1
|
Zhang S, Luo J, Chen Y, Li H. Vesicle trafficking mediated by small GTPase CfRab6 in association with CfRic1 and CfRgp1 governs growth, conidiation, and pathogenicity of Colletotrichum fructicola. Int J Biol Macromol 2025; 289:138988. [PMID: 39706448 DOI: 10.1016/j.ijbiomac.2024.138988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Small GTPase of the Rab family functions as molecular switch in vesicle trafficking, regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). In our ongoing efforts to study the pathogenesis of Colletotrichum fructicola, the causal agent of anthracnose in edible-oil plant Camellia oleifera, we identified CfRab6 as the Rab GTPase and characterized its roles in C. fructicola. Consistent with our hypothesis, targeted gene deletion revealed that the ΔCfrab6 mutant displays defects in vesicle trafficking, including endocytosis and autophagy. These combined effects led to the impairments in growth, conidia, and pathogenicity. Moreover, we demonstrated the critical importance of the GDP/GTP motifs are crucial for the normal function of CfRab6. Additionally, our findings demonstrated that CfRic1 and CfRgp1 act as conserved GEFs for CfRab6, supported by their interactions with CfRab6 and the partial restoration of the active GTP-bound CfRab6, which alleviated phenotypic defects in the ΔCfric1 and ΔCfrgp1 mutants. In conclusion, our study sheds new light on the significance of CfRab6-mediated vesicle trafficking in the physiology and pathogenicity of C. fructicola, which might offer new potential targets for the management of anthracnose disease.
Collapse
Affiliation(s)
- Shengpei Zhang
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China; Key Laboratory for Non-wood Forest Cultivation and Conservation of Ministry of Education, Changsha 410004, China; Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha 410004, China
| | - Jing Luo
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China; Key Laboratory for Non-wood Forest Cultivation and Conservation of Ministry of Education, Changsha 410004, China; Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha 410004, China
| | - Yan Chen
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China; Key Laboratory for Non-wood Forest Cultivation and Conservation of Ministry of Education, Changsha 410004, China; Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha 410004, China
| | - He Li
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China; Key Laboratory for Non-wood Forest Cultivation and Conservation of Ministry of Education, Changsha 410004, China; Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha 410004, China.
| |
Collapse
|
2
|
Komath SS. To each its own: Mechanisms of cross-talk between GPI biosynthesis and cAMP-PKA signaling in Candida albicans versus Saccharomyces cerevisiae. J Biol Chem 2024; 300:107444. [PMID: 38838772 PMCID: PMC11294708 DOI: 10.1016/j.jbc.2024.107444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
Candida albicans is an opportunistic fungal pathogen that can switch between yeast and hyphal morphologies depending on the environmental cues it receives. The switch to hyphal form is crucial for the establishment of invasive infections. The hyphal form is also characterized by the cell surface expression of hyphae-specific proteins, many of which are GPI-anchored and important determinants of its virulence. The coordination between hyphal morphogenesis and the expression of GPI-anchored proteins is made possible by an interesting cross-talk between GPI biosynthesis and the cAMP-PKA signaling cascade in the fungus; a parallel interaction is not found in its human host. On the other hand, in the nonpathogenic yeast, Saccharomyces cerevisiae, GPI biosynthesis is shut down when filamentation is activated and vice versa. This too is achieved by a cross-talk between GPI biosynthesis and cAMP-PKA signaling. How are diametrically opposite effects obtained from the cross-talk between two reasonably well-conserved pathways present ubiquitously across eukarya? This Review attempts to provide a model to explain these differences. In order to do so, it first provides an overview of the two pathways for the interested reader, highlighting the similarities and differences that are observed in C. albicans versus the well-studied S. cerevisiae model, before going on to explain how the different mechanisms of regulation are effected. While commonalities enable the development of generalized theories, it is hoped that a more nuanced approach, that takes into consideration species-specific differences, will enable organism-specific understanding of these processes and contribute to the development of targeted therapies.
Collapse
|
3
|
The ADP-ribosylation factor-like small GTPase FgArl1 participates in growth, pathogenicity and DON production in Fusarium graminearum. Fungal Biol 2020; 124:969-980. [PMID: 33059848 DOI: 10.1016/j.funbio.2020.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/08/2020] [Accepted: 08/20/2020] [Indexed: 01/04/2023]
Abstract
Fusarium graminearum is the main pathogen of Fusarium head blight (FHB) in wheat and related species, which causes serious production decreases and economic losses and produces toxins such as deoxynivalenol (DON), which endangers the health of humans and livestock. Vesicle transport is a basic physiological process required for cell survival in eukaryotes. Many regulators of vesicle transport are reported to be involved in the pathogenicity of fungi. In yeast and mammalian cells, the ADP-ribosylation factor-like small GTPase Arl1 and its orthologs are involved in regulating vesicular trafficking, cytoskeletal reorganization and other significant biological processes. However, the role of Arl1 in F. graminearum is not well understood. In this study, we characterized the Arl1-homologous protein FgArl1 in F. graminearum and showed that FgArl1 is located in the trans-Golgi apparatus. The deletion of FgARL1 resulted in a significant decrease in vegetative growth and pathogenicity. Further analyses of the ΔFgarl1 mutant revealed defects in the production of DON. Taken together, these results indicate that FgArl1 is important in the development and pathogenicity of F. graminearum.
Collapse
|
4
|
Wang R, Zhao P, Ge X, Tian P. Overview of Alternaria alternata Membrane Proteins. Indian J Microbiol 2020; 60:269-282. [PMID: 32647391 DOI: 10.1007/s12088-020-00873-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/11/2020] [Indexed: 11/29/2022] Open
Abstract
Alternaria species are mainly saprophytic fungi, but some pathotypes of Alternaria alternata infect economically important plants including cereal crops, vegetables and fruits. Specially, A. alternata generates toxins which contaminate food and feed. To date, management of A. alternata relies primarily on fungicides. However, the control efficacy in most cases is below expectation due to ubiquity of A. alternata and resistance to fungicides. To mitigate resistance and develop long-lasting fungicides, uncovering multiple rather than single target is a prerequisite. Membrane proteins are potential targets of fungicides owing to wide participation in myriad biochemical events especially material transport, signal transduction and pathogenicity. However, so far, little is known about the distribution and molecular structure of A. alternata membrane proteins (AAMPs). Herein we summarize AAMPs by data mining and subsequent structure prediction. We also outline the state-of-the-art research advances of AAMPs especially those closely related to pathogenicity. Overall, this review aims to portray a picture of AAMPs and provide valuable insights for future development of highly efficient fungicides towards A. alternata or beyond.
Collapse
Affiliation(s)
- Ruyi Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 People's Republic of China
| | - Peng Zhao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 People's Republic of China
| | - Xizhen Ge
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023 People's Republic of China
| | - Pingfang Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 People's Republic of China
| |
Collapse
|
5
|
D'Souza RS, Lim JY, Turgut A, Servage K, Zhang J, Orth K, Sosale NG, Lazzara MJ, Allegood J, Casanova JE. Calcium-stimulated disassembly of focal adhesions mediated by an ORP3/IQSec1 complex. eLife 2020; 9:54113. [PMID: 32234213 PMCID: PMC7159923 DOI: 10.7554/elife.54113] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Coordinated assembly and disassembly of integrin-mediated focal adhesions (FAs) is essential for cell migration. Many studies have shown that FA disassembly requires Ca2+ influx, however our understanding of this process remains incomplete. Here, we show that Ca2+ influx via STIM1/Orai1 calcium channels, which cluster near FAs, leads to activation of the GTPase Arf5 via the Ca2+-activated GEF IQSec1, and that both IQSec1 and Arf5 activation are essential for adhesion disassembly. We further show that IQSec1 forms a complex with the lipid transfer protein ORP3, and that Ca2+ influx triggers PKC-dependent translocation of this complex to ER/plasma membrane (PM) contact sites adjacent to FAs. In addition to allosterically activating IQSec1, ORP3 also extracts PI4P from the PM, in exchange for phosphatidylcholine. ORP3-mediated lipid exchange is also important for FA turnover. Together, these findings identify a new pathway that links calcium influx to FA turnover during cell migration.
Collapse
Affiliation(s)
- Ryan S D'Souza
- Department of Cell Biology, University of Virginia Health System, Charlottesville, United States
| | - Jun Y Lim
- Department of Cell Biology, University of Virginia Health System, Charlottesville, United States
| | - Alper Turgut
- Department of Cell Biology, University of Virginia Health System, Charlottesville, United States
| | - Kelly Servage
- Department of Molecular Biology, University of Texas Southwest Medical Center, Dallas, United States.,Howard Hughes Medical Institute, Dallas, United States
| | - Junmei Zhang
- Department of Cell Biology, University of Virginia Health System, Charlottesville, United States
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwest Medical Center, Dallas, United States.,Howard Hughes Medical Institute, Dallas, United States
| | - Nisha G Sosale
- Department of Chemical Engineering, University of Virginia, Charlottesville, United States
| | - Matthew J Lazzara
- Department of Chemical Engineering, University of Virginia, Charlottesville, United States
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, United States
| | - James E Casanova
- Department of Cell Biology, University of Virginia Health System, Charlottesville, United States
| |
Collapse
|
6
|
Whole genome sequencing of Entamoeba nuttalli reveals mammalian host-related molecular signatures and a novel octapeptide-repeat surface protein. PLoS Negl Trop Dis 2019; 13:e0007923. [PMID: 31805050 PMCID: PMC6917348 DOI: 10.1371/journal.pntd.0007923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/17/2019] [Accepted: 11/12/2019] [Indexed: 11/19/2022] Open
Abstract
The enteric protozoa Entamoeba histolytica is the causative agent of amebiasis, which is one of the most common parasitic diseases in developed and developing countries. Entamoeba nuttalli is the genetically closest species to E. histolytica in current phylogenetic analyses of Entamoeba species, and is prevalent in wild macaques. Therefore, E. nuttalli may be a key organism in which to investigate molecules required for infection of human or non-human primates. To explore the molecular signatures of host-parasite interactions, we conducted de novo assembly of the E. nuttalli genome, utilizing self-correction of PacBio long reads and polishing corrected reads using Illumina short reads, followed by comparative genomic analysis with two other mammalian and a reptilian Entamoeba species. The final draft assembly of E. nuttalli included 395 contigs with a total length of approximately 23 Mb, and 9,647 predicted genes, of which 6,940 were conserved with E. histolytica. In addition, we found an E. histolytica-specific repeat known as ERE2 in the E. nuttalli genome. GO-term enrichment analysis of mammalian host-related molecules indicated diversification of transmembrane proteins, including AIG1 family and BspA-like proteins that may be involved in the host-parasite interaction. Furthermore, we identified an E. nuttalli-specific protein that contained 42 repeats of an octapeptide ([G,E]KPTDTPS). This protein was shown to be localized on the cell surface using immunofluorescence. Since many repeat-containing proteins in parasites play important roles in interactions with host cells, this unique octapeptide repeat-containing protein may be involved in colonization of E. nuttalli in the intestine of macaques. Overall, our draft assembly provides a valuable resource for studying Entamoeba evolution and host-parasite selection.
Collapse
|
7
|
Pipaliya SV, Schlacht A, Klinger CM, Kahn RA, Dacks J. Ancient complement and lineage-specific evolution of the Sec7 ARF GEF proteins in eukaryotes. Mol Biol Cell 2019; 30:1846-1863. [PMID: 31141460 PMCID: PMC6727740 DOI: 10.1091/mbc.e19-01-0073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Guanine nucleotide exchange factors (GEFs) are the initiators of signaling by every regulatory GTPase, which in turn act to regulate a wide array of essential cellular processes. To date, each family of GTPases is activated by distinct families of GEFs. Bidirectional membrane trafficking is regulated by ADP-ribosylation factor (ARF) GTPases and the development throughout eukaryotic evolution of increasingly complex systems of such traffic required the acquisition of a functionally diverse cohort of ARF GEFs to control it. We performed phylogenetic analyses of ARF GEFs in eukaryotes, defined by the presence of the Sec7 domain, and found three subfamilies (BIG, GBF1, and cytohesins) to have been present in the ancestor of all eukaryotes. The four other subfamilies (EFA6/PSD, IQSEC7/BRAG, FBX8, and TBS) are opisthokont, holozoan, metazoan, and alveolate/haptophyte specific, respectively, and each is derived from cytohesins. We also identified a cytohesin-derived subfamily, termed ankyrin repeat-containing cytohesin, that independently evolved in amoebozoans and members of the SAR and haptophyte clades. Building on evolutionary data for the ARF family GTPases and their GTPase--activating proteins allowed the generation of hypotheses about ARF GEF protein function(s) as well as a better understanding of the origins and evolution of cellular complexity in eukaryotes.
Collapse
Affiliation(s)
- Shweta V Pipaliya
- Department of Medicine, Division of Infectious Diseases, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Alexander Schlacht
- Department of Medicine, Division of Infectious Diseases, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Christen M Klinger
- Department of Medicine, Division of Infectious Diseases, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Richard A Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | - Joel Dacks
- Department of Medicine, Division of Infectious Diseases, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada.,Department of Life Sciences, The Natural History Museum, London SW7 5BD, United Kingdom
| |
Collapse
|
8
|
Komath SS, Singh SL, Pratyusha VA, Sah SK. Generating anchors only to lose them: The unusual story of glycosylphosphatidylinositol anchor biosynthesis and remodeling in yeast and fungi. IUBMB Life 2019; 70:355-383. [PMID: 29679465 DOI: 10.1002/iub.1734] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/16/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are present ubiquitously at the cell surface in all eukaryotes. They play a crucial role in the interaction of the cell with its external environment, allowing the cell to receive signals, respond to challenges, and mediate adhesion. In yeast and fungi, they also participate in the structural integrity of the cell wall and are often essential for survival. Roughly four decades after the discovery of the first GPI-APs, this review provides an overview of the insights gained from studies of the GPI biosynthetic pathway and the future challenges in the field. In particular, we focus on the biosynthetic pathway in Saccharomyces cerevisiae, which has for long been studied as a model organism. Where available, we also provide information about the GPI biosynthetic steps in other yeast/ fungi. Although the core structure of the GPI anchor is conserved across organisms, several variations are built into the biosynthetic pathway. The present Review specifically highlights these variations and their implications. There is growing evidence to suggest that several phenotypes are common to GPI deficiency and should be expected in GPI biosynthetic mutants. However, it appears that several phenotypes are unique to a specific step in the pathway and may even be species-specific. These could suggest the points at which the GPI biosynthetic pathway intersects with other important cellular pathways and could be points of regulation. They could be of particular significance in the study of pathogenic fungi and in identification of new and specific antifungal drugs/ drug targets. © 2018 IUBMB Life, 70(5):355-383, 2018.
Collapse
Affiliation(s)
| | - Sneh Lata Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Sudisht Kumar Sah
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
9
|
Chen YT, Wang IH, Wang YH, Chiu WY, Hu JH, Chen WH, Lee FJS. Action of Arl1 GTPase and golgin Imh1 in Ypt6-independent retrograde transport from endosomes to the trans-Golgi network. Mol Biol Cell 2019; 30:1008-1019. [PMID: 30726160 PMCID: PMC6589904 DOI: 10.1091/mbc.e18-09-0579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Arf and Rab/Ypt GTPases coordinately regulate membrane traffic and organelle structure by regulating vesicle formation and fusion. Ample evidence has indicated that proteins in these two families may function in parallel or complementarily; however, the manner in which Arf and Rab/Ypt proteins perform interchangeable functions remains unclear. In this study, we report that a Golgi-localized Arf, Arl1, could suppress Ypt6 dysfunction via its effector golgin, Imh1, but not via the lipid flippase Drs2. Ypt6 is critical for the retrograde transport of vesicles from endosomes to the trans-Golgi network (TGN), and its mutation leads to severe protein mislocalization and growth defects. We first overexpress the components of the Arl3-Syt1-Arl1-Imh1 cascade and show that only Arl1 and Imh1 can restore endosome-to-TGN trafficking in ypt6-deleted cells. Interestingly, increased abundance of Arl1 or Imh1 restores localization of the tethering factor Golgi associated retrograde–protein (GARP) complex to the TGN in the absence of Ypt6. We further show that the N-terminal domain of Imh1 is critical for restoring GARP localization and endosome-to-TGN transport in ypt6-deleted cells. Together, our results reveal the mechanism by which Arl1-Imh1 facilitates the recruitment of GARP to the TGN and compensates for the endosome-to-TGN trafficking defects in dysfunctional Ypt6 conditions.
Collapse
Affiliation(s)
- Yan-Ting Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - I-Hao Wang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yi-Hsun Wang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Wan-Yun Chiu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Jen-Hao Hu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Wen-Hui Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Fang-Jen S Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan.,Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan.,Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| |
Collapse
|
10
|
Makaraci P, Delgado Cruz M, McDermott H, Nguyen V, Highfill C, Kim K. Yeast dynamin and Ypt6 function in parallel for the endosome-to-Golgi retrieval of Snc1. Cell Biol Int 2018; 43:1137-1151. [PMID: 30080296 DOI: 10.1002/cbin.11042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Protein recycling is an important cellular process required for cell homeostasis. Results from prior studies have shown that vacuolar sorting protein-1 (Vps1), a dynamin homolog in yeast, is implicated in protein recycling from the endosome to the trans-Golgi Network (TGN). However, the function of Vps1 in relation to Ypt6, a master GTPase in the recycling pathway, remains unknown. The present study reveals that Vps1 physically interacts with Ypt6 if at least one of them is full-length. We found that overexpression of full-length Vps1, but not GTP hydrolysis-defective Vps1 mutants, is sufficient to rescue abnormal phenotypes of Snc1 distribution provoked by the loss of Ypt6, and vice versa. This suggests that Vps1 and Ypt6 function in parallel pathways instead of in a sequential pathway and that GTP binding/hydrolysis of Vps1 is required for proper traffic of Snc1 toward the TGN. Additionally, we identified two novel Vps1-binding partners, Vti1 and Snc2, which function for the endosome-derived vesicle fusion at the TGN. Taken together, the present study demonstrates that Vps1 plays a role in later stages of the endosome-to-TGN traffic.
Collapse
Affiliation(s)
- Pelin Makaraci
- Department of Biology, Missouri State University, 901S National, Springfield, MO, 65807, USA
| | | | - Hyoeun McDermott
- Department of Biology, Missouri State University, 901S National, Springfield, MO, 65807, USA
| | | | - Chad Highfill
- Department of Biology, Missouri State University, 901S National, Springfield, MO, 65807, USA.,Genetics Program, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901S National, Springfield, MO, 65807, USA
| |
Collapse
|
11
|
Wang IH, Chen YJ, Hsu JW, Lee FJ. The Arl3 and Arl1 GTPases co-operate with Cog8 to regulate selective autophagy via Atg9 trafficking. Traffic 2017. [PMID: 28627726 DOI: 10.1111/tra.12498] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Arl3-Arl1 GTPase cascade plays important roles in vesicle trafficking at the late Golgi and endosomes. Subunits of the conserved oligomeric Golgi (COG) complex, a tethering factor, are important for endosome-to-Golgi transport and contribute to the efficient functioning of the cytoplasm-to-vacuole targeting (Cvt) pathway, a well-known selective autophagy pathway. According to our findings, the Arl3-Arl1 GTPase cascade co-operates with Cog8 to regulate the Cvt pathway via Atg9 trafficking. arl3cog8Δ and arl1cog8Δ exhibit profound defects in aminopeptidase I maturation in rich medium. In addition, the Arl3-Arl1 cascade acts on the Cvt pathway via dynamic nucleotide binding. Furthermore, Atg9 accumulates at the late Golgi in arl3cog8Δ and arl1cog8Δ cells under normal growth conditions but not under starvation conditions. Thus, our results offer insight into the requirement for multiple components in the Golgi-endosome system to determine Atg9 trafficking at the Golgi, thereby regulating selective autophagy.
Collapse
Affiliation(s)
- I-Hao Wang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Jie Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jia-Wei Hsu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fang Jen Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
12
|
Abstract
ADP-ribosylation factors (Arfs) and ADP-ribosylation factor-like proteins (Arls) are highly conserved small GTPases that function as main regulators of vesicular trafficking and cytoskeletal reorganization. Arl1, the first identified member of the large Arl family, is an important regulator of Golgi complex structure and function in organisms ranging from yeast to mammals. Together with its effectors, Arl1 has been shown to be involved in several cellular processes, including endosomal trans-Golgi network and secretory trafficking, lipid droplet and salivary granule formation, innate immunity and neuronal development, stress tolerance, as well as the response of the unfolded protein. In this Commentary, we provide a comprehensive summary of the Arl1-dependent cellular functions and a detailed characterization of several Arl1 effectors. We propose that involvement of Arl1 in these diverse cellular functions reflects the fact that Arl1 is activated at several late-Golgi sites, corresponding to specific molecular complexes that respond to and integrate multiple signals. We also provide insight into how the GTP-GDP cycle of Arl1 is regulated, and highlight a newly discovered mechanism that controls the sophisticated regulation of Arl1 activity at the Golgi complex.
Collapse
Affiliation(s)
- Chia-Jung Yu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Linkou, Tao-Yuan 33302, Taiwan.,Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Tao-Yuan 33305, Taiwan
| | - Fang-Jen S Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan .,Department of Medical Research, National Taiwan University Hospital, Taipei 10002, Taiwan
| |
Collapse
|
13
|
Labbaoui H, Bogliolo S, Ghugtyal V, Solis NV, Filler SG, Arkowitz RA, Bassilana M. Role of Arf GTPases in fungal morphogenesis and virulence. PLoS Pathog 2017; 13:e1006205. [PMID: 28192532 PMCID: PMC5325608 DOI: 10.1371/journal.ppat.1006205] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/24/2017] [Accepted: 01/29/2017] [Indexed: 12/30/2022] Open
Abstract
Virulence of the human fungal pathogen Candida albicans depends on the switch from budding to filamentous growth, which requires sustained membrane traffic and polarized growth. In many organisms, small GTPases of the Arf (ADP-ribosylation factor) family regulate membrane/protein trafficking, yet little is known about their role in fungal filamentous growth. To investigate these GTPases in C. albicans, we generated loss of function mutants in all 3 Arf proteins, Arf1-Arf3, and 2 Arf-like proteins, Arl1 and Arl3. Our results indicate that of these proteins, Arf2 is required for viability and sensitivity to antifungal drugs. Repressible ARF2 expression results in defects in filamentous growth, cell wall integrity and virulence, likely due to alteration of the Golgi. Arl1 is also required for invasive filamentous growth and, although arl1/arl1 cells can initiate hyphal growth, hyphae are substantially shorter than that of the wild-type, due to the inability of this mutant to maintain hyphal growth at a single site. We show that this defect does not result from an alteration of phospholipid distribution and is unlikely to result from the sole Golgin Imh1 mislocalization, as Imh1 is not required for invasive filamentous growth. Rather, our results suggest that the arl1/arl1 hyphal growth defect results from increased secretion in this mutant. Strikingly, the arl1/arl1 mutant is drastically reduced in virulence during oropharyngeal candidiasis. Together, our results highlight the importance of Arl1 and Arf2 as key regulators of hyphal growth and virulence in C. albicans and identify a unique function of Arl1 in secretion.
Collapse
Affiliation(s)
- Hayet Labbaoui
- Université Côte d’Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, France
| | | | - Vikram Ghugtyal
- Université Côte d’Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, France
| | - Norma V. Solis
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, United States of America
| | - Scott G. Filler
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, United States of America
| | | | - Martine Bassilana
- Université Côte d’Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, France
| |
Collapse
|
14
|
Samalova M, Mélida H, Vilaplana F, Bulone V, Soanes DM, Talbot NJ, Gurr SJ. The β-1,3-glucanosyltransferases (Gels) affect the structure of the rice blast fungal cell wall during appressorium-mediated plant infection. Cell Microbiol 2016; 19. [PMID: 27568483 PMCID: PMC5396357 DOI: 10.1111/cmi.12659] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 12/02/2022]
Abstract
The fungal wall is pivotal for cell shape and function, and in interfacial protection during host infection and environmental challenge. Here, we provide the first description of the carbohydrate composition and structure of the cell wall of the rice blast fungus Magnaporthe oryzae. We focus on the family of glucan elongation proteins (Gels) and characterize five putative β‐1,3‐glucan glucanosyltransferases that each carry the Glycoside Hydrolase 72 signature. We generated targeted deletion mutants of all Gel isoforms, that is, the GH72+, which carry a putative carbohydrate‐binding module, and the GH72− Gels, without this motif. We reveal that M. oryzaeGH72+GELs are expressed in spores and during both infective and vegetative growth, but each individual Gel enzymes are dispensable for pathogenicity. Further, we demonstrated that a Δgel1Δgel3Δgel4 null mutant has a modified cell wall in which 1,3‐glucans have a higher degree of polymerization and are less branched than the wild‐type strain. The mutant showed significant differences in global patterns of gene expression, a hyper‐branching phenotype and no sporulation, and thus was unable to cause rice blast lesions (except via wounded tissues). We conclude that Gel proteins play significant roles in structural modification of the fungal cell wall during appressorium‐mediated plant infection.
Collapse
Affiliation(s)
| | - Hugo Mélida
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden.,Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid, Madrid, Spain
| | - Francisco Vilaplana
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Vincent Bulone
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden.,ARC Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia, Australia
| | - Darren M Soanes
- School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Nicholas J Talbot
- School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Sarah J Gurr
- Department of Plant Sciences, University of Oxford, Oxford, UK.,School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
15
|
Yang S, Rosenwald AG. Autophagy in Saccharomyces cerevisiae requires the monomeric GTP-binding proteins, Arl1 and Ypt6. Autophagy 2016; 12:1721-1737. [PMID: 27462928 PMCID: PMC5079543 DOI: 10.1080/15548627.2016.1196316] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Macroautophagy/autophagy is a cellular degradation process that sequesters organelles or proteins into a double-membrane structure called the phagophore; this transient compartment matures into an autophagosome, which then fuses with the lysosome or vacuole to allow hydrolysis of the cargo. Factors that control membrane traffic are also essential for each step of autophagy. Here we demonstrate that 2 monomeric GTP-binding proteins in Saccharomyces cerevisiae, Arl1 and Ypt6, which belong to the Arf/Arl/Sar protein family and the Rab family, respectively, and control endosome-trans-Golgi traffic, are also necessary for starvation-induced autophagy under high temperature stress. Using established autophagy-specific assays we found that cells lacking either ARL1 or YPT6, which exhibit synthetic lethality with one another, were unable to undergo autophagy at an elevated temperature, although autophagy proceeds normally at normal growth temperature; specifically, strains lacking one or the other of these genes are unable to construct the autophagosome because these 2 proteins are required for proper traffic of Atg9 to the phagophore assembly site (PAS) at the restrictive temperature. Using degron technology to construct an inducible arl1Δ ypt6Δ double mutant, we demonstrated that cells lacking both genes show defects in starvation-inducted autophagy at the permissive temperature. We also found Arl1 and Ypt6 participate in autophagy by targeting the Golgi-associated retrograde protein (GARP) complex to the PAS to regulate the anterograde trafficking of Atg9. Our data show that these 2 membrane traffic regulators have novel roles in autophagy.
Collapse
Affiliation(s)
- Shu Yang
- a Department of Biology , Georgetown University , Washington DC , USA
| | - Anne G Rosenwald
- a Department of Biology , Georgetown University , Washington DC , USA
| |
Collapse
|
16
|
Brunet S, Saint-Dic D, Milev MP, Nilsson T, Sacher M. The TRAPP Subunit Trs130p Interacts with the GAP Gyp6p to Mediate Ypt6p Dynamics at the Late Golgi. Front Cell Dev Biol 2016; 4:48. [PMID: 27252941 PMCID: PMC4877375 DOI: 10.3389/fcell.2016.00048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/09/2016] [Indexed: 01/05/2023] Open
Abstract
Small GTPases of the Rab superfamily participate in virtually all vesicle-mediated trafficking events. Cycling between an active GTP-bound form and an inactive GDP-bound form is accomplished in conjunction with guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs), respectively. Rab cascades have been described in which an effector of an activated Rab is a GEF for a downstream Rab, thus ensuring activation of a pathway in an ordered fashion. Much less is known concerning crosstalk between GEFs and GAPs although regulation between these factors could also contribute to the overall physiology of a cell. Here we demonstrate that a subunit of the TRAPP II multisubunit tethering factor, a Rab GEF, participates in the recruitment of Gyp6p, a GAP for the GTPase Ypt6p, to Golgi membranes. The extreme carboxy-terminal portion of the TRAPP II subunit Trs130p is required for the interaction between TRAPP II and Gyp6p. We further demonstrate that TRAPP II mutants, but not a TRAPP III mutant, display a defect in Gyp6p interaction. A consequence of this defective interaction is the enhanced localization of Ypt6p at late Golgi membranes. Although a ypt31/32 mutant also resulted in an enhanced localization of Gyp6p at the late Golgi, the effect was not as dramatic as that seen for TRAPP II mutants, nor was Ypt31/32 detected in the same TRAPP II purification that detected Gyp6p. We propose that the interaction between TRAPP II and Gyp6p represents a parallel mechanism in addition to that mediated by Ypt31/32 for the recruitment of a GAP to the appropriate membrane, and is a novel example of crosstalk between a Rab GAP and GEF.
Collapse
Affiliation(s)
- Stephanie Brunet
- Department of Biology, Concordia University Montreal, QC, Canada
| | | | - Miroslav P Milev
- Department of Biology, Concordia University Montreal, QC, Canada
| | - Tommy Nilsson
- Department of Medicine, McGill University Montreal, QC, Canada
| | - Michael Sacher
- Department of Biology, Concordia UniversityMontreal, QC, Canada; Department of Anatomy and Cell Biology, McGill UniversityMontreal, QC, Canada
| |
Collapse
|
17
|
Unfolded protein response regulates yeast small GTPase Arl1p activation at late Golgi via phosphorylation of Arf GEF Syt1p. Proc Natl Acad Sci U S A 2016; 113:E1683-90. [PMID: 26966233 DOI: 10.1073/pnas.1518260113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ADP ribosylation factor (Arf) GTPases are key regulators of membrane traffic at the Golgi complex. In yeast, Arf guanine nucleotide-exchange factor (GEF) Syt1p activates Arf-like protein Arl1p, which was accompanied by accumulation of golgin Imh1p at late Golgi, but whether and how this function of Syt1p is regulated remains unclear. Here, we report that the inositol-requiring kinase 1 (Ire1p)-mediated unfolded protein response (UPR) modulated Arl1p activation at late Golgi. Arl1p activation was dependent on both kinase and endo-RNase activities of Ire1p. Moreover, constitutively active transcription factor Hac1p restored the Golgi localization of Arl1p and Imh1p inIRE1-deleted cells. Elucidating the mechanism of Ire1p-Hac1p axis actions, we found that it regulated phosphorylation of Syt1p, which enhances Arl1p activation, recruitment of Imh1p to the Golgi, and Syt1p interaction with Arl1p. Consistent with these findings, the induction of UPR by tunicamycin treatment increases phosphorylation of Syt1p, resulting in Arl1p activation. Thus, these findings clarify how the UPR influences the roles of Syt1p, Arl1p, and Imh1p in Golgi transport.
Collapse
|
18
|
Huang LH, Lee WC, You ST, Cheng CC, Yu CJ. Arfaptin-1 negatively regulates Arl1-mediated retrograde transport. PLoS One 2015; 10:e0118743. [PMID: 25789876 PMCID: PMC4366199 DOI: 10.1371/journal.pone.0118743] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 01/11/2015] [Indexed: 12/24/2022] Open
Abstract
The small GTPase Arf-like protein 1 (Arl1) is well known for its role in intracellular vesicular transport at the trans-Golgi network (TGN). In this study, we used differential affinity chromatography combined with mass spectrometry to identify Arf-interacting protein 1b (arfaptin-1b) as an Arl1-interacting protein and characterized a novel function for arfaptin-1 (including the arfaptin-1a and 1b isoforms) in Arl1-mediated retrograde transport. Using a Shiga-toxin subunit B (STxB) transportation assay, we demonstrated that knockdown of arfaptin-1 accelerated the retrograde transport of STxB from the endosome to the Golgi apparatus, whereas Arl1 knockdown inhibited STxB transport compared with control cells. Arfaptin-1 overexpression, but not an Arl1 binding-defective mutant (arfaptin-1b-F317A), consistently inhibited STxB transport. Exogenous arfaptin-1 expression did not interfere with the localization of the Arl1-interacting proteins golgin-97 and golgin-245 to the TGN and vice versa. Moreover, we found that the N-terminal region of arfaptin-1 was involved in the regulation of retrograde transport. Our results show that arfaptin-1 acts as a negative regulator in Arl1-mediated retrograde transport and suggest that different functional complexes containing Arl1 form in distinct microdomains and are responsible for different functions.
Collapse
Affiliation(s)
- Lien-Hung Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Wei-Chung Lee
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Shu-Ting You
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Chen Cheng
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Chia-Jung Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
- * E-mail:
| |
Collapse
|
19
|
D'Souza RS, Semus R, Billings EA, Meyer CB, Conger K, Casanova JE. Rab4 orchestrates a small GTPase cascade for recruitment of adaptor proteins to early endosomes. Curr Biol 2014; 24:1187-98. [PMID: 24835460 PMCID: PMC4059052 DOI: 10.1016/j.cub.2014.04.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/20/2014] [Accepted: 04/01/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Early, sorting endosomes are a major crossroad of membrane traffic, at the intersection of the endocytic and exocytic pathways. The sorting of endosomal cargo for delivery to different subcellular destinations is mediated by a number of distinct coat protein complexes, including adaptor protein 1 (AP-1), AP-3, and Golgi-localized, gamma adaptin ear-containing, Arf-binding (GGAs) protein. Ultrastructural studies suggest that these coats assemble onto tubular subdomains of the endosomal membrane, but the mechanisms of coat recruitment and assembly at this site remain poorly understood. RESULTS Here we report that the endosomal Rab protein Rab4 orchestrates a GTPase cascade that results in the sequential recruitment of the ADP-ribosylation factor (Arf)-like protein Arl1; the Arf-specific guanine nucleotide exchange factors BIG1 and BIG2; and the class I Arfs, Arf1 and Arf3. Knockdown of Arf1, or inhibition of BIG1 and BIG2 activity with brefeldin A results in the loss of AP-1, AP-3, and GGA-3, but not Arl1, from endosomal membranes and the formation of elongated tubules. In contrast, depletion of Arl1 randomizes the distribution of Rab4 on endosomal membranes, inhibits the formation of tubular subdomains, and blocks recruitment of BIG1 and BIG2, Arfs, and adaptor protein complexes to the endosome. CONCLUSIONS Together these findings indicate that Arl1 links Rab4-dependent formation of endosomal sorting domains with downstream assembly of adaptor protein complexes that constitute the endosomal sorting machinery.
Collapse
Affiliation(s)
- Ryan S D'Souza
- Department of Cell Biology, University of Virginia Health Sciences Centre, P.O. Box 800732, Charlottesville, VA 22908, USA
| | - Rachel Semus
- Department of Cell Biology, University of Virginia Health Sciences Centre, P.O. Box 800732, Charlottesville, VA 22908, USA
| | - Emily A Billings
- Department of Cell Biology, University of Virginia Health Sciences Centre, P.O. Box 800732, Charlottesville, VA 22908, USA
| | - Corey B Meyer
- Department of Cell Biology, University of Virginia Health Sciences Centre, P.O. Box 800732, Charlottesville, VA 22908, USA
| | - Kathryn Conger
- Department of Cell Biology, University of Virginia Health Sciences Centre, P.O. Box 800732, Charlottesville, VA 22908, USA
| | - James E Casanova
- Department of Cell Biology, University of Virginia Health Sciences Centre, P.O. Box 800732, Charlottesville, VA 22908, USA.
| |
Collapse
|
20
|
Hsu JW, Chen ZJ, Liu YW, Lee FJS. Mechanism of action of the flippase Drs2p in modulating GTP hydrolysis of Arl1p. J Cell Sci 2014; 127:2615-20. [PMID: 24706946 DOI: 10.1242/jcs.143057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small GTPase ADP-ribosylation factors (ARFs) are key regulators of membrane trafficking and their activities are determined by guanine-nucleotide-binding status. In Saccharomyces cerevisiae, Arl1p, an ARF-like protein, is responsible for multiple trafficking pathways at the Golgi. The GTP-hydrolysis activity of Arl1p is stimulated by its GTPase-activating protein Gcs1p, and binding with its effector Imh1p protects Arl1p from premature inactivation. However, the mechanism involved in the timing of Arl1p inactivation is unclear. Here, we demonstrate that another Arl1p effector, the lipid flippase Drs2p, is required for Gcs1p-stimulated inactivation of Arl1p. Drs2p is known to be activated by Arl1p and is involved in vesicle formation through its ability to create membrane asymmetry. We found that the flippase activity of Drs2p is required for proper membrane targeting of Gcs1p in vivo. Through modification of the membrane environment, Drs2p promotes the affinity of Gcs1p for the Golgi, where it binds to active Arl1p. Together, Imh1p and Drs2p modulate the activity of Gcs1p by timing its interaction with Arl1p, hence providing feedback regulation of Arl1p activity.
Collapse
Affiliation(s)
- Jia-Wei Hsu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Zzu-Jung Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Wen Liu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fang-Jen S Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
21
|
Chang L, Kreko T, Davison H, Cusmano T, Wu Y, Rothenfluh A, Eaton BA. Normal dynactin complex function during synapse growth in Drosophila requires membrane binding by Arfaptin. Mol Biol Cell 2013; 24:1749-64, S1-5. [PMID: 23596322 PMCID: PMC3667727 DOI: 10.1091/mbc.e12-09-0697] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 04/04/2013] [Accepted: 04/08/2013] [Indexed: 01/11/2023] Open
Abstract
Mutations in DCTN1, a component of the dynactin complex, are linked to neurodegenerative diseases characterized by a broad collection of neuropathologies. Because of the pleiotropic nature of dynactin complex function within the neuron, defining the causes of neuropathology in DCTN1 mutants has been difficult. We combined a genetic screen with cellular assays of dynactin complex function to identify genes that are critical for dynactin complex function in the nervous system. This approach identified the Drosophila homologue of Arfaptin, a multifunctional protein that has been implicated in membrane trafficking. We find that Arfaptin and the Drosophila DCTN1 homologue, Glued, function in the same pathway during synapse growth but not during axonal transport or synapse stabilization. Arfaptin physically associates with Glued and other dynactin complex components in the nervous system of both flies and mice and colocalizes with Glued at the Golgi in motor neurons. Mechanistically, membrane binding by Arfaptin mediates membrane association of the dynactin complex in motor neurons and is required for normal synapse growth. Arfaptin represents a novel dynactin complex-binding protein that specifies dynactin complex function during synapse growth.
Collapse
Affiliation(s)
- Leo Chang
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Tabita Kreko
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Holly Davison
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Tim Cusmano
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Yimin Wu
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Adrian Rothenfluh
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Benjamin A. Eaton
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| |
Collapse
|
22
|
Arl1p regulates spatial membrane organization at the trans-Golgi network through interaction with Arf-GEF Gea2p and flippase Drs2p. Proc Natl Acad Sci U S A 2013; 110:E668-77. [PMID: 23345439 DOI: 10.1073/pnas.1221484110] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
ADP ribosylation factors (Arfs) are the central regulators of vesicle trafficking from the Golgi complex. Activated Arfs facilitate vesicle formation through stimulating coat assembly, activating lipid-modifying enzymes and recruiting tethers and other effectors. Lipid translocases (flippases) have been implicated in vesicle formation through the generation of membrane curvature. Although there is no evidence that Arfs directly regulate flippase activity, an Arf-guanine-nucleotide-exchange factor (GEF) Gea2p has been shown to bind to and stimulate the activity of the flippase Drs2p. Here, we provide evidence for the interaction and activation of Drs2p by Arf-like protein Arl1p in yeast. We observed that Arl1p, Drs2p and Gea2p form a complex through direct interaction with each other, and each interaction is necessary for the stability of the complex and is indispensable for flippase activity. Furthermore, we show that this Arl1p-Drs2p-Gea2p complex is specifically required for recruiting golgin Imh1p to the Golgi. Our results demonstrate that activated Arl1p can promote the spatial modulation of membrane organization at the trans-Golgi network through interacting with the effectors Gea2p and Drs2p.
Collapse
|
23
|
Kim H, Lee SB, Kim HJ, Min MK, Hwang I, Suh MC. Characterization of Glycosylphosphatidylinositol-Anchored Lipid Transfer Protein 2 (LTPG2) and Overlapping Function between LTPG/LTPG1 and LTPG2 in Cuticular Wax Export or Accumulation in Arabidopsis thaliana. ACTA ACUST UNITED AC 2012; 53:1391-403. [DOI: 10.1093/pcp/pcs083] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
24
|
Manlandro CMA, Palanivel VR, Schorr EB, Mihatov N, Antony AA, Rosenwald AG. Mon2 is a negative regulator of the monomeric G protein, Arl1. FEMS Yeast Res 2012; 12:637-50. [PMID: 22594927 DOI: 10.1111/j.1567-1364.2012.00814.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 04/27/2012] [Accepted: 05/11/2012] [Indexed: 11/30/2022] Open
Abstract
Using site-directed mutants of ARL1 predicted to alter nucleotide binding, we examined phenotypes associated with the loss of ARL1 , including effects on membrane traffic and K (+) homeostasis. The GTP-restricted allele, ARL[Q72L] , complemented the membrane traffic phenotype (CPY secretion), but not the K (+) homeostasis phenotypes (sensitivity to hygromycin B, steady-state levels of K (+) , and accumulation of (86) Rb (+) ), while the XTP-restricted mutant, ARL1[D130N] , complemented the ion phenotypes, but not the membrane traffic phenotype. A GDP-restricted allele, ARL1[T32N] , did not effectively complement either phenotype. These results are consistent with a model in which Arl1 has three different conformations in vivo. We also explored the relationship between ARL1 and MON2 using the synthetic lethal phenotype exhibited by these two genes and demonstrated that MON2 is a negative regulator of the GTP-restricted allele of ARL1 , ARL1[Q72L] . Finally, we constructed several new alleles predicted to alter binding of Arl1 to the sole GRIP domain containing protein in yeast, Imh1, and found that ARL1[F52G] and ARL1[Y82G] were unable to complement the loss of ARL1 with respect to either the membrane traffic or K (+) homeostasis phenotypes. Our study expands understanding of the roles of Arl1 in vivo.
Collapse
|
25
|
Houghton FJ, Bellingham SA, Hill AF, Bourges D, Ang DK, Gemetzis T, Gasnereau I, Gleeson PA. Arl5b is a Golgi-localised small G protein involved in the regulation of retrograde transport. Exp Cell Res 2012; 318:464-77. [DOI: 10.1016/j.yexcr.2011.12.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 12/04/2011] [Accepted: 12/28/2011] [Indexed: 11/30/2022]
|
26
|
Lee J, Lee J, Ju BG. Drosophila arf72A acts as an essential regulator of endoplasmic reticulum quality control and suppresses autosomal-dominant retinopathy. Int J Biochem Cell Biol 2011; 43:1392-401. [PMID: 21693198 DOI: 10.1016/j.biocel.2011.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/25/2011] [Accepted: 06/06/2011] [Indexed: 11/27/2022]
Abstract
The eukaryotic endoplasmic reticulum operates multiple quality control mechanisms to ensure that only properly folded proteins are exported to their final destinations via the secretory pathway and those that are not are destroyed via the degradation pathway. However, molecular mechanisms underlying such regulated exportation to these distinct routes are unknown. In this article, we report the role of Drosophila arf72A--the fly homologue of the mammalian Arl1 - in the quality checks of proteins and in the autosomal-dominant retinopathy. ARF72A localizes to the Golgi membranes of Drosophila photoreceptor cells, consistent with mammalian Arl1 localization in cell culture systems. A loss of arf72A function changes the membrane character of the endoplasmic reticulum and shifts the membrane balance between the endoplasmic reticulum and the Golgi complex toward the Golgi complex, resulting in over-proliferated Golgi complexes and accelerated protein secretion. Interestingly, our study indicated that more ARF72A localized on the endoplasmic reticulum in the ninaE(D1) photoreceptor cell, a Drosophila model of autosomal-dominant retinitis pigmentosa, compared to that in the wild-type. In addition, arf72A loss was shown to rescue the ninaE(D1)-related membrane accumulation and the rhodopsin maturation defect, and suppress ninaE(D1)-triggered retinal degeneration, indicating that rhodopsin accumulated in the endoplasmic reticulum bypasses the quality checks. While previous studies of ARF small GTPases have focused on their roles in vesicular budding and transport between the specific organelles, our findings establish an additional function of arf72A in the quality check machinery of the endoplasmic reticulum distinguishing the cargoes for secretion from those for degradation.
Collapse
Affiliation(s)
- Jongwoo Lee
- Department of Biological Science, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | |
Collapse
|
27
|
Kim KH, Kim EK, Kim SJ, Park YH, Park HM. Effect of Saccharomyces cerevisiae ret1-1 mutation on glycosylation and localization of the secretome. Mol Cells 2011; 31:151-8. [PMID: 21120625 PMCID: PMC3932681 DOI: 10.1007/s10059-011-0012-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/30/2010] [Accepted: 11/01/2010] [Indexed: 01/28/2023] Open
Abstract
To study the effect of the ret1-1 mutation on the secretome, the glycosylation patterns and locations of the secretory proteins and glycosyltransferases responsible for glycosylation were investigated. Analyses of secretory proteins and cell wall-associated glycoproteins showed severe impairment of glycosylation in this mutant. Results from 2D-polyacrylamide gel electrophoresis (PAGE) indicated defects in the glycosylation and cellular localization of SDS-soluble cell wall proteins. Localization of RFP-tagged glycosyltransferase proteins in ret1-1 indicated an impairment of Golgi-to retrograde transport at a non-permissive temperature. Thus, impaired glycosylation caused by the mislocalization of ER resident proteins appears to be responsible for the alterations in the secretome and the increased sensitivity to ER stress in ret1-1 mutant cells.
Collapse
Affiliation(s)
| | | | | | | | - Hee-Moon Park
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea
| |
Collapse
|
28
|
De Caroli M, Lenucci MS, Di Sansebastiano GP, Dalessandro G, De Lorenzo G, Piro G. Protein trafficking to the cell wall occurs through mechanisms distinguishable from default sorting in tobacco. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:295-308. [PMID: 21223393 DOI: 10.1111/j.1365-313x.2010.04421.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The secretory pathway in plants involves sustained traffic to the cell wall, as matrix components, polysaccharides and proteins reach the cell wall through the endomembrane system. We studied the secretion pattern of cell-wall proteins in tobacco protoplasts and leaf epidermal cells using fluorescent forms of a pectin methylesterase inhibitor protein (PMEI1) and a polygalacturonase inhibitor protein (PGIP2). The two most representative protein fusions, secGFP-PMEI1 and PGIP2-GFP, reached the cell wall by passing through ER and Golgi stacks but using distinct mechanisms. secGFP-PMEI1 was linked to a glycosylphosphatidylinositol (GPI) anchor and stably accumulated in the cell wall, regulating the activity of the endogenous pectin methylesterases (PMEs) that are constitutively present in this compartment. A mannosamine-induced non-GPI-anchored form of PMEI1 as well as a form (PMEI1-GFP) that was unable to bind membranes failed to reach the cell wall, and accumulated in the Golgi stacks. In contrast, PGIP2-GFP moved as a soluble cargo protein along the secretory pathway, but was not stably retained in the cell wall, due to internalization to an endosomal compartment and eventually the vacuole. Stable localization of PGIP2 in the wall was observed only in the presence of a specific fungal endopolygalacturonase ligand in the cell wall. Both secGFP-PMEI1 and PGIP2-GFP sorting were distinguishable from that of a secreted GFP, suggesting that rigorous and more complex controls than the simple mechanism of bulk flow are the basis of cell-wall growth and differentiation.
Collapse
Affiliation(s)
- Monica De Caroli
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Webster MT, McCaffery JM, Cohen-Fix O. Vesicle trafficking maintains nuclear shape in Saccharomyces cerevisiae during membrane proliferation. ACTA ACUST UNITED AC 2010; 191:1079-88. [PMID: 21135138 PMCID: PMC3002040 DOI: 10.1083/jcb.201006083] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The parameters that control nuclear size and shape are poorly understood. In yeast, unregulated membrane proliferation, caused by deletion of the phospholipid biosynthesis inhibitor SPO7, leads to a single nuclear envelope "flare" that protrudes into the cytoplasm. This flare is always associated with the asymmetrically localized nucleolus, which suggests that the site of membrane expansion is spatially confined by an unknown mechanism. Here we show that in spo7Δ cells, mutations in vesicle-trafficking genes lead to multiple flares around the entire nucleus. These mutations also alter the distribution of small nucleolar RNA-associated nucleolar proteins independently of their effect on nuclear shape. Both single- and multi-flared nuclei have increased nuclear envelope surface area, yet they maintain the same nuclear/cell volume ratio as wild-type cells. These data suggest that, upon membrane expansion, the spatial confinement of the single nuclear flare is dependent on vesicle trafficking. Moreover, flares may facilitate maintenance of a constant nuclear/cell volume ratio in the face of altered membrane proliferation.
Collapse
Affiliation(s)
- Micah T Webster
- The Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
30
|
Chen KY, Tsai PC, Hsu JW, Hsu HC, Fang CY, Chang LC, Tsai YT, Yu CJ, Lee FJS. Syt1p promotes activation of Arl1p at the late Golgi to recruit Imh1p. J Cell Sci 2010; 123:3478-89. [PMID: 20841378 DOI: 10.1242/jcs.074237] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In yeast, Arl3p recruits Arl1p GTPase to regulate Golgi function and structure. However, the molecular mechanism involved in regulating activation of Arl1p at the Golgi is unknown. Here, we show that Syt1p promoted activation of Arl1p and recruitment of a golgin protein, Imh1p, to the Golgi. Deletion of SYT1 resulted in the majority of Arl1p being distributed diffusely throughout the cytosol. Overexpression of Syt1p increased Arl1p-GTP production in vivo and the Syt1-Sec7 domain promoted nucleotide exchange on Arl1p in vitro. Syt1p function required the N-terminal region, Sec7 and PH domains. Arl1p, but not Arl3p, interacted with Syt1p. Localization of Syt1p to the Golgi did not require Arl3p. Unlike arl1Δ or arl3Δ mutants, syt1Δ did not show defects in Gas1p transport, cell wall integrity or vacuolar structure. These findings reveal that activation of Arl1p is regulated in part by Syt1p, and imply that Arl1p activation, by using more than one GEF, exerts distinct biological activities at the Golgi compartment.
Collapse
Affiliation(s)
- Kuan-Yu Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, and Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Marešová L, Sychrová H. Genetic interactions among the Arl1 GTPase and intracellular Na(+) /H(+) antiporters in pH homeostasis and cation detoxification. FEMS Yeast Res 2010; 10:802-11. [PMID: 20659170 DOI: 10.1111/j.1567-1364.2010.00661.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The roles of intracellular GTPase Arl1 and organellar cation/H(+) antiporters (Kha1 and Nhx1) in Saccharomyces cerevisiae tolerance to various stress factors were investigated and interesting new phenotypes of strains devoid of these proteins were found. The role of Arl1 GTPase in their tolerance to various cations is not caused by an altered plasma-membrane potential. Besides the known sensitivity of arl1 mutants to high temperature, we discovered their sensitivity to low temperature. We found for the first time that in the absence of Arl1p, Kha1p increases potassium, sodium and lithium tolerance, and can thus be categorized as an antiporter with broad substrate specificity. Kha1p also participates in the detoxification of undesired chemical compounds, pH regulation and growth at nonoptimal temperatures. Cells with the combined deletions of all three genes have considerable difficulty growing under nonoptimal conditions. We conclude that Arl1p, Kha1p and Nhx1p collaborate in survival strategies at nonoptimal pH, temperatures and cation concentrations, but work independent of each other.
Collapse
Affiliation(s)
- Lydie Marešová
- Department of Membrane Transport, Institute of Physiology Academy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic.
| | | |
Collapse
|
32
|
Schumacher MC, Resenberger U, Seidel RP, Becker CFW, Winklhofer KF, Oesterhelt D, Tatzelt J, Engelhard M. Synthesis of a GPI anchor module suitable for protein post-translational modification. Biopolymers 2010; 94:457-64. [DOI: 10.1002/bip.21380] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
33
|
TGN golgins, Rabs and cytoskeleton: regulating the Golgi trafficking highways. Trends Cell Biol 2010; 20:329-36. [DOI: 10.1016/j.tcb.2010.02.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 02/15/2010] [Accepted: 02/17/2010] [Indexed: 12/22/2022]
|
34
|
Nishimoto-Morita K, Shin HW, Mitsuhashi H, Kitamura M, Zhang Q, Johannes L, Nakayama K. Differential effects of depletion of ARL1 and ARFRP1 on membrane trafficking between the trans-Golgi network and endosomes. J Biol Chem 2009; 284:10583-92. [PMID: 19224922 DOI: 10.1074/jbc.m900847200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ARFRP1 and ARL1, which are both ARF-like small GTPases, are mammalian orthologs of yeast Arl3p and Arl1p, respectively. In yeast, Arl3p targeted to trans-Golgi network (TGN) membranes activates Arl1p, and the activated Arl1p in turn recruits a GRIP domain-containing protein; this complex regulates retrograde transport to the TGN and anterograde transport from the TGN. In the present study, using RNA interference-mediated knockdown of ARFRP1 and ARL1, we have examined whether the orthologs of Arl3p-Arl1p-GRIP story serve similar functions in mammalian cells. However, we have unexpectedly found differential roles of ARL1 and ARFRP1. Specifically, ARL1 and ARFRP1 regulate retrograde transport of Shiga toxin to the TGN and anterograde transport of VSVG from the TGN, respectively. Furthermore, we have obtained evidence suggesting that a SNARE complex containing Vti1a, syntaxin 6, and syntaxin 16 is involved in Shiga toxin transport downstream of ARL1.
Collapse
Affiliation(s)
- Kirika Nishimoto-Morita
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Tsai PC, Lee SW, Liu YW, Chu CW, Chen KY, Ho JC, Lee FJS. Afi1p functions as an Arf3p polarization-specific docking factor for development of polarity. J Biol Chem 2008; 283:16915-27. [PMID: 18397879 DOI: 10.1074/jbc.m802550200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ADP-ribosylation factors (Arfs) are highly conserved small GTPases and are critical components of vesicle trafficking. Yeast Arf3p, despite its similarity to mammalian Arf6, is not required for endocytosis but is involved in polarity development. In this study, we identified an Arf3p interacting protein 1 (Afi1p), which, through its N-terminal conserved region, specifically interacts with GTP-bound Arf3p. Afi1p is distributed asymmetrically at the plasma membrane and is required for polarized distribution of Arf3p but not of an Arf3p guanine nucleotide-exchange factor, Yel1p. However, Afi1p is not required for targeting of Arf3p or Yel1p to the plasma membrane. Like arf3 mutant yeast, afi1 mutant yeast exhibited an abnormal budding pattern and partially delayed actin patch polarization. An Afi1p, (38)KLGP4A-Afi1p, mutated at the Arf3p-binding region, loses its ability to interact with Arf3p and maintain the polarized distribution of Arf3p. Although (38)KLGP4A-Afi1p still possessed a proper polarized distribution, it lost its ability to rescue actin patch polarization in afi1 mutant cells. Our findings demonstrate that Afi1p functions as an Arf3p polarization-specific adapter and participates in development of polarity.
Collapse
Affiliation(s)
- Pei-Chin Tsai
- Institute of Molecular Medicine, School of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|