1
|
Latuske V, Erfurt S, Patschan D, Hoffmeister M. End-Stage Chronic Kidney Disease Affects Serum Nostrin Turnover. Kidney Blood Press Res 2025; 50:321-324. [PMID: 40228481 DOI: 10.1159/000545521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/23/2025] [Indexed: 04/16/2025] Open
Abstract
INTRODUCTION Serum Nostrin was recently identified as novel predictor of important clinical outcomes in acute kidney injury (AKI) and has also emerged as a predictor of recovery of kidney function (ROKF) in AKI patients. ROKF is a critical factor for the transition of AKI into chronic kidney disease (CKD). Therefore the aim of the present study was to evaluate serum Nostrin levels in CKD patients. METHODS Blood samples were collected from CKD patients before and after dialysis, and serum Nostrin levels were determined using ELISAs. RESULTS Serum Nostrin levels were previously shown to be significantly increased in AKI patients in comparison with healthy controls. In CKD patients, the levels of serum Nostrin were further increased without significant differences of Nostrin concentrations before and after dialysis. CONCLUSION The further elevation of serum Nostrin concentrations in CKD in comparison with AKI indicates a significant impairment of Nostrin turnover and supports the possible suitability of Nostrin as potential diagnostic value in both AKI and CKD.
Collapse
Affiliation(s)
- Vivien Latuske
- Institute of Biochemistry, Brandenburg Medical School Theodor Fontane, Brandenburg, Germany
| | - Stefan Erfurt
- Institute of Biochemistry, Brandenburg Medical School Theodor Fontane, Brandenburg, Germany
- Department of Internal Medicine I - Cardiology, Nephrology and Internal Intensive Medicine, University Hospital Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg, Germany
| | - Daniel Patschan
- Department of Internal Medicine I - Cardiology, Nephrology and Internal Intensive Medicine, University Hospital Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg, Germany
- Faculty of Health Sciences (FGW), Joint Faculty of the University of Potsdam, The Brandenburg Medical School Theodor Fontane and the Brandenburg Technical University Cottbus-Senftenberg, Cottbus, Germany
| | - Meike Hoffmeister
- Institute of Biochemistry, Brandenburg Medical School Theodor Fontane, Brandenburg, Germany
- Faculty of Health Sciences (FGW), Joint Faculty of the University of Potsdam, The Brandenburg Medical School Theodor Fontane and the Brandenburg Technical University Cottbus-Senftenberg, Cottbus, Germany
| |
Collapse
|
2
|
Vairappan B, Ts R, Ram AK, Mohan P, Pottakkat B. NOSTRIN is an emerging positive regulator of decompensated cirrhotic patients with portal hypertension. Dig Liver Dis 2025; 57:427-435. [PMID: 39294044 DOI: 10.1016/j.dld.2024.08.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND AND AIMS Decreased nitric oxide (NO) bioavailability in a cirrhotic liver contributes to high intrahepatic vascular resistance (IHVR) and portal hypertension (PHT). Nostrin is an inhibitory protein of NO synthesising enzyme endothelial NO synthase (eNOS), shown to increase in cirrhosis with PHT, however, the precise molecular mechanism is poorly documented. This study aimed to elucidate the role of Nostrin and associated derangement in hepatic NO generation in cirrhotic liver. Further, we investigate whether Nostrin could be a biomarker in the progression of cirrhosis. METHODS This study was conducted on sixty healthy subjects and 120 cirrhotic patients. In addition, liver tissue samples were collected from cirrhotic patients for the analysis of Nostrin, eNOS and inflammatory markers. RESULTS When compared to healthy controls, systemic levels of Nostrin and cGMP were elevated in compensated cirrhosis. In decompensated cirrhosis, further robust increases in Nostrin and cGMP were noted. Furthermore, Nostrin expression was considerably higher whilst reduced eNOS activity and hepatic cGMP levels in cirrhotic liver compared to control liver. CONCLUSIONS In cirrhotic patients, a robust increase in hepatic Nostrin expression may reduce eNOS activity and associated local NO generation. Furthermore, Blood Nostrin concentration was higher and parallel to disease severity and could be a key diagnostic and prognostic biomarker in cirrhotic patients with PHT.
Collapse
Affiliation(s)
- Balasubramaniyan Vairappan
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry 605006, India.
| | | | - Amit Kumar Ram
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry 605006, India
| | - Pazhanivel Mohan
- Department of Medical Gastroenterology, JIPMER, Pondicherry 605006, India
| | - Biju Pottakkat
- Department of Surgical Gastroenterology, JIPMER, Pondicherry 605006, India
| |
Collapse
|
3
|
Gonzalez M, Clayton S, Wauson E, Christian D, Tran QK. Promotion of nitric oxide production: mechanisms, strategies, and possibilities. Front Physiol 2025; 16:1545044. [PMID: 39917079 PMCID: PMC11799299 DOI: 10.3389/fphys.2025.1545044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025] Open
Abstract
The discovery of nitric oxide (NO) and the role of endothelial cells (ECs) in its production has revolutionized medicine. NO can be produced by isoforms of NO synthases (NOS), including the neuronal (nNOS), inducible (iNOS), and endothelial isoforms (eNOS), and via the non-classical nitrate-nitrite-NO pathway. In particular, endothelium-derived NO, produced by eNOS, is essential for cardiovascular health. Endothelium-derived NO activates soluble guanylate cyclase (sGC) in vascular smooth muscle cells (VSMCs), elevating cyclic GMP (cGMP), causing vasodilation. Over the past four decades, the importance of this pathway in cardiovascular health has fueled the search for strategies to enhance NO bioavailability and/or preserve the outcomes of NO's actions. Currently approved approaches operate in three directions: 1) providing exogenous NO, 2) promoting sGC activity, and 3) preventing degradation of cGMP by inhibiting phosphodiesterase 5 activity. Despite clear benefits, these approaches face challenges such as the development of nitrate tolerance and endothelial dysfunction. This highlights the need for sustainable options that promote endogenous NO production. This review will focus on strategies to promote endogenous NO production. A detailed review of the mechanisms regulating eNOS activity will be first provided, followed by a review of strategies to promote endogenous NO production based on the levels of available preclinical and clinical evidence, and perspectives on future possibilities.
Collapse
Affiliation(s)
| | | | | | | | - Quang-Kim Tran
- Department of Physiology and Pharmacology, Des Moines University Medicine and Health Sciences, West Des Moines, IA, United States
| |
Collapse
|
4
|
Villadangos L, Serrador JM. Subcellular Localization Guides eNOS Function. Int J Mol Sci 2024; 25:13402. [PMID: 39769167 PMCID: PMC11678294 DOI: 10.3390/ijms252413402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Nitric oxide synthases (NOS) are enzymes responsible for the cellular production of nitric oxide (NO), a highly reactive signaling molecule involved in important physiological and pathological processes. Given its remarkable capacity to diffuse across membranes, NO cannot be stored inside cells and thus requires multiple controlling mechanisms to regulate its biological functions. In particular, the regulation of endothelial nitric oxide synthase (eNOS) activity has been shown to be crucial in vascular homeostasis, primarily affecting cardiovascular disease and other pathophysiological processes of importance for human health. Among other factors, the subcellular localization of eNOS plays an important role in regulating its enzymatic activity and the bioavailability of NO. The aim of this review is to summarize pioneering studies and more recent publications, unveiling some of the factors that influence the subcellular compartmentalization of eNOS and discussing their functional implications in health and disease.
Collapse
Affiliation(s)
| | - Juan M. Serrador
- Interactions with the Environment Program, Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas (CSIC)—Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
5
|
Vairappan B, Wright G, M S, Ravikumar TS. Candesartan cilexetil ameliorates NOSTRIN-NO dependent portal hypertension in cirrhosis and ACLF. Eur J Pharmacol 2023; 958:176010. [PMID: 37634841 DOI: 10.1016/j.ejphar.2023.176010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 08/29/2023]
Abstract
In decompensated cirrhosis, the severity of portal hypertension (PHT) is associated with increased hepatic endothelial nitric oxide synthase (eNOS) trafficking inducer (Nostrin), but the mechanism remains unclear. AIM: To investigate: (1) Whether in cirrhosis-PHT models, ± superimposed inflammation to mimic acute-on-chronic liver failure (ACLF) modulates hepatic nitric oxide synthase trafficking inducer (NOSTRIN) expression, nitric oxide (NO) synthesis, and/or endothelial dysfunction (ED); and (2) Whether the "angiotensin II type 1 receptor blocker" candesartan cilexetil (CC) affects this pathway. CD-1 mice received intraperitoneal carbon tetrachloride injections (CCl4 15% v/v in corn oil, 0.5 mL/kg) twice weekly for 12 wk to induce cirrhosis. After 12 wk, mice were randomized to receive 2-wk oral administration of CC (8 mg/kg) ± LPS. At sacrifice, plasma (biochemical indicators, cytokines, and angiotensin II) and liver tissues (histopathology, Sirius-red stains, and molecular studies) were analysed. Moreover, Nostrin gene knockdown was tested in human umbilical vein endothelial cells (HUVECs). When compared to naïve animals, CCl4-treated animals showed markedly elevated hepatic Nostrin expression (P < 0.0001), while hepatic peNOS expression (measure of eNOS activity) was significantly reduced (P < 0.05). LPS challenge further increased Nostrin and reduced peNOS expression (P < 0.05 for both) in cirrhotic animals. Portal pressure and subsequent hepatic vascular resistance were also increased in all cirrhotic animals following LPS challenge. In CCl4 ± LPS-treated animals, CC treatment significantly reduced Nostrin (P < 0.05) and increased hepatic cGMP (P < 0.01). NOSIP, caveolin-1, NFκB, and iNOS protein expression were significantly increased in CCl4-treated animals (P < 0.05 for all). CC treatment non-significantly lowered NOSIP and caveolin-1 expression while iNOS and NFκB expression was significantly reduced in CCl4 + LPS-treated animals (P < 0.05 for both). Furthermore, Nostrin knockdown significantly improved peNOS expression and associated NO synthesis and reduced inflammation in HUVECs. This study is the first to indicate a potential mechanistic role for the Nostrin-eNOS-NO pathway in cirrhosis and ACLF development. Moreover, this pathway provides a potential therapeutic target given the ameliorative response to Candesartan treatment.
Collapse
Affiliation(s)
- Balasubramaniyan Vairappan
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, 605006, India.
| | - Gavin Wright
- Basildon & Thurrock University Hospitals NHS Foundation Trust, UK; Mid and South Essex NHS Foundation Trust, UK
| | - Sundhar M
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, 605006, India
| | - T S Ravikumar
- Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605006, India
| |
Collapse
|
6
|
Li Z, Bao X, Liu X, Wang W, Yang J. Gene network analyses of larvae under different egg-protecting behaviors provide novel insights into immune response mechanisms of Amphioctopus fangsiao. FISH & SHELLFISH IMMUNOLOGY 2023; 136:108733. [PMID: 37028690 DOI: 10.1016/j.fsi.2023.108733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Amphioctopus fangsiao was a representative economic species in cephalopods, which was vulnerable to marine bacteria. Vibrio anguillarum was a highly infectious pathogen that have recently been found to infect A. fangsiao and inhibit its growth and development. There were significant differences in the immune response mechanisms between egg-protected and egg-unprotected larvae. To explore larval immunity under different egg-protecting behaviors, we infected A. fangsiao larvae with V. anguillarum for 24 h and analyzed the transcriptome data about egg-protected and egg-unprotected larvae infected with 0, 4, 12, and 24 h using weighted gene co-expression networks (WGCNA) and protein-protein interaction (PPI) networks. Network analyses revealed a series of immune response processes after infection, and identified six key modules and multiple immune-related hub genes. Meanwhile, we found that ZNF family, such as ZNF32, ZNF160, ZNF271, ZNF479, and ZNF493 might play significant roles in A. fangsiao immune response processes. We first creatively combined WGCNA and PPI network analysis to deeply explore the immune response mechanisms of A. fangsiao larvae with different egg-protecting behaviors. Our results provided further insights into the immunity of V. anguillarum infected invertebrates, and laid the foundation for exploring the immune differences among cephalopods with different egg protecting behaviors.
Collapse
Affiliation(s)
- Zan Li
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiaokai Bao
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
7
|
Paul M, Gope TK, Das P, Ain R. Nitric-Oxide Synthase trafficking inducer (NOSTRIN) is an emerging negative regulator of colon cancer progression. BMC Cancer 2022; 22:594. [PMID: 35642021 PMCID: PMC9158178 DOI: 10.1186/s12885-022-09670-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 05/17/2022] [Indexed: 11/10/2022] Open
Abstract
Background NOSTRIN, abundantly expressed in colon, was reported to be anti-angiogenic, anti-invasive and anti-inflammatory. NOSTRIN expression was inversely related to survival of pancreatic ductal adeno-carcinoma patients. Yet its function and regulatory mechanism in CRC remains elusive. Methods NOSTRIN’s influence on EMT of CRC cells were analysed using realtime PCR array containing the functional EMT-transcriptome followed by western blotting. Regulation of oncogenic potential of CRC cells by NOSTRIN was elucidated using soft agar colony formation, trans-well invasion, wound healing and colonosphere formation assays. Biochemical assays were used to reveal mechanism of NOSTRIN function. Human CRC tissue array was used to test NOSTRIN mark in control and CRC disease stages. Results We showed here that CRC cell lines with less NOSTRIN expression has more invasive and migratory potential. NOSTRIN affected EMT-associated transcriptome of CRC cells by down regulating 33 genes that were functionally annotated to transcription factors, genes important for cell growth, proliferation, migration, cell adhesion and cytoskeleton regulators in CRC cells. NOSTRIN over-expression significantly reduced soft agar colony formation, wound healing and cell invasion. In line with this, RNA interference of Nostrin enhanced metastatic potential of CRC cells. Furthermore, stable overexpression of NOSTRIN in CRC cell line not only curtailed its ability to form colonosphere but also decreased expression of stemness markers CD133, CD44 and EpCAM. NOSTRIN’s role in inhibiting self-renewal was further confirmed using BrdU incorporation assay. Interestingly, NOSTRIN formed immune-complex with Cdk1 in CRC cells and aided in increase of inhibitory Y15 and T14 phosphorylation of Cdk1 that halts cytokinesis. These ex vivo findings were substantiated using human colon cancer tissue array containing cDNAs from patients’ samples with various stages of disease progression. Significant decrease in NOSTRIN expression was found with initiation and progression of advanced colon cancer disease stages. Conclusion We illustrate function of a novel molecule, NOSTRIN in curtailing EMT and maintenance of CRC cell stemness. Our data validates importance of NOSTRIN mark during onset and disease progression of CRC indicating its diagnostic potential. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09670-6.
Collapse
Affiliation(s)
- Madhurima Paul
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Tamal Kanti Gope
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Priyanka Das
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Rupasri Ain
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India.
| |
Collapse
|
8
|
Yuge S, Nishiyama K, Arima Y, Hanada Y, Oguri-Nakamura E, Hanada S, Ishii T, Wakayama Y, Hasegawa U, Tsujita K, Yokokawa R, Miura T, Itoh T, Tsujita K, Mochizuki N, Fukuhara S. Mechanical loading of intraluminal pressure mediates wound angiogenesis by regulating the TOCA family of F-BAR proteins. Nat Commun 2022; 13:2594. [PMID: 35551172 PMCID: PMC9098626 DOI: 10.1038/s41467-022-30197-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Angiogenesis is regulated in coordinated fashion by chemical and mechanical cues acting on endothelial cells (ECs). However, the mechanobiological mechanisms of angiogenesis remain unknown. Herein, we demonstrate a crucial role of blood flow-driven intraluminal pressure (IP) in regulating wound angiogenesis. During wound angiogenesis, blood flow-driven IP loading inhibits elongation of injured blood vessels located at sites upstream from blood flow, while downstream injured vessels actively elongate. In downstream injured vessels, F-BAR proteins, TOCA1 and CIP4, localize at leading edge of ECs to promote N-WASP-dependent Arp2/3 complex-mediated actin polymerization and front-rear polarization for vessel elongation. In contrast, IP loading expands upstream injured vessels and stretches ECs, preventing leading edge localization of TOCA1 and CIP4 to inhibit directed EC migration and vessel elongation. These data indicate that the TOCA family of F-BAR proteins are key actin regulatory proteins required for directed EC migration and sense mechanical cell stretching to regulate wound angiogenesis. Chemical and mechanical cues coordinately regulate angiogenesis. Here, the authors show that blood flow-driven intraluminal pressure regulates wound angiogenesis. Findings indicate that TOCA family of F-BAR proteins act as actin regulators required for endothelial cell migration and sense mechanical cell stretching to regulate wound angiogenesis.
Collapse
Affiliation(s)
- Shinya Yuge
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Koichi Nishiyama
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto City, Kumamoto, 860-0811, Japan. .,Laboratory of Vascular and Cellular Dynamics, Department of Medical Sciences, University of Miyazaki, Miyazaki City, Miyazaki, 889-1962, Japan.
| | - Yuichiro Arima
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto City, Kumamoto, 860-0811, Japan.,Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Kumamoto, Japan
| | - Yasuyuki Hanada
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto City, Kumamoto, 860-0811, Japan.,Department of Cardiology, Graduate School of Medicine, Nagoya University, Nagoya City, Aichi, 466-8550, Japan
| | - Eri Oguri-Nakamura
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Sanshiro Hanada
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto City, Kumamoto, 860-0811, Japan
| | - Tomohiro Ishii
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Yuki Wakayama
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565, Japan
| | - Urara Hasegawa
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Kazuya Tsujita
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Ryuji Yokokawa
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8540, Japan
| | - Takashi Miura
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, 812-8582, Japan
| | - Toshiki Itoh
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Division of Membrane Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Kumamoto, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan.
| |
Collapse
|
9
|
Shu Y, Xie Y, Li S, Cai L, Liu Y, Feng Y, He J, Zhang H, Ran M, Jia Q, Wu H, Lu L. Risk and protection strategies of Amolops wuyiensis intestine against gastrointestinal nematode (Cosmocercoides wuyiensis n. sp.) infection. Environ Microbiol 2021; 24:1454-1466. [PMID: 34967095 DOI: 10.1111/1462-2920.15881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 12/18/2021] [Indexed: 12/13/2022]
Abstract
Anuran amphibians are susceptible to infection by intestinal nematodes, but the damage and response mechanisms that occur in their intestines after infection are only partially understood. In this study, the intestinal disruption and response mechanisms in Amolops wuyiensis frogs infected with Cosmocercoides wuyiensis n. sp. were revealed through analysis of the intestinal histopathology, digestive enzyme activity, transcriptome and intestinal microbiota. Tissue section analysis showed histological damage and inflammation in the infected intestine, and the digestive enzyme activity indicated a decrease in digestion and absorption of some nutrients. We found that infection led to differences in the intestinal microbiota composition, including lower diversity and symbiotic relationships. The greater relative abundance of the genera Burkholderia and Rhodococcus may enhance intestinal immunity to resist pathogenic infections. A comparison of the transcriptomes of infected and uninfected intestines revealed 1055 differentially expressed genes. GO enrichment and KEGG pathways analyses suggested that the guts of infected C. wuyiensis n. sp. show enhanced complement activation, cell adhesion molecule function, NOD-like receptor signalling pathway activity and other innate immunity responses. Among the adaptive immune responses, the intestinal immune network for IgA production was significantly enriched, and the expression of IL-17D and transforming growth factor beta-1 genes were upregulated in the infected intestine. These results imply that C. wuyiensis n. sp. infection of A. wuyiensis intestine may trigger innate and adaptive immune responses, which reduce the post-infection burden. Furthermore, the intestine of A. wuyiensis may also respond to C. wuyiensis n. sp. infection by increasing metallocarboxypeptidase activity and accelerating smooth muscle contraction.
Collapse
Affiliation(s)
- Yilin Shu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, China.,Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, Anhui, 241002, China
| | - Yunyun Xie
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, China.,Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, Anhui, 241002, China
| | - Shikun Li
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, China.,Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, Anhui, 241002, China
| | - Liming Cai
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, China.,Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, Anhui, 241002, China
| | - Ying Liu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, China.,Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, Anhui, 241002, China.,School of Basic Medicine, Wannan Medical College, Wuhu, Anhui, 241000, China
| | - Yalin Feng
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, China.,Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, Anhui, 241002, China
| | - Jun He
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, China.,Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, Anhui, 241002, China
| | - Huijuan Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, China.,Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, Anhui, 241002, China
| | - Menglong Ran
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, 100034, China
| | - Qina Jia
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, China.,Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, Anhui, 241002, China
| | - Hailong Wu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, China.,Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, Anhui, 241002, China
| | - Linming Lu
- Department of Pathology, Wannan Medical College, Wuhu, Anhui, 241002, China
| |
Collapse
|
10
|
Xu JJ, Li HD, Du XS, Li JJ, Meng XM, Huang C, Li J. Role of the F-BAR Family Member PSTPIP2 in Autoinflammatory Diseases. Front Immunol 2021; 12:585412. [PMID: 34262554 PMCID: PMC8273435 DOI: 10.3389/fimmu.2021.585412] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Proline-serine-threonine-phosphatase-interacting protein 2 (PSTPIP2) belongs to the Fes/CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain family. It exhibits lipid-binding, membrane deformation, and F-actin binding activity, suggesting broader roles at the membrane–cytoskeleton interface. PSTPIP2 is known to participate in macrophage activation, neutrophil migration, cytokine production, and osteoclast differentiation. In recent years, it has been observed to play important roles in innate immune diseases and autoinflammatory diseases (AIDs). Current research indicates that the protein tyrosine phosphatase PTP-PEST, Src homology domain-containing inositol 5’-phosphatase 1 (SHIP1), and C‐terminal Src kinase (CSK) can bind to PSTPIP2 and inhibit the development of AIDs. However, the mechanisms underlying the function of PSTPIP2 have not been fully elucidated. This article reviews the research progress and mechanisms of PSTPIP2 in AIDs. PSTPIP2 also provides a new therapeutic target for the treatment of AIDs.
Collapse
Affiliation(s)
- Jie-Jie Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hai-Di Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Sa Du
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Juan-Juan Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Reina-Torres E, De Ieso ML, Pasquale LR, Madekurozwa M, van Batenburg-Sherwood J, Overby DR, Stamer WD. The vital role for nitric oxide in intraocular pressure homeostasis. Prog Retin Eye Res 2020; 83:100922. [PMID: 33253900 DOI: 10.1016/j.preteyeres.2020.100922] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Catalyzed by endothelial nitric oxide (NO) synthase (eNOS) activity, NO is a gaseous signaling molecule maintaining endothelial and cardiovascular homeostasis. Principally, NO regulates the contractility of vascular smooth muscle cells and permeability of endothelial cells in response to either biochemical or biomechanical cues. In the conventional outflow pathway of the eye, the smooth muscle-like trabecular meshwork (TM) cells and Schlemm's canal (SC) endothelium control aqueous humor outflow resistance, and therefore intraocular pressure (IOP). The mechanisms by which outflow resistance is regulated are complicated, but NO appears to be a key player as enhancement or inhibition of NO signaling dramatically affects outflow function; and polymorphisms in NOS3, the gene that encodes eNOS modifies the relation between various environmental exposures and glaucoma. Based upon a comprehensive review of past foundational studies, we present a model whereby NO controls a feedback signaling loop in the conventional outflow pathway that is sensitive to changes in IOP and its oscillations. Thus, upon IOP elevation, the outflow pathway tissues distend, and the SC lumen narrows resulting in increased SC endothelial shear stress and stretch. In response, SC cells upregulate the production of NO, relaxing neighboring TM cells and increasing permeability of SC's inner wall. These IOP-dependent changes in the outflow pathway tissues reduce the resistance to aqueous humor drainage and lower IOP, which, in turn, diminishes the biomechanical signaling on SC. Similar to cardiovascular pathogenesis, dysregulation of the eNOS/NO system leads to dysfunctional outflow regulation and ocular hypertension, eventually resulting in primary open-angle glaucoma.
Collapse
Affiliation(s)
| | | | - Louis R Pasquale
- Eye and Vision Research Institute of New York Eye and Ear Infirmary at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Darryl R Overby
- Department of Bioengineering, Imperial College London, London, UK.
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, NC, USA.
| |
Collapse
|
12
|
RNAi Screen in Tribolium Reveals Involvement of F-BAR Proteins in Myoblast Fusion and Visceral Muscle Morphogenesis in Insects. G3-GENES GENOMES GENETICS 2019; 9:1141-1151. [PMID: 30733382 PMCID: PMC6469413 DOI: 10.1534/g3.118.200996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In a large-scale RNAi screen in Tribolium castaneum for genes with knock-down phenotypes in the larval somatic musculature, one recurring phenotype was the appearance of larval muscle fibers that were significantly thinner than those in control animals. Several of the genes producing this knock-down phenotype corresponded to orthologs of Drosophila genes that are known to participate in myoblast fusion, particularly via their effects on actin polymerization. A new gene previously not implicated in myoblast fusion but displaying a similar thin-muscle knock-down phenotype was the Tribolium ortholog of Nostrin, which encodes an F-BAR and SH3 domain protein. Our genetic studies of Nostrin and Cip4, a gene encoding a structurally related protein, in Drosophila show that the encoded F-BAR proteins jointly contribute to efficient myoblast fusion during larval muscle development. Together with the F-Bar protein Syndapin they are also required for normal embryonic midgut morphogenesis. In addition, Cip4 is required together with Nostrin during the profound remodeling of the midgut visceral musculature during metamorphosis. We propose that these F-Bar proteins help govern proper morphogenesis particularly of the longitudinal midgut muscles during metamorphosis.
Collapse
|
13
|
Hancock JT, Neill SJ. Nitric Oxide: Its Generation and Interactions with Other Reactive Signaling Compounds. PLANTS (BASEL, SWITZERLAND) 2019; 8:E41. [PMID: 30759823 PMCID: PMC6409986 DOI: 10.3390/plants8020041] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/07/2019] [Accepted: 02/10/2019] [Indexed: 12/25/2022]
Abstract
Nitric oxide (NO) is an immensely important signaling molecule in animals and plants. It is involved in plant reproduction, development, key physiological responses such as stomatal closure, and cell death. One of the controversies of NO metabolism in plants is the identification of enzymatic sources. Although there is little doubt that nitrate reductase (NR) is involved, the identification of a nitric oxide synthase (NOS)-like enzyme remains elusive, and it is becoming increasingly clear that such a protein does not exist in higher plants, even though homologues have been found in algae. Downstream from its production, NO can have several potential actions, but none of these will be in isolation from other reactive signaling molecules which have similar chemistry to NO. Therefore, NO metabolism will take place in an environment containing reactive oxygen species (ROS), hydrogen sulfide (H₂S), glutathione, other antioxidants and within a reducing redox state. Direct reactions with NO are likely to produce new signaling molecules such as peroxynitrite and nitrosothiols, and it is probable that chemical competitions will exist which will determine the ultimate end result of signaling responses. How NO is generated in plants cells and how NO fits into this complex cellular environment needs to be understood.
Collapse
Affiliation(s)
- John T Hancock
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK.
| | - Steven J Neill
- Faculty of Health and Applied Sciences, University of the West of England, Bristol BS16 1QY, UK.
| |
Collapse
|
14
|
Chakraborty S, Ain R. NOSTRIN: A novel modulator of trophoblast giant cell differentiation. Stem Cell Res 2018; 31:135-146. [PMID: 30086473 DOI: 10.1016/j.scr.2018.07.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/21/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022] Open
Abstract
Differentiation-dependent expression of NOSTRIN in murine trophoblast cells prompted investigation on NOSTRIN's function in trophoblast differentiation. We show here that NOSTRIN levels increased in both mouse and rat placenta during gestation. NOSTRIN expression was not co-related to expression of eNOS precluding its eNOS mediated function. NOSTRIN transcripts were identified in trophoblast cells of the placenta, predominantly in trophoblast giant cells (TGC). Precocious over-expression of NOSTRIN during differentiation of trophoblast stem cells led to up-regulation of genetic markers associated with invasion (Prl4a1, Prl2a1) and TGC formation (Prl2c2, Prl3d1, Prl3b1). The functional consequence of NOSTRIN over-expression was increased TGC formation and trophoblast cell invasion. Furthermore, number of polyploid TGCs that arise by endoreduplication, were higher in presence of NOSTRIN. Early induction of NOSTRIN was associated with substantial decrease in G/F actin ratio and augmentation of N-WASP-Dynamin-NOSTRIN ternary complex formation that might be partially responsible for nucleation of actin filaments. NOSTRIN also formed a complex with Cdk1 and increased phosphorylation of T14 and Y15 residues that inhibits cytokinesis. Interestingly, SH3 domain deleted NOSTRIN was ineffective in eliciting NOSTRIN's function in differentiating trophoblast cells. These findings demonstrate that NOSTRIN potentiates trophoblast differentiation towards TGC trajectory that is critical for hemochorial placentation.
Collapse
Affiliation(s)
- Shreeta Chakraborty
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, West Bengal, India
| | - Rupasri Ain
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, West Bengal, India.
| |
Collapse
|
15
|
Wade BE, Zhao J, Ma J, Hart CM, Sutliff RL. Hypoxia-induced alterations in the lung ubiquitin proteasome system during pulmonary hypertension pathogenesis. Pulm Circ 2018; 8:2045894018788267. [PMID: 29927354 PMCID: PMC6146334 DOI: 10.1177/2045894018788267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pulmonary hypertension (PH) is a clinical disorder characterized by sustained
increases in pulmonary vascular resistance and pressure that can lead to right
ventricular (RV) hypertrophy and ultimately RV failure and death. The molecular
pathogenesis of PH remains incompletely defined, and existing treatments are
associated with suboptimal outcomes and persistent morbidity and mortality.
Reports have suggested a role for the ubiquitin proteasome system (UPS) in PH,
but the extent of UPS-mediated non-proteolytic protein alterations during PH
pathogenesis has not been previously defined. To further examine UPS
alterations, the current study employed C57BL/6J mice exposed to normoxia or
hypoxia for 3 weeks. Lung protein ubiquitination was evaluated by mass
spectrometry to identify differentially ubiquitinated proteins relative to
normoxic controls. Hypoxia stimulated differential ubiquitination of 198
peptides within 131 proteins (p < 0.05). These proteins were
screened to identify candidates within pathways involved in PH pathogenesis.
Some 51.9% of the differentially ubiquitinated proteins were implicated in at
least one known pathway contributing to PH pathogenesis, and 13% were involved
in three or more PH pathways. Anxa2, App, Jak1, Lmna, Pdcd6ip, Prkch1, and Ywhah
were identified as mediators in PH pathways that undergo differential
ubiquitination during PH pathogenesis. To our knowledge, this is the first study
to report global changes in protein ubiquitination in the lung during PH
pathogenesis. These findings suggest signaling nodes that are dynamically
regulated by the UPS during PH pathogenesis. Further exploration of these
differentially ubiquitinated proteins and related pathways can provide new
insights into the role of the UPS in PH pathogenesis.
Collapse
Affiliation(s)
- Brandy E Wade
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Atlanta Veterans' Affairs and Emory University Medical Centers, Decatur, Georgia, USA
| | - Jingru Zhao
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Atlanta Veterans' Affairs and Emory University Medical Centers, Decatur, Georgia, USA
| | - Jing Ma
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Atlanta Veterans' Affairs and Emory University Medical Centers, Decatur, Georgia, USA
| | - C Michael Hart
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Atlanta Veterans' Affairs and Emory University Medical Centers, Decatur, Georgia, USA
| | - Roy L Sutliff
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Atlanta Veterans' Affairs and Emory University Medical Centers, Decatur, Georgia, USA
| |
Collapse
|
16
|
Chakraborty S, Ain R. Nitric-oxide synthase trafficking inducer is a pleiotropic regulator of endothelial cell function and signaling. J Biol Chem 2017; 292:6600-6620. [PMID: 28235804 DOI: 10.1074/jbc.m116.742627] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 02/22/2017] [Indexed: 01/27/2023] Open
Abstract
Endothelial nitric-oxide synthase (eNOS) and its bioactive product, nitric oxide (NO), mediate many endothelial cell functions, including angiogenesis and vascular permeability. For example, vascular endothelial growth factor (VEGF)-mediated angiogenesis is inhibited upon reduction of NO bioactivity both in vitro and in vivo Moreover, genetic disruption or pharmacological inhibition of eNOS attenuates angiogenesis during tissue repair, resulting in delayed wound closure. These observations emphasize that eNOS-derived NO can promote angiogenesis. Intriguingly, eNOS activity is regulated by nitric-oxide synthase trafficking inducer (NOSTRIN), which sequesters eNOS, thereby attenuating NO production. This has prompted significant interest in NOSTRIN's function in endothelial cells. We show here that NOSTRIN affects the functional transcriptome of endothelial cells by down-regulating several genes important for invasion and angiogenesis. Interestingly, the effects of NOSTRIN on endothelial gene expression were independent of eNOS activity. NOSTRIN also affected the expression of secreted cytokines involved in inflammatory responses, and ectopic NOSTRIN overexpression functionally restricted endothelial cell proliferation, invasion, adhesion, and VEGF-induced capillary tube formation. Furthermore, NOSTRIN interacted directly with TNF receptor-associated factor 6 (TRAF6), leading to the suppression of NFκB activity and inhibition of AKT activation via phosphorylation. Interestingly, TNF-α-induced NFκB pathway activation was reversed by NOSTRIN. We found that the SH3 domain of NOSTRIN is involved in the NOSTRIN-TRAF6 interaction and is required for NOSTRIN-induced down-regulation of endothelial cell proteins. These results have broad biological implications, as aberrant NOSTRIN expression leading to deactivation of the NFκB pathway, in turn triggering an anti-angiogenic cascade, might inhibit tumorigenesis and cancer progression.
Collapse
Affiliation(s)
- Shreeta Chakraborty
- From the Division of Cell Biology and Physiology, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata 700032, West Bengal, India
| | - Rupasri Ain
- From the Division of Cell Biology and Physiology, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata 700032, West Bengal, India
| |
Collapse
|
17
|
Abd-Elbaset M, Arafa ESA, El Sherbiny GA, Abdel-Bakky MS, Elgendy ANAM. Thymoquinone mitigate ischemia-reperfusion-induced liver injury in rats: a pivotal role of nitric oxide signaling pathway. Naunyn Schmiedebergs Arch Pharmacol 2016; 390:69-76. [PMID: 27717985 DOI: 10.1007/s00210-016-1306-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/23/2016] [Indexed: 01/07/2023]
Abstract
Oxidative and nitrosative stress-induced endothelial cell damage play an essential role in the pathogenesis of hepatic ischemia-reperfusion (IR) injury. IR is associated with reduced eNOS expression and exacerbated by superimposed stress. NOSTRIN induces intracellular endothelial nitric oxide synthase (eNOS) translocation and inducible nitric oxide synthase (iNOS) increases nitric oxide (NO) production. Our aim was to assess hepatic expression of iNOS, eNOS, and NOSTRIN in IR with or without N-acetylcysteine (NAC) or thymoquinone (TQ) pretreatment and to compare their hepatoprotective effects. Surgical induction of IR was performed by occlusion of hepatic pedicle for 30 min with mini-clamp and reperfused for 30 min. The effects of TQ (20 mg/kg/day) or NAC (300 mg/kg/day) administered orally for 10 days were evaluated by serum ALT and AST, oxidative stress parameters, NO production, and histopathological analysis. Also, localization and expression of iNOS, eNOS, and NOSTRIN were assessed by immunofluorescence. TQ or NAC pretreatment significantly decreased elevated serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and myeloperoxidase (MPO) activities, malondialdehyde (MDA) level, and NO production. In addition, they restored the depleted GSH content and alleviated histopathological changes. Furthermore, they up-regulated eNOS and down-regulated iNOS and NOSTRIN expressions. TQ exerts its hepatoprotective effect, at least in part, by nitric oxide signaling pathway through modulation of iNOS, eNOS, and NOSTRIN expressions as well as suppression of oxidative stress.
Collapse
Affiliation(s)
- Mohamed Abd-Elbaset
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - El-Shaimaa A Arafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt. .,Department of Pharmacology and Toxicology, College of Pharmacy and Health Sciences, Ajman University of Science and Technology, Ajman, United Arab Emirates.
| | - Gamal A El Sherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafr El-Sheikh University, Kafr El-Sheikh, Egypt
| | - Mohamed S Abdel-Bakky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.,Department of Pharmacology, College of pharmacy, Al Jouf University, Al Jouf, Kingdom of Saudi Arabia
| | - Abdel Nasser A M Elgendy
- Department of Pharmacology, Faculty of Veterinary medicine, Beni-Suef University, Beni-Suef, 62514, Egypt
| |
Collapse
|
18
|
Abstract
As cells grow, move, and divide, they must reorganize and rearrange their membranes and cytoskeleton. The F-BAR protein family links cellular membranes with actin cytoskeletal rearrangements in processes including endocytosis, cytokinesis, and cell motility. Here we review emerging information on mechanisms of F-BAR domain oligomerization and membrane binding, and how these activities are coordinated with additional domains to accomplish scaffolding and signaling functions.
Collapse
Affiliation(s)
- Nathan A McDonald
- a Department of Cell and Developmental Biology , Vanderbilt University , Nashville , TN , USA
| | - Kathleen L Gould
- a Department of Cell and Developmental Biology , Vanderbilt University , Nashville , TN , USA
| |
Collapse
|
19
|
Zobel T, Brinkmann K, Koch N, Schneider K, Seemann E, Fleige A, Qualmann B, Kessels MM, Bogdan S. Cooperative functions of the two F-BAR proteins Cip4 and Nostrin in the regulation of E-cadherin in epithelial morphogenesis. J Cell Sci 2016; 128:499-515. [PMID: 25413347 DOI: 10.1242/jcs.155929] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
F-BAR proteins are prime candidates to regulate membrane curvature and dynamics during different developmental processes. Here, we analyzed nostrin, a so-far-unknown Drosophila melanogaster F-BAR protein related to Cip4. Genetic analyses revealed a strong synergism between nostrin and cip4 functions.Whereas single mutant flies are viable and fertile, combined loss of nostrin and cip4 results in reduced viability and fertility. Double mutant escaper flies show enhanced wing polarization defects and females exhibit strong egg chamber encapsulation defects. Live imaging analysis suggests that the observed phenotypes are caused by an impaired turnover of E-cadherin at the membrane. Simultaneous knockdown of Cip4 and Nostrin strongly increases the formation of tubular E-cadherin vesicles at adherens junctions. Cip4 and Nostrin localize at distinct membrane subdomains. Both proteins prefer similar membrane curvatures but seem to form distinct membrane coats and do not heterooligomerize. Our data suggest an important synergistic function of both F-BAR proteins in membrane dynamics. We propose a cooperative recruitment model, in which Cip4 initially promotes membrane invagination and early-actin-based endosomal motility, and Nostrin makes contacts with microtubules through the kinesin Khc-73 for trafficking of recycling endosomes.
Collapse
|
20
|
Kovacevic I, Müller M, Kojonazarov B, Ehrke A, Randriamboavonjy V, Kohlstedt K, Hindemith T, Schermuly RT, Fleming I, Hoffmeister M, Oess S. The F-BAR Protein NOSTRIN Dictates the Localization of the Muscarinic M3 Receptor and Regulates Cardiovascular Function. Circ Res 2015; 117:460-9. [DOI: 10.1161/circresaha.115.306187] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/10/2015] [Indexed: 12/16/2022]
Abstract
Rationale:
Endothelial dysfunction is an early event in cardiovascular disease and characterized by reduced production of nitric oxide (NO). The F-BAR protein NO synthase traffic inducer (NOSTRIN) is an interaction partner of endothelial NO synthase and modulates its subcellular localization, but the role of NOSTRIN in pathophysiology in vivo is unclear.
Objective:
We analyzed the consequences of deleting the
NOSTRIN
gene in endothelial cells on NO production and cardiovascular function in vivo using NOSTRIN knockout mice.
Methods and Results:
The levels of NO and cGMP were significantly reduced in mice with endothelial cell–specific deletion of the
NOSTRIN
gene resulting in diastolic heart dysfunction. In addition, systemic blood pressure was increased, and myograph measurements indicated an impaired acetylcholine-induced relaxation of isolated aortic rings and resistance arteries. We found that the muscarinic acetylcholine receptor subtype M3 (M3R) interacted directly with NOSTRIN, and the latter was necessary for correct localization of the M3R at the plasma membrane in murine aorta. In the absence of NOSTRIN, the acetylcholine-induced increase in intracellular Ca
2+
in primary endothelial cells was abolished. Moreover, the activating phosphorylation and Golgi translocation of endothelial NO synthase in response to the M3R agonist carbachol were diminished.
Conclusions:
NOSTRIN is crucial for the localization and function of the M3R and NO production. The loss of NOSTRIN in mice leads to endothelial dysfunction, increased blood pressure, and diastolic heart failure.
Collapse
Affiliation(s)
- Igor Kovacevic
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Miriam Müller
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Baktybek Kojonazarov
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Alexander Ehrke
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Voahanginirina Randriamboavonjy
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Karin Kohlstedt
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Tanja Hindemith
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Ralph Theo Schermuly
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Ingrid Fleming
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Meike Hoffmeister
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| | - Stefanie Oess
- From the Institute for Biochemistry II, Goethe-University Frankfurt Medical School, Frankfurt/Main, Germany (I.K., M.M., A.E., T.H., M.H., S.O.); Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany (B.K., R.T.S.); and Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt/Main, Germany (V.R., K.K., I.F.)
| |
Collapse
|
21
|
Mutchler SM, Straub AC. Compartmentalized nitric oxide signaling in the resistance vasculature. Nitric Oxide 2015; 49:8-15. [PMID: 26028569 DOI: 10.1016/j.niox.2015.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/15/2015] [Accepted: 05/20/2015] [Indexed: 01/23/2023]
Abstract
Nitric oxide (NO) was first described as a bioactive molecule through its ability to stimulate soluble guanylate cyclase, but the revelation that NO was the endothelium derived relaxation factor drove the field to its modern state. The wealth of research conducted over the past 30 years has provided us with a picture of how diverse NO signaling can be within the vascular wall, going beyond simple vasodilation to include such roles as signaling through protein S-nitrosation. This expanded view of NO's actions requires highly regulated and compartmentalized production. Importantly, resistance arteries house multiple proteins involved in the production and transduction of NO allowing for efficient movement of the molecule to regulate vascular tone and reactivity. In this review, we focus on the many mechanisms regulating NO production and signaling action in the vascular wall, with a focus on the control of endothelial nitric oxide synthase (eNOS), the enzyme responsible for synthesizing most of the NO within these confines. We also explore how cross talk between the endothelium and smooth muscle in the microcirculation can modulate NO signaling, illustrating that this one small molecule has the capability to produce a plethora of responses.
Collapse
Affiliation(s)
- Stephanie M Mutchler
- Heart, Lung, Blood and Vascular Medicine Institute, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Adam C Straub
- Heart, Lung, Blood and Vascular Medicine Institute, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15216, USA.
| |
Collapse
|
22
|
Liu S, Xiong X, Zhao X, Yang X, Wang H. F-BAR family proteins, emerging regulators for cell membrane dynamic changes-from structure to human diseases. J Hematol Oncol 2015; 8:47. [PMID: 25956236 PMCID: PMC4437251 DOI: 10.1186/s13045-015-0144-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/27/2015] [Indexed: 02/08/2023] Open
Abstract
Eukaryotic cell membrane dynamics change in curvature during physiological and pathological processes. In the past ten years, a novel protein family, Fes/CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain proteins, has been identified to be the most important coordinators in membrane curvature regulation. The F-BAR domain family is a member of the Bin/Amphiphysin/Rvs (BAR) domain superfamily that is associated with dynamic changes in cell membrane. However, the molecular basis in membrane structure regulation and the biological functions of F-BAR protein are unclear. The pathophysiological role of F-BAR protein is unknown. This review summarizes the current understanding of structure and function in the BAR domain superfamily, classifies F-BAR family proteins into nine subfamilies based on domain structure, and characterizes F-BAR protein structure, domain interaction, and functional relevance. In general, F-BAR protein binds to cell membrane via F-BAR domain association with membrane phospholipids and initiates membrane curvature and scission via Src homology-3 (SH3) domain interaction with its partner proteins. This process causes membrane dynamic changes and leads to seven important cellular biological functions, which include endocytosis, phagocytosis, filopodium, lamellipodium, cytokinesis, adhesion, and podosome formation, via distinct signaling pathways determined by specific domain-binding partners. These cellular functions play important roles in many physiological and pathophysiological processes. We further summarize F-BAR protein expression and mutation changes observed in various diseases and developmental disorders. Considering the structure feature and functional implication of F-BAR proteins, we anticipate that F-BAR proteins modulate physiological and pathophysiological processes via transferring extracellular materials, regulating cell trafficking and mobility, presenting antigens, mediating extracellular matrix degradation, and transmitting signaling for cell proliferation.
Collapse
Affiliation(s)
- Suxuan Liu
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China. .,Center for Metabolic Disease Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| | - Xinyu Xiong
- Center for Metabolic Disease Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| | - Xianxian Zhao
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA. .,Center for Cardiovascular Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA. .,Center for Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| | - Hong Wang
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China. .,Center for Metabolic Disease Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA. .,Center for Cardiovascular Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA. .,Center for Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
23
|
Vairappan B. Endothelial dysfunction in cirrhosis: Role of inflammation and oxidative stress. World J Hepatol 2015; 7:443-459. [PMID: 25848469 PMCID: PMC4381168 DOI: 10.4254/wjh.v7.i3.443] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/08/2014] [Accepted: 11/27/2014] [Indexed: 02/06/2023] Open
Abstract
This review describes the recent developments in the pathobiology of endothelial dysfunction (ED) in the context of cirrhosis with portal hypertension and defines novel strategies and potential targets for therapy. ED has prognostic implications by predicting unfavourable early hepatic events and mortality in patients with portal hypertension and advanced liver diseases. ED characterised by an impaired bioactivity of nitric oxide (NO) within the hepatic circulation and is mainly due to decreased bioavailability of NO and accelerated degradation of NO with reactive oxygen species. Furthermore, elevated inflammatory markers also inhibit NO synthesis and causes ED in cirrhotic liver. Therefore, improvement of NO availability in the hepatic circulation can be beneficial for the improvement of endothelial dysfunction and associated portal hypertension in patients with cirrhosis. Furthermore, therapeutic agents that are identified in increasing NO bioavailability through improvement of hepatic endothelial nitric oxide synthase (eNOS) activity and reduction in hepatic asymmetric dimethylarginine, an endogenous modulator of eNOS and a key mediator of elevated intrahepatic vascular tone in cirrhosis would be interesting therapeutic approaches in patients with endothelial dysfunction and portal hypertension in advanced liver diseases.
Collapse
Affiliation(s)
- Balasubramaniyan Vairappan
- Balasubramaniyan Vairappan, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India
| |
Collapse
|
24
|
Treuer AV, Gonzalez DR. Nitric oxide synthases, S-nitrosylation and cardiovascular health: from molecular mechanisms to therapeutic opportunities (review). Mol Med Rep 2014; 11:1555-65. [PMID: 25405382 PMCID: PMC4270315 DOI: 10.3892/mmr.2014.2968] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 08/05/2014] [Indexed: 12/13/2022] Open
Abstract
The understanding of nitric oxide (NO) signaling has grown substantially since the identification of endothelial derived relaxing factor (EDRF). NO has emerged as a ubiquitous signaling molecule involved in diverse physiological and pathological processes. Perhaps the most significant function, independent of EDRF, is that of NO signaling mediated locally in signaling modules rather than relying upon diffusion. In this context, NO modulates protein function via direct post-translational modification of cysteine residues. This review explores NO signaling and related reactive nitrogen species involved in the regulation of the cardiovascular system. A critical concept in the understanding of NO signaling is that of the nitroso-redox balance. Reactive nitrogen species bioactivity is fundamentally linked to the production of reactive oxygen species. This interaction occurs at the chemical, enzymatic and signaling effector levels. Furthermore, the nitroso-redox equilibrium is in a delicate balance, involving the cross-talk between NO and oxygen-derived species signaling systems, including NADPH oxidases and xanthine oxidase.
Collapse
Affiliation(s)
- Adriana V Treuer
- Laboratory of Organic Synthesis, Institute of Chemistry of Natural Resources, University of Talca, Talca 3460000, Chile
| | - Daniel R Gonzalez
- Department of Biomedical Basic Sciences, School of Health Sciences, University of Talca, Talca 3460000, Chile
| |
Collapse
|
25
|
Laskowska M, Laskowska K, Oleszczuk J. The relation of maternal serum eNOS, NOSTRIN and ADMA levels with aetiopathogenesis of preeclampsia and/or intrauterine fetal growth restriction. J Matern Fetal Neonatal Med 2014; 28:26-32. [DOI: 10.3109/14767058.2014.900036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Su Y. Regulation of endothelial nitric oxide synthase activity by protein-protein interaction. Curr Pharm Des 2014; 20:3514-20. [PMID: 24180383 PMCID: PMC7039309 DOI: 10.2174/13816128113196660752] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/21/2013] [Indexed: 02/07/2023]
Abstract
Endothelial nitric oxide synthase (eNOS) is expressed in vascular endothelial cells and plays an important role in the regulation of vascular tone, platelet aggregation and angiogenesis. Protein-protein interactions represent an important posttranslational mechanism for eNOS regulation. eNOS has been shown to interact with a variety of regulatory and structural proteins which provide fine tuneup of eNOS activity and eNOS protein trafficking between plasma membrane and intracellular membranes in a number of physiological and pathophysiological processes. eNOS interacts with calmodulin, heat shock protein 90 (Hsp90), dynamin-2, β-actin, tubulin, porin, high-density lipoprotein (HDL) and apolipoprotein AI (ApoAI), resulting in increases in eNOS activity. The negative eNOS interacting proteins include caveolin, G protein-coupled receptors (GPCR), nitric oxide synthase-interacting protein (NOSIP), and nitric oxide synthase trafficking inducer (NOSTRIN). Dynamin-2, NOSIP, NOSTRIN, and cytoskeleton are also involved in eNOS trafficking in endothelial cells. In addition, eNOS associations with cationic amino acid transporter-1 (CAT-1), argininosuccinate synthase (ASS), argininosuccinate lyase (ASL), and soluble guanylate cyclase (sGC) facilitate directed delivery of substrate (L-arginine) to eNOS and optimizing NO production and NO action on its target. Regulation of eNOS by protein-protein interactions would provide potential targets for pharmacological interventions in NO-compromised cardiovascular diseases.
Collapse
Affiliation(s)
- Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, 1120 15th Street, Augusta, GA 30912.
| |
Collapse
|
27
|
Bae SH, Choi YJ, Kim KH, Park SS. Identification of the cis-element and bZIP DNA binding motifs for the autogenous negative control of mouse NOSTRIN. Biochem Biophys Res Commun 2013; 443:924-31. [PMID: 24361894 DOI: 10.1016/j.bbrc.2013.12.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 12/12/2013] [Indexed: 11/28/2022]
Abstract
mNOSTRIN is the mouse ortholog of hNOSTRIN. Unlike hNOSTRIN, which is alternatively spliced to produce two isoforms (α and β), only a single isoform of mNOSTRIN has been detected in either the nucleus or cytoplasm/membrane. Because mNOSTRIN represses its own transcription through direct binding onto its own promoter, this protein is constantly expressed in a temporally regulated pattern during differentiation of F9 embryonic carcinoma cells. In this study, we identified the specific cis-element in the mNOSTRIN regulatory region that is responsible for negative autogenous control. This element exhibits inverted dyad symmetry. Furthermore, we identified a putative bZIP motif in the middle region of mNOSTRIN, which is responsible for DNA binding, and showed that disruption of the leucine zippers abolished the DNA-binding activity of mNOSTRIN. Here, we report that a single form of mNOSTRIN functions in both the nucleus and cytoplasm/membrane. In the nucleus, mNOSTRIN acts as a transcriptional repressor by binding to the cis-element through its bZIP motif.
Collapse
Affiliation(s)
- Seong-Ho Bae
- Department of Life Science, Korea University, 5-ka, Anam-Dong, Sungbuk-ku, Seoul 136-701, Republic of Korea
| | - Young-Joon Choi
- Department of Life Science, Korea University, 5-ka, Anam-Dong, Sungbuk-ku, Seoul 136-701, Republic of Korea
| | - Kyung-hyun Kim
- Department of Life Science, Korea University, 5-ka, Anam-Dong, Sungbuk-ku, Seoul 136-701, Republic of Korea
| | - Sung-Soo Park
- Department of Life Science, Korea University, 5-ka, Anam-Dong, Sungbuk-ku, Seoul 136-701, Republic of Korea.
| |
Collapse
|
28
|
Kirsch T, Kaufeld J, Korstanje R, Hentschel DM, Staggs L, Bollig F, Beese M, Schroder P, Boehme L, Haller H, Schiffer M. Knockdown of the hypertension-associated gene NOSTRIN alters glomerular barrier function in zebrafish (Danio rerio). Hypertension 2013; 62:726-30. [PMID: 23959558 DOI: 10.1161/hypertensionaha.113.01882] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hypertension is one of the major risk factors for chronic kidney disease. Using quantitative trait loci analysis, we identified the gene of the F-BAR protein NOSTRIN in the center of an overlapping region in rat and human quantitative trait loci that are associated with hypertension. Immunohistochemical analysis revealed a predominantly podocytic expression pattern of NOSTRIN in human and mouse glomeruli. Further, NOSTRIN colocalizes with cell-cell contact-associated proteins β-catenin and zonula occludens-1 and interacts with the slit-membrane-associated adaptor protein CD2AP. In zebrafish larvae, knockdown of nostrin alters the glomerular filtration barrier function, inducing proteinuria and leading to ultrastructural morphological changes on the endothelial and epithelial side and of the glomerular basement membrane of the glomerular capillary loop. We conclude that NOSTRIN expression is an important factor for the integrity of the glomerular filtration barrier. Disease-related alteration of NOSTRIN expression may not only affect the vascular endothelium and, therefore, contribute to endothelial cell dysfunction but might also contribute to the development of podocyte disease and proteinuria.
Collapse
Affiliation(s)
- Torsten Kirsch
- Division of Nephrology, Center for Internal Medicine, Hannover Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany. or
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Nitric oxide production and the expression of two nitric oxide synthases in the avian retina. Vis Neurosci 2013; 30:91-103. [PMID: 23721886 DOI: 10.1017/s0952523813000126] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) is known to exert multiple effects on the function of many retinal neurons and their synapses. Therefore, it is equally important to understand the potential sources of NO within the retina. To explore this, we employ a combination of 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM) based NO detection and immunohistochemistry for the NO synthetic enzymes, neuronal and endothelial nitric oxide synthase (nNOS and eNOS). We find DAF signals in photoreceptors, horizontal cells, amacrine cells, efferent synapses, Müller cells, and cells in the ganglion cell layer (GCL). nNOS immunoreactivity was consistent with the DAF signal with the exception that horizontal cells and Müller cells were not clearly labeled. eNOS-like immunoreactivity (eNOS-LI) was more widespread with photoreceptors, horizontal cells, occasional bipolar cells, amacrine cells, Müller cells, and cells in the GCL all showing labeling. Double labeling with antibodies raised against calretinin, syntaxin, and glutamine synthetase confirmed that horizontal cells, amacrine cells, and Müller cells (respectively) were expressing eNOS-LI. Although little or no nNOS labeling is observed in horizontal cells or Müller cells, the expression of eNOS-LI is consistent with the ability of these cells to produce NO. Together these results suggest that the capability to produce NO is widespread in the chicken retina. We propose that multiple forms of regulation for nNOS and eNOS play a role in the patterning of NO production in the chicken retina.
Collapse
|
30
|
Xin X, Gfeller D, Cheng J, Tonikian R, Sun L, Guo A, Lopez L, Pavlenco A, Akintobi A, Zhang Y, Rual JF, Currell B, Seshagiri S, Hao T, Yang X, Shen YA, Salehi-Ashtiani K, Li J, Cheng AT, Bouamalay D, Lugari A, Hill DE, Grimes ML, Drubin DG, Grant BD, Vidal M, Boone C, Sidhu SS, Bader GD. SH3 interactome conserves general function over specific form. Mol Syst Biol 2013; 9:652. [PMID: 23549480 PMCID: PMC3658277 DOI: 10.1038/msb.2013.9] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 02/20/2013] [Indexed: 12/20/2022] Open
Abstract
Src homology 3 (SH3) domains bind peptides to mediate protein-protein interactions that assemble and regulate dynamic biological processes. We surveyed the repertoire of SH3 binding specificity using peptide phage display in a metazoan, the worm Caenorhabditis elegans, and discovered that it structurally mirrors that of the budding yeast Saccharomyces cerevisiae. We then mapped the worm SH3 interactome using stringent yeast two-hybrid and compared it with the equivalent map for yeast. We found that the worm SH3 interactome resembles the analogous yeast network because it is significantly enriched for proteins with roles in endocytosis. Nevertheless, orthologous SH3 domain-mediated interactions are highly rewired. Our results suggest a model of network evolution where general function of the SH3 domain network is conserved over its specific form.
Collapse
Affiliation(s)
- Xiaofeng Xin
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - David Gfeller
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jackie Cheng
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Raffi Tonikian
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Lin Sun
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Ailan Guo
- Cell Signaling Technology, Danvers, MA, USA
| | - Lianet Lopez
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Alevtina Pavlenco
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Adenrele Akintobi
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Yingnan Zhang
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Jean-François Rual
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Bridget Currell
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | | | - Tong Hao
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Xinping Yang
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Yun A Shen
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Kourosh Salehi-Ashtiani
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jingjing Li
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Aaron T Cheng
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Dryden Bouamalay
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Adrien Lugari
- IMR Laboratory, UPR 3243, Institut de Microbiologie de la Méditérannée, CNRS and Aix-Marseille Université, Marseille Cedex 20, France
| | - David E Hill
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Mark L Grimes
- Division of Biological Sciences, Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT, USA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Charles Boone
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sachdev S Sidhu
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Kovacevic I, Hu J, Siehoff-Icking A, Opitz N, Griffin A, Perkins AC, Munn AL, Müller-Esterl W, Popp R, Fleming I, Jungblut B, Hoffmeister M, Oess S. The F-BAR protein NOSTRIN participates in FGF signal transduction and vascular development. EMBO J 2012; 31:3309-22. [PMID: 22751148 DOI: 10.1038/emboj.2012.176] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 06/01/2012] [Indexed: 12/15/2022] Open
Abstract
F-BAR proteins are multivalent adaptors that link plasma membrane and cytoskeleton and coordinate cellular processes such as membrane protrusion and migration. Yet, little is known about the function of F-BAR proteins in vivo. Here we report, that the F-BAR protein NOSTRIN is necessary for proper vascular development in zebrafish and postnatal retinal angiogenesis in mice. The loss of NOSTRIN impacts on the migration of endothelial tip cells and leads to a reduction of tip cell filopodia number and length. NOSTRIN forms a complex with the GTPase Rac1 and its exchange factor Sos1 and overexpression of NOSTRIN in cells induces Rac1 activation. Furthermore, NOSTRIN is required for fibroblast growth factor 2 dependent activation of Rac1 in primary endothelial cells and the angiogenic response to fibroblast growth factor 2 in the in vivo matrigel plug assay. We propose a novel regulatory circuit, in which NOSTRIN assembles a signalling complex containing FGFR1, Rac1 and Sos1 thereby facilitating the activation of Rac1 in endothelial cells during developmental angiogenesis.
Collapse
Affiliation(s)
- Igor Kovacevic
- Institute for Biochemistry II, Goethe University Frankfurt Medical School, Frankfurt/Main, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Triggle CR, Samuel SM, Ravishankar S, Marei I, Arunachalam G, Ding H. The endothelium: influencing vascular smooth muscle in many ways. Can J Physiol Pharmacol 2012; 90:713-38. [PMID: 22625870 DOI: 10.1139/y2012-073] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The endothelium, although only a single layer of cells lining the vascular and lymphatic systems, contributes in multiple ways to vascular homeostasis. Subsequent to the 1980 report by Robert Furchgott and John Zawadzki, there has been a phenomenal increase in our knowledge concerning the signalling molecules and pathways that regulate endothelial - vascular smooth muscle communication. It is now recognised that the endothelium is not only an important source of nitric oxide (NO), but also numerous other signalling molecules, including the putative endothelium-derived hyperpolarizing factor (EDHF), prostacyclin (PGI(2)), and hydrogen peroxide (H(2)O(2)), which have both vasodilator and vasoconstrictor properties. In addition, the endothelium, either via transferred chemical mediators, such as NO and PGI(2), and (or) low-resistance electrical coupling through myoendothelial gap junctions, modulates flow-mediated vasodilatation as well as influencing mitogenic activity, platelet aggregation, and neutrophil adhesion. Disruption of endothelial function is an early indicator of the development of vascular disease, and thus an important area for further research and identification of potentially new therapeutic targets. This review focuses on the signalling pathways that regulate endothelial - vascular smooth muscle communication and the mechanisms that initiate endothelial dysfunction, particularly with respect to diabetic vascular disease.
Collapse
Affiliation(s)
- Chris R Triggle
- Department of Pharmacology, Weill Cornell Medical College in Qatar, P.O. Box 24144, Education City, Doha, Qatar.
| | | | | | | | | | | |
Collapse
|
33
|
The BAR Domain Superfamily Proteins from Subcellular Structures to Human Diseases. MEMBRANES 2012; 2:91-117. [PMID: 24957964 PMCID: PMC4021885 DOI: 10.3390/membranes2010091] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/07/2012] [Accepted: 02/15/2012] [Indexed: 12/11/2022]
Abstract
Eukaryotic cells have complicated membrane systems. The outermost plasma membrane contains various substructures, such as invaginations and protrusions, which are involved in endocytosis and cell migration. Moreover, the intracellular membrane compartments, such as autophagosomes and endosomes, are essential for cellular viability. The Bin-Amphiphysin-Rvs167 (BAR) domain superfamily proteins are important players in membrane remodeling through their structurally determined membrane binding surfaces. A variety of BAR domain superfamily proteins exist, and each family member appears to be involved in the formation of certain subcellular structures or intracellular membrane compartments. Most of the BAR domain superfamily proteins contain SH3 domains, which bind to the membrane scission molecule, dynamin, as well as the actin regulatory WASP/WAVE proteins and several signal transduction molecules, providing possible links between the membrane and the cytoskeleton or other machineries. In this review, we summarize the current information about each BAR superfamily protein with an SH3 domain(s). The involvement of BAR domain superfamily proteins in various diseases is also discussed.
Collapse
|
34
|
McCormick ME, Goel R, Fulton D, Oess S, Newman D, Tzima E. Platelet-endothelial cell adhesion molecule-1 regulates endothelial NO synthase activity and localization through signal transducers and activators of transcription 3-dependent NOSTRIN expression. Arterioscler Thromb Vasc Biol 2011; 31:643-9. [PMID: 21183735 PMCID: PMC3041848 DOI: 10.1161/atvbaha.110.216200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 12/06/2010] [Indexed: 11/16/2022]
Abstract
BACKGROUND NO produced by the endothelial NO synthase (eNOS) is an important regulator of cardiovascular physiological and pathological features. eNOS is activated by numerous stimuli, and its activity is tightly regulated. Platelet-endothelial cell adhesion molecule-1 (PECAM-1) has been implicated in regulating eNOS activity in response to shear stress. The current study was conducted to determine the role of PECAM-1 in the regulation of basal eNOS activity. METHODS AND RESULTS We demonstrate that PECAM-1-knockout ECs have increased basal eNOS activity and NO production. Mechanistically, increased eNOS activity is associated with a decrease in the inhibitory interaction of eNOS with caveolin-1, impaired subcellular localization of eNOS, and decreased eNOS traffic inducer (NOSTRIN) expression in the absence of PECAM-1. Furthermore, we demonstrate that activation of blunted signal transducers and activators of transcription 3 (STAT3) in the absence of PECAM-1 results in decreased NOSTRIN expression via direct binding of the signal transducers and activators of transcription 3 to the NOSTRIN promoter. CONCLUSIONS Our results reveal an elegant mechanism of eNOS regulation by PECAM-1 through signal transducers and activators of transcription 3-mediated transcriptional control of NOSTRIN.
Collapse
Affiliation(s)
- Margaret E. McCormick
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Reema Goel
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53201, USA
| | - David Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912, USA
| | - Stefanie Oess
- Institute of Biochemistry II, Johann Wolfgang Goethe University School of Medicine, Frankfurt am Main, Germany
| | - Debra Newman
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53201, USA
| | - Ellie Tzima
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
35
|
Suetsugu S. The proposed functions of membrane curvatures mediated by the BAR domain superfamily proteins. J Biochem 2010; 148:1-12. [PMID: 20435640 DOI: 10.1093/jb/mvq049] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The plasma membrane, the outermost surface of eukaryotic cells, contains various substructures, such as protrusions or invaginations, which are associated with diverse functions, including endocytosis and cell migration. These structures of the plasma membrane can be considered as tubules or inverted tubules (protrusions) of the membrane. There are six modes of membrane curvature at the plasma membrane, which are classified by the positive or negative curvature and the location of the curvature (tip, neck or shaft of the tubules). The BAR domain superfamily proteins have structurally determined positive and negative curvatures of membrane contact at their BAR, F-BAR and I-BAR domains, which generate and maintain such curved membranes by binding to the membrane. Importantly, the SH3 domains of the BAR domain superfamily proteins bind to the actin regulatory WASP/WAVE proteins, and the BAR/F-BAR/I-BAR domain-SH3 unit could orient the actin filaments towards the membrane for each subcellular structure. These membrane tubulations are also considered to function in membrane fusion and fission.
Collapse
Affiliation(s)
- Shiro Suetsugu
- Laboratory of Membrane and Cytoskeleton Dynamics, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
36
|
Dynamin 2 and human diseases. J Mol Med (Berl) 2010; 88:339-50. [PMID: 20127478 DOI: 10.1007/s00109-009-0587-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 12/21/2009] [Accepted: 12/25/2009] [Indexed: 10/25/2022]
Abstract
Dynamin 2 (DNM2) mutations cause autosomal dominant centronuclear myopathy, a rare form of congenital myopathy, and intermediate and axonal forms of Charcot-Marie-Tooth disease, a peripheral neuropathy. DNM2 is a large GTPase mainly involved in membrane trafficking through its function in the formation and release of nascent vesicles from biological membranes. DNM2 participates in clathrin-dependent and clathrin-independent endocytosis and intracellular membrane trafficking (from endosomes and Golgi apparatus). Recent studies have also implicated DNM2 in exocytosis. DNM2 belongs to the machinery responsible for the formation of vesicles and regulates the cytoskeleton providing intracellular vesicle transport. In addition, DNM2 tightly interacts with and is involved in the regulation of actin and microtubule networks, independent from membrane trafficking processes. We summarize here the molecular, biochemical, and functional data on DNM2 and discuss the possible pathophysiological mechanisms via which DNM2 mutations can lead to two distinct neuromuscular disorders.
Collapse
|
37
|
Michel T, Vanhoutte PM. Cellular signaling and NO production. Pflugers Arch 2010; 459:807-16. [PMID: 20082095 DOI: 10.1007/s00424-009-0765-9] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Revised: 11/14/2009] [Accepted: 11/19/2009] [Indexed: 12/22/2022]
Abstract
The endothelium can evoke relaxations (dilatations) of the underlying vascular smooth muscle, by releasing vasodilator substances. The best characterized endothelium-derived relaxing factor is nitric oxide (NO), which is synthesized by the endothelial isoform of nitric oxide synthase (eNOS). Endothelium-dependent relaxations involve both pertussis-toxin-sensitive G(i) (e.g., responses to serotonin, sphingosine 1-phosphate, alpha(2)-adrenergic agonists, and thrombin) and pertussis-toxin-insensitive G(q) (e.g., adenosine diphosphate and bradykinin) coupling proteins. eNOS undergoes a complex pattern of intracellular regulation, including post-translational modifications involving enzyme acylation and phosphorylation. eNOS is reversibly targeted to signal-transducing plasmalemmal caveolae where the enzyme interacts with a number of regulatory proteins, many of which are modified in cardiovascular disease states. The release of nitric oxide by the endothelial cell can be up- (e.g., by estrogens, exercise, and dietary factors) and down-regulated (e.g. oxidative stress, smoking, and oxidized low-density lipoproteins). It is reduced in the course of vascular disease (e.g., diabetes and hypertension). Arteries covered with regenerated endothelium (e.g. following angioplasty) selectively lose the pertussis-toxin-sensitive pathway for NO release which favors vasospasm, thrombosis, penetration of macrophages, cellular growth, and the inflammatory reaction leading to atherosclerosis. The unraveling of the complex interaction of the pathways regulating the presence and the activity of eNOS will enhance the understanding of the perturbations in endothelium-dependent signaling that are seen in cardiovascular disease states, and may lead to the identification of novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Thomas Michel
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
38
|
Suetsugu S, Toyooka K, Senju Y. Subcellular membrane curvature mediated by the BAR domain superfamily proteins. Semin Cell Dev Biol 2009; 21:340-9. [PMID: 19963073 DOI: 10.1016/j.semcdb.2009.12.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 12/02/2009] [Indexed: 12/14/2022]
Abstract
The Bin-Amphiphysin-Rvs167 (BAR) domain superfamily consists of proteins containing the BAR domain, the extended FCH (EFC)/FCH-BAR (F-BAR) domain, or the IRSp53-MIM homology domain (IMD)/inverse BAR (I-BAR) domain. These domains bind membranes through electrostatic interactions between the negative charges of the membranes and the positive charges on the structural surface of homo-dimeric BAR domain superfamily members. Some BAR superfamily members have membrane-penetrating insertion loops, which also contribute to the membrane binding by the proteins. The membrane-binding surface of each BAR domain superfamily member has its own unique curvature that governs or senses the curvature of the membrane for BAR-domain binding. The wide range of BAR-domain surface curvatures correlates with the various invaginations and protrusions of cells. Therefore, each BAR domain superfamily member may generate and recognize the curvature of the membrane of each subcellular structure, such as clathrin-coated pits or filopodia. The BAR domain superfamily proteins may regulate their own catalytic activity or that of their binding proteins, depending on the membrane curvature of their corresponding subcellular structures.
Collapse
Affiliation(s)
- Shiro Suetsugu
- Laboratory of Membrane and Cytoskeleton Dynamics, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan.
| | | | | |
Collapse
|
39
|
Hartig SM, Ishikura S, Hicklen RS, Feng Y, Blanchard EG, Voelker KA, Pichot CS, Grange RW, Raphael RM, Klip A, Corey SJ. The F-BAR protein CIP4 promotes GLUT4 endocytosis through bidirectional interactions with N-WASp and Dynamin-2. J Cell Sci 2009; 122:2283-91. [PMID: 19509061 DOI: 10.1242/jcs.041343] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
F-BAR proteins are a newly described family of proteins with unknown physiological significance. Because F-BAR proteins, including Cdc42 interacting protein-4 (CIP4), drive membrane deformation and affect endocytosis, we investigated the role of CIP4 in GLUT4 traffic by flow cytometry in GLUT4myc-expressing L6 myoblasts (L6 GLUT4myc). L6 GLUT4myc cells express CIP4a as the predominant F-BAR protein. siRNA knockdown of CIP4 increased insulin-stimulated (14)C-deoxyglucose uptake by elevating cell-surface GLUT4. Enhanced surface GLUT4 was due to decreased endocytosis, which correlated with lower transferrin internalization. Immunoprecipitation of endogenous CIP4 revealed that CIP4 interacted with N-WASp and Dynamin-2 in an insulin-dependent manner. FRET confirmed the insulin-dependent, subcellular properties of these interactions. Insulin exposure stimulated specific interactions in plasma membrane and cytosolic compartments, followed by a steady-state response that underlies the coordination of proteins needed for GLUT4 traffic. Our findings reveal a physiological function for F-BAR proteins, supporting a previously unrecognized role for the F-BAR protein CIP4 in GLUT4 endocytosis, and show that interactions between CIP4 and Dynamin-2 and between CIP4 and NWASp are spatially coordinated to promote function.
Collapse
Affiliation(s)
- Sean M Hartig
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wiesenthal A, Hoffmeister M, Siddique M, Kovacevic I, Oess S, Müller-Esterl W, Siehoff-Icking A. NOSTRINβ- A Shortened NOSTRIN Variant with A Role in Transcriptional Regulation. Traffic 2008; 10:26-34. [DOI: 10.1111/j.1600-0854.2008.00850.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Finucane KA, McFadden TB, Bond JP, Kennelly JJ, Zhao FQ. Onset of lactation in the bovine mammary gland: gene expression profiling indicates a strong inhibition of gene expression in cell proliferation. Funct Integr Genomics 2008; 8:251-64. [DOI: 10.1007/s10142-008-0074-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 12/20/2007] [Accepted: 12/29/2007] [Indexed: 11/30/2022]
|
42
|
Xu CS, Chang CF. Expression profiles of the genes associated with metabolism and transport of amino acids and their derivatives in rat liver regeneration. Amino Acids 2007; 34:91-102. [PMID: 17713745 DOI: 10.1007/s00726-007-0576-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 06/21/2007] [Indexed: 12/31/2022]
Abstract
Amino acids (AA) are components of protein and precursors of many important biological molecules. To address effects of the genes associated with metabolism and transport of AA and their derivatives during rat liver regeneration (LR), we firstly obtained the above genes by collecting databases data and retrieving related thesis, and then analyzed their expression profiles during LR using Rat Genome 230 2.0 array. The LR-associated genes were identified by comparing the gene expression difference between partial hepatectomy (PH) and sham-operation (SO) rat livers. It was approved that 134 genes associated with metabolism of AA and their derivatives and 26 genes involved in transport of them were LR-associated. The initially and totally expressing number of these genes occurring in initial phase of LR (0.5-4 h after PH), G0/G1 (4-6 h after PH), cell proliferation (6-66 h after PH), cell differentiation and structure-function reconstruction of liver tissue (72-168 h after PH) were respectively 76, 17, 79, 5 and 162, 89, 564, 195, illustrating that these LR-associated genes were initially expressed mainly in initial stage, and functioned in different phases. Frequencies of up-regulation and down-regulation of them being separately 564 and 357 demonstrated that genes up-regulated outnumbered those down-regulated. Categorization of their expression patterns into 22 types implied the diversity of cell physiological and biochemical activities. According to expression changes and patterns of the above-mentioned genes in LR, it was presumed that histidine biosynthesis in the metaphase and anaphase, valine metabolism in the anaphase, and metabolism of glutamate, glutamine, asparate, asparagine, methionine, alanine, leucine and aromatic amino acid almost were enhanced in the whole LR; as for amino acid derivatives, transport of neutral amino acids, urea, gamma-aminobutyric acid, betaine and taurine, metabolism of dopamine, heme, S-adenosylmethionine, thyroxine, and biosynthesis of hydroxyproline, nitric oxide, orinithine, polyamine, carnitine, selenocysteine were augmented during the entire liver restoration. Above results showed that metabolism and transport of AA and their derivates were necessary in liver regeneration.
Collapse
Affiliation(s)
- C S Xu
- College of Life Science, Henan Normal University, Xinxiang, China.
| | | |
Collapse
|
43
|
Dudzinski D, Michel T. Life history of eNOS: partners and pathways. Cardiovasc Res 2007; 75:247-60. [PMID: 17466957 PMCID: PMC2682334 DOI: 10.1016/j.cardiores.2007.03.023] [Citation(s) in RCA: 310] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 03/26/2007] [Accepted: 03/28/2007] [Indexed: 02/07/2023] Open
Abstract
The complex regulation of eNOS (endothelial nitric oxide synthase) in cardiovascular physiology occurs at multiple stages. eNOS mRNA levels are controlled both at the transcriptional and post-transcriptional phases, and epigenetic mechanisms appear to modulate tissue-specific eNOS expression. The eNOS enzyme reversibly associates with a diverse family of protein partners that regulate eNOS sub-cellular localization, catalytic function, and biological activity. eNOS enzyme activity and sub-cellular localization are intimately controlled by post-translational modifications including phosphorylation, nitrosylation, and acylation. The multiple extra-cellular stimuli affecting eNOS function coordinate their efforts through these key modifications to dynamically control eNOS and NO bioactivity in the vessel wall. This review will focus on the biochemical partners and perturbations of the eNOS protein as this vital enzyme undergoes modulation by diverse signal transduction pathways in the vascular endothelium.
Collapse
Affiliation(s)
- David Dudzinski
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Thomas Michel
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, p: (617) 732-7376, f: (617) 732-5132, e:
| |
Collapse
|
44
|
Halbach A, Mörgelin M, Baumgarten M, Milbrandt M, Paulsson M, Plomann M. PACSIN 1 forms tetramers via its N-terminal F-BAR domain. FEBS J 2007; 274:773-82. [PMID: 17288557 DOI: 10.1111/j.1742-4658.2006.05622.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability of protein kinase C and casein kinase 2 substrate in neurons (PACSIN)/syndapin proteins to self-polymerize is crucial for the simultaneous interactions with more than one Src homology 3 domain-binding partner or with lipid membranes. The assembly of this network has profound effects on the neural Wiskott-Aldrich syndrome protein-mediated attachment of the actin polymerization machinery to vesicle membranes as well as on the movement of the corresponding vesicles. Also, the sensing of vesicle membranes and/or the induction of membrane curvature are more easily facilitated in the presence of larger PACSIN complexes. The N-terminal Fes-CIP homology and Bin-Amphiphysin-Rvs (F-BAR) domains of several PACSIN-related proteins have been shown to mediate self-interactions, whereas studies using deletion mutants derived from closely related proteins led to the view that oligomerization depends on the formation of a trimeric complex via a coiled-coil region present in these molecules. To address whether the model of trimeric complex formation is applicable to PACSIN 1, the protein was recombinantly expressed and tested in four different assays for homologous interactions. The results showed that PACSIN 1 forms tetramers of about 240 kDa, with the self-interaction having a K(D) of 6.4 x 10(-8) M. Ultrastructural analysis of these oligomers after negative staining showed that laterally arranged PACSIN molecules bind to each other via a large globular domain and form a barrel-like structure. Together, these results demonstrate that the N-terminal F-BAR domain of PACSIN 1 forms the contact site for a tetrameric structure, which is able to simultaneously interact with multiple Src homology 3 binding partners.
Collapse
Affiliation(s)
- Arndt Halbach
- Center for Biochemistry and Center for Molecular Medicine, Medical Faculty, University of Cologne, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Mookerjee RP, Wiesenthal A, Icking A, Hodges SJ, Davies NA, Schilling K, Sen S, Williams R, Novelli M, Müller-Esterl W, Jalan R. Increased gene and protein expression of the novel eNOS regulatory protein NOSTRIN and a variant in alcoholic hepatitis. Gastroenterology 2007; 132:2533-41. [PMID: 17570224 DOI: 10.1053/j.gastro.2006.12.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Accepted: 10/12/2006] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Increased intrahepatic resistance in cirrhosis is associated with reduced endothelial NO synthase (eNOS) activity and exacerbated by superimposed inflammation. NOSTRIN induces intracellular translocation of eNOS and reduces NO generation. Our aims were to quantify and compare hepatic expression of eNOS, NOSTRIN, NOSIP, and caveolin-1 in alcoholic cirrhosis with or without superimposed alcoholic hepatitis and in normal livers. METHODS Biopsy specimens from 20 decompensated alcoholic cirrhotic patients with portal hypertension (10 with alcoholic hepatitis) and 6 normal livers were analyzed: real-time polymerase chain reaction for quantification of messenger RNA; Western blotting; and enzyme assays of eNOS in normal and diseased liver were performed. Localization and interaction of eNOS and NOSTRIN in liver was assessed by immunohistochemistry and co-immunoprecipitation. RESULTS eNOS mRNA was significantly increased and eNOS activity decreased in alcoholic hepatitis patients, despite no differences in eNOS protein expression among the patients. Patients with alcoholic hepatitis had significantly higher hepatic levels of NOSTRIN and caveolin-1 mRNA compared with cirrhosis alone or normal biopsy specimens. A NOSTRIN splice variant, not present in normal tissue, was detected on mRNA and protein levels in all alcoholic patients. Coimmunoprecipitation demonstrated association among NOSTRIN, eNOS, and caveolin-1. CONCLUSIONS An increase in mRNA and protein of NOSTRIN and its shortened variant in alcoholic hepatitis may partly account for the paradox of increased mRNA levels and normal protein expression but decreased enzymatic activity of eNOS in diseased liver. Such intracellular regulators of NO production may be important in the development of increased intrahepatic resistance in alcoholic hepatitis patients.
Collapse
Affiliation(s)
- Rajeshwar P Mookerjee
- Liver Failure Group, Institute of Hepatology, Division of Medicine, University College London, London, England
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kang-Decker N, Cao S, Chatterjee S, Yao J, Egan LJ, Semela D, Mukhopadhyay D, Shah V. Nitric oxide promotes endothelial cell survival signaling through S-nitrosylation and activation of dynamin-2. J Cell Sci 2007; 120:492-501. [PMID: 17251380 DOI: 10.1242/jcs.03361] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Endothelial cell-based angiogenesis requires activation of survival signals that generate resistance to external apoptotic stimuli, such as tumor necrosis factor-alpha (TNF-alpha), during pathobiologic settings. Mechanisms by which this is achieved are not fully defined. Here, we use a model in which the multifunctional cytokine nitric oxide counterbalances TNF-alpha-induced apoptosis, to define a role for membrane trafficking in the process of endothelial cell survival signaling. By perturbing dynamin GTPase function, we identify a key role of dynamin for ensuing downstream endothelial cell survival signals and vascular tube formation. Furthermore, nitric oxide is directly demonstrated to promote dynamin function through specific cysteine residue nitrosylation, which promotes endocytosis and endothelial cell survival signaling. Thus, these studies identify a novel role for dynamin as a survival factor in endothelial cells, through a mechanism by which dynamin S-nitrosylation regulates the counterbalances of TNF-alpha-induced apoptosis and nitric oxide-dependent survival signals, with implications highly relevant to angiogenesis.
Collapse
Affiliation(s)
- Ningling Kang-Decker
- GI Research Unit, Department of Physiology and Tumor Biology Program, Mayo Clinic, Rochester, MN 55903, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Mukhopadhyay S, Xu F, Sehgal PB. Aberrant cytoplasmic sequestration of eNOS in endothelial cells after monocrotaline, hypoxia, and senescence: live-cell caveolar and cytoplasmic NO imaging. Am J Physiol Heart Circ Physiol 2007; 292:H1373-89. [PMID: 17071725 DOI: 10.1152/ajpheart.00990.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously reported the disruption of caveolae/rafts, dysfunction of Golgi tethers, N-ethylmaleimide-sensitive factor-attachment protein (SNAP) receptor proteins (SNAREs), and SNAPs, and inhibition of anterograde trafficking in endothelial cells in culture and rat lung exposed to monocrotaline pyrrole (MCTP) as a prelude to the development of pulmonary hypertension. We have now investigated 1) whether this trafficking block affects subcellular localization and function of endothelial nitric oxide (NO) synthase (eNOS) and 2) whether Golgi blockade and eNOS sequestration are observed after hypoxia and senescence. Immunofluorescence data revealed that MCTP-induced "megalocytosis" of pulmonary arterial endothelial cells (PAEC) was accompanied by a loss of eNOS from the plasma membrane, with increased accumulation in the cytoplasm. This cytoplasmic eNOS was sequestered in heterogeneous compartments and partially colocalized with Golgi and endoplasmic reticulum (ER) markers, caveolin-1, NOSTRIN, and ER Tracker, but not Lyso Tracker. Hypoxia and senescence also produced enlarged PAEC, with dysfunctional Golgi and loss of eNOS from the plasma membrane, with sequestration in the cytoplasm. Live-cell imaging of caveolar and cytoplasmic NO with 4,5-diaminofluorescein diacetate (DAF-2DA) as probe showed a marked loss of caveolar NO after MCTP, hypoxia, and senescence. Although ionomycin stimulated DAF-2DA fluorescence in control PAEC, this ionophore decreased DAF-2DA fluorescence in MCTP-treated and senescent PAEC, suggesting localization of eNOS in an aberrant cytoplasmic compartment that was readily discharged by Ca(2+)-induced exocytosis. Thus monocrotaline, hypoxia, and senescence produce a Golgi blockade in PAEC, leading to sequestration of eNOS away from its functional caveolar location and providing a mechanism for the often-reported reduction in pulmonary arterial NO levels in experimental pulmonary hypertension, despite sustained eNOS protein levels.
Collapse
|
48
|
Chitu V, Stanley ER. Pombe Cdc15 homology (PCH) proteins: coordinators of membrane-cytoskeletal interactions. Trends Cell Biol 2007; 17:145-56. [PMID: 17296299 DOI: 10.1016/j.tcb.2007.01.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 12/20/2006] [Accepted: 01/25/2007] [Indexed: 12/27/2022]
Abstract
Cellular adhesion, motility, endocytosis, exocytosis and cytokinesis involve the coordinated reorganization of the cytoskeleton and of the plasma membrane. The 'Pombe Cdc15 homology' (PCH) family of adaptor proteins has recently been shown to coordinate the membrane and cytoskeletal dynamics involved in these processes by curving membranes, recruiting dynamin and controlling the architecture of the actin cytoskeleton. Mutations in PCH family members or proteins that interact with them are associated with autoinflammatory, neurological or neoplastic diseases. Here, we review the nature, actions and disease associations of the vertebrate PCH family members, highlighting their fundamental roles in the regulation of processes involving membrane-cytoskeletal interactions.
Collapse
Affiliation(s)
- Violeta Chitu
- Department of Developmental Biology and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, NY 10461, USA
| | | |
Collapse
|
49
|
Dawson JC, Legg JA, Machesky LM. Bar domain proteins: a role in tubulation, scission and actin assembly in clathrin-mediated endocytosis. Trends Cell Biol 2006; 16:493-8. [PMID: 16949824 DOI: 10.1016/j.tcb.2006.08.004] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 08/21/2006] [Indexed: 01/07/2023]
Abstract
Endocytosis is an important way for cells to take up liquids and particles from their environment. It requires membrane bending to be coupled with membrane fission, and the actin cytoskeleton has an active role in membrane remodelling. Here, we review recent research into the function of Bin-Amphiphysin-Rvs (BAR) domain proteins, which can sense membrane curvature and recruit actin to membranes. BAR proteins interact with the endocytic and cytoskeletal machinery, including the GTPase dynamin (which mediates vesicle fission), N-WASP (an Arp2/3 complex regulator) and synaptojanin (a phosphoinositide phosphatase). We describe three classes of BAR domains, BAR, N-BAR and F-BAR, providing examples of each discussing and how they function in linking membranes to the actin cytoskeleton in endocytosis.
Collapse
Affiliation(s)
- John C Dawson
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | | |
Collapse
|
50
|
Schilling K, Opitz N, Wiesenthal A, Oess S, Tikkanen R, Müller-Esterl W, Icking A. Translocation of endothelial nitric-oxide synthase involves a ternary complex with caveolin-1 and NOSTRIN. Mol Biol Cell 2006; 17:3870-80. [PMID: 16807357 PMCID: PMC1593164 DOI: 10.1091/mbc.e05-08-0709] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recently, we characterized a novel endothelial nitric-oxide synthase (eNOS)-interacting protein, NOSTRIN (for eNOS-trafficking inducer), which decreases eNOS activity upon overexpression and induces translocation of eNOS away from the plasma membrane. Here, we show that NOSTRIN directly binds to caveolin-1, a well-established inhibitor of eNOS. Because this interaction occurs between the N terminus of caveolin (positions 1-61) and the central domain of NOSTRIN (positions 323-434), it allows for independent binding of each of the two proteins to eNOS. Consistently, we were able to demonstrate the existence of a ternary complex of NOSTRIN, eNOS, and caveolin-1 in Chinese hamster ovary (CHO)-eNOS cells. In human umbilical vein endothelial cells (HUVECs), the ternary complex assembles at the plasma membrane upon confluence or thrombin stimulation. In CHO-eNOS cells, NOSTRIN-mediated translocation of eNOS involves caveolin in a process most likely representing caveolar trafficking. Accordingly, trafficking of NOSTRIN/eNOS/caveolin is affected by altering the state of actin filaments or cholesterol levels in the plasma membrane. During caveolar trafficking, NOSTRIN functions as an adaptor to recruit mediators such as dynamin-2 essential for membrane fission. We propose that a ternary complex between NOSTRIN, caveolin-1, and eNOS mediates translocation of eNOS, with important implications for the activity and availability of eNOS in the cell.
Collapse
Affiliation(s)
- Kirstin Schilling
- Institute of Biochemistry II, University of Frankfurt Medical School, D-60590 Frankfurt, Germany
| | - Nils Opitz
- Institute of Biochemistry II, University of Frankfurt Medical School, D-60590 Frankfurt, Germany
| | - Anja Wiesenthal
- Institute of Biochemistry II, University of Frankfurt Medical School, D-60590 Frankfurt, Germany
| | - Stefanie Oess
- Institute of Biochemistry II, University of Frankfurt Medical School, D-60590 Frankfurt, Germany
| | - Ritva Tikkanen
- Institute of Biochemistry II, University of Frankfurt Medical School, D-60590 Frankfurt, Germany
| | - Werner Müller-Esterl
- Institute of Biochemistry II, University of Frankfurt Medical School, D-60590 Frankfurt, Germany
| | - Ann Icking
- Institute of Biochemistry II, University of Frankfurt Medical School, D-60590 Frankfurt, Germany
| |
Collapse
|