1
|
Huang L, An X, Zhu Y, Zhang K, Xiao L, Yao X, Zeng X, Liang S, Yu J. Netrin-1 induces the anti-apoptotic and pro-survival effects of B-ALL cells through the Unc5b-MAPK axis. Cell Commun Signal 2022; 20:122. [PMID: 35974411 PMCID: PMC9380321 DOI: 10.1186/s12964-022-00935-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/08/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND B-cell acute lymphoblastic leukemia (B-ALL) comprises over 85% of all acute lymphoblastic leukemia (ALL) cases and is the most common childhood malignancy. Although the 5 year overall survival of patients with B-ALL exceeds 90%, patients with relapsed or refractory B-ALL may suffer from poor prognosis and adverse events. The axon guidance factor netrin-1 has been reported to be involved in the tumorigenesis of many types of cancers. However, the impact of netrin-1 on B-ALL remains unknown. METHODS The expression level of netrin-1 in peripheral blood samples of children with B-ALL and children without neoplasia was measured by enzyme-linked immunosorbent assay (ELISA) kits. Then, CCK-8 cell proliferation assays and flow cytometric analysis were performed to detect the viability and apoptosis of B-ALL cells (Reh and Sup B15) treated with exogenous recombinant netrin-1 at concentrations of 0, 25, 50, and 100 ng/ml. Furthermore, co-immunoprecipitation(co-IP) was performed to detect the receptor of netrin-1. UNC5B expression interference was induced in B-ALL cells with recombinant lentivirus, and then CCK-8 assays, flow cytometry assays and western blotting assays were performed to verify that netrin-1 might act on B-ALL cells via the receptor Unc5b. Finally, western blotting and kinase inhibitor treatment were applied to detect the downstream signaling pathway. RESULTS Netrin-1 expression was increased in B-ALL, and netrin-1 expression was upregulated in patients with high- and intermediate-risk stratification group of patients. Then, we found that netrin-1 induced an anti-apoptotic effect in B-ALL cells, implying that netrin-1 plays an oncogenic role in B-ALL. co-IP results showed that netrin-1 interacted with the receptor Unc5b in B-ALL cells. Interference with UNC5B was performed in B-ALL cells and abolished the antiapoptotic effects of netrin-1. Further western blotting was applied to detect the phosphorylation levels of key molecules in common signaling transduction pathways in B-ALL cells treated with recombinant netrin-1, and the FAK-MAPK signaling pathway was found to be activated. The anti-apoptotic effect of netrin-1 and FAK-MAPK phosphorylation was abrogated by UNC5B interference. FAK inhibitor treatment and ERK inhibitor treatment were applied and verified that the FAK-MAPK pathway may be downstream of Unc5b. CONCLUSION Taken together, our findings suggested that netrin-1 induced the anti-apoptotic effect of B-ALL cells through activation of the FAK-MAPK signaling pathway by binding to the receptor Unc5b. Video Abstract.
Collapse
Affiliation(s)
- Lan Huang
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, 136 Zhongshanerlu, Yuzhong district, Chongqing, 400014, China.,National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China.,Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xizhou An
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, 136 Zhongshanerlu, Yuzhong district, Chongqing, 400014, China
| | - Yao Zhu
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, 136 Zhongshanerlu, Yuzhong district, Chongqing, 400014, China.,Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Kainan Zhang
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, 136 Zhongshanerlu, Yuzhong district, Chongqing, 400014, China.,Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Li Xiao
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, 136 Zhongshanerlu, Yuzhong district, Chongqing, 400014, China
| | - Xinyuan Yao
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, 136 Zhongshanerlu, Yuzhong district, Chongqing, 400014, China
| | - Xing Zeng
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, 136 Zhongshanerlu, Yuzhong district, Chongqing, 400014, China
| | - Shaoyan Liang
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Yu
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, 136 Zhongshanerlu, Yuzhong district, Chongqing, 400014, China.
| |
Collapse
|
2
|
Quach TT, Stratton HJ, Khanna R, Kolattukudy PE, Honnorat J, Meyer K, Duchemin AM. Intellectual disability: dendritic anomalies and emerging genetic perspectives. Acta Neuropathol 2021; 141:139-158. [PMID: 33226471 PMCID: PMC7855540 DOI: 10.1007/s00401-020-02244-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
Intellectual disability (ID) corresponds to several neurodevelopmental disorders of heterogeneous origin in which cognitive deficits are commonly associated with abnormalities of dendrites and dendritic spines. These histological changes in the brain serve as a proxy for underlying deficits in neuronal network connectivity, mostly a result of genetic factors. Historically, chromosomal abnormalities have been reported by conventional karyotyping, targeted fluorescence in situ hybridization (FISH), and chromosomal microarray analysis. More recently, cytogenomic mapping, whole-exome sequencing, and bioinformatic mining have led to the identification of novel candidate genes, including genes involved in neuritogenesis, dendrite maintenance, and synaptic plasticity. Greater understanding of the roles of these putative ID genes and their functional interactions might boost investigations into determining the plausible link between cellular and behavioral alterations as well as the mechanisms contributing to the cognitive impairment observed in ID. Genetic data combined with histological abnormalities, clinical presentation, and transgenic animal models provide support for the primacy of dysregulation in dendrite structure and function as the basis for the cognitive deficits observed in ID. In this review, we highlight the importance of dendrite pathophysiology in the etiologies of four prototypical ID syndromes, namely Down Syndrome (DS), Rett Syndrome (RTT), Digeorge Syndrome (DGS) and Fragile X Syndrome (FXS). Clinical characteristics of ID have also been reported in individuals with deletions in the long arm of chromosome 10 (the q26.2/q26.3), a region containing the gene for the collapsin response mediator protein 3 (CRMP3), also known as dihydropyrimidinase-related protein-4 (DRP-4, DPYSL4), which is involved in dendritogenesis. Following a discussion of clinical and genetic findings in these syndromes and their preclinical animal models, we lionize CRMP3/DPYSL4 as a novel candidate gene for ID that may be ripe for therapeutic intervention.
Collapse
Affiliation(s)
- Tam T Quach
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
- INSERM U1217/CNRS, UMR5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Rajesh Khanna
- Department of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA
| | | | - Jérome Honnorat
- INSERM U1217/CNRS, UMR5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Lyon, France
- SynatAc Team, Institut NeuroMyoGène, Lyon, France
| | - Kathrin Meyer
- The Research Institute of Nationwide Children Hospital, Columbus, OH, 43205, USA
- Department of Pediatric, The Ohio State University, Columbus, OH, 43210, USA
| | - Anne-Marie Duchemin
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
3
|
Yuan M, Xie F, Xia X, Zhong K, Lian L, Zhang S, Yuan L, Ye J. UNC5C‑knockdown enhances the growth and metastasis of breast cancer cells by potentiating the integrin α6/β4 signaling pathway. Int J Oncol 2020; 56:139-150. [PMID: 31789389 PMCID: PMC6910211 DOI: 10.3892/ijo.2019.4931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Unc‑5 Netrin Receptor C (UNC5C) is a netrin‑1 dependence receptor that mediates the induction of apoptosis in the absence of netrin‑1. The present study found that UNC5C is heterogeneously expressed in breast cancer cell lines. By knocking down UNC5C in SK‑BR‑3 and ZR‑75‑30 cells and overexpressing UNC5c in MDA‑MB‑231 cells, it was demonstrated that UNC5C exerts an inhibitory effect on the growth and metastasis of breast cancer cells. The mechanism involved a UNC5C‑knockdown‑induced enhancement of matrix metalloproteinase (MMP)3, MMP7, MMP9 and MMP10 expression via activation of the PI3K/AKT, ERK and p38 MAPK signaling pathways. Notably, UNC5C directly interacted with integrin α6, which is involved in the growth and metastasis of breast cancer cells. Additionally, UNC5C‑knockdown enhanced the phosphorylation of FAK and SRC, which are key kinases in the netrin‑1/Unc5C and netrin‑1/integrin α6/β4 signaling pathways. This suggests that netrin‑1 functions as an integrator for both the netrin‑1/Unc5C and netrin‑1/integrin α6/β4 signaling pathways. UNC5C‑knockdown potentiated netrin‑1/integrin α6/β4 signaling. Given that UNC5C‑knockdown inhibited integrin‑liked protein kinase phosphorylation at Thr‑173, at least in SK‑BR‑3 cells, this may be an inhibitory phosphorylation site rather than activating phosphorylation site for relaying integrin signaling.
Collapse
Affiliation(s)
- Mingjing Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102
| | - Fuan Xie
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102
- Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen, Fujian 361102
| | - Xianyuan Xia
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102
| | - Kai Zhong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102
| | - Lanlan Lian
- Department of Laboratory Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, Fujian 361102
| | - Shihui Zhang
- School of Life Science, Central South University, Changsha, Hunan 410083, P.R. China
| | - Li Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102
| | - Jun Ye
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102
| |
Collapse
|
4
|
Boyer NP, Gupton SL. Revisiting Netrin-1: One Who Guides (Axons). Front Cell Neurosci 2018; 12:221. [PMID: 30108487 PMCID: PMC6080411 DOI: 10.3389/fncel.2018.00221] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/09/2018] [Indexed: 12/28/2022] Open
Abstract
Proper patterning of the nervous system requires that developing axons find appropriate postsynaptic partners; this entails microns to meters of extension through an extracellular milieu exhibiting a wide range of mechanical and chemical properties. Thus, the elaborate networks of fiber tracts and non-fasciculated axons evident in mature organisms are formed via complex pathfinding. The macroscopic structures of axon projections are highly stereotyped across members of the same species, indicating precise mechanisms guide their formation. The developing axon exhibits directionally biased growth toward or away from external guidance cues. One of the most studied guidance cues is netrin-1, however, its presentation in vivo remains debated. Guidance cues can be secreted to form soluble or chemotactic gradients or presented bound to cells or the extracellular matrix to form haptotactic gradients. The growth cone, a highly specialized dynamic structure at the end of the extending axon, detects these guidance cues via transmembrane receptors, such as the netrin-1 receptors deleted in colorectal cancer (DCC) and UNC5. These receptors orchestrate remodeling of the cytoskeleton and cell membrane through both chemical and mechanotransductive pathways, which result in traction forces generated by the cytoskeleton against the extracellular environment and translocation of the growth cone. Through intracellular signaling responses, netrin-1 can trigger either attraction or repulsion of the axon. Here we review the mechanisms by which the classical guidance cue netrin-1 regulates intracellular effectors to respond to the extracellular environment in the context of axon guidance during development of the central nervous system and discuss recent findings that demonstrate the critical importance of mechanical forces in this process.
Collapse
Affiliation(s)
- Nicholas P. Boyer
- Neurobiology Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephanie L. Gupton
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
5
|
Netrin-1 suppresses the MEK/ERK pathway and ITGB4 in pancreatic cancer. Oncotarget 2017; 7:24719-33. [PMID: 27034160 PMCID: PMC5029736 DOI: 10.18632/oncotarget.8348] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/05/2016] [Indexed: 12/21/2022] Open
Abstract
The axon guidance factor netrin-1 promotes tumorigenesis in multiple types of cancers, particularly at their advanced stages. Here, we investigate whether netrin-1 is involved in the in vivo growth of pancreatic adenocarcinoma. We show that netrin-1 is significantly under-expressed in stage-I/II pancreatic ductal adenocarcinoma (PDAC). Netrin-1 over-expression effectively arrests the growth of xenografted PDAC cells without decreasing cell proliferation or increasing apoptosis in two-dimensional cultures in vitro. Integrin-beta4 (ITGB4) expression is significantly reduced, and ITGB4-knockdown mimics the tumor-suppressive effect of netrin-1, implying that ITGB4 is a main target of netrin-1 in constraining PDAC. We further show that netrin-1 signals to UNC5B/FAK to stimulate nitric oxide production, which promotes PP2A-mediated inhibition of the MEK/ERK pathway and decreases phosphorylated-c-Jun recruitment to the ITGB4 promoter. Our findings suggest that netrin-1 can suppress the growth of PDAC and provide a mechanistic insight into this suppression.
Collapse
|
6
|
Marsh APL, Edwards TJ, Galea C, Cooper HM, Engle EC, Jamuar SS, Méneret A, Moutard ML, Nava C, Rastetter A, Robinson G, Rouleau G, Roze E, Spencer-Smith M, Trouillard O, Billette de Villemeur T, Walsh CA, Yu TW, Heron D, Sherr EH, Richards LJ, Depienne C, Leventer RJ, Lockhart PJ. DCC mutation update: Congenital mirror movements, isolated agenesis of the corpus callosum, and developmental split brain syndrome. Hum Mutat 2017; 39:23-39. [PMID: 29068161 DOI: 10.1002/humu.23361] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 10/08/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022]
Abstract
The deleted in colorectal cancer (DCC) gene encodes the netrin-1 (NTN1) receptor DCC, a transmembrane protein required for the guidance of commissural axons. Germline DCC mutations disrupt the development of predominantly commissural tracts in the central nervous system (CNS) and cause a spectrum of neurological disorders. Monoallelic, missense, and predicted loss-of-function DCC mutations cause congenital mirror movements, isolated agenesis of the corpus callosum (ACC), or both. Biallelic, predicted loss-of-function DCC mutations cause developmental split brain syndrome (DSBS). Although the underlying molecular mechanisms leading to disease remain poorly understood, they are thought to stem from reduced or perturbed NTN1 signaling. Here, we review the 26 reported DCC mutations associated with abnormal CNS development in humans, including 14 missense and 12 predicted loss-of-function mutations, and discuss their associated clinical characteristics and diagnostic features. We provide an update on the observed genotype-phenotype relationships of congenital mirror movements, isolated ACC and DSBS, and correlate this to our current understanding of the biological function of DCC in the development of the CNS. All mutations and their associated phenotypes were deposited into a locus-specific LOVD (https://databases.lovd.nl/shared/genes/DCC).
Collapse
Affiliation(s)
- Ashley P L Marsh
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Timothy J Edwards
- Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Herston, Brisbane, Australia
| | - Charles Galea
- Drug Delivery, Disposition and Dynamics (D4), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Helen M Cooper
- Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, Australia
| | - Elizabeth C Engle
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts.,Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts.,Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.,Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts
| | - Saumya S Jamuar
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts.,Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts.,Department of Paediatrics, KK Women's and Children's Hospital, Paediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Aurélie Méneret
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,Département de Neurologie, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Marie-Laure Moutard
- Service de Neuropédiatrie, AP-HP, Hôpital Trousseau, Paris, France.,UPMC, GRC ConCer-LD, Sorbonne Université, Paris, France.,Centre de référence "Neurogénétique", Paris, France
| | - Caroline Nava
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,Département de Génétique, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Agnès Rastetter
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Gail Robinson
- Neuropsychology Research Unit, School of Psychology, The University of Queensland, Brisbane, Queensland, Australia
| | - Guy Rouleau
- Department of Neurology and Neurosurgery, McGill University Health Center, Montreal, Quebec, Canada.,Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec, Canada
| | - Emmanuel Roze
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,Département de Neurologie, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Megan Spencer-Smith
- Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton Campus, Clayton, Victoria, Australia
| | - Oriane Trouillard
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Thierry Billette de Villemeur
- Service de Neuropédiatrie, AP-HP, Hôpital Trousseau, Paris, France.,UPMC, GRC ConCer-LD, Sorbonne Université, Paris, France.,Centre de Référence "déficiences intellectuelles de causes rares", Paris, France.,INSERM U1141, Paris, France
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts.,Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts.,Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.,Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Timothy W Yu
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | | | - Delphine Heron
- UPMC, GRC ConCer-LD, Sorbonne Université, Paris, France.,Département de Génétique, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Elliott H Sherr
- Department of Neurology, UCSF Benioff Children's Hospital, San Francisco, California
| | - Linda J Richards
- Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, Australia.,The University of Queensland, School of Biomedical Sciences, St Lucia, Brisbane, Australia
| | - Christel Depienne
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,Département de Génétique, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France.,Département de Médicine translationnelle et Neurogénétique, IGBMC, CNRS UMR 7104, INSERM U964, Université de Strasbourg, Illkirch, France.,Laboratoires de génétique, Institut de génétique médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Richard J Leventer
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia.,Neuroscience Research Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Neurology, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Paul J Lockhart
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Montesinos ML. Local translation of the Down syndrome cell adhesion molecule (DSCAM) mRNA in the vertebrate central nervous system. J Neurogenet 2017; 31:223-230. [PMID: 29078722 DOI: 10.1080/01677063.2017.1391250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- María Luz Montesinos
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla, Spain
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
8
|
Morales D, Kania A. Cooperation and crosstalk in axon guidance cue integration: Additivity, synergy, and fine-tuning in combinatorial signaling. Dev Neurobiol 2016; 77:891-904. [PMID: 27739221 DOI: 10.1002/dneu.22463] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/17/2016] [Accepted: 10/10/2016] [Indexed: 12/31/2022]
Abstract
Neural circuit development involves the coordinated growth and guidance of axons to their targets. Following the identification of many guidance cue molecules, recent experiments have focused on the interactions of their signaling cascades, which can be generally classified as additive or non-additive depending on the signal convergence point. While additive (parallel) signaling suggests limited molecular interaction between the pathways, non-additive signaling involves crosstalk between pathways and includes more complex synergistic, hierarchical, and permissive guidance cue relationships. Here the authors have attempted to classify recent studies that describe axon guidance signal integration according to these divisions. They also discuss the mechanistic implications of such interactions, as well as general ideas relating signal integration to the generation of diversity of axon guidance responses. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 891-904, 2017.
Collapse
Affiliation(s)
- Daniel Morales
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, H2W 1R7, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Quebec, H3A 2B4, Canada
| | - Artur Kania
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, H2W 1R7, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Quebec, H3A 2B4, Canada.,Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montréal, Quebec, H3A 2B2, Canada.,Department of Biology, Division of Experimental Medicine, McGill University, Montréal, Quebec, H3A 2B2, Canada.,Faculté de Médecine, Université de Montréal, Montréal, Quebec, H3C 3J7, Canada
| |
Collapse
|
9
|
Yang X, Li S, Zhong J, Zhang W, Hua X, Li B, Sun H. CD151 mediates netrin-1-induced angiogenesis through the Src-FAK-Paxillin pathway. J Cell Mol Med 2016; 21:72-80. [PMID: 27558487 PMCID: PMC5192806 DOI: 10.1111/jcmm.12939] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/27/2016] [Indexed: 01/05/2023] Open
Abstract
Crosstalk between the nervous and vascular systems is important during development and in response to injury, and the laminin-like axonal guidance protein netrin-1 has been studied for its involvement in angiogenesis and vascular remodelling. In this study, we examined the role of netrin-1 in angiogenesis and explored the underlying mechanisms. The effect of netrin-1 on brain tissues and endothelial cells was examined by immunohistochemistry and western blotting in a middle cerebral artery occlusion model and in human umbilical vein endothelial cells. Cell proliferation and cell cycle progression were assessed by the MTT assay and flow cytometry, and the Transwell and tube formation assays were used to examine endothelial cell motility and function. Netrin-1 up-regulated CD151 and VEGF concomitant with the activation of focal adhesion kinase (FAK), Src and Paxillin in vitro and in vivo and the induction of cell proliferation, migration and tube formation in vitro. Silencing of CD151 abolished the effects of netrin-1 on promoting cell migration and tube formation mediated by the activation of FAK/Src signalling. Netrin-1 promoted angiogenesis in vitro and in vivo by activating the FAK/Src/Paxillin signalling pathway through a mechanism dependent on the expression of the CD151 tetraspanin, suggesting the existence of a netrin-1/FAK/Src/CD151 signalling axis involved in the modulation of angiogenesis.
Collapse
Affiliation(s)
- Xiaosheng Yang
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Shiting Li
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jun Zhong
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Wenchuan Zhang
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xuming Hua
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Bin Li
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Hui Sun
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Poliak S, Morales D, Croteau LP, Krawchuk D, Palmesino E, Morton S, Cloutier JF, Charron F, Dalva MB, Ackerman SL, Kao TJ, Kania A. Synergistic integration of Netrin and ephrin axon guidance signals by spinal motor neurons. eLife 2015; 4. [PMID: 26633881 PMCID: PMC4764565 DOI: 10.7554/elife.10841] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/02/2015] [Indexed: 01/09/2023] Open
Abstract
During neural circuit assembly, axonal growth cones are exposed to multiple guidance signals at trajectory choice points. While axonal responses to individual guidance cues have been extensively studied, less is known about responses to combination of signals and underlying molecular mechanisms. Here, we studied the convergence of signals directing trajectory selection of spinal motor axons entering the limb. We first demonstrate that Netrin-1 attracts and repels distinct motor axon populations, according to their expression of Netrin receptors. Quantitative in vitro assays demonstrate that motor axons synergistically integrate both attractive or repulsive Netrin-1 signals together with repulsive ephrin signals. Our investigations of the mechanism of ephrin-B2 and Netrin-1 integration demonstrate that the Netrin receptor Unc5c and the ephrin receptor EphB2 can form a complex in a ligand-dependent manner and that Netrin–ephrin synergistic growth cones responses involve the potentiation of Src family kinase signaling, a common effector of both pathways. DOI:http://dx.doi.org/10.7554/eLife.10841.001 The ability of animals to walk and perform skilled movements depends on particular groups of muscles contracting in a coordinated manner. Muscles are activated by nerve cells called motor neurons found in the spinal cord. The connections between the motor neurons and muscles are established in the developing embryo. Each motor neuron produces a long projection called an axon whose growth is guided towards the target muscle by signal proteins. The motor neurons are exposed to many such signal proteins at the same time and it is not clear how they integrate all this information so that their axons target the correct muscles. Poliak, Morales et al. used a variety of genetic and biochemical approaches to study the formation of motor neuron and muscle connections in the limbs of mice and chicks. The experiments show that a signal protein called Netrin-1 is produced in the limbs of developing embryos and attracts the axons of some types of motor neurons and repels others. This is due to the motor neurons producing different types of receptor proteins to detect Netrin-1. Further experiments show that individual axons can combine information from attractive or repulsive Netrin-1 signals together with repulsive signals from another family of proteins called ephrins in a 'synergistic' manner. That is, the combined effect of both cues is stronger than their individual effects added together. This synergy involves ligand-dependent interactions between the Netrin-1 and ephrin receptor proteins, and the activation of a common enzyme. Poliak, Morales et al.’s findings reveal a new role for Netrin-1 in guiding the development of motor neurons in the limb. Future work will focus on further understanding the mechanism of synergy between Netrin-1 and ephrins. Netrin-1 and ephrins are also involved in the formation of blood vessels and many other developmental processes, so understanding how they work together would have a wide-reaching impact on research into human health and disease. DOI:http://dx.doi.org/10.7554/eLife.10841.002
Collapse
Affiliation(s)
- Sebastian Poliak
- Department of Neuroscience, Columbia University, New York, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Daniel Morales
- Institut de recherches cliniques de Montréal, Montréal, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Canada
| | | | - Dayana Krawchuk
- Institut de recherches cliniques de Montréal, Montréal, Canada.,The Jackson Laboratory, Bar Harbor, United States
| | - Elena Palmesino
- Institut de recherches cliniques de Montréal, Montréal, Canada
| | - Susan Morton
- Department of Neuroscience, Columbia University, New York, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States.,Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Jean-François Cloutier
- Integrated Program in Neuroscience, McGill University, Montréal, Canada.,Montréal Neurological Institute, Montréal, Canada
| | - Frederic Charron
- Institut de recherches cliniques de Montréal, Montréal, Canada.,Faculté de Médecine, Université de Montréal, Montréal, Canada.,Department of Biology, McGill University, Montréal, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, Canada.,Division of Experimental Medicine, McGill University, Montréal, Canada
| | - Matthew B Dalva
- Department of Neuroscience, The Farber Institute for Neurosciences, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, United States
| | - Susan L Ackerman
- The Jackson Laboratory, Bar Harbor, United States.,Howard Hughes Medical Institute, The Jackson Laboratory, Bar Harbor, United States
| | - Tzu-Jen Kao
- Institut de recherches cliniques de Montréal, Montréal, Canada.,Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan
| | - Artur Kania
- Institut de recherches cliniques de Montréal, Montréal, Canada.,Faculté de Médecine, Université de Montréal, Montréal, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Canada.,Department of Biology, McGill University, Montréal, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, Canada.,Division of Experimental Medicine, McGill University, Montréal, Canada
| |
Collapse
|
11
|
Norris AD, Sundararajan L, Morgan DE, Roberts ZJ, Lundquist EA. The UNC-6/Netrin receptors UNC-40/DCC and UNC-5 inhibit growth cone filopodial protrusion via UNC-73/Trio, Rac-like GTPases and UNC-33/CRMP. Development 2015; 141:4395-405. [PMID: 25371370 PMCID: PMC4302909 DOI: 10.1242/dev.110437] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
UNC-6/Netrin is a conserved axon guidance cue that can mediate both attraction and repulsion. We previously discovered that attractive UNC-40/DCC receptor signaling stimulates growth cone filopodial protrusion and that repulsive UNC-40–UNC-5 heterodimers inhibit filopodial protrusion in C. elegans. Here, we identify cytoplasmic signaling molecules required for UNC-6-mediated inhibition of filopodial protrusion involved in axon repulsion. We show that the Rac-like GTPases CED-10 and MIG-2, the Rac GTP exchange factor UNC-73/Trio, UNC-44/Ankyrin and UNC-33/CRMP act in inhibitory UNC-6 signaling. These molecules were required for the normal limitation of filopodial protrusion in developing growth cones and for inhibition of growth cone filopodial protrusion caused by activated MYR::UNC-40 and MYR::UNC-5 receptor signaling. Epistasis studies using activated CED-10 and MIG-2 indicated that UNC-44 and UNC-33 act downstream of the Rac-like GTPases in filopodial inhibition. UNC-73, UNC-33 and UNC-44 did not affect the accumulation of full-length UNC-5::GFP and UNC-40::GFP in growth cones, consistent with a model in which UNC-73, UNC-33 and UNC-44 influence cytoskeletal function during growth cone filopodial inhibition.
Collapse
Affiliation(s)
- Adam D Norris
- Programs in Genetics and Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - Lakshmi Sundararajan
- Programs in Genetics and Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - Dyan E Morgan
- Programs in Genetics and Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - Zachary J Roberts
- Programs in Genetics and Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - Erik A Lundquist
- Programs in Genetics and Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| |
Collapse
|
12
|
Roles for DSCAM and DSCAML1 in central nervous system development and disease. ADVANCES IN NEUROBIOLOGY 2014; 8:249-70. [PMID: 25300140 DOI: 10.1007/978-1-4614-8090-7_11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
DSCAMs (Down syndrome cell adhesion molecules) are a group of immunoglobulin-like transmembrane proteins that contain fibronectin III domains. The founding member of the family was isolated in a positional cloning study that sought to identify genes located on chromosome 21 at the locus 21q22.2-q22.3 that is implicated in the neurological and cardiac phenotypes associated with Down's syndrome. In Drosophila, Dscam proteins are involved in neuronal wiring, while in vertebrates, the role of these cell adhesion molecules in neurogenesis, dendritogenesis, axonal outgrowth, synaptogenesis, and synaptic plasticity is only just beginning to be understood. In this chapter, we will review the functions ascribed to the two paralogous proteins found in humans, DSCAM and DSCAML1 (DSCAM-like 1), based on findings in knockout mice. The signaling pathways downstream of DSCAM activation and the role of DSCAM miss-expression in disease will be also discussed, particularly with regard to the intellectual disability in Down's syndrome.
Collapse
|
13
|
Armendáriz BG, Masdeu MDM, Soriano E, Ureña JM, Burgaya F. The diverse roles and multiple forms of focal adhesion kinase in brain. Eur J Neurosci 2014; 40:3573-90. [DOI: 10.1111/ejn.12737] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/25/2014] [Indexed: 02/04/2023]
Affiliation(s)
- Beatriz G. Armendáriz
- Department of Biologia Cellular; Fac Biologia; Universitat de Barcelona; Diagonal, 643 08028 Barcelona Spain
- Parc Científic de Barcelona; Barcelona Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Ciberned (ISC III); Madrid Spain
| | - Maria del Mar Masdeu
- Department of Biologia Cellular; Fac Biologia; Universitat de Barcelona; Diagonal, 643 08028 Barcelona Spain
- Parc Científic de Barcelona; Barcelona Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Ciberned (ISC III); Madrid Spain
| | - Eduardo Soriano
- Department of Biologia Cellular; Fac Biologia; Universitat de Barcelona; Diagonal, 643 08028 Barcelona Spain
- Parc Científic de Barcelona; Barcelona Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Ciberned (ISC III); Madrid Spain
| | - Jesús M. Ureña
- Department of Biologia Cellular; Fac Biologia; Universitat de Barcelona; Diagonal, 643 08028 Barcelona Spain
- Parc Científic de Barcelona; Barcelona Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Ciberned (ISC III); Madrid Spain
| | - Ferran Burgaya
- Department of Biologia Cellular; Fac Biologia; Universitat de Barcelona; Diagonal, 643 08028 Barcelona Spain
- Parc Científic de Barcelona; Barcelona Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Ciberned (ISC III); Madrid Spain
| |
Collapse
|
14
|
Abstract
This review is focusing on a critical mediator of embryonic and postnatal development with multiple implications in inflammation, neoplasia, and other pathological situations in brain and peripheral tissues. These morphogenetic guidance and dependence processes are involved in several malignancies targeting the epithelial and immune systems including the progression of human colorectal cancers. We consider the most important findings and their impact on basic, translational, and clinical cancer research. Expected information can bring new cues for innovative, efficient, and safe strategies of personalized medicine based on molecular markers, protagonists, signaling networks, and effectors inherent to the Netrin axis in pathophysiological states.
Collapse
|
15
|
Netrin-1 in the developing enteric nervous system and colorectal cancer. Trends Mol Med 2012; 18:544-54. [DOI: 10.1016/j.molmed.2012.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/07/2012] [Accepted: 07/10/2012] [Indexed: 11/21/2022]
|
16
|
Wong MC, Schwarzbauer JE. Gonad morphogenesis and distal tip cell migration in the Caenorhabditis elegans hermaphrodite. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2012; 1:519-31. [PMID: 23559979 PMCID: PMC3614366 DOI: 10.1002/wdev.45] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell migration and morphogenesis are key events in tissue development and organogenesis. In Caenorhabditis elegans, the migratory path of the distal tip cells determines the morphology of the hermaphroditic gonad. The distal tip cells undergo a series of migratory phases interspersed with turns to form the gonad. A wide variety of genes have been identified as crucial to this process, from genes that encode components and modifiers of the extracellular matrix to signaling proteins and transcriptional regulators. The connections between extracellular and transmembrane protein functions and intracellular pathways are essential for distal tip cell migration, and the integration of this information governs gonad morphogenesis and determines gonad size and shape.
Collapse
Affiliation(s)
- Ming-Ching Wong
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | |
Collapse
|
17
|
Purohit AA, Li W, Qu C, Dwyer T, Shao Q, Guan KL, Liu G. Down syndrome cell adhesion molecule (DSCAM) associates with uncoordinated-5C (UNC5C) in netrin-1-mediated growth cone collapse. J Biol Chem 2012; 287:27126-38. [PMID: 22685302 DOI: 10.1074/jbc.m112.340174] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the developing nervous system, neuronal growth cones explore the extracellular environment for guidance cues, which can guide them along specific trajectories toward their targets. Netrin-1, a bifunctional guidance cue, binds to deleted in colorectal cancer (DCC) and DSCAM mediating axon attraction, and UNC5 mediating axon repulsion. Here, we show that DSCAM interacts with UNC5C and this interaction is stimulated by netrin-1 in primary cortical neurons and postnatal cerebellar granule cells. DSCAM partially co-localized with UNC5C in primary neurons and brain tissues. Netrin-1 induces axon growth cone collapse of mouse cerebellum external granule layer (EGL) cells, and the knockdown of DSCAM or UNC5C by specific shRNAs or blocking their signaling by overexpressing dominant negative mutants suppresses netrin-1-induced growth cone collapse. Similarly, the simultaneous knockdown of DSCAM and UNC5C also blocks netrin-1-induced growth cone collapse in EGL cells. Netrin-1 increases tyrosine phosphorylation of endogenous DSCAM, UNC5C, FAK, Fyn, and PAK1, and promotes complex formation of DSCAM with these signaling molecules in primary postnatal cerebellar neurons. Inhibition of Src family kinases efficiently reduces the interaction of DSCAM with UNC5C, FAK, Fyn, and PAK1 and tyrosine phosphorylation of these proteins as well as growth cone collapse of mouse EGL cells induced by netrin-1. The knockdown of DSCAM inhibits netrin-induced tyrosine phosphorylation of UNC5C and Fyn as well as the interaction of UNC5C with Fyn. The double knockdown of both receptors abolishes the induction of Fyn tyrosine phosphorylation by netrin-1. Our study reveals the first evidence that DSCAM coordinates with UNC5C in netrin-1 repulsion.
Collapse
Affiliation(s)
- Anish A Purohit
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Autocrine netrin function inhibits glioma cell motility and promotes focal adhesion formation. PLoS One 2011; 6:e25408. [PMID: 21980448 PMCID: PMC3182204 DOI: 10.1371/journal.pone.0025408] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 09/02/2011] [Indexed: 01/09/2023] Open
Abstract
Deregulation of mechanisms that control cell motility plays a key role in tumor progression by promoting tumor cell dissemination. Secreted netrins and their receptors, Deleted in Colorectal Cancer (DCC), neogenin, and the UNC5 homologues, regulate cell and axon migration, cell adhesion, and tissue morphogenesis. Netrin and netrin receptor expression have previously been shown to be disrupted in invasive tumors, including glioblastoma. We determined that the human glioblastoma cell lines U87, U343, and U373 all express neogenin, UNC5 homologues, and netrin-1 or netrin-3, but only U87 cells express DCC. Using transfilter migration assays, we demonstrate DCC-dependent chemoattractant migration of U87 cells up a gradient of netrin-1. In contrast, U343 and U373 cells, which do not express DCC, were neither attracted nor repelled. Ectopic expression of DCC by U343 and U373 cells resulted in these cells becoming competent to respond to a gradient of netrin-1 as a chemoattractant, and also slowed their rate of spontaneous migration. Here, in addition to netrins' well-characterized chemotropic activity, we demonstrate an autocrine function for netrin-1 and netrin-3 in U87 and U373 cells that slows migration. We provide evidence that netrins promote the maturation of focal complexes, structures associated with cell movement, into focal adhesions. Consistent with this, netrin, DCC, and UNC5 homologues were associated with focal adhesions, but not focal complexes. Disrupting netrin or DCC function did not alter cell proliferation or survival. Our findings provide evidence that DCC can slow cell migration, and that neogenin and UNC5 homologues are not sufficient to substitute for DCC function in these cells. Furthermore, we identify a role for netrins as autocrine inhibitors of cell motility that promote focal adhesion formation. These findings suggest that disruption of netrin signalling may disable a mechanism that normally restrains inappropriate cell migration.
Collapse
|
19
|
Lai Wing Sun K, Correia JP, Kennedy TE. Netrins: versatile extracellular cues with diverse functions. Development 2011; 138:2153-69. [PMID: 21558366 DOI: 10.1242/dev.044529] [Citation(s) in RCA: 329] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Netrins are secreted proteins that were first identified as guidance cues, directing cell and axon migration during neural development. Subsequent findings have demonstrated that netrins can influence the formation of multiple tissues, including the vasculature, lung, pancreas, muscle and mammary gland, by mediating cell migration, cell-cell interactions and cell-extracellular matrix adhesion. Recent evidence also implicates the ongoing expression of netrins and netrin receptors in the maintenance of cell-cell organisation in mature tissues. Here, we review the mechanisms involved in netrin signalling in vertebrate and invertebrate systems and discuss the functions of netrin signalling during the development of neural and non-neural tissues.
Collapse
Affiliation(s)
- Karen Lai Wing Sun
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | | | | |
Collapse
|
20
|
von Hilchen CM, Hein I, Technau GM, Altenhein B. Netrins guide migration of distinct glial cells in the Drosophila embryo. Development 2010; 137:1251-62. [DOI: 10.1242/dev.042853] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Development of the nervous system and establishment of complex neuronal networks require the concerted activity of different signalling events and guidance cues, which include Netrins and their receptors. In Drosophila, two Netrins are expressed during embryogenesis by cells of the ventral midline and serve as attractant or repellent cues for navigating axons. We asked whether glial cells, which are also motile, are guided by similar cues to axons, and analysed the influence of Netrins and their receptors on glial cell migration during embryonic development. We show that in Netrin mutants, two distinct populations of glial cells are affected: longitudinal glia (LG) fail to migrate medially in the early stages of neurogenesis, whereas distinct embryonic peripheral glia (ePG) do not properly migrate laterally into the periphery. We further show that early Netrin-dependent guidance of LG requires expression of the receptor Frazzled (Fra) already in the precursor cell. At these early stages, Netrins are not yet expressed by cells of the ventral midline and we provide evidence for a novel Netrin source within the neurogenic region that includes neuroblasts. Later in development, most ePG transiently express uncoordinated 5 (unc5) during their migratory phase. In unc5 mutants, however, two of these cells in particular exhibit defective migration and stall in, or close to, the central nervous system. Both phenotypes are reversible in cell-specific rescue experiments, indicating that Netrin-mediated signalling via Fra (in LG) or Unc5 (in ePG) is a cell-autonomous effect.
Collapse
Affiliation(s)
| | - Irina Hein
- Institute of Genetics, University of Mainz, Saarstrasse 21, D-55122 Mainz, Germany
| | - Gerhard M. Technau
- Institute of Genetics, University of Mainz, Saarstrasse 21, D-55122 Mainz, Germany
| | - Benjamin Altenhein
- Institute of Genetics, University of Mainz, Saarstrasse 21, D-55122 Mainz, Germany
| |
Collapse
|
21
|
Dorsten JN, Varughese BE, Karmo S, Seeger MA, VanBerkum MFA. In the absence of frazzled over-expression of Abelson tyrosine kinase disrupts commissure formation and causes axons to leave the embryonic CNS. PLoS One 2010; 5:e9822. [PMID: 20352105 PMCID: PMC2843715 DOI: 10.1371/journal.pone.0009822] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 02/27/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In the Drosophila embryonic nerve cord, the formation of commissures require both the chemoattractive Netrin receptor Frazzled (Fra) and the Abelson (Abl) cytoplasmic tyrosine kinase. Abl binds to the cytoplasmic domain of Fra and loss-of-function mutations in abl enhance fra-dependent commissural defects. To further test Abl's role in attractive signaling, we over-expressed Abl in Fra mutants anticipating rescue of commissures. METHODOLOGY/PRINCIPAL FINDINGS The Gal4-UAS system was used to pan-neurally over-express Abl in homozygous fra embryos. Surprisingly, this led to a significant decrease in both posterior and anterior commissure formation and induced some commissural and longitudinal axons to project beyond the CNS/PNS border. Re-expressing wild-type Fra, or Fra mutants with a P-motif deleted, revert both commissural and exiting phenotypes, indicating that Fra is required but not a specific P-motif. This is supported by S2 cell experiments demonstrating that Abl binds to Fra independent of any specific P-motif and that Fra continues to be phosphorylated when individual P-motifs are removed. Decreasing midline repulsion by reducing Robo signaling had no effect on the Abl phenotype and the phenotypes still occur in a Netrin mutant. Pan-neural over-expression of activated Rac or Cdc42 in a fra mutant also induced a significant loss in commissures, but axons did not exit the CNS. CONCLUSION/SIGNIFICANCE Taken together, these data suggest that Fra activity is required to correctly regulate Abl-dependent cytoskeletal dynamics underlying commissure formation. In the absence of Fra, increased Abl activity appears to be incorrectly utilized downstream of other guidance receptors resulting in a loss of commissures and the abnormal projections of some axons beyond the CNS/PNS border.
Collapse
Affiliation(s)
- Joy N. Dorsten
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Bridget E. Varughese
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Stephanie Karmo
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Mark A. Seeger
- Department of Molecular Genetics and Center for Molecular Neurobiology, Ohio State University, Columbus, Ohio, United States of America
| | - Mark F. A. VanBerkum
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW The dependence receptor notion has recently seen an interesting development. From a basic cell biology concept, which proposes that some transmembrane receptors can be active in the absence of their ligand and induce in the setting apoptosis, recent observations have provided new hope for the development of alternative targeted therapies. The purpose of this review is to show, with the example of netrin-1 dependence receptors, the path from cell biology to promising anticancer-targeted therapy. RECENT FINDINGS The dependence receptors Deleted in Colorectal Cancer and Unc-5 homolog that bind netrin-1 had been implicated in nervous system development as they participate in neuronal navigation. They were also implicated beyond the developing brain with roles in angiogenesis regulation and homeostasis of various tissues. However, these receptors were shown to trigger apoptosis in the absence of netrin-1 and, as such, act as tumor suppressors. Recent data support the view that Deleted in Colorectal Cancer/Unc-5 homolog proapoptotic signals are indeed a safeguard mechanism regulating tumor growth and metastasis. SUMMARY In this review, we will develop the different data supporting the view that a selective advantage for a tumor is to inactivate this dependence receptor's proapoptotic signal and will describe a putative therapeutic approach that is to reactivate this death signaling in tumor cells.
Collapse
|
23
|
Autoinhibition of UNC5b Revealed by the Cytoplasmic Domain Structure of the Receptor. Mol Cell 2009; 33:692-703. [DOI: 10.1016/j.molcel.2009.02.016] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Revised: 01/26/2009] [Accepted: 02/17/2009] [Indexed: 11/20/2022]
|
24
|
Heinonen TYK, Maki M. Peters'-plus syndrome is a congenital disorder of glycosylation caused by a defect in the beta1,3-glucosyltransferase that modifies thrombospondin type 1 repeats. Ann Med 2009; 41:2-10. [PMID: 18720094 DOI: 10.1080/07853890802301975] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Genetic defects in glycosyltransferases are responsible for a number of developmental defects and diseases known as congenital disorders of glycosylation (CDGs). Peters'-plus syndrome, a rare autosomal recessive disorder, is now known to be a CDG. This syndrome is characterized by a specific malformation of the eye that includes corneal opaqueness and iridocorneal adhesions (Peters' anomaly). Affected individuals are short in stature and have short limbs, and may have cleft lip/palate, defects in the central nervous system, heart, and various other organs. The phenotype varies in severity, ranging from death in early childhood to a general delay in growth and development, and is often associated with mental retardation. The mutations responsible for Peters'-plus syndrome inactivate a beta1,3-glucosyltransferase whose function is to add a glucose moiety to O-linked fucose, forming a rare glucose-beta1,3-fucose disaccharide. This disaccharide modification is specific to thrombospondin type 1 repeats (TSRs), domains found in extracellular proteins that function in cell-cell and cell-matrix interactions and signalling. Some ninety human proteins contain TSRs, but thus far the disaccharide has been demonstrated on only thrombospondin 1, properdin, F-spondin, ADAMTS-13, and ADAMTSL-1. These proteins perform essential functions in embryonic development, tissue remodelling, angiogenesis, neurogenesis, and complement activation. Identification of the beta1,3-glucosyltransferase and its substrate proteins is a key step towards understanding their roles in human development, and to uncovering the molecular and cellular mechanisms underlying the clinical manifestations of Peters'-plus syndrome.
Collapse
Affiliation(s)
- Taisto Y K Heinonen
- Paediatric Research Centre, University of Tampere and Tampere University Hospital, Tampere, Finland
| | | |
Collapse
|
25
|
Roperch JP, El Ouadrani K, Hendrix A, Emami S, De Wever O, Melino G, Gespach C. Netrin-1 induces apoptosis in human cervical tumor cells via the TAp73alpha tumor suppressor. Cancer Res 2008; 68:8231-9. [PMID: 18922894 DOI: 10.1158/0008-5472.can-08-1483] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Netrins and their receptors deleted in colon cancer (DCC), neogenin, UNC5, and integrins are involved in axon guidance, epithelial morphogenesis, vascular pattering, cancer cell survival, invasion, tumor angiogenesis, and metastasis. Here, we considered the possible contribution of the p53-related apoptosis mediators p63 and p73 in the mechanisms underlying the antagonism between netrin-1 and DCC at the cell death control. We have showed that ectopic expression and external addition of netrin-1 in HeLa and HEK-293 cells with inactive p53 lead to impaired cell viability and induction of apoptosis. These responses were associated with up-regulation of the proapoptotic protein TAp73alpha, decreased Bcl-2/Bax ratio, and caspase-3 cleavage, with no change in protein levels of the antiapoptotic NH(2)-terminal-truncated DeltaNp73alpha isoform, p73 adapter Yap-1 and p73 E3 ubiquitin ligase Itch, and p63, as well as the transcripts encoding p63, TAp73alpha, and DeltaNp73alpha. However, the proteasome inhibitor MG132 potentiated, while DCC counteracted, netrin-1-induced TAp73alpha. Consistently, netrin-1 expression correlated with stabilization of the TAp73alpha protein and lower levels of TAp73alpha ubiquitination that was conversely enhanced by DCC, in a netrin-dependent manner. Our data indicate that netrin-1 selectively up-regulates TAp73alpha by preventing its ubiquitination and degradation. Targeted repression of p73alpha by shRNA reversed TAp73alpha and the apoptosis induced by netrin-1, and exacerbated the growth of HeLa tumor xenografts. Apoptosis induced by cisplatin was markedly enhanced in netrin-1 or DCC-expressing cells. Collectively, our data reveal that the transcriptionally active TAp73alpha tumor suppressor is implicated in the apoptosis induced by netrin-1 in a p53-independent and DCC/ubiquitin-proteasome dependent manner.
Collapse
Affiliation(s)
- Jean-Pierre Roperch
- Institut National de la Sante, Recherche Medicale U673 Molecular and Clinical Oncology of Solid Tumors, Université Pierre et Marie Curie-Paris 6, Hôpital Saint-Antoine, Paris, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Bechara A, Nawabi H, Moret F, Yaron A, Weaver E, Bozon M, Abouzid K, Guan JL, Tessier-Lavigne M, Lemmon V, Castellani V. FAK-MAPK-dependent adhesion disassembly downstream of L1 contributes to semaphorin3A-induced collapse. EMBO J 2008; 27:1549-62. [PMID: 18464795 PMCID: PMC2426724 DOI: 10.1038/emboj.2008.86] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 04/04/2008] [Indexed: 02/06/2023] Open
Abstract
Axonal receptors for class 3 semaphorins (Sema3s) are heterocomplexes of neuropilins (Nrps) and Plexin-As signalling coreceptors. In the developing cerebral cortex, the Ig superfamily cell adhesion molecule L1 associates with Nrp1. Intriguingly, the genetic removal of L1 blocks axon responses of cortical neurons to Sema3A in vitro despite the expression of Plexin-As in the cortex, suggesting either that L1 substitutes for Plexin-As or that L1 and Plexin-A are both required and mediate distinct roles. We report that association of Nrp1 with L1 but not Plexin-As mediates the recruitment and activation of a Sema3A-induced focal adhesion kinase-mitogen-activated protein kinase cascade. This signalling downstream of L1 is needed for the disassembly of adherent points formed in growth cones and subsequently their collapse response to Sema3A. Plexin-As and L1 are coexpressed and present in common complexes in cortical neurons and both dominant-negative forms of Plexin-A and L1 impair their response to Sema3A. Consistently, Nrp1-expressing cortical projections are defective in mice lacking Plexin-A3, Plexin-A4 or L1. This reveals that specific signalling activities downstream of L1 and Plexin-As cooperate for mediating the axon guidance effects of Sema3A.
Collapse
Affiliation(s)
- Ahmad Bechara
- Université de Lyon, Centre de Génétique Moléculaire et Cellulaire (CGMC) UMR CNRS 5534, Villeurbanne, France
| | - Homaira Nawabi
- Université de Lyon, Centre de Génétique Moléculaire et Cellulaire (CGMC) UMR CNRS 5534, Villeurbanne, France
| | - Frédéric Moret
- Université de Lyon, Centre de Génétique Moléculaire et Cellulaire (CGMC) UMR CNRS 5534, Villeurbanne, France
| | - Avraham Yaron
- University of San Francisco, Genentech Inc., San Francisco, CA, USA
| | - Eli Weaver
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA
| | - Muriel Bozon
- Université de Lyon, Centre de Génétique Moléculaire et Cellulaire (CGMC) UMR CNRS 5534, Villeurbanne, France
| | - Karima Abouzid
- Université de Lyon, Centre de Génétique Moléculaire et Cellulaire (CGMC) UMR CNRS 5534, Villeurbanne, France
| | | | | | - Vance Lemmon
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA
| | - Valérie Castellani
- Université de Lyon, Centre de Génétique Moléculaire et Cellulaire (CGMC) UMR CNRS 5534, Villeurbanne, France
| |
Collapse
|
27
|
Dorsten JN, Kolodziej PA, VanBerkum MFA. Frazzled regulation of myosin II activity in the Drosophila embryonic CNS. Dev Biol 2007; 308:120-32. [PMID: 17568577 DOI: 10.1016/j.ydbio.2007.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 05/10/2007] [Accepted: 05/14/2007] [Indexed: 12/30/2022]
Abstract
Frazzled (Fra) is a chemoattractive guidance receptor regulating the cytoskeletal dynamics underlying growth cone steering at the Drosophila embryonic midline. Here, by genetically evaluating the role of Rho GTPases in Fra signaling in vivo, we uncover a Rho-dependent pathway apparently regulating conventional myosin II activity. Midline crossing errors induced by expressing activated Cdc42(v12) or Rac(v12) are suppressed by a heterozygous loss of fra(4) signaling but, in a Fra(wt) gain-of-function condition, no interaction is detected. In contrast, the frequency of crossovers is enhanced approximately 5-fold when Fra(wt) is co-expressed with activated Rho(v14) and this interaction specifically requires the cytoplasmic P3 motif of Fra. Expression of Rho(v14) and activated MLCK (ctMLCK) synergistically increase ectopic crossovers and both require phosphorylation of the regulatory light chain (Sqh) of myosin II. Abelson tyrosine kinase may also help regulate myosin II activity. Heterozygous abl(4) abolishes the midline crossing errors induced by ctMLCK alone or in combination with Fra(wt); suppression of Rho(v14) crossovers is not observed. Interestingly, an interaction between Fra and an activated Abl (Bcr-Abl) also specifically requires the P3 motif. Therefore, the P3 motif of Frazzled appears to initiate Rho and Abl dependent signals to directly or indirectly regulate myosin II activity in growth cones.
Collapse
Affiliation(s)
- Joy N Dorsten
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | | |
Collapse
|
28
|
Round J, Stein E. Netrin signaling leading to directed growth cone steering. Curr Opin Neurobiol 2007; 17:15-21. [PMID: 17254765 DOI: 10.1016/j.conb.2007.01.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Accepted: 01/11/2007] [Indexed: 10/23/2022]
Abstract
In the developing nervous system, nerve cells and axons respond to various attractive and repulsive guidance cues while traveling to their final destination. Netrins are bifunctional guidance cues that attract several classes of axons but repel others. The response of an axon to netrins is dictated by the composition of netrin receptors on the cell surface and the internal state of the growth cone. Recent analyses have identified several signal transduction pathways that contribute to netrin-mediated guidance. A model emerges in which tyrosine phosphorylation, phosphatidylinositol signaling and regulation by Rho GTPases act in concert to trigger extension of axons and turning of growth cones in response to Netrin1.
Collapse
Affiliation(s)
- Jennifer Round
- Department of Molecular, Cellular and Developmental Biology and Cell Biology, Yale University, 219 Prospect Street, Kline Biology Tower-232, New Haven, CT 06520, USA
| | | |
Collapse
|
29
|
Baker KA, Moore SW, Jarjour AA, Kennedy TE. When a diffusible axon guidance cue stops diffusing: roles for netrins in adhesion and morphogenesis. Curr Opin Neurobiol 2006; 16:529-34. [PMID: 16935486 DOI: 10.1016/j.conb.2006.08.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 08/17/2006] [Indexed: 10/24/2022]
Abstract
Netrins are a small family of secreted proteins that are best known for their role as secreted long-range chemotropic guidance cues. Extracellular gradients of netrin protein, established by diffusion, are thought to direct cell and axon migration during neural development. In addition to this long-range role, recent findings provide increasing support for short-range functions, in which secreted netrin protein remains closely associated with its cellular source. Emerging evidence for short-range actions of netrins suggests that they contribute to tissue morphogenesis by regulating cell-cell and cell-matrix adhesion.
Collapse
Affiliation(s)
- K Adam Baker
- Centre for Neuronal Survival, Montréal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, H3A 2B4, Canada
| | | | | | | |
Collapse
|
30
|
Martín M, Simon-Assmann P, Kedinger M, Martin M, Mangeat P, Real FX, Fabre M. DCC regulates cell adhesion in human colon cancer derived HT-29 cells and associates with ezrin. Eur J Cell Biol 2006; 85:769-83. [PMID: 16762451 DOI: 10.1016/j.ejcb.2006.02.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 02/17/2006] [Accepted: 02/21/2006] [Indexed: 10/24/2022] Open
Abstract
The deleted in colorectal cancer (DCC) gene encodes a 170- to 190-kDa protein of the Immunoglobulin superfamily. Firstly identified as a tumor suppressor gene in human colorectal carcinomas, the main function for DCC has been described in the nervous system as part of a receptor complex for netrin-1. Moreover, roles in mucosecretory cell differentiation and as inducer of apoptosis have also been reported. DCC knockout mice supported a crucial role for this gene in axonal migration, yet questioned its implication in tumor suppression and mucosecretory differentiation. The work presented here demonstrates that a DCC-transfected HT-29 colonic human cell line (HT-29/DCC) displays an increase in cell-cell adhesion to the detriment of cell-matrix interactions: HT-29/DCC cells exhibit more and better-structured desmosomes while focal adhesions and hemidesmosomes are disrupted. HT-29/DCC cells show no changes in adherent junctions but upon treatment with TPA, HT-29/DCC cells show resistance to scattering, and maintain E-cadherin in the membrane. In addition, the actin cytoskeleton is affected in HT-29/DCC cells: stress fibers are disrupted while cortical actin remains intact. We identified a putative ERM-M (ezrin/radixin/moesin and merlin) binding domain in the juxtamembrane region of the DCC protein. In vitro pull-down assays demonstrate the interaction of the DCC cytoplasmic domain with the N-terminal region of ezrin and merlin, and co-immunoprecipitation assays in transiently DCC-transfected COS-1 cells showed that the interaction between DCC and ezrin also takes place in vivo. Altogether, our results suggest that DCC could regulate cell adhesion and migration through its association with ERM-M proteins.
Collapse
Affiliation(s)
- Mercè Martín
- Unitat de Biologia Cel.lular i Molecular, Institut Municipal d'Investigació Mèdica, Universitat Pompeu Fabra, Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|