1
|
Shen L, Zhang C, Cui K, Liang X, Zhu G, Hong L. Fer-mediated activation of the Ras-MAPK signaling pathway drives the proliferation, migration, and invasion of endometrial carcinoma cells. Mol Cell Biochem 2024; 479:1787-1799. [PMID: 38017327 DOI: 10.1007/s11010-023-04890-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/31/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND The role of Feline sarcoma-related protein (Fer) in various cancers has been extensively studied, but its specific involvement and underlying mechanisms in the progression of endometrial carcinoma (EC) are yet to be fully understood. METHODS The expression levels of Fer were assessed in EC tissues and cell lines using real-time quantitative PCR and western blot analysis. CCK-8 assay, Edu staining, transwell assays, and flow cytometry, were conducted to evaluate the impact of Fer on EC cells. Furthermore, a mice xenograft model and immunohistochemistry (IHC) staining were utilized for in vivo analysis. The levels of Ras, pMek1/2, and pErk1/2 were determined by western blot assay. Ras-MAPK signaling pathway inhibitor was utilized to study the regulatory role of Fer on EC cells. RESULTS Our findings revealed that Fer exhibited upregulation in both EC tissues and cell lines, concomitant with the activation of the Ras-MAPK signaling pathway. Silencing of Fer resulted in the suppression of cell proliferation, migration, invasion, and Ras-MAPK signaling pathway, while promoted hypoxia-induced apoptosis in RL95-2 and KLE cells. Fer overexpression stimulated cell proliferation, migration, invasion, and Ras-MAPK signaling pathway in Ishikawa and AN3-CA cells, which were reversed after treatment with either Ras or MAPK inhibitor. Moreover, silencing of Fer suppressed tumor growth and downregulated the expression of Ki-67, Ras, pMek1/2, and pErk1/2, but had no significant effect on Mek1/2 and Erk1/2, while upregulated caspase-3 expression in vivo. CONCLUSION In summary, the upregulation of Fer in EC cells resulted in the enhancement of cell proliferation, migration, and invasion through the activation of the Ras-MAPK signaling pathway.
Collapse
Affiliation(s)
- Lifan Shen
- Department of Gynecology, Surgery Building, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), 19Th Xiuhua Road, Xiuying District, Haikou, 570000, China
| | - Chen Zhang
- Department of Central Lab, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Kaiying Cui
- Department of Gynecology, Surgery Building, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), 19Th Xiuhua Road, Xiuying District, Haikou, 570000, China
| | - Xin Liang
- Department of Gynecology, Surgery Building, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), 19Th Xiuhua Road, Xiuying District, Haikou, 570000, China
| | - Genhai Zhu
- Department of Gynecology, Surgery Building, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), 19Th Xiuhua Road, Xiuying District, Haikou, 570000, China
| | - Lan Hong
- Department of Gynecology, Surgery Building, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), 19Th Xiuhua Road, Xiuying District, Haikou, 570000, China.
| |
Collapse
|
2
|
Houngue R, Sangaré LO, Alayi TD, Dieng A, Bitard-Feildel T, Boulogne C, Slomianny C, Atindehou CM, Fanou LA, Hathout Y, Callebaut I, Tomavo S. Toxoplasma membrane inositol phospholipid binding protein TgREMIND is essential for secretory organelle function and host infection. Cell Rep 2024; 43:113601. [PMID: 38157297 DOI: 10.1016/j.celrep.2023.113601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Apicomplexan parasites possess specialized secretory organelles called rhoptries, micronemes, and dense granules that play a vital role in host infection. In this study, we demonstrate that TgREMIND, a protein found in Toxoplasma gondii, is necessary for the biogenesis of rhoptries and dense granules. TgREMIND contains a Fes-CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain, which binds to membrane phospholipids, as well as a novel uncharacterized domain that we have named REMIND (regulator of membrane-interacting domain). Both the F-BAR domain and the REMIND are crucial for TgREMIND functions. When TgREMIND is depleted, there is a significant decrease in the abundance of dense granules and abnormal transparency of rhoptries, leading to a reduction in protein secretion from these organelles. The absence of TgREMIND inhibits host invasion and parasite dissemination, demonstrating that TgREMIND is essential for the proper function of critical secretory organelles required for successful infection by Toxoplasma.
Collapse
Affiliation(s)
- Rodrigue Houngue
- Université Paris Saclay, CNRS UMR 9198-CEA, Institute for Integrative Biology of the Cell (I2BC), 91190 Gif sur Yvette, France
| | - Lamba Omar Sangaré
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Tchilabalo Dilezitoko Alayi
- Department of Pharmaceutical Science, School of Pharmacy and Pharmaceutical Sciences, Binghamton University-SUNY, Johnson City, NY 13790, USA
| | - Aissatou Dieng
- Université Paris Saclay, CNRS UMR 9198-CEA, Institute for Integrative Biology of the Cell (I2BC), 91190 Gif sur Yvette, France
| | - Tristan Bitard-Feildel
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France
| | - Claire Boulogne
- Université Paris Saclay, CNRS UMR 9198-CEA, Institute for Integrative Biology of the Cell (I2BC), 91190 Gif sur Yvette, France; Plateforme Imagerie-Gif, Institut de Biologie Intégrative de la Cellule (I2BC), 91190 Gif sur Yvette, France
| | - Christian Slomianny
- University of Lille, Laboratory of Cell Physiology, INSERM U 1003, 59655 Villeneuve d'Ascq, France
| | - Cynthia Menonve Atindehou
- Université d'Abomey Calavi, Laboratoire de Biochimie et de Biologie Moléculaire, Faculté des Sciences et Technologies, Cotonou, Bénin
| | - Lucie Ayi Fanou
- Université d'Abomey Calavi, Laboratoire de Biochimie et de Biologie Moléculaire, Faculté des Sciences et Technologies, Cotonou, Bénin
| | - Yetrib Hathout
- Department of Pharmaceutical Science, School of Pharmacy and Pharmaceutical Sciences, Binghamton University-SUNY, Johnson City, NY 13790, USA
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France
| | - Stanislas Tomavo
- Université Paris Saclay, CNRS UMR 9198-CEA, Institute for Integrative Biology of the Cell (I2BC), 91190 Gif sur Yvette, France.
| |
Collapse
|
3
|
Lu CH, Tsai CT, Jones Iv T, Chim V, Klausen LH, Zhang W, Li X, Jahed Z, Cui B. A NanoCurvS platform for quantitative and multiplex analysis of curvature-sensing proteins. Biomater Sci 2023; 11:5205-5217. [PMID: 37337788 PMCID: PMC10809791 DOI: 10.1039/d2bm01856j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The cell membrane is characterized by a rich variety of topographical features such as local protrusions or invaginations. Curvature-sensing proteins, including the Bin/Amphiphysin/Rvs (BAR) or epsin N-terminal homology (ENTH) family proteins, sense the bending sharpness and the positive/negative sign of these topographical features to induce subsequent intracellular signaling. A number of assays have been developed to study curvature-sensing properties of proteins in vitro, but it is still challenging to probe low curvature regime with the diameter of curvature from hundreds of nanometers to micrometers. It is particularly difficult to generate negative membrane curvatures with well-defined curvature values in the low curvature regime. In this work, we develop a nanostructure-based curvature sensing (NanoCurvS) platform that enables quantitative and multiplex analysis of curvature-sensitive proteins in the low curvature regime, in both negative and positive directions. We use NanoCurvS to quantitatively measure the sensing range of a negative curvature-sensing protein IRSp53 (an I-BAR protein) and a positive curvature-sensing protein FBP17 (an F-BAR protein). We find that, in cell lysates, the I-BAR domain of IRSp53 is able to sense shallow negative curvatures with the diameter-of-curvature up to 1500 nm, a range much wider than previously expected. NanoCurvS is also used to probe the autoinhibition effect of IRSp53 and the phosphorylation effect of FBP17. Therefore, the NanoCurvS platform provides a robust, multiplex, and easy-to-use tool for quantitative analysis of both positive and negative curvature-sensing proteins.
Collapse
Affiliation(s)
- Chih-Hao Lu
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Ching-Ting Tsai
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Taylor Jones Iv
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Vincent Chim
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Lasse H Klausen
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Wei Zhang
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Xiao Li
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Zeinab Jahed
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Wu-Tsai Neuroscience Institute and ChEM-H institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
4
|
Nir U, Grinshtain E, Breitbart H. Fer and FerT: A New Regulatory Link between Sperm and Cancer Cells. Int J Mol Sci 2023; 24:ijms24065256. [PMID: 36982326 PMCID: PMC10049441 DOI: 10.3390/ijms24065256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/12/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Fer and its sperm and cancer specific variant, FerT, are non-receptor tyrosine kinases which play roles in cancer progression and metastasis. Recent studies have shed light on the regulatory role of these kinases in ensuring proper sperm function. Comparison of the regulatory cascades in which Fer and FerT are engaged in sperm and cancer cells presents an interesting picture, in which similar regulatory interactions of these enzymes are integrated in a similar or different regulatory context in the two cell types. These diverse compositions extend from the involvement of Fer in modulation of actin cytoskeleton integrity and function, to the unique regulatory interactions of Fer with PARP-1 and the PP1 phosphatase. Furthermore, recent findings link the metabolic regulatory roles of Fer and FerT in sperm and cancer cells. In the current review, we discuss the above detailed aspects, which portray Fer and FerT as new regulatory links between sperm and malignant cells. This perspective view can endow us with new analytical and research tools that will deepen our understanding of the regulatory trajectories and networks that govern these two multi-layered systems.
Collapse
|
5
|
Beeman N, Sapre T, Ong SE, Yadav S. Neurodevelopmental disorder-associated mutations in TAOK1 reveal its function as a plasma membrane remodeling kinase. Sci Signal 2023; 16:eadd3269. [PMID: 36595571 PMCID: PMC9970049 DOI: 10.1126/scisignal.add3269] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mutations in TAOK1, which encodes a serine-threonine kinase, are associated with both autism spectrum disorder (ASD) and neurodevelopmental delay (NDD). Here, we investigated the molecular function of this evolutionarily conserved kinase and the mechanisms through which TAOK1 mutations may lead to neuropathology. We found that TAOK1 was abundant in neurons in the mammalian brain and remodeled the neuronal plasma membrane through direct association with phosphoinositides. Our characterization of four NDD-associated TAOK1 mutations revealed that these mutants were catalytically inactive and were aberrantly trapped in a membrane-bound state, which induced abnormal membrane protrusions. Expression of these TAOK1 mutants in cultured mouse hippocampal neurons led to abnormal growth of the dendritic arbor. The coiled-coil region carboxyl-terminal to the kinase domain was predicted to fold into a triple helix, and this region directly bound phospholipids and was required for both membrane association and induction of aberrant protrusions. Autophosphorylation of threonine-440 and threonine-443 in the triple-helical region by the kinase domain blocked the plasma membrane association of TAOK1. These findings define TAOK1 as a plasma membrane remodeling kinase and reveal the underlying mechanisms through which TAOK1 dysfunction may lead to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Neal Beeman
- Department of Pharmacology, University of Washington, Seattle WA 98195
| | - Tanmay Sapre
- Department of Pharmacology, University of Washington, Seattle WA 98195
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle WA 98195
| | - Smita Yadav
- Department of Pharmacology, University of Washington, Seattle WA 98195,Corresponding author:
| |
Collapse
|
6
|
Lu CH, Pedram K, Tsai CT, Jones T, Li X, Nakamoto ML, Bertozzi CR, Cui B. Membrane curvature regulates the spatial distribution of bulky glycoproteins. Nat Commun 2022; 13:3093. [PMID: 35654773 PMCID: PMC9163104 DOI: 10.1038/s41467-022-30610-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 05/10/2022] [Indexed: 01/11/2023] Open
Abstract
The glycocalyx is a shell of heavily glycosylated proteins and lipids distributed on the cell surface of nearly all cell types. Recently, it has been found that bulky transmembrane glycoproteins such as MUC1 can modulate membrane shape by inducing membrane protrusions. In this work, we examine the reciprocal relationship of how membrane shape affects MUC1's spatial distribution on the cell membrane and its biological significance. By employing nanopatterned surfaces and membrane-sculpting proteins to manipulate membrane curvature, we show that MUC1 avoids positively-curved membranes (membrane invaginations) and accumulates on negatively-curved membranes (membrane protrusions). MUC1's curvature sensitivity is dependent on the length and the extent of glycosylation of its ectodomain, with large and highly glycosylated forms preferentially staying out of positive curvature. Interestingly, MUC1's avoidance of positive membrane curvature enables it to escape from endocytosis and being removed from the cell membrane. These findings also suggest that the truncation of MUC1's ectodomain, often observed in breast and ovarian cancers, may enhance its endocytosis and potentiate its intracellular accumulation and signaling.
Collapse
Affiliation(s)
- Chih-Hao Lu
- grid.168010.e0000000419368956Department of Chemistry, Stanford University, Stanford, CA 94305 USA
| | - Kayvon Pedram
- grid.168010.e0000000419368956Department of Chemistry, Stanford University, Stanford, CA 94305 USA ,grid.443970.dPresent Address: Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147 USA
| | - Ching-Ting Tsai
- grid.168010.e0000000419368956Department of Chemistry, Stanford University, Stanford, CA 94305 USA
| | - Taylor Jones
- grid.168010.e0000000419368956Department of Chemistry, Stanford University, Stanford, CA 94305 USA
| | - Xiao Li
- grid.168010.e0000000419368956Department of Chemistry, Stanford University, Stanford, CA 94305 USA ,grid.43169.390000 0001 0599 1243Present Address: School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Melissa L. Nakamoto
- grid.168010.e0000000419368956Department of Chemistry, Stanford University, Stanford, CA 94305 USA
| | - Carolyn R. Bertozzi
- grid.168010.e0000000419368956Department of Chemistry, Stanford University, Stanford, CA 94305 USA ,grid.168010.e0000000419368956Stanford ChEM-H, Stanford University, Stanford, CA 94305 USA ,grid.168010.e0000000419368956Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305 USA
| | - Bianxiao Cui
- grid.168010.e0000000419368956Department of Chemistry, Stanford University, Stanford, CA 94305 USA
| |
Collapse
|
7
|
Ding W, Fan Y, Jia W, Pan X, Han G, Zhang Y, Chen Z, Lu Y, Wang J, Wu J, Wang X. FER Regulated by miR-206 Promotes Hepatocellular Carcinoma Progression via NF-κB Signaling. Front Oncol 2021; 11:683878. [PMID: 34295819 PMCID: PMC8289706 DOI: 10.3389/fonc.2021.683878] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/21/2021] [Indexed: 12/09/2022] Open
Abstract
Objectives Feline sarcoma-related protein (FER) is known to play a critical regulatory role in several carcinomas. However, the exact biological function of FER in hepatocellular carcinoma (HCC) still needs to be investigated. The primary objective of this research was to investigate the unknown function and molecular mechanisms of FER in HCC. Materials and Methods The expression level of FER in HCC tissue samples and cells was examined by RT-qPCR, immunohistochemistry and western blot. Cellular and animal experiments were used to explore the effect of FER on the proliferative and metastatic capacities of HCC cells. The crosstalk between FER and NF-κB signaling was explored by western blot. The upstream factors that regulate FER were evaluated through dual-luciferase experiments and western blot assays. Results FER was overexpressed in HCC specimens and HCC cell lines. FER expression levels were positively associated with unfavorable clinicopathological characteristics. The higher the expression of FER was, the worse the overall survival of HCC patients was. The results of loss-of-function and gain-of-function experiments indicated that knockdown of FER decreased, while overexpression of FER increased, the proliferation, invasion and metastasis of HCC cells in vitro and in vivo. Mechanistically, we found that FER activated the NF-κB signaling pathway and stimulated epithelial-to-mesenchymal transition (EMT). We also found that FER was directly regulated by miR-206, and the downregulation of miR-206 was associated with proliferation and metastatic progression in HCC. Conclusions The present research was the first to reveal that a decrease in miR-206 levels results in an increase in FER expression in HCC, leading to enhanced cell growth and metastatic abilities via activation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Wenzhou Ding
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Ye Fan
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Wenbo Jia
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Xiongxiong Pan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guoyong Han
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Yao Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Zhiqiang Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Yiwei Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Jinyi Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Jindao Wu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, National Health Commission (NHC) Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| |
Collapse
|
8
|
Membrane dynamics in cell migration. Essays Biochem 2020; 63:469-482. [PMID: 31350382 DOI: 10.1042/ebc20190014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/27/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022]
Abstract
Migration of cells is required in multiple tissue-level processes, such as in inflammation or cancer metastasis. Endocytosis is an extremely regulated cellular process by which cells uptake extracellular molecules or internalise cell surface receptors. While the role of endocytosis of focal adhesions (FA) and plasma membrane (PM) turnover at the leading edge of migratory cells is wide known, the contribution of endocytic proteins per se in migration has been frequently disregarded. In this review, we describe the novel functions of the most well-known endocytic proteins in cancer cell migration, focusing on clathrin, caveolin, flotillins and GRAF1. In addition, we highlight the relevance of the macropinocytic pathway in amoeboid-like cell migration.
Collapse
|
9
|
Curvature induction and sensing of the F-BAR protein Pacsin1 on lipid membranes via molecular dynamics simulations. Sci Rep 2019; 9:14557. [PMID: 31601944 PMCID: PMC6787258 DOI: 10.1038/s41598-019-51202-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/24/2019] [Indexed: 01/04/2023] Open
Abstract
F-Bin/Amphiphysin/Rvs (F-BAR) domain proteins play essential roles in biological processes that involve membrane remodelling, such as endocytosis and exocytosis. It has been shown that such proteins transform the lipid membrane into tubes. Notably, Pacsin1 from the Pacsin/Syndapin subfamily has the ability to transform the membrane into various morphologies: striated tubes, featureless wide and thin tubes, and pearling vesicles. The molecular mechanism of this interesting ability remains elusive. In this study, we performed all-atom (AA) and coarse-grained (CG) molecular dynamics simulations to investigate the curvature induction and sensing mechanisms of Pacsin1 on a membrane. From AA simulations, we show that Pacsin1 has internal structural flexibility. In CG simulations with parameters tuned from the AA simulations, spontaneous assembly of two Pacsin1 dimers through lateral interaction is observed. Based on the complex structure, we show that the regularly assembled Pacsin1 dimers bend a tensionless membrane. We also show that a single Pacsin1 dimer senses the membrane curvature, binding to a buckled membrane with a preferred curvature. These results provide molecular insights into polymorphic membrane remodelling.
Collapse
|
10
|
Ghalloussi D, Dhenge A, Bergmeier W. New insights into cytoskeletal remodeling during platelet production. J Thromb Haemost 2019; 17:1430-1439. [PMID: 31220402 PMCID: PMC6760864 DOI: 10.1111/jth.14544] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 06/12/2019] [Indexed: 12/16/2022]
Abstract
The past decade has brought unprecedented advances in our understanding of megakaryocyte (MK) biology and platelet production, processes that are strongly dependent on the cytoskeleton. Facilitated by technological innovations, such as new high-resolution imaging techniques (in vitro and in vivo) and lineage-specific gene knockout and reporter mouse strains, we are now able to visualize and characterize the molecular machinery required for MK development and proplatelet formation in live mice. Whole genome and RNA sequencing analysis of patients with rare platelet disorders, combined with targeted genetic interventions in mice, has led to the identification and characterization of numerous new genes important for MK development. Many of the genes important for proplatelet formation code for proteins that control cytoskeletal dynamics in cells, such as Rho GTPases and their downstream targets. In this review, we discuss how the final stages of MK development are controlled by the cellular cytoskeletons, and we compare changes in MK biology observed in patients and mice with mutations in cytoskeleton regulatory genes.
Collapse
Affiliation(s)
- Dorsaf Ghalloussi
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ankita Dhenge
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Wolfgang Bergmeier
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
11
|
Chan C, Pang X, Zhang Y, Niu T, Yang S, Zhao D, Li J, Lu L, Hsu VW, Zhou J, Sun F, Fan J. ACAP1 assembles into an unusual protein lattice for membrane deformation through multiple stages. PLoS Comput Biol 2019; 15:e1007081. [PMID: 31291238 PMCID: PMC6663034 DOI: 10.1371/journal.pcbi.1007081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/29/2019] [Accepted: 05/06/2019] [Indexed: 11/19/2022] Open
Abstract
Studies on the Bin-Amphiphysin-Rvs (BAR) domain have advanced a fundamental understanding of how proteins deform membrane. We previously showed that a BAR domain in tandem with a Pleckstrin Homology (PH domain) underlies the assembly of ACAP1 (Arfgap with Coil-coil, Ankryin repeat, and PH domain I) into an unusual lattice structure that also uncovers a new paradigm for how a BAR protein deforms membrane. Here, we initially pursued computation-based refinement of the ACAP1 lattice to identify its critical protein contacts. Simulation studies then revealed how ACAP1, which dimerizes into a symmetrical structure in solution, is recruited asymmetrically to the membrane through dynamic behavior. We also pursued electron microscopy (EM)-based structural studies, which shed further insight into the dynamic nature of the ACAP1 lattice assembly. As ACAP1 is an unconventional BAR protein, our findings broaden the understanding of the mechanistic spectrum by which proteins assemble into higher-ordered structures to achieve membrane deformation.
Collapse
Affiliation(s)
- Chun Chan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiaoyun Pang
- National Laboratory of Biomacromolecules, CAS Center for excellence in biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- National Laboratory of Biomacromolecules, CAS Center for excellence in biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tongxin Niu
- National Laboratory of Biomacromolecules, CAS Center for excellence in biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shengjiang Yang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Daohui Zhao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Jian Li
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lanyuan Lu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Victor W. Hsu
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, China
- * E-mail: (JZ); (FS); (JF)
| | - Fei Sun
- National Laboratory of Biomacromolecules, CAS Center for excellence in biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (JZ); (FS); (JF)
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Hong Kong, China
- * E-mail: (JZ); (FS); (JF)
| |
Collapse
|
12
|
Papalazarou V, Salmeron-Sanchez M, Machesky LM. Tissue engineering the cancer microenvironment-challenges and opportunities. Biophys Rev 2018; 10:1695-1711. [PMID: 30406572 PMCID: PMC6297082 DOI: 10.1007/s12551-018-0466-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/15/2018] [Indexed: 12/25/2022] Open
Abstract
Mechanosensing is increasingly recognised as important for tumour progression. Tumours become stiff and the forces that normally balance in the healthy organism break down and become imbalanced, leading to increases in migration, invasion and metastatic dissemination. Here, we review recent advances in our understanding of how extracellular matrix properties, such as stiffness, viscoelasticity and architecture control cell behaviour. In addition, we discuss how the tumour microenvironment can be modelled in vitro, capturing these mechanical aspects, to better understand and develop therapies against tumour spread. We argue that by gaining a better understanding of the microenvironment and the mechanical forces that govern tumour dynamics, we can make advances in combatting cancer dormancy, recurrence and metastasis.
Collapse
Affiliation(s)
- Vassilis Papalazarou
- CRUK Beatson Institute for Cancer Research and Institute of cancer Sciences, University of Glasgow, Garscube Campus, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
- The Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - Laura M Machesky
- CRUK Beatson Institute for Cancer Research and Institute of cancer Sciences, University of Glasgow, Garscube Campus, Switchback Road, Bearsden, Glasgow, G61 1BD, UK.
| |
Collapse
|
13
|
Wang M, Nishihama R, Onishi M, Pringle JR. Role of the Hof1-Cyk3 interaction in cleavage-furrow ingression and primary-septum formation during yeast cytokinesis. Mol Biol Cell 2018; 29:597-609. [PMID: 29321253 PMCID: PMC6004579 DOI: 10.1091/mbc.e17-04-0227] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 12/26/2017] [Accepted: 01/03/2018] [Indexed: 11/11/2022] Open
Abstract
In Saccharomyces cerevisiae, it is well established that Hof1, Cyk3, and Inn1 contribute to septum formation and cytokinesis. Because hof1∆ and cyk3∆ single mutants have relatively mild defects but hof1∆ cyk3∆ double mutants are nearly dead, it has been hypothesized that these proteins contribute to parallel pathways. However, there is also evidence that they interact physically. In this study, we examined this interaction and its functional significance in detail. Our data indicate that the interaction 1) is mediated by a direct binding of the Hof1 SH3 domain to a proline-rich motif in Cyk3; 2) occurs specifically at the time of cytokinesis but is independent of the (hyper)phosphorylation of both proteins that occurs at about the same time; 3) is dispensable for the normal localization of both proteins; 4) is essential for normal primary-septum formation and a normal rate of cleavage-furrow ingression; and 5) becomes critical for growth when either Inn1 or the type II myosin Myo1 (a key component of the contractile actomyosin ring) is absent. The similarity in phenotype between cyk3∆ mutants and mutants specifically lacking the Hof1-Cyk3 interaction suggests that the interaction is particularly important for Cyk3 function, but it may be important for Hof1 function as well.
Collapse
Affiliation(s)
- Meng Wang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Ryuichi Nishihama
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Masayuki Onishi
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - John R Pringle
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
14
|
Takemura K, Hanawa-Suetsugu K, Suetsugu S, Kitao A. Salt Bridge Formation between the I-BAR Domain and Lipids Increases Lipid Density and Membrane Curvature. Sci Rep 2017; 7:6808. [PMID: 28754893 PMCID: PMC5533756 DOI: 10.1038/s41598-017-06334-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/12/2017] [Indexed: 11/17/2022] Open
Abstract
The BAR domain superfamily proteins sense or induce curvature in membranes. The inverse-BAR domain (I-BAR) is a BAR domain that forms a straight “zeppelin-shaped” dimer. The mechanisms by which IRSp53 I-BAR binds to and deforms a lipid membrane are investigated here by all-atom molecular dynamics simulation (MD), binding energy analysis, and the effects of mutation experiments on filopodia on HeLa cells. I-BAR adopts a curved structure when crystallized, but adopts a flatter shape in MD. The binding of I-BAR to membrane was stabilized by ~30 salt bridges, consistent with experiments showing that point mutations of the interface residues have little effect on the binding affinity whereas multiple mutations have considerable effect. Salt bridge formation increases the local density of lipids and deforms the membrane into a concave shape. In addition, the point mutations that break key intra-molecular salt bridges within I-BAR reduce the binding affinity; this was confirmed by expressing these mutants in HeLa cells and observing their effects. The results indicate that the stiffness of I-BAR is important for membrane deformation, although I-BAR does not act as a completely rigid template.
Collapse
Affiliation(s)
- Kazuhiro Takemura
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-0032, Japan
| | - Kyoko Hanawa-Suetsugu
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Shiro Suetsugu
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Akio Kitao
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-0032, Japan.
| |
Collapse
|
15
|
Brüser L, Bogdan S. Adherens Junctions on the Move-Membrane Trafficking of E-Cadherin. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a029140. [PMID: 28096264 DOI: 10.1101/cshperspect.a029140] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cadherin-based adherens junctions are conserved structures that mediate epithelial cell-cell adhesion in invertebrates and vertebrates. Despite their pivotal function in epithelial integrity, adherens junctions show a remarkable plasticity that is a prerequisite for tissue architecture and morphogenesis. Epithelial cadherin (E-cadherin) is continuously turned over and undergoes cycles of endocytosis, sorting and recycling back to the plasma membrane. Mammalian cell culture and genetically tractable model systems such as Drosophila have revealed conserved, but also distinct, mechanisms in the regulation of E-cadherin membrane trafficking. Here, we discuss our current knowledge about molecules and mechanisms controlling endocytosis, sorting and recycling of E-cadherin during junctional remodeling.
Collapse
Affiliation(s)
- Lena Brüser
- Institut für Neurobiologie, Universität Münster, Badestraße 9, 48149 Münster, Germany
| | - Sven Bogdan
- Institut für Neurobiologie, Universität Münster, Badestraße 9, 48149 Münster, Germany.,Institut für Physiologie und Pathophysiologie, Abteilung Molekulare Zellphysiologie, Phillips-Universität Marburg, Emil-Mannkopff-Straße 2, 35037 Marburg, Germany
| |
Collapse
|
16
|
Paez Valencia J, Goodman K, Otegui MS. Endocytosis and Endosomal Trafficking in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:309-35. [PMID: 27128466 DOI: 10.1146/annurev-arplant-043015-112242] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Endocytosis and endosomal trafficking are essential processes in cells that control the dynamics and turnover of plasma membrane proteins, such as receptors, transporters, and cell wall biosynthetic enzymes. Plasma membrane proteins (cargo) are internalized by endocytosis through clathrin-dependent or clathrin-independent mechanism and delivered to early endosomes. From the endosomes, cargo proteins are recycled back to the plasma membrane via different pathways, which rely on small GTPases and the retromer complex. Proteins that are targeted for degradation through ubiquitination are sorted into endosomal vesicles by the ESCRT (endosomal sorting complex required for transport) machinery for degradation in the vacuole. Endocytic and endosomal trafficking regulates many cellular, developmental, and physiological processes, including cellular polarization, hormone transport, metal ion homeostasis, cytokinesis, pathogen responses, and development. In this review, we discuss the mechanisms that mediate the recognition and sorting of endocytic and endosomal cargos, the vesiculation processes that mediate their trafficking, and their connection to cellular and physiological responses in plants.
Collapse
Affiliation(s)
- Julio Paez Valencia
- Department of Botany
- R.M. Bock Laboratories of Cell and Molecular Biology, and
| | - Kaija Goodman
- Department of Botany
- R.M. Bock Laboratories of Cell and Molecular Biology, and
| | - Marisa S Otegui
- Department of Botany
- R.M. Bock Laboratories of Cell and Molecular Biology, and
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706; , ,
| |
Collapse
|
17
|
Hu ZY, Liu YP, Xie LY, Wang XY, Yang F, Chen SY, Li ZG. AKAP-9 promotes colorectal cancer development by regulating Cdc42 interacting protein 4. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1172-81. [PMID: 27039663 DOI: 10.1016/j.bbadis.2016.03.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 02/29/2016] [Accepted: 03/25/2016] [Indexed: 02/07/2023]
Abstract
Our previous studies have shown that PRKA kinase anchor protein 9 (AKAP-9) is involved in colorectal cancer (CRC) cell proliferation and migration in vitro. However, whether or not AKAP-9 is important for CRC development or metastasis in vivo remains unknown. In the present study, we found that AKAP-9 expression was significantly higher in human colorectal cancer tissues than the paired normal tissues. In fact, AKAP-9 level correlated with the CRC infiltrating depth and metastasis. Moreover, the higher AKAP-9 expression was associated with the lower survival rate in patients. In cultured CRC cells, knockdown of AKAP-9 inhibited cell proliferation, invasion, and migration. AKAP-9 deficiency also attenuated CRC tumor growth and metastasis in vivo. Mechanistically, AKAP-9 interacted with cdc42 interacting protein 4 (CIP4) and regulated its expression. CIP4 levels were interrelated to the AKAP-9 level in CRC cells. Functionally, AKAP-9 was essential for TGF-β1-induced epithelial-mesenchymal transition of CRC cells, and CIP4 played a critical role in mediating the function of AKAP-9. Importantly, CIP4 expression was significantly up-regulated in human CRC tissues. Taken together, our results demonstrated that AKAP-9 facilitates CRC development and metastasis via regulating CIP4-mediated epithelial-mesenchymal transition of CRC cells.
Collapse
Affiliation(s)
- Zhi-Yan Hu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumour Pathology, Guangzhou 510515, China
| | - Yan-Ping Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumour Pathology, Guangzhou 510515, China
| | - Lin-Ying Xie
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumour Pathology, Guangzhou 510515, China
| | - Xiao-Yan Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumour Pathology, Guangzhou 510515, China
| | - Fang Yang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumour Pathology, Guangzhou 510515, China
| | - Shi-You Chen
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA, United States.
| | - Zu-Guo Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumour Pathology, Guangzhou 510515, China.
| |
Collapse
|
18
|
Zobel T, Brinkmann K, Koch N, Schneider K, Seemann E, Fleige A, Qualmann B, Kessels MM, Bogdan S. Cooperative functions of the two F-BAR proteins Cip4 and Nostrin in the regulation of E-cadherin in epithelial morphogenesis. J Cell Sci 2016; 128:499-515. [PMID: 25413347 DOI: 10.1242/jcs.155929] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
F-BAR proteins are prime candidates to regulate membrane curvature and dynamics during different developmental processes. Here, we analyzed nostrin, a so-far-unknown Drosophila melanogaster F-BAR protein related to Cip4. Genetic analyses revealed a strong synergism between nostrin and cip4 functions.Whereas single mutant flies are viable and fertile, combined loss of nostrin and cip4 results in reduced viability and fertility. Double mutant escaper flies show enhanced wing polarization defects and females exhibit strong egg chamber encapsulation defects. Live imaging analysis suggests that the observed phenotypes are caused by an impaired turnover of E-cadherin at the membrane. Simultaneous knockdown of Cip4 and Nostrin strongly increases the formation of tubular E-cadherin vesicles at adherens junctions. Cip4 and Nostrin localize at distinct membrane subdomains. Both proteins prefer similar membrane curvatures but seem to form distinct membrane coats and do not heterooligomerize. Our data suggest an important synergistic function of both F-BAR proteins in membrane dynamics. We propose a cooperative recruitment model, in which Cip4 initially promotes membrane invagination and early-actin-based endosomal motility, and Nostrin makes contacts with microtubules through the kinesin Khc-73 for trafficking of recycling endosomes.
Collapse
|
19
|
Liu S, Xiong X, Thomas SV, Xu Y, Cheng X, Zhao X, Yang X, Wang H. Analysis for Carom complex, signaling and function by database mining. Front Biosci (Landmark Ed) 2016; 21:856-72. [PMID: 26709809 DOI: 10.2741/4424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carom is a novel protein that regulates membrane curvature and transmits pathophysiological signaling. The tissue expression of Carom is unclear and its functional role and signaling are unknown. We employed a group of combined database mining strategies and established a working model of Carom signaling. We identified 26 Carom partners and established their expression profiles in human and mouse tissues. We classified three tiers of tissues for Carom/partner expression and found lymph node was the tier 1 tissue expressing Carom and most of its partners. Using GEO database, we discovered that four conditions (hypoxia, endometriosis, PPARgamma deletion and iPSC reprogramming) altered Carom/partner expression in endothelial cells. We identified 26 Carom partner signalings by Ingenuity pathway analysis. Ten of the 26 pathways and three genes (ITSN1, UBC and HSPA5) were reported to be regulated in the above four conditions. Paired induction of Carom/ITSN1 elevation was associated with pathological angiogenesis. Whereas, paired reduction of Carom/HSPA5 or UBC was associated with iPSC generation. These results provide an insight on identifying Carom complex model and predicting its functional implications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hong Wang
- Center for Metabolic Disease Research, Department of Pharmacology, Thrombosis Research Center,
| |
Collapse
|
20
|
PIP2Clustering: From model membranes to cells. Chem Phys Lipids 2015; 192:33-40. [DOI: 10.1016/j.chemphyslip.2015.07.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/26/2015] [Accepted: 07/27/2015] [Indexed: 11/23/2022]
|
21
|
Kovacevic I, Müller M, Kojonazarov B, Ehrke A, Randriamboavonjy V, Kohlstedt K, Hindemith T, Schermuly RT, Fleming I, Hoffmeister M, Oess S. The F-BAR Protein NOSTRIN Dictates the Localization of the Muscarinic M3 Receptor and Regulates Cardiovascular Function. Circ Res 2015; 117:460-9. [DOI: 10.1161/circresaha.115.306187] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/10/2015] [Indexed: 12/16/2022]
Abstract
Rationale:
Endothelial dysfunction is an early event in cardiovascular disease and characterized by reduced production of nitric oxide (NO). The F-BAR protein NO synthase traffic inducer (NOSTRIN) is an interaction partner of endothelial NO synthase and modulates its subcellular localization, but the role of NOSTRIN in pathophysiology in vivo is unclear.
Objective:
We analyzed the consequences of deleting the
NOSTRIN
gene in endothelial cells on NO production and cardiovascular function in vivo using NOSTRIN knockout mice.
Methods and Results:
The levels of NO and cGMP were significantly reduced in mice with endothelial cell–specific deletion of the
NOSTRIN
gene resulting in diastolic heart dysfunction. In addition, systemic blood pressure was increased, and myograph measurements indicated an impaired acetylcholine-induced relaxation of isolated aortic rings and resistance arteries. We found that the muscarinic acetylcholine receptor subtype M3 (M3R) interacted directly with NOSTRIN, and the latter was necessary for correct localization of the M3R at the plasma membrane in murine aorta. In the absence of NOSTRIN, the acetylcholine-induced increase in intracellular Ca
2+
in primary endothelial cells was abolished. Moreover, the activating phosphorylation and Golgi translocation of endothelial NO synthase in response to the M3R agonist carbachol were diminished.
Conclusions:
NOSTRIN is crucial for the localization and function of the M3R and NO production. The loss of NOSTRIN in mice leads to endothelial dysfunction, increased blood pressure, and diastolic heart failure.
Collapse
Affiliation(s)
- Igor Kovacevic
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Miriam Müller
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Baktybek Kojonazarov
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Alexander Ehrke
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Voahanginirina Randriamboavonjy
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Karin Kohlstedt
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Tanja Hindemith
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Ralph Theo Schermuly
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Ingrid Fleming
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Meike Hoffmeister
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Stefanie Oess
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| |
Collapse
|
22
|
Van Itallie CM, Tietgens AJ, Krystofiak E, Kachar B, Anderson JM. A complex of ZO-1 and the BAR-domain protein TOCA-1 regulates actin assembly at the tight junction. Mol Biol Cell 2015; 26:2769-87. [PMID: 26063734 PMCID: PMC4571337 DOI: 10.1091/mbc.e15-04-0232] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/05/2015] [Indexed: 02/06/2023] Open
Abstract
An alternative splice in TOCA-1 targets it to tight junctions. KO of TOCA-1 results in increased flux and decreased tight junction membrane dynamics. Ultrastructural analysis shows actin accumulation at the adherens junction. Identification of the ZO-1/TOCA-1 complex provides insights into tight junction barrier dependence on the dynamic nature of cell–cell contacts and junctional actin. Assembly and sealing of the tight junction barrier are critically dependent on the perijunctional actin cytoskeleton, yet little is known about physical and functional links between barrier-forming proteins and actin. Here we identify a novel functional complex of the junction scaffolding protein ZO-1 and the F-BAR–domain protein TOCA-1. Using MDCK epithelial cells, we show that an alternative splice of TOCA-1 adds a PDZ-binding motif, which binds ZO-1, targeting TOCA-1 to barrier contacts. This isoform of TOCA-1 recruits the actin nucleation–promoting factor N-WASP to tight junctions. CRISPR-Cas9–mediated knockout of TOCA-1 results in increased paracellular flux and delayed recovery in a calcium switch assay. Knockout of TOCA-1 does not alter FRAP kinetics of GFP ZO-1 or occludin, but longer term (12 h) time-lapse microscopy reveals strikingly decreased tight junction membrane contact dynamics in knockout cells compared with controls. Reexpression of TOCA-1 with, but not without, the PDZ-binding motif rescues both altered flux and membrane contact dynamics. Ultrastructural analysis shows actin accumulation at the adherens junction in TOCA-1–knockout cells but unaltered freeze-fracture fibril morphology. Identification of the ZO-1/TOCA-1 complex provides novel insights into the underappreciated dependence of the barrier on the dynamic nature of cell-to-cell contacts and perijunctional actin.
Collapse
Affiliation(s)
- Christina M Van Itallie
- Laboratory of Tight Junction Structure and Function, National Heart, Lung, and Blood Institute, Bethesda, MD 20892
| | - Amber Jean Tietgens
- Laboratory of Tight Junction Structure and Function, National Heart, Lung, and Blood Institute, Bethesda, MD 20892
| | - Evan Krystofiak
- Laboratory of Cell Structure and Dynamics, National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892
| | - Bechara Kachar
- Laboratory of Cell Structure and Dynamics, National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892
| | - James M Anderson
- Laboratory of Tight Junction Structure and Function, National Heart, Lung, and Blood Institute, Bethesda, MD 20892
| |
Collapse
|
23
|
Abstract
Endocytosis, the process whereby the plasma membrane invaginates to form vesicles, is essential for bringing many substances into the cell and for membrane turnover. The mechanism driving clathrin-mediated endocytosis (CME) involves > 50 different protein components assembling at a single location on the plasma membrane in a temporally ordered and hierarchal pathway. These proteins perform precisely choreographed steps that promote receptor recognition and clustering, membrane remodeling, and force-generating actin-filament assembly and turnover to drive membrane invagination and vesicle scission. Many critical aspects of the CME mechanism are conserved from yeast to mammals and were first elucidated in yeast, demonstrating that it is a powerful system for studying endocytosis. In this review, we describe our current mechanistic understanding of each step in the process of yeast CME, and the essential roles played by actin polymerization at these sites, while providing a historical perspective of how the landscape has changed since the preceding version of the YeastBook was published 17 years ago (1997). Finally, we discuss the key unresolved issues and where future studies might be headed.
Collapse
Affiliation(s)
- Bruce L Goode
- Brandeis University, Department of Biology, Rosenstiel Center, Waltham, Massachusetts 02454
| | - Julian A Eskin
- Brandeis University, Department of Biology, Rosenstiel Center, Waltham, Massachusetts 02454
| | - Beverly Wendland
- The Johns Hopkins University, Department of Biology, Baltimore, Maryland 21218
| |
Collapse
|
24
|
Tan P, Zaidel-Bar R. Transient Membrane Localization of SPV-1 Drives Cyclical Actomyosin Contractions in the C. elegans Spermatheca. Curr Biol 2015; 25:141-151. [DOI: 10.1016/j.cub.2014.11.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/27/2014] [Accepted: 11/13/2014] [Indexed: 12/25/2022]
|
25
|
Umasankar PK, Ma L, Thieman JR, Jha A, Doray B, Watkins SC, Traub LM. A clathrin coat assembly role for the muniscin protein central linker revealed by TALEN-mediated gene editing. eLife 2014; 3. [PMID: 25303365 PMCID: PMC4215538 DOI: 10.7554/elife.04137] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/08/2014] [Indexed: 12/12/2022] Open
Abstract
Clathrin-mediated endocytosis is an evolutionarily ancient membrane transport system regulating cellular receptivity and responsiveness. Plasmalemma clathrin-coated structures range from unitary domed assemblies to expansive planar constructions with internal or flanking invaginated buds. Precisely how these morphologically-distinct coats are formed, and whether all are functionally equivalent for selective cargo internalization is still disputed. We have disrupted the genes encoding a set of early arriving clathrin-coat constituents, FCHO1 and FCHO2, in HeLa cells. Endocytic coats do not disappear in this genetic background; rather clustered planar lattices predominate and endocytosis slows, but does not cease. The central linker of FCHO proteins acts as an allosteric regulator of the prime endocytic adaptor, AP-2. By loading AP-2 onto the plasma membrane, FCHO proteins provide a parallel pathway for AP-2 activation and clathrin-coat fabrication. Further, the steady-state morphology of clathrin-coated structures appears to be a manifestation of the availability of the muniscin linker during lattice polymerization. DOI:http://dx.doi.org/10.7554/eLife.04137.001 Cells can take proteins and other molecules that are either embedded in, or attached to, their surface membrane and move them inside via a process called endocytosis. This process often involves a protein called clathrin working together with numerous other proteins. Early on, a complex of four proteins, called the adaptor protein-2 complex, interacts with both the ‘cargo’ molecules that are to be taken into the cell, and the cell membrane. Clathrin molecules then assemble into an ordered lattice-like coat, on top of the adaptor protein complex layer. This deforms a small patch of the cell membrane and curves it inwards. The clathrin molecules coat this pocket as it grows in size, until it engulfs the cargo. The pocket quickly pinches off from the membrane to form a bubble-like structure called a vesicle, which is brought into the cell. A family of proteins termed Muniscins were thought to be involved in the early stages of endocytosis and have to arrive at the membrane before the adaptor protein-2 complex and clathrin. But experiments to test this idea—that reduced, or ‘knocked-down’, the production of Muniscins—had given conflicting results. As such, it remained unclear how the small patches of membrane carrying cargo molecules are marked as being destined to become clathrin-coated vesicles. Now Umasankar et al. have studied the role that these proteins play in the early stages of endocytosis in human cells grown in a laboratory. A gene-editing approach was used to precisely disrupt a gene that codes for a Muniscin protein called FCHO2. Umasankar et al. observed that these ‘edited’ cells formed clathrin coats that were more irregular compared with those that form in normal cells. Nevertheless, clathrin-mediated vesicles still formed when this protein was absent, though the process of endocytosis was slower. Similar results were seen when Umasankar et al. used the same approach to disrupt the gene for a related protein called FCHO1 in the same cells. A short fragment of the Muniscin proteins, called the linker, was shown to bind to, and activate, the adaptor protein-2 complex. The linker then recruits this complex to the specific regions of the cell membrane where clathrin-coated vesicles will form. Several dozen other proteins also accumulate where clathrin pockets form; as such, one of the next challenges will be to investigate if this mechanism of locally activating the cargo-gathering machinery is common in living cells. DOI:http://dx.doi.org/10.7554/eLife.04137.002
Collapse
Affiliation(s)
| | - Li Ma
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - James R Thieman
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Anupma Jha
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Balraj Doray
- Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Linton M Traub
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| |
Collapse
|
26
|
Cytoskeletal and signaling mechanisms of neurite formation. Cell Tissue Res 2014; 359:267-78. [PMID: 25080065 DOI: 10.1007/s00441-014-1955-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/01/2014] [Indexed: 10/25/2022]
Abstract
The formation of a neurite, the basis for axons and dendrites, begins with the concerted accumulation and organization of actin and microtubules. Whereas much is known about the proteins that play a role in these processes, because they perform similar functions in axon branching and filopodia formation, much remains to be discovered concerning the interaction of these individual cytoskeletal regulators during neurite formation. Here, we review the literature regarding various models of filopodial formation and the way in which proteins that control actin organization and polymerization induce neurite formation. Although several different regulators of actin polymerization are involved in neurite initiation, redundancy occurs between these regulators, as the effects of the loss of a single regulator can be mitigated by the addition of neurite-promoting substrates and proteins. Similar to actin dynamics, both microtubule stabilizing and destabilizing proteins play a role in neurite initiation. Furthermore, interactions between the actin and microtubule cytoskeleton are required for neurite formation. Several lines of evidence indicate that the interactions between these two components of the cytoskeleton are needed for force generation and for the localization of microtubules at sites of nascent neurites. The general theme that emerges is the existence of several central regulatory pathways on which extracellular cues converge to control and organize both actin and microtubules to induce the formation of neurites.
Collapse
|
27
|
Tata A, Stoppel DC, Hong S, Ben-Zvi A, Xie T, Gu C. An image-based RNAi screen identifies SH3BP1 as a key effector of Semaphorin 3E-PlexinD1 signaling. ACTA ACUST UNITED AC 2014; 205:573-90. [PMID: 24841563 PMCID: PMC4033773 DOI: 10.1083/jcb.201309004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Extracellular signals have to be precisely interpreted intracellularly and translated into diverse cellular behaviors often mediated by cytoskeletal changes. Semaphorins are one of the largest families of guidance cues and play a critical role in many systems. However, how different cell types translate extracellular semaphorin binding into intracellular signaling remains unclear. Here we developed and performed a novel image-based genome-wide functional RNAi screen for downstream signaling molecules that convert the interaction between Semaphorin 3E (Sema3E) and PlexinD1 into cellular behaviors. One of the genes identified in this screen is a RhoGAP protein, SH3-domain binding protein 1 (SH3BP1). We demonstrate that SH3BP1 mediates Sema3E-induced cell collapse through interaction with PlexinD1 and regulation of Ras-related C3 botulinum toxin substrate 1 (Rac1) activity. The identification and characterization of SH3BP1 as a novel downstream effector of Sema3E-PlexinD1 provides an explanation for how extracellular signals are translated into cytoskeletal changes and unique cell behavior, but also lays the foundation for characterizing other genes identified from our screen to obtain a more complete picture of plexin signaling.
Collapse
Affiliation(s)
- Aleksandra Tata
- Department of Neurobiology and Image and Data Analysis Core (IDAC), Harvard Medical School, Boston, MA 02115
| | - David C Stoppel
- Department of Neurobiology and Image and Data Analysis Core (IDAC), Harvard Medical School, Boston, MA 02115
| | - Shangyu Hong
- Department of Neurobiology and Image and Data Analysis Core (IDAC), Harvard Medical School, Boston, MA 02115
| | - Ayal Ben-Zvi
- Department of Neurobiology and Image and Data Analysis Core (IDAC), Harvard Medical School, Boston, MA 02115
| | - Tiao Xie
- Department of Neurobiology and Image and Data Analysis Core (IDAC), Harvard Medical School, Boston, MA 02115
| | - Chenghua Gu
- Department of Neurobiology and Image and Data Analysis Core (IDAC), Harvard Medical School, Boston, MA 02115
| |
Collapse
|
28
|
The F-BAR protein PSTPIP1 controls extracellular matrix degradation and filopodia formation in macrophages. Blood 2014; 123:2703-14. [PMID: 24421327 DOI: 10.1182/blood-2013-07-516948] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PSTPIP1 is a cytoskeletal adaptor and F-BAR protein that has been implicated in autoinflammatory disease, most notably in the PAPA syndrome: pyogenic sterile arthritis, pyoderma gangrenosum, and acne. However, the mechanism by which PSTPIP1 regulates the actin cytoskeleton and contributes to disease pathogenesis remains elusive. Here, we show that endogenous PSTPIP1 negatively regulates macrophage podosome organization and matrix degradation. We identify a novel PSTPIP1-R405C mutation in a patient presenting with aggressive pyoderma gangrenosum. Identification of this mutation reveals that PSTPIP1 regulates the balance of podosomes and filopodia in macrophages. The PSTPIP1-R405C mutation is in the SRC homology 3 (SH3) domain and impairs Wiskott-Aldrich syndrome protein (WASP) binding, but it does not affect interaction with protein-tyrosine phosphatase (PTP)-PEST. Accordingly, WASP inhibition reverses the elevated F-actin content, filopodia formation, and matrix degradation induced by PSTPIP1-R405C. Our results uncover a novel role for PSTPIP1 and WASP in orchestrating different types of actin-based protrusions. Our findings implicate the cytoskeletal regulatory functions of PSTPIP1 in the pathogenesis of pyoderma gangrenosum and suggest that the cytoskeleton is a rational target for therapeutic intervention in autoinflammatory disease.
Collapse
|
29
|
Cvrčková F. Formins and membranes: anchoring cortical actin to the cell wall and beyond. FRONTIERS IN PLANT SCIENCE 2013; 4:436. [PMID: 24204371 PMCID: PMC3817587 DOI: 10.3389/fpls.2013.00436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/13/2013] [Indexed: 05/03/2023]
Abstract
Formins are evolutionarily conserved eukaryotic proteins participating in actin and microtubule organization. Land plants have three formin clades, with only two - Class I and II - present in angiosperms. Class I formins are often transmembrane proteins, residing at the plasmalemma and anchoring the cortical cytoskeleton across the membrane to the cell wall, while Class II formins possess a PTEN-related membrane-binding domain. Lower plant Class III and non-plant formins usually contain domains predicted to bind RHO GTPases that are membrane-associated. Thus, some kind of membrane anchorage appears to be a common formin feature. Direct interactions between various non-plant formins and integral or peripheral membrane proteins have indeed been reported, with varying mechanisms and biological implications. Besides of summarizing new data on Class I and Class II formin-membrane relationships, this review surveys such "non-classical" formin-membrane interactions and examines which, if any, of them may be evolutionarily conserved and operating also in plants. FYVE, SH3 and BAR domain-containing proteins emerge as possible candidates for such conserved membrane-associated formin partners.
Collapse
Affiliation(s)
- Fatima Cvrčková
- *Correspondence: Fatima Cvrčková, Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 43, Prague, Czech Republic e-mail:
| |
Collapse
|
30
|
Loss of the F-BAR protein CIP4 reduces platelet production by impairing membrane-cytoskeleton remodeling. Blood 2013; 122:1695-706. [PMID: 23881916 DOI: 10.1182/blood-2013-03-484550] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Megakaryocytes generate platelets through extensive reorganization of the cytoskeleton and plasma membrane. Cdc42 interacting protein 4 (CIP4) is an F-BAR protein that localizes to membrane phospholipids through its BAR domain and interacts with Wiskott-Aldrich Syndrome Protein (WASP) via its SRC homology 3 domain. F-BAR proteins promote actin polymerization and membrane tubulation. To study its function, we generated CIP4-null mice that displayed thrombocytopenia similar to that of WAS(-) mice. The number of megakaryocytes and their progenitors was not affected. However, the number of proplatelet protrusions was reduced in CIP4-null, but not WAS(-), megakaryocytes. Electron micrographs of CIP4-null megakaryocytes showed an altered demarcation membrane system. Silencing of CIP4, not WASP, expression resulted in fewer proplatelet-like extensions. Fluorescence anisotropy studies showed that loss of CIP4 resulted in a more rigid membrane. Micropipette aspiration demonstrated decreased cortical actin tension in megakaryocytic cells with reduced CIP4 or WASP protein. These studies support a new biophysical mechanism for platelet biogenesis whereby CIP4 enhances the complex, dynamic reorganization of the plasma membrane (WASP independent) and actin cortex network (as known for WASP and cortical actin) to reduce the work required for generating proplatelets. CIP4 is a new component in the highly coordinated system of megakaryocytic membrane and cytoskeletal remodeling affecting platelet production.
Collapse
|
31
|
Ivanova IA, Vermeulen JF, Ercan C, Houthuijzen JM, Saig FA, Vlug EJ, van der Wall E, van Diest PJ, Vooijs M, Derksen PWB. FER kinase promotes breast cancer metastasis by regulating α6- and β1-integrin-dependent cell adhesion and anoikis resistance. Oncogene 2013; 32:5582-92. [PMID: 23873028 PMCID: PMC3898493 DOI: 10.1038/onc.2013.277] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 05/06/2013] [Accepted: 05/06/2013] [Indexed: 12/15/2022]
Abstract
Metastatic breast cancer cannot be treated successfully. Currently, the targeted therapies for metastatic disease are limited to human epidermal growth factor receptor 2 and hormone receptor antagonists. Understanding the mechanisms of breast cancer growth and metastasis is therefore crucial for the development of new intervention strategies. Here, we show that FER kinase (FER) controls migration and metastasis of invasive human breast cancer cell lines by regulating α6- and β1-integrin-dependent adhesion. Conversely, the overexpression of FER in non-metastatic breast cancer cells induces pro-invasive features. FER drives anoikis resistance, regulates tumour growth and is necessary for metastasis in a mouse model of human breast cancer. In human invasive breast cancer, high FER expression is an independent prognostic factor that correlates with high-grade basal/triple-negative tumours and worse overall survival, especially in lymph node-negative patients. These findings establish FER as a promising target for the prevention and inhibition of metastatic breast cancer.
Collapse
Affiliation(s)
- I A Ivanova
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J F Vermeulen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - C Ercan
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J M Houthuijzen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - F A Saig
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - E J Vlug
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - E van der Wall
- 1] Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands [2] Division of Internal Medicine and Dermatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - P J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M Vooijs
- 1] Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands [2] Department of Radiation Oncology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - P W B Derksen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
32
|
Saengsawang W, Taylor KL, Lumbard DC, Mitok K, Price A, Pietila L, Gomez TM, Dent EW. CIP4 coordinates with phospholipids and actin-associated proteins to localize to the protruding edge and produce actin ribs and veils. J Cell Sci 2013; 126:2411-23. [PMID: 23572514 DOI: 10.1242/jcs.117473] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cdc42-interacting protein 4 (CIP4), a member of the F-BAR family of proteins, plays important roles in a variety of cellular events by regulating both membrane and actin dynamics. In many cell types, CIP4 functions in vesicle formation, endocytosis and membrane tubulation. However, recent data indicate that CIP4 is also involved in protrusion in some cell types, including cancer cells (lamellipodia and invadopodia) and neurons (ribbed lamellipodia and veils). In neurons, CIP4 localizes specifically to extending protrusions and functions to limit neurite outgrowth early in development. The mechanism by which CIP4 localizes to the protruding edge membrane and induces lamellipodial/veil protrusion and actin rib formation is not known. Here, we show that CIP4 localization to the protruding edge of neurons is dependent on both the phospholipid content of the plasma membrane and the underlying organization of actin filaments. Inhibiting phosphatidylinositol (3,4,5)-trisphosphate (PIP3) production decreases CIP4 at the membrane. CIP4 localization to the protruding edge is also dependent on Rac1/WAVE1, rather than Cdc42/N-WASP. Capping actin filaments with low concentrations of cytochalasin D or by overexpressing capping protein dramatically decreases CIP4 at the protruding edge, whereas inactivating Arp2/3 drives CIP4 to the protruding edge. We also demonstrate that CIP4 dynamically colocalizes with Ena/VASP and DAAM1, two proteins known to induce unbranched actin filament arrays and play important roles in neuronal development. Together, this is the first study to show that the localization of an F-BAR protein depends on both actin filament architecture and phospholipids at the protruding edge of developing neurons.
Collapse
Affiliation(s)
- Witchuda Saengsawang
- University of Wisconsin-Madison, Department of Neuroscience, Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Oh Y, Schreiter J, Nishihama R, Wloka C, Bi E. Targeting and functional mechanisms of the cytokinesis-related F-BAR protein Hof1 during the cell cycle. Mol Biol Cell 2013; 24:1305-20. [PMID: 23468521 PMCID: PMC3639043 DOI: 10.1091/mbc.e12-11-0804] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hof1 targets to the division site by interacting with septins and myosin II sequentially during the cell cycle. It plays a role in cytokinesis by coupling actomyosin ring constriction to primary septum formation through interactions with Myo1 and Chs2. F-BAR proteins are membrane‑associated proteins believed to link the plasma membrane to the actin cytoskeleton in cellular processes such as cytokinesis and endocytosis. In the budding yeast Saccharomyces cerevisiae, the F‑BAR protein Hof1 localizes to the division site in a complex pattern during the cell cycle and plays an important role in cytokinesis. However, the mechanisms underlying its localization and function are poorly understood. Here we show that Hof1 contains three distinct targeting domains that contribute to cytokinesis differentially. The N‑terminal half of Hof1 localizes to the bud neck and the sites of polarized growth during the cell cycle. The neck localization is mediated mainly by an interaction between the second coiled‑coil region in the N‑terminus and the septin Cdc10, whereas the localization to the sites of polarized growth is mediated entirely by the F‑BAR domain. In contrast, the C‑terminal half of Hof1 interacts with Myo1, the sole myosin‑II heavy chain in budding yeast, and localizes to the bud neck in a Myo1‑dependent manner from the onset to the completion of cytokinesis. We also show that the SH3 domain in the C‑terminus plays an important role in maintaining the symmetry of Myo1 ring constriction during cytokinesis and that Hof1 interacts with Chs2, a chitin synthase that is required for primary septum formation. Together these data define a mechanism that accounts for the localization of Hof1 during the cell cycle and suggest that Hof1 may function in cytokinesis by coupling actomyosin ring constriction to primary septum formation through interactions with Myo1 and Chs2.
Collapse
Affiliation(s)
- Younghoon Oh
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
34
|
Yan S, Lv Z, Winterhoff M, Wenzl C, Zobel T, Faix J, Bogdan S, Grosshans J. The F-BAR protein Cip4/Toca-1 antagonizes the formin Diaphanous in membrane stabilization and compartmentalization. J Cell Sci 2013; 126:1796-805. [PMID: 23424199 PMCID: PMC3706074 DOI: 10.1242/jcs.118422] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
During Drosophila embryogenesis, the first epithelium with defined cortical compartments is established during cellularization. Actin polymerization is required for the separation of lateral and basal domains as well as suppression of tubular extensions in the basal domain. The actin nucleator mediating this function is unknown. We found that the formin Diaphanous (Dia) is required for establishing and maintaining distinct lateral and basal domains during cellularization. In dia mutant embryos lateral marker proteins, such as Discs-large and Armadillo/β-Catenin spread into the basal compartment. Furthermore, high-resolution and live-imaging analysis of dia mutant embryos revealed an increased number of membrane extensions and endocytic activity at the basal domain, indicating a suppressing function of dia on membrane invaginations. Dia function might be based on an antagonistic interaction with the F-BAR protein Cip4/Toca-1, a known activator of the WASP/WAVE-Arp2/3 pathway. Dia and Cip4 physically and functionally interact and overexpression of Cip4 phenocopies dia loss-of-function. In vitro, Cip4 inhibits mainly actin nucleation by Dia. Thus, our data support a model in which linear actin filaments induced by Dia stabilize cortical compartmentalization by antagonizing membrane turnover induced by WASP/WAVE-Arp2/3.
Collapse
Affiliation(s)
- Shuling Yan
- Institut für Biochemie, Universitätsmedizin, Universität Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
New insights into roles of acidocalcisomes and contractile vacuole complex in osmoregulation in protists. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:69-113. [PMID: 23890380 DOI: 10.1016/b978-0-12-407695-2.00002-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While free-living protists are usually subjected to hyposmotic environments, parasitic protists are also in contact with hyperosmotic habitats. Recent work in one of these parasites, Trypanosoma cruzi, has revealed that its contractile vacuole complex, which usually collects and expels excess water as a mechanism of regulatory volume decrease after hyposmotic stress, has also a role in cell shrinking when the cells are submitted to hyperosmotic stress. Trypanosomes also have an acidic calcium store rich in polyphosphate (polyP), named the acidocalcisome, which is involved in their response to osmotic stress. Here, we review newly emerging insights on the role of acidocalcisomes and the contractile vacuole complex in the cellular response to hyposmotic and hyperosmotic stresses. We also review the current state of knowledge on the composition of these organelles and their other roles in calcium homeostasis and protein trafficking.
Collapse
|
36
|
Gallo G. Mechanisms underlying the initiation and dynamics of neuronal filopodia: from neurite formation to synaptogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 301:95-156. [PMID: 23317818 DOI: 10.1016/b978-0-12-407704-1.00003-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Filopodia are finger-like cellular protrusions found throughout the metazoan kingdom and perform fundamental cellular functions during development and cell migration. Neurons exhibit a wide variety of extremely complex morphologies. In the nervous system, filopodia underlie many major morphogenetic events. Filopodia have roles spanning the initiation and guidance of neuronal processes, axons and dendrites to the formation of synaptic connections. This chapter addresses the mechanisms of the formation and dynamics of neuronal filopodia. Some of the major lessons learned from the study of neuronal filopodia are (1) there are multiple mechanisms that can regulate filopodia in a context-dependent manner, (2) that filopodia are specialized subcellular domains, (3) that filopodia exhibit dynamic membrane recycling which also controls aspects of filopodial dynamics, (4) that neuronal filopodia contain machinery for the orchestration of the actin and microtubule cytoskeleton, and (5) localized protein synthesis contributes to neuronal filopodial dynamics.
Collapse
Affiliation(s)
- Gianluca Gallo
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair and Rehabilitation, Department of Anatomy and Cell Biology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
37
|
Itoh T, Hasegawa J. Mechanistic insights into the regulation of circular dorsal ruffle formation. J Biochem 2012; 153:21-9. [PMID: 23175656 DOI: 10.1093/jb/mvs138] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Growth factor stimulations induce dynamic changes in the cytoskeleton beneath the plasma membrane. Among them is the formation of membrane ruffles organized in a circular array, called 'circular dorsal ruffles' (CDRs). Physiological functions of CDRs include downregulation of cell growth by desensitizing the signalling from growth factor receptors as well as rearrangement of adhesion sites at the onset of cell migration. For the formation of CDRs, not only the activators of actin polymerization, such as N-WASP and the Arp2/3-complex, but also membrane deforming proteins with BAR/F-BAR domains are necessary. Small GTPases are also involved in the formation of CDRs by controlling intracellular trafficking through endosomes. Moreover, recent analyses of another circular cytoskeletal structure, podosome rosettes, have revealed common molecular features shared with CDRs. Among them, the roles of PI3-kinase and phosphoinositide 5-phosphatase may hold the key to the induction of these circular structures.
Collapse
Affiliation(s)
- Toshiki Itoh
- Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Kobe 650-0017, Japan.
| | | |
Collapse
|
38
|
Membrane curvature and its generation by BAR proteins. Trends Biochem Sci 2012; 37:526-33. [PMID: 23058040 DOI: 10.1016/j.tibs.2012.09.001] [Citation(s) in RCA: 214] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 01/26/2023]
Abstract
Membranes are flexible barriers that surround the cell and its compartments. To execute vital functions such as locomotion or receptor turnover, cells need to control the shapes of their membranes. In part, this control is achieved through membrane-bending proteins, such as the Bin/amphiphysin/Rvs (BAR) domain proteins. Many open questions remain about the mechanisms by which membrane-bending proteins function. Addressing this shortfall, recent structures of BAR protein:membrane complexes support existing mechanistic models, but also produced novel insights into how BAR domain proteins sense, stabilize, and generate curvature. Here we review these recent findings, focusing on how BAR proteins interact with the membrane, and how the resulting scaffold structures might aid the recruitment of other proteins to the sites where membranes are bent.
Collapse
|
39
|
Yoon Y, Zhang X, Cho W. Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) specifically induces membrane penetration and deformation by Bin/amphiphysin/Rvs (BAR) domains. J Biol Chem 2012; 287:34078-90. [PMID: 22888025 DOI: 10.1074/jbc.m112.372789] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular proteins containing Bin/amphiphysin/Rvs (BAR) domains play a key role in clathrin-mediated endocytosis. Despite extensive structural and functional studies of BAR domains, it is still unknown how exactly these domains interact with the plasma membrane containing phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) and whether they function by a universal mechanism or by different mechanisms. Here we report that PtdIns(4,5)P(2) specifically induces partial membrane penetration of the N-terminal amphiphilic α-helix (H(0)) of two representative N-BAR domains from Drosophila amphiphysin (dAmp-BAR) and rat endophilin A1 (EndoA1-BAR). Our quantitative fluorescence imaging analysis shows that PtdIns(4,5)P(2)-dependent membrane penetration of H(0) is important for self-association of membrane-bound dAmp-BAR and EndoA1-BAR and their membrane deformation activity. EndoA1-BAR behaves differently from dAmp-BAR because the former has an additional amphiphilic α-helix that penetrates the membrane in a PtdIns(4,5)P(2)-independent manner. Depletion of PtdIns(4,5)P(2) from the plasma membrane of HEK293 cells abrogated the membrane deforming activity of EndoA1-BAR and dAmp-BAR. Collectively, these studies suggest that the local PtdIns(4,5)P(2) concentration in the plasma membrane may regulate the membrane interaction and deformation by N-BAR domain-containing proteins during clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Youngdae Yoon
- Department of Chemistry, University of Illinois, Chicago, Illinois 60607, USA
| | | | | |
Collapse
|
40
|
Kovacevic I, Hu J, Siehoff-Icking A, Opitz N, Griffin A, Perkins AC, Munn AL, Müller-Esterl W, Popp R, Fleming I, Jungblut B, Hoffmeister M, Oess S. The F-BAR protein NOSTRIN participates in FGF signal transduction and vascular development. EMBO J 2012; 31:3309-22. [PMID: 22751148 DOI: 10.1038/emboj.2012.176] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 06/01/2012] [Indexed: 12/15/2022] Open
Abstract
F-BAR proteins are multivalent adaptors that link plasma membrane and cytoskeleton and coordinate cellular processes such as membrane protrusion and migration. Yet, little is known about the function of F-BAR proteins in vivo. Here we report, that the F-BAR protein NOSTRIN is necessary for proper vascular development in zebrafish and postnatal retinal angiogenesis in mice. The loss of NOSTRIN impacts on the migration of endothelial tip cells and leads to a reduction of tip cell filopodia number and length. NOSTRIN forms a complex with the GTPase Rac1 and its exchange factor Sos1 and overexpression of NOSTRIN in cells induces Rac1 activation. Furthermore, NOSTRIN is required for fibroblast growth factor 2 dependent activation of Rac1 in primary endothelial cells and the angiogenic response to fibroblast growth factor 2 in the in vivo matrigel plug assay. We propose a novel regulatory circuit, in which NOSTRIN assembles a signalling complex containing FGFR1, Rac1 and Sos1 thereby facilitating the activation of Rac1 in endothelial cells during developmental angiogenesis.
Collapse
Affiliation(s)
- Igor Kovacevic
- Institute for Biochemistry II, Goethe University Frankfurt Medical School, Frankfurt/Main, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Aggarwal A, Iemma TL, Shih I, Newsome TP, McAllery S, Cunningham AL, Turville SG. Mobilization of HIV spread by diaphanous 2 dependent filopodia in infected dendritic cells. PLoS Pathog 2012; 8:e1002762. [PMID: 22685410 PMCID: PMC3369929 DOI: 10.1371/journal.ppat.1002762] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 05/04/2012] [Indexed: 11/24/2022] Open
Abstract
Paramount to the success of persistent viral infection is the ability of viruses to navigate hostile environments en route to future targets. In response to such obstacles, many viruses have developed the ability of establishing actin rich-membrane bridges to aid in future infections. Herein through dynamic imaging of HIV infected dendritic cells, we have observed how viral high-jacking of the actin/membrane network facilitates one of the most efficient forms of HIV spread. Within infected DC, viral egress is coupled to viral filopodia formation, with more than 90% of filopodia bearing immature HIV on their tips at extensions of 10 to 20 µm. Live imaging showed HIV filopodia routinely pivoting at their base, and projecting HIV virions at µm.sec−1 along repetitive arc trajectories. HIV filopodial dynamics lead to up to 800 DC to CD4 T cell contacts per hour, with selection of T cells culminating in multiple filopodia tethering and converging to envelope the CD4 T-cell membrane with budding HIV particles. Long viral filopodial formation was dependent on the formin diaphanous 2 (Diaph2), and not a dominant Arp2/3 filopodial pathway often associated with pathogenic actin polymerization. Manipulation of HIV Nef reduced HIV transfer 25-fold by reducing viral filopodia frequency, supporting the potency of DC HIV transfer was dependent on viral filopodia abundance. Thus our observations show HIV corrupts DC to CD4 T cell interactions by physically embedding at the leading edge contacts of long DC filopodial networks. Dendritic cells represent a unique cell type with respect to HIV, as they are the first point of contact for the virus in the genital mucosa and have the ability to spread virus efficiently in very low numbers to the primary HIV target, CD4 T cells. During the primary immune response, dendritic cells work in small numbers to make numerous and repetitive contacts, in order to filter and communicate with appropriate CD4 T cells. Thus HIV is hypothesized to be hijacking the same DC-CD4 T cell communication. Attempts to observe how HIV would achieve this have largely been limited, as introduction of imaging markers in the virus has often led to significant viral attenuation. Herein by using novel HIV constructs that permit imaging of HIV in infected dendritic cells, we observed newly forming HIV virions on the tips of long finger-like projections known as filopodia. In real-time imaging filopodia pivoted at their base and moved virions along trajectories that led to numerous CD4 T cell contacts. By manipulating filopodial formation we conclude the location of the virus on long filopodial tips allows the virus to corrupt the promiscuous dendritic cell to CD4 T cell contacts for efficient viral spread.
Collapse
Affiliation(s)
- Anupriya Aggarwal
- Laboratory of HIV Biology, Immunovirology and Pathogenesis Program, The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
- HIV Pathogenesis Laboratory, Westmead Millennium Institute (WMI), University of Sydney, Sydney, New South Wales, Australia
| | - Tina L. Iemma
- Laboratory of HIV Biology, Immunovirology and Pathogenesis Program, The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
- HIV Pathogenesis Laboratory, Westmead Millennium Institute (WMI), University of Sydney, Sydney, New South Wales, Australia
| | - Ivy Shih
- Laboratory of HIV Biology, Immunovirology and Pathogenesis Program, The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
- HIV Pathogenesis Laboratory, Westmead Millennium Institute (WMI), University of Sydney, Sydney, New South Wales, Australia
| | - Timothy P. Newsome
- School of Molecular Biosciences, University of Sydney, Sydney, New South Wales, Australia
| | - Samantha McAllery
- Laboratory of HIV Biology, Immunovirology and Pathogenesis Program, The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
- HIV Pathogenesis Laboratory, Westmead Millennium Institute (WMI), University of Sydney, Sydney, New South Wales, Australia
| | - Anthony L. Cunningham
- Laboratory of HIV Biology, Immunovirology and Pathogenesis Program, The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Stuart G. Turville
- Laboratory of HIV Biology, Immunovirology and Pathogenesis Program, The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
- HIV Pathogenesis Laboratory, Westmead Millennium Institute (WMI), University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
42
|
Coutinho-Budd J, Ghukasyan V, Zylka MJ, Polleux F. The F-BAR domains from srGAP1, srGAP2 and srGAP3 regulate membrane deformation differently. J Cell Sci 2012; 125:3390-401. [PMID: 22467852 DOI: 10.1242/jcs.098962] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coordination of membrane deformation and cytoskeletal dynamics lies at the heart of many biological processes critical for cell polarity, motility and morphogenesis. We have recently shown that Slit-Robo GTPase-activating protein 2 (srGAP2) regulates neuronal morphogenesis through the ability of its F-BAR domain to regulate membrane deformation and induce filopodia formation. Here, we demonstrate that the F-BAR domains of two closely related family members, srGAP1 and srGAP3 [designated F-BAR(1) and F-BAR(3), respectively] display significantly different membrane deformation properties in non-neuronal COS7 cells and in cortical neurons. F-BAR(3) induces filopodia in both cell types, though less potently than F-BAR(2), whereas F-BAR(1) prevents filopodia formation in cortical neurons and reduces plasma membrane dynamics. These three F-BAR domains can heterodimerize, and they act synergistically towards filopodia induction in COS7 cells. As measured by fluorescence recovery after photobleaching, F-BAR(2) displays faster molecular dynamics than F-BAR(3) and F-BAR(1) at the plasma membrane, which correlates well with its increased potency to induce filopodia. We also show that the molecular dynamic properties of F-BAR(2) at the membrane are partially dependent on F-Actin. Interestingly, acute phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] depletion in cells does not interfere with plasma membrane localization of F-BAR(2), which is compatible with our result showing that F-BAR(2) binds to a broad range of negatively-charged phospholipids present at the plasma membrane, including phosphatidylserine (PtdSer). Overall, our results provide novel insights into the functional diversity of the membrane deformation properties of this subclass of F-BAR-domains required for cell morphogenesis.
Collapse
Affiliation(s)
- Jaeda Coutinho-Budd
- Neurobiology Curriculum University of North Carolina, Chapel Hill, NC 27599-7250, USA
| | | | | | | |
Collapse
|
43
|
Bai X, Meng G, Zheng X. Cloning, purification, crystallization and preliminary X-ray diffraction analysis of mouse PACSIN 3 protein. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:159-62. [PMID: 22297988 DOI: 10.1107/s1744309111049116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 11/17/2011] [Indexed: 11/10/2022]
Abstract
PACSIN-family proteins are cytoplasmic proteins that have vesicle-transport, membrane-dynamics, actin-reorganization and microtubule activities. Here, the N-terminal F-BAR domain of mouse PACSIN 3, which contains 341 amino acids, was successfully cloned, purified and crystallized. The crystal of PACSIN 3 (1-341) diffracted to 2.6 Å resolution and belonged to space group P2(1), with unit-cell parameters a = 46.9, b = 54.7, c = 193.7 Å, α = 90, β = 96.9, γ = 90°. These data should provide further information on PACSIN-family protein structures.
Collapse
Affiliation(s)
- Xiaoyun Bai
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, People's Republic of China
| | | | | |
Collapse
|
44
|
Endris V, Haussmann L, Buss E, Bacon C, Bartsch D, Rappold G. SrGAP3 interacts with lamellipodin at the cell membrane and regulates Rac-dependent cellular protrusions. J Cell Sci 2011; 124:3941-55. [PMID: 22159416 DOI: 10.1242/jcs.077081] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
SrGAP3/MEGAP is a member of the Slit-Robo GAP (srGAP) family and is implicated in repulsive axon guidance and neuronal migration through Slit-Robo-mediated signal transduction. Here we describe an inhibitory role of srGAP3 on actin dynamics, specifically on lamellipodia formation. We show that the F-BAR domain localizes srGAP3 to the leading edge of cellular protrusions whereas the SH3 domain is important for focal adhesion targeting. We report on a novel srGAP3 interaction partner, lamellipodin, which localizes with srGAP3 at the leading edge. Live-cell analyses revealed that srGAP3 influences lamellipodin-evoked lamellipodial dynamics. Furthermore, we show that mouse embryonic fibroblasts derived from homozygous srGAP3-knockout embryos display an increased cell area and lamellipodia formation that can be blocked by shRNA-mediated knockdown of lamellipodin.
Collapse
Affiliation(s)
- Volker Endris
- Department of Human Molecular Genetics, University of Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Kabaso D, Bobrovska N, Góźdź W, Gov N, Kralj-Iglič V, Veranič P, Iglič A. On the role of membrane anisotropy and BAR proteins in the stability of tubular membrane structures. J Biomech 2011; 45:231-8. [PMID: 22138195 DOI: 10.1016/j.jbiomech.2011.10.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 09/27/2011] [Accepted: 10/31/2011] [Indexed: 01/14/2023]
Abstract
Recent studies have demonstrated that actin filaments are not crucial for the short-term stability of tubular membrane protrusions originating from the cell surface. It has also been demonstrated that prominin nanodomains and curvature inducing I-BAR proteins could account for the stability of the membrane protrusion. Here we constructed an axisymmetric model of a membrane protrusion that excludes actin filaments in order to investigate the contributions of prominin nanodomains (rafts) and I-BAR proteins to the membrane protrusion stability. It was demonstrated that prominin nanodomains and I-BAR proteins can stabilize the membrane protrusion only over a specific range of spontaneous curvature. On the other hand, high spontaneous curvature and/or high density of I-BAR proteins could lead to system instability and to non-uniform contraction in the radial direction of the membrane protrusion. In agreement with previous studies, it was also shown that the isotropic bending energy of lipids is not sufficient to explain the stability of the observed tubular membrane protrusion without actin filaments.
Collapse
Affiliation(s)
- Doron Kabaso
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia.
| | | | | | | | | | | | | |
Collapse
|
46
|
Kabaso D, Gongadze E, Jorgačevski J, Kreft M, Van Rienen U, Zorec R, Iglič A. Exploring the binding dynamics of BAR proteins. Cell Mol Biol Lett 2011; 16:398-411. [PMID: 21614490 PMCID: PMC6275656 DOI: 10.2478/s11658-011-0013-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 05/11/2011] [Indexed: 11/20/2022] Open
Abstract
We used a continuum model based on the Helfrich free energy to investigate the binding dynamics of a lipid bilayer to a BAR domain surface of a crescent-like shape of positive (e.g. I-BAR shape) or negative (e.g. F-BAR shape) intrinsic curvature. According to structural data, it has been suggested that negatively charged membrane lipids are bound to positively charged amino acids at the binding interface of BAR proteins, contributing a negative binding energy to the system free energy. In addition, the cone-like shape of negatively charged lipids on the inner side of a cell membrane might contribute a positive intrinsic curvature, facilitating the initial bending towards the crescent-like shape of the BAR domain. In the present study, we hypothesize that in the limit of a rigid BAR domain shape, the negative binding energy and the coupling between the intrinsic curvature of negatively charged lipids and the membrane curvature drive the bending of the membrane. To estimate the binding energy, the electric potential at the charged surface of a BAR domain was calculated using the Langevin-Bikerman equation. Results of numerical simulations reveal that the binding energy is important for the initial instability (i.e. bending of a membrane), while the coupling between the intrinsic shapes of lipids and membrane curvature could be crucial for the curvature-dependent aggregation of negatively charged lipids near the surface of the BAR domain. In the discussion, we suggest novel experiments using patch clamp techniques to analyze the binding dynamics of BAR proteins, as well as the possible role of BAR proteins in the fusion pore stability of exovesicles.
Collapse
Affiliation(s)
- Doron Kabaso
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000, Ljubljana, Slovenia.
| | | | | | | | | | | | | |
Collapse
|
47
|
Hasegawa J, Tokuda E, Tenno T, Tsujita K, Sawai H, Hiroaki H, Takenawa T, Itoh T. SH3YL1 regulates dorsal ruffle formation by a novel phosphoinositide-binding domain. ACTA ACUST UNITED AC 2011; 193:901-16. [PMID: 21624956 PMCID: PMC3105542 DOI: 10.1083/jcb.201012161] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Reversible interactions between cytosolic proteins and membrane lipids such as phosphoinositides play important roles in membrane morphogenesis driven by actin polymerization. In this paper, we identify a novel lipid-binding module, which we call the SYLF domain (after the SH3YL1, Ysc84p/Lsb4p, Lsb3p, and plant FYVE proteins that contain it), that is highly conserved from bacteria to mammals. SH3YL1 (SH3 domain containing Ysc84-like 1) strongly bound to phosphatidylinositol 3,4,5-triphosphate (PI(3,4,5)P(3)) and several D5-phosphorylated phosphoinositides through its SYLF domain and was localized to circular dorsal ruffles induced by platelet-derived growth factor stimulation. Interestingly, SHIP2 (the PI(3,4,5)P(3) 5-phosphatase, src-homology 2-containing inositol-5-phosphatase 2) was identified as a binding partner of SH3YL1, and knockdown of these proteins significantly suppressed dorsal ruffle formation. Phosphatidylinositol 3,4-bisphosphate (PI(3,4)P(2)), which is mainly synthesized from PI(3,4,5)P(3) by the action of SHIP2, was enriched in dorsal ruffles, and PI(3,4)P(2) synthesis strongly correlated with formation of the circular membrane structure. These results provide new insight into the molecular mechanism of dorsal ruffle formation and its regulation by phosphoinositide metabolism.
Collapse
Affiliation(s)
- Junya Hasegawa
- Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
de Kreuk BJ, Nethe M, Fernandez-Borja M, Anthony EC, Hensbergen PJ, Deelder AM, Plomann M, Hordijk PL. The F-BAR domain protein PACSIN2 associates with Rac1 and regulates cell spreading and migration. J Cell Sci 2011; 124:2375-88. [PMID: 21693584 DOI: 10.1242/jcs.080630] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Rac1 GTPase controls cytoskeletal dynamics and is a key regulator of cell spreading and migration mediated by signaling through effector proteins, such as the PAK kinases and the Scar and WAVE proteins. We previously identified a series of regulatory proteins that associate with Rac1 through its hypervariable C-terminal domain, including the Rac1 activator β-Pix (also known as Rho guanine-nucleotide-exchange factor 7) and the membrane adapter caveolin-1. Here, we show that Rac1 associates, through its C-terminus, with the F-BAR domain protein PACSIN2, an inducer of membrane tubulation and a regulator of endocytosis. We show that Rac1 localizes with PACSIN2 at intracellular tubular structures and on early endosomes. Active Rac1 induces a loss of PACSIN2-positive tubular structures. By contrast, Rac1 inhibition results in an accumulation of PACSIN2-positive tubules. In addition, PACSIN2 appears to regulate Rac1 signaling; siRNA-mediated loss of PACSIN2 increases the levels of Rac1-GTP and promotes cell spreading and migration in a wound healing assay. Moreover, ectopic expression of PACSIN2 reduces Rac1-GTP levels in a fashion that is dependent on the PACSIN2-Rac1 interaction, on the membrane-tubulating capacity of PACSIN2 and on dynamin. These data identify the BAR-domain protein PACSIN2 as a Rac1 interactor that regulates Rac1-mediated cell spreading and migration.
Collapse
Affiliation(s)
- Bart-Jan de Kreuk
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Theoretical model for cellular shapes driven by protrusive and adhesive forces. PLoS Comput Biol 2011; 7:e1001127. [PMID: 21573201 PMCID: PMC3088653 DOI: 10.1371/journal.pcbi.1001127] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 03/31/2011] [Indexed: 01/27/2023] Open
Abstract
The forces that arise from the actin cytoskeleton play a crucial role in determining the cell shape. These include protrusive forces due to actin polymerization and adhesion to the external matrix. We present here a theoretical model for the cellular shapes resulting from the feedback between the membrane shape and the forces acting on the membrane, mediated by curvature-sensitive membrane complexes of a convex shape. In previous theoretical studies we have investigated the regimes of linear instability where spontaneous formation of cellular protrusions is initiated. Here we calculate the evolution of a two dimensional cell contour beyond the linear regime and determine the final steady-state shapes arising within the model. We find that shapes driven by adhesion or by actin polymerization (lamellipodia) have very different morphologies, as observed in cells. Furthermore, we find that as the strength of the protrusive forces diminish, the system approaches a stabilization of a periodic pattern of protrusions. This result can provide an explanation for a number of puzzling experimental observations regarding cellular shape dependence on the properties of the extra-cellular matrix. Cells have highly varied and dynamic shapes, which are determined by internal forces generated by the cytoskeleton. These forces include protrusive forces due to the formation of new internal fibers and forces produced due to attachment of the cell to an external substrate. A long standing challenge is to explain how the myriad components of the cytoskeleton self-organize to form the observed shapes of cells. We present here a theoretical study of the shapes of cells that are driven only by protrusive forces of two types; one is the force due to polymerization of actin filaments which acts as an internal pressure on the membrane, and the second is the force due to adhesion between the membrane and external substrate. The key property is that both forces are localized on the cell membrane by protein complexes that have convex spontaneous curvature. This leads to a positive feedback that destabilizes the uniform cell shape and induces the spontaneous formation of patterns. We compare the resulting patterns to observed cellular shapes and find good agreement, which allows us to explain some of the puzzling dependencies of cell shapes on the properties of the surrounding matrix.
Collapse
|
50
|
Hu J, Mukhopadhyay A, Truesdell P, Chander H, Mukhopadhyay UK, Mak AS, Craig AWB. Cdc42-interacting protein 4 is a Src substrate that regulates invadopodia and invasiveness of breast tumors by promoting MT1-MMP endocytosis. J Cell Sci 2011; 124:1739-51. [PMID: 21525036 DOI: 10.1242/jcs.078014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Invadopodia are actin-rich membrane protrusions that promote extracellular matrix degradation and invasiveness of tumor cells. Src protein-tyrosine kinase is a potent inducer of invadopodia and tumor metastases. Cdc42-interacting protein 4 (CIP4) adaptor protein interacts with actin regulatory proteins and regulates endocytosis. Here, we show that CIP4 is a Src substrate that localizes to invadopodia in MDA-MB-231 breast tumor cells expressing activated Src (MDA-SrcYF). To probe the function of CIP4 in invadopodia, we established stable CIP4 knockdown in MDA-SrcYF cell lines by RNA interference. Compared with control cells, CIP4 knockdown cells degrade more extracellular matrix (ECM), have increased numbers of mature invadopodia and are more invasive through matrigel. Similar results are observed with knockdown of CIP4 in EGF-treated MDA-MB-231 cells. This inhibitory role of CIP4 is explained by our finding that CIP4 limits surface expression of transmembrane type I matrix metalloprotease (MT1-MMP), by promoting MT1-MMP internalization. Ectopic expression of CIP4 reduces ECM digestion by MDA-SrcYF cells, and this activity is enhanced by mutation of the major Src phosphorylation site in CIP4 (Y471). Overall, our results identify CIP4 as a suppressor of Src-induced invadopodia and invasion in breast tumor cells by promoting endocytosis of MT1-MMP.
Collapse
Affiliation(s)
- Jinghui Hu
- Department of Biochemistry, Queen's University, Kingston, ON K7L 3N6 Canada
| | | | | | | | | | | | | |
Collapse
|