1
|
Mafakher L, Rismani E, Teimoori-Toolabi L. Evolutionary and Structural Assessment of the Human Secreted Frizzled-Related Protein (SFRP) Family. J Mol Evol 2025:10.1007/s00239-025-10249-5. [PMID: 40372458 DOI: 10.1007/s00239-025-10249-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 04/19/2025] [Indexed: 05/16/2025]
Abstract
It has been observed that five members of Secreted Frizzled-Related proteins act as antagonists for the Wnt signaling pathway in humans. These glycoproteins have two functional domains: the cysteine-rich domain (CRD) and the netrin-related domain (NTR), with a completely conserved disulfide bond in the CRD domain. Phylogenetic analysis revealed that this protein family can be divided into two subgroups, SFRP1/SFRP2/SFRP5 versus SFRP3/SFRP4. The SFRP3/SFRP4 group was found to be more closely related to the sponge Lubomirskia baicalensis, which is believed to represent the ancient origin of SFRPs. The model evaluation demonstrated high-quality conformational homology modeling in the predicted Human SFRP models compared to the Sizzled crystal structure of Xenopus laevis. The molecular dynamic simulation illustrated that SFRP1 and SFRP2 exhibit the most stable structures during 100 ns of simulation. Multiple sequence alignment and conservation analysis of Human SFRPs showed that the CRD domain of SFRPs is more conserved than the NTR domain. The docking result indicated that SFRP3 has the highest binding affinity to Wnt3, while SFRP1 and SFRP5 have the lowest. Despite the lower affinity of SFRP1/SFRP5 for Wnt3, a higher positive charge in their NTR domains leads to an increase in their local concentration near the secreting cells and an enhancement in the antagonistic activity. In contrast, SFRP3/SFRP4 can act as an antagonist in distant cells due to less positive regions in their NTR domain and weakly binding to the heparin of the intercellular matrix.
Collapse
Affiliation(s)
- Ladan Mafakher
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69 th Pasteur Street, Kargar Avenue, Tehran, 1316943551, Iran
| | - Elham Rismani
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69 th Pasteur Street, Kargar Avenue, Tehran, 1316943551, Iran
| | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69 th Pasteur Street, Kargar Avenue, Tehran, 1316943551, Iran.
| |
Collapse
|
2
|
Pereyra G, Mateo MI, Miaja P, Martin-Bermejo MJ, Martinez-Baños M, Klaassen R, Gruart A, Rueda-Carrasco J, Fernández-Rodrigo A, López-Merino E, Esteve P, Esteban JA, Smit AB, Delgado-García JM, Bovolenta P. SFRP1 upregulation causes hippocampal synaptic dysfunction and memory impairment. Cell Rep 2025; 44:115535. [PMID: 40198223 DOI: 10.1016/j.celrep.2025.115535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/30/2025] [Accepted: 03/17/2025] [Indexed: 04/10/2025] Open
Abstract
Impaired neuronal and synaptic function are hallmarks of early Alzheimer's disease (AD), preceding other neuropathological traits and cognitive decline. We previously showed that SFRP1, a glial-derived protein elevated in AD brains from preclinical stages, contributes to disease progression, implicating glial factors in early pathogenesis. Here, we generate and analyze transgenic mice overexpressing astrocytic SFRP1. SFRP1 accumulation causes early dendritic and synaptic defects in adult mice, followed by impaired synaptic long-term potentiation and cognitive decline, evident only when the animals age, thereby mimicking AD's structural-functional temporal distinction. This phenotype correlates with proteomic changes, including increased structural synaptic proteins like neurexin, which localizes in close proximity with SFRP1 in cultured hippocampal neurons. We conclude that excessive SFRP1 hinders synaptic protein turnover, reducing synaptic plasticity-a mechanism that may underlie the synaptopathy observed in the brains of prodromal AD patients.
Collapse
Affiliation(s)
- Guadalupe Pereyra
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - María Inés Mateo
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Pablo Miaja
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - María Jesús Martin-Bermejo
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Marcos Martinez-Baños
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Remco Klaassen
- Center for Neurogenomics and Cognitive Research, VU University Amsterdam, 1081 Amsterdam, the Netherlands
| | - Agnès Gruart
- División de Neurociencias, Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Javier Rueda-Carrasco
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Alba Fernández-Rodrigo
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Esperanza López-Merino
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Pilar Esteve
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - José A Esteban
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - August B Smit
- Center for Neurogenomics and Cognitive Research, VU University Amsterdam, 1081 Amsterdam, the Netherlands
| | | | - Paola Bovolenta
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; CIBER de Enfermedades Raras (CIBERER), 28029 Madrid, Spain.
| |
Collapse
|
3
|
Sharma S, Das J, Subramanyam D. Traffic flow and signals: Regulating the movement within cells. Curr Opin Cell Biol 2025; 94:102518. [PMID: 40239282 DOI: 10.1016/j.ceb.2025.102518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025]
Abstract
Intracellular trafficking is known to regulate the outcomes of cellular signalling, with its role in signal generation, reception and interpretation well appreciated. Trafficking within cells can control ligand release, generate and maintain morphogen gradients, regulate ligand uptake within a cell and integrate multiple signals that ultimately result in altered gene expression. This process is especially important over the course of development of multicellular organisms wherein signals within a developing embryo result in the generation of specialized cells. In this review, we discuss recent developments in our understanding of how intracellular trafficking modulates signalling output and ultimately, cellular identity and highlight recent findings that help us advance our understanding of how the cross talk between trafficking and cell signalling dictates cell fate.
Collapse
Affiliation(s)
- Surabhi Sharma
- National Centre for Cell Science, Pune, 411007, India; Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Jyoti Das
- National Centre for Cell Science, Pune, 411007, India; S P Pune University, Ganeshkhind, Pune, 411007, India
| | | |
Collapse
|
4
|
Kemp LJS, Monster JL, Wood CS, Moers M, Vliem MJ, Khalil AA, Jamieson NB, Brosens LAA, Kodach LL, van Dieren JM, Bisseling TM, van der Post RS, Gloerich M. Tumour-intrinsic alterations and stromal matrix remodelling promote Wnt-niche independence during diffuse-type gastric cancer progression. Gut 2025:gutjnl-2024-334589. [PMID: 40169243 DOI: 10.1136/gutjnl-2024-334589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/05/2025] [Indexed: 04/03/2025]
Abstract
BACKGROUND Development of diffuse-type gastric cancer (DGC) starts with intramucosal lesions that are primarily composed of differentiated, non-proliferative signet ring cells (SRCs). These indolent lesions can advance into highly proliferative and metastatic tumours, which requires suppression of DGC cell differentiation. OBJECTIVE Our goal was to identify molecular changes contributing to the progression of indolent to aggressive DGC lesions. DESIGN We conducted spatial transcriptomic analysis of patient tumours at different stages of hereditary DGC, comparing transcriptional differences in tumour cell populations and tumour-associated cells. We performed functional analysis of identified changes in a human gastric (CDH1 KO) organoid model recapitulating DGC initiation. RESULTS Our analysis reveals that distinct DGC cell populations exhibit varying levels of Wnt-signalling activity, and high levels of Wnt signalling prevent differentiation into SRCs. We identify multiple adaptations during DGC progression that converge on Wnt signalling, allowing tumour cells to remain in an undifferentiated state as they disseminate away from the gastric stem cell niche. First, DGC cells establish a cell-autonomous source for Wnt-pathway activation through upregulated expression of Wnt-ligands and 'secreted frizzled-related protein 2' (SFRP2) that potentiates ligand-induced Wnt signalling. Second, early tumour development is marked by extracellular matrix remodelling, including increased deposition of collagen I whose interactions with DGC cells suppress their differentiation in the absence of exogenous Wnt ligands. CONCLUSIONS Our findings demonstrate that tumour cell-derived ligand expression and extracellular matrix remodelling sustain Wnt signalling during DGC progression. These complementary mechanisms promote niche independence enabling expansion of undifferentiated DGC cells needed for the development of advanced tumours.
Collapse
Affiliation(s)
- Lars J S Kemp
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Pathology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jooske L Monster
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Colin S Wood
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Martijn Moers
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marjolein J Vliem
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Antoine A Khalil
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Lodewijk A A Brosens
- Department of Pathology, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Liudmila L Kodach
- Deparment of Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Jolanda M van Dieren
- Department of Gastrointestinal Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Tanya M Bisseling
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Martijn Gloerich
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
5
|
Rashid A, Fung HL, Tang AHN. Dissecting the novel molecular interactions of solute carrier family 4 member 4 (SLC4A4) for prostate cancer (PCa) progression. Sci Rep 2024; 14:29133. [PMID: 39587129 PMCID: PMC11589864 DOI: 10.1038/s41598-024-72408-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/06/2024] [Indexed: 11/27/2024] Open
Abstract
Prostate cancer (PCa) is the most common malignancy diagnosed in men. The purpose of this study was to report the molecular pathways of Homo sapiens solute carrier family 4 member 4 (SLC4A4) in the progression of PCa. Here, we report our findings from clinical specimens of prostatic acinar adenocarcinoma collected from patients. We found that low-grade prostate cancers have higher SLC4A4 expression. We investigated the role of SLC4A4 and the signaling mechanism underlying its role in modulating the PCa progression. Firstly, we reported the SLC4A4/GSK-3β/β-catenin signaling axis, which regulates the clonogenic potential, invasiveness, and metastasis. In this, we found reduced phosphorylation of GSK at serine 21 of α and serine 9 of the β subunit in shSLC4A4 cells of PCa, which ultimately relieved the activity of GSK-3β. This activated GSK-3β phosphorylates β-catenin at Ser33/37 with a subsequently reduced β-catenin level in PCa cells. Our functional analysis revealed that SLC4A4 knockdown retards tumor growth and lowers invasion and migration potential. Secondly, we investigated the SLC4A4/RB axis, which acts to drive cell proliferation. SLC4A4 knockdown decreases the interaction between these molecules with hypophosphorylation of RB protein and cell cycle arrest. Likewise, transcriptome sequencing using the SLC4A4 knockdown in DU145 cells regulates differentiated expressed genes and multiple metabolic pathways. Our results suggest that SLC4A4 may serve as a potential therapeutic target for prostate cancer patients in the future.
Collapse
Affiliation(s)
- Asif Rashid
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China.
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Hiu Ling Fung
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| | - Alexander Hin Ning Tang
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
6
|
Yuan SM, Chen X, Qu YQ, Zhang MY. C6 and KLRG2 are pyroptosis subtype-related prognostic biomarkers and correlated with tumor-infiltrating lymphocytes in lung adenocarcinoma. Sci Rep 2024; 14:24861. [PMID: 39438534 PMCID: PMC11496652 DOI: 10.1038/s41598-024-75650-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
Pyroptosis plays an important role in lung adenocarcinoma (LUAD). In this study, we aimed to explore the pyroptosis-related gene (PRG) expression pattern and to identify promising pyroptosis-related biomarkers to improve the prognosis of LUAD. The gene expression profiles and clinical information of LUAD patients were downloaded from the Cancer Genome Atlas (TCGA), and validation cohort information was extracted from the Gene Expression Omnibus database. Gene expression data were analyzed using the limma package and visualized using the ggplot2 package as well as the pheatmap package in R software. Functional enrichment analysis was also performed for the 44 differentially expressed PRGs (DEPRGs). Then, consensus clustering revealed pyroptosis-related tumor subtypes, and differentially expressed genes (DEGs) were screened according to the subtypes. Next, univariate Cox and multivariate Cox regression analyses were used to identify independent prognostic PRGs. After overlapping DEGs and the Lasso regression analysis-based prognostic genes, the predictive risk model was established and validated. Correlation analysis between PRGs and clinicopathological variables was also explored. Finally, the TIMER and TISIDB databases were used to further explore the correlation analysis between immune cell infiltration levels, the risk score, and clinicopathological variables in the predictive risk model. A total of 52 genes from the PubMed were identified as PRGs, and 44 of the 52 genes were pooled as DEPRGs. The most significant GO term was "collagen trimer" (P = 2.46E-13), and KEGG analysis results indicated that 44 DEPRGs were significantly enriched in Salmonella infection (P < 0.001). Then, consensus clustering analysis divided LUAD patients into two clusters, and a total of 79 DEGs were identified according to these cluster subtypes. Subsequently, univariate and multivariate Cox regression analyses were used to identify 12 genes that could serve as independent prognostic indicators and we also performed Lasso regression analysis and screened 23 DEGs. After overlapping 23 DEGs and 12 genes, only 4 (KLRG2, MAPK4, C6 and SFRP5) of 12 genes were selected for the further exploration of the prognostic pattern. Survival analysis results indicated that this risk model effectively predicted the prognosis (P < 0.001). Combined with the correlation analysis results between the 4 genes and clinicopathological variables, C6 and KLRG2 were screened as prognostic genes. In this study, we constructed a predictive risk model and identified two pyroptosis subtype-related gene expression patterns to improve the prognosis of LUAD. Understanding the subtypes of LUAD is helpful for accurately characterizing the LUAD and developing personalized treatment.
Collapse
Affiliation(s)
- Shu-Min Yuan
- Department of Medical Oncology, Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Xiao Chen
- Department of Respiratory Medicine, Tai'an City Central Hospital, Tai'an, China
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Meng-Yu Zhang
- Department of Pulmonary and Critical Care Medicine, Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
7
|
Qi B, Wang HY, Ma X, Chi YF, Gui C. Exploring the predictive values of SERP4 and FRZB in dilated cardiomyopathy based on an integrated analysis. BMC Cardiovasc Disord 2024; 24:577. [PMID: 39425025 PMCID: PMC11487873 DOI: 10.1186/s12872-024-04255-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND AND OBJECTIVE The aim of this study was to investigate potential hub genes for dilated cardiomyopathy (DCM). METHODS Five DCM-related microarray datasets were downloaded from the Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were used for identification. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, disease ontology, gene ontology annotation and protein-protein interaction (PPI) network analysis were then performed, while a random forest was constructed to explore central genes. Artificial neural networks were used to compare with known genes and to develop new diagnostic models. 240 population blood samples were collected and expression of hub genes was verified in these samples using RT-PCR and demonstrated by Nomogram. RESULTS After differential analysis, 33 genes were statistically significant (adjusted P < 0.05). Functional enrichment of these differential genes resulted in 85 Gene Ontology (GO) functions identified and 6 pathways enriched for the KEGG pathway. PPI networks and molecular complex assays identified 10 hub genes (adjusted P < 0.05). Random forest identified SMOC2 and SFRP4 as the most important, followed by FCER1G and FRZB. NeuraHF models (SMOC2, SFRP4, FCER1G and FRZB) were selected by artificial neural network model and had better diagnostic efficacy for the onset of DCM, compared with the traditional KG-DCM models (MYH7, ACTC1, TTN and LMNA). Finally, SFRP4 and FRZB were expressed higher in DCM verified by RT-PCR and as a factor for DCM identified by Nomogram. CONCLUSIONS We performed an integrated analysis and identified SFRP4 and FRZB as a new factor for DCM. But the exact mechanism still needs further experimental verification.
Collapse
Affiliation(s)
- Bin Qi
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Hai-Yan Wang
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Xiao Ma
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Yu-Feng Chi
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Chun Gui
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, China.
| |
Collapse
|
8
|
Shen Z, Yu N, Zhang Y, Jia M, Sun Y, Li Y, Zhao L. The potential roles of HIF-1α in epithelial-mesenchymal transition and ferroptosis in tumor cells. Cell Signal 2024; 122:111345. [PMID: 39134249 DOI: 10.1016/j.cellsig.2024.111345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
In tumors, the rapid proliferation of cells and the imperfect blood supply system lead to hypoxia, which can regulate the adaptation of tumor cells to the hypoxic environment through hypoxia-inducible factor-1α (HIF-1α) and promote tumor development in multiple ways. Recent studies have found that epithelial-mesenchymal transition (EMT) and ferroptosis play important roles in the progression of tumor cells. The activation of HIF-1α is considered a key factor in inducing EMT in tumor cells. When HIF-1α is activated, it can regulate EMT-related genes, causing tumor cells to gradually lose their epithelial characteristics and acquire more invasive mesenchymal traits. The occurrence of EMT allows tumor cells to better adapt to changes in the surrounding tissue, enhancing their migratory and invasive capabilities, thus promoting tumor progression. At the same time, HIF-1α also plays a crucial regulatory role in ferroptosis in tumor cells. In a hypoxic environment, HIF-1α may affect processes such as iron metabolism and oxidative stress responses, inducing ferroptosis in tumor cells. This article briefly reviews the dual role of HIF-1α in EMT and ferroptosis in tumor cells, helping to gain a deeper understanding of the regulatory pathways of HIF-1α in the development of tumor cells, providing a new perspective for understanding the pathogenesis of tumors. The regulation of HIF-1α may become an important strategy for future tumor therapy.
Collapse
Affiliation(s)
- Zhongjun Shen
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Na Yu
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Yanfeng Zhang
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Mingbo Jia
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Ying Sun
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Yao Li
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China
| | - Liyan Zhao
- Department of Blood Transfusion, Second Hospital of Jilin University, Changchun, 130041 Jilin, China.
| |
Collapse
|
9
|
Vellutini BC, Martín-Durán JM, Børve A, Hejnol A. Combinatorial Wnt signaling landscape during brachiopod anteroposterior patterning. BMC Biol 2024; 22:212. [PMID: 39300453 PMCID: PMC11414264 DOI: 10.1186/s12915-024-01988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/19/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Wnt signaling pathways play crucial roles in animal development. They establish embryonic axes, specify cell fates, and regulate tissue morphogenesis from the early embryo to organogenesis. It is becoming increasingly recognized that these distinct developmental outcomes depend upon dynamic interactions between multiple ligands, receptors, antagonists, and other pathway modulators, consolidating the view that a combinatorial "code" controls the output of Wnt signaling. However, due to the lack of comprehensive analyses of Wnt components in several animal groups, it remains unclear if specific combinations always give rise to specific outcomes, and if these combinatorial patterns are conserved throughout evolution. RESULTS In this work, we investigate the combinatorial expression of Wnt signaling components during the axial patterning of the brachiopod Terebratalia transversa. We find that T. transversa has a conserved repertoire of ligands, receptors, and antagonists. These genes are expressed throughout embryogenesis but undergo significant upregulation during axial elongation. At this stage, Frizzled domains occupy broad regions across the body while Wnt domains are narrower and distributed in partially overlapping patches; antagonists are mostly restricted to the anterior end. Based on their combinatorial expression, we identify a series of unique transcriptional subregions along the anteroposterior axis that coincide with the different morphological subdivisions of the brachiopod larval body. When comparing these data across the animal phylogeny, we find that the expression of Frizzled genes is relatively conserved, whereas the expression of Wnt genes is more variable. CONCLUSIONS Our results suggest that the differential activation of Wnt signaling pathways may play a role in regionalizing the anteroposterior axis of brachiopod larvae. More generally, our analyses suggest that changes in the receptor context of Wnt ligands may act as a mechanism for the evolution and diversification of the metazoan body axis.
Collapse
Affiliation(s)
- Bruno C Vellutini
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway.
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307, Dresden, Germany.
| | - José M Martín-Durán
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, Fogg Building, London, E1 4NS, UK
| | - Aina Børve
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway
- Department of Biological Sciences, Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway
| | - Andreas Hejnol
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway.
- Department of Biological Sciences, Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway.
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Erbertstraße 1, 07743, Jena, Germany.
| |
Collapse
|
10
|
Koutaki D, Paltoglou G, Manou M, Vourdoumpa A, Ramouzi E, Tzounakou AM, Michos A, Bacopoulou F, Mantzou E, Zoumakis E, Papadopoulou M, Kassari P, Charmandari E. The Role of Secreted Frizzled-Related Protein 5 (Sfrp5) in Overweight and Obesity in Childhood and Adolescence. Nutrients 2024; 16:3133. [PMID: 39339733 PMCID: PMC11434931 DOI: 10.3390/nu16183133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objective: Secreted frizzled-related protein 5 (Sfrp5) is an anti-inflammatory adipokine that has been implicated in the pathophysiology of obesity and its metabolic complications. Despite the fact that numerous studies have been carried out in adults, limited data on Sfrp5 exist for youth, especially in relation to overweight and obesity. Methods: In our study, we assessed the concentrations of Sfrp5, total oxidative (TOS) and antioxidative (TAS) status, high-sensitivity C-reactive protein (hs-CRP), and several cytokines (IL-1α, IL-1β, IL-2, IL-6, IL-8, IL-12, TNF-α) in 120 children and adolescents (mean age ± SE: 11.48 ± 0.25 years; 48 prepubertal, 72 pubertal; 74 males and 46 females) before and 1 year after the implementation of a personalized, structured, lifestyle intervention program of healthy diet, sleep, and physical exercise. Results: Based on the body mass index (BMI), participants were categorized as having morbid obesity (n = 63, 52.5%), obesity (n = 21, 17.5%), overweight (n = 22, 18.33%), or normal BMIs (n = 14, 11.67%), based on the International Obesity Task Force (IOTF) cut-off points. Following the 1-year lifestyle intervention program, a significant improvement in anthropometric measurements (BMI, BMI-z score, diastolic blood pressure, WHR, and WHtR), body-composition parameters, hepatic enzymes, lipid profile, inflammation markers, and the insulin-sensitivity profile (HbA1C, HOMA index) was observed in all subjects. Sfrp5 decreased in subjects with obesity (p < 0.01); however, it increased significantly (p < 0.05) in patients with morbid obesity. Linear regression analysis indicates that TNF-α and systolic blood pressure were the best positive predictors and hs-CRP was the best negative predictor for Sfpr5 concentration at initial assessment and glucose concentration for ΔSfrp5, while TNF-α and TAS were the best positive predictors for Sfpr5 concentration at annual assessment. Conclusions: These results indicate that Sfrp5 is associated with severe obesity and is increased following weight loss in children and adolescents with morbid obesity. It is also related to metabolic homeostasis, as well as inflammation and oxidative status.
Collapse
Affiliation(s)
- Diamanto Koutaki
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.K.); (G.P.); (M.M.); (A.V.); (E.R.); (A.-M.T.); (E.M.); (E.Z.); (M.P.); (P.K.)
| | - George Paltoglou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.K.); (G.P.); (M.M.); (A.V.); (E.R.); (A.-M.T.); (E.M.); (E.Z.); (M.P.); (P.K.)
| | - Maria Manou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.K.); (G.P.); (M.M.); (A.V.); (E.R.); (A.-M.T.); (E.M.); (E.Z.); (M.P.); (P.K.)
- Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Aikaterini Vourdoumpa
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.K.); (G.P.); (M.M.); (A.V.); (E.R.); (A.-M.T.); (E.M.); (E.Z.); (M.P.); (P.K.)
| | - Eleni Ramouzi
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.K.); (G.P.); (M.M.); (A.V.); (E.R.); (A.-M.T.); (E.M.); (E.Z.); (M.P.); (P.K.)
| | - Anastasia-Maria Tzounakou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.K.); (G.P.); (M.M.); (A.V.); (E.R.); (A.-M.T.); (E.M.); (E.Z.); (M.P.); (P.K.)
| | - Athanasios Michos
- Division of Infectious Diseases, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece;
| | - Flora Bacopoulou
- University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece;
| | - Emilia Mantzou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.K.); (G.P.); (M.M.); (A.V.); (E.R.); (A.-M.T.); (E.M.); (E.Z.); (M.P.); (P.K.)
| | - Emmanouil Zoumakis
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.K.); (G.P.); (M.M.); (A.V.); (E.R.); (A.-M.T.); (E.M.); (E.Z.); (M.P.); (P.K.)
| | - Marina Papadopoulou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.K.); (G.P.); (M.M.); (A.V.); (E.R.); (A.-M.T.); (E.M.); (E.Z.); (M.P.); (P.K.)
| | - Penio Kassari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.K.); (G.P.); (M.M.); (A.V.); (E.R.); (A.-M.T.); (E.M.); (E.Z.); (M.P.); (P.K.)
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, “Aghia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.K.); (G.P.); (M.M.); (A.V.); (E.R.); (A.-M.T.); (E.M.); (E.Z.); (M.P.); (P.K.)
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
11
|
Nieto-Estevez V, Varma P, Mirsadeghi S, Caballero J, Gamero-Alameda S, Hosseini A, Silvosa MJ, Thodeson DM, Lybrand ZR, Giugliano M, Navara C, Hsieh J. Dual effects of ARX poly-alanine mutations in human cortical and interneuron development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577271. [PMID: 38328230 PMCID: PMC10849640 DOI: 10.1101/2024.01.25.577271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Infantile spasms, with an incidence of 1.6 to 4.5 per 10,000 live births, are a relentless and devastating childhood epilepsy marked by severe seizures but also leads to lifelong intellectual disability. Alarmingly, up to 5% of males with this condition carry a mutation in the Aristaless-related homeobox ( ARX ) gene. Our current lack of human-specific models for developmental epilepsy, coupled with discrepancies between animal studies and human data, underscores the gap in knowledge and urgent need for innovative human models, organoids being one of the best available. Here, we used human neural organoid models, cortical organoids (CO) and ganglionic eminences organoids (GEO) which mimic cortical and interneuron development respectively, to study the consequences of PAE mutations, one of the most prevalent mutation in ARX . ARX PAE produces a decrease expression of ARX in GEOs, and an enhancement in interneuron migration. That accelerated migration is cell autonomously driven, and it can be rescued by inhibiting CXCR4. We also found that PAE mutations result in an early increase in radial glia cells and intermediate progenitor cells, followed by a subsequent loss of cortical neurons at later timepoints. Moreover, ARX expression is upregulated in COs derived from patients at 30 DIV and is associated with alterations in the expression of CDKN1C . Furthermore, ARX PAE assembloids had hyperactivity which were evident at early stages of development. With effective treatments for infantile spasms and developmental epilepsies still elusive, delving into the role of ARX PAE mutations in human brain organoids represents a pivotal step toward uncovering groundbreaking therapeutic strategies.
Collapse
|
12
|
Schlissel G, Meziane M, Narducci D, Hansen AS, Li P. Diffusion barriers imposed by tissue topology shape Hedgehog morphogen gradients. Proc Natl Acad Sci U S A 2024; 121:e2400677121. [PMID: 39190357 PMCID: PMC11388384 DOI: 10.1073/pnas.2400677121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/15/2024] [Indexed: 08/28/2024] Open
Abstract
Animals use a small number of morphogens to pattern tissues, but it is unclear how evolution modulates morphogen signaling range to match tissues of varying sizes. Here, we used single-molecule imaging in reconstituted morphogen gradients and in tissue explants to determine that Hedgehog diffused extracellularly as a monomer, and rapidly transitioned between membrane-confined and -unconfined states. Unexpectedly, the vertebrate-specific protein SCUBE1 expanded Hedgehog gradients by accelerating the transition rates between states without affecting the relative abundance of molecules in each state. This observation could not be explained under existing models of morphogen diffusion. Instead, we developed a topology-limited diffusion model in which cell-cell gaps create diffusion barriers, which morphogens can only overcome by passing through a membrane-unconfined state. Under this model, SCUBE1 promoted Hedgehog secretion and diffusion by allowing it to transiently overcome diffusion barriers. This multiscale understanding of morphogen gradient formation unified prior models and identified knobs that nature can use to tune morphogen gradient sizes across tissues and organisms.
Collapse
Affiliation(s)
- Gavin Schlissel
- Whitehead Institute for Biomedical Research, Cambridge, MA02142
| | - Miram Meziane
- Whitehead Institute for Biomedical Research, Cambridge, MA02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Domenic Narducci
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Gene Regulation Observatory, The Broad Institute of MIT and Harvard, Cambridge, MA02142
- Koch Institute for Integrative Cancer Research, Cambridge, MA02139
| | - Anders S. Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Gene Regulation Observatory, The Broad Institute of MIT and Harvard, Cambridge, MA02142
- Koch Institute for Integrative Cancer Research, Cambridge, MA02139
| | - Pulin Li
- Whitehead Institute for Biomedical Research, Cambridge, MA02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
13
|
Hok-A-Hin YS, Vermunt L, Peeters CF, van der Ende EL, de Boer SC, Meeter LH, van Swieten JC, Hu WT, Lleó A, Alcolea D, Engelborghs S, Sieben A, Chen-Plotkin A, Irwin DJ, van der Flier WM, Pijnenburg YA, Teunissen CE, del Campo M. Large-scale CSF proteome profiling identifies biomarkers for accurate diagnosis of Frontotemporal Dementia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.19.24312100. [PMID: 39228745 PMCID: PMC11370532 DOI: 10.1101/2024.08.19.24312100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Diagnosis of Frontotemporal dementia (FTD) and the specific underlying neuropathologies (frontotemporal lobar degeneration; FTLD- Tau and FTLD-TDP) is challenging, and thus fluid biomarkers are needed to improve diagnostic accuracy. We used proximity extension assays to analyze 665 proteins in cerebrospinal fluid (CSF) samples from a multicenter cohort including patients with FTD (n = 189), Alzheimer's Disease dementia (AD; n = 232), and cognitively unimpaired individuals (n = 196). In a subset, FTLD neuropathology was determined based on phenotype or genotype (FTLD-Tau = 87 and FTLD-TDP = 68). Forty three proteins were differentially regulated in FTD compared to controls and AD, reflecting axon development, regulation of synapse assembly, and cell-cell adhesion mediator activity pathways. Classification analysis identified a 14- and 13-CSF protein panel that discriminated FTD from controls (AUC: 0.96) or AD (AUC: 0.91). Custom multiplex panels confirmed the highly accurate discrimination between FTD and controls (AUCs > 0.96) or AD (AUCs > 0.88) in three validation cohorts, including one with autopsy confirmation (AUCs > 0.90). Six proteins were differentially regulated between FTLD-TDP and FTLD-Tau, but no reproducible classification model could be generated (AUC: 0.80). Overall, this study introduces novel FTD-specific biomarker panels with potential use in diagnostic setting.
Collapse
Affiliation(s)
- Yanaika S. Hok-A-Hin
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Lisa Vermunt
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Alzheimer Center and Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, The Netherlands
| | - Carel F.W. Peeters
- Mathematical & Statistical Methods group – Biometris, Wageningen University & Research, Wageningen, The Netherlands
| | - Emma L. van der Ende
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Sterre C.M. de Boer
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Alzheimer Center and Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, The Netherlands
- School of Psychology and Brain & Mind Centre, The University of Sydney, Sydney, Australia
| | - Lieke H. Meeter
- Alzheimer center and department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - John C. van Swieten
- Alzheimer center and department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - William T. Hu
- Department of Neurology, Center for Neurodegenerative Diseases Research, Emory University School of Medicine, Atlanta, USA
| | - Alberto Lleó
- Department of Neurology, Institut d’Investigacions Biomèdiques Sant Pau (IIB SANT PAU) - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Catalunya, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Daniel Alcolea
- Department of Neurology, Institut d’Investigacions Biomèdiques Sant Pau (IIB SANT PAU) - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Catalunya, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Vrije Universiteit Brussel, Center for Neurosciences (C4N), Neuroprotection and Neuromodulation Research Group (NEUR), Brussels, Belgium
- Universitair Ziekenhuis Brussel, Department of Neurology, Brussels, Belgium
| | - Anne Sieben
- Lab of neuropathology, Neurobiobank, Institute Born-Bunge, Antwerp University, Edegem, Belgium
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David J. Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wiesje M. van der Flier
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Alzheimer Center and Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, The Netherlands
| | - Yolande A.L. Pijnenburg
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Alzheimer Center and Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, The Netherlands
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Marta del Campo
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, The Netherlands
- Barcelonaßeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San PabloCEU, CEU Universities, Madrid, Spain
| |
Collapse
|
14
|
TANI A, NAKASE K, TOMIYASU H, NEO S, OHMI A, GOTO-KOSHINO Y, OHNO K, TSUJIMOTO H. Transcriptomic analysis of bone marrow specimens collected from Miniature Dachshunds diagnosed with non-neoplastic bone marrow disorders. J Vet Med Sci 2024; 86:737-743. [PMID: 38825482 PMCID: PMC11251810 DOI: 10.1292/jvms.23-0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 05/22/2024] [Indexed: 06/04/2024] Open
Abstract
Non-neoplastic bone marrow disorders are main causes of non-regenerative anemia in dogs. Despite the high incidence of the diseases, their molecular pathophysiology has not been elucidated. We previously reported that Miniature Dachshund (MD) was a predisposed breed to be diagnosed with non-neoplastic bone marrow disorders in Japan, and immunosuppressive treatment-resistant MDs showed higher number of platelets and morphological abnormalities in peripheral blood cells. These data implied that treatment-resistant MDs might possess distinct pathophysiological features from treatment-responsive MDs. Therefore, we conducted transcriptomic analysis of bone marrow specimens to investigate the pathophysiology of treatment-resistant MDs. Transcriptomic analysis comparing treatment-resistant MDs and healthy control dogs identified 179 differentially expressed genes (DEGs). Pathway analysis using these DEGs showed that "Wnt signaling pathway" was a significantly enriched pathway. We further examined the expression levels of DEGs associated with Wnt signaling pathway and confirmed the upregulation of AXIN2 and CCND2 and the downregulation of SFRP2 in treatment-resistant MDs compared with treatment-responsive MDs and healthy control dogs. This alteration implied the activation of Wnt signaling pathway in treatment-resistant MDs. The activation of Wnt signaling pathway has been reported in human patients with myelodysplastic syndrome (MDS), which is characterized by dysplastic features of blood cells. Therefore, the results of this study implied that treatment-resistant MDs have distinct molecular pathological features from treatment-responsive MDs and the pathophysiology of treatment-resistant MDs might be similar to that of human MDS patients.
Collapse
Affiliation(s)
- Akiyoshi TANI
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kota NAKASE
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hirotaka TOMIYASU
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Sakurako NEO
- Laboratory of Clinical Diagnostics, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Aki OHMI
- Veterinary Medical Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuko GOTO-KOSHINO
- Veterinary Medical Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koichi OHNO
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hajime TSUJIMOTO
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Rosenbaum D, Saftig P. New insights into the function and pathophysiology of the ectodomain sheddase A Disintegrin And Metalloproteinase 10 (ADAM10). FEBS J 2024; 291:2733-2766. [PMID: 37218105 DOI: 10.1111/febs.16870] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
The 'A Disintegrin And Metalloproteinase 10' (ADAM10) has gained considerable attention due to its discovery as an 'α-secretase' involved in the nonamyloidogenic processing of the amyloid precursor protein, thereby possibly preventing the excessive generation of the amyloid beta peptide, which is associated with the pathogenesis of Alzheimer's disease. ADAM10 was found to exert many additional functions, cleaving about 100 different membrane proteins. ADAM10 is involved in many pathophysiological conditions, ranging from cancer and autoimmune disorders to neurodegeneration and inflammation. ADAM10 cleaves its substrates close to the plasma membrane, a process referred to as ectodomain shedding. This is a central step in the modulation of the functions of cell adhesion proteins and cell surface receptors. ADAM10 activity is controlled by transcriptional and post-translational events. The interaction of ADAM10 with tetraspanins and the way they functionally and structurally depend on each other is another topic of interest. In this review, we will summarize findings on how ADAM10 is regulated and what is known about the biology of the protease. We will focus on novel aspects of the molecular biology and pathophysiology of ADAM10 that were previously poorly covered, such as the role of ADAM10 on extracellular vesicles, its contribution to virus entry, and its involvement in cardiac disease, cancer, inflammation, and immune regulation. ADAM10 has emerged as a regulator controlling cell surface proteins during development and in adult life. Its involvement in disease states suggests that ADAM10 may be exploited as a therapeutic target to treat conditions associated with a dysfunctional proteolytic activity.
Collapse
Affiliation(s)
- David Rosenbaum
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Germany
| | - Paul Saftig
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Germany
| |
Collapse
|
16
|
Zhang D, Jin X, Ma X, Qiu Y, Ma W, Dai X, Zhang Z. Tumour necrosis factor α regulates the miR-27a-3p-Sfrp1 axis in a mouse model of osteoporosis. Exp Physiol 2024; 109:1109-1123. [PMID: 38748896 PMCID: PMC11215474 DOI: 10.1113/ep090311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/01/2024] [Indexed: 07/02/2024]
Abstract
Osteoporosis is a metabolic bone disease that involves gradual loss of bone density and mass, thus resulting in increased fragility and risk of fracture. Inflammatory cytokines, such as tumour necrosis factor α (TNF-α), inhibit osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), and several microRNAs are implicated in osteoporosis development. This study aimed to explore the correlation between TNF-α treatment and miR-27a-3p expression in BMSC osteogenesis and further understand their roles in osteoporosis. An osteoporosis animal model was established using ovariectomized (OVX) mice. Compared with Sham mice, the OVX mice had a significantly elevated level of serum TNF-α and decreased level of bone miR-27a-3p, and in vitro TNF-α treatment inhibited miR-27a-3p expression in BMSCs. In addition, miR-27a-3p promoted osteogenic differentiation of mouse BMSCs in vitro, as evidenced by alkaline phosphatase staining and Alizarin Red-S staining, as well as enhanced expression of the osteogenic markers Runx2 and Osterix. Subsequent bioinformatics analysis combined with experimental validation identified secreted frizzled-related protein 1 (Sfrp1) as a downstream target of miR-27a-3p. Sfrp1 overexpression significantly inhibited the osteogenic differentiation of BMSCs in vitro and additional TNF-α treatment augmented this inhibition. Moreover, Sfrp1 overexpression abrogated the promotive effect of miR-27a-3p on the osteogenic differentiation of BMSCs. Furthermore, the miR-27a-3p-Sfrp1 axis was found to exert its regulatory function in BMSC osteogenic differentiation via regulating Wnt3a-β-catenin signalling. In summary, this study revealed that TNF-α regulated a novel miR-27a-3p-Sfrp1 axis in osteogenic differentiation of BMSCs. The data provide new insights into the development of novel therapeutic strategies for osteoporosis.
Collapse
Affiliation(s)
- Dang‐Feng Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Xiao‐Na Jin
- Department of NursingXi'an International UniversityXi'anShaanxiChina
| | - Xing Ma
- Department of OrthopedicsThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Yu‐Sheng Qiu
- Department of OrthopedicsThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Wei Ma
- Department of OrthopedicsThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Xing Dai
- Department of OrthopedicsThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Zhi Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| |
Collapse
|
17
|
Kafka A, Pećina-Šlaus N, Drmić D, Bukovac A, Njirić N, Žarković K, Jakovčević A. SFRP4 protein expression is reduced in high grade astrocytomas which is not caused by the methylation of its promoter. Front Mol Neurosci 2024; 17:1398872. [PMID: 38993819 PMCID: PMC11236799 DOI: 10.3389/fnmol.2024.1398872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/31/2024] [Indexed: 07/13/2024] Open
Abstract
Introduction Epigenetics play a vital role in stratifying CNS tumors and gliomas. The importance of studying Secreted frizzled-related protein 4 (SFRP4) in gliomas is to improve diffuse glioma methylation profiling. Here we examined the methylation status of SFRP4 promoter and the level of its protein expression in diffuse gliomas WHO grades 2-4. Methods SFRP4 expression was detected by immunohistochemistry and evaluated semi-quantitatively. In the tumor hot-spot area, the intensity of protein expression in 200 cells was determined using ImageJ (National Institutes of Health, United States). The assessment of immunopositivity was based on the IRS score (Immunoreactivity Score). Promoter methylation was examined by methylation specific-PCR (MSP) in fifty-one diffuse glioma samples and appropriate controls. Isolated DNA was treated with bisulfite conversion and afterwards used for MSP. Public databases (cBioPortal, COSMIC and LOVD) were searched to corroborate the results. Results and discussion SFRP4 protein expression in glioblastomas was very weak or non-existent in 86.7% of samples, moderate in 13.3%, while strong expression was not observed. The increase in astrocytoma grade resulted in SFRP4 protein decrease (p = 0.008), indicating the loss of its antagonistic role in Wnt signaling. Promoter methylation of SFRP4 gene was found in 16.3% of cases. Astrocytomas grade 2 had significantly more methylated cases compared to grade 3 astrocytomas (p = 0.004) and glioblastomas (p < 0.001), which may indicate temporal niche of methylation in grade 2. Furthermore, the expression levels of SFRP4 were high in samples with methylated SFRP4 promoter and low or missing in unmethylated cases (Pearson's R = -0.413; p = 0.003). We also investigated the association of SFRP4 changes to key Wnt regulators GSK3β and DKK3 and established a positive correlation between methylations of SFRP4 and GSK3β (Pearson's R = 0.323; p = 0.03). Furthermore, SFRP4 expression was correlated to unmethylated DKK3 (Chi square = 7.254; p = 0.027) indication that Wnt signaling antagonist is associated to negative regulator's demethylation. Conclusion The study contributes to the recognition of the significance of epigenetic changes in diffuse glioma indicating that restoring SFRP4 protein holds potential as therapeutic avenue. Reduced expression of SFRP4 in glioblastomas, not following promoter methylation pattern, suggests another mechanism, possible global methylation, that turns off SFRP4 expression in higher grades.
Collapse
Affiliation(s)
- Anja Kafka
- Laboratory of Neuro-oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nives Pećina-Šlaus
- Laboratory of Neuro-oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Denis Drmić
- Laboratory of Neuro-oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Anja Bukovac
- Laboratory of Neuro-oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Niko Njirić
- Department of Neurosurgery, University Hospital Center “Zagreb”, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Kamelija Žarković
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Division of Pathology, University Hospital Center “Zagreb”, Zagreb, Croatia
| | - Antonia Jakovčević
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Division of Pathology, University Hospital Center “Zagreb”, Zagreb, Croatia
| |
Collapse
|
18
|
Li R, Liu S, Yeo K, Edwards S, Li MY, Santos R, Rad SK, Wu F, Maddern G, Young J, Tomita Y, Townsend A, Fenix K, Hauben E, Price T, Smith E. Diagnostic and prognostic significance of circulating secreted frizzled-related protein 5 in colorectal cancer. Cancer Med 2024; 13:e7352. [PMID: 38872420 PMCID: PMC11176579 DOI: 10.1002/cam4.7352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Secreted Frizzled-Related Protein 5 (SFRP5) modulates Wnt signalling pathways, affecting diverse biological processes. We assessed the diagnostic and prognostic value of circulating SFRP5 (cSFRP5) in colorectal cancer (CRC) METHODS: Plasma cSFRP5 concentrations were measured using enzyme-linked immunosorbent assay (ELISA) in healthy donors (n = 133), individuals diagnosed with CRC (n = 449), colorectal polyps (n = 85), and medical conditions in other organs including cancer, inflammation, and benign states (n = 64). RESULTS Patients with CRC, polyps, and other conditions showed higher cSFRP5 levels than healthy individuals (p < 0.0001). Receiver operating characteristic curves comparing healthy donors with medical conditions, polyps and CRC were 0.814 (p < 0.0001), 0.763 (p < 0.0001) and 0.762 (p < 0.0001), respectively. In CRC, cSFRP5 correlated with patient age (p < 0.0001), tumour stage (p < 0.0001), and histological differentiation (p = 0.0273). Levels, adjusted for patient age, sex, plasma age and collection institution, peaked in stage II versus I (p < 0.0001), III (p = 0.0002) and IV (p < 0.0001), were lowest in stage I versus III (p = 0.0002) and IV (p = 0.0413), with no difference between stage III and IV. Elevated cSFRP5 levels predicted longer overall survival in stages II-III CRC (univariate: HR 1.82, 95% CI: 1.02-3.26, p = 0.024; multivariable: HR 2.34, 95% CI: 1.12-4.88, p = 0.015). CONCLUSION This study confirms cSFRP5 levels are elevated in CRC compared to healthy control and reveals a correlation between elevated cSFRP5 and overall survival in stages II-III disease.
Collapse
Affiliation(s)
- Runhao Li
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Saifei Liu
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kenny Yeo
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Discipline of Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Suzanne Edwards
- School of Public Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Man Ying Li
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Discipline of Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Ryan Santos
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Viral Immunology Group, The University of Adelaide and Basil Hetzel Institute for Translational Health Research, Woodville, South Australia, Australia
| | - Sima Kianpour Rad
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Fangmeinuo Wu
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Guy Maddern
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Discipline of Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Joanne Young
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Medical Oncology, The Queen Elizabeth Hospital, Woodville, South Australia, Australia
| | - Yoko Tomita
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Medical Oncology, The Queen Elizabeth Hospital, Woodville, South Australia, Australia
| | - Amanda Townsend
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Medical Oncology, The Queen Elizabeth Hospital, Woodville, South Australia, Australia
| | - Kevin Fenix
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Discipline of Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Ehud Hauben
- Discipline of Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Timothy Price
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Medical Oncology, The Queen Elizabeth Hospital, Woodville, South Australia, Australia
| | - Eric Smith
- Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Discipline of Surgery, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
- Medical Oncology, The Queen Elizabeth Hospital, Woodville, South Australia, Australia
| |
Collapse
|
19
|
Choi YS, Hong JG, Lim DY, Kim MS, Park SH, Kang HC, Seo WS, Lee J. Small Peptide Derived from SFRP5 Suppresses Melanogenesis by Inhibiting Wnt Activity. Curr Issues Mol Biol 2024; 46:5420-5435. [PMID: 38920996 PMCID: PMC11201734 DOI: 10.3390/cimb46060324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Melanocytes, located in the epidermis' basal layer, are responsible for melanin pigment production, crucial for skin coloration and protection against UV radiation-induced damage. Melanin synthesis is intricately regulated by various factors, including the Wnt signaling pathway, particularly mediated by the microphthalmia-associated transcription factor (MITF). While MITF is recognized as a key regulator of pigmentation, its regulation by the Wnt pathway remains poorly understood. This study investigates the role of Sfrp5pepD, a peptide antagonist of the Wnt signaling pathway, in modulating melanogenesis and its potential therapeutic implications for pigmentary disorders. To tackle this issue, we investigated smaller peptides frequently utilized in cosmetics or pharmaceuticals. Nevertheless, there is a significant scarcity of reports on peptides associated with melanin-related signal modulation or inhibiting melanin production. Results indicate that Sfrp5pepD effectively inhibits Wnt signaling by disrupting the interaction between Axin-1 and β-catenin, thus impeding downstream melanogenic processes. Additionally, Sfrp5pepD suppresses the interaction between MITF and β-catenin, inhibiting their nuclear translocation and downregulating melanogenic enzyme expression, ultimately reducing melanin production. These inhibitory effects are validated in cell culture models suggesting potential clinical applications for hyperpigmentation disorders. Overall, this study elucidates the intricate interplay between Wnt signaling and melanogenesis, highlighting Sfrp5pepD as a promising therapeutic agent for pigmentary disorders. Sfrp5pepD, with a molecular weight of less than 500 Da, is anticipated to penetrate the skin unlike SFRPs. This suggests a strong potential for their use as cosmetics or transdermal absorption agents. Additional investigation into its mechanisms and clinical significance is necessary to enhance its effectiveness in addressing melanin-related skin conditions.
Collapse
Affiliation(s)
- Yoon-Seo Choi
- Graduate School-Interdisciplinary Program in Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Jin-Gwen Hong
- Research and Development Department, Benex Co., Ltd., Cheongju 28118, Republic of Korea;
| | - Dong-Young Lim
- R&D Center, Supadelixir Co., Ltd., Chuncheon 24232, Republic of Korea; (D.-Y.L.); (M.-S.K.)
| | - Min-Seo Kim
- R&D Center, Supadelixir Co., Ltd., Chuncheon 24232, Republic of Korea; (D.-Y.L.); (M.-S.K.)
| | - Sang-Hoon Park
- Department of Plastic Surgery, ID Hospital, Gangnam 06039, Republic of Korea;
| | - Hee-Cheol Kang
- Materials Division Affiliated Research Center, GFC Life Science Co., Ltd., Hwaseong 18471, Republic of Korea;
| | - Won-Sang Seo
- Materials Division Affiliated Research Center, GFC Life Science Co., Ltd., Hwaseong 18471, Republic of Korea;
| | - Jongsung Lee
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
20
|
Schlissel G, Meziane M, Narducci D, Hansen AS, Li P. Diffusion barriers imposed by tissue topology shape morphogen gradients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592050. [PMID: 38746265 PMCID: PMC11092646 DOI: 10.1101/2024.05.01.592050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Animals use a small number of morphogens to pattern tissues, but it is unclear how evolution modulates morphogen signaling range to match tissues of varying sizes. Here, we used single molecule imaging in reconstituted morphogen gradients and in tissue explants to determine that Hedgehog diffused extra-cellularly as a monomer, and rapidly transitioned between membrane-confined and -unconfined states. Unexpectedly, the vertebrate-specific protein SCUBE1 expanded Hedgehog gradients by accelerating the transition rates between states without affecting the relative abundance of molecules in each state. This observation could not be explained under existing models of morphogen diffusion. Instead, we developed a topology-limited diffusion model in which cell-cell gaps create diffusion barriers, and morphogens can only overcome the barrier by passing through a membrane-unconfined state. Under this model, SCUBE1 promotes Hedgehog secretion and diffusion by allowing it to transiently overcome diffusion barriers. This multiscale understanding of morphogen gradient formation unified prior models and discovered novel knobs that nature can use to tune morphogen gradient sizes across tissues and organisms.
Collapse
|
21
|
Yu M, Qin K, Fan J, Zhao G, Zhao P, Zeng W, Chen C, Wang A, Wang Y, Zhong J, Zhu Y, Wagstaff W, Haydon RC, Luu HH, Ho S, Lee MJ, Strelzow J, Reid RR, He TC. The evolving roles of Wnt signaling in stem cell proliferation and differentiation, the development of human diseases, and therapeutic opportunities. Genes Dis 2024; 11:101026. [PMID: 38292186 PMCID: PMC10825312 DOI: 10.1016/j.gendis.2023.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/18/2023] [Accepted: 04/12/2023] [Indexed: 02/01/2024] Open
Abstract
The evolutionarily conserved Wnt signaling pathway plays a central role in development and adult tissue homeostasis across species. Wnt proteins are secreted, lipid-modified signaling molecules that activate the canonical (β-catenin dependent) and non-canonical (β-catenin independent) Wnt signaling pathways. Cellular behaviors such as proliferation, differentiation, maturation, and proper body-axis specification are carried out by the canonical pathway, which is the best characterized of the known Wnt signaling paths. Wnt signaling has emerged as an important factor in stem cell biology and is known to affect the self-renewal of stem cells in various tissues. This includes but is not limited to embryonic, hematopoietic, mesenchymal, gut, neural, and epidermal stem cells. Wnt signaling has also been implicated in tumor cells that exhibit stem cell-like properties. Wnt signaling is crucial for bone formation and presents a potential target for the development of therapeutics for bone disorders. Not surprisingly, aberrant Wnt signaling is also associated with a wide variety of diseases, including cancer. Mutations of Wnt pathway members in cancer can lead to unchecked cell proliferation, epithelial-mesenchymal transition, and metastasis. Altogether, advances in the understanding of dysregulated Wnt signaling in disease have paved the way for the development of novel therapeutics that target components of the Wnt pathway. Beginning with a brief overview of the mechanisms of canonical and non-canonical Wnt, this review aims to summarize the current knowledge of Wnt signaling in stem cells, aberrations to the Wnt pathway associated with diseases, and novel therapeutics targeting the Wnt pathway in preclinical and clinical studies.
Collapse
Affiliation(s)
- Michael Yu
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin Qin
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Jiamin Zhong
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin Ho
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
22
|
Jarosz ŁS, Socała K, Michalak K, Wiater A, Ciszewski A, Majewska M, Marek A, Grądzki Z, Wlaź P. The effect of psychoactive bacteria, Bifidobacterium longum Rosell®-175 and Lactobacillus rhamnosus JB-1, on brain proteome profiles in mice. Psychopharmacology (Berl) 2024; 241:925-945. [PMID: 38156998 PMCID: PMC11031467 DOI: 10.1007/s00213-023-06519-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
RATIONALE The gut microbiota may play an important role in the development and functioning of the mammalian central nervous system. The assumption of the experiment was to prove that the use of probiotic bacterial strains in the diet of mice modifies the expression of brain proteins involved in metabolic and immunological processes. OBJECTIVES AND RESULTS Albino Swiss mice were administered with Bifidobacterium longum Rosell®-175 or Lactobacillus rhamnosus JB-1 every 24 h for 28 days. Protein maps were prepared from hippocampal homogenates of euthanized mice. Selected proteins that were statistically significant were purified and concentrated and identified using MALDI-TOF mass spectrometry. Among the analysed samples, 13 proteins were identified. The mean volumes of calcyon, secreted frizzled-associated protein 3, and catalase in the hippocampus of mice from both experimental groups were statistically significantly higher than in the control group. In mice supplemented with Lactobacillus rhamnosus JB-1, a lower mean volume of fragrance binding protein 2, shadow of prion protein, and glycine receptor α4 subunit was observed compared to the control. CONCLUSION The psychobiotics Bifidobacterium longum Rosell®-175 and Lactobacillus rhamnosus JB-1enhances expression of proteins involved in the activation and maturation of nerve cells, as well as myelination and homeostatic regulation of neurogenesis in mice. The tested psychobiotics cause a decrease in the expression of proteins associated with CNS development and in synaptic transmission, thereby reducing the capacity for communication between nerve cells. The results of the study indicate that psychobiotic bacteria can be used in auxiliary treatment of neurological disorders.
Collapse
Affiliation(s)
- Łukasz S Jarosz
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612, Lublin, Poland.
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Katarzyna Michalak
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612, Lublin, Poland
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Artur Ciszewski
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612, Lublin, Poland
| | - Małgorzata Majewska
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Agnieszka Marek
- Department of Preventive Veterinary and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612, Lublin, Poland
| | - Zbigniew Grądzki
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612, Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| |
Collapse
|
23
|
Demirkiran N, Aydin B, Pehlivan M, Yuce Z, Sercan HO. Study of the effect of sFRP1 protein on molecules involved in the regulation of DNA methylation in CML cell line. Med Oncol 2024; 41:109. [PMID: 38592567 DOI: 10.1007/s12032-024-02336-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/20/2024] [Indexed: 04/10/2024]
Abstract
Wnt-signaling pathway plays a crucial role in the pathogenesis and progression of Chronic Myeloid Leukemia (CML). sFRP1 is involved in the suppression of the Wnt-signaling pathway and has been shown to be epigenetically silenced by promoter hypermethylation during CML progression. DNMT3A plays a crucial role in promoter hypermethylation and is responsible for establishing methylation patterns. We aimed to analyze the relationship between sFRP1 expression and DNMT3A, TET1, TET2 and TET3 proteins that are responsible for maintaining cellular methylation patterns; along with miRNAs miR144-3p and miR-767-5p that are known to be associated with these proteins. CML cell lines K562 and K562S which stably expresses sFRP1, were used to compare the changes in miR144-3p and miR-767-5p expression. DNMT3A, TET1, TET2 and TET3 protein levels were analyzed by Western blot. In K562S cells the expression of miR-144-3p and miR-767-5p were decreased along with DNMT3A and TET1 protein levels. On the contrary, TET2 protein was increased. Our results support other reports involving sFRP1 and methylation dynamics; as well as opening new avenues of exploration. Our data supports the conclusion that re-expression of sFRP1 protein alters the expression of factors that play important roles in the overall methylation patterns in the leukemic cell line K562.
Collapse
Affiliation(s)
- Nazli Demirkiran
- Department of Medical Biology and Genetics, Dokuz Eylul University Faculty of Medicine, Inciralti, 35340, Izmir, Turkey
| | - Bengusu Aydin
- Department of Medical Biology and Genetics, Dokuz Eylul University Faculty of Medicine, Inciralti, 35340, Izmir, Turkey
| | - Melek Pehlivan
- Department of Medical Laboratory Techniques, Izmir Katip Celebi University, Vocational School of Health Services, Izmir, Turkey
| | - Zeynep Yuce
- Department of Medical Biology and Genetics, Dokuz Eylul University Faculty of Medicine, Inciralti, 35340, Izmir, Turkey
| | - H Ogun Sercan
- Department of Medical Biology and Genetics, Dokuz Eylul University Faculty of Medicine, Inciralti, 35340, Izmir, Turkey.
| |
Collapse
|
24
|
Di Chiaro P, Nacci L, Arco F, Brandini S, Polletti S, Palamidessi A, Donati B, Soriani C, Gualdrini F, Frigè G, Mazzarella L, Ciarrocchi A, Zerbi A, Spaggiari P, Scita G, Rodighiero S, Barozzi I, Diaferia GR, Natoli G. Mapping functional to morphological variation reveals the basis of regional extracellular matrix subversion and nerve invasion in pancreatic cancer. Cancer Cell 2024; 42:662-681.e10. [PMID: 38518775 DOI: 10.1016/j.ccell.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 12/07/2023] [Accepted: 02/27/2024] [Indexed: 03/24/2024]
Abstract
Intratumor morphological heterogeneity of pancreatic ductal adenocarcinoma (PDAC) predicts clinical outcomes but is only partially understood at the molecular level. To elucidate the gene expression programs underpinning intratumor morphological variation in PDAC, we investigated and deconvoluted at single cell level the molecular profiles of histologically distinct clusters of PDAC cells. We identified three major morphological and functional variants that co-exist in varying proportions in all PDACs, display limited genetic diversity, and are associated with a distinct organization of the extracellular matrix: a glandular variant with classical ductal features; a transitional variant displaying abortive ductal structures and mixed endodermal and myofibroblast-like gene expression; and a poorly differentiated variant lacking ductal features and basement membrane, and showing neuronal lineage priming. Ex vivo and in vitro evidence supports the occurrence of dynamic transitions among these variants in part influenced by extracellular matrix composition and stiffness and associated with local, specifically neural, invasion.
Collapse
Affiliation(s)
- Pierluigi Di Chiaro
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy.
| | - Lucia Nacci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Fabiana Arco
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Stefania Brandini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Sara Polletti
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Andrea Palamidessi
- IFOM, The FIRC Institute for Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Benedetta Donati
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Chiara Soriani
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Francesco Gualdrini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Gianmaria Frigè
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Luca Mazzarella
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy; Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, IEO, European Institute of Oncology, IRCCS, Milano, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessandro Zerbi
- IRCCS Humanitas Research Hospital, Rozzano, Milano, Italy; Humanitas University, Pieve Emanuele - Milano, Italy
| | | | - Giorgio Scita
- IFOM, The FIRC Institute for Molecular Oncology, Via Adamello 16, 20139 Milan, Italy; Department of Oncology and Haemato-Oncology, University of Milan, Milano, Italy
| | - Simona Rodighiero
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Iros Barozzi
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Giuseppe R Diaferia
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy.
| | - Gioacchino Natoli
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy.
| |
Collapse
|
25
|
Xie L, Wang H, Hu J, Liu Z, Hu F. The role of novel adipokines and adipose-derived extracellular vesicles (ADEVs): Connections and interactions in liver diseases. Biochem Pharmacol 2024; 222:116104. [PMID: 38428826 DOI: 10.1016/j.bcp.2024.116104] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Adipose tissues (AT) are an important endocrine organ that secretes various functional adipokines, peptides, non-coding RNAs, and acts on AT themselves or other distant tissues or organs through autocrine, paracrine, or endocrine manners. An accumulating body of evidence has suggested that many adipokines play an important role in liver metabolism. Besides the traditional adipokines such as adiponectin and leptin, many novel adipokines have recently been identified to have regulatory effects on the liver. Additionally, AT can produce extracellular vesicles (EVs) that act on peripheral tissues. However, under pathological conditions, such as obesity and diabetes, dysregulation of adipokines is associated with functional changes in AT, which may cause liver diseases. In this review, we focus on the newly discovered adipokines and EVs secreted by AT and highlight their actions on the liver under the context of obesity, nonalcoholic fatty liver diseases (NAFLD), and some other liver diseases. Clarifying the action of adipokines and adipose tissue-derived EVs on the liver would help to identify novel therapeutic targets or biomarkers for metabolic diseases.
Collapse
Affiliation(s)
- Lijun Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Huiying Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jinying Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhuoying Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Health Law Research Center, School of Law, Central South University, Changsha, China.
| | - Fang Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
26
|
Chiu CSC, Yeh LY, Pan SH, Li SH. Transcriptomic Analysis Reveals Intrinsic Abnormalities in Endometrial Polyps. Int J Mol Sci 2024; 25:2557. [PMID: 38473810 DOI: 10.3390/ijms25052557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Endometrial polyps (EPs) are benign overgrowths of the endometrial tissue lining the uterus, often causing abnormal bleeding or infertility. This study analyzed gene expression differences between EPs and adjacent endometrial tissue to elucidate intrinsic abnormalities promoting pathological overgrowth. RNA sequencing of 12 pairs of EPs and the surrounding endometrial tissue from infertile women revealed 322 differentially expressed genes. Protein-protein interaction network analysis revealed significant alterations in specific signaling pathways, notably Wnt signaling and vascular smooth muscle regulation, suggesting these pathways play critical roles in the pathophysiology of EPs. Wnt-related genes DKK1 and DKKL1 were upregulated, while GPC3, GREM1, RSPO3, SFRP5, and WNT10B were downregulated. Relevant genes for vascular smooth muscle contraction were nearly all downregulated in EPs, including ACTA2, ACTG2, KCNMB1, KCNMB2, MYL9, PPP1R12B, and TAGLN. Overall, the results indicate fundamental gene expression changes promote EP formation through unrestrained growth signaling and vascular defects. The intrinsic signaling abnormalities likely contribute to clinical symptoms of abnormal uterine bleeding and infertility common in EP patients. This analysis provides molecular insights into abnormal endometrial overgrowth to guide improved diagnostic and therapeutic approaches for this troublesome women's health condition. Confirmation of expanded cohorts and further investigations into implicated regulatory relationships are warranted.
Collapse
Affiliation(s)
- Christine Shan-Chi Chiu
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei 104, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei 251, Taiwan
| | - Ling-Yu Yeh
- Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei 251, Taiwan
- MacKay Junior College of Medicine, Nursing, and Management, Beitou District, Taipei 112, Taiwan
| | - Szu-Hua Pan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Sheng-Hsiang Li
- Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei 251, Taiwan
- MacKay Junior College of Medicine, Nursing, and Management, Beitou District, Taipei 112, Taiwan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| |
Collapse
|
27
|
He K, Wang X, Li T, Li Y, Ma L. Chlorogenic Acid Attenuates Isoproterenol Hydrochloride-Induced Cardiac Hypertrophy in AC16 Cells by Inhibiting the Wnt/β-Catenin Signaling Pathway. Molecules 2024; 29:760. [PMID: 38398512 PMCID: PMC10892528 DOI: 10.3390/molecules29040760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Cardiac hypertrophy (CH) is an important characteristic in heart failure development. Chlorogenic acid (CGA), a crucial bioactive compound from honeysuckle, is reported to protect against CH. However, its underlying mechanism of action remains incompletely elucidated. Therefore, this study aimed to explore the mechanism underlying the protective effect of CGA on CH. This study established a CH model by stimulating AC16 cells with isoproterenol (Iso). The observed significant decrease in cell surface area, evaluated through fluorescence staining, along with the downregulation of CH-related markers, including atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and β-myosin heavy chain (β-MHC) at both mRNA and protein levels, provide compelling evidence of the protective effect of CGA against isoproterenol-induced CH. Mechanistically, CGA induced the expression of glycogen synthase kinase 3β (GSK-3β) while concurrently attenuating the expression of the core protein β-catenin in the Wnt/β-catenin signaling pathway. Furthermore, the experiment utilized the Wnt signaling activator IM-12 to observe its ability to modulate the impact of CGA pretreatment on the development of CH. Using the Gene Expression Omnibus (GEO) database combined with online platforms and tools, this study identified Wnt-related genes influenced by CGA in hypertrophic cardiomyopathy (HCM) and further validated the correlation between CGA and the Wnt/β-catenin signaling pathway in CH. This result provides new insights into the molecular mechanisms underlying the protective effect of CGA against CH, indicating CGA as a promising candidate for the prevention and treatment of heart diseases.
Collapse
Affiliation(s)
- Kai He
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.H.); (X.W.)
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Xiaoying Wang
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.H.); (X.W.)
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Tingting Li
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Yanfei Li
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.H.); (X.W.)
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Linlin Ma
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.H.); (X.W.)
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| |
Collapse
|
28
|
de Almeida Magalhaes T, Liu J, Chan C, Borges KS, Zhang J, Kane AJ, Wierbowski BM, Ge Y, Liu Z, Mannam P, Zeve D, Weiss R, Breault DT, Huang P, Salic A. Extracellular carriers control lipid-dependent secretion, delivery, and activity of WNT morphogens. Dev Cell 2024; 59:244-261.e6. [PMID: 38154460 PMCID: PMC10872876 DOI: 10.1016/j.devcel.2023.11.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/29/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023]
Abstract
WNT morphogens trigger signaling pathways fundamental for embryogenesis, regeneration, and cancer. WNTs are modified with palmitoleate, which is critical for binding Frizzled (FZD) receptors and activating signaling. However, it is unknown how WNTs are released and spread from cells, given their strong lipid-dependent membrane attachment. We demonstrate that secreted FZD-related proteins and WNT inhibitory factor 1 are WNT carriers, potently releasing lipidated WNTs and forming active soluble complexes. WNT release occurs by direct handoff from the membrane protein WNTLESS to the carriers. In turn, carriers donate WNTs to glypicans and FZDs involved in WNT reception and to the NOTUM hydrolase, which antagonizes WNTs by lipid moiety removal. WNT transfer from carriers to FZDs is greatly facilitated by glypicans that serve as essential co-receptors in Wnt signaling. Thus, an extracellular network of carriers dynamically controls secretion, posttranslational regulation, and delivery of WNT morphogens, with important practical implications for regenerative medicine.
Collapse
Affiliation(s)
| | - Jingjing Liu
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Charlene Chan
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kleiton Silva Borges
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jiuchun Zhang
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew J Kane
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bradley M Wierbowski
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yunhui Ge
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhiwen Liu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Prabhath Mannam
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Daniel Zeve
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Ron Weiss
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Pengxiang Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adrian Salic
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Zhang J, Shi L, Duan J, Li M, Li C. Proteomic detection of COX-2 pathway-related factors in patients with adenomyosis. PeerJ 2024; 12:e16784. [PMID: 38239300 PMCID: PMC10795527 DOI: 10.7717/peerj.16784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024] Open
Abstract
Background Investigating the relationship between cyclooxygenase-2 (COX-2) pathway-related factors and clinical features in patients with adenomyosis by proteomics could provide potential therapeutic targets. Methods This study recruited 40 patients undergoing surgical hysterectomy and pathological diagnosis of adenomyosis, collected ectopic endometrial specimens, and recorded clinical data. The expression levels of COX-2 in ectopic uterus lesions were detected using the immunohistochemical (IHC) SP method. The 40 samples were then divided into a COX-2 low or high expression group. Five samples with the most typical expression levels were selected from each of the two groups and the differential proteins between the two groups were identified using label-free quantitative proteomics. WW domain-binding protein 2 (WBP2), interferon induced transmembrane protein 3 (IFITM3), and secreted frizzled-related protein 4 (SFRP4) were selected for further verification, and their relationships with COX-2 and clinical characteristics were analyzed. Results There were statistically significant differences in the expression of WBP2, IFITM3, and SFRP4 between the COX-2 low and high expression groups (P < 0.01). The expressions of COX-2, IFITM3, and SFRP4 were significantly correlated with dysmenorrhea between the two groups (P < 0.05), but not with uterine size or menstrual volume (P > 0.05). However, there was no significant correlation between the expression of WBP2 and dysmenorrhea, uterine size, and menstruation volume in both the high expression and low expression groups (P > 0.05). Conclusions COX-2, IFITM3, SFRP4, and WBP2 may be involved in the pathogenesis of adenomyosis. COX-2, IFITM3, and SFRP4 may serve as potential molecular biomarkers or therapeutic targets in dysmenorrhea in patients with early adenomyosis.
Collapse
Affiliation(s)
- Jihua Zhang
- Department of Gynecology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Luying Shi
- Department of Gynecology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jingya Duan
- Department of Gynecology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Minmin Li
- Department of Gynecology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Canyu Li
- Department of Gynecology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
30
|
Zhang M, Liu Q, Meng H, Duan H, Liu X, Wu J, Gao F, Wang S, Tan R, Yuan J. Ischemia-reperfusion injury: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:12. [PMID: 38185705 PMCID: PMC10772178 DOI: 10.1038/s41392-023-01688-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 114.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/29/2023] [Accepted: 10/18/2023] [Indexed: 01/09/2024] Open
Abstract
Ischemia-reperfusion (I/R) injury paradoxically occurs during reperfusion following ischemia, exacerbating the initial tissue damage. The limited understanding of the intricate mechanisms underlying I/R injury hinders the development of effective therapeutic interventions. The Wnt signaling pathway exhibits extensive crosstalk with various other pathways, forming a network system of signaling pathways involved in I/R injury. This review article elucidates the underlying mechanisms involved in Wnt signaling, as well as the complex interplay between Wnt and other pathways, including Notch, phosphatidylinositol 3-kinase/protein kinase B, transforming growth factor-β, nuclear factor kappa, bone morphogenetic protein, N-methyl-D-aspartic acid receptor-Ca2+-Activin A, Hippo-Yes-associated protein, toll-like receptor 4/toll-interleukine-1 receptor domain-containing adapter-inducing interferon-β, and hepatocyte growth factor/mesenchymal-epithelial transition factor. In particular, we delve into their respective contributions to key pathological processes, including apoptosis, the inflammatory response, oxidative stress, extracellular matrix remodeling, angiogenesis, cell hypertrophy, fibrosis, ferroptosis, neurogenesis, and blood-brain barrier damage during I/R injury. Our comprehensive analysis of the mechanisms involved in Wnt signaling during I/R reveals that activation of the canonical Wnt pathway promotes organ recovery, while activation of the non-canonical Wnt pathways exacerbates injury. Moreover, we explore novel therapeutic approaches based on these mechanistic findings, incorporating evidence from animal experiments, current standards, and clinical trials. The objective of this review is to provide deeper insights into the roles of Wnt and its crosstalk signaling pathways in I/R-mediated processes and organ dysfunction, to facilitate the development of innovative therapeutic agents for I/R injury.
Collapse
Affiliation(s)
- Meng Zhang
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China
| | - Qian Liu
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Hui Meng
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Hongxia Duan
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Xin Liu
- Second Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Fei Gao
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Rubin Tan
- Department of Physiology, Basic medical school, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China.
| |
Collapse
|
31
|
Hu G, Du J, Wang B, Song P, Liu S. Comprehensive analysis of the clinical and prognostic significance of SFRP1 and PRKCB expression in non-small cell lung cancer: a retrospective analysis. Eur J Cancer Prev 2024; 33:45-52. [PMID: 37505453 PMCID: PMC10702695 DOI: 10.1097/cej.0000000000000832] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023]
Abstract
OBJECTIVES Secreted frizzled-related protein 1 (SFRP1) and protein kinase C-B (PRKCB) contribute to cancer progression and angiogenesis. This study intended to detect SFRP1 and PRKCB expression in non-small-cell lung cancer (NSCLC) patients and analyze its association with clinicopathological features. METHODS A total of 108 NSCLC patients who underwent surgical resection in our hospital between 2012 and 2017 were retrospectively analyzed. SFRP1 and PRKCB expression was detected using immunohistochemical staining. The relationships between SFRP1 and PRKCB expression and clinicopathological data were analyzed using the chi-square method. Kaplan-Meier analysis was used to investigate survival probability over time. The potential risk of NSCLC morbidity associated with SFRP1 and PRKCB levels was analyzed using univariate and multivariate Cox proportional risk models. RESULTS SFRP1 and PRKCB expression was negative in 114 and 109 of the 180 NSCLC specimens, respectively. SFRP1 expression was significantly associated with TNM stage ( P < 0.001) and tumor diameter ( P < 0.001). PRKCB expression was significantly associated with the TNM stage ( P < 0.001). The correlation between SFRP1 and PRKCB expression was evident ( P = 0.023). SFRP1(-) or PRKCB(-) patients shows lower survival rates than SFRP1(+) or PRKCB(+) patients ( P < 0.001). SFRP1(-)/PRKCB(-) patients had the worst prognosis ( P < 0.001). Furthermore, the mortality of SFRP1(-) or PRKCB(-) patients was significantly higher than that of SFRP1(+) or PRKCB(+). CONCLUSION SFRP1 and PRKCB expression can be used to predict prognosis in patients with NSCLC.
Collapse
Affiliation(s)
- GuoQiang Hu
- Department of Respiratory Medicine, Changxing Hospital of Traditional Chinese Medicine, Huzhou
| | - Juan Du
- Department of Respiratory Medicine, Guang’an District People’s Hospital of Guang’an City, Guang’an
| | - Bin Wang
- Department of Respiratory Medicine, Huzhou Hospital, Zhejiang University School of Medicine
- Department of Respiratory Medicine, Huzhou Central Hospital, Huzhou, China
| | - PengTao Song
- Department of Respiratory Medicine, Huzhou Hospital, Zhejiang University School of Medicine
- Department of Respiratory Medicine, Huzhou Central Hospital, Huzhou, China
| | - ShunLin Liu
- Department of Respiratory Medicine, Huzhou Hospital, Zhejiang University School of Medicine
- Department of Respiratory Medicine, Huzhou Central Hospital, Huzhou, China
| |
Collapse
|
32
|
Chen CH, Chen CJ, Huang YC, Huang PS, Chi HC, Chuang HC, Lin MH, Huang TH, Hsu JT, Chen CY. Secreted Frizzled-Related Protein 4 Induces Gastric Cancer Progression and Resistance to Cisplatin and Oxaliplatin via β-Catenin Dysregulation. Chemotherapy 2023; 69:150-164. [PMID: 38071975 DOI: 10.1159/000533767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2024]
Abstract
INTRODUCTION Gastric cancer is the fifth most common cancer and third leading cause of cancer-related death worldwide. There are three main ways to treat gastric cancer: surgical resection, radiation therapy, and drug therapy. Furthermore, combinations of two to three regimens can improve survival. However, the survival outcomes of chemotherapy in advanced gastric cancer patients are still unsatisfactory. Unfortunately, no widely useful biomarkers have been verified to predict the efficacy of chemotherapy for locally advanced gastric cancer. METHODS An MTT assay was used to determine the cell viability after cisplatin or oxaliplatin treatment. Western blotting and immunohistochemistry were utilized to examine the secreted frizzled-related protein 4 (sFRP4) level and associated signaling pathways. Immunofluorescence staining was utilized to analyze the location of β-catenin. Colony formation and Transwell assays were used to analyze the functions related with cisplatin, oxaliplatin, and sFRP4. RESULTS We have found that gastric cancer patients treated with combinations of 5-fluorouracil (5-FU) and cisplatin regimens have better survival rates than those treated with 5-FU-based chemotherapy alone. sFRP4 was selected as a potential target from stringent analysis and intersection of 5-FU and cisplatin resistance-related gene sets. sFRP4 was shown to be overexpressed in clinical gastric tumor tissues and positively correlated with a worse survival rate. In addition, sFRP4 and β-catenin were upregulated in cisplatin- and oxaliplatin-resistant gastric cancer cells compared to parental cells. Immunofluorescence staining and nuclear fractionation showed that β-catenin was translocated from the cytosol into the nucleus. Moreover, sFRP4 was detected in the conditioned medium of these resistant cells, which indicates that sFRP4 might have an extracellular role in chemotherapy resistance. Increased migration capacity and dysregulation of epithelial-mesenchymal transition-related markers, which might result from the dysregulation of sFRP4, were observed in cisplatin- and oxaliplatin-resistant gastric cancer cells. DISCUSSION/CONCLUSION In summary, sFRP4 might play a critical role in resistance to cisplatin and oxaliplatin, cell metastasis, and poor prognosis in gastric cancer via the Wnt-β-catenin pathway. Investigations of the molecular mechanism underlying sFRP4-modulated cancer progression and chemotherapeutic outcomes can provide additional therapeutic strategies for gastric cancer.
Collapse
Affiliation(s)
- Chun-Han Chen
- Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chih-Jung Chen
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Ching Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Shuan Huang
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Hsiang-Cheng Chi
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Huei-Chieh Chuang
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Chiayi, Taiwan
- Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Meng-Hung Lin
- Health Information and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chiayi Branch, Taiwan
| | - Tzu-Hao Huang
- Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Jun-Te Hsu
- Chang Gung University College of Medicine, Taoyuan, Taiwan
- Department of General Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Cheng-Yi Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
33
|
Chen R, Dong H, Raval D, Maridas D, Baroi S, Chen K, Hu D, Berry SR, Baron R, Greenblatt MB, Gori F. Sfrp4 is required to maintain Ctsk-lineage periosteal stem cell niche function. Proc Natl Acad Sci U S A 2023; 120:e2312677120. [PMID: 37931101 PMCID: PMC10655581 DOI: 10.1073/pnas.2312677120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/06/2023] [Indexed: 11/08/2023] Open
Abstract
We have previously reported that the cortical bone thinning seen in mice lacking the Wnt signaling antagonist Sfrp4 is due in part to impaired periosteal apposition. The periosteum contains cells which function as a reservoir of stem cells and contribute to cortical bone expansion, homeostasis, and repair. However, the local or paracrine factors that govern stem cells within the periosteal niche remain elusive. Cathepsin K (Ctsk), together with additional stem cell surface markers, marks a subset of periosteal stem cells (PSCs) which possess self-renewal ability and inducible multipotency. Sfrp4 is expressed in periosteal Ctsk-lineage cells, and Sfrp4 global deletion decreases the pool of PSCs, impairs their clonal multipotency for differentiation into osteoblasts and chondrocytes and formation of bone organoids. Bulk RNA sequencing analysis of Ctsk-lineage PSCs demonstrated that Sfrp4 deletion down-regulates signaling pathways associated with skeletal development, positive regulation of bone mineralization, and wound healing. Supporting these findings, Sfrp4 deletion hampers the periosteal response to bone injury and impairs Ctsk-lineage periosteal cell recruitment. Ctsk-lineage PSCs express the PTH receptor and PTH treatment increases the % of PSCs, a response not seen in the absence of Sfrp4. Importantly, in the absence of Sfrp4, PTH-dependent increase in cortical thickness and periosteal bone formation is markedly impaired. Thus, this study provides insights into the regulation of a specific population of periosteal cells by a secreted local factor, and shows a central role for Sfrp4 in the regulation of Ctsk-lineage periosteal stem cell differentiation and function.
Collapse
Affiliation(s)
- Ruiying Chen
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Han Dong
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard University Medical School, Boston, MA02115
| | - Dhairya Raval
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - David Maridas
- Department of Developmental Biology, Harvard Medical School and Harvard School of Dental Medicine, Boston, MA02115
| | - Sudipta Baroi
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Kun Chen
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Dorothy Hu
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Shawn R. Berry
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Roland Baron
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
- Harvard Medical School, Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Boston, MA02114
| | - Matthew B. Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY10065
- Research Division, Hospital for Special Surgery, New York, NY10021
| | - Francesca Gori
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| |
Collapse
|
34
|
Li X, Pang W, Fan H, Wang H, Zhang L. FRZB affects Staphylococcus aureus‑induced osteomyelitis in human bone marrow derived stem cells by regulating the Wnt/β‑catenin signaling pathway. Exp Ther Med 2023; 26:531. [PMID: 37869648 PMCID: PMC10587868 DOI: 10.3892/etm.2023.12230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/29/2023] [Indexed: 10/24/2023] Open
Abstract
Osteomyelitis is an infectious disease of bone tissue caused by bacterial infection, which can infect through hematogenous, traumatic or secondary ways and then lead to acute or chronic bone injury and relative clinical symptoms, bringing physical injury and economic burden to patients. Frizzled related protein (FRZB) participates in the regulation of various diseases (osteoarthritis, cardiovascular diseases and types of cancer) by regulating cell proliferation, motility, differentiation and inflammation, while its function in osteomyelitis remains to be elucidated. The present study aimed to uncover the role and underlying mechanism of FRZB mediation in Staphylococcus aureus (S. aureus)-induced osteomyelitis. Human bone marrow derived stem cells (hBMSCs) were treated with S. aureus to imitate an inflammatory osteomyelitis micro-environment in vitro, then mRNA and protein expression were severally assessed by RT-PCR and western blotting. The activity, apoptosis and differentiation of the cells were characterized via CCK-8, caspase-3 activity and Alizarin red sulfate/alkaline phosphatase staining, respectively. Expression levels of FRZB were upregulated in S. aureus-infected hBMSCs. Over-expression of FRZB significantly reduced hBMSC cell viability and differentiation while promoting cell apoptosis with or without S. aureus infection. However, FRZB knockdown reversed these effects. Once Wnt was impeded, the effect of FRZB downregulation was impeded to a great extent. Taken together, FRZB participated to regulate the osteomyelitis by activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xin Li
- Department of Emergency Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550023, P.R. China
| | - Wenyong Pang
- Department of Emergency Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550023, P.R. China
| | - Hongsong Fan
- Department of Emergency Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550023, P.R. China
| | - Hao Wang
- Department of Emergency Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550023, P.R. China
| | - Leibing Zhang
- Department of Emergency Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550023, P.R. China
| |
Collapse
|
35
|
Zhang W, Zhang K, Ma Y, Song Y, Qi T, Xiong G, Zhang Y, Kan C, Zhang J, Han F, Sun X. Secreted frizzled-related proteins: A promising therapeutic target for cancer therapy through Wnt signaling inhibition. Biomed Pharmacother 2023; 166:115344. [PMID: 37634472 DOI: 10.1016/j.biopha.2023.115344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023] Open
Abstract
The Wnt signaling system is a critical pathway that regulates embryonic development and adult homeostasis. Secreted frizzled-related proteins (SFRPs) are extracellular inhibitors of Wnt signaling that act by binding directly to Wnt ligands or Frizzled receptors. SFRPs can act as anti-Wnt agents and suppress cancer growth by blocking the action of Wnt ligands. However, SFRPs are often silenced by promoter methylation in cancer cells, resulting in hyperactivation of the Wnt pathway. Epigenetic modifiers can reverse this silencing and restore SFRPs expression. Despite the potential of SFRPs as a therapeutic target, the effects of SFRPs on tumor development remain unclear. Therefore, a review of the expression of various members of the SFRPs family in different cancers and their potential as therapeutic targets is warranted. This review aims to summarize the current knowledge of SFRPs in cancer, focusing on their expression patterns and their potential as novel therapeutic targets.
Collapse
Affiliation(s)
- Wenqiang Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Yanhui Ma
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Yixin Song
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Tongbing Qi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Guoji Xiong
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Yuanzhu Zhang
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China.
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang 261031, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang 261031, China.
| |
Collapse
|
36
|
Zhao J, Ikezu TC, Lu W, Macyczko JR, Li Y, Lewis-Tuffin LJ, Martens YA, Ren Y, Zhu Y, Asmann YW, Ertekin-Taner N, Kanekiyo T, Bu G. APOE deficiency impacts neural differentiation and cholesterol biosynthesis in human iPSC-derived cerebral organoids. Stem Cell Res Ther 2023; 14:214. [PMID: 37605285 PMCID: PMC10441762 DOI: 10.1186/s13287-023-03444-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND The apolipoprotein E (APOE) gene is the strongest genetic risk factor for Alzheimer's disease (AD); however, how it modulates brain homeostasis is not clear. The apoE protein is a major lipid carrier in the brain transporting lipids such as cholesterol among different brain cell types. METHODS We generated three-dimensional (3-D) cerebral organoids from human parental iPSC lines and its isogenic APOE-deficient (APOE-/-) iPSC line. To elucidate the cell-type-specific effects of APOE deficiency in the cerebral organoids, we performed scRNA-seq in the parental and APOE-/- cerebral organoids at Day 90. RESULTS We show that APOE deficiency in human iPSC-derived cerebral organoids impacts brain lipid homeostasis by modulating multiple cellular and molecular pathways. Molecular profiling through single-cell RNA sequencing revealed that APOE deficiency leads to changes in cellular composition of isogenic cerebral organoids likely by modulating the eukaryotic initiation factor 2 (EIF2) signaling pathway as these events were alleviated by the treatment of an integrated stress response inhibitor (ISRIB). APOE deletion also leads to activation of the Wnt/β-catenin signaling pathway with concomitant decrease of secreted frizzled-related protein 1 (SFRP1) expression in glia cells. Importantly, the critical role of apoE in cell-type-specific lipid homeostasis was observed upon APOE deletion in cerebral organoids with a specific upregulation of cholesterol biosynthesis in excitatory neurons and excessive lipid accumulation in astrocytes. Relevant to human AD, APOE4 cerebral organoids show altered neurogenesis and cholesterol metabolism compared to those with APOE3. CONCLUSIONS Our work demonstrates critical roles of apoE in brain homeostasis and offers critical insights into the APOE4-related pathogenic mechanisms.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
- Center for Regenerative Medicine, Neuroregeneration Laboratory, Mayo Clinic, Jacksonville, FL, 32224, USA.
| | - Tadafumi C Ikezu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Wenyan Lu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Center for Regenerative Medicine, Neuroregeneration Laboratory, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Jesse R Macyczko
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Yonghe Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Yuka A Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Center for Regenerative Medicine, Neuroregeneration Laboratory, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Yingxue Ren
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Yiyang Zhu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Yan W Asmann
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Center for Regenerative Medicine, Neuroregeneration Laboratory, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
- Center for Regenerative Medicine, Neuroregeneration Laboratory, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
37
|
Girich A, Sadriev K, Frolova L, Dolmatov I. Role of smoothened and sfrp genes in Eupentacta fraudatrix regeneration. Wound Repair Regen 2023; 31:464-474. [PMID: 37210604 DOI: 10.1111/wrr.13097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/14/2023] [Accepted: 03/30/2023] [Indexed: 05/22/2023]
Abstract
The secreted frizzled-related proteins (sfrp) and smoothened (smo) genes and their possible role in the regeneration of internal organs in the holothurian Eupentacta fraudatrix were studied. In this species, two sfrp genes were identified: sfrp1/2/5, sfrp3/4 and one smo gene. Their expression was analysed during regeneration of the aquapharyngeal bulb (AB) and intestine, and these genes were knock down by RNA interference. It has been shown that the expression of these genes is extremely important for the formation of AB. In all animals subjected to knockdown, at 7 days after evisceration, a full-sized AB rudiment was not formed. As a result of sfrp1/2/5 knockdown, the process of extracellular matrix remodelling in AB is interrupted, that leading to clusters of dense connective tissue formation, which slows down cell migration. When sfrp3/4 is knockdown, the connective tissue of AB anlage is completely disrupted and its symmetry is broken. The effect of smo knockdown was expressed in a significant impairment of AB regeneration, when connections between ambulacras were not formed after evisceration. However, despite severe disturbances in AB regeneration, a normal-sized gut anlage developed in all cases, which suggests that the regeneration of the digestive tube and AB occur independently of each other.
Collapse
Affiliation(s)
- Alexander Girich
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Konstantin Sadriev
- Institute of the World Ocean, Far Eastern Federal University (FEFU), Vladivostok, Russia
| | - Lidia Frolova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Dolmatov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
38
|
Kelly CJ, Chu M, Untaru R, Assadi-Khansari B, Chen D, Croft AJ, Horowitz JD, Boyle AJ, Sverdlov AL, Ngo DTM. Association of Circulating Plasma Secreted Frizzled-Related Protein 5 (Sfrp5) Levels with Cardiac Function. J Cardiovasc Dev Dis 2023; 10:274. [PMID: 37504530 PMCID: PMC10380407 DOI: 10.3390/jcdd10070274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
Secreted frizzled-related protein 5 (SFRP5) is a novel anti-inflammatory adipokine that may play a role in cardiovascular development and disease. However, there is yet to be a comprehensive investigation into whether circulating SFRP5 can be a biomarker for cardiac function. Plasma SFRP5 levels were measured via ELISA in 262 patients admitted to a cardiology unit. Plasma SFRP5 levels were significantly lower in patients with a history of heart failure (HF), coronary artery disease (CAD), and atrial fibrillation (AF; p = 0.001). In univariate analyses, SFRP5 levels were also significantly positively correlated with left ventricular ejection fraction (LVEF) (r = 0.52, p < 0.001) and negatively correlated with E/E' (r = -0.30, p < 0.001). Patients with HF, CAD, low LVEF, low triglycerides, high CRP, and high eGFR were associated with lower SFRP5 levels independent of age, BMI, or diabetes after multivariate analysis (overall model r = 0.729, SE = 0.638). Our results show that low plasma SFRP5 levels are independently associated with the presence of HF, CAD, and, importantly, impaired LV function. These results suggest a potential role of SFRP5 as a biomarker, as well as a mediator of cardiac dysfunction independent of obesity and metabolic regulation.
Collapse
Affiliation(s)
- Conagh J Kelly
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights 2305, Australia
| | - Matthew Chu
- School of Medicine, University of Adelaide, Adelaide 5000, Australia
| | - Rossana Untaru
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan 2308, Australia
| | - Bahador Assadi-Khansari
- Hunter Medical Research Institute, New Lambton Heights 2305, Australia
- Hunter New England Local Health District, Newcastle 2305, Australia
| | - Dongqing Chen
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights 2305, Australia
| | - Amanda J Croft
- Hunter Medical Research Institute, New Lambton Heights 2305, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan 2308, Australia
| | - John D Horowitz
- School of Medicine, University of Adelaide, Adelaide 5000, Australia
| | - Andrew J Boyle
- Hunter Medical Research Institute, New Lambton Heights 2305, Australia
- Hunter New England Local Health District, Newcastle 2305, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan 2308, Australia
| | - Aaron L Sverdlov
- Hunter Medical Research Institute, New Lambton Heights 2305, Australia
- School of Medicine, University of Adelaide, Adelaide 5000, Australia
- Hunter New England Local Health District, Newcastle 2305, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan 2308, Australia
| | - Doan T M Ngo
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights 2305, Australia
- Hunter New England Local Health District, Newcastle 2305, Australia
| |
Collapse
|
39
|
Guan H, Liu T, Liu M, Wang X, Shi T, Guo F. SFRP4 Reduces Atherosclerosis Plaque Formation in ApoE Deficient Mice. Cardiol Res Pract 2023; 2023:8302289. [PMID: 37143778 PMCID: PMC10154090 DOI: 10.1155/2023/8302289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 05/06/2023] Open
Abstract
Secreted frizzled related protein 4 (SFRP4), a member of the SFRPs family, contributes to a significant function in metabolic and cardiovascular diseases. However, there is not enough evidence to prove the antiatherosclerosis effect of SFRP4 in ApoE knock-out (KO) mice. ApoE KO mice were fed a western diet and injected adenovirus (Ad)-SFRP4 through the tail vein for 12 weeks. Contrasted with the control cohort, the area of atherosclerotic plaque in ApoE KO mice overexpressing SFRP4 was reduced significantly. Plasma high-density lipoprotein cholesterol was elevated in the Ad-SFRP4 group. RNA sequence analysis indicated that there were 96 differentially expressed genes enriched in 10 signaling pathways in the mRNA profile of aortic atherosclerosis lesions. The analysis data also revealed the expression of a number of genes linked to metabolism, organism system, and human disease. In summary, our data demonstrates that SFRP4 could play an important role in improving atherosclerotic plaque formation in the aorta.
Collapse
Affiliation(s)
- Hua Guan
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, Shaanxi, China
| | - Ting Liu
- Department of Nephrology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710004, Shaanxi, China
| | - Miaomiao Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Xue Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Tao Shi
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Fengwei Guo
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| |
Collapse
|
40
|
Gamit N, Dharmarajan A, Sethi G, Warrier S. Want of Wnt in Parkinson's disease: Could sFRP disrupt interplay between Nurr1 and Wnt signaling? Biochem Pharmacol 2023; 212:115566. [PMID: 37088155 DOI: 10.1016/j.bcp.2023.115566] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Nuclear receptor related 1 (Nurr1) is a transcription factor known to regulate the development and maintenance of midbrain dopaminergic (mDA) neurons. Reports have confirmed that defect or obliteration of Nurr1 results in neurodegeneration and motor function impairment leading to Parkinson's disease (PD). Studies have also indicated that Nurr1 regulates the expression of alpha-synuclein (α-SYN) and mutations in Nurr1 cause α-SYN overexpression, thereby increasing the risk of PD. Nurr1 is modulated via various pathways including Wnt signaling pathway which is known to play an important role in neurogenesis and deregulation of it contributes to PD pathogenesis. Both Wnt/β-catenin dependent and independent pathways are implicated in the activation of Nurr1 and subsequent downregulation of α-SYN. This review highlights the interaction between Nurr1 and Wnt signaling pathways in mDA neuronal development. We further hypothesize how modulation of Wnt signaling pathway by its antagonist, secreted frizzled related proteins (sFRPs) could be a potential route to treat PD.
Collapse
Affiliation(s)
- Naisarg Gamit
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600 116, India; School of Pharmacy and Biomedical Sciences, Curtin Medical School, Curtin University, Perth, Western Australia 6102, Australia; Curtin Health and Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia; School of Human Sciences, Faculty of Life and Physical Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore 117 600, Singapore
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India; Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India.
| |
Collapse
|
41
|
Park WJ, Kim MJ. A New Wave of Targeting 'Undruggable' Wnt Signaling for Cancer Therapy: Challenges and Opportunities. Cells 2023; 12:cells12081110. [PMID: 37190019 DOI: 10.3390/cells12081110] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Aberrant Wnt signaling activation is frequently observed in many cancers. The mutation acquisition of Wnt signaling leads to tumorigenesis, whereas the inhibition of Wnt signaling robustly suppresses tumor development in various in vivo models. Based on the excellent preclinical effect of targeting Wnt signaling, over the past 40 years, numerous Wnt-targeted therapies have been investigated for cancer treatment. However, Wnt signaling-targeting drugs are still not clinically available. A major obstacle to Wnt targeting is the concomitant side effects during treatment due to the pleiotropic role of Wnt signaling in development, tissue homeostasis, and stem cells. Additionally, the complexity of the Wnt signaling cascades across different cancer contexts hinders the development of optimized targeted therapies. Although the therapeutic targeting of Wnt signaling remains challenging, alternative strategies have been continuously developed alongside technological advances. In this review, we give an overview of current Wnt targeting strategies and discuss recent promising trials that have the potential to be clinically realized based on their mechanism of action. Furthermore, we highlight new waves of Wnt targeting that combine recently developed technologies such as PROTAC/molecular glue, antibody-drug conjugates (ADC), and anti-sense oligonucleotides (ASO), which may provide us with new opportunities to target 'undruggable' Wnt signaling.
Collapse
Affiliation(s)
- Woo-Jung Park
- Department of Life Science, Gachon University, Seongnam 13120, Republic of Korea
| | - Moon Jong Kim
- Department of Life Science, Gachon University, Seongnam 13120, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Lee Gil Ya Cancer and Diabetes Institute, Incheon 21999, Republic of Korea
| |
Collapse
|
42
|
Losada-García A, Salido-Guadarrama I, Cortes-Ramirez SA, Cruz-Burgos M, Morales-Pacheco M, Vazquez-Santillan K, Rodriguez-Martinez G, González-Ramírez I, Gonzalez-Covarrubias V, Perez-Plascencia C, Rodríguez-Dorantes M. SFRP1 induces a stem cell phenotype in prostate cancer cells. Front Cell Dev Biol 2023; 11:1096923. [PMID: 36968194 PMCID: PMC10033548 DOI: 10.3389/fcell.2023.1096923] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
Prostate cancer (PCa) ranks second in incidence and sixth in deaths globally. The treatment of patients with castration-resistant prostate cancer (CRPC) continues to be a significant clinical problem. Emerging evidence suggests that prostate cancer progression toward castration resistance is associated with paracrine signals from the stroma. SFRP1 is one of the extracellular proteins that modulate the WNT pathway, and it has been identified as a mediator of stromal epithelium communication. The WNT pathway is involved in processes such as cell proliferation, differentiation, cell anchoring, apoptosis, and cell cycle regulation as well as the regulation of stem cell populations in the prostatic epithelium. In the present study, we explored the role of exogenous SFRP1 on the stem cell phenotype in prostate cancer. The results reveal that cancer stem cell markers are significantly increased by exogenous SFRP1 treatments, as well as the downstream target genes of the Wnt/-catenin pathway. The pluripotent transcription factors SOX2, NANOG, and OCT4 were also up-regulated. Furthermore, SFRP1 promoted prostate cancer stem cell (PCSC) properties in vitro, including tumorsphere formation, migration, bicalutamide resistance, and decreased apoptosis. Taken together, our results indicate that SFRP1 participates in the paracrine signaling of epithelial cells, influencing them and positively regulating the stem cell phenotype through deregulation of the WNT/β-catenin pathway, which could contribute to disease progression and therapeutic failure. This research increases our molecular understanding of how CRPC progresses, which could help us find new ways to diagnose and treat the disease.
Collapse
Affiliation(s)
- Alberto Losada-García
- Laboratorio de Oncogenomica, Instituto Nacional de Medicina Genomica, Mexico City, Mexico
| | - Iván Salido-Guadarrama
- Departamento de Bioinformatìca y Análisis Estadísticos, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | | | - Marian Cruz-Burgos
- Laboratorio de Oncogenomica, Instituto Nacional de Medicina Genomica, Mexico City, Mexico
| | - Miguel Morales-Pacheco
- Laboratorio de Oncogenomica, Instituto Nacional de Medicina Genomica, Mexico City, Mexico
| | | | | | - Imelda González-Ramírez
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | | | - Carlos Perez-Plascencia
- Unidad de Genómica y Cáncer, Subdirección de Investigación Básica, INCan, SSA and Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mauricio Rodríguez-Dorantes
- Laboratorio de Oncogenomica, Instituto Nacional de Medicina Genomica, Mexico City, Mexico
- *Correspondence: Mauricio Rodríguez-Dorantes,
| |
Collapse
|
43
|
Effect of nanoparticle-mediated delivery of SFRP4 siRNA for treating Dupuytren disease. Gene Ther 2023; 30:31-40. [PMID: 35347304 DOI: 10.1038/s41434-022-00330-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/31/2022] [Accepted: 03/02/2022] [Indexed: 11/08/2022]
Abstract
Dupuytren disease (DD) is a progressive fibrous proliferative disease. It invades the palmar aponeurosis and extends to the finger fascia, eventually leading to flexion contracture of the metacarpophalangeal or interphalangeal joint. At present, surgical resection and the local injection of collagenase are the main methods for the treatment of DD, but postoperative complications and high recurrence rates often occur. Bioinformatics analysis showed that the increased expression of SFRP4 protein was closely related to the incidence of DD. Persistent and effective inhibition of SFRP4 expression may be a promising treatment for DD. We prepared SFRP4 siRNA/nanoparticle complexes (si-SFRP4) and negative siRNA/nanoparticle complexes (NC) and applied them in vitro and in vivo. Flow cytometry analysis showed that si-SFRP4 could be successfully transfected into DD cells. MTT and EdU staining assays showed that the OD values and percentage of EdU-positive cells in the si-SFRP4 group were significantly lower than those in the NC group. Scratch tests showed that the wound healing rate of the si-SFRP4 group was lower than that of the NC group, and the difference was statistically significant. The expression of SFRP4 and α-SMA protein in the si-SFRP4 group significantly decreased in both DD cells and xenografts. Compared with the NC group, the xenograft quality of the si-SFRP4 group was significantly reduced. Masson's trichrome staining showed that the collagen and fibrous cells in the si-SFRP4 group were more uniform, slender, parallel and regular. The above experimental results suggest that the proliferation and metabolism of palmar aponeurosis cells and the quality of metacarpal fascia xenografts were both significantly decreased. We speculated that nanoparticle-mediated SFRP4 siRNA can be used as a potential new method for the treatment of DD.
Collapse
|
44
|
Li Y, Liu L, Pan Y, Fang F, Xie T, Cheng N, Guo C, Xue X, Zeng H, Xue L. Integrated molecular characterization of esophageal basaloid squamous cell carcinoma: a subtype with distinct RNA expression pattern and immune characteristics, but no specific genetic mutations. J Pathol 2023; 259:136-148. [PMID: 36371676 DOI: 10.1002/path.6028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/09/2022] [Accepted: 10/31/2022] [Indexed: 11/15/2022]
Abstract
Esophageal basaloid squamous cell carcinoma (bSCC) is a subtype of squamous cell carcinoma (SCC) with a different behavior and poor prognosis. Exploring bSCC's molecular characteristics and treatment strategies are of great clinical significance. We performed multi-omics analysis of paired bSCC and common SCC (cSCC) using whole exome sequencing and a NanoString nCounter gene expression panel. Immunohistochemistry was used for verification of candidate biomarkers. Different treatment response was analyzed on both patients receiving neoadjuvant treatment and late-stage patients. The common genetically-clonal origin of bSCC and cSCC was confirmed. No significant differences between their genetic alterations or mutation spectra were observed. Mutation signature 15 (associated with defective DNA damage repair) was less prominent, and tumor mutational burden (TMB) was lower in bSCC. bSCC with an RNA expression pattern resembling cSCC had a better survival than other bSCCs. Moreover, bSCC showed significant upregulation of expression of genes associated with angiogenesis response, basement membranes, and epithelial-mesenchymal transition, and downregulation of KRT14 (squamous differentiation) and CCL21 (associated with immune response). Immunohistochemistry for SFRP1 was shown to be highly sensitive and specific for bSCC diagnosis (p < 0.001). In addition, bSCC receiving neoadjuvant immuno-chemotherapy had a worse pathological response than bSCC receiving neoadjuvant chemotherapy (but without statistical significance), even in bSCC positive for PD-L1. Our results demonstrated the molecular characteristics of esophageal bSCC as a subtype with a distinct RNA expression pattern and immune characteristics, but no specific genetic mutations. We provided a useful biomarker, SFRP1, for diagnosis. After outcome analysis for six bSCCs with neoadjuvant immunotherapy treatment and four late-stage bSCCs with immunotherapy, we found that immunotherapy may not be an effective treatment option for most bSCCs. This may also provide a clue for the same subtypes of lung and head and neck cancer. Our study highlighted the heterogeneity among bSCC patients, and might explain the conflicting results of bSCC outcomes in existing studies. © 2022 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Yan Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, PR China
| | - Linxiu Liu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, PR China.,Department of Pathology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, PR China
| | - Yi Pan
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, PR China
| | - Fang Fang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, PR China.,Department of Pathology, Beijing Hospital, National Center of Gerontology, Beijing, PR China
| | - Tongji Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Na Cheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, PR China
| | - Changyuan Guo
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, PR China
| | - Xuemin Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, PR China
| | - Hua Zeng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, PR China
| | - Liyan Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, PR China.,Center for Cancer Precision Medicine, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| |
Collapse
|
45
|
Abstract
Most colorectal cancers (CRC) are associated with activated Wnt signaling, making it the fourth most prevalent type of cancer globally. To function properly, the Wnt signaling pathway requires secreted glycoproteins known as Wnt ligands (Wnts). Humans have 19 Wnts, which suggest a complicated signaling and biological process, and we still know little about their functions in developing CRC. This review aims to describe the canonical Wnt signaling in CRC, particularly the Wnt3a expression pattern, and their association with the angiogenesis and progression of CRC. This review also sheds light on the inhibition of Wnt3a signaling in CRC. Despite some obstacles, a thorough understanding of Wnts is essential for effectively managing CRC.
Collapse
|
46
|
Abstract
Wnts are secreted proteins that control stem cell maintenance, cell fate decisions, and growth during development and adult homeostasis. Wnts carry a post-translational modification not seen in any other secreted protein: during biosynthesis, they are appended with a palmitoleoyl moiety that is required for signaling but also impairs solubility and hence diffusion in the extracellular space. In some contexts, Wnts act only in a juxtacrine manner but there are also instances of long range action. Several proteins and processes ensure that active Wnts reach the appropriate target cells. Some, like Porcupine, Wntless, and Notum are dedicated to Wnt function; we describe their activities in molecular detail. We also outline how the cell infrastructure (secretory, endocytic, and retromer pathways) contribute to the progression of Wnts from production to delivery. We then address how Wnts spread in the extracellular space and form a signaling gradient despite carrying a hydrophobic moiety. We highlight particularly the role of lipid-binding Wnt interactors and heparan sulfate proteoglycans. Finally, we briefly discuss how evolution might have led to the emergence of this unusual signaling pathway.
Collapse
|
47
|
Macyczko JR, Wang N, Lu W, Jeevaratnam S, Shue F, Martens Y, Liu CC, Kanekiyo T, Bu G, Li Y. Upregulation of sFRP1 Is More Profound in Female than Male 5xFAD Mice and Positively Associated with Amyloid Pathology. J Alzheimers Dis 2023; 95:399-405. [PMID: 37545238 PMCID: PMC10709798 DOI: 10.3233/jad-230218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The prevalence of Alzheimer's disease is greater in women, but the underlying mechanisms remain to be elucidated. We herein demonstrated that α-secretase ADAM10 was downregulated and ADAM10 inhibitor sFRP1 was upregulated in 5xFAD mice. While there were no sex effects on ADAM10 protein and sFRP1 mRNA levels, female 5xFAD and age-matched non-transgenic mice exhibited higher levels of sFRP1 protein than corresponding male mice. Importantly, female 5xFAD mice accumulated more Aβ than males, and sFRP1 protein levels were positively associated with Aβ42 levels in 5xFAD mice. Our study suggests that sFRP1 is associated with amyloid pathology in a sex-dependent manner.
Collapse
Affiliation(s)
| | | | - Wenyan Lu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Suren Jeevaratnam
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Francis Shue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Yuka Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Yonghe Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| |
Collapse
|
48
|
Roa Fuentes LA, Bloemen M, Carels CE, Wagener FA, Von den Hoff JW. Retinoic acid effects on in vitro palatal fusion and WNT signaling. Eur J Oral Sci 2022; 130:e12899. [PMID: 36303276 PMCID: PMC10092745 DOI: 10.1111/eos.12899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/06/2022] [Indexed: 12/13/2022]
Abstract
Retinoic acid is the main active vitamin A derivate and a key regulator of embryonic development. Excess of retinoic acid can disturb palate development in mice leading to cleft palate. WNT signaling is one of the main pathways in palate development. We evaluated the effects of retinoic acid on palate fusion and WNT signaling in in vitro explant cultures. Unfused palates from E13.5 mouse embryos were cultured for 4 days with 0.5 μM, 2 μM or without retinoic acid. Apoptosis, proliferation, WNT signaling and bone formation were analyzed by histology and quantitative PCR. Retinoic acid treatment with 0.5 and 2.0 μM reduced palate fusion from 84% (SD 6.8%) in the controls to 56% (SD 26%) and 16% (SD 19%), respectively. Additionally, 2 μM retinoic acid treatment increased Axin2 expression. Retinoic acid also increased the proliferation marker Pcna as well as the number of Ki-67-positive cells in the palate epithelium. At the same time, the WNT inhibitors Dkk1, Dkk3, Wif1 and Sfrp1 were downregulated at least two-fold. Retinoic acid also down-regulated Alpl and Col1a2 gene expression. Alkaline phosphatase (ALP) activity was notably reduced in the osteogenic areas of the retinoic acid- treated palates. Our data suggest that retinoic acid impairs palate fusion and bone formation by upregulation of WNT signaling.
Collapse
Affiliation(s)
- Laury Amelia Roa Fuentes
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands.,MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterial Engineering (IBE), Maastricht University, Maastricht, The Netherlands
| | - Marjon Bloemen
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Carine El Carels
- Department of Human Genetics, KU University Leuven, Leuven, Belgium
| | - Frank Adtg Wagener
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Johannes W Von den Hoff
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
49
|
Chen X, Tan H, Xu J, Tian Y, Yuan Q, Zuo Y, Chen Q, Hong X, Fu H, Hou FF, Zhou L, Liu Y. Klotho-derived peptide 6 ameliorates diabetic kidney disease by targeting Wnt/β-catenin signaling. Kidney Int 2022; 102:506-520. [PMID: 35644285 DOI: 10.1016/j.kint.2022.04.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 04/01/2022] [Accepted: 04/27/2022] [Indexed: 01/02/2023]
Abstract
Diabetic kidney disease (DKD) is one of the most common and devastating complications of diabetic mellitus, and its prevalence is rising worldwide. Klotho, an anti-aging protein, is kidney protective in DKD. However, its large size, prohibitive cost and structural complexity hamper its potential utility in clinics. Here we report that Klotho-derived peptide 6 (KP6) mimics Klotho function and ameliorates DKD. In either an accelerated model of DKD induced by streptozotocin and advanced oxidation protein products in unilateral nephrectomized mice or db/db mice genetically prone to diabetes, chronic infusion of KP6 reversed established proteinuria, attenuated glomerular hypertrophy, mitigated podocyte damage, and ameliorated glomerulosclerosis and interstitial fibrotic lesions, but did not affect serum phosphorus and calcium levels. KP6 inhibited β-catenin activation in vivo and blocked the expression of its downstream target genes in glomerular podocytes and tubular epithelial cells. In vitro, KP6 prevented podocyte injury and inhibited β-catenin activation induced by high glucose without affecting Wnt expression. Co-immunoprecipitation revealed that KP6 bound to Wnt ligands and disrupted the engagement of Wnts with low density lipoprotein receptor-related protein 6, thereby interrupting Wnt/β-catenin signaling. Mutated KP6 with a scrambled amino acid sequence failed to bind Wnts and did not alleviate DKD in db/db mice. Thus, our studies identified KP6 as a novel Klotho-derived peptide that ameliorated DKD by blocking Wnt/β-catenin. Hence, our findings also suggest a new therapeutic strategy for the treatment of patients with DKD.
Collapse
Affiliation(s)
- Xiaowen Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Bioland Laboratory, Guangzhou, China
| | - Huishi Tan
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Bioland Laboratory, Guangzhou, China
| | - Jie Xu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Bioland Laboratory, Guangzhou, China
| | - Yuan Tian
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Bioland Laboratory, Guangzhou, China
| | - Qian Yuan
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Bioland Laboratory, Guangzhou, China
| | - Yangyang Zuo
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Bioland Laboratory, Guangzhou, China
| | - Qiyan Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Bioland Laboratory, Guangzhou, China
| | - Xue Hong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Bioland Laboratory, Guangzhou, China
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Bioland Laboratory, Guangzhou, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Bioland Laboratory, Guangzhou, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Bioland Laboratory, Guangzhou, China.
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Bioland Laboratory, Guangzhou, China; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
50
|
Sharma U, Vadon-Le Goff S, Harlos K, Zhao Y, Mariano N, Bijakowski C, Bourhis JM, Moali C, Hulmes DJS, Aghajari N. Dynamics of the secreted frizzled related protein Sizzled and potential implications for binding to bone morphogenetic protein-1 (BMP-1). Sci Rep 2022; 12:14850. [PMID: 36050373 PMCID: PMC9437010 DOI: 10.1038/s41598-022-18795-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/19/2022] [Indexed: 11/09/2022] Open
Abstract
Sizzled (Szl) is both a secreted frizzled related protein (sFRP) and a naturally occurring inhibitor of the zinc metalloproteinase bone morphogenetic protein-1 (BMP-1), a key regulator of extracellular matrix assembly and growth factor activation. Here we present a new crystal structure for Szl which differs from that previously reported by a large scale (90°) hinge rotation between its cysteine-rich and netrin-like domains. We also present results of a molecular docking analysis showing interactions likely to be involved in the inhibition of BMP-1 activity by Szl. When compared with known structures of BMP-1 in complex with small molecule inhibitors, this reveals features that may be helpful in the design of new inhibitors to prevent the excessive accumulation of extracellular matrix that is the hallmark of fibrotic diseases.
Collapse
Affiliation(s)
- Urvashi Sharma
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS-University of Lyon, 7 passage du Vercors, 69367, Lyon, France
- National Institute of Biologicals, A-32, Institutional Area, Sector 62, Noida, 201309, India
| | - Sandrine Vadon-Le Goff
- Tissue Biology and Therapeutic Engineering Laboratory, UMR 5305 CNRS-University of Lyon, 7 passage du Vercors, 69367, Lyon, France
| | - Karl Harlos
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Yuguang Zhao
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Natacha Mariano
- Tissue Biology and Therapeutic Engineering Laboratory, UMR 5305 CNRS-University of Lyon, 7 passage du Vercors, 69367, Lyon, France
| | - Cecile Bijakowski
- Tissue Biology and Therapeutic Engineering Laboratory, UMR 5305 CNRS-University of Lyon, 7 passage du Vercors, 69367, Lyon, France
| | - Jean-Marie Bourhis
- Tissue Biology and Therapeutic Engineering Laboratory, UMR 5305 CNRS-University of Lyon, 7 passage du Vercors, 69367, Lyon, France
| | - Catherine Moali
- Tissue Biology and Therapeutic Engineering Laboratory, UMR 5305 CNRS-University of Lyon, 7 passage du Vercors, 69367, Lyon, France
| | - David J S Hulmes
- Tissue Biology and Therapeutic Engineering Laboratory, UMR 5305 CNRS-University of Lyon, 7 passage du Vercors, 69367, Lyon, France
| | - Nushin Aghajari
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS-University of Lyon, 7 passage du Vercors, 69367, Lyon, France.
| |
Collapse
|