1
|
Zhu B, Lu Y, Kang X, Hui L, Ding Y, Liang L, Yang Z. Single-Cell Proteomics Uncovers Dual Traits of Dermal Sheath Cells in Wound Repair. Adv Wound Care (New Rochelle) 2025. [PMID: 39878130 DOI: 10.1089/wound.2024.0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Wound healing is a dynamic process involving multiple cell types and signaling pathways. Dermal sheath cells (DSCs), residing surrounding hair follicles, play a critical role in tissue repair, yet their regulatory mechanisms remain unclear. This study used single-cell proteomics with the AcanCreER;R26LSL-tdTomato-DTR mouse model to explore DSC function across different healing stages. All animal procedures were conducted in accordance with the Animal Research: Reporting of In Vivo Experiments guidelines. Gene set enrichment analysis (GSEA) and temporal clustering (Mfuzz) were employed to reveal dynamic functional shifts. GSEA identified enriched gene sets related to interferon-gamma response, inflammatory response, ultraviolet response, myogenesis, and xenobiotic metabolism. Temporal clustering revealed eight distinct clusters: clusters associated with the early contracting and proliferative phases were linked to metabolic activation and oxidative stress, while clusters from the later remodeling phase emphasized extracellular matrix remodeling and structural reorganization. The dynamic expression of epithelial-mesenchymal transition-related genes and keratins supported DSCs' dual epithelial and mesenchymal traits. Additionally, keratins, collagens, integrins, and actin proteins emerged as promising markers or signature molecules for DSCs. This study reveals DSCs' dual traits during wound repair, providing a basis for therapies to enhance healing.
Collapse
Affiliation(s)
- Bing Zhu
- Translational Medicine Center, Baotou Central Hospital (Baotou Clinical Medical College, Affiliated to Inner Mongolia Medical University), Baotou, China
| | - Yaojun Lu
- Translational Medicine Center, Baotou Central Hospital (Baotou Clinical Medical College, Affiliated to Inner Mongolia Medical University), Baotou, China
| | - Xinyue Kang
- Translational Medicine Center, Baotou Central Hospital (Baotou Clinical Medical College, Affiliated to Inner Mongolia Medical University), Baotou, China
| | - Lihua Hui
- Translational Medicine Center, Baotou Central Hospital (Baotou Clinical Medical College, Affiliated to Inner Mongolia Medical University), Baotou, China
| | - Yongkang Ding
- Translational Medicine Center, Baotou Central Hospital (Baotou Clinical Medical College, Affiliated to Inner Mongolia Medical University), Baotou, China
| | - Lu Liang
- Translational Medicine Center, Baotou Central Hospital (Baotou Clinical Medical College, Affiliated to Inner Mongolia Medical University), Baotou, China
| | - Zhigang Yang
- Translational Medicine Center, Baotou Central Hospital (Baotou Clinical Medical College, Affiliated to Inner Mongolia Medical University), Baotou, China
| |
Collapse
|
2
|
Al Mamun A, Shao C, Geng P, Wang S, Xiao J. Recent advances in the role of neuroregulation in skin wound healing. BURNS & TRAUMA 2025; 13:tkae072. [PMID: 39872039 PMCID: PMC11770601 DOI: 10.1093/burnst/tkae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 01/29/2025]
Abstract
Neuroregulation during skin wound healing involves complex interactions between the nervous system and intricate tissue repair processes. The skin, the largest organ, depends on a complex system of nerves to manage responses to injury. Recent research has emphasized the crucial role of neuroregulation in maximizing wound healing outcomes. Recently, researchers have also explained the interactive contact between the peripheral nervous system and skin cells during the different phases of wound healing. Neurotransmitters and neuropeptides, once observed as simple signalling molecules, have since been recognized as effective regulators of inflammation, angiogenesis, and cell proliferation. The significance of skin innervation and neuromodulators is underscored by the delayed wound healing observed in patients with diabetes and the regenerative capabilities of foetal skin. Foetal skin regeneration is influenced by the neuroregulatory environment, immature immune system, abundant growth factors, and increased pluripotency of cells. Foetal skin cells exhibit greater flexibility and specialized cell types, and the extracellular matrix composition promotes regeneration. The extracellular matrix composition of foetal skin promotes regeneration, making it more capable than adult skin because neuroregulatory signals affect skin regeneration. The understanding of these systems can facilitate the development of therapeutic strategies to alter the nerve supply to the skin to enhance the process of wound healing. Neuroregulation is being explored as a potential therapeutic strategy for enhancing skin wound repair. Bioelectronic strategies and neuromodulation techniques can manipulate neural signalling, optimize the neuroimmune axis, and modulate inflammation. This review describes the function of skin innervation in wound healing, emphasizing the importance of neuropeptides released by sensory and autonomic nerve fibres. This article discusses significant discoveries related to neuroregulation and its impact on skin wound healing.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang 323000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
3
|
Singh P, Sharma S, Sharma PK, Alam A. Topical Anti-ulcerogenic Effect of the Beta-adrenergic Blockers on Diabetic Foot Ulcers: Recent Advances and Future Prospectives. Curr Diabetes Rev 2024; 20:23-37. [PMID: 37867269 DOI: 10.2174/0115733998249061231009093006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/01/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Patients with diabetes suffer from major complications like Diabetic Retinopathy, Diabetic Coronary Artery Disease, and Diabetic Foot ulcers (DFUs). Diabetes complications are a group of ailments whose recovery time is especially delayed, irrespective of the underlying reason. The longer duration of wound healing enhances the probability of problems like sepsis and amputation. The delayed healing makes it more critical for research focus. By understanding the molecular pathogenesis of diabetic wounds, it is quite easy to target the molecules involved in the healing of wounds. Recent research on beta-adrenergic blocking drugs has revealed that these classes of drugs possess therapeutic potential in the healing of DFUs. However, because the order of events in defective healing is adequately defined, it is possible to recognize moieties that are currently in the market that are recognized to aim at one or several identified molecular processes. OBJECTIVE The aim of this study was to explore some molecules with different therapeutic categories that have demonstrated favorable effects in improving diabetic wound healing, also called the repurposing of drugs. METHOD Various databases like PubMed/Medline, Google Scholar and Web of Science (WoS) of all English language articles were searched, and relevant information was collected regarding the role of beta-adrenergic blockers in diabetic wounds or diabetic foot ulcers (DFUs) using the relevant keywords for the literature review. RESULT The potential beta-blocking agents and their mechanism of action in diabetic foot ulcers were studied, and it was found that these drugs have a profound effect on diabetic foot ulcer healing as per reported literatures. CONCLUSION There is a need to move forward from preclinical studies to clinical studies to analyze clinical findings to determine the effectiveness and safety of some beta-antagonists in diabetic foot ulcer treatment.
Collapse
Affiliation(s)
- Prateek Singh
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shweta Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
4
|
Jia S, Wang X, Wang G, Wang X. Mechanism and application of β-adrenoceptor blockers in soft tissue wound healing. Med Res Rev 2024; 44:422-452. [PMID: 37470332 DOI: 10.1002/med.21984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 06/01/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Soft tissue damage stimulates sympathetic nerves to release large amounts of catecholamine hormones which bind to β-adrenergic receptors (β-ARs) on the cell membrane surface. It activates the downstream effector molecules and impairs soft tissue wound healing. β-blockers specifically inhibit β-ARs activation in acute/chronic skin lesions and ulcerative hemangiomas. They also accelerate soft tissue wound healing by shortening the duration of inflammation, speeding keratinocyte migration and reepithelialization, promoting wound contraction and angiogenesis, and inhibiting bacterial virulence effects. In addition, β-blockers shorten wound healing periods in patients with severe thermal damage by reducing the hypermetabolic response. While β-blockers promote/inhibit corneal epithelial cell regeneration and restores limbal stem/progenitor cells function, it could well accelerate/delay corneal wound healing. Given these meaningful effects, a growing number of studies are focused on examining the efficacy and safety of β-blockers in soft tissue wound repair, including acute and chronic wounds, severe thermal damage, ulcerated infantile hemangioma, corneal wounds, and other soft tissue disorders. However, an intensive investigation on their acting mechanisms is imperatively needed. The purpose of this article is to summerize the roles of β-blockers in soft tissue wound healing and explore their clinical applications.
Collapse
Affiliation(s)
- Shasha Jia
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
- School of Stomatology, Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Xueya Wang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
- School of Stomatology, Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Guowei Wang
- Department of Stomatology, No. 971 Hospital of the Chinese Navy, Qingdao, Shandong, People's Republic of China
| | - Xiaojing Wang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
- School of Stomatology, Qingdao University, Qingdao, Shandong, People's Republic of China
| |
Collapse
|
5
|
Ersanli C, Tzora A, Voidarou C(C, Skoufos S, Zeugolis DI, Skoufos I. Biodiversity of Skin Microbiota as an Important Biomarker for Wound Healing. BIOLOGY 2023; 12:1187. [PMID: 37759587 PMCID: PMC10525143 DOI: 10.3390/biology12091187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
Cutaneous wound healing is a natural and complex repair process that is implicated within four stages. However, microorganisms (e.g., bacteria) can easily penetrate through the skin tissue from the wound bed, which may lead to disbalance in the skin microbiota. Although commensal and pathogenic bacteria are in equilibrium in normal skin, their imbalance in the wound area can cause the delay or impairment of cutaneous wounds. Moreover, skin microbiota is in constant crosstalk with the immune system and epithelial cells, which has significance for the healing of a wound. Therefore, understanding the major bacteria species in the cutaneous wound as well as their communication with the immune system has gained prominence in a way that allows for the emergence of a new perspective for wound healing. In this review, the major bacteria isolated from skin wounds, the role of the crosstalk between the cutaneous microbiome and immune system to heal wounds, the identification techniques of these bacteria populations, and the applied therapies to manipulate the skin microbiota are investigated.
Collapse
Affiliation(s)
- Caglar Ersanli
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.E.); (I.S.)
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.V.)
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular and Biomedical Research, School of Mechanical and Materials Engineering, University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Athina Tzora
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.V.)
| | - Chrysoula (Chrysa) Voidarou
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.V.)
| | - Stylianos Skoufos
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.V.)
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular and Biomedical Research, School of Mechanical and Materials Engineering, University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Ioannis Skoufos
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.E.); (I.S.)
| |
Collapse
|
6
|
Liptan G. The widespread myofascial pain of fibromyalgia is sympathetically maintained and immune mediated. J Bodyw Mov Ther 2023; 35:394-399. [PMID: 37330799 DOI: 10.1016/j.jbmt.2023.04.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/07/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
The recent demonstration of antibody-induced passive transfer of pain hypersensitivity from fibromyalgia (FM) subjects to mice brings renewed focus to the role of the immune system in generating FM pain. However, this data must be interpreted in the context of known myofascial pathology in FM, which includes impaired muscle relaxation and elevated intramuscular pressure. In addition, FM fascial biopsies demonstrate elevated inflammatory and oxidative stress markers and increased endomysial collagen deposition. This article proposes a unifying hypothesis for FM pain generation that connects known muscle and fascia abnormalities with the newly discovered role of antibodies. FM is characterized by persistent sympathetic nervous system hyperactivity which results in both pathologic muscle tension and an impaired tissue healing response. Although autoantibodies play a key role in normal tissue healing, sympathetic nervous system hyperactivity impairs the resolution of inflammation, and promotes autoimmunity and excessive autoantibody production. These autoantibodies can then bind with myofascial-derived antigen to create immune complexes, which are known to trigger neuronal hyperexcitability in the dorsal root ganglion. These hyperexcited sensory neurons activate the surrounding satellite glial cells and spinal microglia leading to pain hypersensitivity and central sensitization. Although immune system modulation may become an important treatment tool in FM, direct manual treatments that lessen myofascial inflammation and tension must not be neglected. Myofascial release therapy significantly reduces FM pain, with residual benefits even after the conclusion of treatment. Self-myofascial release techniques and gentle stretching programs also ease fibromyalgia pain, as do trigger point injections and dry-needling.
Collapse
|
7
|
Sympathetic System in Wound Healing: Multistage Control in Normal and Diabetic Skin. Int J Mol Sci 2023; 24:ijms24032045. [PMID: 36768369 PMCID: PMC9916402 DOI: 10.3390/ijms24032045] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
In this review, we discuss sympathetic regulation in normal and diabetic wound healing. Experimental denervation studies have confirmed that sympathetic nerve endings in skin have an important and complex role in wound healing. Vasoconstrictor neurons secrete norepinephrine (NE) and neuropeptide Y (NPY). Both mediators decrease blood flow and interact with inflammatory cells and keratinocytes. NE acts in an ambiguous way depending on receptor type. Beta2-adrenoceptors could be activated near sympathetic endings; they suppress inflammation and re-epithelialization. Alpha1- and alpha2-adrenoceptors induce inflammation and activate keratinocytes. Sudomotor neurons secrete acetylcholine (ACh) and vasoactive intestinal peptide (VIP). Both induce vasodilatation, angiogenesis, inflammation, keratinocytes proliferation and migration. In healthy skin, all effects are important for successful healing. In treatment of diabetic ulcers, mediator balance could be shifted in different ways. Beta2-adrenoceptors blockade and nicotinic ACh receptors activation are the most promising directions in treatment of diabetic ulcers with neuropathy, but they require further research.
Collapse
|
8
|
Wagener N, Lehmann W, Weiser L, Jäckle K, Di Fazio P, Schilling AF, Böker KO. Psychostimulants Modafinil, Atomoxetine and Guanfacine Impair Bone Cell Differentiation and MSC Migration. Int J Mol Sci 2022; 23:10257. [PMID: 36142172 PMCID: PMC9499654 DOI: 10.3390/ijms231810257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is one of the most common worldwide mental disorders in children, young and adults. If left untreated, the disorder can continue into adulthood. The abuse of ADHD-related drugs to improve mental performance for studying, working and everyday life is also rising. The potentially high number of subjects with controlled or uncontrolled use of such substances increases the impact of possible side effects. It has been shown before that the early ADHD drug methylphenidate influences bone metabolism negatively. This study focused on the influence of three more recent cognitive enhancers, modafinil, atomoxetine and guanfacine, on the differentiation of mesenchymal stem cells to osteoblasts and on their cell functions, including migration. Human mesenchymal stem cells (hMSCs) were incubated with a therapeutic plasma dosage of modafinil, atomoxetine and guanfacine. Gene expression analyses revealed a high beta-2 adrenoreceptor expression in hMSC, suggesting it as a possible pathway to stimulate action. In bone formation assays, all three cognitive enhancers caused a significant decrease in the mineralized matrix and an early slight reduction of cell viability without triggering apoptosis or necrosis. While there was no effect of the three substances on early differentiation, they showed differing effects on the expression of osterix (OSX), receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) in the later stages of osteoblast development, suggesting alternative modes of action. All three substances significantly inhibited hMSC migration. This effect could be rescued by a selective beta-blocker (Imperial Chemical Industries ICI-118,551) in modafinil and atomoxetine, suggesting mediation via beta-2 receptor stimulation. In conclusion, modafinil, atomoxetine and guanfacine negatively influence hMSC differentiation to bone-forming osteoblasts and cell migration through different intracellular pathways.
Collapse
Affiliation(s)
- Nele Wagener
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch-Str. 40, 37099 Göttingen, Germany
| | - Wolfgang Lehmann
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch-Str. 40, 37099 Göttingen, Germany
| | - Lukas Weiser
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch-Str. 40, 37099 Göttingen, Germany
| | - Katharina Jäckle
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch-Str. 40, 37099 Göttingen, Germany
| | - Pietro Di Fazio
- Department of Visceral Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Arndt F. Schilling
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch-Str. 40, 37099 Göttingen, Germany
| | - Kai O. Böker
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch-Str. 40, 37099 Göttingen, Germany
| |
Collapse
|
9
|
Signaling Pathways Associated with Chronic Wound Progression: A Systems Biology Approach. Antioxidants (Basel) 2022; 11:antiox11081506. [PMID: 36009225 PMCID: PMC9404828 DOI: 10.3390/antiox11081506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Previously we have shown that several oxidative stress-driven pathways in cutaneous chronic wounds are dysregulated in the first 48 h post-wounding. Here, we performed an RNASeq analysis of tissues collected up to day 20 after wounding, when we have determined full chronicity is established. Weighted Gene Correlation Network Analysis was performed in R segregating the genes into 14 modules. Genes in the modules significantly correlated (p < 0.05) to early and full chronicity were used for pathway analysis using pathfindR. In early chronicity, we observed enrichment of several pathways. Dysregulation of Ephrin/Eph signaling leads to growth cone collapse and impairs neuronal regeneration. Adra2b and Adra2a overexpression in early and full chronicity, respectively, decreased cAMP production and impaired re-epithelialization and granulation tissue formation. Several pathways involving a Smooth-muscle-actin (Acta1) were also enriched with Acta1 overexpression contributing to impaired angiogenesis. During full chronicity, the ‘JAK-STAT’ pathway was suppressed undermining host defenses against infection. Wnt signaling was also suppressed, impairing re-epithelialization and granulation tissue formation. Biomarkers of cancer such as overexpression of SDC1 and constitutive activation of ErbB2/HER2 were also identified. In conclusion, we show that during progression to full chronicity, numerous signaling pathways are dysregulated, including some related to carcinogenesis, suggesting that chronic wounds behave much like cancer. Experimental verification in vivo could identify candidates for treatment of chronic wounds.
Collapse
|
10
|
Priyanka HP, Thiyagaraj A, Krithika G, Nair RS, Hopper W, ThyagaRajan S. 17β-Estradiol Concentration and Direct β 2-Adrenoceptor Inhibition Determine Estrogen-Mediated Reversal of Adrenergic Immunosuppression. Ann Neurosci 2022; 29:32-52. [PMID: 35875427 PMCID: PMC9305908 DOI: 10.1177/09727531211070541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Sympathetic innervation of lymphoid organs, and the presence of 17β-estradiol (estrogen or E2) and adrenergic receptors (ARs) on lymphocytes, suggests that sympathetic stimulation and hormonal activation may influence immune functions. Purpose: Modeling and simulating these pathways may help to understand the dynamics of neuroendocrine-immune modulation at the cellular and molecular levels. Methods: Dose- and receptor-dependent effects of E2 and AR subtype-specific agonists were established in vitro on lymphocytes from young male Sprague-Dawley rats and were modeled in silico using the MATLAB Simbiology toolbox. Kinetic principles were assigned to define receptor–ligand dynamics, and concentration/time plots were obtained using Ode15s solvers at different time intervals for key regulatory molecules. Comparisons were drawn between in silico and in vitro data for validating the constructed model with sensitivity analysis of key regulatory molecules to assess their individual impacts on the dynamics of the system. Finally, docking studies were conducted with key ligands E2 and norepinephrine (NE) to understand the mechanistic principles underlying their interactions. Results: Adrenergic activation triggered proapoptotic signals, while E2 enhanced survival signals, showing opposing effects as observed in vitro. Treatment of lymphocytes with E2 shows a 10-fold increase in survival signals in a dose-dependent manner. Cyclic adenosine monophosphate (cAMP) activation is crucial for the activation of survival signals through extracellular signal-regulated kinase (p-ERK) and cAMP responsive element binding (p-CREB) protein. Docking studies showed the direct inhibition of ERK by NE and β2-AR by E2 explaining how estrogen signaling overrides NE-mediated immunosuppression in vitro. Conclusion: The cross-talk between E2 and adrenergic signaling pathways determines lymphocyte functions in a receptor subtype and coactivation-dependent manner in health and disease.
Collapse
Affiliation(s)
- Hannah P. Priyanka
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
- Inspire Lab, Institute of Advanced Research in Health Sciences, Tamil Nadu Government Multi Super Specialty Hospital, Chennai, Tamil Nadu, India
| | - A. Thiyagaraj
- Department of Bioinformatics, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - G. Krithika
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras Guindy, Campus, Chennai, Tamil Nadu, India
| | - R. S. Nair
- Inspire Lab, Institute of Advanced Research in Health Sciences, Tamil Nadu Government Multi Super Specialty Hospital, Chennai, Tamil Nadu, India
| | - W. Hopper
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
- Department of Bioinformatics, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - S. ThyagaRajan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
11
|
Tanner MA, Maitz CA, Grisanti LA. Immune cell β 2-adrenergic receptors contribute to the development of heart failure. Am J Physiol Heart Circ Physiol 2021; 321:H633-H649. [PMID: 34415184 PMCID: PMC8816326 DOI: 10.1152/ajpheart.00243.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
β-Adrenergic receptors (βARs) regulate normal and pathophysiological heart function through their impact on contractility. βARs are also regulators of immune function where they play a unique role depending on the disease condition and immune cell type. Emerging evidence suggests an important role for the β2AR subtype in regulating remodeling in the pathological heart; however, the importance of these responses has never been examined. In heart failure, catecholamines are elevated, leading to chronic βAR activation and contributing to the detrimental effects in the heart. We hypothesized that immune cell β2AR plays a critical role in the development of heart failure in response to chronic catecholamine elevations through their regulation of immune cell infiltration. To test this, chimeric mice were generated by performing bone marrow transplant (BMT) experiments using wild-type (WT) or β2AR knockout (KO) donors. WT and β2ARKO BMT mice were chronically administered the βAR agonist isoproterenol. Immune cell recruitment to the heart was examined by histology and flow cytometry. Numerous changes in immune cell recruitment were observed with isoproterenol administration in WT BMT mice including proinflammatory myeloid populations and lymphocytes with macrophages made up the majority of immune cells in the heart and which were absent in β2ARKO BMT animal. β2ARKO BMT mice had decreased cardiomyocyte death, hypertrophy, and interstitial fibrosis following isoproterenol treatment, culminating in improved function. These findings demonstrate an important role for immune cell β2AR expression in the heart's response to chronically elevated catecholamines.NEW & NOTEWORTHY Immune cell β2-adrenergic receptors (β2ARs) are important for proinflammatory macrophage infiltration to the heart in a chronic isoproterenol administration model of heart failure. Mice lacking immune cell β2AR have decreased immune cell infiltration to their heart, primarily proinflammatory macrophage populations. This decrease culminated to decreased cardiac injury with lessened cardiomyocyte death, decreased interstitial fibrosis and hypertrophy, and improved function demonstrating that β2AR regulation of immune responses plays an important role in the heart's response to persistent βAR stimulation.
Collapse
Affiliation(s)
- Miles A Tanner
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Charles A Maitz
- Department of Veterinary Medicine and Surgery, University of Missouri, College of Veterinary Medicine, Columbia, Missouri
| | - Laurel A Grisanti
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
12
|
Hamed O, Joshi R, Michi AN, Kooi C, Giembycz MA. β 2-Adrenoceptor Agonists Promote Extracellular Signal-Regulated Kinase 1/2 Dephosphorylation in Human Airway Epithelial Cells by Canonical, cAMP-Driven Signaling Independently of β-Arrestin 2. Mol Pharmacol 2021; 100:388-405. [PMID: 34341099 DOI: 10.1124/molpharm.121.000294] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/07/2021] [Indexed: 11/22/2022] Open
Abstract
Chronic use of β 2-adrenoceptor agonists as a monotherapy in asthma is associated with a loss of disease control and an increased risk of mortality. Herein, we tested the hypothesis that β 2-adrenoceptor agonists, including formoterol, promote biased, β-arrestin (Arr) 2-dependent activation of the mitogen-activated protein kinases, ERK1/2, in human airway epithelial cells and, thereby, effect changes in gene expression that could contribute to their adverse clinical outcomes. Three airway epithelial cell models were used: the BEAS-2B cell line, human primary bronchial epithelial cells (HBEC) grown in submersion culture, and HBEC that were highly differentiated at an air-liquid interface. Unexpectedly, treatment of all epithelial cell models with formoterol decreased basal ERK1/2 phosphorylation. This was mediated by cAMP-dependent protein kinase and involved the inactivation of C-rapidly-activated fibrosarcoma, which attenuated downstream ERK1/2 activity, and the induction of dual-specificity phosphatase 1. Formoterol also inhibited the basal expression of early growth response-1, an ERK1/2-regulated gene that controls cell growth and repair in the airways. Neither carvedilol, a β 2-adrenoceptor agonist biased toward βArr2, nor formoterol promoted ERK1/2 phosphorylation in BEAS-2B cells, although β 2-adrenoceptor desensitization was compromised in ARRB2-deficient cells. Collectively, these results contest the hypothesis that formoterol activates ERK1/2 in airway epithelia by nucleating a βArr2 signaling complex; instead, they indicate that β 2-adrenoceptor agonists inhibit constitutive ERK1/2 activity in a cAMP-dependent manner. These findings are the antithesis of results obtained using acutely challenged native and engineered HEK293 cells, which have been used extensively to study mechanisms of ERK1/2 activation, and highlight the cell type dependence of β 2-adrenoceptor-mediated signaling. SIGNIFICANCE STATEMENT: It has been proposed that the adverse effects of β 2-adrenoceptor agonist monotherapy in asthma are mediated by genomic mechanisms that occur principally in airway epithelial cells and are the result of β-arrestin 2-dependent activation of ERK1/2. This study shows that β 2-adrenoceptor agonists, paradoxically, reduced ERK1/2 phosphorylation in airway epithelia by disrupting upstream rat sarcoma-C-rapidly accelerated fibrosarcoma complex formation and inducing dual-specificity phosphatase 1. Moreover, these effects were cAMP-dependent protein kinase-dependent, suggesting that β 2-adrenoceptor agonists were not biased toward β-arrestin 2 and acted via canonical, cAMP-dependent signaling.
Collapse
Affiliation(s)
- Omar Hamed
- Airways Inflammation Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Radhika Joshi
- Airways Inflammation Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Aubrey N Michi
- Airways Inflammation Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Cora Kooi
- Airways Inflammation Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mark A Giembycz
- Airways Inflammation Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
13
|
Peter AK, Walker CJ, Ceccato T, Trexler CL, Ozeroff CD, Lugo KR, Perry AR, Anseth KS, Leinwand LA. Cardiac Fibroblasts Mediate a Sexually Dimorphic Fibrotic Response to β-Adrenergic Stimulation. J Am Heart Assoc 2021; 10:e018876. [PMID: 33998248 PMCID: PMC8483546 DOI: 10.1161/jaha.120.018876] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Biological sex is an important modifier of cardiovascular disease and women generally have better outcomes compared with men. However, the contribution of cardiac fibroblasts (CFs) to this sexual dimorphism is relatively unexplored. Methods and Results Isoproterenol (ISO) was administered to rats as a model for chronic β‐adrenergic receptor (β‐AR)‐mediated cardiovascular disease. ISO‐treated males had higher mortality than females and also developed fibrosis whereas females did not. Gonadectomy did not abrogate this sex difference. To determine the cellular contribution to this phenotype, CFs were studied. CFs from both sexes had increased proliferation in vivo in response to ISO, but CFs from female hearts proliferated more than male cells. In addition, male CFs were significantly more activated to myofibroblasts by ISO. To investigate potential regulatory mechanisms for the sexually dimorphic fibrotic response, β‐AR mRNA and PKA (protein kinase A) activity were measured. In response to ISO treatment, male CFs increased expression of β1‐ and β2‐ARs, whereas expression of both receptors decreased in female CFs. Moreover, ISO‐treated male CFs had higher PKA activity relative to vehicle controls, whereas ISO did not activate PKA in female CFs. Conclusions Chronic in vivo β‐AR stimulation causes fibrosis in male but not female rat hearts. Male CFs are more activated than female CFs, consistent with elevated fibrosis in male rat hearts and may be caused by higher β‐AR expression and PKA activation in male CFs. Taken together, our data suggest that CFs play a substantial role in mediating sex differences observed after cardiac injury.
Collapse
Affiliation(s)
- Angela K Peter
- BioFrontiers Institute University of Colorado Boulder CO.,Department of Molecular, Cellular and Developmental Biology University of Colorado Boulder CO
| | - Cierra J Walker
- BioFrontiers Institute University of Colorado Boulder CO.,Materials Science and Engineering Program University of Colorado Boulder Boulder CO
| | - Tova Ceccato
- BioFrontiers Institute University of Colorado Boulder CO.,Department of Molecular, Cellular and Developmental Biology University of Colorado Boulder CO
| | - Christa L Trexler
- BioFrontiers Institute University of Colorado Boulder CO.,Department of Molecular, Cellular and Developmental Biology University of Colorado Boulder CO
| | - Christopher D Ozeroff
- BioFrontiers Institute University of Colorado Boulder CO.,Department of Molecular, Cellular and Developmental Biology University of Colorado Boulder CO
| | | | - Amy R Perry
- BioFrontiers Institute University of Colorado Boulder CO
| | - Kristi S Anseth
- BioFrontiers Institute University of Colorado Boulder CO.,Department of Chemical and Biological Engineering University of Colorado Boulder CO
| | - Leslie A Leinwand
- BioFrontiers Institute University of Colorado Boulder CO.,Department of Molecular, Cellular and Developmental Biology University of Colorado Boulder CO
| |
Collapse
|
14
|
The Ambivalent Role of Skin Microbiota and Adrenaline in Wound Healing and the Interplay between Them. Int J Mol Sci 2021; 22:ijms22094996. [PMID: 34066786 PMCID: PMC8125934 DOI: 10.3390/ijms22094996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
After skin injury, wound healing sets into motion a dynamic process to repair and replace devitalized tissues. The healing process can be divided into four overlapping phases: hemostasis, inflammation, proliferation, and maturation. Skin microbiota has been reported to participate in orchestrating the wound healing both in negative and positive ways. Many studies reported that skin microbiota can impose negative and positive effects on the wound. Recent findings have shown that many bacterial species on human skin are able to convert aromatic amino acids into so-called trace amines (TAs) and convert corresponding precursors into dopamine and serotonin, which are all released into the environment. As a stress reaction, wounded epithelial cells release the hormone adrenaline (epinephrine), which activates the β2-adrenergic receptor (β2-AR), impairing the migration ability of keratinocytes and thus re-epithelization. This is where TAs come into play, as they act as antagonists of β2-AR and thus attenuate the effects of adrenaline. The result is that not only TAs but also TA-producing skin bacteria accelerate wound healing. Adrenergic receptors (ARs) play a key role in many physiological and disease-related processes and are expressed in numerous cell types. In this review, we describe the role of ARs in relation to wound healing in keratinocytes, immune cells, fibroblasts, and blood vessels and the possible role of the skin microbiota in wound healing.
Collapse
|
15
|
Nguyen AV, Caryotakis SE, Wang M, Gallegos A, Bagood MD, Dunai C, Bindra G, Murphy WJ, Isseroff RR, Soulika AM. Skin-Resident β2AR Signaling Delays Burn Wound Healing. J Invest Dermatol 2021; 141:2098-2101.e4. [PMID: 33667431 DOI: 10.1016/j.jid.2021.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/20/2021] [Accepted: 02/08/2021] [Indexed: 11/16/2022]
Affiliation(s)
- Alan V Nguyen
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA; Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, USA
| | - Sofia E Caryotakis
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA
| | - Marilyn Wang
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA; Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, USA
| | - Anthony Gallegos
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, USA
| | - Michelle D Bagood
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, USA
| | - Cordelia Dunai
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, USA
| | - Guneet Bindra
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA
| | - William J Murphy
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, USA
| | - Roslyn Rivkah Isseroff
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, USA
| | - Athena M Soulika
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA; Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, USA.
| |
Collapse
|
16
|
Yoon DJ, Kaur R, Gallegos A, West K, Yang H, Schaefer S, Tchanque-Fossuo C, Dahle SE, Isseroff RR. Repurposing Ophthalmologic Timolol for Dermatologic Use: Caveats and Historical Review of Adverse Events. Am J Clin Dermatol 2021; 22:89-99. [PMID: 33237496 DOI: 10.1007/s40257-020-00567-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2020] [Indexed: 01/13/2023]
Abstract
Ophthalmic timolol solution is increasingly being repurposed as a topical therapeutic for a variety of dermatologic diseases, including pyogenic granulomas, infantile hemangiomas, and chronic wounds. There are no published guidelines or protocols for use in these indications in adults, and the dermatologic community may not be familiar with adverse events that have been extensively documented relating to its ophthalmic use. We review the evidence available relating to adverse events to topical timolol use to evaluate its safety in dermatologic applications and to alert clinicians to screening and monitoring that is needed when repurposing this drug for dermatologic use. The majority of serious adverse events associated with ophthalmic timolol were reported in the first 7 years of use, between 1978 and 1985, of which most common were cardiovascular and respiratory events, but also included 32 deaths. The available evidence suggests that ophthalmic timolol safety profiling may have been incomplete prior to widespread use. Recent clinical trials for dermatologic indications have focused on documenting efficacy and have not had rigorous monitoring for potential adverse events. Topical timolol may be safe and effective for the treatment of various dermatologic conditions in patients whose medical histories have been carefully reviewed for evidence of pre-existing cardiac or pulmonary disease and are monitored for potential adverse events. Despite the wide use of timolol in ophthalmologic practice, safe dermatologic repurposing requires recognition of the potential for facilitated systemic absorption though the skin and appreciation of its history of adverse events.
Collapse
Affiliation(s)
- Daniel J Yoon
- Department of Dermatology, University of California Davis School of Medicine, Institute for Regenerative Cures, 2921 Stockton Blvd, Ste 1630, Sacramento, CA, 95817, USA
- Dermatology Service, VA Northern California Health Care System, Mather, CA, USA
| | - Ramanjot Kaur
- Dermatology Service, VA Northern California Health Care System, Mather, CA, USA
| | - Anthony Gallegos
- Department of Dermatology, University of California Davis School of Medicine, Institute for Regenerative Cures, 2921 Stockton Blvd, Ste 1630, Sacramento, CA, 95817, USA
| | - Kaitlyn West
- Dermatology Service, VA Northern California Health Care System, Mather, CA, USA
| | - Hsinya Yang
- Department of Dermatology, University of California Davis School of Medicine, Institute for Regenerative Cures, 2921 Stockton Blvd, Ste 1630, Sacramento, CA, 95817, USA
| | - Saul Schaefer
- Department of Internal Medicine, University of California School of Medicine, Davis, CA, USA
| | | | - Sara E Dahle
- Department of Dermatology, University of California Davis School of Medicine, Institute for Regenerative Cures, 2921 Stockton Blvd, Ste 1630, Sacramento, CA, 95817, USA
- Podiatry Section, VA Northern California Health Care System, Mather, CA, USA
| | - R Rivkah Isseroff
- Department of Dermatology, University of California Davis School of Medicine, Institute for Regenerative Cures, 2921 Stockton Blvd, Ste 1630, Sacramento, CA, 95817, USA.
- Dermatology Service, VA Northern California Health Care System, Mather, CA, USA.
| |
Collapse
|
17
|
Sun S, Ma J, Ran X. [Mechanisms of adrenergic β-antagonist for wounds and its application prospect in diabetic foot ulcers]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:1630-1634. [PMID: 33319548 DOI: 10.7507/1002-1892.202002063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective To review the research progress of adrenergic β-antagonists on wounds and diabetic chronic cutaneous ulcers healing in recent years, and to investigate its application prospect in diabetic foot ulcer (DFU). Methods The latest literature about the role of adrenergic β-antagonists in wounds and diabetic chronic cutaneous ulcers healing was extensively reviewed, and the mechanisms of adrenergic β-antagonists for wounds and its potential benefit for DFU were analyzed thoroughly. Results The adrenergic β-antagonists can accelerate the wound healing. The possible mechanisms include accelerating re-epithelialization, promoting angiogenesis, improving neuropathy, and regulating inflammation and growth factors, etc. At present clinical research data showed that the adrenergic β-antagonists may be an adjuvant treatment for diabetic chronic cutaneous ulcers. Conclusion Adrenergic β-antagonists maybe promote the healing of wounds and diabetic chronic cutaneous ulcers. However, more long-term follow-up and high-quality randomized control studies are needed to further verify their efficacy and safety for DFU.
Collapse
Affiliation(s)
- Shiyi Sun
- Diabetic Foot Care Center, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Jing Ma
- Department of Endocrinology and Metabolism, Gansu Provincial Hospital, Lanzhou Gansu, 730000, P.R.China
| | - Xingwu Ran
- Diabetic Foot Care Center, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| |
Collapse
|
18
|
Tanner MA, Thomas TP, Maitz CA, Grisanti LA. β2-Adrenergic Receptors Increase Cardiac Fibroblast Proliferation Through the Gαs/ERK1/2-Dependent Secretion of Interleukin-6. Int J Mol Sci 2020; 21:ijms21228507. [PMID: 33198112 PMCID: PMC7697911 DOI: 10.3390/ijms21228507] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
Fibroblasts are an important resident cell population in the heart involved in maintaining homeostasis and structure during normal conditions. They are also crucial in disease states for sensing signals and initiating the appropriate repair responses to maintain the structural integrity of the heart. This sentinel role of cardiac fibroblasts occurs, in part, through their ability to secrete cytokines. β-adrenergic receptors (βAR) are also critical regulators of cardiac function in the normal and diseased state and a major therapeutic target clinically. βAR are known to influence cytokine secretion in various cell types and they have been shown to be involved in cytokine production in the heart, but their role in regulating cytokine production in cardiac fibroblasts is not well understood. Thus, we hypothesized that βAR activation on cardiac fibroblasts modulates cytokine production to influence fibroblast function. Using primary fibroblast cultures from neonatal rats and adult mice, increased interleukin (IL)-6 expression and secretion occurred following β2AR activation. The use of pharmacological inhibitors and genetic manipulations showed that IL-6 elevations occurred through the Gαs-mediated activation of ERK1/2 and resulted in increased fibroblast proliferation. In vivo, a lack of β2AR resulted in increased infarct size following myocardial infarction and impaired wound closure in a murine dermal wound healing assay. These findings identify an important role for β2AR in regulating fibroblast proliferation through Gαs/ERK1/2-dependent alterations in IL-6 and may lead to the development of improved heart failure therapies through targeting fibrotic function of β2AR.
Collapse
Affiliation(s)
- Miles A. Tanner
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (M.A.T.); (T.P.T.)
| | - Toby P. Thomas
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (M.A.T.); (T.P.T.)
| | - Charles A. Maitz
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA;
| | - Laurel A. Grisanti
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (M.A.T.); (T.P.T.)
- Correspondence: ; Tel.: +573-884-8852
| |
Collapse
|
19
|
Hedderich J, El Bagdadi K, Angele P, Grässel S, Meurer A, Straub RH, Zaucke F, Jenei-Lanzl Z. Norepinephrine Inhibits the Proliferation of Human Bone Marrow-Derived Mesenchymal Stem Cells via β2-Adrenoceptor-Mediated ERK1/2 and PKA Phosphorylation. Int J Mol Sci 2020; 21:ijms21113924. [PMID: 32486305 PMCID: PMC7312191 DOI: 10.3390/ijms21113924] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) represent an alternative to chondrocytes to support cartilage regeneration in osteoarthritis (OA). The sympathetic neurotransmitter norepinephrine (NE) has been shown to inhibit their chondrogenic potential; however, their proliferation capacity under NE influence has not been studied yet. Therefore, we used BMSCs obtained from trauma and OA donors and compared the expression of adrenergic receptors (AR). Then, BMSCs from both donor groups were treated with NE, as well as with combinations of NE and α1-, α2- or β1/2-AR antagonists (doxazosin, yohimbine or propranolol). Activation of AR-coupled signaling was investigated by analyzing ERK1/2 and protein kinase A (PKA) phosphorylation. A similar but not identical subset of ARs was expressed in trauma (α2B-, α2C- and β2-AR) and OA BMSCs (α2A-, α2B-, and β2-AR). NE in high concentrations inhibited the proliferation of both trauma and OA BMCSs significantly. NE in low concentrations did not influence proliferation. ERK1/2 as well as PKA were activated after NE treatment in both BMSC types. These effects were abolished only by propranolol. Our results demonstrate that NE inhibits the proliferation and accordingly lowers the regenerative capacity of human BMSCs likely via β2-AR-mediated ERK1/2 and PKA phosphorylation. Therefore, targeting β2-AR-signaling might provide novel OA therapeutic options.
Collapse
Affiliation(s)
- Jessica Hedderich
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim, 60528 Frankfurt/Main, Germany; (J.H.); (K.E.B.); (A.M.); (F.Z.)
| | - Karima El Bagdadi
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim, 60528 Frankfurt/Main, Germany; (J.H.); (K.E.B.); (A.M.); (F.Z.)
| | - Peter Angele
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Susanne Grässel
- Department of Orthopedic Surgery, Experimental Orthopedics, Centre for Medical Biotechnology (ZMB), University of Regensburg, 93053 Regensburg, Germany;
| | - Andrea Meurer
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim, 60528 Frankfurt/Main, Germany; (J.H.); (K.E.B.); (A.M.); (F.Z.)
| | - Rainer H. Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim, 60528 Frankfurt/Main, Germany; (J.H.); (K.E.B.); (A.M.); (F.Z.)
| | - Zsuzsa Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim, 60528 Frankfurt/Main, Germany; (J.H.); (K.E.B.); (A.M.); (F.Z.)
- Correspondence: ; Tel.: +49-69-6705-408
| |
Collapse
|
20
|
Kruk J, Kotarska K, Aboul-Enein BH. Physical exercise and catecholamines response: benefits and health risk: possible mechanisms. Free Radic Res 2020; 54:105-125. [PMID: 32020819 DOI: 10.1080/10715762.2020.1726343] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Beneficial effect of regular moderate physical exercise (PE) and negative effect of severe exercise and/or overtraining as an activator of the sympathetic nervous system (SNS) have been shown in numerous aspects of human health, including reduced risk of cardiovascular disease, neurological disease, depression, and some types of cancer. Moderate-to-vigorous PE stimulates the SNS activation, releasing catecholamines (CATs) adrenaline, noradrenaline, dopamine that play an important regulatory and modulatory actions by affecting metabolic processes and the immune system. Summary of the dispersed literature in this area and explanation of the biological mechanisms operating between PE-CATs and the immune system would lead to a better understanding of the beneficial and negative effects of PE on health. This overview aimed to: demonstrate representative literature findings on the exercise released CATs levels, major functions performed by these hormones, their interactions with the immune system and their effects on carbohydrate and lipid metabolism. Also, mechanisms of cytotoxic free radicals and reactive oxygen species (ROS) generation during CATs oxidation, and molecular mechanisms of CATs response to exercise are discussed to demonstrate positive and negative on human health effects. Owing to the large body of the subject literature, we present a representative cross-section of the published studies in this area. The results show a significant role of CATs in carbohydrate and lipid metabolism, immunity and as generators of ROS, depending on PE intensity and duration. Further investigation of the PE-CATs relationship should validate CATs levels to optimize safe intensity and duration of exercise and individualize their prescription, considering CATs to be applied as markers for a dose of exercise. Also, a better understanding of the biological mechanisms is also needed.
Collapse
Affiliation(s)
- Joanna Kruk
- Faculty of Physical Culture and Health, University of Szczecin, Szczecin, Poland
| | - Katarzyna Kotarska
- Faculty of Physical Culture and Health, University of Szczecin, Szczecin, Poland
| | - Basil H Aboul-Enein
- Faculty of Public Health & Policy, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
21
|
Mesdom P, Colle R, Lebigot E, Trabado S, Deflesselle E, Fève B, Becquemont L, Corruble E, Verstuyft C. Human Dermal Fibroblast: A Promising Cellular Model to Study Biological Mechanisms of Major Depression and Antidepressant Drug Response. Curr Neuropharmacol 2020; 18:301-318. [PMID: 31631822 PMCID: PMC7327943 DOI: 10.2174/1570159x17666191021141057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/15/2019] [Accepted: 10/19/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Human dermal fibroblasts (HDF) can be used as a cellular model relatively easily and without genetic engineering. Therefore, HDF represent an interesting tool to study several human diseases including psychiatric disorders. Despite major depressive disorder (MDD) being the second cause of disability in the world, the efficacy of antidepressant drug (AD) treatment is not sufficient and the underlying mechanisms of MDD and the mechanisms of action of AD are poorly understood. OBJECTIVE The aim of this review is to highlight the potential of HDF in the study of cellular mechanisms involved in MDD pathophysiology and in the action of AD response. METHODS The first part is a systematic review following PRISMA guidelines on the use of HDF in MDD research. The second part reports the mechanisms and molecules both present in HDF and relevant regarding MDD pathophysiology and AD mechanisms of action. RESULTS HDFs from MDD patients have been investigated in a relatively small number of works and most of them focused on the adrenergic pathway and metabolism-related gene expression as compared to HDF from healthy controls. The second part listed an important number of papers demonstrating the presence of many molecular processes in HDF, involved in MDD and AD mechanisms of action. CONCLUSION The imbalance in the number of papers between the two parts highlights the great and still underused potential of HDF, which stands out as a very promising tool in our understanding of MDD and AD mechanisms of action.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Céline Verstuyft
- Address correspondence to this author at the Laboratoire de Pharmacologie, Salle 416, Bâtiment Université, Hôpital du Kremlin Bicêtre, 78 rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France; Tel: +33145213588; E-mail:
| |
Collapse
|
22
|
Kiya K, Kubo T. Neurovascular interactions in skin wound healing. Neurochem Int 2019; 125:144-150. [DOI: 10.1016/j.neuint.2019.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/09/2019] [Accepted: 02/19/2019] [Indexed: 12/23/2022]
|
23
|
Si N, Kanazawa H, Okuyama K, Imada K, Wang H, Yang J, Zhao H, Bian B, Ito A, Sato T. Involvement of Catechols in Acteoside in the Activation of Promatrix Metalloproteinase-2 and Membrane Type-1-Matrix Metalloproteinase Expression via a Phosphatidylinositol-3-Kinase Pathway in Human Dermal Fibroblasts. Biol Pharm Bull 2018; 41:1530-1536. [PMID: 30270322 DOI: 10.1248/bpb.b18-00107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Granulation tissue formation during skin wound healing requires the migration and proliferation of dermal fibroblasts in the wound site, where a subsequent remodeling of extracellular matrices (ECM) occurs. An abnormality of ECM remodeling within the healing wound leads to fibrosis and a contracted scar. To evaluate whether acteoside, a phenylethanoid glycoside isolated from the leaves of Rehmannia glutinosa LIBOSCH., exhibits wound-healing actions, we examined the effect of acteoside on the expression of matrix metalloproteinases (MMPs) in normal human dermal fibroblasts (NHDF). Acteoside dose- and time-dependently augmented the activation of the precursor of MMP-2 (proMMP-2/progelatinase A) in untreated- and interleukin-1β-treated NHDF, while the alteration of the MMP-2 gene expression was negligible. The acteoside-induced proMMP-2 activation was associated with the augmented membrane-type 1 MMP (MT1-MMP) expression in the NHDF. In addition, the proMMP-2 activation was enhanced by two aglycones in acteoside: caffeic acid and 3,4-dihydroxyphenylethanol, which consist of catechol. However, there was no change in the proMMP-2 activation in other catechol derivatives: homovanillyl alcohol- and homovanillic acid-treated NHDF, indicating that catechols in acteoside were requisite for the regulation of the MMP activation and expression in NHDF. Furthermore, the proMMP-2 activation by acteoside was selectively inhibited by LY294002, a potent phosphatidylinositol-3-kinase (PI3K) inhibitor. These results provide novel evidence that acteoside augments proMMP-2 activation along with an increase in MT1-MMP expression through a PI3K signal pathway in NHDF. Thus, acteoside is likely to be an attractive candidate that facilitates ECM remodeling in the skin wound repair process.
Collapse
Affiliation(s)
- Nan Si
- Department of Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences
| | - Hajime Kanazawa
- Department of Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Katsuki Okuyama
- Department of Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Keisuke Imada
- Department of Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Hongjie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences
| | - Jian Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences
| | - Baolin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences
| | - Akira Ito
- The Institute for Social Medicine,Tokyo University of Pharmacy and Life Sciences
| | - Takashi Sato
- Department of Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
24
|
Herndon D, Capek KD, Ross E, Jay JW, Prasai A, Ayadi AE, Foncerrada-Ortega G, Blears E, Sommerhalder C, McMullen K, Amtmann D, Cox R, Hundeshagen G, Jennings K, Sousse LE, Suman OE, Meyer WJ, Finnerty CC. Reduced Postburn Hypertrophic Scarring and Improved Physical Recovery With Yearlong Administration of Oxandrolone and Propranolol. Ann Surg 2018; 268:431-441. [PMID: 30048322 PMCID: PMC6478032 DOI: 10.1097/sla.0000000000002926] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Massive burns induce a hypermetabolic response that leads to total body wasting and impaired physical and psychosocial recovery. The administration of propranolol or oxandrolone positively affects postburn metabolism and growth. The combined administration of oxandrolone and propranolol (OxProp) for 1 year restores growth in children with large burns. Here, we investigated whether the combined administration of OxProp for 1 year would reduce scarring and improve quality of life compared with control. STUDY DESIGN Children with large burns (n = 480) were enrolled into this institutional review board-approved study; patients were randomized to control (n = 226) or administration of OxProp (n = 126) for 1 year postburn. Assessments were conducted at discharge and 6, 12, and 24 months postburn. Scar biopsies were obtained for histology. Physical scar assessments and patient reported outcome measures of physical and psychosocial function were obtained. RESULTS Reductions in cellularity, vascular structures, inflammation, and abnormal collagen (P < 0.05) occurred in OxProp-treated scars. With OxProp, scar severity was attenuated and pliability increased (both P < 0.05). Analyses of patient-reported outcomes showed improved general and emotional health within the OxProp-treated group (P < 0.05). CONCLUSIONS Here, we have shown improvements in objective and subjective measures of scarring and an increase in overall patient-reported physical function. The combined administration of OxProp for up to a year after burn injury should be considered for the reduction of postburn scarring and improvement of long-term psychosocial outcomes in children with massive burns.
Collapse
Affiliation(s)
- David Herndon
- Department of Surgery, The University of Texas Medical Branch, Galveston, TX
- Shriners Hospitals for Children - Galveston, Galveston, TX
- Institute for Translational Sciences, The University of Texas Medical Branch, Galveston, TX
| | - Karel D Capek
- Department of Surgery, The University of Texas Medical Branch, Galveston, TX
- Shriners Hospitals for Children - Galveston, Galveston, TX
| | - Evan Ross
- Department of Surgery, The University of Texas Medical Branch, Galveston, TX
- Shriners Hospitals for Children - Galveston, Galveston, TX
| | - Jayson W Jay
- Shriners Hospitals for Children - Galveston, Galveston, TX
- Institute for Translational Sciences, The University of Texas Medical Branch, Galveston, TX
| | - Anesh Prasai
- Department of Surgery, The University of Texas Medical Branch, Galveston, TX
- Shriners Hospitals for Children - Galveston, Galveston, TX
| | - Amina El Ayadi
- Department of Surgery, The University of Texas Medical Branch, Galveston, TX
- Shriners Hospitals for Children - Galveston, Galveston, TX
| | - Guillermo Foncerrada-Ortega
- Department of Surgery, The University of Texas Medical Branch, Galveston, TX
- Shriners Hospitals for Children - Galveston, Galveston, TX
| | - Elizabeth Blears
- Department of Surgery, The University of Texas Medical Branch, Galveston, TX
- Shriners Hospitals for Children - Galveston, Galveston, TX
- Institute for Translational Sciences, The University of Texas Medical Branch, Galveston, TX
| | - Christian Sommerhalder
- Department of Surgery, The University of Texas Medical Branch, Galveston, TX
- Shriners Hospitals for Children - Galveston, Galveston, TX
| | - Kara McMullen
- Department of Rehabilitation Medicine, The University of Washington, Seattle, WA
| | - Dagmar Amtmann
- Department of Rehabilitation Medicine, The University of Washington, Seattle, WA
| | - Robert Cox
- Shriners Hospitals for Children - Galveston, Galveston, TX
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX
| | - Gabriel Hundeshagen
- Department of Surgery, The University of Texas Medical Branch, Galveston, TX
- Shriners Hospitals for Children - Galveston, Galveston, TX
- Department of Hand, Plastic and Reconstructive Surgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Heidelberg, Germany
| | - Kristofer Jennings
- Department of Preventative Medicine and Community Health, The University of Texas Medical Branch, Galveston, TX
| | - Linda E Sousse
- Department of Surgery, The University of Texas Medical Branch, Galveston, TX
- Shriners Hospitals for Children - Galveston, Galveston, TX
| | - Oscar E Suman
- Department of Surgery, The University of Texas Medical Branch, Galveston, TX
- Shriners Hospitals for Children - Galveston, Galveston, TX
| | - Walter J Meyer
- Department of Psychiatry and Behavioral Science, The University of Texas Medical Branch, Galveston, TX
| | - Celeste C Finnerty
- Department of Surgery, The University of Texas Medical Branch, Galveston, TX
- Shriners Hospitals for Children - Galveston, Galveston, TX
- Institute for Translational Sciences, The University of Texas Medical Branch, Galveston, TX
| |
Collapse
|
25
|
Patriarchi T, Shen A, He W, Baikoghli M, Cheng RH, Xiang YK, Coleman MA, Tian L. Nanodelivery of a functional membrane receptor to manipulate cellular phenotype. Sci Rep 2018; 8:3556. [PMID: 29476125 PMCID: PMC5824837 DOI: 10.1038/s41598-018-21863-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/12/2018] [Indexed: 01/01/2023] Open
Abstract
Modification of membrane receptor makeup is one of the most efficient ways to control input-output signals but is usually achieved by expressing DNA or RNA-encoded proteins or by using other genome-editing methods, which can be technically challenging and produce unwanted side effects. Here we develop and validate a nanodelivery approach to transfer in vitro synthesized, functional membrane receptors into the plasma membrane of living cells. Using β2-adrenergic receptor (β2AR), a prototypical G-protein coupled receptor, as an example, we demonstrated efficient incorporation of a full-length β2AR into a variety of mammalian cells, which imparts pharmacologic control over cellular signaling and affects cellular phenotype in an ex-vivo wound-healing model. Our approach for nanodelivery of functional membrane receptors expands the current toolkit for DNA and RNA-free manipulation of cellular function. We expect this approach to be readily applicable to the synthesis and nanodelivery of other types of GPCRs and membrane receptors, opening new doors for therapeutic development at the intersection between synthetic biology and nanomedicine.
Collapse
Affiliation(s)
- Tommaso Patriarchi
- University of California Davis, School of Medicine, Department of Biochemistry and Molecular Medicine, Davis, California, USA
| | - Ao Shen
- University of California Davis, School of Medicine, Department of Pharmacology, Davis, California, USA
| | - Wei He
- Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Mo Baikoghli
- University of California Davis, Department of Molecular and Cellular Biology, California, USA
| | - R Holland Cheng
- University of California Davis, Department of Molecular and Cellular Biology, California, USA
| | - Yang K Xiang
- University of California Davis, School of Medicine, Department of Pharmacology, Davis, California, USA.,VA Northern California Health care system, Mather, California, USA
| | - Matthew A Coleman
- Lawrence Livermore National Laboratory, Livermore, California, USA. .,University of California Davis School of Medicine, Radiation Oncology, Sacramento, California, USA.
| | - Lin Tian
- University of California Davis, School of Medicine, Department of Biochemistry and Molecular Medicine, Davis, California, USA.
| |
Collapse
|
26
|
Hall C, Hardin C, Corkins CJ, Jiwani AZ, Fletcher J, Carlsson A, Chan R. Pathophysiologic Mechanisms and Current Treatments for Cutaneous Sequelae of Burn Wounds. Compr Physiol 2017; 8:371-405. [PMID: 29357133 DOI: 10.1002/cphy.c170016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Burn injuries are a pervasive clinical problem. Extensive thermal trauma can be life-threatening or result in long-lasting complications, generating a significant impact on quality of life for patients as well as a cost burden to the healthcare system. The importance of addressing global or systemic issues such as resuscitation and management of inhalation injuries is not disputed but is beyond the scope of this review, which focuses on cutaneous pathophysiologic mechanisms for current treatments, both in the acute and long-term settings. Pathophysiological mechanisms of burn progression and wound healing are mediated by highly complex cascades of cellular and biochemical events, which become dysregulated in slow-healing wounds such as burns. Burns can result in fibroproliferative scarring, skin contractures, or chronic wounds that take weeks or months to heal. Burn injuries are highly individualized owing to wound-specific differences such as burn depth and surface area, in addition to patient-specific factors including genetics, immune competency, and age. Other extrinsic complications such as microbial infection can complicate wound healing, resulting in prolonged inflammation and delayed re-epithelialization. Although mortality is decreasing with advancements in burn care, morbidity from postburn deformities continues to be a challenge. Optimizing specialized acute care and late burn outcome intervention on a patient-by-patient basis is critical for successful management of burn wounds and the associated pathological scar outcome. Understanding the fundamentals of integument physiology and the cellular processes involved in wound healing is essential for designing effective treatment strategies for burn wound care as well as development of future therapies. Published 2018. Compr Physiol 8:371-405, 2018.
Collapse
Affiliation(s)
- Caroline Hall
- Quality Skin Collaborative for Advanced Reconstruction and Regeneration (Q-SCARRTM), Dental Craniofacial Trauma Research Division, US Army Institute of Surgical Research, Ft. Sam Houston, TX, USA
| | - Carolyn Hardin
- Quality Skin Collaborative for Advanced Reconstruction and Regeneration (Q-SCARRTM), Dental Craniofacial Trauma Research Division, US Army Institute of Surgical Research, Ft. Sam Houston, TX, USA
| | - Christopher J Corkins
- Quality Skin Collaborative for Advanced Reconstruction and Regeneration (Q-SCARRTM), Dental Craniofacial Trauma Research Division, US Army Institute of Surgical Research, Ft. Sam Houston, TX, USA.,Clinical Division and Burn Center, US Army Institute of Surgical Research, Ft. Sam Houston, TX, USA
| | - Alisha Z Jiwani
- Quality Skin Collaborative for Advanced Reconstruction and Regeneration (Q-SCARRTM), Dental Craniofacial Trauma Research Division, US Army Institute of Surgical Research, Ft. Sam Houston, TX, USA.,Clinical Division and Burn Center, US Army Institute of Surgical Research, Ft. Sam Houston, TX, USA
| | - John Fletcher
- Quality Skin Collaborative for Advanced Reconstruction and Regeneration (Q-SCARRTM), Dental Craniofacial Trauma Research Division, US Army Institute of Surgical Research, Ft. Sam Houston, TX, USA.,Clinical Division and Burn Center, US Army Institute of Surgical Research, Ft. Sam Houston, TX, USA
| | - Anders Carlsson
- Quality Skin Collaborative for Advanced Reconstruction and Regeneration (Q-SCARRTM), Dental Craniofacial Trauma Research Division, US Army Institute of Surgical Research, Ft. Sam Houston, TX, USA.,Clinical Division and Burn Center, US Army Institute of Surgical Research, Ft. Sam Houston, TX, USA
| | - Rodney Chan
- Quality Skin Collaborative for Advanced Reconstruction and Regeneration (Q-SCARRTM), Dental Craniofacial Trauma Research Division, US Army Institute of Surgical Research, Ft. Sam Houston, TX, USA.,Clinical Division and Burn Center, US Army Institute of Surgical Research, Ft. Sam Houston, TX, USA
| |
Collapse
|
27
|
Mechanistic insight into the norepinephrine-induced fibrosis in systemic sclerosis. Sci Rep 2016; 6:34012. [PMID: 27650973 PMCID: PMC5030663 DOI: 10.1038/srep34012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 09/05/2016] [Indexed: 02/03/2023] Open
Abstract
Raynaud’s phenomenon is frequently observed in systemic sclerosis (SSc) patients, and cold- or stress-induced norepinephrine (NE) has been speculated to be associated with vasoconstriction. Objective was to elucidate the role of NE in fibrosis in SSc. IL-6 is a potent stimulator of collagen production in fibroblasts. NE enhanced IL-6 production and proliferation more significantly in SSc fibroblasts than in normal fibroblasts. Furthermore, the production of IL-6 and phosphorylation of p38 in SSc fibroblasts was enhanced by adrenergic receptor (AR)β agonist, isoproterenol, but not ARα agonist, oxymetazoline. ARβ blocker, propranolol, inhibited NE-induced IL-6 production and phosphorylation of p38 in SSc fibroblasts. NE-induced IL-6 was significantly inhibited by p38 inhibitor, SB203580, suggesting that NE-induced phosphorylation of p38 via ARβ enhances IL-6 production in SSc fibroblasts. NE-induced phosphorylation of ERK1/2 via ARα inhibited IL-6 production in SSc fibroblasts. Combined treatment with NE and endothelin-1 resulted in an additive increase in IL-6 production in SSc fibroblasts. NE-induced IL-6/IL-6 receptor trans-signaling increased the production of collagen type I in SSc fibroblasts, and both propranolol and SB203580 inhibited NE-induced collagen production. These results suggest that cold exposure and/or emotional stress-induced NE might contribute to the skin fibrosis via potentiation of IL-6 production from fibroblasts in SSc.
Collapse
|
28
|
Ciszek BP, O'Buckley SC, Nackley. AG. Persistent Catechol-O-methyltransferase-dependent Pain Is Initiated by Peripheral β-Adrenergic Receptors. Anesthesiology 2016; 124:1122-35. [PMID: 26950706 PMCID: PMC5015695 DOI: 10.1097/aln.0000000000001070] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Patients with chronic pain disorders exhibit increased levels of catecholamines alongside diminished activity of catechol-O-methyltransferase (COMT), an enzyme that metabolizes catecholamines. The authors found that acute pharmacologic inhibition of COMT in rodents produces hypersensitivity to mechanical and thermal stimuli via β-adrenergic receptor (βAR) activation. The contribution of distinct βAR populations to the development of persistent pain linked to abnormalities in catecholamine signaling requires further investigation. METHODS Here, the authors sought to determine the contribution of peripheral, spinal, and supraspinal βARs to persistent COMT-dependent pain. They implanted osmotic pumps to deliver the COMT inhibitor OR486 (Tocris, USA) for 2 weeks. Behavioral responses to mechanical and thermal stimuli were evaluated before and every other day after pump implantation. The site of action was evaluated in adrenalectomized rats receiving sustained OR486 or in intact rats receiving sustained βAR antagonists peripherally, spinally, or supraspinally alongside OR486. RESULTS The authors found that male (N = 6) and female (N = 6) rats receiving sustained OR486 exhibited decreased paw withdrawal thresholds (control 5.74 ± 0.24 vs. OR486 1.54 ± 0.08, mean ± SEM) and increased paw withdrawal frequency to mechanical stimuli (control 4.80 ± 0.22 vs. OR486 8.10 ± 0.13) and decreased paw withdrawal latency to thermal heat (control 9.69 ± 0.23 vs. OR486 5.91 ± 0.11). In contrast, adrenalectomized rats (N = 12) failed to develop OR486-induced hypersensitivity. Furthermore, peripheral (N = 9), but not spinal (N = 4) or supraspinal (N = 4), administration of the nonselective βAR antagonist propranolol, the β2AR antagonist ICI-118,511, or the β3AR antagonist SR59230A blocked the development of OR486-induced hypersensitivity. CONCLUSIONS Peripheral adrenergic input is necessary for the development of persistent COMT-dependent pain, and peripherally-acting βAR antagonists may benefit chronic pain patients.
Collapse
Affiliation(s)
- Brittney P. Ciszek
- Center for Pain Research and Innovation, Koury Oral Health Sciences Building, University of North Carolina, Chapel Hill NC 27599-7455
| | - Sandra C. O'Buckley
- Center for Pain Research and Innovation, Koury Oral Health Sciences Building, University of North Carolina, Chapel Hill NC 27599-7455
| | - Andrea G. Nackley.
- Center for Pain Research and Innovation, Koury Oral Health Sciences Building, University of North Carolina, Chapel Hill NC 27599-7455
| |
Collapse
|
29
|
Schreier B, Schwerdt G, Heise C, Bethmann D, Rabe S, Mildenberger S, Gekle M. Substance-specific importance of EGFR for vascular smooth muscle cells motility in primary culture. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1519-33. [PMID: 27012600 DOI: 10.1016/j.bbamcr.2016.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/01/2016] [Accepted: 03/18/2016] [Indexed: 11/26/2022]
Abstract
Besides their importance for the vascular tone, vascular smooth muscle cells (VSMC) also contribute to pathophysiological vessel alterations. Various G-protein coupled receptor ligands involved in vascular dysfunction and remodeling can transactivate the epidermal growth factor receptor (EGFR) of VSMC, yet the importance of EGFR transactivation for the VSMC phenotype is incompletely understood. The aims of this study were (i) to characterize further the importance of the VSMC-EGFR for proliferation, migration and marker gene expression for inflammation, fibrosis and reactive oxygen species (ROS) homeostasis and (ii) to test the hypothesis that vasoactive substances (endothelin-1, phenylephrine, thrombin, vasopressin and ATP) rely differentially on the EGFR with respect to the abovementioned phenotypic alterations. In primary, aortic VSMC from mice without conditional deletion of the EGFR, proliferation, migration, marker gene expression (inflammation, fibrosis and ROS homeostasis) and cell signaling (ERK 1/2, intracellular calcium) were analyzed. VSMC-EGFR loss reduced collective cell migration and single cell migration probability, while no difference between the genotypes in single cell velocity, chemotaxis or marker gene expression could be observed under control conditions. EGF promoted proliferation, collective cell migration, chemokinesis and chemotaxis and leads to a proinflammatory gene expression profile in wildtype but not in knockout VSMC. Comparing the impact of five vasoactive substances (all reported to transactivate EGFR and all leading to an EGFR dependent increase in ERK1/2 phosphorylation), we demonstrate that the importance of EGFR for their action is substance-dependent and most apparent for crowd migration but plays a minor role for gene expression regulation.
Collapse
Affiliation(s)
- Barbara Schreier
- Julius-Bernstein-Institute of Physiology, University of Halle-Wittenberg, Magdeburger Strasse 6, 06112 Halle/Saale, Germany.
| | - Gerald Schwerdt
- Julius-Bernstein-Institute of Physiology, University of Halle-Wittenberg, Magdeburger Strasse 6, 06112 Halle/Saale, Germany
| | - Christian Heise
- Julius-Bernstein-Institute of Physiology, University of Halle-Wittenberg, Magdeburger Strasse 6, 06112 Halle/Saale, Germany
| | - Daniel Bethmann
- Julius-Bernstein-Institute of Physiology, University of Halle-Wittenberg, Magdeburger Strasse 6, 06112 Halle/Saale, Germany
| | - Sindy Rabe
- Julius-Bernstein-Institute of Physiology, University of Halle-Wittenberg, Magdeburger Strasse 6, 06112 Halle/Saale, Germany
| | - Sigrid Mildenberger
- Julius-Bernstein-Institute of Physiology, University of Halle-Wittenberg, Magdeburger Strasse 6, 06112 Halle/Saale, Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, University of Halle-Wittenberg, Magdeburger Strasse 6, 06112 Halle/Saale, Germany
| |
Collapse
|
30
|
Consequences of postnatal vascular smooth muscle EGFR deletion on acute angiotensin II action. Clin Sci (Lond) 2015; 130:19-33. [DOI: 10.1042/cs20150503] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/05/2015] [Indexed: 01/20/2023]
Abstract
In the present study we demonstrate that the epidermal growth factor (EGF) receptor (EGFR) in vascular smooth muscle cells (VSMC) is involved in basal blood pressure homoeostasis, acute pressure response to angiotensin II (Ang II) but not endothelin-1 and contributes to maturation-related remodelling.
Collapse
|
31
|
Shimizu A, Kaira K, Mori K, Kato M, Shimizu K, Yasuda M, Takahashi A, Oyama T, Asao T, Ishikawa O. Prognostic significance of β2-adrenergic receptor expression in malignant melanoma. Tumour Biol 2015; 37:5971-8. [PMID: 26596834 DOI: 10.1007/s13277-015-4420-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/10/2015] [Indexed: 12/22/2022] Open
Abstract
Recent studies cite β2-adrenergic receptor (β2AR) antagonists as novel therapeutic agents for melanoma, as they may reduce the disease progression. The β2AR has shown to be expressed in malignant melanoma. However, it remains unclear whether the β2AR expression has a clinical and pathological significance in patients with cutaneous malignant melanoma. We herein conducted a clinicopathological study to investigate the protein expression of β2AR in malignant melanoma of the skin and its prognostic significance. One hundred thirty-three patients with surgically resected cutaneous malignant melanoma were evaluated. Tumor sections were stained by immunohistochemistry for β2AR, Ki-67, the microvessel density (MVD) determined by CD34, and p53. β2AR was highly expressed in 44.4 % (59 out of 133) of the patients. The expression of β2AR was significantly associated with the tumor thickness, ulceration, T factor, N factor, disease stage, tumor size, cell proliferation (Ki-67), and MVD (CD34). Using Spearman's rank test, the β2AR expression was correlated with Ki-67 (r = 0.278; 95 % CI, 0.108 to 0.432; P = 0.001), CD34 (r = 0.445; 95 %CI, 0.293 to 0.575; P < 0.001), and the tumor size (r = 0.226; 95 % CI, 0.053 to 0.386; P = 0.008). Using a univariate analysis, the tumor thickness, ulceration, disease stage, β2AR, Ki-67, and CD34 had a significant relationship with the overall and progression-free survivals. A multivariable analysis confirmed that β2AR was an independent prognostic factor for predicting a poor overall survival (HR 1.730; 95 % CI 1.221-2.515) and progression-free survival (HR 1.576; 95 % CI 1.176-2.143) of malignant melanoma of the skin. β2AR can serve as a promising prognostic factor for predicting a worse outcome after surgical treatment and may play an important role in the development and aggressiveness of malignant melanoma.
Collapse
Affiliation(s)
- Akira Shimizu
- Department of Dermatology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | - Kyoichi Kaira
- Department of Oncology Clinical Development, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | - Keita Mori
- Clinical Research Center, Shizuoka Cancer Center, Shizuoka, 411-8777, Japan
| | - Madoka Kato
- Department of Dermatology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Kimihiro Shimizu
- Department of Thoracic and Visceral Organ Surgery, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Masahito Yasuda
- Department of Dermatology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Ayumi Takahashi
- Department of Dermatology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Tetsunari Oyama
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Takayuki Asao
- Department of Oncology Clinical Development, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Osamu Ishikawa
- Department of Dermatology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
32
|
Schreier B, Rabe S, Winter S, Ruhs S, Mildenberger S, Schneider B, Sibilia M, Gotthardt M, Kempe S, Mäder K, Grossmann C, Gekle M. Moderate inappropriately high aldosterone/NaCl constellation in mice: cardiovascular effects and the role of cardiovascular epidermal growth factor receptor. Sci Rep 2014; 4:7430. [PMID: 25503263 PMCID: PMC4262830 DOI: 10.1038/srep07430] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/20/2014] [Indexed: 12/16/2022] Open
Abstract
Non-physiological activation of the mineralocorticoid receptor (MR), e.g. by aldosterone under conditions of high salt intake, contributes to the pathogenesis of cardiovascular diseases, although beneficial effects of aldosterone also have been described. The epidermal growth factor receptor (EGFR) contributes to cardiovascular alterations and mediates part of the MR effects. Recently, we showed that EGFR is required for physiological homeostasis and function of heart and arteries in adult animals. We hypothesize that moderate high aldosterone/NaCl, at normal blood pressure, affects the cardiovascular system depending on cardiovascular EGFR. Therefore we performed an experimental series in male and female animals each, using a recently established mouse model with EGFR knockout in vascular smooth muscle cells and cardiomyocytes and determined the effects of a mild-high aldosterone-to-NaCl constellation on a.o. marker gene expression, heart size, systolic blood pressure, impulse conduction and heart rate. Our data show that (i) cardiac tissue of male but not of female mice is sensitive to mild aldosterone/NaCl treatment, (ii) EGFR knockout induces stronger cardiac disturbances in male as compared to female animals and (iii) mild aldosterone/NaCl treatment requires the EGFR in order to disturb cardiac tissue homeostasis whereas beneficial effects of aldosterone seem to be independent of EGFR.
Collapse
Affiliation(s)
- Barbara Schreier
- Julius-Bernstein-Institute of Physiology, Medical Faculty, University of Halle-Wittenberg, Halle, Germany
| | - Sindy Rabe
- Julius-Bernstein-Institute of Physiology, Medical Faculty, University of Halle-Wittenberg, Halle, Germany
| | - Sabrina Winter
- Julius-Bernstein-Institute of Physiology, Medical Faculty, University of Halle-Wittenberg, Halle, Germany
| | - Stefanie Ruhs
- Julius-Bernstein-Institute of Physiology, Medical Faculty, University of Halle-Wittenberg, Halle, Germany
| | - Sigrid Mildenberger
- Julius-Bernstein-Institute of Physiology, Medical Faculty, University of Halle-Wittenberg, Halle, Germany
| | - Bettina Schneider
- Julius-Bernstein-Institute of Physiology, Medical Faculty, University of Halle-Wittenberg, Halle, Germany
| | - Maria Sibilia
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Michael Gotthardt
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin-Buch, Germany
| | - Sabine Kempe
- Institute of Pharmacy, Faculty of Natural Sciences 1, University of Halle-Wittenberg, Halle, Germany
| | - Karsten Mäder
- Institute of Pharmacy, Faculty of Natural Sciences 1, University of Halle-Wittenberg, Halle, Germany
| | - Claudia Grossmann
- Julius-Bernstein-Institute of Physiology, Medical Faculty, University of Halle-Wittenberg, Halle, Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, Medical Faculty, University of Halle-Wittenberg, Halle, Germany
| |
Collapse
|
33
|
Romana-Souza B, Nascimento AP, Brum PC, Monte-Alto-Costa A. Deletion of the α2A/α2C-adrenoceptors accelerates cutaneous wound healing in mice. Int J Exp Pathol 2014; 95:330-41. [PMID: 25186490 DOI: 10.1111/iep.12093] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 08/02/2014] [Indexed: 12/27/2022] Open
Abstract
The α2-adrenoceptors regulate the sympathetic nervous system, controlling presynaptic catecholamine release. However, the role of the α2-adrenoceptors in cutaneous wound healing is poorly understood. Mice lacking both the α2A/α2C-adrenoceptors were used to evaluate the participation of the α2-adrenoceptor during cutaneous wound healing. A full-thickness excisional lesion was performed on the dorsal skin of the α2A/α2C-adrenoceptor knockout and wild-type mice. Seven or fourteen days later, the animals were euthanized and the lesions were formalin-fixed and paraffin-embedded or frozen. Murine skin fibroblasts were also isolated from α2A/α2C-adrenoceptor knockout and wild-type mice, and fibroblast activity was evaluated. The in vivo study demonstrated that α2A/α2C-adrenoceptor depletion accelerated wound contraction and re-epithelialization. A reduction in the number of neutrophils and macrophages was observed in the α2A/α2C-adrenoceptor knockout mice compared with wild-type mice. In addition, α2A/α2C-adrenoceptor depletion enhanced the levels of nitrite and hydroxyproline, and the protein expression of transforming growth factor-β and vascular endothelial growth factor. Furthermore, α2A/α2C-adrenoceptor depletion accelerated blood vessel formation and myofibroblast differentiation. The in vitro study demonstrated that skin fibroblasts isolated from α2A/α2C-adrenoceptor knockout mice exhibited enhanced cell migration, α-smooth muscle actin _protein expression and collagen deposition compared with wild-type skin fibroblasts. In conclusion, α2A/α2C-adrenoceptor deletion accelerates cutaneous wound healing in mice.
Collapse
Affiliation(s)
- Bruna Romana-Souza
- Department of Histology and Embryology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
34
|
Liao MH, Liu SS, Peng IC, Tsai FJ, Huang HH. The stimulatory effects of alpha1-adrenergic receptors on TGF-beta1, IGF-1 and hyaluronan production in human skin fibroblasts. Cell Tissue Res 2014; 357:681-93. [PMID: 24844469 DOI: 10.1007/s00441-014-1893-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 04/10/2014] [Indexed: 11/28/2022]
Abstract
Skin fibroblasts modulate tissue repair, wound healing and immunological responses. Adrenergic receptors (ARs) mediate important physiological functions, such as endocrine, metabolic and neuronal activity. In this study, the expression α1A-ARs in human skin fibroblasts is examined and verified. Regulatory effects of α1-agonist cirazoline on cell migration and the production of transforming growth factor β1 (TGF-β1), insulin-like growth factor 1 (IGF-1), hyaluronan (HA), fibronectin and procollagen type I carboxy-terminal peptide (PIP) by human skin fibroblasts are assessed and validated. α1A-AR mRNA and protein were found in human skin fibroblasts WS1. Exposure of cirazoline doubled skin fibroblast migration and the increase in cell migration was attenuated by α1-antagonist prazosin. TGF-β1 mRNA and production were enhanced after exposure to cirazoline and IGF-1 production was also increased after treatment with cirazoline. Exposure to cirazoline also enhanced HA and PIP production. The increases in TGF-β1, IGF-1, HA and PIP production were partially abolished in fibroblasts transfected with α1A-AR short interfering RNAs, indicating that α1A-ARs are involved in the cirazoline-induced increases in TGF-β1, IGF-1, HA and PIP production. Thus, α1A-ARs are stably expressed and stimulate cell migration and TGF-β1, IGF-1, HA and PIP production in human skin fibroblasts. Moreover, TGF-β1, IGF-1, HA and PIP production and the cell migration of human skin fibroblasts are possibly modulated by natural catecholamines produced by the endocrine system or sympathetic innervation, which could directly or indirectly participate in cytokine secretion, fibroblast migration and matrix production of wound healing in the skin.
Collapse
Affiliation(s)
- Ming-Huei Liao
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | | | | | | | | |
Collapse
|
35
|
Perez-Aso M, Flacco N, Carpena N, Montesinos MC, D'Ocon P, Ivorra MD. β-Adrenoceptors differentially regulate vascular tone and angiogenesis of rat aorta via ERK1/2 and p38. Vascul Pharmacol 2014; 61:80-9. [PMID: 24768830 DOI: 10.1016/j.vph.2014.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/11/2014] [Accepted: 04/12/2014] [Indexed: 01/14/2023]
Abstract
β-Adrenoceptors (β-ARs) modulate ERK1/2 and p38 in different cells, but little is known about the contribution of these signaling pathways to the function of β-ARs in vascular tissue. Immunoblotting analysis of rat aortic rings, primary endothelial (ECs) and smooth muscle cells (SMCs) isolated from aorta showed that β-AR stimulation with isoprenaline activated p38 in aortic rings and in both cultured cell types, whereas it had a dual effect on ERK1/2 phosphorylation, decreasing it in ECs while increasing it in SMCs. These effects were reversed by propranolol, which by itself increased p-ERK1/2 in ECs. Isoprenaline β-AR mediated vasodilation of aortic rings was potentiated by the ERK1/2 inhibitor, U0126, in the presence or absence of endothelium or L-NAME, whereas inhibition of p38 had no impact. Isoprenaline moderately decreased sprouting from aorta rings in the Matrigel angiogenesis assay; conversely propranolol not only prevented isoprenaline inhibition, but stimulated angiogenesis. ERK1/2 inhibition decreased angiogenesis, while a dramatic stimulation was observed by p38 blockade. Our results suggest that ERK1/2 activation after β-ARs stimulation in the smooth muscle hinders the vasodilator effect of isoprenaline, but in the endothelium β-ARs decreases ERK1/2 and increases p38 activity reducing therefore angiogenesis.
Collapse
Affiliation(s)
- Miguel Perez-Aso
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, 46100 Burjassot, Spain
| | - Nicla Flacco
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, 46100 Burjassot, Spain
| | - Nuria Carpena
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, 46100 Burjassot, Spain
| | - M Carmen Montesinos
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, 46100 Burjassot, Spain; Institut de Reconociment Molecular i Desenvolupament Tecnològic, Centre Mixte Universitat Politècnica de València - Universitat de València, Spain
| | - Pilar D'Ocon
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, 46100 Burjassot, Spain
| | - M Dolores Ivorra
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, 46100 Burjassot, Spain.
| |
Collapse
|
36
|
Assis de Brito TL, Monte-Alto-Costa A, Romana-Souza B. Propranolol impairs the closure of pressure ulcers in mice. Life Sci 2014; 100:138-146. [PMID: 24560961 DOI: 10.1016/j.lfs.2014.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 01/17/2014] [Accepted: 02/05/2014] [Indexed: 11/17/2022]
Abstract
AIMS β-Adrenoceptors modulate acute wound healing; however, few studies have shown the effects of β-adrenoceptor blockade on chronic wounds. Therefore, this study investigated the effect of β1-/β2-adrenoceptor blockade in wound healing of pressure ulcers. MAIN METHODS Male mice were daily treated with propranolol (β1-/β2-adrenoceptor antagonist) until euthanasia. One day after the beginning of treatment, two cycles of ischemia-reperfusion by external application of two magnetic plates were performed in skin to induce pressure ulcer formation. KEY FINDINGS Propranolol administration reduced keratinocyte migration, transforming growth factor-β protein expression, re-epithelialization, and necrotic tissue loss. Neutrophil number and neutrophil elastase protein expression were increased in propranolol-treated group when compared with control group. Propranolol administration delayed macrophage mobilization and metalloproteinase-12 protein expression and reduced monocyte chemoattractant protein-1 protein expression. Myofibroblastic differentiation, angiogenesis, and wound closure were delayed in the propranolol-treated animals. Propranolol administration increased neo-epidermis thickness, reduced collagen deposition, and enhanced tenascin-C expression resulting in the formation of an immature and disorganized collagenous scar. SIGNIFICANCE β1-/β2-Adrenoceptor blockade delays wound healing of ischemia-reperfusion skin injury through the impairment of the re-epithelialization and necrotic tissue loss which compromise wound inflammation, dermal reconstruction, and scar formation.
Collapse
Affiliation(s)
| | - Andréa Monte-Alto-Costa
- Department of Histology and Embryology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna Romana-Souza
- Department of Histology and Embryology, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
37
|
Reid B, Zhao M. The Electrical Response to Injury: Molecular Mechanisms and Wound Healing. Adv Wound Care (New Rochelle) 2014; 3:184-201. [PMID: 24761358 DOI: 10.1089/wound.2013.0442] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 06/21/2013] [Indexed: 01/06/2023] Open
Abstract
Significance: Natural, endogenous electric fields (EFs) and currents arise spontaneously after wounding of many tissues, especially epithelia, and are necessary for normal healing. This wound electrical activity is a long-lasting and regulated response. Enhancing or inhibiting this electrical activity increases or decreases wound healing, respectively. Cells that are responsible for wound closure such as corneal epithelial cells or skin keratinocytes migrate directionally in EFs of physiological magnitude. However, the mechanisms of how the wound electrical response is initiated and regulated remain unclear. Recent Advances: Wound EFs and currents appear to arise by ion channel up-regulation and redistribution, which are perhaps triggered by an intracellular calcium wave or cell depolarization. We discuss the possibility of stimulation of wound healing via pharmacological enhancement of the wound electric signal by stimulation of ion pumping. Critical Issues: Chronic wounds are a major problem in the elderly and diabetic patient. Any strategy to stimulate wound healing in these patients is desirable. Applying electrical stimulation directly is problematic, but pharmacological enhancement of the wound signal may be a promising strategy. Future Directions: Understanding the molecular regulation of wound electric signals may reveal some fundamental mechanisms in wound healing. Manipulating fluxes of ions and electric currents at wounds might offer new approaches to achieve better wound healing and to heal chronic wounds.
Collapse
Affiliation(s)
- Brian Reid
- Departments of Dermatology and Ophthalmology, School of Medicine, University of California, Davis, California
| | - Min Zhao
- Departments of Dermatology and Ophthalmology, School of Medicine, University of California, Davis, California
| |
Collapse
|
38
|
Raut SB, Nerlekar SR, Pawar S, Patil AN. An evaluation of the effects of nonselective and cardioselective β-blockers on wound healing in Sprague Dawley rats. Indian J Pharmacol 2013; 44:629-33. [PMID: 23112427 PMCID: PMC3480798 DOI: 10.4103/0253-7613.100399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 03/31/2012] [Accepted: 07/01/2012] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES To investigate the effect of a nonselective β-blocker (propranolol) and cardioselective β-blocker (metoprolol) on wound healing in rats using incision and excision wound models and to compare the effect of these drugs on wound healing. MATERIALS AND METHODS Propranolol and metoprolol were given orally. Sprague Dawley rats of either sex were used. Incision and excision wound models were used to evaluate the wound-healing activity. Effects of metoprolol and propranolol on tensile strength, period of epithelialization, and hydroxyproline content were observed. Histological analysis was done to see collagen deposition and inflammatory infiltrate. STATISTICAL ANALYSIS USED The data was subjected to analysis of variance (ANOVA) followed by Scheffe's test. P < 0.05 was considered to be statistically significant. Statistical analysis was done using SPSS software version 15.0. RESULTS Administration of propranolol or metoprolol was shown to decrease tensile strength, delay wound contraction and re-epithelialization, increase inflammatory infiltrate, and reduce collagen density and hydroxyproline levels. CONCLUSIONS The results suggest that nonselective and cardioselective β-blockers delay wound healing and these effects are mediated by β1-receptors.
Collapse
Affiliation(s)
- Sanket B Raut
- Department of Pharmacology, L.T.M. Medical College and General Hospital, Sion, Mumbai, India
| | | | | | | |
Collapse
|
39
|
Pullar CE, Le Provost GS, O'Leary AP, Evans SE, Baier BS, Isseroff RR. β2AR antagonists and β2AR gene deletion both promote skin wound repair processes. J Invest Dermatol 2012; 132:2076-84. [PMID: 22495178 PMCID: PMC3396744 DOI: 10.1038/jid.2012.108] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 01/27/2012] [Accepted: 02/12/2012] [Indexed: 02/01/2023]
Abstract
Skin wound healing is a complex process requiring the coordinated, temporal orchestration of numerous cell types and biological processes to regenerate damaged tissue. Previous work has demonstrated that a functional β-adrenergic receptor autocrine/paracrine network exists in skin, but the role of β2-adrenergic receptor (β2AR) in wound healing is unknown. A range of in vitro (single-cell migration, immunoblotting, ELISA, enzyme immunoassay), ex vivo (rat aortic ring assay), and in vivo (chick chorioallantoic membrane assay, zebrafish, murine wild-type, and β2AR knockout excisional skin wound models) models were used to demonstrate that blockade or loss of β2AR gene deletion promoted wound repair, a finding that is, to our knowledge, previously unreported. Compared with vehicle-only controls, β2AR antagonism increased angiogenesis, dermal fibroblast function, and re-epithelialization, but had no effect on wound inflammation in vivo. Skin wounds in β2AR knockout mice contracted and re-epithelialized faster in the first few days of wound repair in vivo. β2AR antagonism enhanced cell motility through distinct intracellular signalling mechanisms and increased vascular endothelial growth factor secretion from keratinocytes. β2AR antagonism promoted wound repair processes in the early stages of wound repair, revealing a possible new avenue for therapeutic intervention.
Collapse
Affiliation(s)
- Christine E Pullar
- Deparment of Cell Physiology and Pharmacology, University of Leicester, Leicester, UK.
| | | | | | | | | | | |
Collapse
|
40
|
Chen D, Xing W, Hong J, Wang M, Huang Y, Zhu C, Yuan Y, Zeng W. The beta2-adrenergic receptor is a potential prognostic biomarker for human hepatocellular carcinoma after curative resection. Ann Surg Oncol 2012; 19:3556-65. [PMID: 22588469 DOI: 10.1245/s10434-012-2396-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Indexed: 12/23/2022]
Abstract
BACKGROUND The beta2-adrenergic receptor (Beta2-AR) is overexpressed and highly associated with poor prognosis in many malignancies. Nevertheless, the role of Beta2-AR in hepatocellular carcinoma (HCC) has not been thoroughly elucidated. The aim of this study is to investigate the expression of Beta2-AR and its clinicopathological/prognostic value in HCC patients after curative resection. MATERIALS AND METHODS Semiquantitative reverse transcription PCR (RT-PCR) and real-time quantitative PCR (qPCR) were used to measure Beta2-AR RNA expression in 60 pairs of HCC tumors and matched nontumorous tissues. Beta2-AR expression was detected in HCC cell lines by Western blot analysis. Furthermore, we investigated Beta2-AR expression in correlation with the clinicopathological features and analyzed the potential prognostic significance of Beta2-AR in 192 HCC patients by immunohistochemistry (IHC). RESULTS Upregulation of Beta2-AR mRNA was significantly higher in HCC tumor tissues than in their paired nontumorous liver specimens. The expression of Beta2-AR protein was detected in five HCC cell lines. Positive Beta2-AR protein expression was significantly associated with a high α-fetoprotein (AFP) level (P = 0.001), large tumor size (P < 0.001), tumor encapsulation (P = 0.002), vascular invasion (P = 0.004), microsatellite formation (P = 0.002), and poor differentiation (P < 0.001). In univariate and multivariate analyses, Beta2-AR was an excellent predictive factor for both recurrence-free survival and overall survival (OS). Beta2-AR expression status was associated with poor prognosis independent of AFP, tumor-node-metastasis stage and Edmondson stage. CONCLUSIONS The Beta2-AR is a potential prognostic biomarker for survival and tumor recurrence in HCC patients after curative resection.
Collapse
Affiliation(s)
- Dongtai Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Pastore S, Lulli D, Fidanza P, Potapovich AI, Kostyuk VA, De Luca C, Mikhal'chik E, Korkina LG. Plant polyphenols regulate chemokine expression and tissue repair in human keratinocytes through interaction with cytoplasmic and nuclear components of epidermal growth factor receptor system. Antioxid Redox Signal 2012; 16:314-28. [PMID: 21967610 PMCID: PMC3246422 DOI: 10.1089/ars.2011.4053] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AIMS To evaluate mechanisms underlying modulation of inflammatory chemokines in primary human keratinocytes (normal human epidermal keratinocytes) and repair-related processes in wound models by plant polyphenols (PPs) with antioxidant and superoxide scavenging properties (verbascoside [Vb], resveratrol [Rv], polydatin [Pd], quercetin [Qr], and rutin). RESULTS Epidermal growth factor receptor (EGFR)-controlled chemokines CXCL8/interleukin 8 (IL-8), CCL2/monocyte chemotactic protein-1 (MCP-1), and CXCL10/interferon gamma-produced protein of 10 kDa (IP-10) were modulated by transforming growth factor alpha (TGF-α) and by the tumor necrosis factor alpha/interferon gamma combination (T/I). EGFR phosphorylation, nuclear translocation, and downstream cytoplasmic signaling pathways (extracellular regulation kinase [ERK]1/2, p38, STAT3, and PI-3K) were studied. All PPs did not affect TGF-α-induced STAT3 phosphorylation, whereas they suppressed T/I-activated NFkappaB and constitutive and T/I-induced but not TGF-α-induced ERK1/2 phosphorylation. Vb and Qr suppressed total EGFR phosphorylation, but they synergized with TGF-α to enhance nuclear accumulation of phosphorylated EGFR. Vb strongly inhibited TGF-α-induced p38 phosphorylation and T/I-induced NFkappaB and activator protein-1 (AP-1) binding to DNA. Vb was an effective inhibitor of T/I-stimulated chemokine synthesis, and it accelerated scratch wound healing in vitro. Anti-inflammatory and wound healing activities of Vb were confirmed in vivo in the full-thickness excision wound. Although Pd and Rv did not affect EGFR activation/translocation, they and Qr synergized with TGF-α and T/I in the induction of IL-8 transcription/synthesis while opposing enhanced MCP-1 and IP-10 transcription/synthesis connected with pharmacologically impaired EGFR functioning. INNOVATION PPs perturb the EGFR system in human keratinocytes, and this effect may be implicated in the regulation of inflammatory and repair-related processes in the skin. CONCLUSION Anti-inflammatory and wound healing effects of PPs depend on their interaction with EGFR-controlled cytoplasmic and nuclear pathways rather than on their direct redox properties.
Collapse
Affiliation(s)
- Saveria Pastore
- Tissue Engineering & Skin Pathophysiology Laboratory, Dermatology Research Institute (IDI IRCCS), Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Moreno-Smith M, Lutgendorf SK, Sood AK. Impact of stress on cancer metastasis. Future Oncol 2011; 6:1863-81. [PMID: 21142861 DOI: 10.2217/fon.10.142] [Citation(s) in RCA: 285] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The influence of psychosocial factors on the development and progression of cancer has been a longstanding hypothesis since ancient times. In fact, epidemiological and clinical studies over the past 30 years have provided strong evidence for links between chronic stress, depression and social isolation and cancer progression. By contrast, there is only limited evidence for the role of these behavioral factors in cancer initiation. Recent cellular and molecular studies have identified specific signaling pathways that impact cancer growth and metastasis. This article provides an overview of the relationship between psychosocial factors, specifically chronic stress, and cancer progression.
Collapse
Affiliation(s)
- Myrthala Moreno-Smith
- Department of Gynecologic Oncology, UTMD Anderson Cancer Center, 1155 Herman Pressler, Houston, TX 77030, USA
| | | | | |
Collapse
|
44
|
Romana-Souza B, Otranto M, Almeida TF, Porto LC, Monte-Alto-Costa A. Stress-induced epinephrine levels compromise murine dermal fibroblast activity through β-adrenoceptors. Exp Dermatol 2011; 20:413-9. [PMID: 21366703 DOI: 10.1111/j.1600-0625.2010.01239.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Stress-induced catecholamine impairs the formation of granulation tissue acting directly in fibroblast activity; however, the mechanism by which high levels of catecholamines alter the granulation tissue formation is still unclear. Thus, the aim of this study was to investigate how high levels of epinephrine compromise the activity of murine dermal fibroblasts. Dermal fibroblasts isolated from the skin of neonatal Swiss mice were preincubated with α- or β-adrenoceptor antagonists. Thereafter, cells were exposed to physiologically elevated levels of epinephrine or epinephrine plus α- or β-adrenoceptor antagonists, and fibroblast activity was evaluated. The blockade of β1- and β2-adrenoceptors reversed the increase in fibroblast proliferation, ERK 1/2 phosphorylation, myofibroblastic differentiation and the reduction of collagen deposition induced by epinephrine. In addition, the blockade of β3-adrenoceptors reversed the increase in fibroblast proliferation and nitric oxide synthesis as well as the reduction of fibroblast migration, AKT phosphorylation and active matrix metalloproteinase-2 expression induced by epinephrine. However, the blockade of α1- and α2-adrenoceptors did not alter the effects of epinephrine on the activity of murine dermal fibroblasts. In conclusion, high levels of epinephrine directly compromise the activity of neonatal mouse skin fibroblasts through the activation of β1-, β2- and β3-adrenoceptors, but not through α1- and α2-adrenoceptors.
Collapse
Affiliation(s)
- Bruna Romana-Souza
- Department of Histology and Embryology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
45
|
Lee WJ, Chi SG, Park DJ, Kim JY, Kim HY, Lee SJ, Kim DW, Kim MK, Kim JC, Lee MW. Treatment of Cultured Sebocytes with an EGFR Inhibitor Does Not Lead to Significant Upregulation of Inflammatory Biomarkers. Ann Dermatol 2011; 23:12-8. [PMID: 21738357 DOI: 10.5021/ad.2011.23.1.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/28/2010] [Accepted: 07/28/2010] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) inhibitors are being used to treat malignancies originating from epithelia. Unfortunately, blocking the EGFR pathway leads to various side effects, most frequently acneiform eruptions. OBJECTIVE To probe the mechanism underlying this side effect, we investigated the effect of EGFR inhibitors on cultured sebocytes. METHODS To examine the effects of an EGFR inhibitor (cetuximab, Erbitux® 10 ng/ml) and the effects of EGFR ligands, such as epidermal growth factor (EGF, 10 ng/ml) and transforming growth factor-α (TGF-α, 5 ng/ml), on the production of inflammatory cytokines in cultured sebocytes, we used reverse transcriptase-polymerase chain reaction, immunocytofluorescence and Western blots. Outcomes included the expression of interleukin (IL)-1, IL-6, tumor necrosis factor-α (TNF-α), peroxisome proliferator-activated receptor-γ (PPAR-γ) and EGFR. RESULTS There were no significant differences in the expression of IL-1, IL-6, TNF-α, PPAR-γ and EGFR between (a) groups treated with an EGFR inhibitor or an EGFR ligand and (b) the control group, except for a significant increase in the expression of IL-1 in the EGF-treated group. CONCLUSION EGFR inhibitors and EGFR ligands do not provoke the expression of inflammatory biomarkers in cultured sebocytes. The role of the sebaceous glands in EGFR inhibitor-induced acneiform eruption should be investigated more thoroughly.
Collapse
Affiliation(s)
- Weon Ju Lee
- Department of Dermatology, Kyungpook National University School of Medicine, Daegu, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Madden KS, Szpunar MJ, Brown EB. β-Adrenergic receptors (β-AR) regulate VEGF and IL-6 production by divergent pathways in high β-AR-expressing breast cancer cell lines. Breast Cancer Res Treat 2011; 130:747-58. [PMID: 21234673 DOI: 10.1007/s10549-011-1348-y] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 01/04/2011] [Indexed: 01/07/2023]
Abstract
Activation of β-adrenergic receptors (β-AR) drives proangiogenic factor production in several types of cancers. To examine β-AR regulation of breast cancer pathogenesis, β-AR density, signaling capacity, and functional responses to β-AR stimulation were studied in four human breast adenocarcinoma cell lines. β-AR density ranged from very low in MCF7 and MB-361 to very high in MB-231 and in a brain-seeking variant of MB-231, MB-231BR. Consistent with β-AR density, β-AR activation elevated cAMP in MCF7 and MB-361 much less than in MB-231 and MB-231BR. Functionally, β-AR stimulation did not markedly alter vascular endothelial growth factor (VEGF) production by MCF7 or MB-361. In the two high β-AR-expressing cell lines MB-231 and MB-231BR, β-AR-induced cAMP and VEGF production differed considerably, despite similar β-AR density. The β(2)-AR-selective agonist terbutaline and the endogenous neurotransmitter norepinephrine decreased VEGF production by MB-231, but increased VEGF production by MB-231BR. Moreover, β(2)-AR activation increased IL-6 production by both MB-231 and MB-231BR. These functional alterations were driven by elevated cAMP, as direct activation of adenylate cyclase by forskolin elicited similar alterations in VEGF and IL-6 production. The protein kinase A antagonist KT5720 prevented β-AR-induced alterations in MB-231 and MB-231BR VEGF production, but not IL-6 production. Conclusions β-AR expression and signaling is heterogeneous in human breast cancer cell lines. In cells with high β-AR density, β-AR stimulation regulates VEGF production through the classical β-AR-cAMP-PKA pathway, but this pathway can elicit directionally opposite outcomes. Furthermore, in the same cells, β-AR activate a cAMP-dependent, PKA-independent pathway to increase IL-6 production. The complexity of breast cancer cell β-AR expression and functional responses must be taken into account when considering β-AR as a therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Kelley S Madden
- Department of Biomedical Engineering, University of Rochester Medical Center, Goergen Hall, RC Box 270168, Rochester, NY 14627, USA.
| | | | | |
Collapse
|
47
|
Lajevic MD, Suleiman S, Cohen RL, Chambers DA. Activation of p38 mitogen-activated protein kinase by norepinephrine in T-lineage cells. Immunology 2010; 132:197-208. [PMID: 21039464 DOI: 10.1111/j.1365-2567.2010.03354.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The catecholamine norepinephrine (NE) stimulates T lymphocytes through a beta-adrenergic receptor (βAR)/adenylyl cyclase (AC)/cyclic AMP (cAMP)/protein kinase A (PKA) pathway, leading to altered cell responsiveness and apoptosis. p38 Mitogen-activated protein kinase (MAPK), a major intracellular signalling mediator for cellular and environmental stressors, is involved in the production of immune modulators and in the regulation of T-cell development, survival and death. In these studies we investigated the relationship among NE signalling, p38 MAPK activity and T-cell death. We showed that NE stimulation of BALB/c mouse thymocytes and S49 thymoma cells selectively increases the dual phosphorylation and activity of p38α MAPK. p38 MAPK activation involves the βAR, Gs protein, AC, cAMP and PKA, as determined through the use of a βAR antagonist, activators of AC and cAMP, and S49 clonal mutants deficient in Gs and PKA. Dual phosphorylation of p38 MAPK is also dependent on its own catalytic activity. Inhibition of p38 MAPK activity revealed its involvement in cAMP-mediated activating transcription factor-2 (ATF-2) phosphorylation, Fas ligand messenger RNA (mRNA) up-regulation, and cell death. These results identify a mechanism through which NE stimulation of the βAR/Gs/PKA pathway activates p38 MAPK, which can be potentiated by autophosphorylation, and leads to changes in T-cell dynamics, in part through the regulation of Fas ligand mRNA expression.
Collapse
Affiliation(s)
- Melissa D Lajevic
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
48
|
Romana-Souza B, Otranto M, Vieira AM, Filgueiras CC, Fierro IM, Monte-Alto-Costa A. Rotational stress-induced increase in epinephrine levels delays cutaneous wound healing in mice. Brain Behav Immun 2010; 24:427-37. [PMID: 19944145 DOI: 10.1016/j.bbi.2009.11.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 11/09/2009] [Accepted: 11/19/2009] [Indexed: 01/23/2023] Open
Abstract
Stress impairs wound healing of cutaneous lesions; however, the mechanism is still unclear. The aim of this study was to evaluate the effects of rotational stress on cutaneous wound healing in mice and propose a mechanism. Male mice were spun at 45 rpm for 15 min every hour beginning 3 days before wounding until euthanasia. Control animals were not subjected to stress. To confirm that catecholamines participate in stress-induced delay of wound healing, mice were treated daily with propranolol. An excisional lesion was created and measured. Seven and 14 days later, animals were killed and lesions collected. Sections were stained with hematoxylin-eosin and immunostained for alpha-smooth muscle actin and proliferating cell nuclear antigen. Matrix metalloproteinase (MMP)-2 and -9 activity, nitrite levels, and tumor necrosis factor-alpha (TNF-alpha) expression were measured in the wounds. In addition, murine skin fibroblast cultures were treated with high levels of epinephrine and fibroblast activity was evaluated. Stressed mice exhibited reduced locomotor activity and increased normetanephrine plasma levels. Rotational stress was associated with decreased wound contraction, reduced re-epithelialization, reduced MMP-2 and MMP-9 activation, but with strongly increased nitrite levels. Furthermore, inflammatory cell infiltration, TNF-alpha expression, myofibroblastic differentiation, and angiogenesis were all delayed in the stress group. Propranolol administration reversed the deleterious effects of stress on wound contraction and re-epithelialization. High epinephrine concentrations increased murine skin fibroblast proliferation and nitric oxide synthesis, and strongly inhibited skin fibroblast migration and both pro- and active MMP-2. In conclusion, rotational stress impairs cutaneous wound healing due to epinephrine increased levels.
Collapse
Affiliation(s)
- Bruna Romana-Souza
- Department of Histology and Embryology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
49
|
Li F, Huang Q, Chen J, Peng Y, Roop DR, Bedford JS, Li CY. Apoptotic cells activate the "phoenix rising" pathway to promote wound healing and tissue regeneration. Sci Signal 2010; 3:ra13. [PMID: 20179271 DOI: 10.1126/scisignal.2000634] [Citation(s) in RCA: 367] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ability to regenerate damaged tissues is a common characteristic of multicellular organisms. We report a role for apoptotic cell death in promoting wound healing and tissue regeneration in mice. Apoptotic cells released growth signals that stimulated the proliferation of progenitor or stem cells. Key players in this process were caspases 3 and 7, proteases activated during the execution phase of apoptosis that contribute to cell death. Mice lacking either of these caspases were deficient in skin wound healing and in liver regeneration. Prostaglandin E(2), a promoter of stem or progenitor cell proliferation and tissue regeneration, acted downstream of the caspases. We propose to call the pathway by which executioner caspases in apoptotic cells promote wound healing and tissue regeneration in multicellular organisms the "phoenix rising" pathway.
Collapse
Affiliation(s)
- Fang Li
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Romana-Souza B, Monte-Alto-Costa A. Simultaneous blockade of alpha and beta adrenoceptors impairs cutaneous wound healing in rats. J Eur Acad Dermatol Venereol 2009; 24:349-52. [PMID: 19686328 DOI: 10.1111/j.1468-3083.2009.03376.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Recent studies showed that propranolol administration (beta-antagonist), but not phentolamine administration (alpha-antagonist), delays cutaneous wound healing. However, alpha adrenoceptor activation may be participating in propranolol-induced alterations. OBJECTIVE This study aims to investigate the effects of simultaneous blockade of beta and alpha adrenoceptors on cutaneous wound healing. METHODS Rats were treated with propranolol plus phentolamine dissolved in water. An excisional lesion was done and measured. Lesions were formalin-fixed and paraffin-embedded 21 days after wounding. Sections were stained with haematoxylin and eosin, toluidine blue and Sirius red, and immunostained for alpha-smooth muscle actin or proliferating cell nuclear antigen. RESULTS Administration of propranolol plus phentolamine reduced wound contraction and re-epithelialization, but increased cellular proliferation and the number of mast cells. There was no difference in myofibroblast density, collagen fibre organization and polymorphonuclear number between the control and treated groups. CONCLUSION Simultaneous blockade of beta and alpha adrenoceptors impairs cutaneous wound healing. Furthermore, propranolol-induced impairment on cutaneous wound healing does not occur through alpha adrenoceptor activation.
Collapse
Affiliation(s)
- B Romana-Souza
- Department of Histology and Embryology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|