1
|
Wu Z, Cardona EA, Cohn JA, Pierce JT. Nonapoptotic role of EGL-1 in exopher production and neuronal health in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2025; 122:e2407909122. [PMID: 39786930 PMCID: PMC11745333 DOI: 10.1073/pnas.2407909122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/20/2024] [Indexed: 01/30/2025] Open
Abstract
While traditionally studied for their proapoptotic functions in activating the caspase, research suggests BH3-only proteins also have other roles such as mitochondrial dynamics regulation. Here, we find that EGL-1, the BH3-only protein in Caenorhabditis elegans, promotes the cell-autonomous production of exophers in adult neurons. Exophers are large, micron-scale vesicles that are ejected from the cell and contain cellular components such as mitochondria. EGL-1 facilitates exopher production potentially through regulation of mitochondrial dynamics. Moreover, an endogenous, low level of EGL-1 expression appears to benefit dendritic health. Our findings provide insights into the role of neuronal BH3-only protein in mitochondrial dynamics, downstream exopher production, and ultimately neuronal health.
Collapse
Affiliation(s)
- Zheng Wu
- Department of Neuroscience, Center for Learning and Memory, Waggoner Center for Alcohol & Addiction Research, University of Texas at Austin, Austin, TX78712
| | - Eric A. Cardona
- Department of Neuroscience, Center for Learning and Memory, Waggoner Center for Alcohol & Addiction Research, University of Texas at Austin, Austin, TX78712
| | - Jesse A. Cohn
- Department of Neuroscience, Center for Learning and Memory, Waggoner Center for Alcohol & Addiction Research, University of Texas at Austin, Austin, TX78712
| | - Jonathan T. Pierce
- Department of Neuroscience, Center for Learning and Memory, Waggoner Center for Alcohol & Addiction Research, University of Texas at Austin, Austin, TX78712
| |
Collapse
|
2
|
Suh J, Lee YS. The multifaceted roles of mitochondria in osteoblasts: from energy production to mitochondrial-derived vesicle secretion. J Bone Miner Res 2024; 39:1205-1214. [PMID: 38907370 PMCID: PMC11371665 DOI: 10.1093/jbmr/zjae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/03/2024] [Indexed: 06/24/2024]
Abstract
Mitochondria in osteoblasts have been demonstrated to play multiple crucial functions in bone formation from intracellular adenosine triphosphate production to extracellular secretion of mitochondrial components. The present review explores the current knowledge about mitochondrial biology in osteoblasts, including mitochondrial biogenesis, bioenergetics, oxidative stress generation, and dynamic changes in morphology. Special attention is given to recent findings, including mitochondrial donut formation in osteoblasts, which actively generates mitochondrial-derived vesicles (MDVs), followed by extracellular secretion of small mitochondria and MDVs. We also discuss the therapeutic effects of targeting osteoblast mitochondria, highlighting their potential applications in improving bone health.
Collapse
Affiliation(s)
- Joonho Suh
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Yun-Sil Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Wu Z, Cardona EA, Pierce JT. Non-apoptotic role of EGL-1 in exopher production and neuronal health in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590348. [PMID: 38712027 PMCID: PMC11071422 DOI: 10.1101/2024.04.19.590348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
While traditionally studied for their pro-apoptotic functions, recent research suggests BH3-only proteins also have non-apoptotic roles. Here, we find that EGL-1, the BH3-only protein in Caenorhabditis elegans, promotes the cell-autonomous production of exophers in adult neurons. Exophers are large, micron-scale vesicles that are ejected from the cell and contain cellular components such as mitochondria. EGL-1 facilitates exopher production potentially through regulation of mitochondrial dynamics. Moreover, an endogenous, low level of EGL-1 expression appears to benefit dendritic health. Our findings provide insights into the mechanistic role of BH3-only protein in mitochondrial dynamics, downstream exopher production, and ultimately neuronal health.
Collapse
Affiliation(s)
- Zheng Wu
- Department of Neuroscience, Center for Learning and Memory, Waggoner Center for Alcohol & Addiction Research, University of Texas at Austin, Austin, TX
| | - Eric A. Cardona
- Department of Neuroscience, Center for Learning and Memory, Waggoner Center for Alcohol & Addiction Research, University of Texas at Austin, Austin, TX
| | - Jonathan T. Pierce
- Department of Neuroscience, Center for Learning and Memory, Waggoner Center for Alcohol & Addiction Research, University of Texas at Austin, Austin, TX
| |
Collapse
|
4
|
Venz R, Goyala A, Soto-Gamez A, Yenice T, Demaria M, Ewald CY. In-vivo screening implicates endoribonuclease Regnase-1 in modulating senescence-associated lysosomal changes. GeroScience 2024; 46:1499-1514. [PMID: 37644339 PMCID: PMC10828269 DOI: 10.1007/s11357-023-00909-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
Accumulation of senescent cells accelerates aging and age-related diseases, whereas preventing this accumulation extends the lifespan in mice. A characteristic of senescent cells is increased staining with β-galactosidase (β-gal) ex vivo. Here, we describe a progressive accumulation of β-gal staining in the model organism C. elegans during aging. We show that distinct pharmacological and genetic interventions targeting the mitochondria and the mTORC1 to the nuclear core complex axis, the non-canonical apoptotic, and lysosomal-autophagy pathways slow the age-dependent accumulation of β-gal. We identify a novel gene, rege-1/Regnase-1/ZC3H12A/MCPIP1, modulating β-gal staining via the transcription factor ets-4/SPDEF. We demonstrate that knocking down Regnase-1 in human cell culture prevents senescence-associated β-gal accumulation. Our data provide a screening pipeline to identify genes and drugs modulating senescence-associated lysosomal phenotypes.
Collapse
Affiliation(s)
- Richard Venz
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Anita Goyala
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Abel Soto-Gamez
- European Institute for the Biology of Aging (ERIBA)/University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Tugce Yenice
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Marco Demaria
- European Institute for the Biology of Aging (ERIBA)/University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland.
| |
Collapse
|
5
|
Lee YT, Savini M, Chen T, Yang J, Zhao Q, Ding L, Gao SM, Senturk M, Sowa JN, Wang JD, Wang MC. Mitochondrial GTP metabolism controls reproductive aging in C. elegans. Dev Cell 2023; 58:2718-2731.e7. [PMID: 37708895 PMCID: PMC10842941 DOI: 10.1016/j.devcel.2023.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/17/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Healthy mitochondria are critical for reproduction. During aging, both reproductive fitness and mitochondrial homeostasis decline. Mitochondrial metabolism and dynamics are key factors in supporting mitochondrial homeostasis. However, how they are coupled to control reproductive health remains unclear. We report that mitochondrial GTP (mtGTP) metabolism acts through mitochondrial dynamics factors to regulate reproductive aging. We discovered that germline-only inactivation of GTP- but not ATP-specific succinyl-CoA synthetase (SCS) promotes reproductive longevity in Caenorhabditis elegans. We further identified an age-associated increase in mitochondrial clustering surrounding oocyte nuclei, which is attenuated by GTP-specific SCS inactivation. Germline-only induction of mitochondrial fission factors sufficiently promotes mitochondrial dispersion and reproductive longevity. Moreover, we discovered that bacterial inputs affect mtGTP levels and dynamics factors to modulate reproductive aging. These results demonstrate the significance of mtGTP metabolism in regulating oocyte mitochondrial homeostasis and reproductive longevity and identify mitochondrial fission induction as an effective strategy to improve reproductive health.
Collapse
Affiliation(s)
- Yi-Tang Lee
- Integrative Program of Molecular and Biochemical Sciences, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Marzia Savini
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tao Chen
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Jin Yang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Qian Zhao
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Lang Ding
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA; Graduate Program in Chemical, Physical & Structural Biology, Graduate School of Biomedical Science, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shihong Max Gao
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Mumine Senturk
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jessica N Sowa
- Department of Biology, West Chester University, West Chester, PA 19383, USA
| | - Jue D Wang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Meng C Wang
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Lee YT, Savini M, Chen T, Yang J, Zhao Q, Ding L, Gao SM, Senturk M, Sowa J, Wang JD, Wang MC. Mitochondrial GTP Metabolism Regulates Reproductive Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.02.535296. [PMID: 37066227 PMCID: PMC10103970 DOI: 10.1101/2023.04.02.535296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Healthy mitochondria are critical for reproduction. During aging, both reproductive fitness and mitochondrial homeostasis decline. Mitochondrial metabolism and dynamics are key factors in supporting mitochondrial homeostasis. However, how they are coupled to control reproductive health remains unclear. We report that mitochondrial GTP metabolism acts through mitochondrial dynamics factors to regulate reproductive aging. We discovered that germline-only inactivation of GTP- but not ATP-specific succinyl-CoA synthetase (SCS), promotes reproductive longevity in Caenorhabditis elegans. We further revealed an age-associated increase in mitochondrial clustering surrounding oocyte nuclei, which is attenuated by the GTP-specific SCS inactivation. Germline-only induction of mitochondrial fission factors sufficiently promotes mitochondrial dispersion and reproductive longevity. Moreover, we discovered that bacterial inputs affect mitochondrial GTP and dynamics factors to modulate reproductive aging. These results demonstrate the significance of mitochondrial GTP metabolism in regulating oocyte mitochondrial homeostasis and reproductive longevity and reveal mitochondrial fission induction as an effective strategy to improve reproductive health.
Collapse
|
7
|
Ferdinandus, Suzuki M, Vu CQ, Harada Y, Sarker SR, Ishiwata S, Kitaguchi T, Arai S. Modulation of Local Cellular Activities using a Photothermal Dye-Based Subcellular-Sized Heat Spot. ACS NANO 2022; 16:9004-9018. [PMID: 35675905 PMCID: PMC9245347 DOI: 10.1021/acsnano.2c00285] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/19/2022] [Indexed: 08/25/2023]
Abstract
Thermal engineering at the microscale, such as the regulation and precise evaluation of the temperature within cellular environments, is a major challenge for basic biological research and biomaterials development. We engineered a polymeric nanoparticle having a fluorescent temperature sensory dye and a photothermal dye embedded in the polymer matrix, named nanoheater-thermometer (nanoHT). When nanoHT is illuminated with a near-infrared laser at 808 nm, a subcellular-sized heat spot is generated in a live cell. Fluorescence thermometry allows the temperature increment to be read out concurrently at individual heat spots. Within a few seconds of an increase in temperature by approximately 11.4 °C from the base temperature (37 °C), we observed the death of HeLa cells. The cell death was observed to be triggered from the exact local heat spot at the subcellular level under the fluorescence microscope. Furthermore, we demonstrate the application of nanoHT for the induction of muscle contraction in C2C12 myotubes by heat release. We successfully showed heat-induced contraction to occur in a limited area of a single myotube based on the alteration of protein-protein interactions related to the contraction event. These results demonstrate that even a single heat spot provided by a photothermal material can be extremely effective in altering cellular functions.
Collapse
Affiliation(s)
- Ferdinandus
- Waseda
Bioscience Research Institute in Singapore (WABIOS), Singapore 138667, Singapore
| | - Madoka Suzuki
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka,
Suita, Osaka 565-0871, Japan
| | - Cong Quang Vu
- Nano
Life Science Institute (WPI-NanoLSI), Kanazawa
University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Yoshie Harada
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka,
Suita, Osaka 565-0871, Japan
- Center
for Quantum Information and Quantum Biology, Osaka University, Osaka 565-0871, Japan
| | - Satya Ranjan Sarker
- Nano
Life Science Institute (WPI-NanoLSI), Kanazawa
University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shin’ichi Ishiwata
- Department
of Physics, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Tetsuya Kitaguchi
- Laboratory
for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa 226-8503, Japan
| | - Satoshi Arai
- Nano
Life Science Institute (WPI-NanoLSI), Kanazawa
University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
8
|
Mahajan M, Bharambe N, Shang Y, Lu B, Mandal A, Madan Mohan P, Wang R, Boatz JC, Manuel Martinez Galvez J, Shnyrova AV, Qi X, Buck M, van der Wel PCA, Ramachandran R. NMR identification of a conserved Drp1 cardiolipin-binding motif essential for stress-induced mitochondrial fission. Proc Natl Acad Sci U S A 2021; 118:e2023079118. [PMID: 34261790 PMCID: PMC8307854 DOI: 10.1073/pnas.2023079118] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitochondria form tubular networks that undergo coordinated cycles of fission and fusion. Emerging evidence suggests that a direct yet unresolved interaction of the mechanoenzymatic GTPase dynamin-related protein 1 (Drp1) with mitochondrial outer membrane-localized cardiolipin (CL), externalized under stress conditions including mitophagy, catalyzes essential mitochondrial hyperfragmentation. Here, using a comprehensive set of structural, biophysical, and cell biological tools, we have uncovered a CL-binding motif (CBM) conserved between the Drp1 variable domain (VD) and the unrelated ADP/ATP carrier (AAC/ANT) that intercalates into the membrane core to effect specific CL interactions. CBM mutations that weaken VD-CL interactions manifestly impair Drp1-dependent fission under stress conditions and induce "donut" mitochondria formation. Importantly, VD membrane insertion and GTP-dependent conformational rearrangements mediate only transient CL nonbilayer topological forays and high local membrane constriction, indicating that Drp1-CL interactions alone are insufficient for fission. Our studies establish the structural and mechanistic bases of Drp1-CL interactions in stress-induced mitochondrial fission.
Collapse
Affiliation(s)
- Mukesh Mahajan
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106
| | - Nikhil Bharambe
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106
| | - Yutong Shang
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106
| | - Bin Lu
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106
| | - Abhishek Mandal
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Pooja Madan Mohan
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106
| | - Rihua Wang
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106
| | - Jennifer C Boatz
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Juan Manuel Martinez Galvez
- Instituto Biofisika and Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa, Spain
| | - Anna V Shnyrova
- Instituto Biofisika and Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa, Spain
| | - Xin Qi
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106
- Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH 44106
| | - Patrick C A van der Wel
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Zernike Institute for Advanced Materials, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Rajesh Ramachandran
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106;
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
9
|
Nicotinamide Supplementation Improves Oocyte Quality and Offspring Development by Modulating Mitochondrial Function in an Aged Caenorhabditis elegans Model. Antioxidants (Basel) 2021; 10:antiox10040519. [PMID: 33810497 PMCID: PMC8066965 DOI: 10.3390/antiox10040519] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is associated with a decline in the quality of biological functions. Among the aging processes, reproductive aging is a critical process because of its intergenerational effects. However, the mechanisms underlying reproductive aging remain largely unknown. Female reproductive aging is the primary reason for limited fertility in mammals. Therefore, we attempted to investigate a modulator that can control female reproductive aging using a Caenorhabditis elegans model. In the present study, we examined the role of nicotinamide (NAM) in oocyte quality and offspring development. The levels of reactive oxygen species (ROS) and oxidative stress responses in aged oocytes, embryonic lethality, and developmental growth of the offspring were examined with maternal NAM supplementation. Supplementation with NAM improved oocyte quality, decreased embryonic lethality, and promoted germ cell apoptosis. Furthermore, NAM supplementation in aged mothers reduced ROS accumulation and improved mitochondrial function in oocytes. Consequently, the developmental growth and motility of offspring were improved. These findings suggest that NAM supplementation improves the health of the offspring produced by aged mothers through improved mitochondrial function. Taken together, our results imply that NAM supplementation in the aged mother improves oocyte quality and protects offspring by modulating mitochondrial function.
Collapse
|
10
|
Fischer CA, Besora-Casals L, Rolland SG, Haeussler S, Singh K, Duchen M, Conradt B, Marr C. MitoSegNet: Easy-to-use Deep Learning Segmentation for Analyzing Mitochondrial Morphology. iScience 2020; 23:101601. [PMID: 33083756 PMCID: PMC7554024 DOI: 10.1016/j.isci.2020.101601] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 08/18/2020] [Accepted: 09/17/2020] [Indexed: 12/29/2022] Open
Abstract
While the analysis of mitochondrial morphology has emerged as a key tool in the study of mitochondrial function, efficient quantification of mitochondrial microscopy images presents a challenging task and bottleneck for statistically robust conclusions. Here, we present Mitochondrial Segmentation Network (MitoSegNet), a pretrained deep learning segmentation model that enables researchers to easily exploit the power of deep learning for the quantification of mitochondrial morphology. We tested the performance of MitoSegNet against three feature-based segmentation algorithms and the machine-learning segmentation tool Ilastik. MitoSegNet outperformed all other methods in both pixelwise and morphological segmentation accuracy. We successfully applied MitoSegNet to unseen fluorescence microscopy images of mitoGFP expressing mitochondria in wild-type and catp-6 ATP13A2 mutant C. elegans adults. Additionally, MitoSegNet was capable of accurately segmenting mitochondria in HeLa cells treated with fragmentation inducing reagents. We provide MitoSegNet in a toolbox for Windows and Linux operating systems that combines segmentation with morphological analysis.
Collapse
Affiliation(s)
- Christian A. Fischer
- Fakultät für Biologie, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, Munich, 82152 Bavaria, Germany
- Centre for Integrated Protein Science, Ludwig-Maximilians-University, Planegg-Martinsried, Munich, 82152 Bavaria, Germany
- Institute of Computational Biology, Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Laura Besora-Casals
- Fakultät für Biologie, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, Munich, 82152 Bavaria, Germany
| | - Stéphane G. Rolland
- Fakultät für Biologie, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, Munich, 82152 Bavaria, Germany
| | - Simon Haeussler
- Fakultät für Biologie, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, Munich, 82152 Bavaria, Germany
| | - Kritarth Singh
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6AP, UK
| | - Michael Duchen
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6AP, UK
| | - Barbara Conradt
- Fakultät für Biologie, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, Munich, 82152 Bavaria, Germany
- Centre for Integrated Protein Science, Ludwig-Maximilians-University, Planegg-Martinsried, Munich, 82152 Bavaria, Germany
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6AP, UK
| | - Carsten Marr
- Institute of Computational Biology, Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
11
|
Machiela E, Liontis T, Dues DJ, Rudich PD, Traa A, Wyman L, Kaufman C, Cooper JF, Lew L, Nadarajan S, Senchuk MM, Van Raamsdonk JM. Disruption of mitochondrial dynamics increases stress resistance through activation of multiple stress response pathways. FASEB J 2020; 34:8475-8492. [PMID: 32385951 PMCID: PMC7313680 DOI: 10.1096/fj.201903235r] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/05/2020] [Accepted: 04/15/2020] [Indexed: 12/17/2022]
Abstract
Mitochondria are dynamic organelles that can change shape and size depending on the needs of the cell through the processes of mitochondrial fission and fusion. In this work, we investigated the role of mitochondrial dynamics in organismal stress response. By using C. elegans as a genetic model, we could visualize mitochondrial morphology in a live organism with well‐established stress assays and well‐characterized stress response pathways. We found that disrupting mitochondrial fission (DRP1/drp‐1) or fusion (OPA1/eat‐3, MFN/fzo‐1) genes caused alterations in mitochondrial morphology that impacted both mitochondrial function and physiologic rates. While both mitochondrial fission and mitochondrial fusion mutants showed increased sensitivity to osmotic stress and anoxia, surprisingly we found that the mitochondrial fusion mutants eat‐3 and fzo‐1 are more resistant to both heat stress and oxidative stress. In exploring the mechanism of increased stress resistance, we found that disruption of mitochondrial fusion genes resulted in the upregulation of multiple stress response pathways. Overall, this work demonstrates that disrupting mitochondrial dynamics can have opposite effects on resistance to different types of stress. Our results suggest that disruption of mitochondrial fusion activates multiple stress response pathways that enhance resistance to specific stresses.
Collapse
Affiliation(s)
- Emily Machiela
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Thomas Liontis
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Dylan J Dues
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Paige D Rudich
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Leslie Wyman
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Corah Kaufman
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Jason F Cooper
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Leira Lew
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | | | - Megan M Senchuk
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Jeremy M Van Raamsdonk
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Genetics, Harvard Medical School, Boston, MA, USA.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
12
|
Oh KH, Sheoran S, Richmond JE, Kim H. Alcohol induces mitochondrial fragmentation and stress responses to maintain normal muscle function in Caenorhabditis elegans. FASEB J 2020; 34:8204-8216. [PMID: 32294300 DOI: 10.1096/fj.201903166r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 12/17/2022]
Abstract
Chronic excessive ethanol consumption has distinct toxic and adverse effects on a variety of tissues. In skeletal muscle, ethanol causes alcoholic myopathy, which is characterized by myofiber atrophy and the loss of muscle strength. Alcoholic myopathy is more prevalent than all inherited muscle diseases combined. Current evidence indicates that ethanol directly impairs muscle organization and function. However, the underlying mechanism by which ethanol causes toxicity in muscle is poorly understood. Here, we show that the nematode Caenorhabditis elegans exhibits the key features of alcoholic myopathy when exposed to ethanol. As in mammals, ethanol exposure impairs muscle strength and induces the expression of protective genes, including oxidative stress response genes. In addition, ethanol exposure causes the fragmentation of mitochondrial networks aligned with myofibril lattices. This ethanol-induced mitochondrial fragmentation is dependent on the mitochondrial fission factor DRP-1 (dynamin-related protein 1) and its receptor proteins on the outer mitochondrial membrane. Our data indicate that this fragmentation contributes to the activation of the mitochondrial unfolded protein response (UPR). We also found that robust, perpetual mitochondrial UPR activation effectively reduces muscle weakness caused by ethanol exposure. Our results strongly suggest that the modulation of mitochondrial stress responses may provide a method to ameliorate alcohol toxicity and damage to muscle.
Collapse
Affiliation(s)
- Kelly H Oh
- Department of Cell Biology & Anatomy, Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.,School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Seema Sheoran
- Department of Biological Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Janet E Richmond
- Department of Biological Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Hongkyun Kim
- Department of Cell Biology & Anatomy, Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.,School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
13
|
Byrne JJ, Soh MS, Chandhok G, Vijayaraghavan T, Teoh JS, Crawford S, Cobham AE, Yapa NMB, Mirth CK, Neumann B. Disruption of mitochondrial dynamics affects behaviour and lifespan in Caenorhabditis elegans. Cell Mol Life Sci 2019; 76:1967-1985. [PMID: 30840087 PMCID: PMC6478650 DOI: 10.1007/s00018-019-03024-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 01/29/2023]
Abstract
Mitochondria are essential components of eukaryotic cells, carrying out critical physiological processes that include energy production and calcium buffering. Consequently, mitochondrial dysfunction is associated with a range of human diseases. Fundamental to their function is the ability to transition through fission and fusion states, which is regulated by several GTPases. Here, we have developed new methods for the non-subjective quantification of mitochondrial morphology in muscle and neuronal cells of Caenorhabditis elegans. Using these techniques, we uncover surprising tissue-specific differences in mitochondrial morphology when fusion or fission proteins are absent. From ultrastructural analysis, we reveal a novel role for the fusion protein FZO-1/mitofusin 2 in regulating the structure of the inner mitochondrial membrane. Moreover, we have determined the influence of the individual mitochondrial fission (DRP-1/DRP1) and fusion (FZO-1/mitofusin 1,2; EAT-3/OPA1) proteins on animal behaviour and lifespan. We show that loss of these mitochondrial fusion or fission regulators induced age-dependent and progressive deficits in animal movement, as well as in muscle and neuronal function. Our results reveal that disruption of fusion induces more profound defects than lack of fission on animal behaviour and tissue function, and imply that while fusion is required throughout life, fission is more important later in life likely to combat ageing-associated stressors. Furthermore, our data demonstrate that mitochondrial function is not strictly dependent on morphology, with no correlation found between morphological changes and behavioural defects. Surprisingly, we find that disruption of either mitochondrial fission or fusion significantly reduces median lifespan, but maximal lifespan is unchanged, demonstrating that mitochondrial dynamics play an important role in limiting variance in longevity across isogenic populations. Overall, our study provides important new insights into the central role of mitochondrial dynamics in maintaining organismal health.
Collapse
Affiliation(s)
- Joseph J Byrne
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Ming S Soh
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Gursimran Chandhok
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Tarika Vijayaraghavan
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Jean-Sébastien Teoh
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Simon Crawford
- Monash Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Melbourne, VIC, 3800, Australia
| | - Ansa E Cobham
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Nethmi M B Yapa
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Christen K Mirth
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Brent Neumann
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
14
|
Hatok J, Racay P. Bcl-2 family proteins: master regulators of cell survival. Biomol Concepts 2017; 7:259-70. [PMID: 27505095 DOI: 10.1515/bmc-2016-0015] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
The most prominent function of proteins of the Bcl-2 family is regulation of the initiation of intrinsic (mitochondrial) pathways of apoptosis. However, recent research has revealed that in addition to regulation of mitochondrial apoptosis, proteins of the Bcl-2 family play important roles in regulating other cellular pathways with a strong impact on cell survival like autophagy, endoplasmic reticulum (ER) stress response, intracellular calcium dynamics, cell cycle progression, mitochondrial dynamics and energy metabolism. This review summarizes the recent knowledge about functions of Bcl-2 family proteins that are related to cell survival.
Collapse
|
15
|
Luz AL, Rooney JP, Kubik LL, Gonzalez CP, Song DH, Meyer JN. Mitochondrial Morphology and Fundamental Parameters of the Mitochondrial Respiratory Chain Are Altered in Caenorhabditis elegans Strains Deficient in Mitochondrial Dynamics and Homeostasis Processes. PLoS One 2015; 10:e0130940. [PMID: 26106885 PMCID: PMC4480853 DOI: 10.1371/journal.pone.0130940] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/27/2015] [Indexed: 12/28/2022] Open
Abstract
Mitochondrial dysfunction has been linked to myriad human diseases and toxicant exposures, highlighting the need for assays capable of rapidly assessing mitochondrial health in vivo. Here, using the Seahorse XFe24 Analyzer and the pharmacological inhibitors dicyclohexylcarbodiimide and oligomycin (ATP-synthase inhibitors), carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (mitochondrial uncoupler) and sodium azide (cytochrome c oxidase inhibitor), we measured the fundamental parameters of mitochondrial respiratory chain function: basal oxygen consumption, ATP-linked respiration, maximal respiratory capacity, spare respiratory capacity and proton leak in the model organism Caenhorhabditis elegans. Since mutations in mitochondrial homeostasis genes cause mitochondrial dysfunction and have been linked to human disease, we measured mitochondrial respiratory function in mitochondrial fission (drp-1)-, fusion (fzo-1)-, mitophagy (pdr-1, pink-1)-, and electron transport chain complex III (isp-1)-deficient C. elegans. All showed altered function, but the nature of the alterations varied between the tested strains. We report increased basal oxygen consumption in drp-1; reduced maximal respiration in drp-1, fzo-1, and isp-1; reduced spare respiratory capacity in drp-1 and fzo-1; reduced proton leak in fzo-1 and isp-1; and increased proton leak in pink-1 nematodes. As mitochondrial morphology can play a role in mitochondrial energetics, we also quantified the mitochondrial aspect ratio for each mutant strain using a novel method, and for the first time report increased aspect ratios in pdr-1- and pink-1-deficient nematodes.
Collapse
Affiliation(s)
- Anthony L. Luz
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - John P. Rooney
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Laura L. Kubik
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Claudia P. Gonzalez
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Dong Hoon Song
- Simulation Group, Samsung SDI, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Joel N. Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
16
|
Rolland SG. How to analyze mitochondrial morphology in healthy cells and apoptotic cells in Caenorhabditis elegans. Methods Enzymol 2014; 544:75-98. [PMID: 24974287 DOI: 10.1016/b978-0-12-417158-9.00004-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mitochondria constantly undergo fusion and fission events. A proper balance of fusion and fission is essential in healthy cells, as disrupting this balance is associated with several neurodegenerative diseases. Mitochondrial fission has also been shown to play an important role during apoptosis. Hence, the machineries that control mitochondrial morphology have both nonapoptotic and apoptotic functions. Seminal work in yeast has identified some of the key components of these machineries. However, the list is certainly not complete and new factors that are specific to metazoans are being identified every year. In this review, we describe methodologies to test whether a particular candidate gene plays a role in the control of mitochondrial morphology in healthy cells and apoptotic cells using Caenorhabditis elegans.
Collapse
Affiliation(s)
- Stéphane G Rolland
- LMU Biocenter, Department Biology II, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
17
|
Rolland SG, Motori E, Memar N, Hench J, Frank S, Winklhofer KF, Conradt B. Impaired complex IV activity in response to loss of LRPPRC function can be compensated by mitochondrial hyperfusion. Proc Natl Acad Sci U S A 2013; 110:E2967-76. [PMID: 23878239 PMCID: PMC3740885 DOI: 10.1073/pnas.1303872110] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial morphology changes in response to various stimuli but the significance of this is unclear. In a screen for mutants with abnormal mitochondrial morphology, we identified MMA-1, the Caenorhabditis elegans homolog of the French Canadian Leigh Syndrome protein LRPPRC (leucine-rich pentatricopeptide repeat containing). We demonstrate that reducing mma-1 or LRPPRC function causes mitochondrial hyperfusion. Reducing mma-1/LRPPRC function also decreases the activity of complex IV of the electron transport chain, however without affecting cellular ATP levels. Preventing mitochondrial hyperfusion in mma-1 animals causes larval arrest and embryonic lethality. Furthermore, prolonged LRPPRC knock-down in mammalian cells leads to mitochondrial fragmentation and decreased levels of ATP. These findings indicate that in a mma-1/LRPPRC-deficient background, hyperfusion allows mitochondria to maintain their functions despite a reduction in complex IV activity. Our data reveal an evolutionary conserved mechanism that is triggered by reduced complex IV function and that induces mitochondrial hyperfusion to transiently compensate for a drop in the activity of the electron transport chain.
Collapse
Affiliation(s)
- Stéphane G. Rolland
- Department Biology II, Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Elisa Motori
- Department of Neurobiochemistry, Adolf Butenandt Institute, Ludwig-Maximilians-University, 80336 Munich, Germany
- Department of Life Quality Studies–Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Nadin Memar
- Department Biology II, Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Jürgen Hench
- Department of Neuropathology, Institute for Pathology, University Hospitals Basel, CH-4031 Basel, Switzerland
| | - Stephan Frank
- Department of Neuropathology, Institute for Pathology, University Hospitals Basel, CH-4031 Basel, Switzerland
| | - Konstanze F. Winklhofer
- Department of Neurobiochemistry, Adolf Butenandt Institute, Ludwig-Maximilians-University, 80336 Munich, Germany
- German Center for Neurodegenerative Diseases, 80336 Munich, Germany
- Munich Cluster for Systems Neurology, 80336 Munich, Germany; and
- Department of Molecular Cell Biology, Institute of Physiological Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Barbara Conradt
- Department Biology II, Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
18
|
Giacomotto J, Brouilly N, Walter L, Mariol MC, Berger J, Ségalat L, Becker TS, Currie PD, Gieseler K. Chemical genetics unveils a key role of mitochondrial dynamics, cytochrome c release and IP3R activity in muscular dystrophy. Hum Mol Genet 2013; 22:4562-78. [PMID: 23804750 DOI: 10.1093/hmg/ddt302] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a neuromuscular disease caused by mutations in the dystrophin gene. The subcellular mechanisms of DMD remain poorly understood and there is currently no curative treatment available. Using a Caenorhabditis elegans model for DMD as a pharmacologic and genetic tool, we found that cyclosporine A (CsA) reduces muscle degeneration at low dose and acts, at least in part, through a mitochondrial cyclophilin D, CYN-1. We thus hypothesized that CsA acts on mitochondrial permeability modulation through cyclophilin D inhibition. Mitochondrial patterns and dynamics were analyzed, which revealed dramatic mitochondrial fragmentation not only in dystrophic nematodes, but also in a zebrafish model for DMD. This abnormal mitochondrial fragmentation occurs before any obvious sign of degeneration can be detected. Moreover, we demonstrate that blocking/delaying mitochondrial fragmentation by knocking down the fission-promoting gene drp-1 reduces muscle degeneration and improves locomotion abilities of dystrophic nematodes. Further experiments revealed that cytochrome c is involved in muscle degeneration in C. elegans and seems to act, at least in part, through an interaction with the inositol trisphosphate receptor calcium channel, ITR-1. Altogether, our findings reveal that mitochondria play a key role in the early process of muscle degeneration and may be a target of choice for the design of novel therapeutics for DMD. In addition, our results provide the first indication in the nematode that (i) mitochondrial permeability transition can occur and (ii) cytochrome c can act in cell death.
Collapse
Affiliation(s)
- Jean Giacomotto
- Brain and Mind Research Institute, Sydney Medical School, University of Sydney, NSW 2050, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
BCL-2 family proteins are the regulators of apoptosis, but also have other functions. This family of interacting partners includes inhibitors and inducers of cell death. Together they regulate and mediate the process by which mitochondria contribute to cell death known as the intrinsic apoptosis pathway. This pathway is required for normal embryonic development and for preventing cancer. However, before apoptosis is induced, BCL-2 proteins have critical roles in normal cell physiology related to neuronal activity, autophagy, calcium handling, mitochondrial dynamics and energetics, and other processes of normal healthy cells. The relative importance of these physiological functions compared to their apoptosis functions in overall organismal physiology is difficult to decipher. Apoptotic and noncanonical functions of these proteins may be intertwined to link cell growth to cell death. Disentanglement of these functions may require delineation of biochemical activities inherent to the characteristic three-dimensional shape shared by distantly related viral and cellular BCL-2 family members.
Collapse
|
20
|
A molecular switch that governs mitochondrial fusion and fission mediated by the BCL2-like protein CED-9 of Caenorhabditis elegans. Proc Natl Acad Sci U S A 2011; 108:E813-22. [PMID: 21949250 DOI: 10.1073/pnas.1103218108] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Depending on the cellular context, BCL2-like proteins promote mitochondrial fusion or fission. What determines which of these two opposing processes they promote has so far been unknown. Furthermore, the mechanisms through which BCL2-like proteins affect mitochondrial dynamics remain to be fully understood. The BCL2-like protein CED-9 of Caenorhabditis elegans has previously been shown to promote mitochondrial fusion by physically interacting with the mitochondrial fusion protein FZO-1. Here, we report that CED-9 also physically interacts with the mitochondrial fission protein DRP-1 and that this interaction can be enhanced when CED-9 is associated with the BH3-only protein EGL-1. In addition, we show that the EGL-1-CED-9 complex promotes mitochondrial fission by recruiting DRP-1 to mitochondria and that the egl-1 gene is required for CED-9-dependent mitochondrial fission in vivo. Based on these results, we propose that EGL-1 converts CED-9 into a mitochondrial receptor for DRP-1, thereby shifting its activity from profusion to profission. We hypothesize that BCL2-like proteins act as mitochondrial receptors for DRP-1-like proteins in higher organisms as well and that BH3-only proteins play a general role as modifiers of the function in mitochondrial dynamics of BCL2-like proteins. We speculate that this function of BCL2-like proteins may be as couplers of mitochondrial fusion and fission.
Collapse
|
21
|
Martinou JC, Youle RJ. Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell 2011; 21:92-101. [PMID: 21763611 PMCID: PMC3156409 DOI: 10.1016/j.devcel.2011.06.017] [Citation(s) in RCA: 1112] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 06/06/2011] [Accepted: 06/10/2011] [Indexed: 12/31/2022]
Abstract
Mitochondria participate in apoptosis through a range of mechanisms that vary between vertebrates and invertebrates. In vertebrates, they release intermembrane space proteins, such as cytochrome c, to promote caspase activation in the cytosol. This process is the result of the loss of integrity of the outer mitochondrial membrane caused by proapoptotic members of the Bcl-2 family. This event is always accompanied by a fissioning of the organelle. Fission of mitochondria has also been reported to participate in apoptosis in Drosophila and Caenorhabditis elegans. However, in these organisms, mitochondrial membrane permeabilization does not occur and the mechanism by which mitochondrial dynamics participates in cell death remains elusive.
Collapse
Affiliation(s)
- Jean-Claude Martinou
- Department of Cell Biology, University of Geneva, Faculty of Sciences, 30 quai Ernest-Ansermet, Geneva 4, Switzerland.
| | | |
Collapse
|
22
|
Abdelwahid E, Rolland S, Teng X, Conradt B, Hardwick JM, White K. Mitochondrial involvement in cell death of non-mammalian eukaryotes. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1813:597-607. [PMID: 20950655 PMCID: PMC3033473 DOI: 10.1016/j.bbamcr.2010.10.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 09/29/2010] [Accepted: 10/04/2010] [Indexed: 12/28/2022]
Abstract
Although mitochondria are essential organelles for long-term survival of eukaryotic cells, recent discoveries in biochemistry and genetics have advanced our understanding of the requirements for mitochondria in cell death. Much of what we understand about cell death is based on the identification of conserved cell death genes in Drosophila melanogaster and Caenorhabditis elegans. However, the role of mitochondria in cell death in these models has been much less clear. Considering the active role that mitochondria play in apoptosis in mammalian cells, the mitochondrial contribution to cell death in non-mammalian systems has been an area of active investigation. In this article, we review the current research on this topic in three non-mammalian models, C. elegans, Drosophila, and Saccharomyces cerevisiae. In addition, we discuss how non-mammalian models have provided important insight into the mechanisms of human disease as they relate to the mitochondrial pathway of cell death. The unique perspective derived from each of these model systems provides a more complete understanding of mitochondria in programmed cell death. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.
Collapse
Affiliation(s)
- Eltyeb Abdelwahid
- Cutaneous Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA
| | - Stephane Rolland
- Department of Genetics, Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH 03755, USA
| | - Xinchen Teng
- Departments of Molecular Microbiology and Immunology, and Pharmacology and Molecular Sciences, Johns Hopkins University, Schools of Public Health and Medicine, Baltimore, MD 21205, USA
| | - Barbara Conradt
- Department of Genetics, Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH 03755, USA
| | - J. Marie Hardwick
- Departments of Molecular Microbiology and Immunology, and Pharmacology and Molecular Sciences, Johns Hopkins University, Schools of Public Health and Medicine, Baltimore, MD 21205, USA
| | - Kristin White
- Cutaneous Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA
| |
Collapse
|
23
|
Cleland MM, Norris KL, Karbowski M, Wang C, Suen DF, Jiao S, George NM, Luo X, Li Z, Youle RJ. Bcl-2 family interaction with the mitochondrial morphogenesis machinery. Cell Death Differ 2011; 18:235-47. [PMID: 20671748 PMCID: PMC2970747 DOI: 10.1038/cdd.2010.89] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 05/17/2010] [Accepted: 06/15/2010] [Indexed: 01/06/2023] Open
Abstract
The regulation of both mitochondrial dynamics and apoptosis is key for maintaining the health of a cell. Bcl-2 family proteins, central in apoptosis regulation, also have roles in the maintenance of the mitochondrial network. Here we report that Bax and Bak participate in the regulation of mitochondrial fusion in mouse embryonic fibroblasts, primary mouse neurons and human colon carcinoma cells. To assess how Bcl-2 family members may regulate mitochondrial morphogenesis, we determined the binding of a series of chimeras between Bcl-xL and Bax to the mitofusins, mitofusin 1 (Mfn1) and mitofusin 2 (Mfn2). One chimera (containing helix 5 (H5) of Bax replacing H5 of Bcl-xL (Bcl-xL/Bax H5)) co-immunoprecipitated with Mfn1 and Mfn2 significantly better than either wild-type Bax or Bcl-xL. Expression of Bcl-xL/Bax H5 in cells reduced the mobility of Mfn1 and Mfn2 and colocalized with ectopic Mfn1 and Mfn2, as well as endogenous Mfn2 to a greater extent than wild-type Bax. Ultimately, Bcl-xL/Bax H5 induced substantial mitochondrial fragmentation in healthy cells. Therefore, we propose that Bcl-xL/Bax H5 disturbs mitochondrial morphology by binding and inhibiting Mfn1 and Mfn2 activity, supporting the hypothesis that Bcl-2 family members have the capacity to regulate mitochondrial morphology through binding to the mitofusins in healthy cells.
Collapse
Affiliation(s)
- M M Cleland
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - K L Norris
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - M Karbowski
- University of Maryland Biotechnology Institute, Medical Biotechnology Center, Bethesda, MD, USA
| | - C Wang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - D-F Suen
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - S Jiao
- Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - N M George
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - X Luo
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Z Li
- Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - R J Youle
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
24
|
Tan FJ, Zuckerman JE, Wells RC, Hill RB. The C. elegans B-cell lymphoma 2 (Bcl-2) homolog cell death abnormal 9 (CED-9) associates with and remodels LIPID membranes. Protein Sci 2011; 20:62-74. [PMID: 21031486 PMCID: PMC3047062 DOI: 10.1002/pro.536] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 10/20/2010] [Indexed: 01/25/2023]
Abstract
Bcl-2 proteins associate with and remodel mitochondria to regulate apoptosis. While the C. elegans Bcl-2 homolog CED-9 constitutively associates with mitochondria, it is unclear whether or not this association reflects an innate ability of CED-9 to directly remodel mitochondrial membranes. To address this question, we have characterized the effects of recombinantly expressed and purified CED-9 on synthetic lipid vesicles. We found that CED-9 associates with anionic lipid vesicles at neutral pH, and that association can occur independently of the C-terminal transmembrane domain. Membrane association changes the environment of CED-9 tryptophans and results in an apparent increase in α-helical structure. Upon association, CED-9 alters the permeability of membranes resulting in leakage of encapsulated dyes. Furthermore, this membrane remodeling promotes membrane fusion upon protonation of CED-9. Bypass of this protonation trigger can be achieved by mutating two conserved glutamates (E187K/E190K) or removing the N-terminal 67 residues. Together, these in vitro results suggest that CED-9 retains the amphitropic ability of mammalian Bcl-2 proteins to associate with cellular membranes. We therefore discuss the possibility that CED-9 and other Bcl-2 homologs localize at mitochondria to regulate mitochondrial homeostasis by either modulating mitochondrial membrane permeability or fusion.
Collapse
Affiliation(s)
- Frederick J Tan
- Department of Biology, Johns Hopkins UniversityBaltimore, Maryland 21218
| | | | - Robert C Wells
- Department of Biology, Johns Hopkins UniversityBaltimore, Maryland 21218
| | - R Blake Hill
- Department of Biology, Johns Hopkins UniversityBaltimore, Maryland 21218
- Department of Chemistry, Johns Hopkins UniversityBaltimore, Maryland 21218
| |
Collapse
|
25
|
Yasuda K, Hartman PS, Ishii T, Suda H, Akatsuka A, Shoyama T, Miyazawa M, Ishii N. Interrelationships between mitochondrial fusion, energy metabolism and oxidative stress during development in Caenorhabditis elegans. Biochem Biophys Res Commun 2010; 404:751-5. [PMID: 21144829 DOI: 10.1016/j.bbrc.2010.12.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 12/02/2010] [Indexed: 10/24/2022]
Abstract
Mitochondria are known to be dynamic structures with the energetically and enzymatically mediated processes of fusion and fission responsible for maintaining a constant flux. Mitochondria also play a role of reactive oxygen species production as a byproduct of energy metabolism. In the current study, interrelationships between mitochondrial fusion, energy metabolism and oxidative stress on development were explored using a fzo-1 mutant defective in the fusion process and a mev-1 mutant overproducing superoxide from mitochondrial electron transport complex II of Caenorhabditis elegans. While growth and development of both single mutants was slightly delayed relative to the wild type, the fzo-1;mev-1 double mutant experienced considerable delay. Oxygen sensitivity during larval development, superoxide production and carbonyl protein accumulation of the fzo-1 mutant were similar to wild type. fzo-1 animals had significantly lower metabolism than did N2 and mev-1. These data indicate that mitochondrial fusion can profoundly affect energy metabolism and development.
Collapse
Affiliation(s)
- Kayo Yasuda
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Rolland SG, Conradt B. New role of the BCL2 family of proteins in the regulation of mitochondrial dynamics. Curr Opin Cell Biol 2010; 22:852-8. [PMID: 20729050 PMCID: PMC2991415 DOI: 10.1016/j.ceb.2010.07.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/26/2010] [Indexed: 11/27/2022]
Abstract
Mitochondria are highly dynamic organelles that constantly fuse and divide. Dynamin-related GTPases are the core components of the machineries that mediate mitochondrial fusion and fission. The role and regulation of these machineries are currently under intense investigation. Recently, members of the BCL2 family of proteins, conserved regulators of apoptosis, have been implicated in the regulation of mitochondrial dynamics. Here, we review the functions of mitochondrial fusion and fission in apoptotic and nonapoptotic cells and how members of the BCL2 family of proteins regulate these functions.
Collapse
Affiliation(s)
- Stephane G Rolland
- Dartmouth Medical School, Department of Genetics, Norris Cotton Cancer Center, 7400 Remsen, Hanover, NH 03755, USA
| | | |
Collapse
|
27
|
Mitochondrial fission/fusion dynamics and apoptosis. Mitochondrion 2010; 10:640-8. [DOI: 10.1016/j.mito.2010.08.005] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 08/04/2010] [Accepted: 08/04/2010] [Indexed: 11/18/2022]
|
28
|
Chang CR, Manlandro CM, Arnoult D, Stadler J, Posey AE, Hill RB, Blackstone C. A lethal de novo mutation in the middle domain of the dynamin-related GTPase Drp1 impairs higher order assembly and mitochondrial division. J Biol Chem 2010; 285:32494-503. [PMID: 20696759 PMCID: PMC2952251 DOI: 10.1074/jbc.m110.142430] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 07/26/2010] [Indexed: 11/06/2022] Open
Abstract
Mitochondria dynamically fuse and divide within cells, and the proper balance of fusion and fission is necessary for normal mitochondrial function, morphology, and distribution. Drp1 is a dynamin-related GTPase required for mitochondrial fission in mammalian cells. It harbors four distinct domains: GTP-binding, middle, insert B, and GTPase effector. A lethal mutation (A395D) within the Drp1 middle domain was reported in a neonate with microcephaly, abnormal brain development, optic atrophy, and lactic acidemia (Waterham, H. R., Koster, J., van Roermund, C. W., Mooyer, P. A., Wanders, R. J., and Leonard, J. V. (2007) N. Engl. J. Med. 356, 1736-1741). Mitochondria within patient-derived fibroblasts were markedly elongated, but the molecular mechanisms underlying these findings were not demonstrated. Because the middle domain is particularly important for the self-assembly of some dynamin superfamily proteins, we tested the hypothesis that this A395D mutation, and two other middle domain mutations (G350D, G363D) were important for Drp1 tetramerization, higher order assembly, and function. Although tetramerization appeared largely intact, each of these mutations compromised higher order assembly and assembly-dependent stimulation of Drp1 GTPase activity. Moreover, mutant Drp1 proteins exhibited impaired localization to mitochondria, indicating that this higher order assembly is important for mitochondrial recruitment, retention, or both. Overexpression of these middle domain mutants markedly inhibited mitochondrial division in cells. Thus, the Drp1 A395D lethal defect likely resulted in impaired higher order assembly of Drp1 at mitochondria, leading to decreased fission, elongated mitochondria, and altered cellular distribution of mitochondria.
Collapse
Affiliation(s)
- Chuang-Rung Chang
- From the Institute of Biotechnology and Department of Life Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Cara Marie Manlandro
- the Departments of Biology and Chemistry, The Johns Hopkins University, Baltimore Maryland 21218
| | - Damien Arnoult
- INSERM U542 and Université Paris Sud, Hôpital Paul Brousse, 94807 Villejuif Cedex, France, and
| | - Julia Stadler
- the Cellular Neurology Unit, Neurogenetics Branch, NINDS, National Institutes of Health, Bethesda, Maryland 20892
| | - Ammon E. Posey
- the Departments of Biology and Chemistry, The Johns Hopkins University, Baltimore Maryland 21218
| | - R. Blake Hill
- the Departments of Biology and Chemistry, The Johns Hopkins University, Baltimore Maryland 21218
| | - Craig Blackstone
- the Cellular Neurology Unit, Neurogenetics Branch, NINDS, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
29
|
Balan AG, Myers BJ, Maganti JL, Moore DB. ER-targeted Bcl-2 and inhibition of ER-associated caspase-12 rescue cultured immortalized cells from ethanol toxicity. Alcohol 2010; 44:553-63. [PMID: 20727705 DOI: 10.1016/j.alcohol.2010.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 06/24/2010] [Accepted: 07/01/2010] [Indexed: 12/13/2022]
Abstract
Alcohol abuse, known for promoting apoptosis in the liver and nervous system, is a major public health concern. Despite significant morbidity and mortality resulting from ethanol consumption, the precise cellular mechanism of its toxicity remains unknown. Previous work has shown that wild-type Bcl-2 is protective against ethanol. The present study investigated whether protection from ethanol toxicity involves mitochondrial Bcl-2 or endoplasmic reticulum (ER) Bcl-2, and whether mitochondria-associated or ER-associated caspases are involved in ethanol toxicity. Chinese hamster ovary (CHO695) cells were transiently transfected with cDNA constructs encoding wild-type Bcl-2, mitochondria-targeted Bcl-2, or ER-targeted Bcl-2. MTT assay was used to measure cell viability in response to ethanol. Ethanol treatments of 1 and 2.5 M reduced cell viability at 5, 10, and 24 h. Wild-type Bcl-2, localized both to mitochondria and ER, provided significant rescue for CHO695 cells treated with 1M ethanol for 24 h, but did not rescue toxicity at 2.5 M. ER-targeted Bcl-2, however, provided significant and robust rescue following 24 h of 1 and 2.5 M ethanol. Mitochondria-targeted Bcl-2 offered no protection at any ethanol concentration and generally reduced cell viability. To follow up these experiments, we used a peptide inhibitor approach to investigate which caspases were responsible for ethanol-induced apoptosis. Caspase-9 and caspase-12 are known to be downstream of mitochondria and the ER, respectively. CHO695 cells were treated with a pan-caspase inhibitor, a caspase-9 or caspase-12 inhibitor along with 1.5 M ethanol, followed by MTT cell viability assay. Treatment with the pan-caspase inhibitor provided significant rescue from ethanol, whereas inhibition of caspase-9 did not. Inhibition of ER-associated caspase-12, however, conferred significant protection from ethanol toxicity, similar to the pan inhibitor. These findings are consistent with our transfection data and, taken together, suggest a significant role for the ER in ethanol toxicity.
Collapse
Affiliation(s)
- Andreea G Balan
- Department of Biology, Kalamazoo College, Kalamazoo, MI, USA
| | | | | | | |
Collapse
|
30
|
Johnson D, Nehrke K. Mitochondrial fragmentation leads to intracellular acidification in Caenorhabditis elegans and mammalian cells. Mol Biol Cell 2010; 21:2191-201. [PMID: 20444981 PMCID: PMC2893984 DOI: 10.1091/mbc.e09-10-0874] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 04/20/2010] [Accepted: 04/22/2010] [Indexed: 12/28/2022] Open
Abstract
Mitochondrial structural dynamics are regulated through the opposing processes of membrane fission and fusion, which are conserved from yeast to man. The chronic inhibition of mitochondrial fusion as a result of genetic mutation is the cause of human autosomal dominant optic atrophy (ADOA) and Charcot-Marie-Tooth syndrome type 2A (CMT-2A). Here, we demonstrate that genetic fragmentation of the mitochondrial network in Caenorhabditis elegans induces cellular acidification in a broad range of tissues from the intestine, to body wall muscles, and neurons. Genetic epistasis analyses demonstrate that fragmentation itself, and not the loss of a particular protein, leads to acidosis, and the worm's fitness matches the extent of acidification. We suggest that fragmentation may cause acidification through two distinct processes: oxidative signaling after the loss of the ability of the mitochondrial inner membrane to undergo fusion and lactic acidosis after the loss of outer membrane fusion. Finally, experiments in cultured mammalian cells demonstrate a conserved link between mitochondrial morphology and cell pH homeostasis. Taken together these data reveal a potential role for acidosis in the differing etiology of diseases associated with mitochondrial morphology defects such as ADOA and CMT-2A.
Collapse
Affiliation(s)
- David Johnson
- Department of Biochemistry, Medicine, and Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | | |
Collapse
|
31
|
Autret A, Martin SJ. Bcl-2 family proteins and mitochondrial fission/fusion dynamics. Cell Mol Life Sci 2010; 67:1599-606. [PMID: 20143248 PMCID: PMC11115729 DOI: 10.1007/s00018-010-0286-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 01/20/2010] [Indexed: 01/07/2023]
Abstract
Mitochondria are dynamic organelles and can undergo regulated fission/fragmentation to produce smaller organelles or, alternatively, can undergo fusion to produce tubular or net-like mitochondrial structures. Although some of the molecules that control mitochondrial fission and fusion are known, new molecules and pathways that control this process continue to be discovered, suggesting that this process is more complex than previously appreciated. In addition to their crucial role in the regulation of apoptosis, recent studies have implicated members of the Bcl-2 family in maintenance of the mitochondrial network. Here, we discuss the mechanisms governing mitochondrial fission/fusion and summarize current knowledge concerning the role of Bcl-2 family members in regulating mitochondrial fission/fusion dynamics.
Collapse
Affiliation(s)
- Arnaud Autret
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Seamus J. Martin
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| |
Collapse
|
32
|
Lant B, Storey KB. An overview of stress response and hypometabolic strategies in Caenorhabditis elegans: conserved and contrasting signals with the mammalian system. Int J Biol Sci 2010; 6:9-50. [PMID: 20087441 PMCID: PMC2808051 DOI: 10.7150/ijbs.6.9] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 11/25/2009] [Indexed: 12/21/2022] Open
Abstract
Studies of the molecular mechanisms that are involved in stress responses (environmental or physiological) have long been used to make links to disease states in humans. The nematode model organism, Caenorhabditis elegans, undergoes a state of hypometabolism called the 'dauer' stage. This period of developmental arrest is characterized by a significant reduction in metabolic rate, triggered by ambient temperature increase and restricted oxygen/ nutrients. C. elegans employs a number of signal transduction cascades in order to adapt to these unfavourable conditions and survive for long times with severely reduced energy production. The suppression of cellular metabolism, providing energetic homeostasis, is critical to the survival of nematodes through the dauer period. This transition displays molecular mechanisms that are fundamental to control of hypometabolism across the animal kingdom. In general, mammalian systems are highly inelastic to environmental stresses (such as extreme temperatures and low oxygen), however, there is a great deal of conservation between the signal transduction pathways of nematodes and mammals. Along with conserving many of the protein targets in the stress response, many of the critical regulatory mechanisms are maintained, and often differ only in their level of expression. Hence, the C. elegans model outlines a framework of critical molecular mechanisms that may be employed in the future as therapeutic targets for addressing disease states.
Collapse
Affiliation(s)
| | - Kenneth B. Storey
- Institute of Biochemistry, Carleton University, Ottawa, Ont., Canada
| |
Collapse
|
33
|
Mitochondria on Guard: Role of Mitochondrial Fusion and Fission in the Regulation of Apoptosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 687:131-42. [DOI: 10.1007/978-1-4419-6706-0_8] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
34
|
Lamb HM, Hardwick M. Noncanonical functions of BCL-2 proteins in the nervous system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 687:115-29. [PMID: 20919641 DOI: 10.1007/978-1-4419-6706-0_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BCL-2 family proteins form heterodimers or homo-oligomers to inhibit or induce apoptotic cell death, respectively. They often relocalize from the cytoplasm to mitochondria to carry out these functions. The traditional model is that in healthy cells, anti-death family members hold pro-death BCL-2 family members in check. Upon receiving a death stimulus, another set of proteins (BH3-only proteins) inactivate the protective BCL-2 proteins, forcing them to release their pro-death partners that are subsequently triggered to oligomerize and porate the mitochondrial outer membrane leading to cell death. In support of this traditional view, there is a preponderance of supporting evidence derived from the study of events that occur following treatment of cells with a death stimulus. Knockout and mutant mice also exhibit many developmental and treatment-induced phenotypes consistent with this model of antagonism between BCL-2 family proteins. Emphasis is logically placed on those phenotypes that support the model. However, this working model of BCL-2 family interactions has become so engrained that alternative, potentially valid interpretations are sometimes dismissed. Therefore, it is useful to consider the evidence that seems contrary to accepted models. In particular, the analysis of BCL-2 family functions in the nervous system has revealed unexpected outcomes that can serve to further stimulate critical probing of the yet unknown biochemical functions of BCL-2 proteins.
Collapse
Affiliation(s)
- Heather M Lamb
- Bloomberg School of Public Health, Johns Hopkins University, Department of Molec Microb and Immunol, 615 N Wolfe St., Baltimore, Maryland 21205, USA
| | | |
Collapse
|
35
|
Emerging Role for Members of the Bcl-2 Family in Mitochondrial Morphogenesis. Mol Cell 2009; 36:355-63. [DOI: 10.1016/j.molcel.2009.10.011] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 10/19/2009] [Indexed: 12/23/2022]
|
36
|
Rolland SG, Lu Y, David CN, Conradt B. The BCL-2-like protein CED-9 of C. elegans promotes FZO-1/Mfn1,2- and EAT-3/Opa1-dependent mitochondrial fusion. ACTA ACUST UNITED AC 2009; 186:525-40. [PMID: 19704021 PMCID: PMC2733758 DOI: 10.1083/jcb.200905070] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mammalian dynamin-related guanosine triphosphatases Mfn1,2 and Opa1 are required for mitochondrial fusion. However, how their activities are controlled and coordinated is largely unknown. We present data that implicate the BCL-2–like protein CED-9 in the control of mitochondrial fusion in Caenorhabditis elegans. We demonstrate that CED-9 can promote complete mitochondrial fusion of both the outer and inner mitochondrial membrane. We also show that this fusion is dependent on the C. elegans Mfn1,2 homologue FZO-1 and the C. elegans Opa1 homologue EAT-3. Furthermore, we show that CED-9 physically interacts with FZO-1 in vivo and that the ability of CED-9 to interact with FZO-1 is important for its ability to cause mitochondrial fusion. CED-9–induced mitochondrial fusion is not required for the maintenance of mitochondrial morphology during embryogenesis or in muscle cells, at least under normal conditions and in the absence of stress. Therefore, we propose that the BCL-2–like CED-9 acts through FZO-1/Mfn1,2 and EAT-3/Opa1 to promote mitochondrial fusion in response to specific cellular signals.
Collapse
Affiliation(s)
- Stéphane G Rolland
- Department of Genetics, Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
37
|
Berman SB, Chen YB, Qi B, McCaffery JM, Rucker EB, Goebbels S, Nave KA, Arnold BA, Jonas EA, Pineda FJ, Hardwick JM. Bcl-x L increases mitochondrial fission, fusion, and biomass in neurons. J Cell Biol 2009; 184:707-19. [PMID: 19255249 PMCID: PMC2686401 DOI: 10.1083/jcb.200809060] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 01/22/2009] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial fission and fusion are linked to synaptic activity in healthy neurons and are implicated in the regulation of apoptotic cell death in many cell types. We developed fluorescence microscopy and computational strategies to directly measure mitochondrial fission and fusion frequencies and their effects on mitochondrial morphology in cultured neurons. We found that the rate of fission exceeds the rate of fusion in healthy neuronal processes, and, therefore, the fission/fusion ratio alone is insufficient to explain mitochondrial morphology at steady state. This imbalance between fission and fusion is compensated by growth of mitochondrial organelles. Bcl-x(L) increases the rates of both fusion and fission, but more important for explaining the longer organelle morphology induced by Bcl-x(L) is its ability to increase mitochondrial biomass. Deficits in these Bcl-x(L)-dependent mechanisms may be critical in neuronal dysfunction during the earliest phases of neurodegeneration, long before commitment to cell death.
Collapse
Affiliation(s)
- Sarah B. Berman
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, and Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205
- Department of Neurology and Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205
- Department of Neurology, Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15260
| | - Ying-bei Chen
- Department of Neurology and Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Bing Qi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, and Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205
| | - J. Michael McCaffery
- Department of Biology, and the Integrated Imaging Center, Johns Hopkins University, Baltimore, MD 21218
| | - Edmund B. Rucker
- Animal Sciences Unit, University of Missouri, Columbia, MO 65211
| | - Sandra Goebbels
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, D-37075 Goettingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, D-37075 Goettingen, Germany
| | - Beth A. Arnold
- Department of Neurology, Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15260
| | | | - Fernando J. Pineda
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, and Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205
| | - J. Marie Hardwick
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, and Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205
- Department of Neurology and Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205
| |
Collapse
|