1
|
Shanmughapriya S, Langford D, Natarajaseenivasan K. Inter and Intracellular mitochondrial trafficking in health and disease. Ageing Res Rev 2020; 62:101128. [PMID: 32712108 DOI: 10.1016/j.arr.2020.101128] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023]
Abstract
Neurons and glia maintain central nervous system (CNS) homeostasis through diverse mechanisms of intra- and intercellular signaling. Some of these interactions include the exchange of soluble factors between cells via direct cell-to-cell contact for both short and long-distance transfer of biological materials. Transcellular transfer of mitochondria has emerged as a key example of this communication. This transcellular transfer of mitochondria are dynamically involved in the cellular and tissue response to CNS injury and play beneficial roles in recovery. This review highlights recent research addressing the cause and effect of intra- and intercellular mitochondrial transfer with a specific focus on the future of mitochondrial transplantation therapy. We believe that mitochondrial transfer plays a crucial role during bioenergetic crisis/deficit, but the quality, quantity and mode of mitochondrial transfer determines the protective capacity for the receiving cells. Mitochondrial transplantation is a new treatment paradigm and will overcome the major bottleneck of traditional approach of correcting mitochondria-related disorders.
Collapse
|
2
|
Lake NJ, Taylor RL, Trahair H, Harikrishnan KN, Curran JE, Almeida M, Kulkarni H, Mukhamedova N, Hoang A, Low H, Murphy AJ, Johnson MP, Dyer TD, Mahaney MC, Göring HHH, Moses EK, Sviridov D, Blangero J, Jowett JBM, Bozaoglu K. TRAK2, a novel regulator of ABCA1 expression, cholesterol efflux and HDL biogenesis. Eur Heart J 2019; 38:3579-3587. [PMID: 28655204 DOI: 10.1093/eurheartj/ehx315] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 05/25/2017] [Indexed: 12/28/2022] Open
Abstract
Aims The recent failures of HDL-raising therapies have underscored our incomplete understanding of HDL biology. Therefore there is an urgent need to comprehensively investigate HDL metabolism to enable the development of effective HDL-centric therapies. To identify novel regulators of HDL metabolism, we performed a joint analysis of human genetic, transcriptomic, and plasma HDL-cholesterol (HDL-C) concentration data and identified a novel association between trafficking protein, kinesin binding 2 (TRAK2) and HDL-C concentration. Here we characterize the molecular basis of the novel association between TRAK2 and HDL-cholesterol concentration. Methods and results Analysis of lymphocyte transcriptomic data together with plasma HDL from the San Antonio Family Heart Study (n = 1240) revealed a significant negative correlation between TRAK2 mRNA levels and HDL-C concentration, HDL particle diameter and HDL subspecies heterogeneity. TRAK2 siRNA-mediated knockdown significantly increased cholesterol efflux to apolipoprotein A-I and isolated HDL from human macrophage (THP-1) and liver (HepG2) cells by increasing the mRNA and protein expression of the cholesterol transporter ATP-binding cassette, sub-family A member 1 (ABCA1). The effect of TRAK2 knockdown on cholesterol efflux was abolished in the absence of ABCA1, indicating that TRAK2 functions in an ABCA1-dependent efflux pathway. TRAK2 knockdown significantly increased liver X receptor (LXR) binding at the ABCA1 promoter, establishing TRAK2 as a regulator of LXR-mediated transcription of ABCA1. Conclusion We show, for the first time, that TRAK2 is a novel regulator of LXR-mediated ABCA1 expression, cholesterol efflux, and HDL biogenesis. TRAK2 may therefore be an important target in the development of anti-atherosclerotic therapies.
Collapse
Affiliation(s)
- Nicole J Lake
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia.,Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC 3052, Australia
| | - Rachael L Taylor
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Hugh Trahair
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - K N Harikrishnan
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia.,Department of Pathology, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Joanne E Curran
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, One West University Blvd. Brownsville, Texas 78520, USA
| | - Marcio Almeida
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, One West University Blvd. Brownsville, Texas 78520, USA
| | - Hemant Kulkarni
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, One West University Blvd. Brownsville, Texas 78520, USA
| | - Nigora Mukhamedova
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Anh Hoang
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Hann Low
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Andrew J Murphy
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Matthew P Johnson
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, One West University Blvd. Brownsville, Texas 78520, USA
| | - Thomas D Dyer
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, One West University Blvd. Brownsville, Texas 78520, USA
| | - Michael C Mahaney
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, One West University Blvd. Brownsville, Texas 78520, USA
| | - Harald H H Göring
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, One West University Blvd. Brownsville, Texas 78520, USA
| | - Eric K Moses
- University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia.,Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Dmitri Sviridov
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - John Blangero
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, One West University Blvd. Brownsville, Texas 78520, USA
| | - Jeremy B M Jowett
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Kiymet Bozaoglu
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia.,Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, 50 Flemington Road, Parkville,VIC 3052, Australia
| |
Collapse
|
3
|
Chen M, Mithraprabhu S, Ramachandran M, Choi K, Khong T, Spencer A. Utility of Circulating Cell-Free RNA Analysis for the Characterization of Global Transcriptome Profiles of Multiple Myeloma Patients. Cancers (Basel) 2019; 11:cancers11060887. [PMID: 31242667 PMCID: PMC6628062 DOI: 10.3390/cancers11060887] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/12/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
In this study, we evaluated the utility of extracellular RNA (exRNA) derived from the plasma of multiple myeloma (MM) patients for whole transcriptome characterization. exRNA from 10 healthy controls (HC), five newly diagnosed (NDMM), and 12 relapsed and refractory (RRMM) MM patients were analyzed and compared. We showed that ~45% of the exRNA genes were protein-coding genes and ~85% of the identified genes were covered >70%. Compared to HC, we identified 632 differentially expressed genes (DEGs) in MM patients, of which 26 were common to NDMM and RRMM. We further identified 54 and 191 genes specific to NDMM and RRMM, respectively, and these included potential biomarkers such as LINC00863, MIR6754, CHRNE, ITPKA, and RGS18 in NDMM, and LINC00462, PPBP, RPL5, IER3, and MIR425 in RRMM, that were subsequently validated using droplet digital PCR. Moreover, single nucleotide polymorphisms and small indels were identified in the exRNA, including mucin family genes that demonstrated different rates of mutations between NDMM and RRMM. This is the first whole transcriptome study of exRNA in hematological malignancy and has provided the basis for the utilization of exRNA to enhance our understanding of the MM biology and to identify potential biomarkers relevant to the diagnosis and prognosis of MM patients.
Collapse
Affiliation(s)
- Maoshan Chen
- Myeloma Research Group, Australian Centre for Blood Diseases (ACBD), Clinical Central School, Monash University, Melbourne 3004, Australia.
| | - Sridurga Mithraprabhu
- Myeloma Research Group, Australian Centre for Blood Diseases (ACBD), Clinical Central School, Monash University, Melbourne 3004, Australia.
- Malignant Haematology and Stem Cell Transplantation, Alfred Hospital, Melbourne 3004, Australia.
| | - Malarmathy Ramachandran
- Myeloma Research Group, Australian Centre for Blood Diseases (ACBD), Clinical Central School, Monash University, Melbourne 3004, Australia.
- Malignant Haematology and Stem Cell Transplantation, Alfred Hospital, Melbourne 3004, Australia.
| | - Kawa Choi
- Myeloma Research Group, Australian Centre for Blood Diseases (ACBD), Clinical Central School, Monash University, Melbourne 3004, Australia.
- Malignant Haematology and Stem Cell Transplantation, Alfred Hospital, Melbourne 3004, Australia.
| | - Tiffany Khong
- Myeloma Research Group, Australian Centre for Blood Diseases (ACBD), Clinical Central School, Monash University, Melbourne 3004, Australia.
- Malignant Haematology and Stem Cell Transplantation, Alfred Hospital, Melbourne 3004, Australia.
| | - Andrew Spencer
- Myeloma Research Group, Australian Centre for Blood Diseases (ACBD), Clinical Central School, Monash University, Melbourne 3004, Australia.
| |
Collapse
|
4
|
Li Y, Qiu L, Liu X, Hou Z, Yu B. PINK1 alleviates myocardial hypoxia-reoxygenation injury by ameliorating mitochondrial dysfunction. Biochem Biophys Res Commun 2017; 484:118-124. [DOI: 10.1016/j.bbrc.2017.01.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/13/2017] [Indexed: 10/20/2022]
|
5
|
Devine MJ, Birsa N, Kittler JT. Miro sculpts mitochondrial dynamics in neuronal health and disease. Neurobiol Dis 2016; 90:27-34. [DOI: 10.1016/j.nbd.2015.12.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/17/2015] [Indexed: 01/18/2023] Open
|
6
|
Mitochondrial trafficking in neurons and the role of the Miro family of GTPase proteins. Biochem Soc Trans 2014; 41:1525-31. [PMID: 24256248 DOI: 10.1042/bst20130234] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Correct mitochondrial dynamics are essential to neuronal function. These dynamics include mitochondrial trafficking and quality-control systems that maintain a precisely distributed and healthy mitochondrial network, so that local energy demands or Ca2+-buffering requirements within the intricate architecture of the neuron can be met. Mitochondria make use of molecular machinery that couples these organelles to microtubule-based transport via kinesin and dynein motors, facilitating the required long-range movements. These motors in turn are associated with a variety of adaptor proteins allowing additional regulation of the complex dynamics demonstrated by these organelles. Over recent years, a number of new motor and adaptor proteins have been added to a growing list of components implicated in mitochondrial trafficking and distribution. Yet, there are major questions that remain to be addressed about the regulation of mitochondrial transport complexes. One of the core components of this machinery, the mitochondrial Rho GTPases Miro1 (mitochondrial Rho 1) and Miro2 have received special attention due to their Ca2+-sensing and GTPase abilities, marking Miro an exceptional candidate for co-ordinating mitochondrial dynamics and intracellular signalling pathways. In the present paper, we discuss the wealth of literature regarding Miro-mediated mitochondrial transport in neurons and recently highlighted involvement of Miro proteins in mitochondrial turnover, emerging as a key process affected in neurodegeneration.
Collapse
|
7
|
Sheng ZH. Mitochondrial trafficking and anchoring in neurons: New insight and implications. ACTA ACUST UNITED AC 2014; 204:1087-98. [PMID: 24687278 PMCID: PMC3971748 DOI: 10.1083/jcb.201312123] [Citation(s) in RCA: 284] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Mitochondria are essential organelles for neuronal growth, survival, and function. Neurons use specialized mechanisms to drive mitochondria transport and to anchor them in axons and at synapses. Stationary mitochondria buffer intracellular Ca2+ and serve as a local energy source by supplying ATP. The balance between motile and stationary mitochondria responds quickly to changes in axonal and synaptic physiology. Defects in mitochondrial transport are implicated in the pathogenesis of several major neurological disorders. Recent work has provided new insight in the regulation of microtubule-based mitochondrial trafficking and anchoring, and on how mitochondrial motility influences neuron growth, synaptic function, and mitophagy.
Collapse
Affiliation(s)
- Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
8
|
Revisiting the TRAK family of proteins as mediators of GABAA receptor trafficking. Neurochem Res 2013; 39:992-6. [PMID: 24122114 DOI: 10.1007/s11064-013-1170-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/26/2013] [Accepted: 10/01/2013] [Indexed: 10/26/2022]
Abstract
γ-Aminobutyric acid type A (GABAA) receptor interacting factor-1 (GRIF-1) was originally discovered as a result of studies aiming to find the elusive GABAA receptor clustering protein. It was identified as a GABAA receptor associated protein by virtue of its specific interaction with the GABAA receptor β2 subunit intracellular loop in a yeast two-hybrid screen of a rat brain cDNA library. Further work however, established that GRIF-1, now known as trafficking kinesin protein 2 (TRAK2), is a member of the TRAK family of kinesin adaptor proteins. A pivotal role for TRAK1 and TRAK2 in the transport of mitochondria is well recognized. Notwithstanding this progress, there is a body of evidence that still supports a role for TRAKs in the intracellular transport of GABAA receptors. This is critically reviewed in this article.
Collapse
|
9
|
Abstract
Neurons, perhaps more than any other cell type, depend on mitochondrial trafficking for their survival. Recent studies have elucidated a motor/adaptor complex on the mitochondrial surface that is shared between neurons and other animal cells. In addition to kinesin and dynein, this complex contains the proteins Miro (also called RhoT1/2) and milton (also called TRAK1/2) and is responsible for much, although not necessarily all, mitochondrial movement. Elucidation of the complex has permitted inroads for understanding how this movement is regulated by a variety of intracellular signals, although many mysteries remain. Regulating mitochondrial movement can match energy demand to energy supply throughout the extraordinary architecture of these cells and can control the clearance and replenishing of mitochondria in the periphery. Because the extended axons of neurons contain uniformly polarized microtubules, they have been useful for studying mitochondrial motility in conjunction with biochemical assays in many cell types.
Collapse
Affiliation(s)
- Thomas L Schwarz
- F.M. Kirby Neurobiology Center, Children's Hospital Boston, and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
10
|
Lovas JR, Wang X. The meaning of mitochondrial movement to a neuron's life. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1833:184-94. [PMID: 22548961 PMCID: PMC3413748 DOI: 10.1016/j.bbamcr.2012.04.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/13/2012] [Accepted: 04/14/2012] [Indexed: 11/21/2022]
Abstract
Cells precisely regulate mitochondrial movement in order to balance energy needs and avoid cell death. Neurons are particularly susceptible to disturbance of mitochondrial motility and distribution due to their highly extended structures and specialized function. Regulation of mitochondrial motility plays a vital role in neuronal health and death. Here we review the current understanding of regulatory mechanisms that govern neuronal mitochondrial transport and probe their implication in health and disease. This article is part of a Special Issue entitled: Mitochondrial dynamics and physiology.
Collapse
Affiliation(s)
- Jonathan R. Lovas
- Stanford Institute for Neuro-innovation and Translational Neurosciences and Department of Neurosurgery, Stanford University School of Medicine
| | - Xinnan Wang
- Stanford Institute for Neuro-innovation and Translational Neurosciences and Department of Neurosurgery, Stanford University School of Medicine
| |
Collapse
|
11
|
Lee SM, Chin LS, Li L. Charcot-Marie-Tooth disease-linked protein SIMPLE functions with the ESCRT machinery in endosomal trafficking. ACTA ACUST UNITED AC 2012; 199:799-816. [PMID: 23166352 PMCID: PMC3514783 DOI: 10.1083/jcb.201204137] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
SIMPLE functions with the ESCRT machinery to promote endosome-to-lysosome trafficking, and this function is impaired by Charcot-Marie-Tooth disease–associated mutations. Mutations in small integral membrane protein of lysosome/late endosome (SIMPLE) cause autosomal dominant, Charcot-Marie-Tooth disease (CMT) type 1C. The cellular function of SIMPLE is unknown and the pathogenic mechanism of SIMPLE mutations remains elusive. Here, we report that SIMPLE interacted and colocalized with endosomal sorting complex required for transport (ESCRT) components STAM1, Hrs, and TSG101 on early endosomes and functioned with the ESCRT machinery in the control of endosome-to-lysosome trafficking. Our analyses revealed that SIMPLE was required for efficient recruitment of ESCRT components to endosomal membranes and for regulating endosomal trafficking and signaling attenuation of ErbB receptors. We found that the ability of SIMPLE to regulate ErbB trafficking and signaling was impaired by CMT-linked SIMPLE mutations via a loss-of-function, dominant-negative mechanism, resulting in prolonged activation of ERK1/2 signaling. Our findings indicate a function of SIMPLE as a regulator of endosomal trafficking and provide evidence linking dysregulated endosomal trafficking to CMT pathogenesis.
Collapse
Affiliation(s)
- Samuel M Lee
- Department of Pharmacology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
12
|
Bauersachs S, Ulbrich SE, Reichenbach HD, Reichenbach M, Büttner M, Meyer HH, Spencer TE, Minten M, Sax G, Winter G, Wolf E. Comparison of the Effects of Early Pregnancy with Human Interferon, Alpha 2 (IFNA2), on Gene Expression in Bovine Endometrium1. Biol Reprod 2012; 86:46. [DOI: 10.1095/biolreprod.111.094771] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
13
|
Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat Rev Neurosci 2012; 13:77-93. [PMID: 22218207 DOI: 10.1038/nrn3156] [Citation(s) in RCA: 642] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondria have a number of essential roles in neuronal function. Their complex mobility patterns within neurons are characterized by frequent changes in direction. Mobile mitochondria can become stationary or pause in regions that have a high metabolic demand and can move again rapidly in response to physiological changes. Defects in mitochondrial transport are implicated in the pathogenesis of several major neurological disorders. Research into the mechanisms that regulate mitochondrial transport is thus an important emerging frontier.
Collapse
|
14
|
Lee SM, Olzmann JA, Chin LS, Li L. Mutations associated with Charcot-Marie-Tooth disease cause SIMPLE protein mislocalization and degradation by the proteasome and aggresome-autophagy pathways. J Cell Sci 2011; 124:3319-31. [PMID: 21896645 DOI: 10.1242/jcs.087114] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mutations in SIMPLE cause an autosomal dominant, demyelinating form of peripheral neuropathy termed Charcot-Marie-Tooth disease type 1C (CMT1C), but the pathogenic mechanisms of these mutations remain unknown. Here, we report that SIMPLE is an early endosomal membrane protein that is highly expressed in the peripheral nerves and Schwann cells. Our analysis has identified a transmembrane domain (TMD) embedded within the cysteine-rich (C-rich) region that anchors SIMPLE to the membrane, and suggests that SIMPLE is a post-translationally inserted, C-tail-anchored membrane protein. We found that CMT1C-linked pathogenic mutations are clustered within or around the TMD of SIMPLE and that these mutations cause mislocalization of SIMPLE from the early endosome membrane to the cytosol. The CMT1C-associated SIMPLE mutant proteins are unstable and prone to aggregation, and they are selectively degraded by both the proteasome and aggresome-autophagy pathways. Our findings suggest that SIMPLE mutations cause CMT1C peripheral neuropathy by a combination of loss-of-function and toxic gain-of-function mechanisms, and highlight the importance of both the proteasome and autophagy pathways in the clearance of CMT1C-associated mutant SIMPLE proteins.
Collapse
Affiliation(s)
- Samuel M Lee
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
15
|
Brickley K, Stephenson FA. Trafficking kinesin protein (TRAK)-mediated transport of mitochondria in axons of hippocampal neurons. J Biol Chem 2011; 286:18079-92. [PMID: 21454691 PMCID: PMC3093881 DOI: 10.1074/jbc.m111.236018] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Indexed: 11/06/2022] Open
Abstract
In neurons, the proper distribution of mitochondria is essential because of a requirement for high energy and calcium buffering during synaptic neurotransmission. The efficient, regulated transport of mitochondria along axons to synapses is therefore crucial for maintaining function. The trafficking kinesin protein (TRAK)/Milton family of proteins comprises kinesin adaptors that have been implicated in the neuronal trafficking of mitochondria via their association with the mitochondrial protein Miro and kinesin motors. In this study, we used gene silencing by targeted shRNAi and dominant negative approaches in conjunction with live imaging to investigate the contribution of endogenous TRAKs, TRAK1 and TRAK2, to the transport of mitochondria in axons of hippocampal pyramidal neurons. We report that both strategies resulted in impairing mitochondrial mobility in axonal processes. Differences were apparent in terms of the contribution of TRAK1 and TRAK2 to this transport because knockdown of TRAK1 but not TRAK2 impaired mitochondrial mobility, yet both TRAK1 and TRAK2 were shown to rescue transport impaired by TRAK1 gene knock-out. Thus, we demonstrate for the first time the pivotal contribution of the endogenous TRAK family of kinesin adaptors to the regulation of mitochondrial mobility.
Collapse
Affiliation(s)
- Kieran Brickley
- From the School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - F. Anne Stephenson
- From the School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX, United Kingdom
| |
Collapse
|
16
|
Cai Q, Davis ML, Sheng ZH. Regulation of axonal mitochondrial transport and its impact on synaptic transmission. Neurosci Res 2011; 70:9-15. [PMID: 21352858 PMCID: PMC3086944 DOI: 10.1016/j.neures.2011.02.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 02/07/2011] [Accepted: 02/07/2011] [Indexed: 12/11/2022]
Abstract
Mitochondria are essential organelles for neuronal survival and play important roles in ATP generation, calcium buffering, and apoptotic signaling. Due to their extreme polarity, neurons utilize specialized mechanisms to regulate mitochondrial transport and retention along axons and near synaptic terminals where energy supply and calcium homeostasis are in high demand. Axonal mitochondria undergo saltatory and bidirectional movement and display complex mobility patterns. In cultured neurons, approximately one-third of axonal mitochondria are mobile, while the rest remain stationary. Stationary mitochondria at synapses serve as local energy stations that produce ATP to support synaptic function. In addition, axonal mitochondria maintain local Ca²+ homeostasis at presynaptic boutons. The balance between mobile and stationary mitochondria is dynamic and responds quickly to changes in axonal and synaptic physiology. The coordination of mitochondrial mobility and synaptic activity is crucial for neuronal function synaptic plasticity. In this update article, we introduce recent advances in our understanding of the motor-adaptor complexes and docking machinery that mediate mitochondrial transport and axonal distribution. We will also discuss the molecular mechanisms underlying the complex mobility patterns of axonal mitochondria and how mitochondrial mobility impacts the physiology and function of synapses.
Collapse
Affiliation(s)
- Qian Cai
- Synaptic Function Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 35, Room 2B-215, 35 Convent Drive, Bethesda, Maryland 20892-3706, USA
| | - Matthew L. Davis
- Synaptic Function Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 35, Room 2B-215, 35 Convent Drive, Bethesda, Maryland 20892-3706, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 35, Room 2B-215, 35 Convent Drive, Bethesda, Maryland 20892-3706, USA
| |
Collapse
|
17
|
Brickley K, Pozo K, Stephenson FA. N-acetylglucosamine transferase is an integral component of a kinesin-directed mitochondrial trafficking complex. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1813:269-81. [PMID: 21034780 DOI: 10.1016/j.bbamcr.2010.10.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 10/12/2010] [Accepted: 10/13/2010] [Indexed: 10/18/2022]
Abstract
Trafficking kinesin proteins (TRAKs) 1 and 2 are kinesin-associated proteins proposed to function in excitable tissues as adaptors in anterograde trafficking of cargoes including mitochondria. They are known to associate with N-acetylglucosamine transferase and the mitochondrial rho GTPase, Miro. We used confocal imaging, Förster resonance energy transfer and immunoprecipitations to investigate association between TRAKs1/2, N-acetylglucosamine transferase, the prototypic kinesin-1, KIF5C, and Miro. We demonstrate that in COS-7 cells, N-acetylglucosamine transferase, KIF5C and TRAKs1/2 co-distribute. Förster resonance energy transfer was observed between N-acetylglucosamine transferase and TRAKs1/2. Despite co-distributing with KIF5C and immunoprecipitations demonstrating a TRAK1/2, N-acetylglucosamine transferase and KIF5C ternary complex, no Förster resonance energy transfer was detected between N-acetylglucosamine transferase and KIF5C. KIF5C, N-acetylglucosamine transferase, TRAKs1/2 and Miro formed a quaternary complex. The presence of N-acteylglucosamine transferase partially prevented redistribution of mitochondria induced by trafficking proteins 1/2 and KIF5C. TRAK2 was a substrate for N-acetylglucosamine transferase with TRAK2 (S562) identified as a site of O-N-acetylglucosamine modification. These findings substantiate trafficking kinesin proteins as scaffolds for the formation of a multi-component complex involved in anterograde trafficking of mitochondria. They further suggest that O-glycosylation may regulate complex formation.
Collapse
Affiliation(s)
- Kieran Brickley
- School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX, UK
| | | | | |
Collapse
|
18
|
MacAskill AF, Atkin TA, Kittler JT. Mitochondrial trafficking and the provision of energy and calcium buffering at excitatory synapses. Eur J Neurosci 2010; 32:231-40. [PMID: 20946113 DOI: 10.1111/j.1460-9568.2010.07345.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Neuronal postsynaptic currents consume most of the brain's energy supply. Delineating how neurons control the distribution, morphology and function of the energy-producing mitochondria that fuel synaptic communication is therefore important for our understanding of nervous system function and pathology. Here we review recent insights into the molecular mechanisms that control activity-dependent regulation of mitochondrial trafficking, morphology and activity at excitatory synapses. We also consider some implications of this regulation for synaptic function and plasticity and discuss how this may contribute to synaptic dysfunction and signalling in neurological disease, with a focus on Alzheimer's disease.
Collapse
Affiliation(s)
- Andrew F MacAskill
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK
| | | | | |
Collapse
|
19
|
Koutsopoulos OS, Laine D, Osellame L, Chudakov DM, Parton RG, Frazier AE, Ryan MT. Human Miltons associate with mitochondria and induce microtubule-dependent remodeling of mitochondrial networks. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:564-74. [DOI: 10.1016/j.bbamcr.2010.03.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 02/23/2010] [Accepted: 03/08/2010] [Indexed: 01/10/2023]
|
20
|
Chen J, Li L, Chin LS. Parkinson disease protein DJ-1 converts from a zymogen to a protease by carboxyl-terminal cleavage. Hum Mol Genet 2010; 19:2395-408. [PMID: 20304780 DOI: 10.1093/hmg/ddq113] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutations in DJ-1 cause recessively transmitted early-onset Parkinson disease (PD), and oxidative damage to DJ-1 has been associated with the pathogenesis of late-onset sporadic PD. The precise biochemical function of DJ-1 remains elusive. Here, we report that DJ-1 is synthesized as a latent protease zymogen with low-intrinsic proteolytic activity. DJ-1 protease zymogen is activated by the removal of a 15-amino acid peptide at its C terminus. The activated DJ-1 functions as a cysteine protease with Cys-106 and His-126 as the catalytic diad. We show that endogenous DJ-1 in dopaminergic cells undergoes C-terminal cleavage in response to mild oxidative stress, suggesting that DJ-1 protease activation occurs in a redox-dependent manner. Moreover, we find that the C-terminally cleaved form of DJ-1 with activated protease function exhibits enhanced cytoprotective action against oxidative stress-induced apoptosis. The cytoprotective action of DJ-1 is abolished by the C106A and H126A mutations. Our findings support a role for DJ-1 protease in cellular defense against oxidative stress and have important implications for understanding and treating PD.
Collapse
Affiliation(s)
- Jue Chen
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322-3090, USA
| | | | | |
Collapse
|
21
|
Abstract
Components of the ESCRT (endosomal sorting complex required for transport) machinery mediate endosomal sorting of ubiquitinated membrane proteins. They are key regulators of biological processes important for cell growth and survival, such as growth-factor-mediated signalling and cytokinesis. In addition, enveloped viruses, such as HIV-1, hijack and utilize the ESCRTs for budding during virus release and infection. Obviously, the ESCRT-facilitated pathways require tight regulation, which is partly mediated by a group of interacting proteins, for which our knowledge is growing. In this review we discuss the different ESCRT-modulating proteins and how they influence ESCRT-dependent processes, for example, by acting as positive or negative regulators or by providing temporal and spatial control. A number of the interactors influence the classical ESCRT-mediated process of endosomal cargo sorting, for example, by modulating the interaction between ubiquitinated cargo and the ESCRTs. Certain accessory proteins have been implicated in regulating the activity or steady-state expression levels of the ESCRT components, whereas other interactors control the cellular localization of the ESCRTs, for example, by inducing shuttling between cytosol and nucleus or endosomes. In conclusion, the discovery of novel interactors has and will extend our knowledge of the biological roles of ESCRTs.
Collapse
|
22
|
Hanover JA, Krause MW, Love DC. The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1800:80-95. [PMID: 19647043 PMCID: PMC2815088 DOI: 10.1016/j.bbagen.2009.07.017] [Citation(s) in RCA: 262] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 07/10/2009] [Accepted: 07/18/2009] [Indexed: 12/14/2022]
Abstract
The enzymes of O-GlcNAc cycling couple the nutrient-dependent synthesis of UDP-GlcNAc to O-GlcNAc modification of Ser/Thr residues of key nuclear and cytoplasmic targets. This series of reactions culminating in O-GlcNAcylation of targets has been termed the hexosamine signaling pathway (HSP). The evolutionarily ancient enzymes of O-GlcNAc cycling have co-evolved with other signaling effecter molecules; they are recruited to their targets by many of the same mechanisms used to organize canonic kinase-dependent signaling pathways. This co-recruitment of the enzymes of O-GlcNAc cycling drives a binary switch impacting pathways of anabolism and growth (nutrient uptake) and catabolic pathways (nutrient sparing and salvage). The hexosamine signaling pathway (HSP) has thus emerged as a versatile cellular regulator modulating numerous cellular signaling cascades influencing growth, metabolism, cellular stress, circadian rhythm, and host-pathogen interactions. In mammals, the nutrient-sensing HSP has been harnessed to regulate such cell-specific functions as neutrophil migration, and activation of B-cells and T-cells. This review summarizes the diverse approaches being used to examine O-GlcNAc cycling. It will emphasize the impact O-GlcNAcylation has upon signaling pathways that may be become deregulated in diseases of the immune system, diabetes mellitus, cancer, cardiovascular disease, and neurodegenerative diseases.
Collapse
Affiliation(s)
- John A Hanover
- Laboratory of Cell Biochemistry and Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
23
|
Control of mitochondrial transport and localization in neurons. Trends Cell Biol 2009; 20:102-12. [PMID: 20006503 DOI: 10.1016/j.tcb.2009.11.002] [Citation(s) in RCA: 281] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 11/17/2009] [Accepted: 11/17/2009] [Indexed: 12/18/2022]
Abstract
Mitochondria play an essential role in ATP generation, calcium buffering and apoptotic signalling. In neurons, the transport of mitochondria to specific locations where they are needed has emerged as an important process for correct nerve cell function. Recent studies have shed light on the mechanisms that control mitochondrial transport and localization in neurons. We describe the machinery that is important for constitutive transport of mitochondria throughout the cell, and highlight recent advances in our understanding of how signalling pathways can converge on this machinery and allow for rapid activity-dependent control of mitochondrial trafficking and localization. Regulation of mitochondrial trafficking might work in concert with mitochondrial tethering systems to give precise control of mitochondrial delivery and localization to regions of high energy and calcium buffering requirements within neurons.
Collapse
|
24
|
Giles LM, Li L, Chin LS. Printor, a novel torsinA-interacting protein implicated in dystonia pathogenesis. J Biol Chem 2009; 284:21765-75. [PMID: 19535332 DOI: 10.1074/jbc.m109.004838] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Early onset generalized dystonia (DYT1) is an autosomal dominant neurological disorder caused by deletion of a single glutamate residue (torsinA DeltaE) in the C-terminal region of the AAA(+) (ATPases associated with a variety of cellular activities) protein torsinA. The pathogenic mechanism by which torsinA DeltaE mutation leads to dystonia remains unknown. Here we report the identification and characterization of a 628-amino acid novel protein, printor, that interacts with torsinA. Printor co-distributes with torsinA in multiple brain regions and co-localizes with torsinA in the endoplasmic reticulum. Interestingly, printor selectively binds to the ATP-free form but not to the ATP-bound form of torsinA, supporting a role for printor as a cofactor rather than a substrate of torsinA. The interaction of printor with torsinA is completely abolished by the dystonia-associated torsinA DeltaE mutation. Our findings suggest that printor is a new component of the DYT1 pathogenic pathway and provide a potential molecular target for therapeutic intervention in dystonia.
Collapse
Affiliation(s)
- Lisa M Giles
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
25
|
Gauvreau ME, Côté MH, Bourgeois-Daigneault MC, Rivard LD, Xiu F, Brunet A, Shaw A, Steimle V, Thibodeau J. Sorting of MHC class II molecules into exosomes through a ubiquitin-independent pathway. Traffic 2009; 10:1518-27. [PMID: 19566897 DOI: 10.1111/j.1600-0854.2009.00948.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Major histocompatibility complex class II (MHC-II) molecules accumulate in exocytic vesicles, called exosomes, which are secreted by antigen presenting cells. These vesicles are released following the fusion of multivesicular bodies (MVBs) with the plasma membrane. The molecular mechanisms regulating cargo selection remain to be fully characterized. As ubiquitination of the MHC-II beta-chain cytoplasmic tail has recently been demonstrated in various cell types, we sought to determine if this post-translational modification is required for the incorporation of MHC-II molecules into exosomes. First, we stably transfected HeLa cells with a chimeric HLA-DR molecule in which the beta-chain cytoplasmic tail is replaced by ubiquitin. Western blot analysis did not indicate preferential shedding of these chimeric molecules into exosomes. Next, we forced the ubiquitination of MHC-II in class II transactivator (CIITA)-expressing HeLa and HEK293 cells by transfecting the MARCH8 E3 ubiquitin ligase. Despite the almost complete downregulation of MHC-II from the plasma membrane, these molecules were not enriched in exosomes. Finally, site-directed mutagenesis of all cytoplasmic lysine residues on HLA-DR did not prevent inclusion into these vesicles. Taken together, these results demonstrate that ubiquitination of MHC-II is not a prerequisite for incorporation into exosomes.
Collapse
Affiliation(s)
- Marie-Elaine Gauvreau
- Laboratoire d'Immunologie Moléculaire, Département de Microbiologie et Immunologie, Université de Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
MacAskill AF, Brickley K, Stephenson FA, Kittler JT. GTPase dependent recruitment of Grif-1 by Miro1 regulates mitochondrial trafficking in hippocampal neurons. Mol Cell Neurosci 2009; 40:301-12. [PMID: 19103291 DOI: 10.1016/j.mcn.2008.10.016] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Revised: 10/28/2008] [Accepted: 10/31/2008] [Indexed: 11/16/2022] Open
Abstract
The transport of mitochondria to specific neuronal locations is critical to meet local cellular energy demands and for buffering intracellular calcium. A critical role for kinesin motor proteins in mitochondrial transport in neurons has been demonstrated. Currently however the molecular mechanisms that underlie the recruitment of motor proteins to mitochondria, and how this recruitment is regulated remain unclear. Here we show that a protein trafficking complex comprising the adaptor protein Grif-1 and the atypical GTPase Miro1 can be detected in mammalian brain where it is localised to neuronal mitochondria. Increasing Miro1 expression levels recruits Grif-1 to mitochondria. This results in an enhanced transport of mitochondria towards the distal ends of neuronal processes. Uncoupling Grif-1 recruitment to mitochondria by expressing a Grif-1/Miro1 binding fragment dramatically reduces mitochondrial transport into neuronal processes. Altering Miro1 function by mutating its first GTPase domain affects Miro's ability to recruit Grif-1 to mitochondria and in addition alters mitochondrial distribution and shape along neuronal processes. These data suggest that Miro1 and the kinesin adaptor Grif-1 play an important role in regulating mitochondrial transport in neurons.
Collapse
Affiliation(s)
- Andrew F MacAskill
- Department of Neuroscience, Physiology and Pharmacology, University College London, UK
| | | | | | | |
Collapse
|
27
|
Pridgeon JW, Webber EA, Sha D, Li L, Chin LS. Proteomic analysis reveals Hrs ubiquitin-interacting motif-mediated ubiquitin signaling in multiple cellular processes. FEBS J 2009; 276:118-31. [PMID: 19019082 PMCID: PMC2647816 DOI: 10.1111/j.1742-4658.2008.06760.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Despite the critical importance of protein ubiquitination in the regulation of diverse cellular processes, the molecular mechanisms by which cells recognize and transmit ubiquitin signals remain poorly understood. The endosomal sorting machinery component hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) contains a ubiquitin-interacting motif (UIM), which is believed to bind ubiquitinated membrane cargo proteins and mediate their sorting to the lysosomal degradation pathway. To gain insight into the role of Hrs UIM-mediated ubiquitin signaling in cells, we performed a proteomic screen for Hrs UIM-interacting ubiquitinated proteins in human brain by using an in vitro expression cloning screening approach. We have identified 48 ubiquitinated proteins that are specifically recognized by the UIM domain of Hrs. Among them, 12 are membrane proteins that are likely to be Hrs cargo proteins, and four are membrane protein-associated adaptor proteins whose ubiquitination may act as a signal to target their associated membrane cargo for Hrs-mediated endosomal sorting. Other classes of the identified proteins include components of the vesicular trafficking machinery, cell signaling molecules, proteins associated with the cytoskeleton and cytoskeleton-dependent transport, and enzymes involved in ubiquitination and metabolism, suggesting the involvement of Hrs UIM-mediated ubiquitin signaling in the regulation of multiple cellular processes. We have characterized the ubiquitination of two identified proteins, Munc18-1 and Hsc70, and their interaction with Hrs UIM, and provided functional evidence supporting a role for Hsc70 in the regulation of Hrs-mediated endosome-to-lysosome trafficking.
Collapse
Affiliation(s)
- Julia W Pridgeon
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
28
|
Webber E, Li L, Chin LS. Hypertonia-associated protein Trak1 is a novel regulator of endosome-to-lysosome trafficking. J Mol Biol 2008; 382:638-51. [PMID: 18675823 PMCID: PMC2575741 DOI: 10.1016/j.jmb.2008.07.045] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 07/16/2008] [Accepted: 07/17/2008] [Indexed: 12/11/2022]
Abstract
Hypertonia, which is characterized by stiff gait, abnormal posture, jerky movements, and tremor, is associated with a number of neurological disorders, including cerebral palsy, dystonia, Parkinson's disease, stroke, and spinal cord injury. Recently, a spontaneous mutation in the gene encoding trafficking protein, kinesin-binding 1 (Trak1), was identified as the genetic defect that causes hypertonia in mice. The subcellular localization and biological function of Trak1 remain unclear. Here we report that Trak1 interacts with hepatocyte-growth-factor-regulated tyrosine kinase substrate (Hrs), an essential component of the endosomal sorting and trafficking machinery. Double-label immunofluorescence confocal studies show that the endogenous Trak1 protein partially colocalizes with Hrs on early endosomes. Like Hrs, both overexpression and small-interfering-RNA-mediated knockdown of Trak1 inhibit degradation of internalized epidermal growth factor receptors through a block in endosome-to-lysosome trafficking. Our findings support a role for Trak1 in the regulation of Hrs-mediated endosomal sorting and have important implications for understanding hypertonia associated with neurological disorders.
Collapse
Affiliation(s)
- Elizabeth Webber
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322
| | - Lian Li
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322
| | - Lih-Shen Chin
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
29
|
Giles LM, Chen J, Li L, Chin LS. Dystonia-associated mutations cause premature degradation of torsinA protein and cell-type-specific mislocalization to the nuclear envelope. Hum Mol Genet 2008; 17:2712-22. [PMID: 18552369 PMCID: PMC2574948 DOI: 10.1093/hmg/ddn173] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 05/20/2008] [Accepted: 06/10/2008] [Indexed: 12/17/2022] Open
Abstract
An in-frame 3 bp deletion in the torsinA gene resulting in the loss of a glutamate residue at position 302 or 303 (torsinA DeltaE) is the major cause for early-onset torsion dystonia (DYT1). In addition, an 18 bp deletion in the torsinA gene resulting in the loss of residues 323-328 (torsinA Delta323-8) has also been associated with dystonia. Here we report that torsinA DeltaE and torsinA Delta323-8 mutations cause neuronal cell-type-specific mislocalization of torsinA protein to the nuclear envelope without affecting torsinA oligomerization. Furthermore, both dystonia-associated mutations destabilize torsinA protein in dopaminergic cells. We find that wild-type torsinA protein is degraded primarily through the macroautophagy-lysosome pathway. In contrast, torsinA DeltaE and torsinA Delta323-8 mutant proteins are degraded by both the proteasome and macroautophagy-lysosome pathways. Our findings suggest that torsinA mutation-induced premature degradation may contribute to the pathogenesis of dystonia via a loss-of-function mechanism and underscore the importance of both the proteasome and macroautophagy in the clearance of dystonia-associated torsinA mutant proteins.
Collapse
Affiliation(s)
| | | | | | - Lih-Shen Chin
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322-3090, USA
| |
Collapse
|
30
|
Donepudi M, Resh MD. c-Src trafficking and co-localization with the EGF receptor promotes EGF ligand-independent EGF receptor activation and signaling. Cell Signal 2008; 20:1359-67. [PMID: 18448311 PMCID: PMC2459337 DOI: 10.1016/j.cellsig.2008.03.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 03/10/2008] [Accepted: 03/10/2008] [Indexed: 01/01/2023]
Abstract
c-Src is a non-receptor tyrosine kinase that associates with both the plasma membrane and endosomal compartments. In many human cancers, especially breast cancer, c-Src and the EGF receptor (EGFR) are overexpressed. Dual overexpression of c-Src and EGFR correlates with a Src-dependent increase in activation of EGFR, and synergism between these two tyrosine kinases increases the mitogenic activity of EGFR. Despite extensive studies of the functional interaction between c-Src and EGFR, little is known about the interactions in the trafficking pathways for the two proteins and how that influences signaling. Given the synergism between c-Src and EGFR, and the finding that EGFR is internalized and can signal from endosomes, we hypothesized that c-Src and EGFR traffic together through the endocytic pathway. Here we use a regulatable c-SrcGFP fusion protein that is a bona fide marker for c-Src to show that c-Src undergoes constitutive macropinocytosis from the plasma membrane into endocytic compartments. The movement of c-Src was dependent on its tyrosine kinase activity. Stimulation of cells with EGF revealed that c-Src traffics into the cell with activated EGFR and that c-Src expression and kinase activity prolongs EGFR activation. Surprisingly, even in the absence of EGF addition, c-Src expression induced activation of EGFR and of EGFR-mediated downstream signaling targets ERK and Shc. These data suggest that the synergy between c-Src and EGFR also occurs as these two kinases traffic together, and that their co-localization promotes EGFR-mediated signaling.
Collapse
Affiliation(s)
| | - Marilyn D. Resh
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
31
|
Pridgeon JW, Olzmann JA, Chin LS, Li L. PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol 2007; 5:e172. [PMID: 17579517 PMCID: PMC1892574 DOI: 10.1371/journal.pbio.0050172] [Citation(s) in RCA: 475] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 04/24/2007] [Indexed: 12/13/2022] Open
Abstract
Mutations in the PTEN induced putative kinase 1 (PINK1) gene cause an autosomal recessive form of Parkinson disease (PD). So far, no substrates of PINK1 have been reported, and the mechanism by which PINK1 mutations lead to neurodegeneration is unknown. Here we report the identification of TNF receptor-associated protein 1 (TRAP1), a mitochondrial molecular chaperone also known as heat shock protein 75 (Hsp75), as a cellular substrate for PINK1 kinase. PINK1 binds and colocalizes with TRAP1 in the mitochondria and phosphorylates TRAP1 both in vitro and in vivo. We show that PINK1 protects against oxidative-stress-induced cell death by suppressing cytochrome c release from mitochondria, and this protective action of PINK1 depends on its kinase activity to phosphorylate TRAP1. Moreover, we find that the ability of PINK1 to promote TRAP1 phosphorylation and cell survival is impaired by PD-linked PINK1 G309D, L347P, and W437X mutations. Our findings suggest a novel pathway by which PINK1 phosphorylates downstream effector TRAP1 to prevent oxidative-stress-induced apoptosis and implicate the dysregulation of this mitochondrial pathway in PD pathogenesis.
Collapse
Affiliation(s)
- Julia W Pridgeon
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - James A Olzmann
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Lih-Shen Chin
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Lian Li
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|