1
|
Grafinger OR, Hayward JJ, Meng Y, Geddes-McAlister J, Li Y, Mar S, Sheng M, Su B, Thillainadesan G, Lipsman N, Coppolino MG, Trant JF, Jerzak KJ, Leong HS. Cancer cell extravasation requires iplectin-mediated delivery of MT1-MMP at invadopodia. Br J Cancer 2024; 131:931-943. [PMID: 38969866 PMCID: PMC11369281 DOI: 10.1038/s41416-024-02782-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Invadopodia facilitate cancer cell extravasation, but the molecular mechanism whereby invadopodia-specific proteases such as MT1-MMP are called to invadopodia is unclear. METHODS Mass spectrometry and immunoprecipitation were used to identify interactors of MT1-MMP in metastatic breast cancer cells. After identification, siRNA and small molecule inhibitors were used to assess the effect these interactors had on cellular invasiveness. The chicken embryo chorioallantoic membrane (CAM) model was used to assess extravasation and invadopodia formation in vivo. RESULTS In metastatic breast cancer cells, MT1-MMP was found to associate with plectin, a cytolinker and scaffolding protein. Complex formation between plectin and MT1-MMP launches invadopodia formation, a subtype we termed iplectin (i = invadopodial). iPlectin delivers MT1-MMP to invadopodia and is indispensable for regulating cell surface levels of the enzyme. Genetic depletion of plectin with siRNA reduced invadopodia formation and cell invasion in vitro. In vivo extravasation efficiency assays and intravital imaging revealed iplectin to be a key contributor to invadopodia ultrastructure and essential for extravasation. Pharmacologic inhibition of plectin using the small molecule Plecstatin-1 (PST-1) abrogated MT1-MMP delivery to invadopodia and extravasation efficiency. CONCLUSIONS Anti-metastasis therapeutic approaches that target invadopodia are possible by disrupting interactions between MT1-MMP and iplectin. CLINICAL TRIAL REGISTRATION NUMBER NCT04608357.
Collapse
Affiliation(s)
- Olivia R Grafinger
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - John J Hayward
- Department of Chemistry, University of Windsor, Windsor, ON, Canada
| | - Ying Meng
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | | | - Yan Li
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Sara Mar
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Minzhi Sheng
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Boyang Su
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Gobi Thillainadesan
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Nir Lipsman
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Marc G Coppolino
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - John F Trant
- Department of Chemistry, University of Windsor, Windsor, ON, Canada
| | - Katarzyna J Jerzak
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Medical Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Hon S Leong
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada.
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Tian F, Chen Y, Wang W, Zhang J, Jiang T, Lu Q. Noninvasive Bioluminescence Imaging of Matrix Metalloproteinase-14 Activity in Lung Cancer Using a Membrane-Bound Biosensor. Anal Chem 2021; 93:8739-8745. [PMID: 34114806 DOI: 10.1021/acs.analchem.0c05189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Matrix metalloproteinase-14 (MMP-14) plays a crucial role in the cancer migration and metastasis by guiding the extracellular matrix remodeling and cell motility. Despite increasing efforts have been taken to develop methodology for measuring MMP-14 expression, there is a lack of tools capable of monitoring the MMP-14 dynamic activity with high temporal and spatial resolution in living cells and animals. Here, we describe the design of Gaussia luciferase (Gluc)-based membrane-bound biosensor for efficient visualization of MMP-14 activity. The epidermal growth factor (EGF) induced significant luciferase changes in the biosensor-transfected lung cancer cells. Deletion of the transmembrane domain in the mutant biosensor or treatment with an MMP-14 inhibitor, tissue inhibitor of metalloproteinase-2 (TIMP-2), relieved the EGF-induced luciferase activation, suggesting that MMP-14 functions at the cell surface to result in luciferase changes. Moreover, utilizing this biosensor, the bioluminescence signals activated by MMP-14 enabled clear visualization of MMP-14-positive lung tumors in animal models. Our results indicated this biosensor is an effective probe for quantitatively monitoring proteolytic activities in live cells and mouse models. These findings offer the general design of biosensors as an adaptable tool for studying various membrane-anchored proteases in biological models.
Collapse
Affiliation(s)
- Feng Tian
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, No. 569 Xinsi Road, Xi'an 710038, China
| | - Yan Chen
- Department of Oncology, Xijing Hospital, Air Force Medical University, No. 169 Changle West Road, Xi'an 710032, China
| | - Wuping Wang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, No. 569 Xinsi Road, Xi'an 710038, China
| | - Jipeng Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, No. 569 Xinsi Road, Xi'an 710038, China
| | - Tao Jiang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, No. 569 Xinsi Road, Xi'an 710038, China
| | - Qiang Lu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, No. 569 Xinsi Road, Xi'an 710038, China
| |
Collapse
|
3
|
Regulation of invadosomes by microtubules: Not only a matter of railways. Eur J Cell Biol 2020; 99:151109. [DOI: 10.1016/j.ejcb.2020.151109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022] Open
|
4
|
Prevention of early liver metastasis after pancreatectomy by perioperative administration of a nuclear factor-κB inhibitor in mice. Surgery 2019; 166:991-996. [PMID: 31353078 DOI: 10.1016/j.surg.2019.05.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 05/08/2019] [Accepted: 05/27/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Liver metastasis is a common problem after pancreatectomy for pancreatic cancer. In pancreatic cancer cells, nuclear factor-κB is activated constitutively. Nuclear factor-κB activates matrix metalloproteinase-2/9, which plays an important role in cancer metastasis. Because the serine protease inhibitor FUT-175 suppresses nuclear factor-κB, we hypothesized that perioperative treatment with FUT-175 for pancreatic cancer may help to prevent liver metastasis. METHODS We compared in vitro cell viability, cell invasiveness, nuclear factor-κB signaling, and the expression levels of matrix metalloproteinase signals between the control group (C group) and the FUT-175 group (F group) using the murine pancreatic cancer cells PAN02. In addition, we evaluated the in vivo effect of pretreatment with FUT-175 using an established model of liver metastasis in mice. Metastatic liver lesions were assessed with magnetic resonance imaging. Liver recurrence and overall survival were evaluated. Also, the antimetastatic effect of systemic administration of FUT-175 was examined. RESULTS FUT-175 did not suppress the cell viability of PAN02 cells at or after 24 hours of treatment (P > .05); however, cell invasion was suppressed in the F group compared with the C group (P < .05). The levels of nuclear factor-κB activation, membrane type-1 (MT-1) matrix metalloproteinase (MMP)/matrix metalloproteinase-14 (MMP-14), and matrix metalloproteinase-2/9 (MMP-2/9) were lower in the F group compared with the C group. In vivo, both disease-free and overall survivals were prolonged in the F group compared with the C group. Systemic administration was also effective in suppressing the number of metastases. CONCLUSION Perioperative treatment with FUT-175 may help to prevent early liver metastasis after pancreatectomy for pancreatic cancer.
Collapse
|
5
|
Wilson BJ, Allen JL, Caswell PT. Vesicle trafficking pathways that direct cell migration in 3D matrices and in vivo. Traffic 2018; 19:899-909. [PMID: 30054969 PMCID: PMC6282850 DOI: 10.1111/tra.12605] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022]
Abstract
Cell migration is a vital process in development and disease, and while the mechanisms that control motility are relatively well understood on two-dimensional surfaces, the control of cell migration in three dimensions (3D) and in vivo has only recently begun to be understood. Vesicle trafficking pathways have emerged as a key regulatory element in migration and invasion, with the endocytosis and recycling of cell surface cargos, including growth factor and chemokine receptors, adhesion receptors and membrane-associated proteases, being of major importance. We highlight recent advances in our understanding of how endocytic trafficking controls the availability and local activity of these cargoes to influence the movement of cells in 3D matrix and in developing organisms. In particular, we discuss how endocytic trafficking of different receptor classes spatially restricts signals and activity, usually to the leading edge of invasive cells.
Collapse
Affiliation(s)
- Beverley J. Wilson
- Wellcome Trust Centre for Cell‐Matrix Research, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Jennifer L. Allen
- Wellcome Trust Centre for Cell‐Matrix Research, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Patrick T. Caswell
- Wellcome Trust Centre for Cell‐Matrix Research, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| |
Collapse
|
6
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
7
|
Jobin PG, Butler GS, Overall CM. New intracellular activities of matrix metalloproteinases shine in the moonlight. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2043-2055. [PMID: 28526562 DOI: 10.1016/j.bbamcr.2017.05.013] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 02/04/2023]
Abstract
Adaption of a single protein to perform multiple independent functions facilitates functional plasticity of the proteome allowing a limited number of protein-coding genes to perform a multitude of cellular processes. Multifunctionality is achievable by post-translational modifications and by modulating subcellular localization. Matrix metalloproteinases (MMPs), classically viewed as degraders of the extracellular matrix (ECM) responsible for matrix protein turnover, are more recently recognized as regulators of a range of extracellular bioactive molecules including chemokines, cytokines, and their binders. However, growing evidence has convincingly identified select MMPs in intracellular compartments with unexpected physiological and pathological roles. Intracellular MMPs have both proteolytic and non-proteolytic functions, including signal transduction and transcription factor activity thereby challenging their traditional designation as extracellular proteases. This review highlights current knowledge of subcellular location and activity of these "moonlighting" MMPs. Intracellular roles herald a new era of MMP research, rejuvenating interest in targeting these proteases in therapeutic strategies. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.
Collapse
Affiliation(s)
- Parker G Jobin
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Georgina S Butler
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada; Department of Oral Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher M Overall
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada; Department of Oral Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
8
|
Peripheral membrane associations of matrix metalloproteinases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1964-1973. [PMID: 28442379 DOI: 10.1016/j.bbamcr.2017.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/20/2017] [Accepted: 04/20/2017] [Indexed: 12/21/2022]
Abstract
Water soluble matrix metalloproteinases (MMPs) have been regarded as diffusing freely in the extracellular matrix. Yet multiple MMPs are also observed at cell surfaces. Their membrane-proximal activities include sheddase activities, collagenolysis, bacterial killing, and intracellular trafficking reaching as far as the nucleus. The catalytic domains of MMP-7 and MMP-12 bind bilayers peripherally, each in two different orientations, by presenting positive charges and a few hydrophobic groups to the surface. Related peripheral membrane associations are predicted for other soluble MMPs. The peripheral membrane associations may support pericellular proteolysis and endocytosis. The isolated soluble domains of MT1-MMP can also associate with membranes. NMR assays suggest transient association of the hemopexin-like domains of MT1-MMP and MMP-12 with lipid bilayers. Peripheral association of soluble MMP domains with bilayers or heparin sulfate proteoglycans probably concentrates them near the membrane. This could increase the probability of forming complexes with membrane-associated proteins, such as those targeted for proteolysis. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.
Collapse
|
9
|
Kim D, Jung J, You E, Ko P, Oh S, Rhee S. mDia1 regulates breast cancer invasion by controlling membrane type 1-matrix metalloproteinase localization. Oncotarget 2017; 7:17829-43. [PMID: 26893363 PMCID: PMC4951253 DOI: 10.18632/oncotarget.7429] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 02/11/2016] [Indexed: 11/25/2022] Open
Abstract
Mammalian diaphanous-related formin 1 (mDia1) expression has been linked with progression of malignant cancers in various tissues. However, the precise molecular mechanism underlying mDia1-mediated invasion in cancer cells has not been fully elucidated. In this study, we found that mDia1 is upregulated in invasive breast cancer cells. Knockdown of mDia1 in invasive breast cancer profoundly reduced invasive activity by controlling cellular localization of membrane type 1-matrix metalloproteinase (MT1-MMP) through interaction with microtubule tracks. Gene silencing and ectopic expression of the active form of mDia1 showed that mDia1 plays a key role in the intracellular trafficking of MT1-MMP to the plasma membrane through microtubules. We also demonstrated that highly invasive breast cancer cells possessed invasive activity in a 3D culture system, which was significantly reduced upon silencing mDia1 or MT1-MMP. Furthermore, mDia1-deficient cells cultured in 3D matrix showed impaired expression of the cancer stem cell marker genes, CD44 and CD133. Collectively, our findings suggest that regulation of cellular trafficking and microtubule-mediated localization of MT1-MMP by mDia1 is likely important in breast cancer invasion through the expression of cancer stem cell genes.
Collapse
Affiliation(s)
- Daehwan Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Jangho Jung
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Eunae You
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Panseon Ko
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Somi Oh
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Sangmyung Rhee
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
10
|
Wu JS, Sheng SR, Liang XH, Tang YL. The role of tumor microenvironment in collective tumor cell invasion. Future Oncol 2017; 13:991-1002. [PMID: 28075171 DOI: 10.2217/fon-2016-0501] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
For many cancer types, cancer cells invade into surrounding tissues by collective movement of cell groups that remain connected via cell-cell junctions. This migration is completely distinguished from single-cell migration, in which cancer cells disrupt the tight intercellular junctions and gain a mesenchymal phenotype. Recently, emerging evidence has revealed that collective cell invasion depends on not only cell-intrinsic mechanisms but also on extracellular mechanisms by bidirectional interplay between the tumor cell and the tumor environment. Herein, in this review we discuss the role and underline mechanisms of tumor microenvironment in collective tumor cell invasion, particularly focusing on extracellular matrix remodeling and cross-talk between tumor and stromal cells.
Collapse
Affiliation(s)
- Jia-Shun Wu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu Sichuan 610041, PR China.,Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu Sichuan 610041, PR China
| | - Su-Rui Sheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu Sichuan 610041, PR China.,Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu Sichuan 610041, PR China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu Sichuan 610041, PR China.,Department of Oral & Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu Sichuan 610041, PR China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu Sichuan 610041, PR China.,Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), No. 14, Sec. 3, Renminnan Road, Chengdu Sichuan 610041, PR China
| |
Collapse
|
11
|
Abstract
ABSTRACT
Three-dimensional (3D) cell motility underlies essential processes, such as embryonic development, tissue repair and immune surveillance, and is involved in cancer progression. Although the cytoskeleton is a well-studied regulator of cell migration, most of what we know about its functions originates from studies conducted in two-dimensional (2D) cultures. This research established that the microtubule network mediates polarized trafficking and signaling that are crucial for cell shape and movement in 2D. In parallel, developments in light microscopy and 3D cell culture systems progressively allowed to investigate cytoskeletal functions in more physiologically relevant settings. Interestingly, several studies have demonstrated that microtubule involvement in cell morphogenesis and motility can differ in 2D and 3D environments. In this Commentary, we discuss these differences and their relevance for the understanding the role of microtubules in cell migration in vivo. We also provide an overview of microtubule functions that were shown to control cell shape and motility in 3D matrices and discuss how they can be investigated further by using physiologically relevant models.
Collapse
Affiliation(s)
- Benjamin P. Bouchet
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| |
Collapse
|
12
|
Ikonomidis JS, Nadeau EK, Akerman AW, Stroud RE, Mukherjee R, Jones JA. Regulation of membrane type-1 matrix metalloproteinase activity and intracellular localization in clinical thoracic aortic aneurysms. J Thorac Cardiovasc Surg 2016; 153:537-546. [PMID: 27923483 DOI: 10.1016/j.jtcvs.2016.10.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/19/2016] [Accepted: 10/04/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Membrane type-1 matrix metalloproteinase (MT1-MMP) is elevated during thoracic aortic aneurysm (TAA) development in mouse models, and plays an important role in the activation of matrix metalloproteinase (MMP)-2 and the release of matrix- bound transforming growth factor-β. In this study, we tested the hypothesis that MT1-MMP is subject to protein kinase C (PKC)-mediated regulation, which alters intracellular trafficking and activity with TAAs. METHODS Levels of MMP-2, native and phosphorylated MT1-MMP, and PKC-δ were measured in aortic tissue from patients with small TAAs (<5 cm; n = 8) and large TAAs (>6.5 cm; n = 8), and compared with values measured in normal controls (n = 8). Cellular localization of green fluorescent protein (GFP)-tagged MT1-MMP was assessed in aortic fibroblasts isolated from control and 4-week TAA mice. The effects of PKC-mediated phosphorylation on MT1-MMP cellular localization and function (active MMP-2 vs phospo-Smad2 abundance) were assessed after treatment with a PKC activator (phorbol-12-myristate-13-acetate [PMA], 100 nM) with and without a PKC-δ-specific inhibitor (röttlerin, 3 μM). RESULTS Compared with controls, MT1-MMP abundance was increased in aortas from both TAA groups. Active MMP-2 was increased only in the large TAA group. The abundances of phosphorylated MT1-MMP and activated PKC-δ were enhanced in the small TAA group compared with the large TAA group. MT1-MMP was localized on the plasma membrane in aortic fibroblasts from control mice and in endosomes from TAA mice. Treatment with PMA induced MT1-MMP-GFP internalization, enhanced phospho-Smad2, and reduced MMP-2 activation, whereas röttlerin pretreatment inhibited these effects. CONCLUSIONS Phosphorylation of MT1-MMP mediates its activity through directing cellular localization, shifting its role from MMP-2 activation to intracellular signaling. Thus, targeted inhibition of MT1-MMP may have therapeutic relevance as an approach to attenuating TAA development.
Collapse
Affiliation(s)
- John S Ikonomidis
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC
| | - Elizabeth K Nadeau
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC
| | - Adam W Akerman
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC
| | - Robert E Stroud
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC
| | - Rupak Mukherjee
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC; Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| | - Jeffrey A Jones
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC; Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC.
| |
Collapse
|
13
|
Truong A, Yip C, Paye A, Blacher S, Munaut C, Deroanne C, Noel A, Sounni NE. Dynamics of internalization and recycling of the prometastatic membrane type 4 matrix metalloproteinase (MT4-MMP) in breast cancer cells. FEBS J 2016; 283:704-22. [DOI: 10.1111/febs.13625] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 12/03/2015] [Accepted: 12/10/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Alice Truong
- Laboratory of Tumor and Development Biology; Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer (GIGA-Cancer); University of Liège; Belgium
| | - Cassandre Yip
- Laboratory of Tumor and Development Biology; Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer (GIGA-Cancer); University of Liège; Belgium
| | - Alexandra Paye
- Laboratory of Tumor and Development Biology; Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer (GIGA-Cancer); University of Liège; Belgium
| | - Silvia Blacher
- Laboratory of Tumor and Development Biology; Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer (GIGA-Cancer); University of Liège; Belgium
| | - Carine Munaut
- Laboratory of Tumor and Development Biology; Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer (GIGA-Cancer); University of Liège; Belgium
| | - Christophe Deroanne
- Laboratory of Connective Tissues Biology; GIGA-Cancer; University of Liège; Belgium
| | - Agnès Noel
- Laboratory of Tumor and Development Biology; Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer (GIGA-Cancer); University of Liège; Belgium
| | - Nor Eddine Sounni
- Laboratory of Tumor and Development Biology; Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer (GIGA-Cancer); University of Liège; Belgium
| |
Collapse
|
14
|
Chang JH, Huang YH, Cunningham CM, Han KY, Chang M, Seiki M, Zhou Z, Azar DT. Matrix metalloproteinase 14 modulates signal transduction and angiogenesis in the cornea. Surv Ophthalmol 2015; 61:478-97. [PMID: 26647161 DOI: 10.1016/j.survophthal.2015.11.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 11/12/2015] [Accepted: 11/23/2015] [Indexed: 11/16/2022]
Abstract
The cornea is transparent and avascular, and retention of these characteristics is critical to maintaining vision clarity. Under normal conditions, wound healing in response to corneal injury occurs without the formation of new blood vessels; however, neovascularization may be induced during corneal wound healing when the balance between proangiogenic and antiangiogenic mediators is disrupted to favor angiogenesis. Matrix metalloproteinases (MMPs), which are key factors in extracellular matrix remodeling and angiogenesis, contribute to the maintenance of this balance, and in pathologic instances, can contribute to its disruption. Here, we elaborate on the facilitative role of MMPs, specifically MMP-14, in corneal neovascularization. MMP-14 is a transmembrane MMP that is critically involved in extracellular matrix proteolysis, exosome transport, and cellular migration and invasion, processes that are critical for angiogenesis. To aid in developing efficacious therapies that promote healing without neovascularization, it is important to understand and further investigate the complex pathways related to MMP-14 signaling, which can also involve vascular endothelial growth factor, basic fibroblast growth factor, Wnt/β-catenin, transforming growth factor, platelet-derived growth factor, hepatocyte growth factor or chemokines, epidermal growth factor, prostaglandin E2, thrombin, integrins, Notch, Toll-like receptors, PI3k/Akt, Src, RhoA/RhoA kinase, and extracellular signal-related kinase. The involvement and potential contribution of these signaling molecules or proteins in neovascularization are the focus of the present review.
Collapse
Affiliation(s)
- Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Yu-Hui Huang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Christy M Cunningham
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Michael Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Motoharu Seiki
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Zhongjun Zhou
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA.
| |
Collapse
|
15
|
Subcellular trafficking of guanylyl cyclase/natriuretic peptide receptor-A with concurrent generation of intracellular cGMP. Biosci Rep 2015; 35:BSR20150136. [PMID: 26374856 PMCID: PMC4626869 DOI: 10.1042/bsr20150136] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/14/2015] [Indexed: 12/24/2022] Open
Abstract
Atrial natriuretic peptide (ANP) modulates blood pressure and fluid volume by activation of natriuretic peptide receptor-A (NPRA). Immunofluorescence (IF) studies reveal that NPRA is internalized and redistributed into subcellular compartments with concurrent production of cGMP. Atrial natriuretic peptide (ANP) activates guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), which lowers blood pressure and blood volume. The objective of the present study was to visualize internalization and trafficking of enhanced GFP (eGFP)-tagged NPRA (eGFP–NPRA) in human embryonic kidney-293 (HEK-293) cells, using immunofluorescence (IF) and co-immunoprecipitation (co-IP) of eGFP–NPRA. Treatment of cells with ANP initiated rapid internalization and co-localization of the receptor with early endosome antigen-1 (EEA-1), which was highest at 5 min and gradually decreased within 30 min. Similarly, co-localization of the receptor was observed with lysosome-associated membrane protein-1 (LAMP-1); however, after treatment with lysosomotropic agents, intracellular accumulation of the receptor gradually increased within 30 min. Co-IP assays confirmed that the localization of internalized receptors occurred with subcellular organelles during the endocytosis of NPRA. Rab 11, which was used as a recycling endosome (Re) marker, indicated that ∼20% of receptors recycled back to the plasma membrane. ANP-treated cells showed a marked increase in the IF of cGMP, whereas receptor was still trafficking into the intracellular compartments. Thus, after ligand binding, NPRA is rapidly internalized and trafficked from the cell surface into endosomes, Res and lysosomes, with concurrent generation of intracellular cGMP.
Collapse
|
16
|
Clancy JW, Sedgwick A, Rosse C, Muralidharan-Chari V, Raposo G, Method M, Chavrier P, D'Souza-Schorey C. Regulated delivery of molecular cargo to invasive tumour-derived microvesicles. Nat Commun 2015; 6:6919. [PMID: 25897521 PMCID: PMC4497525 DOI: 10.1038/ncomms7919] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 03/13/2015] [Indexed: 12/23/2022] Open
Abstract
Cells release multiple, distinct forms of extracellular vesicles including structures known as microvesicles, which are known to alter the extracellular environment. Despite growing understanding of microvesicle biogenesis, function and contents, mechanisms regulating cargo delivery and enrichment remain largely unknown. Here we demonstrate that in amoeboid-like invasive tumour cell lines, the v-SNARE, VAMP3, regulates delivery of microvesicle cargo such as the membrane-type 1 matrix metalloprotease (MT1-MMP) to shedding microvesicles. MT1-MMP delivery to nascent microvesicles depends on the association of VAMP3 with the tetraspanin CD9 and facilitates the maintenance of amoeboid cell invasion. VAMP3-shRNA expression depletes shed vesicles of MT1-MMP and decreases cell invasiveness when embedded in cross-linked collagen matrices. Finally, we describe functionally similar microvesicles isolated from bodily fluids of ovarian cancer patients. Together these studies demonstrate the importance of microvesicle cargo sorting in matrix degradation and disease progression.
Collapse
Affiliation(s)
- James W. Clancy
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN. 46556, USA
| | - Alanna Sedgwick
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN. 46556, USA
| | - Carine Rosse
- Institut Curie, Centre de Recherche, Paris, F-75248 France
| | | | - Graca Raposo
- Institut Curie, Centre de Recherche, Paris, F-75248 France
| | - Michael Method
- Northern Indiana Cancer Consortium, Michiana Hematology Oncology, Mishawaka, IN. 46545, USA
| | | | | |
Collapse
|
17
|
Kuwahara K, Harada K, Yamagoshi R, Yamamoto T, Shinohara Y. Effects of employment of distinct strategies to capture antibody on antibody delivery into cultured cells. Mol Cell Biochem 2015; 404:25-30. [PMID: 25697272 DOI: 10.1007/s11010-015-2362-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 02/14/2015] [Indexed: 11/24/2022]
Abstract
The characteristics of antibody delivery into cultured HeLa cells were examined using two delivery systems. Both systems used a cell-penetrating peptide as a tool for intrusion of an antibody into the cells, but either a "protein A derivative" or "hydrophobic motif" was employed to capture the antibody. When we examined the uptake of the Alexa Fluor-labeled antibody by the use of these two systems, both systems were found to effectively deliver the antibody into the cultured cells. However, when we compared the amount of antibody delivered by these systems with the amount of transferrin uptake, the former was 10 times smaller than the latter. The lower efficiency of antibody delivery than transferrin uptake seemed to be attributable to the involvement of the antibody delivery reagent, which failed to catch the antibody molecule. This interpretation was validated by an experiment using a larger amount of antibody, and the amount of antibody delivered by the "protein A derivative" system under this condition was determined to be 13 ng proteins/10(5) cells. The antibody delivery achieved by the "protein A derivative" or "hydrophobic motif" showed two differences, i.e., a difference in intracellular distribution of the delivered antibody molecules and a difference in the fluorescence spectrum observed with cellular lysates. Possible reasons for these differences between the two delivery systems are discussed.
Collapse
Affiliation(s)
- Kana Kuwahara
- Institute for Genome Research, University of Tokushima, Kuramoto-cho-3, Tokushima, 770-8503, Japan
| | | | | | | | | |
Collapse
|
18
|
Macpherson IR, Rainero E, Mitchell LE, van den Berghe PVE, Speirs C, Dozynkiewicz MA, Chaudhary S, Kalna G, Edwards J, Timpson P, Norman JC. CLIC3 controls recycling of late endosomal MT1-MMP and dictates invasion and metastasis in breast cancer. J Cell Sci 2014; 127:3893-901. [PMID: 25015290 DOI: 10.1242/jcs.135947] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chloride intracellular channel 3 (CLIC3) drives invasiveness of pancreatic and ovarian cancer by acting in concert with Rab25 to regulate the recycling of α5β1 integrin from late endosomes to the plasma membrane. Here, we show that in two estrogen receptor (ER)-negative breast cancer cell lines, CLIC3 has little influence on integrin recycling, but controls trafficking of the pro-invasive matrix metalloproteinase MT1-MMP (also known as MMP14). In MDA-MB-231 cells, MT1-MMP and CLIC3 are localized primarily to late endosomal/lysosomal compartments located above the plane of adhesion and near the nucleus. MT1-MMP is transferred from these late endosomes to sites of cell-matrix adhesion in a CLIC3-dependent fashion. Correspondingly, CLIC3-knockdown opposes MT1-MMP-dependent invasive processes. These include the disruption of the basement membrane as acini formed from MCF10DCIS.com cells acquire invasive characteristics in 3D culture, and the invasion of MDA-MB-231 cells into Matrigel or organotypic plugs of type I collagen. Consistent with this, expression of CLIC3 predicts poor prognosis in ER-negative breast cancer. The identification of MT1-MMP as a cargo of a CLIC3-regulated pathway that drives invasion highlights the importance of late endosomal sorting and trafficking in breast cancer.
Collapse
Affiliation(s)
- Iain R Macpherson
- Beatson Institute for Cancer Research: Garscube Estate, Glasgow G61 1BD, UK Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Elena Rainero
- Beatson Institute for Cancer Research: Garscube Estate, Glasgow G61 1BD, UK
| | - Louise E Mitchell
- Beatson Institute for Cancer Research: Garscube Estate, Glasgow G61 1BD, UK
| | | | - Claire Speirs
- Beatson Institute for Cancer Research: Garscube Estate, Glasgow G61 1BD, UK
| | | | - Suman Chaudhary
- Beatson Institute for Cancer Research: Garscube Estate, Glasgow G61 1BD, UK
| | - Gabriela Kalna
- Beatson Institute for Cancer Research: Garscube Estate, Glasgow G61 1BD, UK
| | - Joanne Edwards
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Paul Timpson
- Beatson Institute for Cancer Research: Garscube Estate, Glasgow G61 1BD, UK
| | - Jim C Norman
- Beatson Institute for Cancer Research: Garscube Estate, Glasgow G61 1BD, UK
| |
Collapse
|
19
|
Mittal B, Mishra A, Srivastava A, Kumar S, Garg N. Matrix metalloproteinases in coronary artery disease. Adv Clin Chem 2014; 64:1-72. [PMID: 24938016 DOI: 10.1016/b978-0-12-800263-6.00001-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Matrix metalloproteinases (MMP) are a family of zinc-containing endoproteinases that degrade extracellular matrix (ECM) components. MMP have important roles in the development, physiology and pathology of cardiovascular system. Metalloproteases also play key roles in adverse cardiovascular remodeling, atherosclerotic plaque formation and plaque instability, vascular smooth muscle cell (SMC) migration and restenosis that lead to coronary artery disease (CAD), and progressive heart failure. The study of MMP in developing animal model cardiovascular systems has been helpful in deciphering numerous pathologic conditions in humans. Increased peripheral blood MMP-2 and MMP-9 in acute coronary syndrome (ACS) may be useful as noninvasive tests for detection of plaque vulnerability. MMP function can be modulated by certain pharmacological drugs that can be exploited for treatment of ACS. CAD is a polygenic disease and hundreds of genes contribute toward its predisposition. A large number of sequence variations in MMP genes have been identified. Case-control association studies have highlighted their potential association with CAD and its clinical manifestations. Although results thus far are inconsistent, meta-analysis has demonstrated that MMP-3 Glu45Lys and MMP-9 1562C/T gene polymorphisms were associated with CAD risk.
Collapse
|
20
|
Remacle AG, Shiryaev SA, Golubkov VS, Freskos JN, Brown MA, Karwa AS, Naik AD, Howard CP, Sympson CJ, Strongin AY. Non-destructive and selective imaging of the functionally active, pro-invasive membrane type-1 matrix metalloproteinase (MT1-MMP) enzyme in cancer cells. J Biol Chem 2013; 288:20568-80. [PMID: 23733191 DOI: 10.1074/jbc.m113.471508] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Proteolytic activity of cell surface-associated MT1-matrix metalloproteinase (MMP) (MMP-14) is directly related to cell migration, invasion, and metastasis. MT1-MMP is regulated as a proteinase by activation and conversion of the latent proenzyme into the active enzyme, and also via inhibition by tissue inhibitors of MMPs (TIMPs) and self-proteolysis. MT1-MMP is also regulated as a membrane protein through its internalization and recycling. Routine immunohistochemistry, flow cytometry, reverse transcription-PCR, and immunoblotting methodologies do not allow quantitative imaging and assessment of the cell-surface levels of the active, TIMP-free MT1-MMP enzyme. Here, we developed a fluorescent reporter prototype that targets the cellular active MT1-MMP enzyme alone. The reporter (MP-3653) represents a liposome tagged with a fluorochrome and functionalized with a PEG chain spacer linked to an inhibitory hydroxamate warhead. Our studies using the MP-3653 reporter and its inactive derivative demonstrated that MP-3653 can be efficiently used not only to visualize the trafficking of MT1-MMP through the cell compartment, but also to quantify the femtomolar range amounts of the cell surface-associated active MT1-MMP enzyme in multiple cancer cell types, including breast carcinoma, fibrosarcoma, and melanoma. Thus, the levels of the naturally expressed, fully functional, active cellular MT1-MMP enzyme are roughly equal to 1 × 10(5) molecules/cell, whereas these levels are in a 1 × 10(6) range in the cells with the enforced MT1-MMP expression. We suggest that the reporter we developed will contribute to the laboratory studies of MT1-MMP and then, ultimately, to the design of novel, more efficient prognostic approaches and personalized cancer therapies.
Collapse
Affiliation(s)
- Albert G Remacle
- Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Pignatelli J, Jones MC, LaLonde DP, Turner CE. Beta2-adaptin binds actopaxin and regulates cell spreading, migration and matrix degradation. PLoS One 2012; 7:e46228. [PMID: 23056266 PMCID: PMC3462795 DOI: 10.1371/journal.pone.0046228] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 08/28/2012] [Indexed: 12/13/2022] Open
Abstract
Cell adhesion to the extracellular matrix is a key event in cell migration and invasion and endocytic trafficking of adhesion receptors and signaling proteins plays a major role in regulating these processes. Beta2-adaptin is a subunit of the AP-2 complex and is involved in clathrin-mediated endocytosis. Herein, β2-adaptin is shown to bind to the focal adhesion protein actopaxin and localize to focal adhesions during cells spreading in an actopaxin dependent manner. Furthermore, β2-adaptin is enriched in adhesions at the leading edge of migrating cells and depletion of β2-adaptin by RNAi increases cell spreading and inhibits directional cell migration via a loss of cellular polarity. Knockdown of β2-adaptin in both U2OS osteosarcoma cells and MCF10A normal breast epithelial cells promotes the formation of matrix degrading invadopodia, adhesion structures linked to invasive migration in cancer cells. These data therefore suggest that actopaxin-dependent recruitment of the AP-2 complex, via an interaction with β2-adaptin, to focal adhesions mediates cell polarity and migration and that β2-adaptin may control the balance between the formation of normal cell adhesions and invasive adhesion structures.
Collapse
Affiliation(s)
- Jeanine Pignatelli
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, New York, United States of America
| | - Matthew C. Jones
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, New York, United States of America
| | - David P. LaLonde
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
| | - Christopher E. Turner
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, New York, United States of America
- * E-mail:
| |
Collapse
|
22
|
Rohrer Bley C, Furmanova P, Orlowski K, Grosse N, Broggini-Tenzer A, McSheehy PMJ, Pruschy M. Microtubule stabilising agents and ionising radiation: multiple exploitable mechanisms for combined treatment. Eur J Cancer 2012; 49:245-53. [PMID: 22683167 DOI: 10.1016/j.ejca.2012.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 12/18/2022]
Abstract
Combined radiochemotherapy treatment modalities are in use for many indications and therefore of high interest. Even though a combined modality in clinical use is often driven by pragmatic aspects, mechanistic preclinical-based concepts of interaction are of importance in order to translate and implement an optimal combination and scheduling of two modalities into the clinics. The use of microtubule stabilising agents is a promising strategy for anti-cancer therapy as a part of combined treatment modality with ionising radiation. Traditionally, microtubule targeting agents are classified as cytotoxic chemotherapeutics and are mostly used in a maximally tolerated dose regimen. Apart from direct cytotoxicity and similar to mechanisms of molecular targeting agents, microtubule stabilising agents interfere with multiple cellular processes, which can be exploited as part of combined treatment modalities. Recent preclinical investigations on the combination of ionising radiation and microtubule stabilising agents reveal new mechanistic interactions on the cellular and tumour level and elucidate the supra-additive tumour response observed particularly in vivo. The major focus on the mechanism of interaction was primarily based on radiosensitisation due to cell cycle arrest in the most radiosensitive G2/M-phase of the cell cycle. However, other mechanisms of interaction such as reoxygenation and direct as well as indirect endothelial damage have also been identified. In this review we summarise and allocate additive and synergistic effects induced by the combined treatment of clinically relevant microtubule stabilising agents and ionising radiation along a described radiobiological framework encompassing distinct mechanisms relevant for exploiting the combination of drugs and ionising radiation.
Collapse
Affiliation(s)
- Carla Rohrer Bley
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
23
|
Remacle AG, Golubkov VS, Shiryaev SA, Dahl R, Stebbins JL, Chernov AV, Cheltsov AV, Pellecchia M, Strongin AY. Novel MT1-MMP small-molecule inhibitors based on insights into hemopexin domain function in tumor growth. Cancer Res 2012; 72:2339-49. [PMID: 22406620 DOI: 10.1158/0008-5472.can-11-4149] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Membrane type-1 matrix metalloproteinase (MT1-MMP) is a promising drug target in malignancy. The structure of MT1-MMP includes the hemopexin domain (PEX) that is distinct from and additional to the catalytic domain. Current MMP inhibitors target the conserved active site in the catalytic domain and, as a result, repress the proteolytic activity of multiple MMPs instead of MT1-MMP alone. In our search for noncatalytic inhibitors of MT1-MMP, we compared the protumorigenic activity of wild-type MT1-MMP with an MT1-MMP mutant lacking PEX (ΔPEX). In contrast to MT1-MMP, ΔPEX did not support tumor growth in vivo, and its expression resulted in small fibrotic tumors that contained increased levels of collagen. Because these findings suggested an important role for PEX in tumor growth, we carried out an inhibitor screen to identify small molecules targeting the PEX domain of MT1-MMP. Using the Developmental Therapeutics Program (National Cancer Institute/NIH), virtual ligand screening compound library as a source and the X-ray crystal structure of PEX as a target, we identified and validated a novel PEX inhibitor. Low dosage, intratumoral injections of PEX inhibitor repressed tumor growth and caused a fibrotic, ΔPEX-like tumor phenotype in vivo. Together, our findings provide a preclinical proof of principle rationale for the development of novel and selective MT1-MMP inhibitors that specifically target the PEX domain.
Collapse
Affiliation(s)
- Albert G Remacle
- Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Jatiani A, Pannizzo P, Gualco E, Del-Valle L, Langford D. Neuronal PINCH is regulated by TNF-α and is required for neurite extension. J Neuroimmune Pharmacol 2011; 6:330-40. [PMID: 20689998 PMCID: PMC3107369 DOI: 10.1007/s11481-010-9236-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 07/18/2010] [Indexed: 12/18/2022]
Abstract
During HIV infection of the CNS, neurons are damaged by viral proteins, such as Tat and gp120, or by inflammatory factors, such as TNF-α, that are released from infected and/or activated glial cells. Host responses to this damage may include the induction of survival or repair mechanisms. In this context, previous studies report robust expression of a protein called particularly interesting new cysteine histidine-rich protein (PINCH), in the neurons of HIV patients' brains, compared with nearly undetectable levels in HIV-negative individuals (Rearden et al., J Neurosci Res 86:2535-2542, 2008), suggesting PINCH's involvement in neuronal signaling during HIV infection of the brain. To address potential triggers for PINCH induction in HIV patients' brains, an in vitro system mimicking some aspects of HIV infection of the CNS was utilized. We investigated neuronal PINCH expression, subcellular distribution, and biological consequences of PINCH sequestration upon challenge with Tat, gp120, and TNF-α. Our results indicate that in neurons, TNF-α stimulation increases PINCH expression and changes its subcellular localization. Furthermore, PINCH mobility is required to maintain neurite extension upon challenge with TNF-α. PINCH may function as a neuron-specific host-mediated response to challenge by HIV-related factors in the CNS.
Collapse
Affiliation(s)
- Asavari Jatiani
- Department of Neuroscience, Temple University School of Medicine, 3500 N. Broad St., MERB 750, Philadelphia, PA, USA
| | - Paola Pannizzo
- Department of Neuroscience, Temple University School of Medicine, 3500 N. Broad St., MERB 750, Philadelphia, PA, USA
| | - Elisa Gualco
- Department of Oncology, Biology and Genetics, University of Genoa, Genoa, Italy
| | - Luis Del-Valle
- Department of Pathology, Louisiana State University, New Orleans, LA, USA
| | - Dianne Langford
- Department of Neuroscience, Temple University School of Medicine, 3500 N. Broad St., MERB 750, Philadelphia, PA, USA,
| |
Collapse
|
25
|
Proulx-Bonneau S, Pratt J, Annabi B. A role for MT1-MMP as a cell death sensor/effector through the regulation of endoplasmic reticulum stress in U87 glioblastoma cells. J Neurooncol 2011; 104:33-43. [PMID: 21088866 DOI: 10.1007/s11060-010-0468-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 11/08/2010] [Indexed: 12/30/2022]
Abstract
Recent findings in cell death signalling show that membrane type 1 matrix metalloproteinase (MT1-MMP), an MMP known for its involvement in cancer cell invasion and metastasis, can act as a "bioswitch" in the invasion versus cell death decision in brain tumour cells. Given that the endoplasmic reticulum (ER) is a subcellular compartment involved in metabolic control and cell death signalling and that cytoskeleton disruption, as encountered during cancer cell invasion, can lead to ER stress, we questioned whether MT1-MMP contributes to ER stress. We found that MT1-MMP gene silencing or pharmacological inhibition of vesicular trafficking with Brefeldin-A abrogated MT1-MMP cell surface-mediated proMMP-2 activation by the lectin Concanavalin-A (ConA) in U87 glioblastoma cells. ConA, also known to trigger the expression of pro-inflammatory cyclooxygenase (COX)-2 through MT1-MMP signalling from the plasma membrane, failed to do so when MT1-MMP was prevented from reaching the cell surface by Brefeldin-A. Gene silencing of MT1-MMP antagonized the expression of ConA-induced COX-2 and of the ER stress marker glucose-related protein 78 (GRP78), further suggesting that plasma membrane localization of MT1-MMP contributes to signalling ER stress. MT1-MMP maturation, which partially occurs during its trafficking from the ER to the plasma membrane, showed correlation of the 60 kDa MT1-MMP with GRP78 expression. Finally, Brefeldin-A treatment of glioblastoma cells led to Akt dephosphorylation; this effect was reversed when MT1-MMP was silenced. Collectively, our results provide a molecular rationale for a new role for MT1-MMP in the regulation of cancer cell death processes through ER stress signalling.
Collapse
Affiliation(s)
- Sébastien Proulx-Bonneau
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre de Recherche BioMED, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montreal, QC, H3C 3P8, Canada
| | | | | |
Collapse
|
26
|
Zarrabi K, Dufour A, Li J, Kuscu C, Pulkoski-Gross A, Zhi J, Hu Y, Sampson NS, Zucker S, Cao J. Inhibition of matrix metalloproteinase 14 (MMP-14)-mediated cancer cell migration. J Biol Chem 2011; 286:33167-77. [PMID: 21795678 DOI: 10.1074/jbc.m111.256644] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Matrix metalloproteinases (MMPs) have been shown to be key players in both extracellular matrix remodeling and cell migration during cancer metastasis. MMP-14, a membrane-anchored MMP, in particular, is closely associated with these processes. The hemopexin (PEX) domain of MMP-14 has been proposed as the modulating region involved in the molecular cross-talk that initiates cell migration through homodimerization of MMP-14 as well as heterodimerization with the cell surface adhesion molecule CD44. In this study, minimal regions required for function within the PEX domain were investigated through a series of substitution mutations. Blades I and IV were found to be involved in cell migration. We found that blade IV is necessary for MMP-14 homodimerization and that blade I is required for CD44 MMP-14 heterodimerization. Cross-talk between MMP-14 and CD44 results in phosphorylation of EGF receptor and downstream activation of the MAPK and PI3K signaling pathways involved in cell migration. Based on these mutagenesis analyses, peptides mimicking the essential outermost strand motifs within the PEX domain of MMP-14 were designed. These synthetic peptides inhibit MMP-14-enhanced cell migration in a dose-dependent manner but have no effect on the function of other MMPs. Furthermore, these peptides interfere with cancer metastasis without affecting primary tumor growth. Thus, targeting the MMP-14 hemopexin domain represents a novel approach to inhibit MMP-14-mediated cancer dissemination.
Collapse
Affiliation(s)
- Kevin Zarrabi
- Department of Medicine/Cancer Prevention, Stony Brook University, Stony Brook, New York 11794, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kirmse R, Otto H, Ludwig T. Interdependency of cell adhesion, force generation and extracellular proteolysis in matrix remodeling. J Cell Sci 2011; 124:1857-66. [PMID: 21558415 DOI: 10.1242/jcs.079343] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is becoming increasingly evident that the micromechanics of cells and their environment determine cell fate and function as much as soluble molecular factors do. We hypothesized that extracellular matrix proteolysis by membrane type 1 matrix metalloproteinase (MT1-MMP) depends on adhesion, force generation and rigidity sensing of the cell. Melanoma cells (MV3 clone) stably transfected with MT1-MMP, or the empty vector as a control, served as the model system. α2β1 integrins (cell adhesion), actin and myosin II (force generation and rigidity sensing) were blocked by their corresponding inhibitors (α2β1 integrin antibodies, Cytochalasin D, blebbistatin). A novel, anisotropic matrix array of parallel, fluorescently labeled collagen-I fibrils was used. Cleavage and bundling of the collagen-I fibrils, and spreading and durotaxis of the cells on this matrix array could be readily discerned and quantified by a combined set-up for fluorescence and atomic force microscopy. In short, expression of the protease resulted in the generation of structural matrix defects, clearly indicated by gaps in the collagen lattice and loose fiber bundles. This key feature of matrix remodeling depended essentially on the functionality of α2β1 integrin, the actin filament network and myosin II motor activity. Interference with any of these negatively impacted matrix cleavage and three-dimensional matrix entanglement of cells.
Collapse
Affiliation(s)
- Robert Kirmse
- German Cancer Research Center Heidelberg (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
28
|
Remacle AG, Shiryaev SA, Radichev IA, Rozanov DV, Stec B, Strongin AY. Dynamic interdomain interactions contribute to the inhibition of matrix metalloproteinases by tissue inhibitors of metalloproteinases. J Biol Chem 2011; 286:21002-12. [PMID: 21518756 DOI: 10.1074/jbc.m110.200139] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Because of their important function, matrix metalloproteinases (MMPs) are promising drug targets in multiple diseases, including malignancies. The structure of MMPs includes a catalytic domain, a hinge, and a hemopexin domain (PEX), which are followed by a transmembrane and cytoplasmic tail domains or by a glycosylphosphatidylinositol linker in membrane-type MMPs (MT-MMPs). TIMPs-1, -2, -3, and -4 are potent natural regulators of the MMP activity. These are the inhibitory N-terminal and the non-inhibitory C-terminal structural domains in TIMPs. Based on our structural modeling, we hypothesized that steric clashes exist between the non-inhibitory C-terminal domain of TIMPs and the PEX of MMPs. Conversely, a certain mobility of the PEX relative to the catalytic domain is required to avoid these obstacles. Because of its exceedingly poor association constant and, in contrast with TIMP-2, TIMP-1 is inefficient against MT1-MMP. We specifically selected an MT1-MMP·TIMP-1 pair to test our hypothesis, because any improvement of the inhibitory potency would be readily recorded. We characterized the domain-swapped MT1-MMP chimeras in which the PEX of MMP-2 (that forms a complex with TIMP-2) and of MMP-9 (that forms a complex with TIMP-1) replaced the original PEX in the MT1-MMP structure. In contrast with the wild-type MT1-MMP, the diverse proteolytic activities of the swapped-PEX chimeras were then inhibited by both TIMP-1 and TIMP-2. Overall, our studies suggest that the structural parameters of both domains of TIMPs have to be taken into account for their re-engineering to harness the therapeutic in vivo potential of the novel TIMP-based MMP antagonists with constrained selectivity.
Collapse
Affiliation(s)
- Albert G Remacle
- Cancer Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
29
|
Nusblat LM, Dovas A, Cox D. The non-redundant role of N-WASP in podosome-mediated matrix degradation in macrophages. Eur J Cell Biol 2011; 90:205-12. [DOI: 10.1016/j.ejcb.2010.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 07/07/2010] [Accepted: 07/15/2010] [Indexed: 10/25/2022] Open
|
30
|
Cauwe B, Opdenakker G. Intracellular substrate cleavage: a novel dimension in the biochemistry, biology and pathology of matrix metalloproteinases. Crit Rev Biochem Mol Biol 2010; 45:351-423. [DOI: 10.3109/10409238.2010.501783] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Kean MJ, Williams KC, Skalski M, Myers D, Burtnik A, Foster D, Coppolino MG. VAMP3, syntaxin-13 and SNAP23 are involved in secretion of matrix metalloproteinases, degradation of the extracellular matrix and cell invasion. J Cell Sci 2010; 122:4089-98. [PMID: 19910495 DOI: 10.1242/jcs.052761] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cellular remodeling of the extracellular matrix (ECM), an essential component of many physiological and pathological processes, is dependent on the trafficking and secretion of matrix metalloproteinases (MMPs). Soluble NSF attachment protein receptor (SNARE)-mediated membrane traffic has documented roles in cell-ECM interactions and the present study specifically examines SNARE function in the trafficking of MMPs during ECM degradation. Using the invasive human fibrosarcoma cell line HT-1080, we demonstrate that a plasma membrane SNARE, SNAP23, and an endosomal v-SNARE, VAMP3 (also known as cellubrevin), partly colocalize with MMP2 and MMP9, and that inhibition of these SNAREs using dominant-negative SNARE mutants impaired secretion of the MMPs. Inhibition of VAMP3, SNAP23 or syntaxin-13 using dominant-negative SNARES, RNA interference or tetanus toxin impaired trafficking of membrane type 1 MMP to the cell surface. Consistent with these observations, we found that blocking the function of these SNAREs reduced the ability of HT-1080 cells to degrade a gelatin substrate in situ and impaired invasion of HT-1080 cells in vitro. The results reveal the importance of VAMP3, syntaxin-13 and SNAP23 in the trafficking of MMP during degradation of ECM substrates and subsequent cellular invasion.
Collapse
Affiliation(s)
- Michelle J Kean
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Integrins are transmembrane adhesion receptors essential for cell communication with the environment and in particular with the extracellular matrix (ECM). ECM components can be processed by several enzymes; one of the largest families involved in this task being matrix metalloproteinases (MMPs). MT1-MMP (membrane type 1-matrix metalloproteinase) is a membrane-anchored MMP with important roles in processes such as tissue development, tumor invasion, and angiogenesis. In addition to its catalytic-dependent functions, MT1-MMP can interact, via its cytosolic tail, with intracellular components, and trigger signaling pathways that impact cell decisions. These features make MT1-MMP similar to integrins, because both are able to integrate events in the extracellular and intracellular milieus. Accordingly, it is probably no coincidence that MT1-MMP often associates and functionally cooperates with distinct integrins at specific cellular compartments. In this review, we discuss aspects of the molecular and functional interplay between MT1-MMP and integrins in distinct cellular and biological contexts.
Collapse
Affiliation(s)
- Pilar Gonzalo
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | | | | |
Collapse
|
33
|
Probing potassium channel function in vivo by intracellular delivery of antibodies in a rat model of retinal neurodegeneration. Proc Natl Acad Sci U S A 2010; 107:12710-5. [PMID: 20616020 DOI: 10.1073/pnas.0913472107] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inward rectifying potassium (Kir) channels participate in regulating potassium concentration (K(+)) in the central nervous system (CNS), including in the retina. We explored the contribution of Kir channels to retinal function by delivering Kir antibodies (Kir-Abs) into the rat eye in vivo to interrupt channel activity. Kir-Abs were coupled to a peptide carrier to reach intracellular epitopes. Functional effects were evaluated by recording the scotopic threshold response (STR) and photopic negative response (PhNR) of the electroretinogram (ERG) noninvasively with an electrode on the cornea to determine activity of the rod and cone pathways, respectively. Intravitreal delivery of Kir2.1-Ab coupled to the peptide carrier diminished these ERG responses equivalent to dimming the stimulus 10- to 100-fold. Immunohistochemistry (IHC) showed Kir2.1 immunostaining of retinal bipolar cells (BCs) matching the labeling pattern obtained with conventional IHC of applying Kir2.1-Ab to fixed retinal sections postmortem. Whole-cell voltage-clamp BC recordings in rat acute retinal slices showed suppression of barium-sensitive Kir2.1 currents upon inclusion of Kir2.1-Ab in the patch pipette. The in vivo functional and structural results implicate a contribution of Kir2.1 channel activity in these electronegative ERG potentials. Studies with Kir4.1-Ab administered in vivo also suppressed the ERG components and showed immunostaining of Müller cells. The strategy of administering Kir antibodies in vivo, coupled to a peptide carrier to facilitate intracellular delivery, identifies roles for Kir2.1 and Kir4.1 in ERG components arising in the proximal retina and suggests this approach could be of further value in research.
Collapse
|
34
|
Henriques ST, Castanho MARB, Pattenden LK, Aguilar MI. Fast membrane association is a crucial factor in the peptide pep-1 translocation mechanism: a kinetic study followed by surface plasmon resonance. Biopolymers 2010; 94:314-22. [PMID: 20049920 DOI: 10.1002/bip.21367] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The use of peptide carriers, termed "cell-penetrating peptides (CPPs)" has attracted much attention due to their potential for cellular delivery of hydrophilic molecules with pharmacological interest, overcoming the membrane barrier. These peptides are able to deliver attached cargos in a nontoxic manner, with the uptake mechanisms being either endosomally or physically driven. Pep-1 is a CPP of particular interest, not only due to outstanding delivery rates but also because its mechanism of membrane translocation is exclusively physically driven which appears to be dependent on a very high affinity for the phospholipid bilayer in the cell membrane. In this study, pep-1-lipid interactions were further explored by characterization of the pep-1-lipid association/dissociation by surface plasmon resonance. Although a high affinity of pep-1 for lipid bilayers was observed in all conditions tested, negatively charged phospholipids resulted in a larger peptide/lipid ratio. We also show that pep-1-membrane interaction is a fast process described by a multistep model initiated by peptide adsorption, primarily governed by electrostatic attractions, and followed by peptide insertion in the hydrophobic membrane core. In the context of a cell-based process, the translocation of pep-1 is a physical mechanism promoted by peptide primary amphipathicity and asymmetric properties of the membrane. This explains the high efficiency rates of pep-1 when compared with other CPPs.
Collapse
Affiliation(s)
- Sónia Troeira Henriques
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| | | | | | | |
Collapse
|
35
|
KIF5B and KIF3A/KIF3B kinesins drive MT1-MMP surface exposure, CD44 shedding, and extracellular matrix degradation in primary macrophages. Blood 2010; 116:1559-69. [PMID: 20505159 DOI: 10.1182/blood-2009-12-257089] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The matrix metalloproteinase (MMP) MT1-MMP plays pivotal roles in leukocyte physiology such as monocyte diapedesis, dendritic cell migration, and T-cell homing. MT1-MMP is a surface-anchored "master switch" proteinase that cleaves a variety of substrates including extracellular matrix components, matrix receptors, and also other MMPs. However, little is known about the mechanisms enabling intracellular trafficking and exposure of MT1-MMP on the cell surface. We now show that, in primary human macrophages, MT1-MMP-positive vesicles travel bidirectionally along microtubules, in a process regulated by KIF5B and KIF3A/KIF3B kinesins. SiRNA-induced knockdown revealed that transport by KIF5B and KIF3A/KIF3B is crucial for delivery of MT1-MMP to the cell surface and also for surface-associated functions of MT1-MMP, such as shedding of the matrix receptors CD44 and syndecan-1 or degradation of extracellular matrix at podosomes. These data show that kinesin-mediated intracellular transport of MT1-MMP is a pivotal process that allows macrophages to dynamically modify their pericellular environment. These data also identify specific kinesins as potential targets for the early manipulation of MT1-MMP activity in tissues.
Collapse
|
36
|
The planar cell polarity protein Van Gogh-Like 2 regulates tumor cell migration and matrix metalloproteinase-dependent invasion. Cancer Lett 2010; 287:54-61. [DOI: 10.1016/j.canlet.2009.05.041] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 05/27/2009] [Accepted: 05/29/2009] [Indexed: 01/20/2023]
|
37
|
Poincloux R, Lizárraga F, Chavrier P. Matrix invasion by tumour cells: a focus on MT1-MMP trafficking to invadopodia. J Cell Sci 2009; 122:3015-24. [PMID: 19692588 DOI: 10.1242/jcs.034561] [Citation(s) in RCA: 361] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
When migrating away from a primary tumour, cancer cells interact with and remodel the extracellular matrix (ECM). Matrix metalloproteinases (MMPs), and in particular the transmembrane MT1-MMP (also known as MMP-14), are key enzymes in tumour-cell invasion. Results from recent in vitro studies highlight that MT1-MMP is implicated both in the breaching of basement membranes by tumour cells and in cell invasion through interstitial type-I collagen tissues. Remarkably, MT1-MMP accumulates at invadopodia, which are specialized ECM-degrading membrane protrusions of invasive cells. Here we review current knowledge about MT1-MMP trafficking and its importance for the regulation of protease activity at invadopodia. In invasive cells, endocytosis of MT1-MMP by clathrin- and caveolae-dependent pathways can be counteracted by several mechanisms, which leads to protease stabilization at the cell surface and increased pericellular degradation of the matrix. Furthermore, the recent identification of cellular components that control delivery of MT1-MMP to invadopodia brings new insight into mechanisms of cancer-cell invasion and reveals potential pharmacological targets.
Collapse
Affiliation(s)
- Renaud Poincloux
- CNRS, UMR144, Membrane and Cytoskeleton Dynamics, and Institut Curie, Paris, France
| | | | | |
Collapse
|
38
|
Biochemical evidence of the interactions of membrane type-1 matrix metalloproteinase (MT1-MMP) with adenine nucleotide translocator (ANT): potential implications linking proteolysis with energy metabolism in cancer cells. Biochem J 2009; 420:37-47. [PMID: 19232058 DOI: 10.1042/bj20090082] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Invasion-promoting MT1-MMP (membrane type-1 matrix metalloproteinase) is a key element in cell migration processes. To identify the proteins that interact and therefore co-precipitate with this proteinase from cancer cells, we used the proteolytically active WT (wild-type), the catalytically inert E240A and the C-end truncated (tailless; DeltaCT) MT1-MMP-FLAG constructs as baits. The identity of the pulled-down proteins was determined by LC-MS/MS (liquid chromatography tandem MS) and then confirmed by Western blotting using specific antibodies. We determined that, in breast carcinoma MCF cells (MCF-7 cells), ANT (adenine nucleotide translocator) efficiently interacted with the WT, E240A and DeltaCT constructs. The WT and E240A constructs also interacted with alpha-tubulin, an essential component of clathrin-mediated endocytosis. In turn, tubulin did not co-precipitate with the DeltaCT construct because of the inefficient endocytosis of the latter, thus suggesting a high level of selectivity of our test system. To corroborate these results, we then successfully used the ANT2-FLAG construct as a bait to pull-down MT1-MMP, which was naturally produced by fibrosarcoma HT1080 cells. We determined that the presence of the functionally inert catalytic domain alone was sufficient to cause the proteinase to interact with ANT2, thus indicating that there is a non-proteolytic mode of these interactions. Overall, it is tempting to hypothesize that by interacting with pro-invasive MT1-MMP, ANT plays a yet to be identified role in a coupling mechanism between energy metabolism and pericellular proteolysis in migrating cancer cells.
Collapse
|
39
|
Affiliation(s)
- Mark D. Bass
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Mark R. Morgan
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Martin J. Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
40
|
Abstract
The syndecan transmembrane proteoglycans synergize with receptors for extracellular matrix molecules and growth factors to initiate cytoplasmic signals in response to a range of extracellular stimuli. Syndecans influence a wide range of physiological processes, but their contribution is most apparent during wound repair. Aspects of syndecan biology that have attracted research interest include extracellular matrix binding, outside-to-inside plasma membrane signal propagation, activation of cytoplasmic signals, and shedding of the syndecan extracellular domain, but the mechanisms by which syndecan cytoplasmic signals modulate extracellular function remain largely unresolved. Hayashida et al. have now discovered that association between an endocytic regulator, Rab5, and the syndecan-1 cytoplasmic domain controlled the shedding of the syndecan-1 extracellular domain. The work describes a mechanistic investigation into inside-to-outside syndecan signaling and highlights several gaps in our understanding of the relation between cell-surface receptors and proteases. In this Perspective, we summarize the current understanding of receptor interplay and identify the challenges that face investigators of adhesion- and growth factor-dependent signaling.
Collapse
Affiliation(s)
| | | | - Martin J. Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
41
|
Macaskill AF, Rinholm JE, Twelvetrees AE, Arancibia-Carcamo IL, Muir J, Fransson A, Aspenstrom P, Attwell D, Kittler JT. Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron 2009; 61:541-55. [PMID: 19249275 PMCID: PMC2670979 DOI: 10.1016/j.neuron.2009.01.030] [Citation(s) in RCA: 516] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 10/09/2008] [Accepted: 01/27/2009] [Indexed: 01/02/2023]
Abstract
Energy use, mainly to reverse ion movements in neurons, is a fundamental constraint on brain information processing. Trafficking of mitochondria to locations in neurons where there are large ion fluxes is essential for powering neural function. Mitochondrial trafficking is regulated by Ca2+ entry through ionotropic glutamate receptors, but the underlying mechanism is unknown. We show that the protein Miro1 links mitochondria to KIF5 motor proteins, allowing mitochondria to move along microtubules. This linkage is inhibited by micromolar levels of Ca2+ binding to Miro1. With the EF hand domains of Miro1 mutated to prevent Ca2+ binding, Miro1 could still facilitate mitochondrial motility, but mitochondrial stopping induced by glutamate or neuronal activity was blocked. Activating neuronal NMDA receptors with exogenous or synaptically released glutamate led to Miro1 positioning mitochondria at the postsynaptic side of synapses. Thus, Miro1 is a key determinant of how energy supply is matched to energy usage in neurons.
Collapse
Affiliation(s)
- Andrew F Macaskill
- Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Intracellular delivery of proteins into mouse Müller glia cells in vitro and in vivo using Pep-1 transfection reagent. J Neurosci Methods 2008; 177:403-19. [PMID: 19056421 DOI: 10.1016/j.jneumeth.2008.10.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 10/08/2008] [Accepted: 10/29/2008] [Indexed: 11/19/2022]
Abstract
Direct protein transfection is a potentially valuable tool for studying protein function in basic and clinical research. A major challenge is to enable a sufficiently large amount of protein to penetrate the plasma membrane of the transfected cells. Pep-1, a protein transfection reagent, was evaluated for its ability and efficiency in delivering proteins and antibodies into mouse Müller cells in vitro and in vivo. Pep-1 delivered active beta-galactosidase enzyme and antibodies (non-specific IgG and Cy3-conjugated anti-vimentin) into cultured Müller cells with high efficiency. Transfection efficiency increased with increasing concentration of the protein in the complex and with incubation time. Following intravitreal injection of Pep-1/IgG complexes in vivo, retinal histology was preserved and immunostaining showed that the antibodies were distributed widely across the retinal surface, with the most intense staining located near the retino-vitreal border. For complexes using non-specific IgG, double staining with anti-glutamine synthetase identified many IgG-positive cells as Müller glia. IgG immunoreactivity was also detected in the cytoplasm and occasionally in the nuclei of inner retinal neurons. Dark-adapted flash electroretinogram (ERG) recordings from injected eyes were nearly identical to ERG recordings from control eyes, suggesting that injection of Pep-1/IgG complex has minimal effects on retinal function. Therefore, Pep-1 is a useful tool for intracellular delivery of antibodies to study the role of proteins in living cells.
Collapse
|
43
|
Ghajar CM, George SC, Putnam AJ. Matrix metalloproteinase control of capillary morphogenesis. Crit Rev Eukaryot Gene Expr 2008; 18:251-78. [PMID: 18540825 DOI: 10.1615/critreveukargeneexpr.v18.i3.30] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Matrix metalloproteinases (MMPs) play crucial roles in a variety of normal (e.g., blood vessel formation, bone development) and pathophysiological (e.g., wound healing, cancer) processes. This is not only due to their ability to degrade the surrounding extracellular matrix (ECM), but also because MMPs function to reveal cryptic matrix binding sites, release matrix-bound growth factors inherent to these processes, and activate a variety of cell surface molecules. The process of blood vessel formation, in particular, is regulated by what is widely classified as the angiogenic switch: a mixture of both pro- and antiangiogenic factors that function to counteract each other unless the stimuli from one side exceeds the other to disrupt the quiescent state. Although it was initially thought that MMPs were strictly proangiogenic, new functions for this proteolytic family, such as mediating vascular regression and generating matrix fragments with antiangiogenic capacities, have been discovered in the last decade. These findings cast MMPs as multifaceted pro- and antiangiogenic effectors. The purpose of this review is to introduce the reader to the general structure and characterization of the MMP family and to discuss the temporal and spatial regulation of their gene expression and enzymatic activity in the following crucial steps associated with angiogenesis: degradation of the vascular basement membrane, proliferation and invasion of endothelial cells within the subjacent ECM, organization into immature tubules, maturation of these nascent vessels, and the pruning and regression of the vascular network.
Collapse
Affiliation(s)
- Cyrus M Ghajar
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | | | | |
Collapse
|
44
|
Ouyang M, Lu S, Li XY, Xu J, Seong J, Giepmans BNG, Shyy JYJ, Weiss SJ, Wang Y. Visualization of polarized membrane type 1 matrix metalloproteinase activity in live cells by fluorescence resonance energy transfer imaging. J Biol Chem 2008; 283:17740-8. [PMID: 18441011 DOI: 10.1074/jbc.m709872200] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane type 1 matrix metalloproteinase (MT1-MMP) plays a critical role in cancer cell biology by proteolytically remodeling the extracellular matrix. Utilizing fluorescence resonance energy transfer (FRET) imaging, we have developed a novel biosensor, with its sensing element anchoring at the extracellular surface of cell membrane, to visualize MT1-MMP activity dynamically in live cells with subcellular resolution. Epidermal growth factor (EGF) induced significant FRET changes in cancer cells expressing MT1-MMP, but not in MT1-MMP-deficient cells. EGF-induced FRET changes in MT1-MMP-deficient cells could be restored after reconstituting with wild-type MT1-MMP, but not MMP-2, MMP-9, or inactive MT1-MMP mutants. Deletion of the transmembrane domain in the biosensor or treatment with tissue inhibitor of metalloproteinase-2, a cell-impermeable MT1-MMP inhibitor, abolished the EGF-induced FRET response, indicating that MT1-MMP acts at the cell surface to generate FRET changes. In response to EGF, active MT1-MMP was directed to the leading edge of migrating cells along micropatterned fibronectin stripes, in tandem with the local accumulation of the EGF receptor, via a process dependent upon an intact cytoskeletal network. Hence, the MT1-MMP biosensor provides a powerful tool for characterizing the molecular processes underlying the spatiotemporal regulation of this critical class of enzymes.
Collapse
Affiliation(s)
- Mingxing Ouyang
- Department of Bioengineering and the Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Illinois 61801, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Fortier S, Labelle D, Sina A, Moreau R, Annabi B. Silencing of the MT1-MMP/ G6PT axis suppresses calcium mobilization by sphingosine-1-phosphate in glioblastoma cells. FEBS Lett 2008; 582:799-804. [PMID: 18267120 DOI: 10.1016/j.febslet.2008.01.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 01/30/2008] [Accepted: 01/31/2008] [Indexed: 01/25/2023]
Abstract
The contributions of membrane type-1 matrix metalloproteinase (MT1-MMP) and of the glucose-6-phosphate transporter (G6PT) in sphingosine-1-phosphate (S1P)-mediated Ca(2+) mobilization were assessed in glioblastoma cells. We show that gene silencing of MT1-MMP or G6PT decreased the extent of S1P-induced Ca(2+) mobilization, chemotaxis, and extracellular signal-related kinase phosphorylation. Chlorogenic acid and (-)-epigallocatechin-3-gallate, two diet-derived inhibitors of G6PT and of MT1-MMP, respectively, reduced S1P-mediated Ca(2+) mobilization. An intact MT1-MMP/G6PT signaling axis is thus required for efficient Ca(2+) mobilization in response to bioactive lipids such as S1P. Targeted inhibition of either MT1-MMP or G6PT may lead to reduced infiltrative and invasive properties of brain tumor cells.
Collapse
Affiliation(s)
- Simon Fortier
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre BioMed, Université du Québec à Montréal, Succ Centre-ville, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
46
|
Spinale FG. Myocardial Matrix Remodeling and the Matrix Metalloproteinases: Influence on Cardiac Form and Function. Physiol Rev 2007; 87:1285-342. [DOI: 10.1152/physrev.00012.2007] [Citation(s) in RCA: 855] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
It is now becoming apparent that dynamic changes occur within the interstitium that directly contribute to adverse myocardial remodeling following myocardial infarction (MI), with hypertensive heart disease and with intrinsic myocardial disease such as cardiomyopathy. Furthermore, a family of matrix proteases, the matrix metalloproteinases (MMPs) and the tissue inhibitors of MMPs (TIMPs), has been recognized to play an important role in matrix remodeling in these cardiac disease states. The purpose of this review is fivefold: 1) to examine and redefine the myocardial matrix as a critical and dynamic entity with respect to the remodeling process encountered with MI, hypertension, or cardiomyopathic disease; 2) present the remarkable progress that has been made with respect to MMP/TIMP biology and how it relates to myocardial matrix remodeling; 3) to evaluate critical translational/clinical studies that have provided a cause-effect relationship between alterations in MMP/TIMP regulation and myocardial matrix remodeling; 4) to provide a critical review and analysis of current diagnostic, prognostic, and pharmacological approaches that utilized our basic understanding of MMP/TIMPs in the context of cardiac disease; and 5) most importantly, to dispel the historical belief that the myocardial matrix is a passive structure and supplant this belief that the regulation of matrix protease pathways such as the MMPs and TIMPs will likely yield a new avenue of diagnostic and therapeutic strategies for myocardial remodeling and the progression to heart failure.
Collapse
|
47
|
Liu J, Hu T, Hou X. High-level expression of functional tumor suppressor LKB1 in Escherichia coli. Acta Biochim Biophys Sin (Shanghai) 2007; 39:779-86. [PMID: 17928927 DOI: 10.1111/j.1745-7270.2007.00336.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The human LKB1 tumor suppressor has been implicated as an important regulator of many cellular processes and signaling pathways, indicating that it could be a good candidate for anticancer drugs. The failure of its obtain high-level expression has been a major obstacle to study its protein structure and function in vitro. Here, we describe the high-level expression of human LKB1 in Escherichia coli and show its kinase activity and anticancer effects on a tumor cell line. The gene encoding LKB1 was optimized by replacing rare codons with codons frequently used in E. coli and synthesized with overlapping primers. The recombinant His-LKB1 was expressed in hosts BL21(DE3) (BL) and Rosetta-gami(DE3)pLysS (RG). His-LKB1 from BL was present mainly as inclusion body. The soluble His-LKB1 from RG accounted for 34.1% of total proteins and the yield of purified His-LKB1 was approximately 92 microg/ml. Purified His-LKB1 protein from both hosts was functionally active, as shown by reversible autophosphorylation and kinase activity in the absence of any other associated kinase. The growth inhibitory ratio of the purified BL-derived and RG-derived His-LKB1 on hepatic carcinoma SMMC-7721 cells was 24.97% and 45.68%, respectively, and both could produce significant cell-cycle arrest.
Collapse
Affiliation(s)
- Jun'e Liu
- College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | | | | |
Collapse
|
48
|
Spruill LS, Lowry AS, Stroud RE, Squires CE, Mains IM, Flack EC, Beck C, Ikonomidis JS, Crumbley AJ, McDermott PJ, Spinale FG. Membrane-type-1 matrix metalloproteinase transcription and translation in myocardial fibroblasts from patients with normal left ventricular function and from patients with cardiomyopathy. Am J Physiol Cell Physiol 2007; 293:C1362-73. [PMID: 17670887 DOI: 10.1152/ajpcell.00545.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Past studies have identified that a unique type of matrix metalloproteinase, the membrane-type-1 MMP (MT1-MMP), is increased within the left ventricle (LV) of patients with dilated cardiomyopathy (DCM). However, the cellular and molecular basis for this induction of MT1-MMP with DCM is unknown. LV myocardial biopsies from nonfailing, reference normal patients (defined as LV ejection fraction >50%, elective coronary bypass surgery, no perfusion defect at biopsy site, n = 6) and DCM patients (LV ejection fraction <20%, at transplant, n = 5) were used to establish fibroblast cultures (FIBROS). Confluent LV FIBROS from culture passages 2-5 were measured with respect to MT1-MMP mRNA and protein levels and the distribution of the MT1-MMP mRNA pool in ribosomal fractions. Total MT1-MMP mRNA within DCM FIBROS increased by over 140%, and MT1-MMP protein increased by over 190% from reference normal FIBROS (both P < 0.05). MT1-MMP mRNA in monosome fractions decreased by over twofold in DCM FIBROS compared with reference normal (P < 0.05) and remained lower in polyribosomal fractions (i.e., 15.7 +/- 5.2 vs. 1.4 +/- 0.6% in polysomal fraction 6, P < 0.05). These differences in DCM MT1-MMP FIBROS transcription and translation persisted throughout passages 2-5. The unique findings from this study demonstrated that elevated steady-state MT1-MMP mRNA and protein levels occurred in DCM FIBROS despite a decline in translational deficiency. These phenotypic changes in DCM fibroblasts may provide the basis for developing cell specific pharmacological targets for control of MT1-MMP expression.
Collapse
Affiliation(s)
- Laura S Spruill
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Barbolina MV, Stack MS. Membrane type 1-matrix metalloproteinase: substrate diversity in pericellular proteolysis. Semin Cell Dev Biol 2007; 19:24-33. [PMID: 17702616 PMCID: PMC2685078 DOI: 10.1016/j.semcdb.2007.06.008] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 06/29/2007] [Indexed: 01/12/2023]
Abstract
Enzymes in the matrix metalloproteinase (MMP) family have been linked to key events in developmental biology for almost 50 years. Biochemical, cellular and in vivo analyses have established that pericellular proteolysis contributes to numerous aspects of ontogeny including ovulation, fertilization, implantation, cellular migration, tissue remodeling and repair. Surface anchoring of proteinase activity provides spatial restrictions on substrate targeting. This review will utilize membrane type 1 MMP (MT1-MMP) as an example to highlight substrate diversity in pericellular proteolysis catalyzed by a membrane anchored MMP.
Collapse
Affiliation(s)
- Maria V. Barbolina
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
| | - M. Sharon Stack
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia MO 65212
- To whom the correspondence should be addressed: M. Sharon Stack, Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, M214E, Columbia, MO 65212, Ph. 573-884-7301,
| |
Collapse
|
50
|
Belkaid A, Fortier S, Cao J, Annabi B. Necrosis induction in glioblastoma cells reveals a new "bioswitch" function for the MT1-MMP/G6PT signaling axis in proMMP-2 activation versus cell death decision. Neoplasia 2007; 9:332-340. [PMID: 17460777 PMCID: PMC1854846 DOI: 10.1593/neo.07142] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 03/01/2007] [Accepted: 03/02/2007] [Indexed: 12/30/2022]
Abstract
Cytoskeleton disorganization is an early step in the activation process of matrix metalloproteinase 2 (MMP-2) by membrane type 1 MMP (MT1-MMP) but is also associated with endoplasmic reticulum (ER) dysfunction and subsequent cell death. Given evidence that the ER-embedded glucose-6-phosphate transporter (G6PT) regulates glioblastoma cell survival and that MT1-MMP is a key enzyme in the cancer cell invasive phenotype, we explored the molecular link between G6PT and MT1-MMP. Cytoskeleton-disrupting agents such as concanavalin A (ConA) and cytochalasin D triggered proMMP-2 activation and cell death in U87 glioma cells. ConA decreased G6PT gene expression, an event that was also observed in cells overexpressing the full-length recombinant MT1-MMP protein. Overexpression of a membrane-bound catalytically active but cytoplasmic domain-deleted MT1-MMP was unable to downregulate G6PT gene expression or to trigger necrosis. Gene silencing of MT1-MMP with small interfering RNA prevented proMMP-2 activation and induced G6PT gene expression. ConA inhibited Akt phosphorylation, whereas overexpression of recombinant G6PT rescued the cells from ConA-induced proMMP-2 activation and increased Akt phosphorylation. Altogether, new functions of MT1-MMP in cell death signaling may be linked to those of G6PT. Our study indicates a molecular signaling axis regulating the invasive phenotype of brain tumor cells and highlights a new "bioswitch" function for G6PT in cell survival.
Collapse
Affiliation(s)
- Anissa Belkaid
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre BIOMED, Université du Québec à Montréal, Quebec, Canada
| | - Simon Fortier
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre BIOMED, Université du Québec à Montréal, Quebec, Canada
| | - Jian Cao
- Department of Medicine, State University of New York, Stony Brook, NY 11794, USA
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre BIOMED, Université du Québec à Montréal, Quebec, Canada
| |
Collapse
|