1
|
Okubo C, Nakamura M, Sato M, Shichino Y, Mito M, Takashima Y, Iwasaki S, Takahashi K. EIF3D safeguards the homeostasis of key signaling pathways in human primed pluripotency. SCIENCE ADVANCES 2025; 11:eadq5484. [PMID: 40203091 PMCID: PMC11980838 DOI: 10.1126/sciadv.adq5484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
Although pluripotent stem cell (PSC) properties, such as differentiation and infinite proliferation, have been well documented within the frameworks of transcription factor networks, epigenomes, and signal transduction, they remain unclear and fragmented. Directing attention toward translational regulation as a bridge between these events can yield additional insights into previously unexplained mechanisms. Our functional CRISPR interference screen-based approach revealed that EIF3D, a translation initiation factor, is crucial for maintaining primed pluripotency. Loss of EIF3D disrupted the balance of pluripotency-associated signaling pathways, thereby compromising primed pluripotency. Moreover, EIF3D ensured robust proliferation by controlling the translation of various p53 regulators, which maintain low p53 activity in the undifferentiated state. In this way, EIF3D-mediated translation contributes to tuning the homeostasis of the primed pluripotency networks, ensuring the maintenance of an undifferentiated state with high proliferative potential. This study provides further insights into the translation network in maintaining pluripotency.
Collapse
Affiliation(s)
- Chikako Okubo
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Michiko Nakamura
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Masae Sato
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan
| | - Yasuhiro Takashima
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan
| | - Kazutoshi Takahashi
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| |
Collapse
|
2
|
Sozen B, Tam PPL, Pera MF. Pluripotent cell states and fates in human embryo models. Development 2025; 152:dev204565. [PMID: 40171916 PMCID: PMC11993252 DOI: 10.1242/dev.204565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Pluripotency, the capacity to generate all cells of the body, is a defining property of a transient population of epiblast cells found in pre-, peri- and post-implantation mammalian embryos. As development progresses, the epiblast cells undergo dynamic transitions in pluripotency states, concurrent with the specification of extra-embryonic and embryonic lineages. Recently, stem cell-based models of pre- and post-implantation human embryonic development have been developed using stem cells that capture key properties of the epiblast at different developmental stages. Here, we review early primate development, comparing pluripotency states of the epiblast in vivo with cultured pluripotent cells representative of these states. We consider how the pluripotency status of the starting cells influences the development of human embryo models and, in turn, what we can learn about the human pluripotent epiblast. Finally, we discuss the limitations of these models and questions arising from the pioneering studies in this emerging field.
Collapse
Affiliation(s)
- Berna Sozen
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT 06501, USA
- Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT 06501, USA
| | - Patrick P. L. Tam
- Embryology Research Unit, Children's Medical Research Institute and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Martin F. Pera
- The Jackson Laboratory, Mammalian Genetics, Bar Harbor, ME 04609, USA
| |
Collapse
|
3
|
Yi N, Wang HR, Zhu YP, Xiao T, Lin Q, Liu H, Meng YL, Sun YZ, Lin F, Hu SY, Cao HM, Zhang JF, Peng LY, Li L. RNA-binding protein SAMD4A targets FGF2 to regulate cardiomyocyte lineage specification from human embryonic stem cells. Stem Cell Res Ther 2025; 16:144. [PMID: 40102919 PMCID: PMC11921648 DOI: 10.1186/s13287-025-04269-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/06/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND RNA-binding proteins (RBPs) are essential in cardiac development. However, a large of them have not been characterized during the process. METHODS We applied the human embryonic stem cells (hESCs) differentiated into cardiomyocytes model and constructed SAMD4A-knockdown/overexpression hESCs to investigate the role of SAMD4A in cardiomyocyte lineage specification. RESULTS SAMD4A, an RBP, exhibits increased expression during early heart development. Suppression of SAMD4A inhibits the proliferation of hESCs, impedes cardiac mesoderm differentiation, and impairs the function of hESC-derived cardiomyocytes. Correspondingly, forced expression of SAMD4A enhances proliferation and promotes cardiomyogenesis. Mechanistically, SAMD4A specifically binds to FGF2 via a specific CNGG/CNGGN motif, stabilizing its mRNA and enhancing translation, thereby upregulating FGF2 expression, which subsequently modulates the AKT signaling pathway and regulates cardiomyocyte lineage differentiation. Additionally, supplementation of FGF2 can rescue the proliferation defect of hESCs in the absence of SAMD4A. CONCLUSIONS Our study demonstrates that SAMD4A orchestrates cardiomyocyte lineage commitment through the post-transcriptional regulation of FGF2 and modulation of AKT signaling. These findings not only underscore the essential role of SAMD4A in cardiac organogenesis, but also provide critical insights into the molecular mechanisms underlying heart development, thereby informing potential therapeutic strategies for congenital heart disease.
Collapse
Affiliation(s)
- Na Yi
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmias Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Stem Cell Research Center, Medical School, Tongji University, Shanghai, 200120, China
| | - Han-Rui Wang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmias Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Stem Cell Research Center, Medical School, Tongji University, Shanghai, 200120, China
| | - Yu-Ping Zhu
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmias Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Stem Cell Research Center, Medical School, Tongji University, Shanghai, 200120, China
| | - Tao Xiao
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmias Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Stem Cell Research Center, Medical School, Tongji University, Shanghai, 200120, China
| | - Qin Lin
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmias Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Stem Cell Research Center, Medical School, Tongji University, Shanghai, 200120, China
| | - Huan Liu
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmias Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Stem Cell Research Center, Medical School, Tongji University, Shanghai, 200120, China
| | - Yi-Lei Meng
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmias Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Stem Cell Research Center, Medical School, Tongji University, Shanghai, 200120, China
| | - Yi-Zhuo Sun
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmias Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Stem Cell Research Center, Medical School, Tongji University, Shanghai, 200120, China
| | - Fang Lin
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmias Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Stem Cell Research Center, Medical School, Tongji University, Shanghai, 200120, China
| | - Sang-Yu Hu
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmias Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Stem Cell Research Center, Medical School, Tongji University, Shanghai, 200120, China
| | - Hua-Ming Cao
- Department of Cardiology, Shanghai Shibei Hospital, Shanghai, 200435, China
| | - Jun-Fang Zhang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Lu-Ying Peng
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Arrhythmias Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Stem Cell Research Center, Medical School, Tongji University, Shanghai, 200120, China.
| | - Li Li
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Arrhythmias Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Stem Cell Research Center, Medical School, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
4
|
Wu B, Neupane J, Zhou Y, Zhang J, Chen Y, Surani MA, Zhang Y, Bao S, Li X. Stem cell-based embryo models: a tool to study early human development. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2741-1. [PMID: 39969747 DOI: 10.1007/s11427-024-2741-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/23/2024] [Indexed: 02/20/2025]
Abstract
How a mammalian fertilized egg acquires totipotency and develops into a full-term offspring is a fundamental scientific question. Human embryonic development is difficult to study due to limited resources, technical challenges and ethics. Moreover, the precise regulatory mechanism underlying early human embryonic development remains unknown. In recent years, the emergence of stem cell-based embryo models (SCBEM) provides the opportunity to reconstitute pre- to post-implantation development in vitro. These models to some extent mimic the embryo morphologically and transcriptionally, and thus may be used to study key events in mammalian pre- and post-implantation development. Many groups have successfully generated SCBEM of the mouse and human. Here, we provide a comparative review of the mouse and human SCBEM, discuss the capability of these models to mimic natural embryos and give a perspective on their potential future applications.
Collapse
Affiliation(s)
- Baojiang Wu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - Jitesh Neupane
- The Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Yang Zhou
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - Jingcheng Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yanglin Chen
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - M Azim Surani
- The Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| | - Siqin Bao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.
| | - Xihe Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animals, Hohhot, 011517, China.
| |
Collapse
|
5
|
Guo J, Lin R, Liu J, Liu R, Chen S, Zhang Z, Yang Y, Wang H, Wang L, Yu S, Zhou C, Xiao L, Luo R, Yu J, Zeng L, Zhang X, Li Y, Wu H, Wang T, Li Y, Kumar M, Zhu P, Liu J. Capture primed pluripotency in guinea pig. Stem Cell Reports 2025; 20:102388. [PMID: 39793577 PMCID: PMC11864139 DOI: 10.1016/j.stemcr.2024.102388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 01/13/2025] Open
Abstract
Guinea pigs are valuable models for human disease research, yet the lack of established pluripotent stem cell lines has limited their utility. In this study, we isolate and characterize guinea pig epiblast stem cells (gpEpiSCs) from post-implantation embryos. These cells differentiate into the three germ layers, maintain normal karyotypes, and rely on FGF2 and ACTIVIN A signaling for self-renewal and pluripotency. Wingless/Integrated (WNT) signaling inhibition is also essential for their maintenance. GpEpiSCs express key pluripotency markers (OCT4, SOX2, NANOG) and share transcriptional similarities with human and mouse primed stem cells. While many genes are conserved between guinea pig and human primed stem cells, transcriptional analysis also reveals species-specific differences in pluripotency-related pathways. Epigenetic analysis highlights bivalent gene regulation, underscoring their developmental potential. This work demonstrates both the evolutionary conservation and divergence of primed pluripotent stem cells, providing a new tool for biomedical research and enhancing guinea pigs' utility in studying human diseases.
Collapse
Affiliation(s)
- Jing Guo
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Runxia Lin
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China; Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jinpeng Liu
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Rongrong Liu
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Shuyan Chen
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhen Zhang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Yongzheng Yang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Haiyun Wang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Luqin Wang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Shengyong Yu
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Chunhua Zhou
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Lizhan Xiao
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Rongping Luo
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Jinjin Yu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Department of Pediatric Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Lihua Zeng
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaoli Zhang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Yusha Li
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Haokaifeng Wu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Tao Wang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yi Li
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Manish Kumar
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China.
| | - Ping Zhu
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510100, China.
| | - Jing Liu
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China.
| |
Collapse
|
6
|
Xiao Y, Wang Y, Zhang M, Zhang Y, Ju Z, Wang J, Zhang Y, Yang C, Wang X, Jiang Q, Gao Y, Wei X, Liu W, Gao Y, Hu P, Huang J. Tankyrase inhibitor IWR-1 modulates HIPPO and Transforming Growth Factor β signaling in primed bovine embryonic stem cells cultured on mouse embryonic fibroblasts. Theriogenology 2025; 233:100-111. [PMID: 39613494 DOI: 10.1016/j.theriogenology.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/17/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024]
Abstract
The use of tankyrase inhibitors is essential for capturing livestock embryonic stem cells (ESC), yet their mechanisms of action remain largely uncharacterized. Previous studies indicate that their roles extend beyond the suppression of canonical WNT signaling. This study investigates the effects of the tankyrase inhibitor IWR-1 on maintaining the pluripotency of bovine embryonic stem cells (bESC) cultured on mitotically inactivated mouse embryonic fibroblasts (MEF). Notably, bESC exhibited significant differentiation after one month of IWR-1 withdrawal, without a clear bias toward any specific germ layer. IWR-1 effectively inhibited TNKS2 activity in bESC, whereas it suppressed TNKS1 protein level in growth-arrested MEF. Early differentiation upon IWR-1 removal induced more substantial transcriptomic changes in MEF than in bESC. Furthermore, cell communication analysis predicted that IWR-1 influenced several paracrine and autocrine signals within the culture system. We also observed that IWR-1 repressed protein abundance of the HIPPO pathway components including TEAD4 and YAP1 in bESC and decreased transcription of HIPPO targeted genes CYR61. Protein analysis in growth-arrested MEF suggested that IWR-1 modulated MEF function by impeding TGF-β1 activation and activin A secretion which mitigated nuclear localization of SMAD2/3 in the bESC. This study underscores the role of tankyrase inhibitors in ESC self-renewal by modulating key signaling pathways and orchestrating cell-cell interactions, which may be meaningful in understanding the delicate signaling control of pluripotency in livestock and improving the culture system.
Collapse
Affiliation(s)
- Yao Xiao
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Jinan, 250100, China
| | - Yujie Wang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; College of Life Sciences, Shandong Normal University, Jinan, 250358, China
| | - Minghao Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yan Zhang
- Key Laboratory of Efficient Dairy Cattle Propagation and Germplasm Innovation of Ministry of Agriculture and Rural Affairs, Shandong OX Livestock Breeding Co., Ltd, Jinan, 250100, China
| | - Zhihua Ju
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Jinpeng Wang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yaran Zhang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Chunhong Yang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xiuge Wang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Qiang Jiang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yaping Gao
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xiaochao Wei
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Wenhao Liu
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Jinan, 250100, China
| | - Yundong Gao
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Jinan, 250100, China; Key Laboratory of Efficient Dairy Cattle Propagation and Germplasm Innovation of Ministry of Agriculture and Rural Affairs, Shandong OX Livestock Breeding Co., Ltd, Jinan, 250100, China
| | - Peng Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinming Huang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Jinan, 250100, China; College of Life Sciences, Shandong Normal University, Jinan, 250358, China.
| |
Collapse
|
7
|
Brumm AS, McCarthy A, Gerri C, Fallesen T, Woods L, McMahon R, Papathanasiou A, Elder K, Snell P, Christie L, Garcia P, Shaikly V, Taranissi M, Serhal P, Odia RA, Vasilic M, Osnato A, Rugg-Gunn PJ, Vallier L, Hill CS, Niakan KK. Initiation and maintenance of the pluripotent epiblast in pre-implantation human development is independent of NODAL signaling. Dev Cell 2025; 60:174-185.e5. [PMID: 39561779 DOI: 10.1016/j.devcel.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/05/2024] [Accepted: 10/25/2024] [Indexed: 11/21/2024]
Abstract
The human blastocyst contains the pluripotent epiblast from which human embryonic stem cells (hESCs) can be derived. ACTIVIN/NODAL signaling maintains expression of the transcription factor NANOG and in vitro propagation of hESCs. It is unknown whether this reflects a functional requirement for epiblast development in human embryos. Here, we characterized NODAL signaling activity during pre-implantation human development. We showed that NANOG is an early molecular marker restricted to the nascent human pluripotent epiblast and was initiated prior to the onset of NODAL signaling. We further demonstrated that expression of pluripotency-associated transcription factors NANOG, SOX2, OCT4, and KLF17 were maintained in the epiblast in the absence of NODAL signaling activity. Genome-wide transcriptional analysis showed that NODAL signaling inhibition did not decrease NANOG transcription or impact the wider pluripotency-associated gene regulatory network. These data suggest differences in the signaling requirements regulating pluripotency in the pre-implantation human epiblast compared with existing hESC culture.
Collapse
Affiliation(s)
- A Sophie Brumm
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Afshan McCarthy
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Claudia Gerri
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Todd Fallesen
- Crick Advanced Light Microscopy, The Francis Crick Institute, London NW1 1AT, UK
| | - Laura Woods
- Loke Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Riley McMahon
- Loke Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | | | - Kay Elder
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | - Phil Snell
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | | | - Patricia Garcia
- Assisted Reproduction and Gynaecology Centre, London W1G 6LP, UK
| | - Valerie Shaikly
- Assisted Reproduction and Gynaecology Centre, London W1G 6LP, UK
| | | | - Paul Serhal
- Centre for Reproductive and Genetic Health, London W1W 5QS, UK
| | - Rabi A Odia
- Centre for Reproductive and Genetic Health, London W1W 5QS, UK
| | - Mina Vasilic
- Centre for Reproductive and Genetic Health, London W1W 5QS, UK
| | - Anna Osnato
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK; Department of Development and Regeneration, University of Leuven, Leuven 3000, Belgium
| | - Peter J Rugg-Gunn
- Loke Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Kathy K Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Loke Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK.
| |
Collapse
|
8
|
Syangtan D, Al Mahbuba D, Masuko S, Li Q, Elton AC, Zaltsman Y, Wrighton PJ, Xia K, Han X, Ouyang Y, Zhang F, Linhardt RJ, Kiessling LL. Heparan sulfate regulates the fate decisions of human pluripotent stem cells. Stem Cell Reports 2025; 20:102384. [PMID: 39729990 PMCID: PMC11784485 DOI: 10.1016/j.stemcr.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/29/2024] Open
Abstract
Heparan sulfate (HS) is an anionic polysaccharide generated by all animal cells, but our understanding of its roles in human pluripotent stem cell (hPSC) self-renewal and differentiation is limited. We derived HS-deficient hPSCs by disrupting the EXT1 glycosyltransferase. These EXT1-/- hPSCs maintain self-renewal and pluripotency under standard culture conditions that contain high levels of basic fibroblast growth factor(bFGF), a requirement for sufficient bFGF signaling in the engineered cells. Intriguingly, Activin/Nodal signaling is also compromised in EXT1-/- hPSCs, highlighting HS's previously unexplored involvement in this pathway. As a result, EXT1-/- hPSCs fail to differentiate into mesoderm or endoderm lineages. Unexpectedly, HS is dispensable for early ectodermal differentiation of hPSCs but still critical in generating motor neurons. Those derived from HS-deficient hPSCs lack proper neuronal projections and show alterations in axonogenesis gene expression. Thus, our study uncovers expected and unexpected mechanistic roles of HS in hPSC fate decisions.
Collapse
Affiliation(s)
- Deepsing Syangtan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Deena Al Mahbuba
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Sayaka Masuko
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Qiao Li
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Andrew C Elton
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Yefim Zaltsman
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Paul J Wrighton
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Ke Xia
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, 110 8th St., Troy, NY 12180, USA
| | - Xiaorui Han
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, 110 8th St., Troy, NY 12180, USA
| | - Yilan Ouyang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, 110 8th St., Troy, NY 12180, USA
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, 110 8th St., Troy, NY 12180, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, 110 8th St., Troy, NY 12180, USA
| | - Laura L Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA; Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research at MIT, 500 Main St, Cambridge, MA 02142, USA.
| |
Collapse
|
9
|
Winek E, Wolińska-Nizioł L, Szczepańska K, Szpakowska A, Gewartowska O, Wysocka I, Grzesiak M, Suwińska A. Zygotic activin A is dispensable for the mouse preimplantation embryo development and for the derivation and pluripotency of embryonic stem cells†. Biol Reprod 2025; 112:31-45. [PMID: 39504567 PMCID: PMC11736436 DOI: 10.1093/biolre/ioae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/30/2024] [Accepted: 11/05/2024] [Indexed: 11/08/2024] Open
Abstract
In this work, we aimed to determine the role of activin A during crucial events of mouse embryogenesis and distinguish the function of the protein of zygotic origin and the one secreted by the maternal reproductive tract. To this end, we recorded the progression of development and phenotype of Inhba knockout embryos and compared them with the heterozygotes and wild-type embryos using time-lapse imaging and detection of lineage-specific markers. We revealed that the zygotic activin A deficiency does not impair the course and rate of development of embryos to the blastocyst stage. Inhba knockout embryos form functional epiblast, as evidenced by their ability to give rise to embryonic stem cells. Our study is the first to show that derivation, maintenance in culture, and pluripotency of embryo-derived embryonic stem cells are exogenous and endogenous activin A independent. However, the implantation competence of activin A-deficient embryos may be compromised as indicated in the outgrowth assay.
Collapse
Affiliation(s)
- Eliza Winek
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Lidia Wolińska-Nizioł
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Katarzyna Szczepańska
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Anna Szpakowska
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Olga Gewartowska
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Izabela Wysocka
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Grzesiak
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Aneta Suwińska
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
10
|
Smith A. Propagating pluripotency - The conundrum of self-renewal. Bioessays 2024; 46:e2400108. [PMID: 39180242 PMCID: PMC11589686 DOI: 10.1002/bies.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024]
Abstract
The discovery of mouse embryonic stem cells in 1981 transformed research in mammalian developmental biology and functional genomics. The subsequent generation of human pluripotent stem cells (PSCs) and the development of molecular reprogramming have opened unheralded avenues for drug discovery and cell replacement therapy. Here, I review the history of PSCs from the perspective that long-term self-renewal is a product of the in vitro signaling environment, rather than an intrinsic feature of embryos. I discuss the relationship between pluripotent states captured in vitro to stages of epiblast in the embryo and suggest key considerations for evaluation of PSCs. A remaining fundamental challenge is to determine whether naïve pluripotency can be propagated from the broad range of mammals by exploiting common principles in gene regulatory architecture.
Collapse
Affiliation(s)
- Austin Smith
- Living Systems InstituteUniversity of ExeterExeterUK
| |
Collapse
|
11
|
Ren W, Wu J, Lu X, Zheng D, Liu G, Wu G, Peng Y, Jin K, Li G, Han W, Cui XS, Chen G, Li B, Niu YJ. Influence and Optimization of Diverse Culture Systems on Chicken Embryonic Stem Cell Culture. Genes (Basel) 2024; 15:1400. [PMID: 39596599 PMCID: PMC11594110 DOI: 10.3390/genes15111400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The importance of embryonic stem cells (ESCs) in chickens is undeniable, as they can be applied across various fields, including animal modeling, developmental biology, cell fate research, drug screening, toxicity testing, and gene function studies. However, a widely applicable culture system for chicken ESCs has yet to be developed. OBJECTIVES This study aimed to investigate the effects of different culture systems on the derivation and maintenance of chicken ESCs, with a focus on optimizing the selected culture conditions. METHODS To achieve this, we tested the effectiveness of various species-specific ESC media in the derivation and culture of chicken PGCs, while incorporating different small molecule compounds to optimize the process. The pluripotency and differentiation potential of the resulting ESC-like cells were also evaluated. RESULTS The combination of PD0325901, SB431542, and LIF (R2i+LIF system) was found to be effective in generating chicken ESC-like clones. Further experiments showed that enhancing the R2i+LIF system with cytokines such as SCF and FGF2 significantly extended the culture period and increased the passage number of chicken ESC-like cells. These ESC-like cells were characterized through positive alkaline phosphatase staining and the expression of pluripotency markers POUV, NANOG, and SOX2. Additionally, differentiation assays confirmed their ability to form the three germ layers. CONCLUSIONS The newly developed culture system provides suitable conditions for the short-term culture of chicken ESCs. However, further optimization is required to establish a system that can sustain long-term maintenance.
Collapse
Affiliation(s)
- Wenjie Ren
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jun Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaohang Lu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Dan Zheng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guangzheng Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Gaoyuan Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yixiu Peng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kai Jin
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Guohui Li
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| | - Wei Han
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Bichun Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Ying-Jie Niu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
12
|
Shahbazi MN, Pasque V. Early human development and stem cell-based human embryo models. Cell Stem Cell 2024; 31:1398-1418. [PMID: 39366361 PMCID: PMC7617107 DOI: 10.1016/j.stem.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/18/2024] [Accepted: 09/02/2024] [Indexed: 10/06/2024]
Abstract
The use of stem cells to model the early human embryo promises to transform our understanding of developmental biology and human reproduction. In this review, we present our current knowledge of the first 2 weeks of human embryo development. We first focus on the distinct cell lineages of the embryo and the derivation of stem cell lines. We then discuss the intercellular crosstalk that guides early embryo development and how this crosstalk is recapitulated in vitro to generate stem cell-based embryo models. We highlight advances in this fast-developing field, discuss current limitations, and provide a vision for the future.
Collapse
Affiliation(s)
| | - Vincent Pasque
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; Leuven Stem Cell Institute & Leuven Institute for Single-Cell Omics (LISCO), Leuven, Belgium.
| |
Collapse
|
13
|
Seo BG, Lee IW, Kim HJ, Lee YJ, Kim O, Lee JH, Lee JH, Hwangbo C. Angiogenic properties and intercellular communication of differentiated porcine endothelial cells in vascular therapy. Sci Rep 2024; 14:22844. [PMID: 39354086 PMCID: PMC11445381 DOI: 10.1038/s41598-024-73584-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
Endothelial cell dysfunction can lead to various vascular diseases. Blood flow disorder is a common symptom of vascular diseases. Regenerative angiogenesis, which involves transplanting vascular cells or stem cells into the body to shape new vasculature, can be a good therapeutic strategy. However, there are several limitations to using autologous cells from the patients themselves. We sought to investigate the new vascular cells that can play a role in the formation of angiogenesis in vivo using stem cells from alternative animals suitable for cellular therapy. Porcine is an optimal animal model for xenotransplantation owing to its physiological similarity to humans. We used differentiated porcine endothelial cells (pECs) as a therapeutic strategy to restore vessel function. Differentiated pECs formed vessel-like structures in mice, distinguishing them from stem cells. MMPs activity and migration assays indicated that differentiated pECs possessed angiogenic potential. Tube formation and 3D spheroid sprouting assays further confirmed the angiogenic phenotype of the differentiated pECs. Immunofluorescence and immunoprecipitation analyses revealed claudin-mediated tight junctions and connexin 43-mediated gap junctions between human ECs and differentiated pECs. Additionally, the movement of small RNA from human ECs to differentiated pECs was observed under co-culture conditions. Our findings demonstrated the in vivo viability and angiogenetic potential of differentiated pECs and highlighted the potential for intercellular communication between human and porcine ECs. These results suggest that transplanted cells in vascular regeneration completed after cell therapy have the potential to achieve intercellular communication within the body.
Collapse
Affiliation(s)
- Bo-Gyeong Seo
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - In-Won Lee
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Department of Animal Bioscience, College of Agriculture & Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyo-Jin Kim
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Yeon-Ji Lee
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Department of Animal Bioscience, College of Agriculture & Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Okhwa Kim
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Joon-Hee Lee
- Department of Animal Bioscience, College of Agriculture & Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
- Institute of Agriculture and Life Science, College of Agriculture & Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Jeong-Hyung Lee
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea.
- Department of Biochemistry (BK21 Four), College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea.
| | - Cheol Hwangbo
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
14
|
Youssef KK, Nieto MA. Epithelial-mesenchymal transition in tissue repair and degeneration. Nat Rev Mol Cell Biol 2024; 25:720-739. [PMID: 38684869 DOI: 10.1038/s41580-024-00733-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Epithelial-mesenchymal transitions (EMTs) are the epitome of cell plasticity in embryonic development and cancer; during EMT, epithelial cells undergo dramatic phenotypic changes and become able to migrate to form different tissues or give rise to metastases, respectively. The importance of EMTs in other contexts, such as tissue repair and fibrosis in the adult, has become increasingly recognized and studied. In this Review, we discuss the function of EMT in the adult after tissue damage and compare features of embryonic and adult EMT. Whereas sustained EMT leads to adult tissue degeneration, fibrosis and organ failure, its transient activation, which confers phenotypic and functional plasticity on somatic cells, promotes tissue repair after damage. Understanding the mechanisms and temporal regulation of different EMTs provides insight into how some tissues heal and has the potential to open new therapeutic avenues to promote repair or regeneration of tissue damage that is currently irreversible. We also discuss therapeutic strategies that modulate EMT that hold clinical promise in ameliorating fibrosis, and how precise EMT activation could be harnessed to enhance tissue repair.
Collapse
Affiliation(s)
| | - M Angela Nieto
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d'Alacant, Spain.
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain.
| |
Collapse
|
15
|
Lewis PA, Silajdžić E, Smith H, Bates N, Smith CA, Mancini FE, Knight D, Denning C, Brison DR, Kimber SJ. A secreted proteomic footprint for stem cell pluripotency. PLoS One 2024; 19:e0299365. [PMID: 38875182 PMCID: PMC11178176 DOI: 10.1371/journal.pone.0299365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 02/08/2024] [Indexed: 06/16/2024] Open
Abstract
With a view to developing a much-needed non-invasive method for monitoring the healthy pluripotent state of human stem cells in culture, we undertook proteomic analysis of the waste medium from cultured embryonic (Man-13) and induced (Rebl.PAT) human pluripotent stem cells (hPSCs). Cells were grown in E8 medium to maintain pluripotency, and then transferred to FGF2 and TGFβ deficient E6 media for 48 hours to replicate an early, undirected dissolution of pluripotency. We identified a distinct proteomic footprint associated with early loss of pluripotency in both hPSC lines, and a strong correlation with changes in the transcriptome. We demonstrate that multiplexing of four E8- against four E6- enriched secretome biomarkers provides a robust, diagnostic metric for the pluripotent state. These biomarkers were further confirmed by Western blotting which demonstrated consistent correlation with the pluripotent state across cell lines, and in response to a recovery assay.
Collapse
Affiliation(s)
- Philip A. Lewis
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Edina Silajdžić
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Helen Smith
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Nicola Bates
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Christopher A. Smith
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Fabrizio E. Mancini
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - David Knight
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Chris Denning
- Biodiscovery Institute, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Daniel R. Brison
- Royal Manchester Children’s Hospital, Manchester, United Kingdom
| | - Susan J. Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
16
|
Yang S, Golkaram M, Oh S, Oh Y, Cho Y, Yoe J, Ju S, Lalli MA, Park SY, Lee Y, Jang J. ETV4 is a mechanical transducer linking cell crowding dynamics to lineage specification. Nat Cell Biol 2024; 26:903-916. [PMID: 38702503 PMCID: PMC11178500 DOI: 10.1038/s41556-024-01415-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/03/2024] [Indexed: 05/06/2024]
Abstract
Dynamic changes in mechanical microenvironments, such as cell crowding, regulate lineage fates as well as cell proliferation. Although regulatory mechanisms for contact inhibition of proliferation have been extensively studied, it remains unclear how cell crowding induces lineage specification. Here we found that a well-known oncogene, ETS variant transcription factor 4 (ETV4), serves as a molecular transducer that links mechanical microenvironments and gene expression. In a growing epithelium of human embryonic stem cells, cell crowding dynamics is translated into ETV4 expression, serving as a pre-pattern for future lineage fates. A switch-like ETV4 inactivation by cell crowding derepresses the potential for neuroectoderm differentiation in human embryonic stem cell epithelia. Mechanistically, cell crowding inactivates the integrin-actomyosin pathway and blocks the endocytosis of fibroblast growth factor receptors (FGFRs). The disrupted FGFR endocytosis induces a marked decrease in ETV4 protein stability through ERK inactivation. Mathematical modelling demonstrates that the dynamics of cell density in a growing human embryonic stem cell epithelium precisely determines the spatiotemporal ETV4 expression pattern and, consequently, the timing and geometry of lineage development. Our findings suggest that cell crowding dynamics in a stem cell epithelium drives spatiotemporal lineage specification using ETV4 as a key mechanical transducer.
Collapse
Affiliation(s)
- Seungbok Yang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Mahdi Golkaram
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Seyoun Oh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yujeong Oh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yoonjae Cho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jeehyun Yoe
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sungeun Ju
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Matthew A Lalli
- Seaver Autism Center for Research and Treatment at Mount Sinai, New York, NY, USA
| | - Seung-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jiwon Jang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.
| |
Collapse
|
17
|
Zhang C, Shan Y, Lin H, Zhang Y, Xing Q, Zhu J, Zhou T, Lin A, Chen Q, Wang J, Pan G. HBO1 determines SMAD action in pluripotency and mesendoderm specification. Nucleic Acids Res 2024; 52:4935-4949. [PMID: 38421638 PMCID: PMC11109972 DOI: 10.1093/nar/gkae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/11/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
TGF-β signaling family plays an essential role to regulate fate decisions in pluripotency and lineage specification. How the action of TGF-β family signaling is intrinsically executed remains not fully elucidated. Here, we show that HBO1, a MYST histone acetyltransferase (HAT) is an essential cell intrinsic determinant for TGF-β signaling in human embryonic stem cells (hESCs). HBO1-/- hESCs fail to response to TGF-β signaling to maintain pluripotency and spontaneously differentiate into neuroectoderm. Moreover, HBO1 deficient hESCs show complete defect in mesendoderm specification in BMP4-triggered gastruloids or teratomas. Molecularly, HBO1 interacts with SMAD4 and co-binds the open chromatin labeled by H3K14ac and H3K4me3 in undifferentiated hESCs. Upon differentiation, HBO1/SMAD4 co-bind and maintain the mesoderm genes in BMP4-triggered mesoderm cells while lose chromatin occupancy in neural cells induced by dual-SMAD inhibition. Our data reveal an essential role of HBO1, a chromatin factor to determine the action of SMAD in both human pluripotency and mesendoderm specification.
Collapse
Affiliation(s)
- Cong Zhang
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530,China; Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Cell Therapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
| | - Yongli Shan
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530,China; Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Cell Therapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
| | - Huaisong Lin
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530,China; Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Cell Therapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
| | - Yanqi Zhang
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530,China; Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Cell Therapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
| | - Qi Xing
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530,China; Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Cell Therapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
| | - Jinmin Zhu
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530,China; Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Cell Therapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
| | - Tiancheng Zhou
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530,China; Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Cell Therapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
| | - Aiping Lin
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530,China; Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Cell Therapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
| | - Qianyu Chen
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530,China; Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Cell Therapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
| | - Junwei Wang
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530,China; Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Cell Therapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
| | - Guangjin Pan
- Key Laboratory of Immune Response and Immunotherapy, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530,China; Guangzhou Medical University, Guangzhou 511436, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Cell Therapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, China
| |
Collapse
|
18
|
Chen Y, Kuang J, Niu Y, Zhu H, Chen X, So KF, Xu A, Shi L. Multiple factors to assist human-derived induced pluripotent stem cells to efficiently differentiate into midbrain dopaminergic neurons. Neural Regen Res 2024; 19:908-914. [PMID: 37843228 PMCID: PMC10664128 DOI: 10.4103/1673-5374.378203] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/04/2023] [Accepted: 06/03/2023] [Indexed: 10/17/2023] Open
Abstract
Midbrain dopaminergic neurons play an important role in the etiology of neurodevelopmental and neurodegenerative diseases. They also represent a potential source of transplanted cells for therapeutic applications. In vitro differentiation of functional midbrain dopaminergic neurons provides an accessible platform to study midbrain neuronal dysfunction and can be used to examine obstacles to dopaminergic neuronal development. Emerging evidence and impressive advances in human induced pluripotent stem cells, with tuned neural induction and differentiation protocols, makes the production of induced pluripotent stem cell-derived dopaminergic neurons feasible. Using SB431542 and dorsomorphin dual inhibitor in an induced pluripotent stem cell-derived neural induction protocol, we obtained multiple subtypes of neurons, including 20% tyrosine hydroxylase-positive dopaminergic neurons. To obtain more dopaminergic neurons, we next added sonic hedgehog (SHH) and fibroblast growth factor 8 (FGF8) on day 8 of induction. This increased the proportion of dopaminergic neurons, up to 75% tyrosine hydroxylase-positive neurons, with 15% tyrosine hydroxylase and forkhead box protein A2 (FOXA2) co-expressing neurons. We further optimized the induction protocol by applying the small molecule inhibitor, CHIR99021 (CHIR).This helped facilitate the generation of midbrain dopaminergic neurons, and we obtained 31-74% midbrain dopaminergic neurons based on tyrosine hydroxylase and FOXA2 staining. Thus, we have established three induction protocols for dopaminergic neurons. Based on tyrosine hydroxylase and FOXA2 immunostaining analysis, the CHIR, SHH, and FGF8 combined protocol produces a much higher proportion of midbrain dopaminergic neurons, which could be an ideal resource for tackling midbrain-related diseases.
Collapse
Affiliation(s)
- Yalan Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Junxin Kuang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province, China
| | - Yimei Niu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Hongyao Zhu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Xiaoxia Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Anding Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province, China
| | - Lingling Shi
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
- Department of Psychiatry, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
19
|
Virdi JK, Pethe P. Human embryonic stem cells maintain their stemness in three-dimensional microenvironment. In Vitro Cell Dev Biol Anim 2024; 60:215-221. [PMID: 38438603 DOI: 10.1007/s11626-024-00868-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/05/2024] [Indexed: 03/06/2024]
Affiliation(s)
- Jasmeet Kaur Virdi
- NMIMS Sunandan Divatia School of Science, SVKM's NMIMS (deemed to-be) University, Mumbai, India
| | - Prasad Pethe
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India.
| |
Collapse
|
20
|
Tarapongpun T, Onlamoon N, Tabu K, Chuthapisith S, Taga T. The optimized priming effect of FGF-1 and FGF-2 enhances preadipocyte lineage commitment in human adipose-derived mesenchymal stem cells. Genes Cells 2024; 29:231-253. [PMID: 38253356 DOI: 10.1111/gtc.13095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
The cell-assisted lipotransfer technique, integrating adipose-derived mesenchymal stem cells (ADMSCs), has transformed lipofilling, enhancing fat graft viability. However, the multipotent nature of ADMSCs poses challenges. To improve safety and graft vitality and to reduce unwanted lineage differentiation, this study refines the methodology by priming ADMSCs into preadipocytes-unipotent, self-renewing cells. We explored the impact of fibroblast growth factor-1 (FGF-1), fibroblast growth factor-2 (FGF-2), and epidermal growth factor (EGF), either alone or in combination, on primary human ADMSCs during the proliferative phase. FGF-2 emerged as a robust stimulator of cell proliferation, preserving stemness markers, especially when combined with EGF. Conversely, FGF-1, while not significantly affecting cell growth, influenced cell morphology, transitioning cells to a rounded shape with reduced CD34 expression. Furthermore, co-priming with FGF-1 and FGF-2 enhanced adipogenic potential, limiting osteogenic and chondrogenic tendencies, and possibly promoting preadipocyte commitment. These preadipocytes exhibited unique features: rounded morphology, reduced CD34, decreased preadipocyte factor 1 (Pref-1), and elevated C/EBPα and PPARγ, alongside sustained stemness markers (CD73, CD90, CD105). Mechanistically, FGF-1 and FGF-2 activated key adipogenic transcription factors-C/EBPα and PPARγ-while inhibiting GATA3 and Notch3, which are adipogenesis inhibitors. These findings hold the potential to advance innovative strategies for ADMSC-mediated lipofilling procedures.
Collapse
Affiliation(s)
- Tanakorn Tarapongpun
- Division of Head Neck and Breast Surgery, Faculty of Medicine Siriraj Hospital, Department of Surgery, Mahidol University, Bangkok, Thailand
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nattawat Onlamoon
- Department of Research, Faculty of Medicine Siriraj Hospital, Siriraj Research Group in Immunobiology and Therapeutic Sciences, Mahidol University, Bangkok, Thailand
| | - Kouichi Tabu
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Suebwong Chuthapisith
- Division of Head Neck and Breast Surgery, Faculty of Medicine Siriraj Hospital, Department of Surgery, Mahidol University, Bangkok, Thailand
| | - Tetsuya Taga
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
21
|
Johnson BB, Cosson MV, Tsansizi LI, Holmes TL, Gilmore T, Hampton K, Song OR, Vo NTN, Nasir A, Chabronova A, Denning C, Peffers MJ, Merry CLR, Whitelock J, Troeberg L, Rushworth SA, Bernardo AS, Smith JGW. Perlecan (HSPG2) promotes structural, contractile, and metabolic development of human cardiomyocytes. Cell Rep 2024; 43:113668. [PMID: 38198277 DOI: 10.1016/j.celrep.2023.113668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/01/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Perlecan (HSPG2), a heparan sulfate proteoglycan similar to agrin, is key for extracellular matrix (ECM) maturation and stabilization. Although crucial for cardiac development, its role remains elusive. We show that perlecan expression increases as cardiomyocytes mature in vivo and during human pluripotent stem cell differentiation to cardiomyocytes (hPSC-CMs). Perlecan-haploinsuffient hPSCs (HSPG2+/-) differentiate efficiently, but late-stage CMs have structural, contractile, metabolic, and ECM gene dysregulation. In keeping with this, late-stage HSPG2+/- hPSC-CMs have immature features, including reduced ⍺-actinin expression and increased glycolytic metabolism and proliferation. Moreover, perlecan-haploinsuffient engineered heart tissues have reduced tissue thickness and force generation. Conversely, hPSC-CMs grown on a perlecan-peptide substrate are enlarged and display increased nucleation, typical of hypertrophic growth. Together, perlecan appears to play the opposite role of agrin, promoting cellular maturation rather than hyperplasia and proliferation. Perlecan signaling is likely mediated via its binding to the dystroglycan complex. Targeting perlecan-dependent signaling may help reverse the phenotypic switch common to heart failure.
Collapse
Affiliation(s)
- Benjamin B Johnson
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Marie-Victoire Cosson
- The Francis Crick Institute, London NW1 1AT, UK; NHLI, Imperial College London, London, UK
| | - Lorenza I Tsansizi
- The Francis Crick Institute, London NW1 1AT, UK; NHLI, Imperial College London, London, UK
| | - Terri L Holmes
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | | | - Katherine Hampton
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Ok-Ryul Song
- The Francis Crick Institute, London NW1 1AT, UK; High-Throughput Screening Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Nguyen T N Vo
- School of Medicine, Regenerating and Modelling Tissues, Biodiscovery Institute, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Aishah Nasir
- School of Medicine, Regenerating and Modelling Tissues, Biodiscovery Institute, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alzbeta Chabronova
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Chris Denning
- School of Medicine, Regenerating and Modelling Tissues, Biodiscovery Institute, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Mandy J Peffers
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Catherine L R Merry
- School of Medicine, Regenerating and Modelling Tissues, Biodiscovery Institute, University Park, University of Nottingham, Nottingham NG7 2RD, UK; Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - John Whitelock
- School of Medicine, Regenerating and Modelling Tissues, Biodiscovery Institute, University Park, University of Nottingham, Nottingham NG7 2RD, UK; Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Linda Troeberg
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Stuart A Rushworth
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Andreia S Bernardo
- The Francis Crick Institute, London NW1 1AT, UK; NHLI, Imperial College London, London, UK.
| | - James G W Smith
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK.
| |
Collapse
|
22
|
Wang X, Song C, Ye Y, Gu Y, Li X, Chen P, Leng D, Xiao J, Wu H, Xie S, Liu W, Zhao Q, Chen D, Chen X, Wu Q, Chen G, Zhang W. BRD9-mediated control of the TGF-β/Activin/Nodal pathway regulates self-renewal and differentiation of human embryonic stem cells and progression of cancer cells. Nucleic Acids Res 2023; 51:11634-11651. [PMID: 37870468 PMCID: PMC10681724 DOI: 10.1093/nar/gkad907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023] Open
Abstract
Bromodomain-containing protein 9 (BRD9) is a specific subunit of the non-canonical SWI/SNF (ncBAF) chromatin-remodeling complex, whose function in human embryonic stem cells (hESCs) remains unclear. Here, we demonstrate that impaired BRD9 function reduces the self-renewal capacity of hESCs and alters their differentiation potential. Specifically, BRD9 depletion inhibits meso-endoderm differentiation while promoting neural ectoderm differentiation. Notably, supplementation of NODAL, TGF-β, Activin A or WNT3A rescues the differentiation defects caused by BRD9 loss. Mechanistically, BRD9 forms a complex with BRD4, SMAD2/3, β-CATENIN and P300, which regulates the expression of pluripotency genes and the activity of TGF-β/Nodal/Activin and Wnt signaling pathways. This is achieved by regulating the deposition of H3K27ac on associated genes, thus maintaining and directing hESC differentiation. BRD9-mediated regulation of the TGF-β/Activin/Nodal pathway is also demonstrated in the development of pancreatic and breast cancer cells. In summary, our study highlights the crucial role of BRD9 in the regulation of hESC self-renewal and differentiation, as well as its participation in the progression of pancreatic and breast cancers.
Collapse
Affiliation(s)
- Xuepeng Wang
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China
| | - Chengcheng Song
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Ying Ye
- Medical College of Soochow University, Suzhou 215123, China
| | - Yashi Gu
- Zhejiang University–University of Edinburgh Institute (ZJE), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Xuemei Li
- Peninsula Cancer Research Center, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Peixin Chen
- Medical College of Soochow University, Suzhou 215123, China
| | - Dongliang Leng
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Jing Xiao
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Hao Wu
- Medical College of Soochow University, Suzhou 215123, China
| | - Sisi Xie
- Zhejiang University–University of Edinburgh Institute (ZJE), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Weiwei Liu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Qi Zhao
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Di Chen
- Zhejiang University–University of Edinburgh Institute (ZJE), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Xi Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen 518000, China
| | - Qiang Wu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China
- The Precision Regenerative Medicine Centre, Macau University of Science and Technology, Taipa, Macao SAR 999078, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Wensheng Zhang
- Medical College of Soochow University, Suzhou 215123, China
- Peninsula Cancer Research Center, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| |
Collapse
|
23
|
Ninfali C, Siles L, Esteve-Codina A, Postigo A. The mesodermal and myogenic specification of hESCs depend on ZEB1 and are inhibited by ZEB2. Cell Rep 2023; 42:113222. [PMID: 37819755 DOI: 10.1016/j.celrep.2023.113222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/02/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
Human embryonic stem cells (hESCs) can differentiate into any cell lineage. Here, we report that ZEB1 and ZEB2 promote and inhibit mesodermal-to-myogenic specification of hESCs, respectively. Knockdown and/or overexpression experiments of ZEB1, ZEB2, or PAX7 in hESCs indicate that ZEB1 is required for hESC Nodal/Activin-mediated mesodermal specification and PAX7+ human myogenic progenitor (hMuP) generation, while ZEB2 inhibits these processes. ZEB1 downregulation induces neural markers, while ZEB2 downregulation induces mesodermal/myogenic markers. Mechanistically, ZEB1 binds to and transcriptionally activates the PAX7 promoter, while ZEB2 binds to and activates the promoter of the neural OTX2 marker. Transplanting ZEB1 or ZEB2 knocked down hMuPs into the muscles of a muscular dystrophy mouse model, showing that hMuP engraftment and generation of dystrophin-positive myofibers depend on ZEB1 and are inhibited by ZEB2. The mouse model results suggest that ZEB1 expression and/or downregulating ZEB2 in hESCs may also enhance hESC regenerative capacity for human muscular dystrophy therapy.
Collapse
Affiliation(s)
- Chiara Ninfali
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036 Barcelona, Spain
| | - Laura Siles
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036 Barcelona, Spain
| | | | - Antonio Postigo
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036 Barcelona, Spain; Molecular Targets Program, J.G. Brown Center, Louisville University Healthcare Campus, Louisville, KY 40202, USA; ICREA, 08010 Barcelona, Spain.
| |
Collapse
|
24
|
Martin-Vega A, Cobb MH. Navigating the ERK1/2 MAPK Cascade. Biomolecules 2023; 13:1555. [PMID: 37892237 PMCID: PMC10605237 DOI: 10.3390/biom13101555] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The RAS-ERK pathway is a fundamental signaling cascade crucial for many biological processes including proliferation, cell cycle control, growth, and survival; common across all cell types. Notably, ERK1/2 are implicated in specific processes in a context-dependent manner as in stem cells and pancreatic β-cells. Alterations in the different components of this cascade result in dysregulation of the effector kinases ERK1/2 which communicate with hundreds of substrates. Aberrant activation of the pathway contributes to a range of disorders, including cancer. This review provides an overview of the structure, activation, regulation, and mutational frequency of the different tiers of the cascade; with a particular focus on ERK1/2. We highlight the importance of scaffold proteins that contribute to kinase localization and coordinate interaction dynamics of the kinases with substrates, activators, and inhibitors. Additionally, we explore innovative therapeutic approaches emphasizing promising avenues in this field.
Collapse
Affiliation(s)
- Ana Martin-Vega
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA;
| | - Melanie H. Cobb
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA;
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA
| |
Collapse
|
25
|
Zare M, Mirhoseini SZ, Ghovvati S, Yakhkeshi S, Hesaraki M, Barati M, Sayyahpour FA, Baharvand H, Hassani SN. The constitutively active pSMAD2/3 relatively improves the proliferation of chicken primordial germ cells. Mol Reprod Dev 2023. [PMID: 37379342 DOI: 10.1002/mrd.23689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/06/2023] [Accepted: 05/15/2023] [Indexed: 06/30/2023]
Abstract
In many multicellular organisms, mature gametes originate from primordial germ cells (PGCs). Improvements in the culture of PGCs are important not only for developmental biology research, but also for preserving endangered species, and for genome editing and transgenic animal technologies. SMAD2/3 appear to be powerful regulators of gene expression; however, their potential positive impact on the regulation of PGC proliferation has not been taken into consideration. Here, the effect of TGF-β signaling as the upstream activator of SMAD2/3 transcription factors was evaluated on chicken PGCs' proliferation. For this, chicken PGCs at stages 26-28 Hamburger-Hamilton were obtained from the embryonic gonadal regions and cultured on different feeders or feeder-free substrates. The results showed that TGF-β signaling agonists (IDE1 and Activin-A) improved PGC proliferation to some extent while treatment with SB431542, the antagonist of TGF-β, disrupted PGCs' proliferation. However, the transfection of PGCs with constitutively active SMAD2/3 (SMAD2/3CA) resulted in improved PGC proliferation for more than 5 weeks. The results confirmed the interactions between overexpressed SMAD2/3CA and pluripotency-associated genes NANOG, OCT4, and SOX2. According to the results, the application of SMAD2/3CA could represent a step toward achieving an efficient expansion of avian PGCs.
Collapse
Affiliation(s)
- Masumeh Zare
- Department of Animal Sciences, Faculty of Agriculture, University of Guilan, Rasht, Guilan, Iran
| | | | - Shahrokh Ghovvati
- Department of Animal Sciences, Faculty of Agriculture, University of Guilan, Rasht, Guilan, Iran
| | - Saeed Yakhkeshi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahdi Hesaraki
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mojgan Barati
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Forough Azam Sayyahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
26
|
Zhou J, Hu J, Wang Y, Gao S. Induction and application of human naive pluripotency. Cell Rep 2023; 42:112379. [PMID: 37043354 DOI: 10.1016/j.celrep.2023.112379] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 12/18/2022] [Accepted: 03/26/2023] [Indexed: 04/13/2023] Open
Abstract
Over the past few decades, many attempts have been made to capture different states of pluripotency in vitro. Naive and primed pluripotent stem cells, corresponding to the pluripotency states of pre- and post-implantation epiblasts, respectively, have been well characterized in mice and can be interconverted in vitro. Here, we summarize the recently reported strategies to generate human naive pluripotent stem cells in vitro. We discuss their applications in studies of regulatory mechanisms involved in early developmental processes, including identification of molecular features, X chromosome inactivation modeling, transposable elements regulation, metabolic characteristics, and cell fate regulation, as well as potential for extraembryonic differentiation and blastoid construction for embryogenesis modeling. We further discuss the naive pluripotency-related research, including 8C-like cell establishment and disease modeling. We also highlight limitations of current naive pluripotency studies, such as imperfect culture conditions and inadequate responsiveness to differentiation signals.
Collapse
Affiliation(s)
- Jianfeng Zhou
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Jindian Hu
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Yixuan Wang
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
| | - Shaorong Gao
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
| |
Collapse
|
27
|
Han D, Liu G, Oh Y, Oh S, Yang S, Mandjikian L, Rani N, Almeida MC, Kosik KS, Jang J. ZBTB12 is a molecular barrier to dedifferentiation in human pluripotent stem cells. Nat Commun 2023; 14:632. [PMID: 36759523 PMCID: PMC9911396 DOI: 10.1038/s41467-023-36178-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Development is generally viewed as one-way traffic of cell state transition from primitive to developmentally advanced states. However, molecular mechanisms that ensure the unidirectional transition of cell fates remain largely unknown. Through exact transcription start site mapping, we report an evolutionarily conserved BTB domain-containing zinc finger protein, ZBTB12, as a molecular barrier for dedifferentiation of human pluripotent stem cells (hPSCs). Single-cell RNA sequencing reveals that ZBTB12 is essential for three germ layer differentiation by blocking hPSC dedifferentiation. Mechanistically, ZBTB12 fine-tunes the expression of human endogenous retrovirus H (HERVH), a primate-specific retrotransposon, and targets specific transcripts that utilize HERVH as a regulatory element. In particular, the downregulation of HERVH-overlapping long non-coding RNAs (lncRNAs) by ZBTB12 is necessary for a successful exit from a pluripotent state and lineage derivation. Overall, we identify ZBTB12 as a molecular barrier that safeguards the unidirectional transition of metastable stem cell fates toward developmentally advanced states.
Collapse
Affiliation(s)
- Dasol Han
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Guojing Liu
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
- Novogene Co., Ltd, Beijing, China
| | - Yujeong Oh
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Seyoun Oh
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Seungbok Yang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Lori Mandjikian
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Neha Rani
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Maria C Almeida
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
- Federal University of ABC, Center for Natural and Human Sciences São Bernardo do Campo, Santo André, Brazil
| | - Kenneth S Kosik
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA.
| | - Jiwon Jang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea.
| |
Collapse
|
28
|
Transforming growth factor beta (TGFβ) pathway is essential for hypoblast and epiblast development in ovine post-hatching embryos. Theriogenology 2023; 196:112-120. [PMID: 36413867 DOI: 10.1016/j.theriogenology.2022.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
The developmental failures occurring between blastocyst hatching and implantation in farm ungulates are a major cause of pregnancy losses. At the expanded blastocyst stage, three cell lineages emerge in the embryo: trophoblast, hypoblast and epiblast, the latter being the most vulnerable during post-hatching development. Transforming growth factor beta (TGFβ) signaling pathway is involved in hypoblast and epiblast development; however, previous in vitro functional studies are limited to the expanded blastocyst stage. In this study, we have analyzed the effect of TGFβ inhibition with 10, 20 or 40 μM SB431542 during ovine post-hatching developmental period using a recently developed culture system able to recapitulate major developmental landmarks. We have found a negative effect of TGFβ inhibition on hypoblast and epiblast development that could be partially reverted by Rho-associated protein kinase (ROCK) inhibitor Y-27632. Our findings provide new insights into the molecular networks regulating embryo development beyond the expanded blastocyst and could help to elucidate the causes of early pregnancy losses in farm ungulates.
Collapse
|
29
|
Exogenous pyruvate and recombinant human basic fibroblast growth factor maintain pluripotency and enhance global metabolic activity of bovine embryonic stem cells grown on low-density feeder layers. Theriogenology 2023; 196:37-49. [PMID: 36379144 DOI: 10.1016/j.theriogenology.2022.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/08/2022]
Abstract
A suitable microenvironment or niche is essential for self-renewal and pluripotency of stem cells cultured in vitro, including bovine embryonic stem cells (bESCs). Feeder cells participate in the construction of stem cell niche by secreting growth factors and extracellular matrix proteins. In this study, metabolomics and transcriptomics analyses were used to investigate the effects of low-density feeder cells on bESCs. The results showed that bESCs co-cultured with low-density feeder cells experienced a decrease in pluripotent gene expression, cell differentiation, and a reduction of central carbon metabolic activity. When cell-permeable pyruvate (Pyr) and recombinant human basic fibroblast growth factor (rhbFGF) were added to the culture system, the pluripotency of bESCs on low-density feeder layers was rescued, and acetyl-coenzyme A (AcCoA) synthesis and fatty acid de novo synthesis increased. In addition, rhbFGF enhances the effects of Pyr and activates the overall metabolic level of bESCs grown on low-density feeder layers. This study explored the rescue effects of exogenous Pyr and rhbFGF on bESCs cultured on low-density feeder layers, which will provide a reference for improvement of the PSC culture system through the supplementation of energy metabolites and growth factors.
Collapse
|
30
|
Hayashi M, Zywitza V, Naitou Y, Hamazaki N, Goeritz F, Hermes R, Holtze S, Lazzari G, Galli C, Stejskal J, Diecke S, Hildebrandt TB, Hayashi K. Robust induction of primordial germ cells of white rhinoceros on the brink of extinction. SCIENCE ADVANCES 2022; 8:eabp9683. [PMID: 36490332 PMCID: PMC9733929 DOI: 10.1126/sciadv.abp9683] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/27/2022] [Indexed: 05/27/2023]
Abstract
In vitro gametogenesis, the process of generating gametes from pluripotent cells in culture, is a powerful tool for improving our understanding of germ cell development and an alternative source of gametes. Here, we induced primordial germ cell-like cells (PGCLCs) from pluripotent stem cells of the northern white rhinoceros (NWR), a species for which only two females remain, and southern white rhinoceros (SWR), the closest species to the NWR. PGCLC differentiation from SWR embryonic stem cells is highly reliant on bone morphogenetic protein and WNT signals. Genetic analysis revealed that SRY-box transcription factor 17 (SOX17) is essential for SWR-PGCLC induction. Under the defined condition, NWR induced pluripotent stem cells differentiated into PGCLCs. We also identified cell surface markers, CD9 and Integrin subunit alpha 6 (ITGA6), that enabled us to isolate PGCLCs without genetic alteration in pluripotent stem cells. This study provides a first step toward the production of NWR gametes in culture and understanding of the basic mechanism of primordial germ cell specification in a large animal.
Collapse
Affiliation(s)
- Masafumi Hayashi
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Vera Zywitza
- Technology Platform Pluripotent Stem Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany
| | - Yuki Naitou
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Nobuhiko Hamazaki
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Frank Goeritz
- Leibniz Institute for Zoo and Wildlife Research, Berlin 10315, Germany
| | - Robert Hermes
- Leibniz Institute for Zoo and Wildlife Research, Berlin 10315, Germany
| | - Susanne Holtze
- Leibniz Institute for Zoo and Wildlife Research, Berlin 10315, Germany
| | - Giovanna Lazzari
- Avantea, Laboratory of Reproductive Technologies, Cremona 26100, Italy
- Fondazione Avantea, Cremona 26100, Italy
| | - Cesare Galli
- Avantea, Laboratory of Reproductive Technologies, Cremona 26100, Italy
- Fondazione Avantea, Cremona 26100, Italy
| | - Jan Stejskal
- ZOO Dvůr Králové, Dvůr Králové nad Labem 54401, Czech Republic
| | - Sebastian Diecke
- Technology Platform Pluripotent Stem Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany
| | - Thomas B. Hildebrandt
- Leibniz Institute for Zoo and Wildlife Research, Berlin 10315, Germany
- Freie Universitaet Berlin, Berlin D-14195, Germany
| | - Katsuhiko Hayashi
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
31
|
Mammalian gastrulation: signalling activity and transcriptional regulation of cell lineage differentiation and germ layer formation. Biochem Soc Trans 2022; 50:1619-1631. [DOI: 10.1042/bst20220256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022]
Abstract
The interplay of signalling input and downstream transcriptional activity is the key molecular attribute driving the differentiation of germ layer tissue and the specification of cell lineages within each germ layer during gastrulation. This review delves into the current understanding of signalling and transcriptional control of lineage development in the germ layers of mouse embryo and non-human primate embryos during gastrulation and highlights the inter-species conservation and divergence of the cellular and molecular mechanisms of germ layer development in the human embryo.
Collapse
|
32
|
Katayama M, Fukuda T, Kaneko T, Nakagawa Y, Tajima A, Naito M, Ohmaki H, Endo D, Asano M, Nagamine T, Nakaya Y, Saito K, Watanabe Y, Tani T, Inoue-Murayama M, Nakajima N, Onuma M. Induced pluripotent stem cells of endangered avian species. Commun Biol 2022; 5:1049. [PMID: 36280684 PMCID: PMC9592614 DOI: 10.1038/s42003-022-03964-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
The number of endangered avian-related species increase in Japan recently. The application of new technologies, such as induced pluripotent stem cells (iPSCs), may contribute to the recovery of the decreasing numbers of endangered animals and conservation of genetic resources. We established novel iPSCs from three endangered avian species (Okinawa rail, Japanese ptarmigan, and Blakiston’s fish owl) with seven reprogramming factors (M3O, Sox2, Klf4, c-Myc, Nanog, Lin28, and Klf2). The iPSCs are pluripotency markers and express pluripotency-related genes and differentiated into three germ layers in vivo and in vitro. These three endangered avian iPSCs displayed different cellular characteristics even though the same reprogramming factors use. Japanese ptarmigan-derived iPSCs have different biological characteristics from those observed in other avian-derived iPSCs. Japanese ptarmigan iPSCs contributed to chimeras part in chicken embryos. To the best of our knowledge, our findings provide the first evidence of the potential value of iPSCs as a resource for endangered avian species conservation. iPSCs from three endangered avian species (including Okinawa rail, Japanese ptarmigan, and Blakiston’s fish owl) are developed and characterized as a potential resource for their conservation.
Collapse
Affiliation(s)
- Masafumi Katayama
- grid.140139.e0000 0001 0746 5933Biodiversity Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan
| | - Tomokazu Fukuda
- grid.411792.80000 0001 0018 0409Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 Japan
| | - Takehito Kaneko
- grid.411792.80000 0001 0018 0409Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 Japan
| | - Yuki Nakagawa
- grid.411792.80000 0001 0018 0409Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 Japan
| | - Atsushi Tajima
- grid.20515.330000 0001 2369 4728Faculty of Life and Environmental Sciences/T-PIRC, University of Tsukuba, 1-1-1 Ten-noh Dai, Tsukuba, Ibaraki 305-8572 Japan
| | - Mitsuru Naito
- grid.410590.90000 0001 0699 0373National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
| | - Hitomi Ohmaki
- grid.412658.c0000 0001 0674 6856School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai Midorimachi, Ebetsu, Hokkaido 069-8501 Japan
| | - Daiji Endo
- grid.412658.c0000 0001 0674 6856School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai Midorimachi, Ebetsu, Hokkaido 069-8501 Japan
| | - Makoto Asano
- grid.256342.40000 0004 0370 4927Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193 Japan
| | - Takashi Nagamine
- Okinawa Wildlife Federation, 308-7-205 Maehara, Uruma, Okinawa 904-2235 Japan
| | - Yumiko Nakaya
- Okinawa Wildlife Federation, 308-7-205 Maehara, Uruma, Okinawa 904-2235 Japan
| | - Keisuke Saito
- Institute for Raptor Biomedicine Japan (Kushiro Shitsugen Wildlife Center), 2-2101 Hokuto, Kushiro, Hokkaido 084-0922 Japan
| | - Yukiko Watanabe
- Institute for Raptor Biomedicine Japan (Kushiro Shitsugen Wildlife Center), 2-2101 Hokuto, Kushiro, Hokkaido 084-0922 Japan
| | - Tetsuya Tani
- grid.258622.90000 0004 1936 9967Department of Agriculture, Kindai University, 3327-204 Nakamachi, Nara, 631-0052 Japan
| | - Miho Inoue-Murayama
- grid.258799.80000 0004 0372 2033Wildlife Research Center, Kyoto University, 2-24 Tanaka-Sekiden-Cho, Sakyo-Ku, Kyoto 606-8203 Japan
| | - Nobuyoshi Nakajima
- grid.140139.e0000 0001 0746 5933Biodiversity Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan
| | - Manabu Onuma
- grid.140139.e0000 0001 0746 5933Biodiversity Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan ,grid.412658.c0000 0001 0674 6856School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai Midorimachi, Ebetsu, Hokkaido 069-8501 Japan
| |
Collapse
|
33
|
Yoney A, Bai L, Brivanlou AH, Siggia ED. Mechanisms underlying WNT-mediated priming of human embryonic stem cells. Development 2022; 149:dev200335. [PMID: 35815787 PMCID: PMC9357376 DOI: 10.1242/dev.200335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/23/2022] [Indexed: 11/10/2023]
Abstract
Embryogenesis is guided by a limited set of signaling pathways dynamically expressed in different places. How a context-dependent signaling response is generated has been a central question of developmental biology, which can now be addressed with in vitro models of human embryos that are derived from embryonic stem cells (hESCs). Our previous work demonstrated that during early stages of hESC differentiation, cells chronicle signaling hierarchy. Only cells that have been exposed (primed) by WNT signaling can respond to subsequent activin exposure and differentiate to mesendodermal (ME) fates. Here, we show that WNT priming does not alter SMAD2 binding nor its chromatin opening but, instead, acts by inducing the expression of the SMAD2 co-factor EOMES. Expression of EOMES is sufficient to replace WNT upstream of activin-mediated ME differentiation, thus unveiling the mechanistic basis for priming and cellular memory in early development.
Collapse
Affiliation(s)
- Anna Yoney
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Synthetic Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, Department of Physics, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ali H. Brivanlou
- Laboratory of Synthetic Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Eric D. Siggia
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
34
|
Lyra-Leite DM, Gutiérrez-Gutiérrez Ó, Wang M, Zhou Y, Cyganek L, Burridge PW. A review of protocols for human iPSC culture, cardiac differentiation, subtype-specification, maturation, and direct reprogramming. STAR Protoc 2022; 3:101560. [PMID: 36035804 PMCID: PMC9405110 DOI: 10.1016/j.xpro.2022.101560] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The methods for the culture and cardiomyocyte differentiation of human embryonic stem cells, and later human induced pluripotent stem cells (hiPSC), have moved from a complex and uncontrolled systems to simplified and relatively robust protocols, using the knowledge and cues gathered at each step. HiPSC-derived cardiomyocytes have proven to be a useful tool in human disease modelling, drug discovery, developmental biology, and regenerative medicine. In this protocol review, we will highlight the evolution of protocols associated with hPSC culture, cardiomyocyte differentiation, sub-type specification, and cardiomyocyte maturation. We also discuss protocols for somatic cell direct reprogramming to cardiomyocyte-like cells.
Collapse
Affiliation(s)
- Davi M Lyra-Leite
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Óscar Gutiérrez-Gutiérrez
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Meimei Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yang Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lukas Cyganek
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
35
|
The negative regulation of gene expression by microRNAs as key driver of inducers and repressors of cardiomyocyte differentiation. Clin Sci (Lond) 2022; 136:1179-1203. [PMID: 35979890 PMCID: PMC9411751 DOI: 10.1042/cs20220391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022]
Abstract
Cardiac muscle damage-induced loss of cardiomyocytes (CMs) and dysfunction of the remaining ones leads to heart failure, which nowadays is the number one killer worldwide. Therapies fostering effective cardiac regeneration are the holy grail of cardiovascular research to stop the heart failure epidemic. The main goal of most myocardial regeneration protocols is the generation of new functional CMs through the differentiation of endogenous or exogenous cardiomyogenic cells. Understanding the cellular and molecular basis of cardiomyocyte commitment, specification, differentiation and maturation is needed to devise innovative approaches to replace the CMs lost after injury in the adult heart. The transcriptional regulation of CM differentiation is a highly conserved process that require sequential activation and/or repression of different genetic programs. Therefore, CM differentiation and specification have been depicted as a step-wise specific chemical and mechanical stimuli inducing complete myogenic commitment and cell-cycle exit. Yet, the demonstration that some microRNAs are sufficient to direct ESC differentiation into CMs and that four specific miRNAs reprogram fibroblasts into CMs show that CM differentiation must also involve negative regulatory instructions. Here, we review the mechanisms of CM differentiation during development and from regenerative stem cells with a focus on the involvement of microRNAs in the process, putting in perspective their negative gene regulation as a main modifier of effective CM regeneration in the adult heart.
Collapse
|
36
|
Roodgar M, Suchy FP, Nguyen LH, Bajpai VK, Sinha R, Vilches-Moure JG, Van Bortle K, Bhadury J, Metwally A, Jiang L, Jian R, Chiang R, Oikonomopoulos A, Wu JC, Weissman IL, Mankowski JL, Holmes S, Loh KM, Nakauchi H, VandeVoort CA, Snyder MP. Chimpanzee and pig-tailed macaque iPSCs: Improved culture and generation of primate cross-species embryos. Cell Rep 2022; 40:111264. [PMID: 36044843 PMCID: PMC10075238 DOI: 10.1016/j.celrep.2022.111264] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/06/2022] [Accepted: 08/04/2022] [Indexed: 12/26/2022] Open
Abstract
As our closest living relatives, non-human primates uniquely enable explorations of human health, disease, development, and evolution. Considerable effort has thus been devoted to generating induced pluripotent stem cells (iPSCs) from multiple non-human primate species. Here, we establish improved culture methods for chimpanzee (Pan troglodytes) and pig-tailed macaque (Macaca nemestrina) iPSCs. Such iPSCs spontaneously differentiate in conventional culture conditions, but can be readily propagated by inhibiting endogenous WNT signaling. As a unique functional test of these iPSCs, we injected them into the pre-implantation embryos of another non-human species, rhesus macaques (Macaca mulatta). Ectopic expression of gene BCL2 enhances the survival and proliferation of chimpanzee and pig-tailed macaque iPSCs within the pre-implantation embryo, although the identity and long-term contribution of the transplanted cells warrants further investigation. In summary, we disclose transcriptomic and proteomic data, cell lines, and cell culture resources that may be broadly enabling for non-human primate iPSCs research.
Collapse
Affiliation(s)
- Morteza Roodgar
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Fabian P Suchy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lan H Nguyen
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Vivek K Bajpai
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jose G Vilches-Moure
- Department of Comparative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kevin Van Bortle
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Joydeep Bhadury
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Biomedicine, Sahlgrenska University Hospital, University of Gothenburg, SE 413 45 Gothenburg, Sweden
| | - Ahmed Metwally
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Lihua Jiang
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Ruiqi Jian
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Rosaria Chiang
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Angelos Oikonomopoulos
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Susan Holmes
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Kyle M Loh
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hiromitsu Nakauchi
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Catherine A VandeVoort
- California National Primate Research Center and Department of Obstetrics and Gynecology, University of California, Davis, Davis, CA, USA.
| | - Michael P Snyder
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
37
|
Roberts RM, Ezashi T, Temple J, Owen JR, Soncin F, Parast MM. The role of BMP4 signaling in trophoblast emergence from pluripotency. Cell Mol Life Sci 2022; 79:447. [PMID: 35877048 PMCID: PMC10243463 DOI: 10.1007/s00018-022-04478-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/24/2022] [Accepted: 07/06/2022] [Indexed: 11/03/2022]
Abstract
The Bone Morphogenetic Protein (BMP) signaling pathway has established roles in early embryonic morphogenesis, particularly in the epiblast. More recently, however, it has also been implicated in development of extraembryonic lineages, including trophectoderm (TE), in both mouse and human. In this review, we will provide an overview of this signaling pathway, with a focus on BMP4, and its role in emergence and development of TE in both early mouse and human embryogenesis. Subsequently, we will build on these in vivo data and discuss the utility of BMP4-based protocols for in vitro conversion of primed vs. naïve pluripotent stem cells (PSC) into trophoblast, and specifically into trophoblast stem cells (TSC). PSC-derived TSC could provide an abundant, reproducible, and ethically acceptable source of cells for modeling placental development.
Collapse
Affiliation(s)
- R Michael Roberts
- Division of Animal Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Toshihiko Ezashi
- Division of Animal Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Colorado Center for Reproductive Medicine, 10290 Ridgegate Circle, Lone Tree, CO, 80124, USA
| | - Jasmine Temple
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Joseph R Owen
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Francesca Soncin
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Mana M Parast
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA.
| |
Collapse
|
38
|
Wakitani S. The FGF receptor inhibitor PD173074 modulates Lefty expression in human induced pluripotent stem cells differently depending on the culture conditions. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119260. [PMID: 35306104 DOI: 10.1016/j.bbamcr.2022.119260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/21/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Shoichi Wakitani
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan.
| |
Collapse
|
39
|
Nebie O, Buée L, Blum D, Burnouf T. Can the administration of platelet lysates to the brain help treat neurological disorders? Cell Mol Life Sci 2022; 79:379. [PMID: 35750991 PMCID: PMC9243829 DOI: 10.1007/s00018-022-04397-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 11/03/2022]
Abstract
Neurodegenerative disorders of the central nervous system (CNS) and brain traumatic insults are characterized by complex overlapping pathophysiological alterations encompassing neuroinflammation, alterations of synaptic functions, oxidative stress, and progressive neurodegeneration that eventually lead to irreversible motor and cognitive dysfunctions. A single pharmacological approach is unlikely to provide a complementary set of molecular therapeutic actions suitable to resolve these complex pathologies. Recent preclinical data are providing evidence-based scientific rationales to support biotherapies based on administering neurotrophic factors and extracellular vesicles present in the lysates of human platelets collected from healthy donors to the brain. Here, we present the most recent findings on the composition of the platelet proteome that can activate complementary signaling pathways in vivo to trigger neuroprotection, synapse protection, anti-inflammation, antioxidation, and neurorestoration. We also report experimental data where the administration of human platelet lysates (HPL) was safe and resulted in beneficial neuroprotective effects in established rodent models of neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, traumatic brain injury, and stroke. Platelet-based biotherapies, prepared from collected platelet concentrates (PC), are emerging as a novel pragmatic and accessible translational therapeutic strategy for treating neurological diseases. Based on this assumption, we further elaborated on various clinical, manufacturing, and regulatory issues that need to be addressed to ensure the ethical supply, quality, and safety of HPL preparations for treating neurodegenerative and traumatic pathologies of the CNS. HPL made from PC may become a unique approach for scientifically based treatments of neurological disorders readily accessible in low-, middle-, and high-income countries.
Collapse
Affiliation(s)
- Ouada Nebie
- College of Biomedical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience and Cognition, 59045, Lille, France
- Alzheimer and Tauopathies, LabEx DISTALZ, LiCEND, 59000, Lille, France
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience and Cognition, 59045, Lille, France
- Alzheimer and Tauopathies, LabEx DISTALZ, LiCEND, 59000, Lille, France
- NeuroTMULille International Laboratory, Univ. Lille, Lille, France
| | - David Blum
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience and Cognition, 59045, Lille, France.
- Alzheimer and Tauopathies, LabEx DISTALZ, LiCEND, 59000, Lille, France.
- NeuroTMULille International Laboratory, Univ. Lille, Lille, France.
- NeuroTMULille International Laboratory, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Thierry Burnouf
- College of Biomedical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan.
- NeuroTMULille International Laboratory, Taipei Medical University, Taipei, 11031, Taiwan.
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan.
- International PhD Program in Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Brain and Consciousness Research Centre, Taipei Medical University Shuang-Ho Hospital, New Taipei City, 23561, Taiwan.
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
40
|
Liu S, Kanchanawong P. Emerging interplay of cytoskeletal architecture, cytomechanics and pluripotency. J Cell Sci 2022; 135:275761. [PMID: 35726598 DOI: 10.1242/jcs.259379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pluripotent stem cells (PSCs) are capable of differentiating into all three germ layers and trophoblasts, whereas tissue-specific adult stem cells have a more limited lineage potency. Although the importance of the cytoskeletal architecture and cytomechanical properties in adult stem cell differentiation have been widely appreciated, how they contribute to mechanotransduction in PSCs is less well understood. Here, we discuss recent insights into the interplay of cellular architecture, cell mechanics and the pluripotent states of PSCs. Notably, the distinctive cytomechanical and morphodynamic profiles of PSCs are accompanied by a number of unique molecular mechanisms. The extent to which such mechanobiological signatures are intertwined with pluripotency regulation remains an open question that may have important implications in developmental morphogenesis and regenerative medicine.
Collapse
Affiliation(s)
- Shiying Liu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore.,Department of Biomedical Engineering, National University of Singapore, Singapore 117411, Republic of Singapore
| |
Collapse
|
41
|
Zhang J, Zhi M, Gao D, Zhu Q, Gao J, Zhu G, Cao S, Han J. Research progress and application prospects of stable porcine pluripotent stem cells. Biol Reprod 2022; 107:226-236. [PMID: 35678320 DOI: 10.1093/biolre/ioac119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/14/2022] Open
Abstract
Pluripotent stem cells (PSCs) harbor the capacity of unlimited self-renewal and multi-lineage differentiation potential which are crucial for basic research and biomedical science. Establishment of PSCs with defined features were previously reported from mice and humans, while generation of stable large animal PSCs has experienced a relatively long trial stage and only recently has made breakthroughs. Pigs are regarded as ideal animal models for their similarities in physiology and anatomy to humans. Generation of porcine PSCs would provide cell resources for basic research, genetic engineering, animal breeding and cultured meat. In this review, we summarize the progress on the derivation of porcine PSCs and reprogrammed cells and elucidate the mechanisms of pluripotency changes during pig embryo development. This will be beneficial for understanding the divergence and conservation between different species involved in embryo development and the pluripotent regulated signaling pathways. Finally, we also discuss the promising future applications of stable porcine PSCs.
Collapse
Affiliation(s)
- Jinying Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Minglei Zhi
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dengfeng Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qianqian Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jie Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Gaoxiang Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Suying Cao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jianyong Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
42
|
Hua Y, Yoshimochi K, Li J, Takekita K, Shimotsuma M, Li L, Qu X, Zhang J, Sawa Y, Liu L, Miyagawa S. Development and evaluation of a novel xeno-free culture medium for human-induced pluripotent stem cells. Stem Cell Res Ther 2022; 13:223. [PMID: 35658933 PMCID: PMC9166585 DOI: 10.1186/s13287-022-02879-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/03/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human-induced pluripotent stem cells (hiPSCs) are considered an ideal resource for regenerative medicine because of their ease of access and infinite expansion ability. To satisfy the sizable requirement for clinical applications of hiPSCs, large-scale, expansion-oriented, xeno-free, and cost-effective media are critical. Although several xeno-free media for hiPSCs have been generated over the past decades, few of them are suitable for scalable expansion of cultured hiPSCs because of their modest potential for proliferation and high cost. METHODS In this study, we developed a xeno-free ON2/AscleStem PSC medium (ON2) and cultured 253G1 hiPSCs on different matrices, including iMatrix-511 and gelatin nanofiber (GNF) in ON2. Over 20 passages, we evaluated cell proliferation by doubling times; pluripotency by flow cytometry, immunofluorescence staining and qRT-PCR; and differentiation ability by three germ layer differentiation in vitro and teratoma formation in severe combined immunodeficiency mice, followed by histological analysis. In addition, we compared the maintenance effect of ON2 on hiPSCs with StemFit® AK02 (AK02N) and Essential 8™ (E8). Besides 253G1 hiPSCs, we cultivated different hiPSC lines, including Ff-l01 hiPSCs, ATCC® ACS-1020™ hiPSCs, and Down's syndrome patient-specific ATCC® ACS-1003™ hiPSCs in ON2. RESULTS We found that 253G1 hiPSCs in ON2 demonstrated normal morphology and karyotype and high self-renewal and differentiation abilities on the tested matrices for over 20 passages. Moreover, 253G1 hiPSCs kept on GNF showed higher growth and stemness, as verified by the shorter doubling time and higher expression levels of pluripotent markers. Compared to AK02N and E8 media, 253G1 hiPSCs grown in ON2 showed higher pluripotency, as demonstrated by the increased expression level of pluripotent factors. In addition, all hiPSC lines cultivated in ON2 were able to grow for at least 10 passages with compact clonal morphology and were positive for all detected pluripotent markers. CONCLUSIONS Our xeno-free ON2 was compatible with various matrices and ideal for long-term expansion and maintenance of not only healthy-derived hiPSCs but also patient-specific hiPSCs. This highly efficient medium enabled the rapid expansion of hiPSCs in a reliable and cost-effective manner and could act as a promising tool for disease modeling and large-scale production for regenerative medicine in the future.
Collapse
Affiliation(s)
- Ying Hua
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Kenji Yoshimochi
- NACALAI TESQUE, INC. Research and Development Department, Kyoto, 604-0855, Japan
| | - Junjun Li
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.,Division of Cardiovascular Surgery, Department of Design for Tissue Regeneration, Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Kazuhiro Takekita
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Motoshi Shimotsuma
- NACALAI TESQUE, INC. Research and Development Department, Kyoto, 604-0855, Japan
| | - Lingjun Li
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Xiang Qu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Jingbo Zhang
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | | | - Li Liu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan. .,Division of Cardiovascular Surgery, Department of Design for Tissue Regeneration, Graduate School of Medicine, Osaka, 565-0871, Japan.
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
| |
Collapse
|
43
|
Dong C, Fu S, Karvas RM, Chew B, Fischer LA, Xing X, Harrison JK, Popli P, Kommagani R, Wang T, Zhang B, Theunissen TW. A genome-wide CRISPR-Cas9 knockout screen identifies essential and growth-restricting genes in human trophoblast stem cells. Nat Commun 2022; 13:2548. [PMID: 35538076 PMCID: PMC9090837 DOI: 10.1038/s41467-022-30207-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/21/2022] [Indexed: 12/26/2022] Open
Abstract
The recent derivation of human trophoblast stem cells (hTSCs) provides a scalable in vitro model system of human placental development, but the molecular regulators of hTSC identity have not been systematically explored thus far. Here, we utilize a genome-wide CRISPR-Cas9 knockout screen to comprehensively identify essential and growth-restricting genes in hTSCs. By cross-referencing our data to those from similar genetic screens performed in other cell types, as well as gene expression data from early human embryos, we define hTSC-specific and -enriched regulators. These include both well-established and previously uncharacterized trophoblast regulators, such as ARID3A, GATA2, and TEAD1 (essential), and GCM1, PTPN14, and TET2 (growth-restricting). Integrated analysis of chromatin accessibility, gene expression, and genome-wide location data reveals that the transcription factor TEAD1 regulates the expression of many trophoblast regulators in hTSCs. In the absence of TEAD1, hTSCs fail to complete faithful differentiation into extravillous trophoblast (EVT) cells and instead show a bias towards syncytiotrophoblast (STB) differentiation, thus indicating that this transcription factor safeguards the bipotent lineage potential of hTSCs. Overall, our study provides a valuable resource for dissecting the molecular regulation of human placental development and diseases.
Collapse
Affiliation(s)
- Chen Dong
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Shuhua Fu
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Rowan M Karvas
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Brian Chew
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Laura A Fischer
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiaoyun Xing
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Genetics, Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jessica K Harrison
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Genetics, Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Pooja Popli
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ramakrishna Kommagani
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ting Wang
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Genetics, Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Bo Zhang
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Thorold W Theunissen
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
44
|
Glover HJ, Shparberg RA, Morris MB. L-Proline Supplementation Drives Self-Renewing Mouse Embryonic Stem Cells to a Partially Primed Pluripotent State: The Early Primitive Ectoderm-Like Cell. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2490:11-24. [PMID: 35486235 DOI: 10.1007/978-1-0716-2281-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mouse embryonic stem cells (mESCs) can be grown under a variety of culture conditions as discrete cell states along the pluripotency continuum, ranging from the least mature "ground state" to being "primed" to differentiate. Cells along this continuum are demarcated by differences in gene expression, X chromosome inactivation, ability to form chimeras and epigenetic marks. We have developed a protocol to differentiate "naïve" mESCs to a "partially primed" state by adding the amino acid L-proline to self-renewal medium. These cells express the primitive ectoderm markers Dnmt3b and Fgf5, and are thus called early primitive ectoderm-like (EPL) cells. In addition to changes in gene expression, these cells undergo a morphological change to flattened, dispersed colonies, have an increased proliferation rate, and a predisposition to neural fate. EPL cells can be used to study the cell states along the pluripotency continuum, peri-implantation embryogenesis, and as a starting point for efficient neuronal differentiation.
Collapse
Affiliation(s)
- Hannah J Glover
- Bosch Institute and Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia.
| | - Rachel A Shparberg
- Bosch Institute and Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Michael B Morris
- Bosch Institute and Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
45
|
Shin JH, Seo BG, Lee IW, Kim HJ, Seo EC, Lee KM, Jeon SB, Baek SK, Kim TS, Lee JH, Choi JW, Hwangbo C, Lee JH. Functional Characterization of Endothelial Cells Differentiated from Porcine Epiblast Stem Cells. Cells 2022; 11:1524. [PMID: 35563830 PMCID: PMC9104949 DOI: 10.3390/cells11091524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 12/12/2022] Open
Abstract
Endothelial cells (ECs), lining blood vessels' lumen, play an essential role in regulating vascular functions. As multifunctional components of vascular structures, pluripotent stem cells (PSCs) are the promising source for potential therapeutic applications in various vascular diseases. Our laboratory has previously established an approach for differentiating porcine epiblast stem cells (pEpiSCs) into ECs, representing an alternative and potentially superior cell source. However, the condition of pEpiSCs-derived ECs growth has yet to be determined, and whether pEpiSCs differentiate into functional ECs remained unclear. Changes in morphology, proliferation and functional endothelial marker were assessed in pEpiSCs-derived ECs in vitro. pEpiSCs-derived ECs were subjected to magnetic-activated cell sorting (MACS) to collect CD-31+ of ECs. We found that sorted ECs showed the highest proliferation rate in differentiation media in primary culture and M199 media in the subculture. Next, sorted ECs were examined for their ability to act as typical vascular ECs through capillary-like structure formation assay, Dil-acetylated low-density lipoprotein (Dil-Ac-LDL) uptake, and three-dimensional spheroid sprouting. Consequently, pEpiSCs-derived ECs function as typical vascular ECs, indicating that pEpiSC-derived ECs might be used to develop cell therapeutics for vascular disease.
Collapse
Affiliation(s)
- Joon-Hong Shin
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.-H.S.); (I.-W.L.); (S.-B.J.); (S.-K.B.); (T.-S.K.)
- Division of Applied Life Science (BK21), PMBBRC and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (B.-G.S.); (H.-J.K.); (E.-C.S.); (K.-M.L.)
| | - Bo-Gyeong Seo
- Division of Applied Life Science (BK21), PMBBRC and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (B.-G.S.); (H.-J.K.); (E.-C.S.); (K.-M.L.)
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - In-Won Lee
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.-H.S.); (I.-W.L.); (S.-B.J.); (S.-K.B.); (T.-S.K.)
- Division of Applied Life Science (BK21), PMBBRC and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (B.-G.S.); (H.-J.K.); (E.-C.S.); (K.-M.L.)
| | - Hyo-Jin Kim
- Division of Applied Life Science (BK21), PMBBRC and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (B.-G.S.); (H.-J.K.); (E.-C.S.); (K.-M.L.)
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Eun-Chan Seo
- Division of Applied Life Science (BK21), PMBBRC and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (B.-G.S.); (H.-J.K.); (E.-C.S.); (K.-M.L.)
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Kwang-Min Lee
- Division of Applied Life Science (BK21), PMBBRC and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (B.-G.S.); (H.-J.K.); (E.-C.S.); (K.-M.L.)
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Soo-Been Jeon
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.-H.S.); (I.-W.L.); (S.-B.J.); (S.-K.B.); (T.-S.K.)
| | - Sang-Ki Baek
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.-H.S.); (I.-W.L.); (S.-B.J.); (S.-K.B.); (T.-S.K.)
| | - Tae-Suk Kim
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.-H.S.); (I.-W.L.); (S.-B.J.); (S.-K.B.); (T.-S.K.)
| | - Jeong-Hyung Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24414, Korea;
| | - Jung-Woo Choi
- College of Animal Life Science, Kangwon National University, Chuncheon 24414, Korea;
| | - Cheol Hwangbo
- Division of Applied Life Science (BK21), PMBBRC and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (B.-G.S.); (H.-J.K.); (E.-C.S.); (K.-M.L.)
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Joon-Hee Lee
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (J.-H.S.); (I.-W.L.); (S.-B.J.); (S.-K.B.); (T.-S.K.)
- Institute of Agriculture & Life Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
46
|
Coda DM, Patel H, Gori I, Gaarenstroom TE, Song OR, Howell M, Hill CS. A network of transcription factors governs the dynamics of NODAL/Activin transcriptional responses. J Cell Sci 2022; 135:jcs259972. [PMID: 35302162 PMCID: PMC9080556 DOI: 10.1242/jcs.259972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 11/20/2022] Open
Abstract
SMAD2, an effector of the NODAL/Activin signalling pathway, regulates developmental processes by sensing distinct chromatin states and interacting with different transcriptional partners. However, the network of factors that controls SMAD2 chromatin binding and shapes its transcriptional programme over time is poorly characterised. Here, we combine ATAC-seq with computational footprinting to identify temporal changes in chromatin accessibility and transcription factor activity upon NODAL/Activin signalling. We show that SMAD2 binding induces chromatin opening genome wide. We discover footprints for FOXI3, FOXO3 and ZIC3 at the SMAD2-bound enhancers of the early response genes, Pmepa1 and Wnt3, respectively, and demonstrate their functionality. Finally, we determine a mechanism by which NODAL/Activin signalling induces delayed gene expression, by uncovering a self-enabling transcriptional cascade whereby activated SMADs, together with ZIC3, induce the expression of Wnt3. The resultant activated WNT pathway then acts together with the NODAL/Activin pathway to regulate expression of delayed target genes in prolonged NODAL/Activin signalling conditions. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Davide M. Coda
- Developmental Signalling Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Harshil Patel
- Bioinformatics and Biostatistics Facility, The Francis Crick Institute, London, NW1 1AT, UK
| | - Ilaria Gori
- Developmental Signalling Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Tessa E. Gaarenstroom
- Developmental Signalling Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Ok-Ryul Song
- High Throughput Screening Facility, The Francis Crick Institute, London, NW1 1AT, UK
| | - Michael Howell
- High Throughput Screening Facility, The Francis Crick Institute, London, NW1 1AT, UK
| | - Caroline S. Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| |
Collapse
|
47
|
Zhou P, Qin L, Ge Z, Xie B, Huang H, He F, Ma S, Ren L, Shi J, Pei S, Dong G, Qi Y, Lan F. Design of chemically defined synthetic substrate surfaces for the in vitro maintenance of human pluripotent stem cells: A review. J Biomed Mater Res B Appl Biomater 2022; 110:1968-1990. [PMID: 35226397 DOI: 10.1002/jbm.b.35034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 11/11/2022]
Abstract
Human pluripotent stem cells (hPSCs) have the potential of long-term self-renewal and differentiation into nearly all cell types in vitro. Prior to the downstream applications, the design of chemically defined synthetic substrates for the large-scale proliferation of quality-controlled hPSCs is critical. Although great achievements have been made, Matrigel and recombinant proteins are still widely used in the fundamental research and clinical applications. Therefore, much effort is still needed to improve the performance of synthetic substrates in the culture of hPSCs, realizing their commercial applications. In this review, we summarized the design of reported synthetic substrates and especially their limitations in terms of cell culture. Moreover, much attention was paid to the development of promising peptide displaying surfaces. Besides, the biophysical regulation of synthetic substrate surfaces as well as the three-dimensional culture systems were described.
Collapse
Affiliation(s)
- Ping Zhou
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Liying Qin
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Zhangjie Ge
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Biyao Xie
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Hongxin Huang
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Fei He
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Shengqin Ma
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Lina Ren
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Jiamin Shi
- Department of Laboratory Animal Centre, Changzhi Medical College, Changzhi, China
| | - Suying Pei
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Genxi Dong
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Yongmei Qi
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Feng Lan
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen Key Laboratory of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Shenzhen, China
| |
Collapse
|
48
|
Naxerova K, Di Stefano B, Makofske JL, Watson EV, de Kort MA, Martin TD, Dezfulian M, Ricken D, Wooten EC, Kuroda MI, Hochedlinger K, Elledge SJ. Integrated loss- and gain-of-function screens define a core network governing human embryonic stem cell behavior. Genes Dev 2021; 35:1527-1547. [PMID: 34711655 PMCID: PMC8559676 DOI: 10.1101/gad.349048.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022]
Abstract
In this Resource/Methodology, Naxerova et al. describe an integrated genome-scale loss- and gain-of-function screening approach to identify genetic networks governing embryonic stem cell proliferation and differentiation into the three germ layers. They identify a deep link between pluripotency maintenance and survival by showing that genetic alterations that cause pluripotency dissolution simultaneously increase apoptosis resistance, and their results show the power of integrated multilayer genetic screening for the robust mapping of complex genetic networks. Understanding the genetic control of human embryonic stem cell function is foundational for developmental biology and regenerative medicine. Here we describe an integrated genome-scale loss- and gain-of-function screening approach to identify genetic networks governing embryonic stem cell proliferation and differentiation into the three germ layers. We identified a deep link between pluripotency maintenance and survival by showing that genetic alterations that cause pluripotency dissolution simultaneously increase apoptosis resistance. We discovered that the chromatin-modifying complex SAGA and in particular its subunit TADA2B are central regulators of pluripotency, survival, growth, and lineage specification. Joint analysis of all screens revealed that genetic alterations that broadly inhibit differentiation across multiple germ layers drive proliferation and survival under pluripotency-maintaining conditions and coincide with known cancer drivers. Our results show the power of integrated multilayer genetic screening for the robust mapping of complex genetic networks.
Collapse
Affiliation(s)
- Kamila Naxerova
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Center for Systems Biology, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Bruno Di Stefano
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Jessica L Makofske
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Emma V Watson
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Marit A de Kort
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Timothy D Martin
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mohammed Dezfulian
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dominik Ricken
- Center for Systems Biology, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Eric C Wooten
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mitzi I Kuroda
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Konrad Hochedlinger
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Stephen J Elledge
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
49
|
Pillai VV, Koganti PP, Kei TG, Gurung S, Butler WR, Selvaraj V. Efficient induction and sustenance of pluripotent stem cells from bovine somatic cells. Biol Open 2021; 10:272681. [PMID: 34719702 PMCID: PMC8565620 DOI: 10.1242/bio.058756] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Although derivation of naïve bovine embryonic stem cells is unachieved, the possibility for generation of bovine induced pluripotent stem cells (biPSCs) has been generally reported. However, attempts to sustain biPSCs by promoting self-renewal have not been successful. Methods established for maintaining murine and human induced pluripotent stem cells (iPSCs) do not support self-renewal of iPSCs for any bovid species. In this study, we examined methods to enhance complete reprogramming and concurrently investigated signaling relevant to pluripotency of the bovine blastocyst inner cell mass (ICM). First, we identified that forced expression of SV40 large T antigen together with the reprogramming genes (OCT4, SOX2, KLF4 and MYC) substantially enhanced the reprogramming efficacy of bovine fibroblasts to biPSCs. Second, we uncovered that TGFβ signaling is actively perturbed in the ICM. Inhibition of ALK4/5/7 to block TGFβ/activin/nodal signaling together with GSK3β and MEK1/2 supported robust in vitro self-renewal of naïve biPSCs with unvarying colony morphology, steady expansion, expected pluripotency gene expression and committed differentiation plasticity. Core similarities between biPSCs and stem cells of the 16-cell-stage bovine embryo indicated a stable ground state of pluripotency; this allowed us to reliably gain predictive understanding of signaling in bovine pluripotency using systems biology approaches. Beyond defining a high-fidelity platform for advancing biPSC-based biotechnologies that have not been previously practicable, these findings also represent a significant step towards understanding corollaries and divergent aspects of bovine pluripotency. This article has an associated First Person interview with the joint first authors of the paper. Summary: Pluripotency reprogramming by overcoming the stable epigenome of bovine cells, and uncovering precise early embryo self-renewal mechanisms enables sustenance and expansion of authentic induced pluripotent stem cells in vitro.
Collapse
Affiliation(s)
- Viju Vijayan Pillai
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY14853, USA
| | - Prasanthi P Koganti
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY14853, USA
| | - Tiffany G Kei
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY14853, USA
| | - Shailesh Gurung
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY14853, USA
| | - W Ronald Butler
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY14853, USA
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY14853, USA
| |
Collapse
|
50
|
Hirota A, AlMusawi S, Nateri AS, Ordóñez-Morán P, Imajo M. Biomaterials for intestinal organoid technology and personalized disease modeling. Acta Biomater 2021; 132:272-287. [PMID: 34023456 DOI: 10.1016/j.actbio.2021.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/08/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022]
Abstract
Recent advances in intestinal organoid technologies have paved the way for in vitro recapitulation of the homeostatic renewal of adult tissues, tissue or organ morphogenesis during development, and pathogenesis of many disorders. In vitro modelling of individual patient diseases using organoid systems have been considered key in establishing rational design of personalized treatment strategies and in improving therapeutic outcomes. In addition, the transplantation of organoids into diseased tissues represents a novel approach to treat currently incurable diseases. Emerging evidence from intensive studies suggests that organoid systems' development and functional maturation depends on the presence of an extracellular matrix with suitable biophysical properties, where advanced synthetic hydrogels open new avenues for theoretical control of organoid phenotypes and potential applications of organoids in therapeutic purposes. In this review, we discuss the status, applications, challenges and perspectives of intestinal organoid systems emphasising on hydrogels and their properties suitable for intestinal organoid culture. We provide an overview of hydrogels used for intestinal organoid culture and key factors regulating their biological activity. The comparison of different hydrogels would be a theoretical basis for establishing design principles of synthetic niches directing intestinal cell fates and functions. STATEMENT OF SIGNIFICANCE: Intestinal organoid is an in vitro recapitulation of the gut, which self-organizes from intestinal stem cells and maintains many features of the native tissue. Since the development of this technology, intestinal organoid systems have made significant contribution to rapid progress in intestinal biology. Prevailing methodology for organoid culture, however, depends on animal-derived matrices and suffers from variability and potential risk for contamination of pathogens, limiting their therapeutic application. Synthetic scaffold matrices, hydrogels, might provide solutions to these issues and deepen our understanding on how intestinal cells sense and respond to key biophysical properties of the surrounding matrices. This review provides an overview of developing intestinal models and biomaterials, thereby leading to better understanding of current intestinal organoid systems for both biologists and materials scientists.
Collapse
Affiliation(s)
- Akira Hirota
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N15, W7, Kita-ku, Sapporo 060-8638, Japan
| | - Shaikha AlMusawi
- Cancer Genetic and Stem Cell group, Translational Medical Sciences, School of Medicine, Biodiscovery Institute, Centre for Cancer Sciences, University of Nottingham, NG7 2RD, Nottingham, United Kingdom; Stem Cell biology and Cancer group, Translational Medical Sciences, School of Medicine, Biodiscovery Institute, Centre for Cancer Sciences, University of Nottingham, NG7 2RD, Nottingham, United Kingdom
| | - Abdolrahman S Nateri
- Cancer Genetic and Stem Cell group, Translational Medical Sciences, School of Medicine, Biodiscovery Institute, Centre for Cancer Sciences, University of Nottingham, NG7 2RD, Nottingham, United Kingdom
| | - Paloma Ordóñez-Morán
- Stem Cell biology and Cancer group, Translational Medical Sciences, School of Medicine, Biodiscovery Institute, Centre for Cancer Sciences, University of Nottingham, NG7 2RD, Nottingham, United Kingdom.
| | - Masamichi Imajo
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N15, W7, Kita-ku, Sapporo 060-8638, Japan.
| |
Collapse
|