, accompanied by aberrant chromosomal alignment. Remarkably, the mitotic defects caused by ADD1 depletion were rescued by reexpression of ADD1 but not of an ADD1 mutant defective in Myo10 binding. Together, our findings unveil a novel function for ADD1 in mitotic spindle assembly through its interaction with Myo10.
Collapse
Affiliation(s)
- Po-Chao Chan
- Department of Life Sciences, 2 Graduate Institute of Molecular Biology, 3 Graduate Institute of Biomedical Sciences, 4 Agricultural Biotechnology Center, and 5 Rong-Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | | | | | | | | |
Collapse
|