1
|
Liu T, Rahim F, Yang ML, Uddin M, Ye JW, Ali I, Raza Y, Mansoor A, Shoaib M, Hussain M, Khan I, Shah B, Khan A, Nisar A, Ma H, Xu B, Shah W, Shi QH. Novel homozygous SPAG17 variants cause human male infertility through multiple morphological abnormalities of spermatozoal flagella related to axonemal microtubule doublets. Asian J Androl 2025; 27:245-253. [PMID: 39686771 PMCID: PMC11949450 DOI: 10.4103/aja202496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/05/2024] [Indexed: 12/18/2024] Open
Abstract
ABSTRACT Male infertility can result from impaired sperm motility caused by multiple morphological abnormalities of the flagella (MMAF). Distinct projections encircling the central microtubules of the spermatozoal axoneme play pivotal roles in flagellar bending and spermatozoal movement. Mammalian sperm-associated antigen 17 ( SPAG17 ) encodes a conserved axonemal protein of cilia and flagella, forming part of the C1a projection of the central apparatus, with functions related to ciliary/flagellar motility, skeletal growth, and male fertility. This study investigated two novel homozygous SPAG17 mutations (M1: NM_206996.2, c.829+1G>T, p.Asp212_Glu276del; and M2: c.2120del, p.Leu707*) identified in four infertile patients from two consanguineous Pakistani families. These patients displayed the MMAF phenotype confirmed by Papanicolaou staining and scanning electron microscopy assays of spermatozoa. Quantitative real-time polymerase chain reaction (PCR) of patients' spermatozoa also revealed a significant decrease in SPAG17 mRNA expression, and immunofluorescence staining showed the absence of SPAG17 protein signals along the flagella. However, no apparent ciliary-related symptoms or skeletal malformations were observed in the chest X-rays of any of the patients. Transmission electron microscopy of axoneme cross-sections from the patients showed incomplete C1a projection and a higher frequency of missing microtubule doublets 1 and 9 compared with those from fertile controls. Immunofluorescence staining and Western blot analyses of spermatogenesis-associated protein 17 (SPATA17), a component of the C1a projection, and sperm-associated antigen 6 (SPAG6), a marker of the spring layer, revealed disrupted expression of both proteins in the patients' spermatozoa. Altogether, these findings demonstrated that SPAG17 maintains the integrity of spermatozoal flagellar axoneme, expanding the phenotypic spectrum of SPAG17 mutations in humans.
Collapse
Affiliation(s)
- Tao Liu
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Fazal Rahim
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Meng-Lei Yang
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Meftah Uddin
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Jing-Wei Ye
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Imtiaz Ali
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Yousaf Raza
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Abu Mansoor
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Muhammad Shoaib
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Mujahid Hussain
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Ihsan Khan
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Basit Shah
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Asad Khan
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Ahmad Nisar
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Hui Ma
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Bo Xu
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Wasim Shah
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Qing-Hua Shi
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
2
|
Tani Y, Yanagisawa H, Yagi T, Kikkawa M. Structure and function of FAP47 in the central pair apparatus of Chlamydomonas flagella. Cytoskeleton (Hoboken) 2024; 81:669-680. [PMID: 38899546 DOI: 10.1002/cm.21882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Motile cilia have a so-called "9 + 2" structure, which consists of nine doublet microtubules and a central pair apparatus. The central pair apparatus (CA) is thought to interact mechanically with radial spokes and to control the flagellar beating. Recently, the components of the CA have been identified by proteomic and genomic analyses. Still, the mechanism of how the CA contributes to ciliary motility has much to be revealed. Here, we focused on one CA component with a large molecular weight: FAP47, and its relationship with two other CA components with large molecular weight: HYDIN, and CPC1. The analyses of motility of the Chlamydomonas mutants revealed that in contrast to cpc1 or hydin, which swam more slowly than the wild type, fap47 cells displayed wild-type swimming velocity and flagellar beat frequency, yet interestingly, fap47 cells have phototaxis defects and swim straighter than the wild-type cells. Furthermore, the double mutant fap47cpc1 and fap47hydin showed significantly slower swimming than cpc1 and hydin cells, and the motility defect of fap47cpc1 was rescued to the cpc1 level with GFP-tagged FAP47, indicating that the lack of FAP47 makes the motility defect of cpc1 worse. Cryo-electron tomography demonstrated that the fap47 lacks a part of the C1-C2 bridge of CA. Taken together, these observations indicate that FAP47 maintains the structural stiffness of the CA, which is important for flagellar regulation.
Collapse
Affiliation(s)
- Yuma Tani
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruaki Yanagisawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiki Yagi
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Shiba K, Baba SA, Fujiwara E, Inaba K. Calaxin is required for asymmetric bend initiation and propagation in sperm flagella. Front Cell Dev Biol 2023; 11:1136404. [PMID: 37009483 PMCID: PMC10061002 DOI: 10.3389/fcell.2023.1136404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Regulation of waveform asymmetry in flagella is critical for changes in direction when sperm are swimming, as seen during the chemotaxis of sperm towards eggs. Ca2+ is an important regulator of asymmetry in flagellar waveforms. A calcium sensor protein, calaxin, is associated with the outer arm dynein and plays a key role in the regulation of flagellar motility in a Ca2+-dependent manner. However, the underlying mechanism of regulating asymmetric waves by means of Ca2+ and calaxin remains unclear. To clarify the calaxin-dependent mechanism for generating Ca2+-dependent asymmetric flagellar waveforms, we analyzed the initial step of flagellar bend formation and propagation in the sperm of the ascidian Ciona intestinalis. Our experiment used demembranated sperm cells, which were then reactivated by UV flash photolysis of caged ATP under both high and low Ca2+ concentrations. Here, we show that initial bends in the flagella are formed at the base of the sperm and propagate towards the tip during waveform generation. However, the direction of the initial bend differed between asymmetric and symmetric waves. When a calaxin inhibitor (repaglinide) was applied, it resulted in the failure of asymmetric wave formation and propagation. This was because repaglinide had no effect on initial bend formation, but it significantly inhibited the generation of the subsequent bend in the reverse direction. Switching of dynein sliding activity by mechanical feedback is crucial for flagellar oscillation. Our results suggest that the Ca2+/calaxin mechanism plays an important role in the switching of dynein activity from microtubule sliding in the principal bend into the suppressed sliding in the reverse bend, thereby allowing the sperm to successfully change direction.
Collapse
Affiliation(s)
- Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Japan
- *Correspondence: Kogiku Shiba,
| | | | | | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Japan
| |
Collapse
|
4
|
Ciliary central apparatus structure reveals mechanisms of microtubule patterning. Nat Struct Mol Biol 2022; 29:483-492. [PMID: 35578023 PMCID: PMC9930914 DOI: 10.1038/s41594-022-00770-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/30/2022] [Indexed: 02/05/2023]
Abstract
A pair of extensively modified microtubules form the central apparatus (CA) of the axoneme of most motile cilia, where they regulate ciliary motility. The external surfaces of both CA microtubules are patterned asymmetrically with large protein complexes that repeat every 16 or 32 nm. The composition of these projections and the mechanisms that establish asymmetry and longitudinal periodicity are unknown. Here, by determining cryo-EM structures of the CA microtubules, we identify 48 different CA-associated proteins, which in turn reveal mechanisms for asymmetric and periodic protein binding to microtubules. We identify arc-MIPs, a novel class of microtubule inner protein, that bind laterally across protofilaments and remodel tubulin structure and lattice contacts. The binding mechanisms utilized by CA proteins may be generalizable to other microtubule-associated proteins. These structures establish a foundation to elucidate the contributions of individual CA proteins to ciliary motility and ciliopathies.
Collapse
|
5
|
Han L, Rao Q, Yang R, Wang Y, Chai P, Xiong Y, Zhang K. Cryo-EM structure of an active central apparatus. Nat Struct Mol Biol 2022; 29:472-482. [PMID: 35578022 PMCID: PMC9113940 DOI: 10.1038/s41594-022-00769-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/30/2022] [Indexed: 12/13/2022]
Abstract
Accurately regulated ciliary beating in time and space is critical for diverse cellular activities, which impact the survival and development of nearly all eukaryotic species. An essential beating regulator is the conserved central apparatus (CA) of motile cilia, composed of a pair of microtubules (C1 and C2) associated with hundreds of protein subunits per repeating unit. It is largely unclear how the CA plays its regulatory roles in ciliary motility. Here, we present high-resolution structures of Chlamydomonas reinhardtii CA by cryo-electron microscopy (cryo-EM) and its dynamic conformational behavior at multiple scales. The structures show how functionally related projection proteins of CA are clustered onto a spring-shaped scaffold of armadillo-repeat proteins, facilitated by elongated rachis-like proteins. The two halves of the CA are brought together by elastic chain-like bridge proteins to achieve coordinated activities. We captured an array of kinesin-like protein (KLP1) in two different stepping states, which are actively correlated with beating wave propagation of cilia. These findings establish a structural framework for understanding the role of the CA in cilia.
Collapse
Affiliation(s)
- Long Han
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Qinhui Rao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Renbin Yang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Center for Molecular Microscopy, Frederick National Laboratory for Cancer Research, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Yue Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Pengxin Chai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Kai Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
6
|
Satarić M, Nemeš T, Tuszynski J. Decoding the Bell-Shaped Calcium Spikes in Phosphorylation Cycles of Flagella. Int J Mol Sci 2022; 23:ijms23073760. [PMID: 35409111 PMCID: PMC8998650 DOI: 10.3390/ijms23073760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
We investigate the messenger role of calcium ions implicated in the regulation of wave-like bending dynamics of flagella. The emphasis is on microtubules of flagellar axoneme serving as nonlinear transmission lines for bell-shaped spikes of calcium ions. The calcium sensitive proteins, such as calmodulin, exhibit activation dependence on the spike train frequency and amplitude. Here, we analyze a Ca2+ decoding module IDA-I1 whose activity is controlled by Ca2+ activated kinase. We find that trains of Ca2+ spikes are advantageous compared to a constant rise in Ca2+ concentration as being more efficient and much less prone to noisy fluctuations.
Collapse
Affiliation(s)
- Miljko Satarić
- Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; (M.S.); (T.N.)
- Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
| | - Tomas Nemeš
- Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; (M.S.); (T.N.)
| | - Jack Tuszynski
- Department of Physics, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Correspondence:
| |
Collapse
|
7
|
Hou Y, Zhao L, Kubo T, Cheng X, McNeill N, Oda T, Witman GB. Chlamydomonas FAP70 is a component of the previously uncharacterized ciliary central apparatus projection C2a. J Cell Sci 2021; 134:jcs258540. [PMID: 33988244 PMCID: PMC8272932 DOI: 10.1242/jcs.258540] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Cilia are essential organelles required for cell signaling and motility. Nearly all motile cilia have a '9+2' axoneme composed of nine outer doublet microtubules plus two central microtubules; the central microtubules together with their projections are termed the central apparatus (CA). In Chlamydomonas reinhardtii, a model organism for studying cilia, 30 proteins are known CA components, and ∼36 more are predicted to be CA proteins. Among the candidate CA proteins is the highly conserved FAP70 (CFAP70 in humans), which also has been reported to be associated with the doublet microtubules. Here, we determined by super-resolution structured illumination microscopy that FAP70 is located exclusively in the CA, and show by cryo-electron microscopy that its N-terminus is located at the base of the C2a projection of the CA. We also found that fap70-1 mutant axonemes lack most of the C2a projection. Mass spectrometry revealed that fap70-1 axonemes lack not only FAP70 but two other conserved candidate CA proteins, FAP65 (CFAP65 in humans) and FAP147 (MYCBPAP in humans). Finally, FAP65 and FAP147 co-immunoprecipitated with HA-tagged FAP70. Taken together, these data identify FAP70, FAP65 and FAP147 as the first defining components of the C2a projection.
Collapse
Affiliation(s)
- Yuqing Hou
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - Lei Zhao
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - Tomohiro Kubo
- Department of Anatomy and Structural Biology, Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Xi Cheng
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - Nathan McNeill
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - Toshiyuki Oda
- Department of Anatomy and Structural Biology, Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - George B. Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| |
Collapse
|
8
|
Central Apparatus, the Molecular Kickstarter of Ciliary and Flagellar Nanomachines. Int J Mol Sci 2021; 22:ijms22063013. [PMID: 33809498 PMCID: PMC7999657 DOI: 10.3390/ijms22063013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Motile cilia and homologous organelles, the flagella, are an early evolutionarily invention, enabling primitive eukaryotic cells to survive and reproduce. In animals, cilia have undergone functional and structural speciation giving raise to typical motile cilia, motile nodal cilia, and sensory immotile cilia. In contrast to other cilia types, typical motile cilia are able to beat in complex, two-phase movements. Moreover, they contain many additional structures, including central apparatus, composed of two single microtubules connected by a bridge-like structure and assembling numerous complexes called projections. A growing body of evidence supports the important role of the central apparatus in the generation and regulation of the motile cilia movement. Here we review data concerning the central apparatus structure, protein composition, and the significance of its components in ciliary beating regulation.
Collapse
|
9
|
Abdelhamed Z, Lukacs M, Cindric S, Ali S, Omran H, Stottmann RW. A novel hypomorphic allele of Spag17 causes primary ciliary dyskinesia phenotypes in mice. Dis Model Mech 2020; 13:dmm045344. [PMID: 32988999 PMCID: PMC7648611 DOI: 10.1242/dmm.045344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/24/2020] [Indexed: 12/22/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a human condition of dysfunctional motile cilia characterized by recurrent lung infection, infertility, organ laterality defects and partially penetrant hydrocephalus. We recovered a mouse mutant from a forward genetic screen that developed many of the hallmark phenotypes of PCD. Whole-exome sequencing identified this primary ciliary dyskinesia only (Pcdo) allele to be a nonsense mutation (c.5236A>T) in the Spag17 coding sequence creating a premature stop codon (K1746*). The Pcdo variant abolished several isoforms of SPAG17 in the Pcdo mutant testis but not in the brain. Our data indicate differential requirements for SPAG17 in different types of motile cilia. SPAG17 is essential for proper development of the sperm flagellum and is required for either development or stability of the C1 microtubule structure within the central pair apparatus of the respiratory motile cilia, but not the brain ependymal cilia. We identified changes in ependymal ciliary beating frequency, but these did not appear to alter lateral ventricle cerebrospinal fluid flow. Aqueductal stenosis resulted in significantly slower and abnormally directed cerebrospinal fluid flow, and we suggest that this is the root cause of the hydrocephalus. The Spag17Pcdo homozygous mutant mice are generally viable to adulthood but have a significantly shortened lifespan, with chronic morbidity. Our data indicate that the c.5236A>T Pcdo variant is a hypomorphic allele of Spag17 that causes phenotypes related to motile, but not primary, cilia. Spag17Pcdo is a useful new model for elucidating the molecular mechanisms underlying central pair PCD pathogenesis in the mouse.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Zakia Abdelhamed
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Anatomy and Embryology, Faculty of Medicine (Girl's Section), Al-Azhar University, Cairo 11651, Egypt
| | - Marshall Lukacs
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sandra Cindric
- Department of General Pediatrics, University Children's Hospital Münster, 48149 Münster, Germany
| | - Saima Ali
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Heymut Omran
- Department of General Pediatrics, University Children's Hospital Münster, 48149 Münster, Germany
| | - Rolf W Stottmann
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
10
|
Lee L, Ostrowski LE. Motile cilia genetics and cell biology: big results from little mice. Cell Mol Life Sci 2020; 78:769-797. [PMID: 32915243 DOI: 10.1007/s00018-020-03633-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/11/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022]
Abstract
Our understanding of motile cilia and their role in disease has increased tremendously over the last two decades, with critical information and insight coming from the analysis of mouse models. Motile cilia form on specific epithelial cell types and typically beat in a coordinated, whip-like manner to facilitate the flow and clearance of fluids along the cell surface. Defects in formation and function of motile cilia result in primary ciliary dyskinesia (PCD), a genetically heterogeneous disorder with a well-characterized phenotype but no effective treatment. A number of model systems, ranging from unicellular eukaryotes to mammals, have provided information about the genetics, biochemistry, and structure of motile cilia. However, with remarkable resources available for genetic manipulation and developmental, pathological, and physiological analysis of phenotype, the mouse has risen to the forefront of understanding mammalian motile cilia and modeling PCD. This is evidenced by a large number of relevant mouse lines and an extensive body of genetic and phenotypic data. More recently, application of innovative cell biological techniques to these models has enabled substantial advancement in elucidating the molecular and cellular mechanisms underlying the biogenesis and function of mammalian motile cilia. In this article, we will review genetic and cell biological studies of motile cilia in mouse models and their contributions to our understanding of motile cilia and PCD pathogenesis.
Collapse
Affiliation(s)
- Lance Lee
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA. .,Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, Sioux Falls, SD, USA.
| | - Lawrence E Ostrowski
- Marsico Lung Institute/Cystic Fibrosis Center and Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
11
|
Dai D, Ichikawa M, Peri K, Rebinsky R, Huy Bui K. Identification and mapping of central pair proteins by proteomic analysis. Biophys Physicobiol 2020; 17:71-85. [PMID: 33178545 PMCID: PMC7596323 DOI: 10.2142/biophysico.bsj-2019048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 06/10/2020] [Indexed: 01/07/2023] Open
Abstract
Cilia or flagella of eukaryotes are small micro-hair like structures that are indispensable to single-cell motility and play an important role in mammalian biological processes. Cilia or flagella are composed of nine doublet microtubules surrounding a pair of singlet microtubules called the central pair (CP). Together, this arrangement forms a canonical and highly conserved 9+2 axonemal structure. The CP, which is a unique structure exclusive to motile cilia, is a pair of structurally dimorphic singlet microtubules decorated with numerous associated proteins. Mutations of CP-associated proteins cause several different physical symptoms termed as ciliopathies. Thus, it is crucial to understand the architecture of the CP. However, the protein composition of the CP was poorly understood. This was because the traditional method of identification of CP proteins was mostly limited by available Chlamydomonas mutants of CP proteins. Recently, more CP protein candidates were presented based on mass spectrometry results, but most of these proteins were not validated. In this study, we re-evaluated the CP proteins by conducting a similar comprehensive CP proteome analysis comparing the mass spectrometry results of the axoneme sample prepared from Chlamydomonas strains with and without CP complex. We identified a similar set of CP protein candidates and additional new 11 CP protein candidates. Furthermore, by using Chlamydomonas strains lacking specific CP sub-structures, we present a more complete model of localization for these CP proteins. This work has established a new foundation for understanding the function of the CP complex in future studies.
Collapse
Affiliation(s)
- Daniel Dai
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada
| | - Muneyoshi Ichikawa
- Department of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Katya Peri
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada
| | - Reid Rebinsky
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada
| |
Collapse
|
12
|
Osinka A, Poprzeczko M, Zielinska MM, Fabczak H, Joachimiak E, Wloga D. Ciliary Proteins: Filling the Gaps. Recent Advances in Deciphering the Protein Composition of Motile Ciliary Complexes. Cells 2019; 8:cells8070730. [PMID: 31319499 PMCID: PMC6678824 DOI: 10.3390/cells8070730] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022] Open
Abstract
Cilia are highly evolutionarily conserved, microtubule-based cell protrusions present in eukaryotic organisms from protists to humans, with the exception of fungi and higher plants. Cilia can be broadly divided into non-motile sensory cilia, called primary cilia, and motile cilia, which are locomotory organelles. The skeleton (axoneme) of primary cilia is formed by nine outer doublet microtubules distributed on the cilium circumference. In contrast, the skeleton of motile cilia is more complex: in addition to outer doublets, it is composed of two central microtubules and several diverse multi-protein complexes that are distributed periodically along both types of microtubules. For many years, researchers have endeavored to fully characterize the protein composition of ciliary macro-complexes and the molecular basis of signal transduction between these complexes. Genetic and biochemical analyses have suggested that several hundreds of proteins could be involved in the assembly and function of motile cilia. Within the last several years, the combined efforts of researchers using cryo-electron tomography, genetic and biochemical approaches, and diverse model organisms have significantly advanced our knowledge of the ciliary structure and protein composition. Here, we summarize the recent progress in the identification of the subunits of ciliary complexes, their precise intraciliary localization determined by cryo-electron tomography data, and the role of newly identified proteins in cilia.
Collapse
Affiliation(s)
- Anna Osinka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Martyna Poprzeczko
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Magdalena M Zielinska
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
13
|
Zhao L, Hou Y, Picariello T, Craige B, Witman GB. Proteome of the central apparatus of a ciliary axoneme. J Cell Biol 2019; 218:2051-2070. [PMID: 31092556 PMCID: PMC6548120 DOI: 10.1083/jcb.201902017] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/13/2019] [Accepted: 04/17/2019] [Indexed: 12/15/2022] Open
Abstract
The central apparatus is an essential component of “9+2” cilia. Zhao et al. identify more than 40 new potential components of the central apparatus of Chlamydomonas. Many are conserved and will facilitate genetic screening of patients with a form of primary ciliary dyskinesia that is difficult to diagnose. Nearly all motile cilia have a “9+2” axoneme containing a central apparatus (CA), consisting of two central microtubules with projections, that is essential for motility. To date, only 22 proteins are known to be CA components. To identify new candidate CA proteins, we used mass spectrometry to compare axonemes of wild-type Chlamydomonas and a CA-less mutant. We identified 44 novel candidate CA proteins, of which 13 are conserved in humans. Five of the latter were studied more closely, and all five localized to the CA; therefore, most of the other candidates are likely to also be CA components. Our results reveal that the CA is far more compositionally complex than previously recognized and provide a greatly expanded knowledge base for studies to understand the architecture of the CA and how it functions. The discovery of the new conserved CA proteins will facilitate genetic screening to identify patients with a form of primary ciliary dyskinesia that has been difficult to diagnose.
Collapse
Affiliation(s)
- Lei Zhao
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - Yuqing Hou
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - Tyler Picariello
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - Branch Craige
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - George B Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
14
|
Iso-Touru T, Wurmser C, Venhoranta H, Hiltpold M, Savolainen T, Sironen A, Fischer K, Flisikowski K, Fries R, Vicente-Carrillo A, Alvarez-Rodriguez M, Nagy S, Mutikainen M, Peippo J, Taponen J, Sahana G, Guldbrandtsen B, Simonen H, Rodriguez-Martinez H, Andersson M, Pausch H. A splice donor variant in CCDC189 is associated with asthenospermia in Nordic Red dairy cattle. BMC Genomics 2019; 20:286. [PMID: 30975085 PMCID: PMC6460654 DOI: 10.1186/s12864-019-5628-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/20/2019] [Indexed: 01/10/2023] Open
Abstract
Background Cattle populations are highly amenable to the genetic mapping of male reproductive traits because longitudinal data on ejaculate quality and dense microarray-derived genotypes are available for thousands of artificial insemination bulls. Two young Nordic Red bulls delivered sperm with low progressive motility (i.e., asthenospermia) during a semen collection period of more than four months. The bulls were related through a common ancestor on both their paternal and maternal ancestry. Thus, a recessive mode of inheritance of asthenospermia was suspected. Results Both bulls were genotyped at 54,001 SNPs using the Illumina BovineSNP50 Bead chip. A scan for autozygosity revealed that they were identical by descent for a 2.98 Mb segment located on bovine chromosome 25. This haplotype was not found in the homozygous state in 8557 fertile bulls although five homozygous haplotype carriers were expected (P = 0.018). Whole genome-sequencing uncovered that both asthenospermic bulls were homozygous for a mutation that disrupts a canonical 5′ splice donor site of CCDC189 encoding the coiled-coil domain containing protein 189. Transcription analysis showed that the derived allele activates a cryptic splice site resulting in a frameshift and premature termination of translation. The mutated CCDC189 protein is truncated by more than 40%, thus lacking the flagellar C1a complex subunit C1a-32 that is supposed to modulate the physiological movement of the sperm flagella. The mutant allele occurs at a frequency of 2.5% in Nordic Red cattle. Conclusions Our study in cattle uncovered that CCDC189 is required for physiological movement of sperm flagella thus enabling active progression of spermatozoa and fertilization. A direct gene test may be implemented to monitor the asthenospermia-associated allele and prevent the birth of homozygous bulls that are infertile. Our results have been integrated in the Online Mendelian Inheritance in Animals (OMIA) database (https://omia.org/OMIA002167/9913/). Electronic supplementary material The online version of this article (10.1186/s12864-019-5628-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Terhi Iso-Touru
- Natural Resources Institute Finland (Luke), 31600, Jokioinen, Finland
| | - Christine Wurmser
- Chair of Animal Breeding, Technische Universität München, 85354, Freising-Weihenstephan, Germany
| | | | - Maya Hiltpold
- Animal Genomics, ETH Zurich, 8001, Zurich, Switzerland
| | | | - Anu Sironen
- Natural Resources Institute Finland (Luke), 31600, Jokioinen, Finland
| | - Konrad Fischer
- Chair of Livestock Biotechnology, Technische Universität München, 85354, Freising-Weihenstephan, Germany
| | - Krzysztof Flisikowski
- Chair of Livestock Biotechnology, Technische Universität München, 85354, Freising-Weihenstephan, Germany
| | - Ruedi Fries
- Chair of Animal Breeding, Technische Universität München, 85354, Freising-Weihenstephan, Germany
| | | | - Manuel Alvarez-Rodriguez
- Department of Clinical and Experimental Medicine, Linköping University, 58183, Linköping, Sweden
| | | | - Mervi Mutikainen
- Natural Resources Institute Finland (Luke), 31600, Jokioinen, Finland
| | - Jaana Peippo
- Natural Resources Institute Finland (Luke), 31600, Jokioinen, Finland
| | | | - Goutam Sahana
- Department of Molecular Biology and Genetics, Aarhus University, 8830, Tjele, Denmark
| | - Bernt Guldbrandtsen
- Department of Molecular Biology and Genetics, Aarhus University, 8830, Tjele, Denmark
| | | | | | | | - Hubert Pausch
- Animal Genomics, ETH Zurich, 8001, Zurich, Switzerland.
| |
Collapse
|
15
|
Inaba K, Shiba K. Microscopic analysis of sperm movement: links to mechanisms and protein components. Microscopy (Oxf) 2018; 67:144-155. [DOI: 10.1093/jmicro/dfy021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/25/2018] [Indexed: 01/07/2023] Open
Affiliation(s)
- Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | - Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| |
Collapse
|
16
|
SPAG17 Is Required for Male Germ Cell Differentiation and Fertility. Int J Mol Sci 2018; 19:ijms19041252. [PMID: 29690537 PMCID: PMC5979577 DOI: 10.3390/ijms19041252] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/05/2018] [Accepted: 04/12/2018] [Indexed: 01/08/2023] Open
Abstract
Spag17 encodes a protein present in the axoneme central pair complex of motile cilia and flagella. A mutation in this gene has been reported to be associated with infertility caused by defects in sperm motility. Here, we report that Spag17 knockout mice are infertile because of a severe defect in spermatogenesis. The histological evaluation of testis sections from mutant mice revealed seminiferous tubules with spermatogenesis arrested at the spermatid stage and cell debris in the cauda epididymis. The few sperm collected from the cauda epididymis were immotile and displayed abnormal tail and head morphology. Immunofluorescence analysis of Spag17 knockout germ cells showed spermatids with abnormally long manchette structures and morphological defects in the head. Electron microscopy showed altered manchette microtubules, reduced chromatin condensation, irregular nuclear shape, and detached acrosomes. Additionally, the transport of proteins (Pcdp1 and IFT20) along the manchette microtubules was disrupted in the knockout elongating spermatids. Our results show for the first time that Spag17 is essential for normal manchette structure, protein transport, and formation of the sperm head and flagellum, in addition to its role in sperm motility.
Collapse
|
17
|
Xu X, Sha YW, Mei LB, Ji ZY, Qiu PP, Ji H, Li P, Wang T, Li L. A familial study of twins with severe asthenozoospermia identified a homozygousSPAG17mutation by whole-exome sequencing. Clin Genet 2017; 93:345-349. [PMID: 28548327 DOI: 10.1111/cge.13059] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/17/2017] [Accepted: 05/21/2017] [Indexed: 01/19/2023]
Affiliation(s)
- X. Xu
- School of Pharmaceutical Sciences; Xiamen University; Xiamen China
| | - Y.-W. Sha
- Department of Reproductive Medicine; Xiamen Maternity and Child Care Hospital; Xiamen China
| | - L.-B. Mei
- Department of Reproductive Medicine; Xiamen Maternity and Child Care Hospital; Xiamen China
| | - Z.-Y. Ji
- Department of Reproductive Medicine; Xiamen Maternity and Child Care Hospital; Xiamen China
| | - P.-p. Qiu
- Department of Reproductive Medicine; Xiamen Maternity and Child Care Hospital; Xiamen China
| | - H. Ji
- Department of Reproductive Medicine; Xiamen Maternity and Child Care Hospital; Xiamen China
| | - P. Li
- Department of Reproductive Medicine; Xiamen Maternity and Child Care Hospital; Xiamen China
| | - T. Wang
- School of Pharmaceutical Sciences; Xiamen University; Xiamen China
| | - L. Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital; Capital Medical University; Chaoyang China
| |
Collapse
|
18
|
Loreng TD, Smith EF. The Central Apparatus of Cilia and Eukaryotic Flagella. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028118. [PMID: 27770014 DOI: 10.1101/cshperspect.a028118] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The motile cilium is a complex organelle that is typically comprised of a 9+2 microtubule skeleton; nine doublet microtubules surrounding a pair of central singlet microtubules. Like the doublet microtubules, the central microtubules form a scaffold for the assembly of protein complexes forming an intricate network of interconnected projections. The central microtubules and associated structures are collectively referred to as the central apparatus (CA). Studies using a variety of experimental approaches and model organisms have led to the discovery of a number of highly conserved protein complexes, unprecedented high-resolution views of projection structure, and new insights into regulation of dynein-driven microtubule sliding. Here, we review recent progress in defining mechanisms for the assembly and function of the CA and include possible implications for the importance of the CA in human health.
Collapse
Affiliation(s)
- Thomas D Loreng
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Elizabeth F Smith
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
19
|
Teves ME, Nagarkatti-Gude DR, Zhang Z, Strauss JF. Mammalian axoneme central pair complex proteins: Broader roles revealed by gene knockout phenotypes. Cytoskeleton (Hoboken) 2016; 73:3-22. [PMID: 26785425 DOI: 10.1002/cm.21271] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 11/22/2015] [Accepted: 12/24/2015] [Indexed: 01/09/2023]
Abstract
The axoneme genes, their encoded proteins, their functions and the structures they form are largely conserved across species. Much of our knowledge of the function and structure of axoneme proteins in cilia and flagella is derived from studies on model organisms like the green algae, Chlamydomonas reinhardtii. The core structure of cilia and flagella is the axoneme, which in most motile cilia and flagella contains a 9 + 2 configuration of microtubules. The two central microtubules are the scaffold of the central pair complex (CPC). Mutations that disrupt CPC genes in Chlamydomonas and other model organisms result in defects in assembly, stability and function of the axoneme, leading to flagellar motility defects. However, targeted mutations generated in mice in the orthologous CPC genes have revealed significant differences in phenotypes of mutants compared to Chlamydomonas. Here we review observations that support the concept of cell-type specific roles for the CPC genes in mice, and an expanded repertoire of functions for the products of these genes in cilia, including non-motile cilia, and other microtubule-associated cellular functions.
Collapse
Affiliation(s)
- Maria E Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - David R Nagarkatti-Gude
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia.,Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Zhibing Zhang
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia.,Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Jerome F Strauss
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia.,Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
20
|
Kawashima A, Kigoshi T, Katoh Y, Ishikawa Y, Shawki HH, Inoue N, Tamba M, Matsuda M, Okamura N. CABCOCO1, a novel coiled-coil protein With calcium-binding activity, is localized in the sperm flagellum. Mol Reprod Dev 2016; 83:912-926. [PMID: 26990073 DOI: 10.1002/mrd.22639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 03/07/2016] [Indexed: 01/08/2023]
Abstract
The gene 1700040L02Rik (GenBank accession number NM_028491, NP_082767.1) was selected by in silico screening as candidate that encodes a calcium-binding protein in sperm from a database of predicted mouse cilia-related genes. The predicted amino acid sequence revealed the presence of coiled-coil domain at the C-terminus and a CLAMP motif containing a leucine zipper domain in the middle of the protein. Assessment of a recombinant version of this protein by Stains-all and ruthenium red staining and by direct measurement of terbium binding revealed its calcium-binding activities. We therefore named this protein CABCOCO1 for calcium-binding coiled-coil protein-1. Immunohistochemical analyses showed its localization in spermatogenic cells of mouse testis. CABCOCO1 was first observed in the cytoplasm of murine spermatocytes, concentrated around centrioles of spermatids and co-localized with the centrosomal protein pericentrin. During the stage when centrosome number is reduced, CABCOCO1 relocalized to the murine sperm flagellum. On the other hand, in porcine sperm, whose proximal centriole remains intact while the distal centriole degenerates during spermiogenesis, CABCOCO1 localized both in the basal body and the flagellum. These results suggested that CABCOCO1 is involved in the control of sperm flagellar movement. Mol. Reprod. Dev. 83: 912-926, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Akihiro Kawashima
- Laboratory of Reproductive Biochemistry, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takumi Kigoshi
- Laboratory of Reproductive Biochemistry, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuki Katoh
- Laboratory of Reproductive Biochemistry, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Center for Humanities and Sciences, Ibaraki Prefectural University of Health Sciences, Ami, Ibaraki, Japan
| | - Yu Ishikawa
- Laboratory of Reproductive Biochemistry, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hossam H Shawki
- Laboratory of Reproductive Biochemistry, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Faculty of Medicine, Department of Anatomy and Embryology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Naoya Inoue
- Laboratory of Reproductive Biochemistry, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Michiko Tamba
- Laboratory of Reproductive Biochemistry, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Manabu Matsuda
- Laboratory of Reproductive Biochemistry, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Naomichi Okamura
- Laboratory of Reproductive Biochemistry, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
21
|
Teves ME, Sundaresan G, Cohen DJ, Hyzy SL, Kajan I, Maczis M, Zhang Z, Costanzo RM, Zweit J, Schwartz Z, Boyan BD, Strauss JF. Spag17 deficiency results in skeletal malformations and bone abnormalities. PLoS One 2015; 10:e0125936. [PMID: 26017218 PMCID: PMC4446355 DOI: 10.1371/journal.pone.0125936] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/25/2015] [Indexed: 11/18/2022] Open
Abstract
Height is the result of many growth and development processes. Most of the genes associated with height are known to play a role in skeletal development. Single-nucleotide polymorphisms in the SPAG17 gene have been associated with human height. However, it is not clear how this gene influences linear growth. Here we show that a targeted mutation in Spag17 leads to skeletal malformations. Hind limb length in mutants was significantly shorter than in wild-type mice. Studies revealed differences in maturation of femur and tibia suggesting alterations in limb patterning. Morphometric studies showed increased bone formation evidenced by increased trabecular bone area and the ratio of bone area to total area, leading to reductions in the ratio of marrow area/total area in the femur. Micro-CTs and von Kossa staining demonstrated increased mineral in the femur. Moreover, osteocalcin and osterix were more highly expressed in mutant mice than in wild-type mice femurs. These data suggest that femur bone shortening may be due to premature ossification. On the other hand, tibias appear to be shorter due to a delay in cartilage and bone development. Morphometric studies showed reduction in growth plate and bone formation. These defects did not affect bone mineralization, although the volume of primary bone and levels of osteocalcin and osterix were higher. Other skeletal malformations were observed including fused sternebrae, reduced mineralization in the skull, medial and metacarpal phalanges. Primary cilia from chondrocytes, osteoblasts, and embryonic fibroblasts (MEFs) isolated from knockout mice were shorter and fewer cells had primary cilia in comparison to cells from wild-type mice. In addition, Spag17 knockdown in wild-type MEFs by Spag17 siRNA duplex reproduced the shorter primary cilia phenotype. Our findings disclosed unexpected functions for Spag17 in the regulation of skeletal growth and mineralization, perhaps because of its role in primary cilia of chondrocytes and osteoblasts.
Collapse
Affiliation(s)
- Maria Eugenia Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Gobalakrishnan Sundaresan
- Department of Radiology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - David J. Cohen
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Sharon L. Hyzy
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Illya Kajan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Melissa Maczis
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Zhibing Zhang
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Richard M. Costanzo
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jamal Zweit
- Department of Radiology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Barbara D. Boyan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jerome F. Strauss
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
22
|
Yang F, Pavlik J, Fox L, Scarbrough C, Sale WS, Sisson JH, Wirschell M. Alcohol-induced ciliary dysfunction targets the outer dynein arm. Am J Physiol Lung Cell Mol Physiol 2015; 308:L569-76. [PMID: 25595647 DOI: 10.1152/ajplung.00257.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Alcohol abuse results in an increased incidence of pulmonary infection, in part attributable to impaired mucociliary clearance. Analysis of motility in mammalian airway cilia has revealed that alcohol impacts the ciliary dynein motors by a mechanism involving altered axonemal protein phosphorylation. Given the highly conserved nature of cilia, it is likely that the mechanisms for alcohol-induced ciliary dysfunction (AICD) are conserved. Thus we utilized the experimental advantages offered by the model organism, Chlamydomonas, to determine the precise effects of alcohol on ciliary dynein activity and identify axonemal phosphoproteins that are altered by alcohol exposure. Analysis of live cells or reactivated cell models showed that alcohol significantly inhibits ciliary motility in Chlamydomonas via a mechanism that is part of the axonemal structure. Taking advantage of informative mutant cells, we found that alcohol impacts the activity of the outer dynein arm. Consistent with this finding, alcohol exposure results in a significant reduction in ciliary beat frequency, a parameter of ciliary movement that requires normal outer dynein arm function. Using mutants that lack specific heavy-chain motor domains, we have determined that alcohol impacts the β- and γ-heavy chains of the outer dynein arm. Furthermore, using a phospho-threonine-specific antibody, we determined that the phosphorylation state of DCC1 of the outer dynein arm-docking complex is altered in the presence of alcohol, and its phosphorylation correlates with AICD. These results demonstrate that alcohol targets specific outer dynein arm components and suggest that DCC1 is part of an alcohol-sensitive mechanism that controls outer dynein arm activity.
Collapse
Affiliation(s)
- Fan Yang
- University of Mississippi Medical Center, Department of Biochemistry, Jackson, Mississippi
| | - Jacqueline Pavlik
- University of Nebraska Medical Center, Department of Internal Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, Omaha, Nebraska; and
| | - Laura Fox
- Emory University School of Medicine, Department of Cell Biology, Atlanta, Georgia
| | - Chasity Scarbrough
- University of Mississippi Medical Center, Department of Biochemistry, Jackson, Mississippi
| | - Winfield S Sale
- Emory University School of Medicine, Department of Cell Biology, Atlanta, Georgia
| | - Joseph H Sisson
- University of Nebraska Medical Center, Department of Internal Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, Omaha, Nebraska; and
| | - Maureen Wirschell
- University of Mississippi Medical Center, Department of Biochemistry, Jackson, Mississippi;
| |
Collapse
|
23
|
Lesich KA, dePinho TG, Dionne BJ, Lindemann CB. The effects of Ca2+ and ADP on dynein switching during the beat cycle of reactivated bull sperm models. Cytoskeleton (Hoboken) 2014; 71:611-27. [PMID: 25355469 DOI: 10.1002/cm.21196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/14/2014] [Accepted: 10/20/2014] [Indexed: 12/22/2022]
Abstract
Calcium regulation of flagellar motility is the basis for chemotaxis, phototaxis, and hyperactivation responses in eukaryotic flagellates and spermatozoa. Ca2+ is the internal messenger for these responses, but the coupling between Ca2+ and the motor mechanism that generates the flagellar beat is incompletely understood. We examined the effects of Ca2+ on the flagellar curvature at the switch-points of the beat cycle in bull sperm. The sperm were detergent extracted and reactivated with 0.1 mM adenosine triphosphate (ATP). With their heads immobilized and their tails beating freely it is possible to calculate the bending torque and the transverse force acting on the flagellum at the switch-points. An increase in the free Ca2+ concentration (pCa 8 to pCa 4) significantly decreased the development of torque and t-force in the principal bending direction, while having negligible effect on the reverse bend. The action of Ca2+ was more pronounced when the sperm were also treated with 4 mM adenosine diphosphate (ADP); it was sufficient to change the direction of bending that reaches the greater curvature. We also observed that the curvature of the distal half of the flagellum became locked in one direction in the presence of Ca2+ . This indicates that a subset of the dynein becomes continuously activated by Ca2+ and fails to switch with the beat cycle. Our evidence suggests this subset of dyneins is localized to doublets #1-4 of the axoneme.
Collapse
Affiliation(s)
- Kathleen A Lesich
- Department of Biological Sciences, Oakland University, Rochester, Michigan
| | | | | | | |
Collapse
|
24
|
Flagellar central pair assembly in Chlamydomonas reinhardtii. Cilia 2013; 2:15. [PMID: 24283352 PMCID: PMC3895805 DOI: 10.1186/2046-2530-2-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/13/2013] [Indexed: 11/21/2022] Open
Abstract
Background Most motile cilia and flagella have nine outer doublet and two central pair (CP) microtubules. Outer doublet microtubules are continuous with the triplet microtubules of the basal body, are templated by the basal body microtubules, and grow by addition of new subunits to their distal (“plus”) ends. In contrast, CP microtubules are not continuous with basal body microtubules, raising the question of how these microtubules are assembled and how their polarity is established. Methods CP assembly in Chlamydomonas reinhardtii was analyzed by electron microscopy and wide-field and super-resolution immunofluorescence microscopy. To analyze CP assembly independently from flagellar assembly, the CP-deficient katanin mutants pf15 or pf19 were mated to wild-type cells. HA-tagged tubulin and the CP-specific protein hydin were used as markers to analyze de novo CP assembly inside the formerly mutant flagella. Results In regenerating flagella, the CP and its projections assemble near the transition zone soon after the onset of outer doublet elongation. During de novo CP assembly in full-length flagella, the nascent CP was first apparent in a subdistal region of the flagellum. The developing CP replaces a fibrous core that fills the axonemal lumen of CP-deficient flagella. The fibrous core contains proteins normally associated with the C1 CP microtubule and proteins involved in intraflagellar transport (IFT). In flagella of the radial spoke-deficient mutant pf14, two pairs of CPs are frequently present with identical correct polarities. Conclusions The temporal separation of flagellar and CP assembly in dikaryons formed by mating CP-deficient gametes to wild-type gametes revealed that the formation of the CP does not require proximity to the basal body or transition zone, or to the flagellar tip. The observations on pf14 provide further support that the CP self-assembles without a template and eliminate the possibility that CP polarity is established by interaction with axonemal radial spokes. Polarity of the developing CP may be determined by the proximal-to-distal gradient of precursor molecules. IFT proteins accumulate in flagella of CP mutants; the abnormal distribution of IFT proteins may explain why these flagella are often shorter than normal.
Collapse
|
25
|
Nguyen HT, Sandhu J, Langousis G, Hill KL. CMF22 is a broadly conserved axonemal protein and is required for propulsive motility in Trypanosoma brucei. EUKARYOTIC CELL 2013; 12:1202-13. [PMID: 23851336 PMCID: PMC3811564 DOI: 10.1128/ec.00068-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 07/02/2013] [Indexed: 12/23/2022]
Abstract
The eukaryotic flagellum (or cilium) is a broadly conserved organelle that provides motility for many pathogenic protozoa and is critical for normal development and physiology in humans. Therefore, defining core components of motile axonemes enhances understanding of eukaryotic biology and provides insight into mechanisms of inherited and infectious diseases in humans. In this study, we show that component of motile flagella 22 (CMF22) is tightly associated with the flagellar axoneme and is likely to have been present in the last eukaryotic common ancestor. The CMF22 amino acid sequence contains predicted IQ and ATPase associated with a variety of cellular activities (AAA) motifs that are conserved among CMF22 orthologues in diverse organisms, hinting at the importance of these domains in CMF22 function. Knockdown by RNA interference (RNAi) and rescue with an RNAi-immune mRNA demonstrated that CMF22 is required for propulsive cell motility in Trypanosoma brucei. Loss of propulsive motility in CMF22-knockdown cells was due to altered flagellar beating patterns, rather than flagellar paralysis, indicating that CMF22 is essential for motility regulation and likely functions as a fundamental regulatory component of motile axonemes. CMF22 association with the axoneme is weakened in mutants that disrupt the nexin-dynein regulatory complex, suggesting potential interaction with this complex. Our results provide insight into the core machinery required for motility of eukaryotic flagella.
Collapse
Affiliation(s)
- HoangKim T. Nguyen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Jaspreet Sandhu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Gerasimos Langousis
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Kent L. Hill
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
26
|
Teves ME, Zhang Z, Costanzo RM, Henderson SC, Corwin FD, Zweit J, Sundaresan G, Subler M, Salloum FN, Rubin BK, Strauss JF. Sperm-associated antigen-17 gene is essential for motile cilia function and neonatal survival. Am J Respir Cell Mol Biol 2013; 48:765-72. [PMID: 23418344 PMCID: PMC3727877 DOI: 10.1165/rcmb.2012-0362oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 01/16/2013] [Indexed: 11/24/2022] Open
Abstract
Primary ciliary dyskinesia (PCD), resulting from defects in cilia assembly or motility, is caused by mutations in a number of genes encoding axonemal proteins. PCD phenotypes are variable, and include recurrent respiratory tract infections, bronchiectasis, hydrocephaly, situs inversus, and male infertility. We generated knockout mice for the sperm-associated antigen-17 (Spag17) gene, which encodes a central pair (CP) protein present in the axonemes of cells with "9 + 2" motile cilia or flagella. The targeting of Spag17 resulted in a severe phenotype characterized by immotile nasal and tracheal cilia, reduced clearance of nasal mucus, profound respiratory distress associated with lung fluid accumulation and disruption of the alveolar epithelium, cerebral ventricular expansion consistent with emerging hydrocephalus, failure to suckle, and neonatal demise within 12 hours of birth. Ultrastructural analysis revealed the loss of one CP microtubule in approximately one quarter of tracheal cilia axonemes, an absence of a C1 microtubule projection, and other less frequent CP structural abnormalities. SPAG6 and SPAG16 (CP proteins that interact with SPAG17) were increased in tracheal tissue from SPAG17-deficient mice. We conclude that Spag17 plays a critical role in the function and structure of motile cilia, and that neonatal lethality is likely explained by impaired airway mucociliary clearance.
Collapse
Affiliation(s)
| | - Zhibing Zhang
- Department of Obstetrics and Gynecology
- Department of Biochemistry and Molecular Biology
| | | | | | | | - Jamal Zweit
- Department of Biochemistry and Molecular Biology
- Department of Radiology
| | | | | | - Fadi N. Salloum
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, and
| | - Bruce K. Rubin
- Department of Physiology and Biophysics
- Department of Pediatrics, Virginia Commonwealth University, Richmond, Virginia
| | - Jerome F. Strauss
- Department of Obstetrics and Gynecology
- Department of Biochemistry and Molecular Biology
| |
Collapse
|
27
|
Bower R, Tritschler D, Vanderwaal K, Perrone CA, Mueller J, Fox L, Sale WS, Porter ME. The N-DRC forms a conserved biochemical complex that maintains outer doublet alignment and limits microtubule sliding in motile axonemes. Mol Biol Cell 2013; 24:1134-52. [PMID: 23427265 PMCID: PMC3623635 DOI: 10.1091/mbc.e12-11-0801] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The nexin–dynein regulatory complex (N-DRC) is implicated in the control of dynein activity as a structural component of the nexin link. This study identifies several new subunits of the N-DRC and demonstrates for the first time that it forms a discrete biochemical complex that maintains outer doublet integrity and regulates microtubule sliding. The nexin–dynein regulatory complex (N-DRC) is proposed to coordinate dynein arm activity and interconnect doublet microtubules. Here we identify a conserved region in DRC4 critical for assembly of the N-DRC into the axoneme. At least 10 subunits associate with DRC4 to form a discrete complex distinct from other axonemal substructures. Transformation of drc4 mutants with epitope-tagged DRC4 rescues the motility defects and restores assembly of missing DRC subunits and associated inner-arm dyneins. Four new DRC subunits contain calcium-signaling motifs and/or AAA domains and are nearly ubiquitous in species with motile cilia. However, drc mutants are motile and maintain the 9 + 2 organization of the axoneme. To evaluate the function of the N-DRC, we analyzed ATP-induced reactivation of isolated axonemes. Rather than the reactivated bending observed with wild-type axonemes, ATP addition to drc-mutant axonemes resulted in splaying of doublets in the distal region, followed by oscillatory bending between pairs of doublets. Thus the N-DRC provides some but not all of the resistance to microtubule sliding and helps to maintain optimal alignment of doublets for productive flagellar motility. These findings provide new insights into the mechanisms that regulate motility and further highlight the importance of the proximal region of the axoneme in generating flagellar bending.
Collapse
Affiliation(s)
- Raqual Bower
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Carbajal-González BI, Heuser T, Fu X, Lin J, Smith BW, Mitchell DR, Nicastro D. Conserved structural motifs in the central pair complex of eukaryotic flagella. Cytoskeleton (Hoboken) 2013; 70:101-120. [PMID: 23281266 PMCID: PMC3914236 DOI: 10.1002/cm.21094] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/19/2012] [Accepted: 11/21/2012] [Indexed: 11/11/2022]
Abstract
Cilia and flagella are conserved hair-like appendages of eukaryotic cells that function as sensing and motility generating organelles. Motility is driven by thousands of axonemal dyneins that require precise regulation. One essential motility regulator is the central pair complex (CPC) and many CPC defects cause paralysis of cilia/flagella. Several human diseases, such as immotile cilia syndrome, show CPC abnormalities, but little is known about the detailed three-dimensional (3D) structure and function of the CPC. The CPC is located in the center of typical [9+2] cilia/flagella and is composed of two singlet microtubules (MTs), each with a set of associated projections that extend toward the surrounding nine doublet MTs. Using cryo-electron tomography coupled with subtomogram averaging, we visualized and compared the 3D structures of the CPC in both the green alga Chlamydomonas and the sea urchin Strongylocentrotus at the highest resolution published to date. Despite the evolutionary distance between these species, their CPCs exhibit remarkable structural conservation. We identified several new projections, including those that form the elusive sheath, and show that the bridge has a more complex architecture than previously thought. Organism-specific differences include the presence of MT inner proteins in Chlamydomonas, but not Strongylocentrotus, and different overall outlines of the highly connected projection network, which forms a round-shaped cylinder in algae, but is more oval in sea urchin. These differences could be adaptations to the mechanical requirements of the rotating CPC in Chlamydomonas, compared to the Strongylocentrotus CPC which has a fixed orientation.
Collapse
Affiliation(s)
| | - Thomas Heuser
- Biology Department, Rosenstiel Center, MS029, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Xiaofeng Fu
- Biology Department, Rosenstiel Center, MS029, Brandeis University, 415 South Street, Waltham, MA 02454, USA
- Howard Hughes Medical Institute, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Jianfeng Lin
- Biology Department, Rosenstiel Center, MS029, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Brandon W. Smith
- Department of Cell and Developmental Biology, Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| | - David R. Mitchell
- Department of Cell and Developmental Biology, Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| | - Daniela Nicastro
- Biology Department, Rosenstiel Center, MS029, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| |
Collapse
|
29
|
DiPetrillo CG, Smith EF. Methods for analysis of calcium/calmodulin signaling in cilia and flagella. Methods Enzymol 2013; 524:37-57. [PMID: 23498733 DOI: 10.1016/b978-0-12-397945-2.00003-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The axonemal microtubules of cilia/flagella act as a scaffold for assembly of the protein complexes that ultimately regulate dynein activity to control the size and shape of ciliary bends. Despite our general understanding of the contribution of microtubule sliding to ciliary and flagellar motility, many questions regarding the regulation of dynein remain unanswered. For example, we know that the second messenger calcium plays an important role in modulating dynein activity in response to extracellular cues, but it remains unclear how calcium-binding proteins anchored to the axoneme contribute to this regulation. Recent work has focused on determining the identity and specific functions of these axonemal calcium-binding proteins. Here, we review our current knowledge of calcium-mediated motility and highlight key experiments that have substantially aided our understanding of calcium signaling within the axoneme.
Collapse
Affiliation(s)
- Christen G DiPetrillo
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
30
|
The DPY-30 domain and its flanking sequence mediate the assembly and modulation of flagellar radial spoke complexes. Mol Cell Biol 2012; 32:4012-24. [PMID: 22851692 DOI: 10.1128/mcb.06602-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RIIa is known as the dimerization and docking (D/D) domain of the cyclic AMP (cAMP)-dependent protein kinase. However, numerous molecules, including radial spoke protein 2 (RSP2) in Chlamydomonas flagella, also contain an RIIa or a similar DPY-30 domain. To elucidate new roles of D/D domain-containing proteins, we investigated a panel of RSP2 mutants. An RSP2 mutant had paralyzed flagella defective in RSP2 and multiple subunits near the spokehead. New transgenic strains lacking only the DPY-30 domain in RSP2 were also paralyzed. In contrast, motility was restored in strains that lacked only RSP2's calmodulin-binding C-terminal region. These cells swam normally in dim light but could not maintain typical swimming trajectories under bright illumination. In both deletion transgenic strains, the subunits near the spokehead were restored, but their firm attachment to the spokestalk required the DPY-30 domain. We postulate that the DPY-30-helix dimer is a conserved two-prong linker, required for normal motility, organizing duplicated subunits in the radial spoke stalk and formation of a symmetrical spokehead. Further, the dispensable calmodulin-binding region appears to fine-tune the spokehead for regulation of "steering" motility in the green algae. Thus, in general, D/D domains may function to localize molecular modules for both the assembly and modulation of macromolecular complexes.
Collapse
|
31
|
Heuser T, Dymek EE, Lin J, Smith EF, Nicastro D. The CSC connects three major axonemal complexes involved in dynein regulation. Mol Biol Cell 2012; 23:3143-55. [PMID: 22740634 PMCID: PMC3418309 DOI: 10.1091/mbc.e12-05-0357] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This study reveals the 3D structure of the CSC and its connections to three major axonemal complexes involved in dynein regulation, including the distal radial spoke and the nexin-DRC. The findings corroborate radial spoke heterogeneity and suggest a unique role for the distal spoke in calcium-mediated signal transduction and flagellar motility. Motile cilia and flagella are highly conserved organelles that play important roles in human health and development. We recently discovered a calmodulin- and spoke-associated complex (CSC) that is required for wild-type motility and for the stable assembly of a subset of radial spokes. Using cryo–electron tomography, we present the first structure-based localization model of the CSC. Chlamydomonas flagella have two full-length radial spokes, RS1 and RS2, and a shorter RS3 homologue, the RS3 stand-in (RS3S). Using newly developed techniques for analyzing samples with structural heterogeneity, we demonstrate that the CSC connects three major axonemal complexes involved in dynein regulation: RS2, the nexin–dynein regulatory complex (N-DRC), and RS3S. These results provide insights into how signals from the radial spokes may be transmitted to the N-DRC and ultimately to the dynein motors. Our results also indicate that although structurally very similar, RS1 and RS2 likely serve different functions in regulating flagellar motility.
Collapse
Affiliation(s)
- Thomas Heuser
- Biology Department, Rosenstiel Center, Brandeis University, Waltham, MA 02454, USA
| | | | | | | | | |
Collapse
|
32
|
O'Toole ET, Giddings TH, Porter ME, Ostrowski LE. Computer-assisted image analysis of human cilia and Chlamydomonas flagella reveals both similarities and differences in axoneme structure. Cytoskeleton (Hoboken) 2012; 69:577-90. [PMID: 22573610 DOI: 10.1002/cm.21035] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 01/11/2023]
Abstract
In the past decade, investigations from several different fields have revealed the critical role of cilia in human health and disease. Because of the highly conserved nature of the basic axonemal structure, many different model systems have proven useful for the study of ciliopathies, especially the unicellular, biflagellate green alga Chlamydomonas reinhardtii. Although the basic axonemal structure of cilia and flagella is highly conserved, these organelles often perform specialized functions unique to the cell or tissue in which they are found. These differences in function are likely reflected in differences in structural organization. In this work, we directly compare the structure of isolated axonemes from human cilia and Chlamydomonas flagella to identify similarities and differences that potentially play key roles in determining their functionality. Using transmission electron microscopy and 2D image averaging techniques, our analysis has confirmed the overall structural similarity between these two species, but also revealed clear differences in the structure of the outer dynein arms, the central pair projections, and the radial spokes. We also show how the application of 2D image averaging can clarify the underlying structural defects associated with primary ciliary dyskinesia (PCD). Overall, our results document the remarkable similarity between these two structures separated evolutionarily by over a billion years, while highlighting several significant differences, and demonstrate the potential of 2D image averaging to improve the diagnosis and understanding of PCD.
Collapse
Affiliation(s)
- Eileen T O'Toole
- Boulder Laboratory for 3D Electron Microscopy of Cells, Department of MCD Biology, University of Colorado, Boulder, Colorado, USA
| | | | | | | |
Collapse
|
33
|
Brown JM, Dipetrillo CG, Smith EF, Witman GB. A FAP46 mutant provides new insights into the function and assembly of the C1d complex of the ciliary central apparatus. J Cell Sci 2012; 125:3904-13. [PMID: 22573824 DOI: 10.1242/jcs.107151] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Virtually all motile eukaryotic cilia and flagella have a '9+2' axoneme in which nine doublet microtubules surround two singlet microtubules. Associated with the central pair of microtubules are protein complexes that form at least seven biochemically and structurally distinct central pair projections. Analysis of mutants lacking specific projections has indicated that each may play a unique role in the control of flagellar motility. One of these is the C1d projection previously shown to contain the proteins FAP54, FAP46, FAP74 and FAP221/Pcdp1, which exhibits Ca(2+)-sensitive calmodulin binding. Here we report the isolation and characterization of a Chlamydomonas reinhardtii null mutant for FAP46. This mutant, fap46-1, lacks the C1d projection and has impaired motility, confirming the importance of this projection for normal flagellar movement. Those cells that are motile have severe defects in phototaxis and the photoshock response, underscoring a role for the C1d projection in Ca(2+)-mediated flagellar behavior. The data also reveal for the first time that the C1d projection is involved in the control of interdoublet sliding velocity. Our studies further identify a novel C1d subunit that we term C1d-87, give new insight into relationships between the C1d subunits, and provide evidence for multiple sites of calmodulin interaction within the C1d projection. These results represent significant advances in our understanding of an important but little studied axonemal structure.
Collapse
Affiliation(s)
- Jason M Brown
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | |
Collapse
|
34
|
Lesich KA, Kelsch CB, Ponichter KL, Dionne BJ, Dang L, Lindemann CB. The Calcium Response of Mouse Sperm Flagella: Role of Calcium Ions in the Regulation of Dynein Activity1. Biol Reprod 2012; 86:105. [DOI: 10.1095/biolreprod.111.094953] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
35
|
Goduti DJ, Smith EF. Analyses of functional domains within the PF6 protein of the central apparatus reveal a role for PF6 sub-complex members in regulating flagellar beat frequency. Cytoskeleton (Hoboken) 2012; 69:179-94. [PMID: 22278927 DOI: 10.1002/cm.21010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/17/2012] [Accepted: 01/19/2012] [Indexed: 01/17/2023]
Abstract
Numerous studies have indicated that each of the seven projections associated with the central pair of microtubules plays a distinct role in regulating eukaryotic ciliary/flagellar motility. Mutants which lack specific projections have distinct motility phenotypes. For example, Chlamydomonas pf6 mutants lack the C1a projection and have twitchy, non-beating flagella. The C1a projection is a complex of proteins including PF6, C1a-86, C1a-34, C1a-32, C1a-18, and calmodulin. To define functional domains within PF6 and to potentially assign functions to specific C1a components, we generated deletion constructs of the PF6 gene and tested for their ability to assemble and rescue motility upon transformation of mutant pf6 cells. Our results demonstrate that domains near the carboxyl-terminus of PF6 are essential for motility and/or assembly of the projection. The amino terminal half of PF6 is not required for C1a assembly; however, this region is important for stability of the C1a-34, C1a-32, and C1a-18 sub-complex and wild-type beat frequency. Analysis of double mutants lacking the amino terminus of PF6 and outer dynein arms reveal that C1a may play a role in modulating both inner and outer dynein arm activity.
Collapse
Affiliation(s)
- Daniel J Goduti
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
36
|
DiPetrillo CG, Smith EF. The Pcdp1 complex coordinates the activity of dynein isoforms to produce wild-type ciliary motility. Mol Biol Cell 2011; 22:4527-38. [PMID: 21998195 PMCID: PMC3226472 DOI: 10.1091/mbc.e11-08-0739] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Generating the complex waveforms characteristic of beating cilia requires the coordinated activity of multiple dynein isoforms anchored to the axoneme. We previously identified a complex associated with the C1d projection of the central apparatus that includes primary ciliary dyskinesia protein 1 (Pcdp1). Reduced expression of complex members results in severe motility defects, indicating that C1d is essential for wild-type ciliary beating. To define a mechanism for Pcdp1/C1d regulation of motility, we took a functional and structural approach combined with mutants lacking C1d and distinct subsets of dynein arms. Unlike mutants completely lacking the central apparatus, dynein-driven microtubule sliding velocities are wild type in C1d- defective mutants. However, coordination of dynein activity among microtubule doublets is severely disrupted. Remarkably, mutations in either outer or inner dynein arm restore motility to mutants lacking C1d, although waveforms and beat frequency differ depending on which isoform is mutated. These results define a unique role for C1d in coordinating the activity of specific dynein isoforms to control ciliary motility.
Collapse
|
37
|
Lin J, Tritschler D, Song K, Barber CF, Cobb JS, Porter ME, Nicastro D. Building blocks of the nexin-dynein regulatory complex in Chlamydomonas flagella. J Biol Chem 2011; 286:29175-29191. [PMID: 21700706 DOI: 10.1074/jbc.m111.241760] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The directional flow generated by motile cilia and flagella is critical for many processes, including human development and organ function. Normal beating requires the control and coordination of thousands of dynein motors, and the nexin-dynein regulatory complex (N-DRC) has been identified as an important regulatory node for orchestrating dynein activity. The nexin link appears to be critical for the transformation of dynein-driven, linear microtubule sliding to flagellar bending, yet the molecular composition and mechanism of the N-DRC remain largely unknown. Here, we used proteomics with special attention to protein phosphorylation to analyze the composition of the N-DRC and to determine which subunits may be important for signal transduction. Two-dimensional electrophoresis and MALDI-TOF mass spectrometry of WT and mutant flagellar axonemes from Chlamydomonas identified 12 N-DRC-associated proteins, including all seven previously observed N-DRC components. Sequence and PCR analyses identified the mutation responsible for the phenotype of the sup-pf-4 strain, and biochemical comparison with a radial spoke mutant revealed two components that may link the N-DRC and the radial spokes. Phosphoproteomics revealed eight proteins with phosphorylated isoforms for which the isoform patterns changed with the genotype as well as two components that may play pivotal roles in N-DRC function through their phosphorylation status. These data were assembled into a model of the N-DRC that explains aspects of its regulatory function.
Collapse
Affiliation(s)
- Jianfeng Lin
- Biology Department, Rosenstiel Center, MS029, Brandeis University, Waltham, Massachusetts 02454
| | - Douglas Tritschler
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, and
| | - Kangkang Song
- Biology Department, Rosenstiel Center, MS029, Brandeis University, Waltham, Massachusetts 02454
| | - Cynthia F Barber
- Biology Department, Rosenstiel Center, MS029, Brandeis University, Waltham, Massachusetts 02454
| | - Jennifer S Cobb
- Chemistry Department, MS015, Brandeis University, Waltham, Massachusetts 02454
| | - Mary E Porter
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, and
| | - Daniela Nicastro
- Biology Department, Rosenstiel Center, MS029, Brandeis University, Waltham, Massachusetts 02454,.
| |
Collapse
|
38
|
Dymek EE, Heuser T, Nicastro D, Smith EF. The CSC is required for complete radial spoke assembly and wild-type ciliary motility. Mol Biol Cell 2011; 22:2520-31. [PMID: 21613541 PMCID: PMC3135477 DOI: 10.1091/mbc.e11-03-0271] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Structural and functional analyses of artificial micro RNA (amiRNA) mutants reveal that the CSC plays a role not only in generating wild-type motility, but also in assembly of at least a subset of radial spokes. This study also produced the unexpected finding that, contrary to current belief, the radial spokes may not be homogeneous. The ubiquitous calcium binding protein, calmodulin (CaM), plays a major role in regulating the motility of all eukaryotic cilia and flagella. We previously identified a CaM and Spoke associated Complex (CSC) and provided evidence that this complex mediates regulatory signals between the radial spokes and dynein arms. We have now used an artificial microRNA (amiRNA) approach to reduce expression of two CSC subunits in Chlamydomonas. For all amiRNA mutants, the entire CSC is lacking or severely reduced in flagella. Structural studies of mutant axonemes revealed that assembly of radial spoke 2 is defective. Furthermore, analysis of both flagellar beating and microtubule sliding in vitro demonstrates that the CSC plays a critical role in modulating dynein activity. Our results not only indicate that the CSC is required for spoke assembly and wild-type motility, but also provide evidence for heterogeneity among the radial spokes.
Collapse
Affiliation(s)
- Erin E Dymek
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
39
|
Inaba K. Sperm flagella: comparative and phylogenetic perspectives of protein components. Mol Hum Reprod 2011; 17:524-38. [PMID: 21586547 DOI: 10.1093/molehr/gar034] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sperm motility is necessary for the transport of male DNA to eggs in species with both external and internal fertilization. Flagella comprise several proteins for generating and regulating motility. Central cytoskeletal structures called axonemes have been well conserved through evolution. In mammalian sperm flagella, two accessory structures (outer dense fiber and the fibrous sheath) surround the axoneme. The axonemal bend movement is based on the active sliding of axonemal doublet microtubules by the molecular motor dynein, which is divided into outer and inner arm dyneins according to positioning on the doublet microtubule. Outer and inner arm dyneins play different roles in the production and regulation of flagellar motility. Several regulatory mechanisms are known for both dyneins, which are important in motility activation and chemotaxis at fertilization. Although dynein itself has certain properties that contribute to the formation and propagation of flagellar bending, other axonemal structures-specifically, the radial spoke/central pair apparatus-have essential roles in the regulation of flagellar bending. Recent genetic and proteomic studies have explored several new components of axonemes and shed light on the generation and regulation of sperm motility during fertilization.
Collapse
Affiliation(s)
- Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan.
| |
Collapse
|
40
|
Wirschell M, Yamamoto R, Alford L, Gokhale A, Gaillard A, Sale WS. Regulation of ciliary motility: conserved protein kinases and phosphatases are targeted and anchored in the ciliary axoneme. Arch Biochem Biophys 2011; 510:93-100. [PMID: 21513695 DOI: 10.1016/j.abb.2011.04.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 12/31/2022]
Abstract
Recent evidence has revealed that the dynein motors and highly conserved signaling proteins are localized within the ciliary 9+2 axoneme. One key mechanism for regulation of motility is phosphorylation. Here, we review diverse evidence, from multiple experimental organisms, that ciliary motility is regulated by phosphorylation/dephosphorylation of the dynein arms through kinases and phosphatases that are anchored immediately adjacent to their axonemal substrates.
Collapse
Affiliation(s)
- Maureen Wirschell
- Emory University School of Medicine, Department of Cell Biology, Atlanta, GA 30322, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Lee L. Mechanisms of mammalian ciliary motility: Insights from primary ciliary dyskinesia genetics. Gene 2010; 473:57-66. [PMID: 21111794 DOI: 10.1016/j.gene.2010.11.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 11/10/2010] [Accepted: 11/12/2010] [Indexed: 01/01/2023]
Abstract
Motile cilia and flagella are organelles that, historically, have been poorly understood and inadequately investigated. However, cilia play critical roles in fluid clearance in the respiratory system and the brain, and flagella are required for sperm motility. Genetic studies involving human patients and mouse models of primary ciliary dyskinesia over the last decade have uncovered a number of important ciliary proteins and have begun to elucidate the mechanisms underlying ciliary motility. When combined with genetic, biochemical, and cell biological studies in Chlamydomonas reinhardtii, these mammalian genetic analyses begin to reveal the mechanisms by which ciliary motility is regulated.
Collapse
Affiliation(s)
- Lance Lee
- Sanford Children's Health Research Center, Sanford Research USD, 2301 East 60th Street, Sioux Falls, SD 57104, USA.
| |
Collapse
|
42
|
King SM. Sensing the mechanical state of the axoneme and integration of Ca2+ signaling by outer arm dynein. Cytoskeleton (Hoboken) 2010; 67:207-13. [PMID: 20186692 DOI: 10.1002/cm.20445] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Axonemal dyneins have been demonstrated to monitor the mechanical state of the axoneme and must also alter activity in response to various signaling pathways. The central pair/radial spoke systems are clearly involved in controlling inner dynein arm function; however, the mechanisms by which the outer dynein arm transduces regulatory signals appear quite distinct at the molecular level. In Chlamydomonas, these regulatory components include thioredoxins involved in response to redox changes, molecules that tether the gamma heavy-chain motor unit to the A-tubule of the outer doublet and a Ca(2+)-binding protein that controls the structure of the gamma heavy-chain N-terminal domain. Together, these studies now suggest that the gamma heavy chain acts as a key regulatory node for controlling outer arm function in response to alterations in curvature and ligand binding. Furthermore, they allow us to propose a testable molecular mechanism by which altered Ca(2+) levels might lead to a change in ciliary waveform by controlling whether one heavy chain of outer arm dynein acts as a microtubule translocase or as an ATP-dependent brake that limits the amount of interdoublet sliding.
Collapse
Affiliation(s)
- Stephen M King
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, Connecticut 06030-3305, USA.
| |
Collapse
|
43
|
DiPetrillo CG, Smith EF. Pcdp1 is a central apparatus protein that binds Ca(2+)-calmodulin and regulates ciliary motility. ACTA ACUST UNITED AC 2010; 189:601-12. [PMID: 20421426 PMCID: PMC2867295 DOI: 10.1083/jcb.200912009] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A complex that localizes to the C1d central pair projection of cilia controls flagellar waveform and beat frequency in response to calcium. For all motile eukaryotic cilia and flagella, beating is regulated by changes in intraciliary calcium concentration. Although the mechanism for calcium regulation is not understood, numerous studies have shown that calmodulin (CaM) is a key axonemal calcium sensor. Using anti-CaM antibodies and Chlamydomonas reinhardtii axonemal extracts, we precipitated a complex that includes four polypeptides and that specifically interacts with CaM in high [Ca2+]. One of the complex members, FAP221, is an orthologue of mammalian Pcdp1 (primary ciliary dyskinesia protein 1). Both FAP221 and mammalian Pcdp1 specifically bind CaM in high [Ca2+]. Reduced expression of Pcdp1 complex members in C. reinhardtii results in failure of the C1d central pair projection to assemble and significant impairment of motility including uncoordinated bends, severely reduced beat frequency, and altered waveforms. These combined results reveal that the central pair Pcdp1 (FAP221) complex is essential for control of ciliary motility.
Collapse
|
44
|
Lesich KA, Zhang Z, Kelsch CB, Ponichter KL, Strauss JF, Lindemann CB. Functional deficiencies and a reduced response to calcium in the flagellum of mouse sperm lacking SPAG16L. Biol Reprod 2009; 82:736-44. [PMID: 20042536 DOI: 10.1095/biolreprod.109.080143] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Spag16L gene codes for a protein that is localized to the central apparatus which is essential for normal sperm motility and male fertility. Sperm from mice homozygous for a targeted deletion of the Spag16L gene were examined to assess their flagellar motor functions compared with age- and strain-matched control sperm. Sperm were also demembranated with Triton X-100 and examined for their ability to respond to free calcium, as well as for their ability to undergo microtubule sliding driven by dynein action. In addition, the passive flagella, inhibited by sodium metavanadate to disable the dyneins, were examined for mechanical abnormalities. Live Spag16L-null sperm exhibited much less bending of the flagellum during the beat. The amount of microtubule sliding in the R-bend direction of the beat was selectively restricted, which suggests that there is limited activation of the dyneins on one side of the axoneme in the live cells. This is corroborated by the results on detergent-extracted sperm models. The flagellar response to calcium is greatly reduced. The calcium response requires the activation of the dyneins on outer doublets 1, 2, 3, and 4. These are the same dyneins required for R-bend formation. In axonemes prepared to disintegrate by microtubule sliding, we observed little or no extrusion of doublets 1 and 2, consistent with a reduced activity of their dyneins. This deficit in motor function, and an increased rigidity of the midpiece region which we detected in the passive flagella, together can explain the observed motility characteristics of the Spag16L-null sperm.
Collapse
Affiliation(s)
- Kathleen A Lesich
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Tubulin and other flagellar and ciliary proteins are the substrates for a host of posttranslational modifications (PTMs), many of which have been highly conserved over evolutionary time. In addition to the binding of MAPs (microtubule-associated proteins) that provide a specific functionality, or the use of different tubulin isotypes to convey a specific function, most cells rely on an array of PTMs. These include phosphorylation, acetylation, glycylation, glutamylation, and methylation. The first and the last of this list are not unique to the tubulin in cilia and flagella, while the others are. This chapter will review briefly these varying modifications and will conclude with detailed methods for their detection and localization at the limit of resolution provided by electron microscopy.
Collapse
Affiliation(s)
- Roger D Sloboda
- Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| |
Collapse
|
46
|
Mitchell DR, Smith B. Analysis of the central pair microtubule complex in Chlamydomonas reinhardtii. Methods Cell Biol 2009; 92:197-213. [PMID: 20409807 DOI: 10.1016/s0091-679x(08)92013-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The central pair microtubule complex in Chlamydomonas flagella has been well characterized as a regulator of flagellar dynein activity, but many aspects of this regulation depend on specific interactions between the asymmetric central pair structure and radial spokes, which appear symmetrically arranged along all nine outer doublet microtubules. Relationships between central pair-radial spoke interactions and dynein regulation have been difficult to understand because the Chlamydomonas central pair is twisted in vivo and rotates during bend propagation. Here we describe genetic and biochemical methods of dissecting the Chlamydomonas central pair and electron microscopic methods useful to determine structure-function relationships in this complex.
Collapse
Affiliation(s)
- David R Mitchell
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | | |
Collapse
|
47
|
DiPetrillo C, Smith E. Calcium regulation of ciliary motility analysis of axonemal calcium-binding proteins. Methods Cell Biol 2009; 92:163-80. [PMID: 20409805 DOI: 10.1016/s0091-679x(08)92011-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Substantial data have contributed to a model in which the axonemal microtubules act as a scaffold for the assembly of molecules that form a signal transduction pathway that ultimately regulates dynein. We have also known for some time that for virtually all motile cilia and flagella, the second messenger, calcium, impacts upon these signaling pathways to modulate beating in response to extracellular cues. Yet we are only beginning to identify the axonemal proteins that bind this second messenger and determine their role in regulating dynein-driven microtubule sliding to alter the size and shape of ciliary bends. Here, we review our current understanding of calcium regulation of motility, emphasizing recent advances in the detection and characterization of calcium-binding proteins anchored to the axoneme.
Collapse
Affiliation(s)
- Christen DiPetrillo
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | | |
Collapse
|
48
|
Portman N, Gull K. The paraflagellar rod of kinetoplastid parasites: from structure to components and function. Int J Parasitol 2009; 40:135-48. [PMID: 19879876 PMCID: PMC2813431 DOI: 10.1016/j.ijpara.2009.10.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 10/13/2009] [Accepted: 10/16/2009] [Indexed: 01/06/2023]
Abstract
The role of the eukaryotic flagellum in cell motility is well established but its importance in many other aspects of cell biology, from cell signalling to developmental regulation, is becoming increasingly apparent. In addition to this diversity of function the core structure of the flagellum, which has been inherited from the earliest ancestor of all eukaryotes, is embellished with a range of extra-axonemal structures in many organisms. One of the best studied of these structures is the paraflagellar rod of kinetoplastid protozoa in which the morphological characteristics have been well defined and some of the major protein constituents have been identified. Here we discuss recent advances in the identification of further molecular components of the paraflagellar rod, how these impact on our understanding of its function and regulation and the implications for therapeutic intervention in a number of devastating human pathologies.
Collapse
Affiliation(s)
- Neil Portman
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX13RE, UK
| | | |
Collapse
|
49
|
Portman N, Lacomble S, Thomas B, McKean PG, Gull K. Combining RNA interference mutants and comparative proteomics to identify protein components and dependences in a eukaryotic flagellum. J Biol Chem 2009; 284:5610-9. [PMID: 19074134 PMCID: PMC2645819 DOI: 10.1074/jbc.m808859200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Indexed: 01/23/2023] Open
Abstract
Eukaryotic flagella from organisms such as Trypanosoma brucei can be isolated and their protein components identified by mass spectrometry. Here we used a comparative approach utilizing two-dimensional difference gel electrophoresis and isobaric tags for relative and absolute quantitation to reveal protein components of flagellar structures via ablation by inducible RNA interference mutation. By this approach we identified 20 novel components of the paraflagellar rod (PFR). Using epitope tagging we validated a subset of these as being present within the PFR by immunofluorescence. Bioinformatic analysis of the PFR cohort reveals a likely calcium/calmodulin regulatory/signaling linkage between some components. We extended the RNA interference mutant/comparative proteomic analysis to individual novel components of our PFR proteome, showing that the approach has the power to reveal dependences between subgroups within the cohort.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Chromatography, Liquid
- DNA, Protozoan/genetics
- DNA, Protozoan/metabolism
- Electrophoresis, Gel, Two-Dimensional
- Flagella/genetics
- Flagella/metabolism
- Fluorescent Antibody Technique
- Proteomics
- Protozoan Proteins/antagonists & inhibitors
- Protozoan Proteins/genetics
- Protozoan Proteins/metabolism
- RNA Interference
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- RNA, Small Interfering/pharmacology
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Trypanosoma brucei brucei/genetics
- Trypanosoma brucei brucei/metabolism
Collapse
Affiliation(s)
- Neil Portman
- Sir William Dunn School of Pathology and Oxford Centre for Integrative Systems Biology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | | | | | | | | |
Collapse
|
50
|
Morita M, Iguchi A, Takemura A. Roles of calmodulin and calcium/calmodulin-dependent protein kinase in flagellar motility regulation in the coral Acropora digitifera. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:118-123. [PMID: 18661183 DOI: 10.1007/s10126-008-9127-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 06/13/2008] [Indexed: 05/26/2023]
Abstract
In the corals Acropora spp., eggs secrete substances that induce sperm motility regulation. An elevation of intracellular pH ([pH]i) and a regulation of intracellular Ca(2+) concentration ([Ca(2+)]) are involved in the sperm motility regulation cascade. However, the detailed molecular aspects of flagellar motility regulation have not been fully demonstrated in Acropora. In this study, we determined the presence and roles of both calmodulin (CaM) and calcium/calmodulin dependent-protein kinase (CaMK) in the sperm flagellar motility regulation of Acropora. A (45)Ca(2+)-overlay assay and an immunoblot analysis showed that sperm contain an acidic 16-kDa protein that was CaM, and an immunoblot analysis revealed the presence of CaMK in coral sperm. In addition, a specific inhibitor of CaMK, KN-93, and a CaM antagonist, W-7, inhibited sperm motility activation induced by NH(4)Cl treatment. NH(4)Cl treatment causes an increase in intracellular [pH]i of sperm, suggesting that CaM and CaMK are involved in sperm motility initiation caused by an increase in [pH]i. The involvement of CaM and CaMK in motility regulation in coral highlights the importance of these molecules throughout the animal kingdom.
Collapse
Affiliation(s)
- Masaya Morita
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422, Sesoko, Motobu, Okinawa 905-0227, Japan.
| | | | | |
Collapse
|