1
|
Piszczatowski RT, Bülow HE, Steidl U. Heparan sulfates and heparan sulfate proteoglycans in hematopoiesis. Blood 2024; 143:2571-2587. [PMID: 38639475 PMCID: PMC11830984 DOI: 10.1182/blood.2023022736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
ABSTRACT From signaling mediators in stem cells to markers of differentiation and lineage commitment to facilitators for the entry of viruses, such as HIV-1, cell surface heparan sulfate (HS) glycans with distinct modification patterns play important roles in hematopoietic biology. In this review, we provide an overview of the importance of HS and the proteoglycans (HSPGs) to which they are attached within the major cellular subtypes of the hematopoietic system. We summarize the roles of HSPGs, HS, and HS modifications within each main hematopoietic cell lineage of both myeloid and lymphoid arms. Lastly, we discuss the biological advances in the detection of HS modifications and their potential to further discriminate cell types within hematopoietic tissue.
Collapse
Affiliation(s)
- Richard T. Piszczatowski
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
- Department of Pediatrics, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY
| | - Hannes E. Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY
| | - Ulrich Steidl
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY
- Departments of Oncology, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY
- Blood Cancer Institute, Albert Einstein College of Medicine, Bronx, NY
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
2
|
Wang S, Kim SY, Sohn KA. ClearF++: Improved Supervised Feature Scoring Using Feature Clustering in Class-Wise Embedding and Reconstruction. Bioengineering (Basel) 2023; 10:824. [PMID: 37508851 PMCID: PMC10376817 DOI: 10.3390/bioengineering10070824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Feature selection methods are essential for accurate disease classification and identifying informative biomarkers. While information-theoretic methods have been widely used, they often exhibit limitations such as high computational costs. Our previously proposed method, ClearF, addresses these issues by using reconstruction error from low-dimensional embeddings as a proxy for the entropy term in the mutual information. However, ClearF still has limitations, including a nontransparent bottleneck layer selection process, which can result in unstable feature selection. To address these limitations, we propose ClearF++, which simplifies the bottleneck layer selection and incorporates feature-wise clustering to enhance biomarker detection. We compare its performance with other commonly used methods such as MultiSURF and IFS, as well as ClearF, across multiple benchmark datasets. Our results demonstrate that ClearF++ consistently outperforms these methods in terms of prediction accuracy and stability, even with limited samples. We also observe that employing the Deep Embedded Clustering (DEC) algorithm for feature-wise clustering improves performance, indicating its suitability for handling complex data structures with limited samples. ClearF++ offers an improved biomarker prioritization approach with enhanced prediction performance and faster execution. Its stability and effectiveness with limited samples make it particularly valuable for biomedical data analysis.
Collapse
Affiliation(s)
- Sehee Wang
- Department of Artificial Intelligence, Ajou University, Suwon 16499, Republic of Korea
| | - So Yeon Kim
- Department of Artificial Intelligence, Ajou University, Suwon 16499, Republic of Korea
- Department of Software and Computer Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Kyung-Ah Sohn
- Department of Artificial Intelligence, Ajou University, Suwon 16499, Republic of Korea
- Department of Software and Computer Engineering, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
3
|
Mashima R, Okuyama T, Ohira M. Physiology and Pathophysiology of Heparan Sulfate in Animal Models: Its Biosynthesis and Degradation. Int J Mol Sci 2022; 23:1963. [PMID: 35216081 PMCID: PMC8876164 DOI: 10.3390/ijms23041963] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 12/17/2022] Open
Abstract
Heparan sulfate (HS) is a type of glycosaminoglycan that plays a key role in a variety of biological functions in neurology, skeletal development, immunology, and tumor metastasis. Biosynthesis of HS is initiated by a link of xylose to Ser residue of HS proteoglycans, followed by the formation of a linker tetrasaccharide. Then, an extension reaction of HS disaccharide occurs through polymerization of many repetitive units consisting of iduronic acid and N-acetylglucosamine. Subsequently, several modification reactions take place to complete the maturation of HS. The sulfation positions of N-, 2-O-, 6-O-, and 3-O- are all mediated by specific enzymes that may have multiple isozymes. C5-epimerization is facilitated by the epimerase enzyme that converts glucuronic acid to iduronic acid. Once these enzymatic reactions have been completed, the desulfation reaction further modifies HS. Apart from HS biosynthesis, the degradation of HS is largely mediated by the lysosome, an intracellular organelle with acidic pH. Mucopolysaccharidosis is a genetic disorder characterized by an accumulation of glycosaminoglycans in the body associated with neuronal, skeletal, and visceral disorders. Genetically modified animal models have significantly contributed to the understanding of the in vivo role of these enzymes. Their role and potential link to diseases are also discussed.
Collapse
Affiliation(s)
- Ryuichi Mashima
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan; (T.O.); (M.O.)
| | | | | |
Collapse
|
4
|
Gómez Toledo A, Sorrentino JT, Sandoval DR, Malmström J, Lewis NE, Esko JD. A Systems View of the Heparan Sulfate Interactome. J Histochem Cytochem 2021; 69:105-119. [PMID: 33494649 PMCID: PMC7841697 DOI: 10.1369/0022155420988661] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/28/2022] Open
Abstract
Heparan sulfate proteoglycans consist of a small family of proteins decorated with one or more covalently attached heparan sulfate glycosaminoglycan chains. These chains have intricate structural patterns based on the position of sulfate groups and uronic acid epimers, which dictate their ability to engage a large repertoire of heparan sulfate-binding proteins, including extracellular matrix proteins, growth factors and morphogens, cytokines and chemokines, apolipoproteins and lipases, adhesion and growth factor receptors, and components of the complement and coagulation system. This review highlights recent progress in the characterization of the so-called "heparan sulfate interactome," with a major focus on systems-wide strategies as a tool for discovery and characterization of this subproteome. In addition, we compiled all heparan sulfate-binding proteins reported in the literature to date and grouped them into a few major functional classes by applying a networking approach.
Collapse
Affiliation(s)
- Alejandro Gómez Toledo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
- Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | - James T Sorrentino
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, California
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - Daniel R Sandoval
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
| | - Johan Malmström
- Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Nathan E Lewis
- Department of Bioengineering, University of California, San Diego, La Jolla, California
- Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
| |
Collapse
|
5
|
Gipson GR, Goebel EJ, Hart KN, Kappes EC, Kattamuri C, McCoy JC, Thompson TB. Structural perspective of BMP ligands and signaling. Bone 2020; 140:115549. [PMID: 32730927 PMCID: PMC7502536 DOI: 10.1016/j.bone.2020.115549] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022]
Abstract
The Bone Morphogenetic Proteins (BMPs) are the largest class signaling molecules within the greater Transforming Growth Factor Beta (TGFβ) family, and are responsible for a wide array of biological functions, including dorsal-ventral patterning, skeletal development and maintenance, as well as cell homeostasis. As such, dysregulation of BMPs results in a number of diseases, including fibrodysplasia ossificans progressiva (FOP) and pulmonary arterial hypertension (PAH). Therefore, understanding BMP signaling and regulation at the molecular level is essential for targeted therapeutic intervention. This review discusses the recent advances in the structural and biochemical characterization of BMPs, from canonical ligand-receptor interactions to co-receptors and antagonists. This work aims to highlight how BMPs differ from other members of the TGFβ family, and how that information can be used to further advance the field. Lastly, this review discusses several gaps in the current understanding of BMP structures, with the aim that discussion of these gaps will lead to advancements in the field.
Collapse
Affiliation(s)
- Gregory R Gipson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Erich J Goebel
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Kaitlin N Hart
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Emily C Kappes
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Chandramohan Kattamuri
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Jason C McCoy
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA.
| |
Collapse
|
6
|
Cui H, Cheng X, Batool T, Zhang X, Li JP. Glucuronyl C5-epimerase is crucial for epithelial cell maturation during embryonic lung development. Glycobiology 2020; 31:223-230. [PMID: 32651954 DOI: 10.1093/glycob/cwaa065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/28/2020] [Accepted: 07/06/2020] [Indexed: 12/23/2022] Open
Abstract
Glucuronyl C5-epimerase (Hsepi) is a key enzyme in the biosynthesis of heparan sulfate that is a sulfated polysaccharide expressed on the cell surface and in the extracellular matrix of alveolar walls and blood vessels. Targeted interruption of the Hsepi gene, Glce, in mice resulted in neonatal lethality, which is most likely due to lung atelectasis. In this study, we examined the potential mechanisms behind the defect in lung development. Histological analysis of the lungs from embryos revealed no difference in the morphology between wild-type and mutant animals up to E16.5. This suggests that the initial events leading to formation of the lung primordium and branching morphogenesis are not disturbed. However, the distal lung of E17.5-18.5 mutants is still populated by epithelial tubules, lacking the typical saccular structural characteristic of a normal E17.5 lung. Immunostaining revealed strong signals of surfactant protein-C, but a weaker signal of T1α in the mutant lungs in comparison to WT littermates, suggesting differentiation of type I alveolar epithelial cells (AT1) is impaired. One of the parameters contributed to the failure of AT1 maturation is reduced vascularization in the developing lungs.
Collapse
Affiliation(s)
- Hao Cui
- College of Life Science, Jiangxi Normal University, 99 Ziyang Avenue, 330022, Nanchang, China.,Department of Medical Biochemistry and Microbiology, SciLifeLab Uppsala, The Biomedical Center, University of Uppsala, Box 582, Husargatan 3, S-75123, Uppsala, Sweden
| | - Xiaowen Cheng
- Department of Medical Biochemistry and Microbiology, SciLifeLab Uppsala, The Biomedical Center, University of Uppsala, Box 582, Husargatan 3, S-75123, Uppsala, Sweden
| | - Tahira Batool
- Department of Medical Biochemistry and Microbiology, SciLifeLab Uppsala, The Biomedical Center, University of Uppsala, Box 582, Husargatan 3, S-75123, Uppsala, Sweden
| | - Xiao Zhang
- Department of Neuroscience and Pharmacology, University of Uppsala, Box 582, Husargatan 3, S-75123, Uppsala, Sweden
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, SciLifeLab Uppsala, The Biomedical Center, University of Uppsala, Box 582, Husargatan 3, S-75123, Uppsala, Sweden
| |
Collapse
|
7
|
Sharma T, Cotney J, Singh V, Sanjay A, Reichenberger EJ, Ueki Y, Maye P. Investigating global gene expression changes in a murine model of cherubism. Bone 2020; 135:115315. [PMID: 32165349 PMCID: PMC7305689 DOI: 10.1016/j.bone.2020.115315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/25/2020] [Accepted: 03/08/2020] [Indexed: 11/22/2022]
Abstract
Cherubism is a rare genetic disorder caused primarily by mutations in SH3BP2 resulting in excessive bone resorption and fibrous tissue overgrowth in the lower portions of the face. Bone marrow derived cell cultures derived from a murine model of cherubism display poor osteogenesis and spontaneous osteoclast formation. To develop a deeper understanding for the potential underlying mechanisms contributing to these phenotypes in mice, we compared global gene expression changes in hematopoietic and mesenchymal cell populations between cherubism and wild type mice. In the hematopoietic population, not surprisingly, upregulated genes were significantly enriched for functions related to osteoclastogenesis. However, these upregulated genes were also significantly enriched for functions associated with inflammation including arachidonic acid/prostaglandin signaling, regulators of coagulation and autoinflammation, extracellular matrix remodeling, and chemokine expression. In the mesenchymal population, we observed down regulation of osteoblast and adventitial reticular cell marker genes. Regulators of BMP and Wnt pathway associated genes showed numerous changes in gene expression, likely implicating the down regulation of BMP signaling and possibly the activation of certain Wnt pathways. Analyses of the cherubism derived mesenchymal population also revealed interesting changes in gene expression related to inflammation including the expression of distinct granzymes, chemokines, and sulfotransferases. These studies reveal complex changes in gene expression elicited from a cherubic mutation in Sh3bp2 that are informative to the mechanisms responding to inflammatory stimuli and repressing osteogenesis. The outcomes of this work are likely to have relevance not only to cherubism, but other inflammatory conditions impacting the skeleton.
Collapse
Affiliation(s)
- Tulika Sharma
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health, United States of America
| | - Justin Cotney
- Department of Genetics and Genome Sciences, University of Connecticut Health, United States of America
| | - Vijender Singh
- Computational Biology Core, Institute for Systems Genomics, University of Connecticut, United States of America
| | - Archana Sanjay
- Department of Orthopedic Surgery, University of Connecticut Health, United States of America
| | - Ernst J Reichenberger
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health, United States of America
| | - Yasuyoshi Ueki
- Department of Biomedical Sciences and Comprehensive Care, Indiana University, United States of America
| | - Peter Maye
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health, United States of America.
| |
Collapse
|
8
|
Saygin D, Tabib T, Bittar HET, Valenzi E, Sembrat J, Chan SY, Rojas M, Lafyatis R. Transcriptional profiling of lung cell populations in idiopathic pulmonary arterial hypertension. Pulm Circ 2020; 10:10.1177_2045894020908782. [PMID: 32166015 PMCID: PMC7052475 DOI: 10.1177/2045894020908782] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Despite recent improvements in management of idiopathic pulmonary arterial
hypertension, mortality remains high. Understanding the alterations in the
transcriptome–phenotype of the key lung cells involved could provide insight
into the drivers of pathogenesis. In this study, we examined differential gene
expression of cell types implicated in idiopathic pulmonary arterial
hypertension from lung explants of patients with idiopathic pulmonary arterial
hypertension compared to control lungs. After tissue digestion, we analyzed all
cells from three idiopathic pulmonary arterial hypertension and six control
lungs using droplet-based single cell RNA-sequencing. After dimensional
reduction by t-stochastic neighbor embedding, we compared the transcriptomes of
endothelial cells, pericyte/smooth muscle cells, fibroblasts, and macrophage
clusters, examining differential gene expression and pathways implicated by
analysis of Gene Ontology Enrichment. We found that endothelial cells and
pericyte/smooth muscle cells had the most differentially expressed gene profile
compared to other cell types. Top differentially upregulated genes in
endothelial cells included novel genes: ROBO4, APCDD1, NDST1, MMRN2,
NOTCH4, and DOCK6, as well as previously reported
genes: ENG, ORAI2, TFDP1, KDR, AMOTL2, PDGFB, FGFR1, EDN1, and
NOTCH1. Several transcription factors were also found to be
upregulated in idiopathic pulmonary arterial hypertension endothelial cells
including SOX18, STRA13, LYL1, and ELK, which
have known roles in regulating endothelial cell phenotype. In particular,
SOX18 was implicated through bioinformatics analyses in
regulating the idiopathic pulmonary arterial hypertension endothelial cell
transcriptome. Furthermore, idiopathic pulmonary arterial hypertension
endothelial cells upregulated expression of FAM60A and
HDAC7, potentially affecting epigenetic changes in
idiopathic pulmonary arterial hypertension endothelial cells. Pericyte/smooth
muscle cells expressed genes implicated in regulation of cellular apoptosis and
extracellular matrix organization, and several ligands for genes showing
increased expression in endothelial cells. In conclusion, our study represents
the first detailed look at the transcriptomic landscape across idiopathic
pulmonary arterial hypertension lung cells and provides robust insight into
alterations that occur in vivo in idiopathic pulmonary arterial hypertension
lungs.
Collapse
Affiliation(s)
- Didem Saygin
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Tracy Tabib
- Division of Rheumatology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Humberto E T Bittar
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Eleanor Valenzi
- Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - John Sembrat
- Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Stephen Y Chan
- Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Mauricio Rojas
- Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Robert Lafyatis
- Division of Rheumatology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Batool T, Fang J, Jansson V, Zhao H, Gallant C, Moustakas A, Li JP. Upregulated BMP-Smad signaling activity in the glucuronyl C5-epimerase knock out MEF cells. Cell Signal 2019; 54:122-129. [DOI: 10.1016/j.cellsig.2018.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 01/06/2023]
|
10
|
Xie M, Li JP. Heparan sulfate proteoglycan - A common receptor for diverse cytokines. Cell Signal 2018; 54:115-121. [PMID: 30500378 DOI: 10.1016/j.cellsig.2018.11.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 01/04/2023]
Abstract
Heparan sulfate proteoglycans (HSPG) are macromolecular glyco-conjugates expressed ubiquitously on the cell surface and in the extracellular matrix where they interact with a wide range of ligands to regulate many aspects of cellular function. The capacity of the side glycosaminoglycan chain heparan sulfate (HS) being able to interact with diverse protein ligands relies on its complex structure that is generated by a controlled biosynthesis process, involving the actions of glycosyl-transferases, sulfotransferases and the glucuronyl C5-epimerase. It is believed that activities of the modification enzymes control the HS structures that are designed to serve the biological functions in a given cell or biological status. In this review, we briefly discuss recent understandings on the roles of HSPG in cytokine stimulated cellular signaling, focusing on FGF, TGF-β, Wnt, Hh, HGF and VEGF.
Collapse
Affiliation(s)
- Meng Xie
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, SciLifeLab Uppsala, The Biomedical Center, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
11
|
Kim CL, Jung MY, Kim YS, Jang JW, Lee GM. Improving the production of recombinant human bone morphogenetic protein-4 in Chinese hamster ovary cell cultures by inhibition of undesirable endocytosis. Biotechnol Bioeng 2018; 115:2565-2575. [PMID: 30011067 DOI: 10.1002/bit.26798] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/30/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2023]
Abstract
Endocytic regulation serves a critical role in modulating the extracellular level of signaling molecules, such as bone morphogenetic proteins (BMPs). Unfortunately, endocytosis may result in poor yields of recombinant human BMP-4 (rhBMP-4) from Chinese hamster ovary (CHO) cell cultures. When rhBMP-4 was incubated with CHO cells, rhBMP-4 was actively internalized into cells. Cell surface bound heparan sulfate proteoglycans (HSPGs) served as the major receptors for rhBMP-4 internalization. Removal of cell surface heparan sulfate (HS) by heparinases or reduction of HSPG synthesis by knockdown of xylosyltransferase2 (xylt2) in CHO cells decreased internalization of rhBMP-4. In addition, treatment with endocytosis inhibitors (chlorpromazine, genistein, and dynasore) identified a clathrin- and dynamin-dependent endocytic pathway as the major route for rhBMP-4 internalization. To enhance product yield by minimizing rhBMP-4 internalization in recombinant CHO (rCHO) cell cultures, we have tested various strategies to reduce HSPG synthesis (knockdown of xylt2 and sodium chlorate treatment) or inhibit the binding of rhBMP-4 to cell-surface-bound HSPGs (supplementation with heparin or dextran sulfate [DS]). Among these approaches, DS, which is a linear anionic sulfated polysaccharide with similarity to HS chains, was the most effective in enhancing rhBMP-4 production in rCHO cell cultures. Compared with the control cultures, DS addition to the culture medium (1.0 g/L) resulted in 1.4-fold and 2.3-fold increases in maximum rhBMP-4 concentration in batch and fed-batch cultures, respectively. Taken together, the addition of DS, an effective competitor of HSPGs, improved rhBMP-4 production in rCHO cell cultures through blockage of rhBMP-4 internalization.
Collapse
Affiliation(s)
- Che Lin Kim
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Mi Yeong Jung
- Institute of Biomaterial and Medical Engineering, Cellumed, Seoul, Republic of Korea
| | - Young Sik Kim
- Institute of Biomaterial and Medical Engineering, Cellumed, Seoul, Republic of Korea
| | - Ju Woong Jang
- Institute of Biomaterial and Medical Engineering, Cellumed, Seoul, Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
12
|
TGF-β Family Signaling in Ductal Differentiation and Branching Morphogenesis. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a031997. [PMID: 28289061 DOI: 10.1101/cshperspect.a031997] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epithelial cells contribute to the development of various vital organs by generating tubular and/or glandular architectures. The fully developed forms of ductal organs depend on processes of branching morphogenesis, whereby frequency, total number, and complexity of the branching tissue define the final architecture in the organ. Some ductal tissues, like the mammary gland during pregnancy and lactation, disintegrate and regenerate through periodic cycles. Differentiation of branched epithelia is driven by antagonistic actions of parallel growth factor systems that mediate epithelial-mesenchymal communication. Transforming growth factor-β (TGF-β) family members and their extracellular antagonists are prominently involved in both normal and disease-associated (e.g., malignant or fibrotic) ductal tissue patterning. Here, we discuss collective knowledge that permeates the roles of TGF-β family members in the control of the ductal tissues in the vertebrate body.
Collapse
|
13
|
Kang I, Chang MY, Wight TN, Frevert CW. Proteoglycans as Immunomodulators of the Innate Immune Response to Lung Infection. J Histochem Cytochem 2018; 66:241-259. [PMID: 29328866 DOI: 10.1369/0022155417751880] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Proteoglycans (PGs) are complex, multifaceted molecules that participate in diverse interactions vital for physiological and pathological processes. As structural components, they provide a scaffold for cells and structural organization that helps define tissue architecture. Through interactions with water, PGs enable molecular and cellular movement through tissues. Through selective ionic interactions with growth factors, chemokines, cytokines, and proteases, PGs facilitate the ability of these soluble ligands to regulate intracellular signaling events and to influence the inflammatory response. In addition, recent findings now demonstrate that PGs can activate danger-associated molecular patterns (DAMPs) and other signaling pathways to influence production of many of these soluble ligands, indicating a more direct role for PGs in influencing the immune response and tissue inflammation. This review will focus on PGs that are selectively expressed during lung inflammation and will examine the novel emerging concept of PGs as immunomodulatory regulators of the innate immune responses in lungs.
Collapse
Affiliation(s)
- Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Mary Y Chang
- Comparative Pathology Program, Department of Comparative Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Charles W Frevert
- Center for Lung Biology, Division of Pulmonary/Critical Care Medicine, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
14
|
He H, Huang M, Sun S, Wu Y, Lin X. Epithelial heparan sulfate regulates Sonic Hedgehog signaling in lung development. PLoS Genet 2017; 13:e1006992. [PMID: 28859094 PMCID: PMC5597256 DOI: 10.1371/journal.pgen.1006992] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 09/13/2017] [Accepted: 08/21/2017] [Indexed: 12/23/2022] Open
Abstract
The tree-like structure of the mammalian lung is generated from branching morphogenesis, a reiterative process that is precisely regulated by numerous factors. How the cell surface and extra cellular matrix (ECM) molecules regulate this process is still poorly understood. Herein, we show that epithelial deletion of Heparan Sulfate (HS) synthetase Ext1 resulted in expanded branching tips and reduced branching number, associated with several mesenchymal developmental defects. We further demonstrate an expanded Fgf10 expression and increased FGF signaling activity in Ext1 mutant lungs, suggesting a cell non-autonomous mechanism. Consistent with this, we observed reduced levels of SHH signaling which is responsible for suppressing Fgf10 expression. Moreover, reactivating SHH signaling in mutant lungs rescued the tip dilation phenotype and attenuated FGF signaling. Importantly, the reduced SHH signaling activity did not appear to be caused by decreased Shh expression or protein stability; instead, biologically active form of SHH proteins were reduced in both the Ext1 mutant epithelium and surrounding wild type mesenchymal cells. Together, our study highlights the epithelial HS as a key player for dictating SHH signaling critical for lung morphogenesis.
Collapse
Affiliation(s)
- Hua He
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meina Huang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shenfei Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yihui Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- * E-mail: ,
| |
Collapse
|
15
|
Analysis and identification of the Grem2 heparin/heparan sulfate-binding motif. Biochem J 2017; 474:1093-1107. [PMID: 28104757 DOI: 10.1042/bcj20161050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 01/26/2023]
Abstract
Bone morphogenetic proteins (BMPs) are regulated by extracellular antagonists of the DAN (differential screening-selected gene aberrative in neuroblastoma) family. Similar to the BMP ligands, certain DAN family members have been shown to interact with heparin and heparan sulfate (HS). Structural studies of DAN family members Gremlin-1 and Gremlin-2 (Grem2) have revealed a dimeric growth factor-like fold where a series of lysine residues cluster along one face of the protein. In the present study, we used mutagenesis, heparin-binding measurements, and cell surface-binding analysis to identify lysine residues that are important for heparin/HS binding in Grem2. We determined that residues involved in heparin/HS binding, while not necessary for BMP antagonism, merge with the heparin/HS-binding epitope of BMP2. Furthermore, the Grem2-BMP2 complex has higher affinity for heparin than the individual proteins and this affinity is not abrogated when the heparin/HS-binding epitope of Grem2 is attenuated. Overall, the present study shows that the Grem2 heparin/HS and BMP-binding epitopes are unique and independent, where, interestingly, the Grem2-BMP2 complex exhibits a significant increase in binding affinity toward heparin moieties that appear to be partially independent of the Grem2 heparin/HS-binding epitope.
Collapse
|
16
|
Tatsinkam AJ, Rune N, Smith J, Norman JT, Mulloy B, Rider CC. The binding of the bone morphogenetic protein antagonist gremlin to kidney heparan sulfate: Such binding is not essential for BMP antagonism. Int J Biochem Cell Biol 2017; 83:39-46. [DOI: 10.1016/j.biocel.2016.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 11/03/2016] [Accepted: 12/10/2016] [Indexed: 02/08/2023]
|
17
|
Gray C, Thomas B, Upton R, Migas L, Eyers C, Barran P, Flitsch S. Applications of ion mobility mass spectrometry for high throughput, high resolution glycan analysis. Biochim Biophys Acta Gen Subj 2016; 1860:1688-709. [DOI: 10.1016/j.bbagen.2016.02.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 12/21/2022]
|
18
|
Haeger SM, Yang Y, Schmidt EP. Heparan Sulfate in the Developing, Healthy, and Injured Lung. Am J Respir Cell Mol Biol 2016; 55:5-11. [PMID: 26982577 PMCID: PMC4942210 DOI: 10.1165/rcmb.2016-0043tr] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/11/2016] [Indexed: 11/24/2022] Open
Abstract
Remarkable progress has been achieved in understanding the regulation of gene expression and protein translation, and how aberrancies in these template-driven processes contribute to disease pathogenesis. However, much of cellular physiology is controlled by non-DNA, nonprotein mediators, such as glycans. The focus of this Translational Review is to highlight the importance of a specific glycan polymer-the glycosaminoglycan heparan sulfate (HS)-on lung health and disease. We demonstrate how HS contributes to lung physiology and pathophysiology via its actions as both a structural constituent of the lung parenchyma as well as a regulator of cellular signaling. By highlighting current uncertainties in HS biology, we identify opportunities for future high-impact pulmonary and critical care translational investigations.
Collapse
Affiliation(s)
- Sarah M. Haeger
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado; and
| | - Yimu Yang
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado; and
| | - Eric P. Schmidt
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado; and
- Department of Medicine, Denver Health Medical Center, Denver, Colorado
| |
Collapse
|
19
|
Mižíková I, Morty RE. The Extracellular Matrix in Bronchopulmonary Dysplasia: Target and Source. Front Med (Lausanne) 2015; 2:91. [PMID: 26779482 PMCID: PMC4688343 DOI: 10.3389/fmed.2015.00091] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/08/2015] [Indexed: 12/22/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common complication of preterm birth that contributes significantly to morbidity and mortality in neonatal intensive care units. BPD results from life-saving interventions, such as mechanical ventilation and oxygen supplementation used to manage preterm infants with acute respiratory failure, which may be complicated by pulmonary infection. The pathogenic pathways driving BPD are not well-delineated but include disturbances to the coordinated action of gene expression, cell-cell communication, physical forces, and cell interactions with the extracellular matrix (ECM), which together guide normal lung development. Efforts to further delineate these pathways have been assisted by the use of animal models of BPD, which rely on infection, injurious mechanical ventilation, or oxygen supplementation, where histopathological features of BPD can be mimicked. Notable among these are perturbations to ECM structures, namely, the organization of the elastin and collagen networks in the developing lung. Dysregulated collagen deposition and disturbed elastin fiber organization are pathological hallmarks of clinical and experimental BPD. Strides have been made in understanding the disturbances to ECM production in the developing lung, but much still remains to be discovered about how ECM maturation and turnover are dysregulated in aberrantly developing lungs. This review aims to inform the reader about the state-of-the-art concerning the ECM in BPD, to highlight the gaps in our knowledge and current controversies, and to suggest directions for future work in this exciting and complex area of lung development (patho)biology.
Collapse
Affiliation(s)
- Ivana Mižíková
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Pulmonology, Department of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Pulmonology, Department of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen, Germany
| |
Collapse
|
20
|
Leary JA, Miller RL, Wei W, Schwörer R, Zubkova OV, Tyler PC, Turnbull JE. Composition, sequencing and ion mobility mass spectrometry of heparan sulfate-like octasaccharide isomers differing in glucuronic and iduronic acid content. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:245-254. [PMID: 26307704 DOI: 10.1255/ejms.1337] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Here we report ion mobility mass spectrometry (IMMS) separation and tandem mass spectrometry (MS(2)) sequencing methods used to analyze and differentiate six synthetically produced heparin/heparan sulfate (HS)-like octasaccharide (dp8) isomeric structures. These structures are isomeric with regard to either glucuronic acid (GlcA) or iduronic acid (IdoA) residues at various positions. IMMS analysis showed that a fully GlcA structure exhibited a more compact conformation, whereas the fully IdoA structure was more extended. Interestingly, the change from IdoA to GlcA in specific locations resulted in strong conformational distortions. MS(2) of the six isomers showed very different spectra with unique sets of diagnostic product ions. Analysis of MS(2) product ion spectra suggests that the GlcA group correlated with the formation of a glycosidic product ion under lower energy conditions. This resulted in an earlier product ion formation and more intense product ions. Importantly, this knowledge enabled a complete sequencing of the positions of GlcA and IdoA in each of the four positions located in each unique dp8 structure.
Collapse
Affiliation(s)
- Julie A Leary
- De partments of Molecular and Cellular Biology and Chemistry, University of California, USA..
| | - Rebecca L Miller
- Departments of Molecular and Cellular Biology and Chemistry, University of California. Centre for Glycobiology, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.
| | - Wei Wei
- Departments of Molecular and Cellular Biology and Chemistry, University of California, USA..
| | - Ralf Schwörer
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand.
| | - Olga V Zubkova
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand.
| | - Peter C Tyler
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand.
| | - Jeremy E Turnbull
- Centre for Glycobiology, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.
| |
Collapse
|
21
|
Mizumoto S, Yamada S, Sugahara K. Human genetic disorders and knockout mice deficient in glycosaminoglycan. BIOMED RESEARCH INTERNATIONAL 2014; 2014:495764. [PMID: 25126564 PMCID: PMC4122003 DOI: 10.1155/2014/495764] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/08/2014] [Indexed: 12/20/2022]
Abstract
Glycosaminoglycans (GAGs) are constructed through the stepwise addition of respective monosaccharides by various glycosyltransferases and maturated by epimerases and sulfotransferases. The structural diversity of GAG polysaccharides, including their sulfation patterns and sequential arrangements, is essential for a wide range of biological activities such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Studies using knockout mice of enzymes responsible for the biosynthesis of the GAG side chains of proteoglycans have revealed their physiological functions. Furthermore, mutations in the human genes encoding glycosyltransferases, sulfotransferases, and related enzymes responsible for the biosynthesis of GAGs cause a number of genetic disorders including chondrodysplasia, spondyloepiphyseal dysplasia, and Ehlers-Danlos syndromes. This review focused on the increasing number of glycobiological studies on knockout mice and genetic diseases caused by disturbances in the biosynthetic enzymes for GAGs.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Kazuyuki Sugahara
- Laboratory of Proteoglycan Signaling and Therapeutics, Frontier Research Center for Post-Genomic Science and Technology, Graduate School of Life Science, Hokkaido University, West-11, North-21, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
22
|
Ge XN, Ha SG, Rao A, Greenberg YG, Rushdi MN, Esko JD, Rao SP, Sriramarao P. Endothelial and leukocyte heparan sulfates regulate the development of allergen-induced airway remodeling in a mouse model. Glycobiology 2014; 24:715-27. [PMID: 24794009 DOI: 10.1093/glycob/cwu035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Heparan sulfate (HS) proteoglycans (HSPGs) participate in several aspects of inflammation because of their ability to bind to growth factors, chemokines, interleukins and extracellular matrix proteins as well as promote inflammatory cell trafficking and migration. We investigated whether HSPGs play a role in the development of airway remodeling during chronic allergic asthma using mice deficient in endothelial- and leukocyte-expressed N-deacetylase/N-sulfotransferase-1 (Ndst1), an enzyme involved in modification reactions during HS biosynthesis. Ndst1-deficient and wild-type (WT) mice exposed to repetitive allergen (ovalbumin [OVA]) challenge were evaluated for the development of airway remodeling. Chronic OVA-challenged WT mice exhibited increased HS expression in the lungs along with airway eosinophilia, mucus hypersecretion, peribronchial fibrosis, increased airway epithelial thickness and smooth muscle mass. In OVA-challenged Ndst1-deficient mice, lung eosinophil and macrophage infiltration as well as airway mucus accumulation, peribronchial fibrosis and airway epithelial thickness were significantly lower than in allergen-challenged WT mice along with a trend toward decreased airway smooth muscle mass. Leukocyte and endothelial Ndst 1 deficiency also resulted in significantly decreased expression of IL-13 as well as remodeling-associated mediators such as VEGF, FGF-2 and TGF-β1 in the lung tissue. At a cellular level, exposure to eotaxin-1 failed to induce TGF-β1 expression by Ndst1-deficient eosinophils relative to WT eosinophils. These studies suggest that leukocyte and endothelial Ndst1-modified HS contribute to the development of allergen-induced airway remodeling by promoting recruitment of inflammatory cells as well as regulating expression of pro-remodeling factors such as IL-13, VEGF, TGF-β1 and FGF-2 in the lung.
Collapse
Affiliation(s)
- Xiao Na Ge
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Sung Gil Ha
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Amrita Rao
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Yana G Greenberg
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Muaz Nik Rushdi
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Jeffrey D Esko
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Savita P Rao
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - P Sriramarao
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
23
|
Pan Y, Carbe C, Kupich S, Pickhinke U, Ohlig S, Frye M, Seelige R, Pallerla SR, Moon AM, Lawrence R, Esko JD, Zhang X, Grobe K. Heparan sulfate expression in the neural crest is essential for mouse cardiogenesis. Matrix Biol 2013; 35:253-65. [PMID: 24200809 DOI: 10.1016/j.matbio.2013.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 10/26/2013] [Accepted: 10/26/2013] [Indexed: 11/16/2022]
Abstract
Impaired heparan sulfate (HS) synthesis in vertebrate development causes complex malformations due to the functional disruption of multiple HS-binding growth factors and morphogens. Here, we report developmental heart defects in mice bearing a targeted disruption of the HS-generating enzyme GlcNAc N-deacetylase/GlcN N-sulfotransferase 1 (NDST1), including ventricular septal defects (VSD), persistent truncus arteriosus (PTA), double outlet right ventricle (DORV), and retroesophageal right subclavian artery (RERSC). These defects closely resemble cardiac anomalies observed in mice made deficient in the cardiogenic regulator fibroblast growth factor 8 (FGF8). Consistent with this, we show that HS-dependent FGF8/FGF-receptor2C assembly and FGF8-dependent ERK-phosphorylation are strongly reduced in NDST1(-/-) embryonic cells and tissues. Moreover, WNT1-Cre/LoxP-mediated conditional targeting of NDST function in neural crest cells (NCCs) revealed that their impaired HS-dependent development contributes strongly to the observed cardiac defects. These findings raise the possibility that defects in HS biosynthesis may contribute to congenital heart defects in humans that represent the most common type of birth defect.
Collapse
Affiliation(s)
- Yi Pan
- Institute of Nutritional Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Christian Carbe
- Department of Medical and Molecular Genetics, Indiana University of Medicine, Indianapolis, IN 46202, USA
| | - Sabine Kupich
- Institut für Physiologische Chemie und Pathobiochemie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Ute Pickhinke
- Institut für Physiologische Chemie und Pathobiochemie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Stefanie Ohlig
- Institut für Physiologische Chemie und Pathobiochemie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany; Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Maike Frye
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Ruth Seelige
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Srinivas R Pallerla
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Anne M Moon
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Roger Lawrence
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093-0687, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093-0687, USA
| | - Xin Zhang
- Department of Medical and Molecular Genetics, Indiana University of Medicine, Indianapolis, IN 46202, USA
| | - Kay Grobe
- Institut für Physiologische Chemie und Pathobiochemie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany; Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany.
| |
Collapse
|
24
|
Liu C, Gu S, Sun C, Ye W, Song Z, Zhang Y, Chen Y. FGF signaling sustains the odontogenic fate of dental mesenchyme by suppressing β-catenin signaling. Development 2013; 140:4375-85. [PMID: 24067353 DOI: 10.1242/dev.097733] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Odontoblasts and osteoblasts develop from multipotent craniofacial neural crest cells during tooth and jawbone development, but the mechanisms that specify and sustain their respective fates remain largely unknown. In this study we used early mouse molar and incisor tooth germs that possess distinct tooth-forming capability after dissociation and reaggregation in vitro to investigate the mechanism that sustains odontogenic fate of dental mesenchyme during tooth development. We found that after dissociation and reaggregation, incisor, but not molar, mesenchyme exhibits a strong osteogenic potency associated with robustly elevated β-catenin signaling activity in a cell-autonomous manner, leading to failed tooth formation in the reaggregates. Application of FGF3 to incisor reaggregates inhibits β-catenin signaling activity and rescues tooth formation. The lack of FGF retention on the cell surface of incisor mesenchyme appears to account for the differential osteogenic potency between incisor and molar, which can be further attributed to the differential expression of syndecan 1 and NDST genes. We further demonstrate that FGF signaling inhibits intracellular β-catenin signaling by activating the PI3K/Akt pathway to regulate the subcellular localization of active GSK3β in dental mesenchymal cells. Our results reveal a novel function for FGF signaling in ensuring the proper fate of dental mesenchyme by regulating β-catenin signaling activity during tooth development.
Collapse
Affiliation(s)
- Chao Liu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Purnomo E, Emoto N, Nugrahaningsih DAA, Nakayama K, Yagi K, Heiden S, Nadanaka S, Kitagawa H, Hirata KI. Glycosaminoglycan overproduction in the aorta increases aortic calcification in murine chronic kidney disease. J Am Heart Assoc 2013; 2:e000405. [PMID: 23985378 PMCID: PMC3835254 DOI: 10.1161/jaha.113.000405] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background Vascular calcification accompanying chronic kidney disease increases the mortality and morbidity associated with cardiovascular disorders, but no effective therapy is available. We hypothesized that glycosaminoglycans may contribute to osteoblastic differentiation of vascular smooth muscle cells during vascular calcification. Methods and Results We used exostosin‐like glycosyltranferase 2–deficient (EXTL2 knockout) mice expressing high levels of glycosaminoglycans in several organs including the aorta. We performed 5/6 subtotal nephrectomy and fed the mice a high‐phosphate diet to induce chronic kidney disease. Overexpression of glycosaminoglycans in the aorta enhanced aortic calcification in chronic kidney disease in EXTL2 knockout mice. Ex vivo and in vitro, matrix mineralization in aortic rings and vascular smooth muscle cells of EXTL2 knockout mice was augmented. Furthermore, removal of glycosaminoglycans in EXTL2 knockout and wild‐type mice‐derived vascular smooth muscle cells effectively suppressed calcium deposition in a high‐phosphate environment. Conclusions These results illustrate an important role for glycosaminoglycans in the development of vascular calcification. Manipulation of glycosaminoglycan expression may have beneficial effects on the progression of vascular calcification in chronic kidney disease patients.
Collapse
Affiliation(s)
- Eko Purnomo
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kraushaar DC, Rai S, Condac E, Nairn A, Zhang S, Yamaguchi Y, Moremen K, Dalton S, Wang L. Heparan sulfate facilitates FGF and BMP signaling to drive mesoderm differentiation of mouse embryonic stem cells. J Biol Chem 2012; 287:22691-700. [PMID: 22556407 DOI: 10.1074/jbc.m112.368241] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparan sulfate (HS) has been implicated in regulating cell fate decisions during differentiation of embryonic stem cells (ESCs) into advanced cell types. However, the necessity and the underlying molecular mechanisms of HS in early cell lineage differentiation are still largely unknown. In this study, we examined the potential of EXT1(-/-) mouse ESCs (mESCs), that are deficient in HS, to differentiate into primary germ layer cells. We observed that EXT1(-/-) mESCs lost their differentiation competence and failed to differentiate into Pax6(+)-neural precursor cells and mesodermal cells. More detailed analyses highlighted the importance of HS for the induction of Brachyury(+) pan-mesoderm as well as normal gene expression associated with the dorso-ventral patterning of mesoderm. Examination of developmental cell signaling revealed that EXT1 ablation diminished FGF and BMP but not Wnt signaling. Furthermore, restoration of FGF and BMP signaling each partially rescued mesoderm differentiation defects. We further show that BMP4 is more prone to degradation in EXT1(-/-) mESCs culture medium compared with that of wild type cells. Therefore, our data reveal that HS stabilizes BMP ligand and thereby maintains the BMP signaling output required for normal mesoderm differentiation. In summary, our study demonstrates that HS is required for ESC pluripotency, in particular lineage specification into mesoderm through facilitation of FGF and BMP signaling.
Collapse
Affiliation(s)
- Daniel C Kraushaar
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Dagälv A, Holmborn K, Kjellén L, Abrink M. Lowered expression of heparan sulfate/heparin biosynthesis enzyme N-deacetylase/n-sulfotransferase 1 results in increased sulfation of mast cell heparin. J Biol Chem 2011; 286:44433-40. [PMID: 22049073 DOI: 10.1074/jbc.m111.303891] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deficiency of the heparan sulfate biosynthesis enzyme N-deacetylase/N-sulfotransferase 1 (NDST1) in mice causes severely disturbed heparan sulfate biosynthesis in all organs, whereas lack of NDST2 only affects heparin biosynthesis in mast cells (MCs). To investigate the individual and combined roles of NDST1 and NDST2 during MC development, in vitro differentiated MCs derived from mouse embryos and embryonic stem cells, respectively, have been studied. Whereas MC development will not occur in the absence of both NDST1 and NDST2, lack of NDST2 alone results in the generation of defective MCs. Surprisingly, the relative amount of heparin produced in NDST1(+/-) and NDST1(-/-) MCs is higher (≈30%) than in control MCs where ≈95% of the (35)S-labeled glycosaminoglycans produced is chondroitin sulfate. Lowered expression of NDST1 also results in a higher sulfate content of the heparin synthesized and is accompanied by increased levels of stored MC proteases. A model of the GAGosome, a hypothetical Golgi enzyme complex, is used to explain the results.
Collapse
Affiliation(s)
- Anders Dagälv
- Department of Medical Biochemistry and Microbiology, Uppsala University, and Biomedical Sciences and Veterinary Public Health, SLU, SE-751 23 Uppsala, Sweden
| | | | | | | |
Collapse
|
28
|
Conway CD, Price DJ, Pratt T, Mason JO. Analysis of axon guidance defects at the optic chiasm in heparan sulphate sulphotransferase compound mutant mice. J Anat 2011; 219:734-42. [PMID: 21951307 DOI: 10.1111/j.1469-7580.2011.01432.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
During embryonic development of the visual system, retinal ganglion cells (RGCs) project their axons towards the brain, passing through the optic chiasm. Axons are guided on this journey by molecular cues in the environment. The heparan sulphate sulphotransferase (Hst) enzymes Hs2st and Hs6st1 are each known to be required for specific aspects of axon guidance in the developing visual system, as revealed by studies of Hs2st(-/-) and Hs6st1(-/-) mutant embryos. However, it remained possible that these two enzymes have additional, overlapping, functions in RGC axon guidance; but that no effect is manifest in single mutant embryos, because the other enzyme is sufficient to fulfil the shared function. To investigate this possibility, we generated a set of Hs2st;Hs6st1 double mutant embryos that had reduced gene dosage of each of these Hsts, reasoning that any additional phenotypes in these animals would indicate the presence of functional overlap. We first characterised the structure of the mutant Hs6st1 locus, identifying the insertion site of the gene trap vector, to allow us to genotype compound mutants reliably. We found that Hs2st(-/-) ;Hs6st1(-/-) mutants that lack both enzymes died prior to E15.5. As the optic chiasm has not formed by this stage, we were unable to determine the effect of complete loss of Hs2st and Hs6st1 on chiasm formation. However, compound mutant embryos lacking one Hst and heterozygous for the other were viable. We found that RGC axon guidance defects in such compound mutants were no more severe than those found in the single mutant embryos. We also found that expression of the Hs6st1 isoform Hs6st3 overlaps with that of Hs6st1 in the developing visual system, suggesting that some Hs6st activity remains present in this region of Hs6st1(-/-) mutant embryos.
Collapse
Affiliation(s)
- Christopher D Conway
- Genes and Development Group, Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, George Square, Edinburgh, UK
| | | | | | | |
Collapse
|
29
|
Kishimoto K, Nishizuka M, Ueda T, Kajita K, Ugawa S, Shimada S, Osada S, Imagawa M. Indispensable role of factor for adipocyte differentiation 104 (fad104) in lung maturation. Exp Cell Res 2011; 317:2110-23. [PMID: 21704616 DOI: 10.1016/j.yexcr.2011.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2010] [Revised: 06/08/2011] [Accepted: 06/09/2011] [Indexed: 11/25/2022]
Abstract
Factor for adipocyte differentiation 104 (fad104) is a regulator of adipogenesis and osteogenesis. Our previous study showed that fad104-deficient mice died immediately after birth, suggesting fad104 to be essential for neonatal survival. However, the cause of this rapid death is unclear. Here, we demonstrate the role of fad104 in neonatal survival. Phenotypic and morphological analyses showed that fad104-deficient mice died due to cyanosis-associated lung dysplasia including atelectasis. Furthermore, immunohistochemistry revealed that FAD104 was strongly expressed in ATII cells in the developing lung. Most importantly, the ATII cells in lungs were immature, and impaired the expression of surfactant-associated proteins. Collectively, these results indicate that fad104 has an indispensable role in lung maturation, especially the maturation and differentiation of ATII cells.
Collapse
Affiliation(s)
- Keishi Kishimoto
- Department of Molecular Biology, Graduate School of Pharmaceutical Science, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Hepcidin is a major regulator of iron homeostasis, and its expression in liver is regulated by iron, inflammation, and erythropoietic activity with mechanisms that involve bone morphogenetic proteins (BMPs) binding their receptors and coreceptors. Here we show that exogenous heparin strongly inhibited hepcidin expression in hepatic HepG2 cells at pharmacologic concentrations, with a mechanism that probably involves bone morphogenetic protein 6 sequestering and the blocking of SMAD signaling. Treatment of mice with pharmacologic doses of heparin inhibited liver hepcidin mRNA expression and SMAD phosphorylation, reduced spleen iron concentration, and increased serum iron. Moreover, we observed a strong reduction of serum hepcidin in 5 patients treated with heparin to prevent deep vein thrombosis, which was accompanied by an increase of serum iron and a reduction of C-reactive protein levels. The data show an unrecognized role for heparin in regulating iron homeostasis and indicate novel approaches to the treatment of iron-restricted iron deficiency anemia.
Collapse
|
31
|
Reijmers RM, Vondenhoff MFR, Roozendaal R, Kuil A, Li JP, Spaargaren M, Pals ST, Mebius RE. Impaired lymphoid organ development in mice lacking the heparan sulfate modifying enzyme glucuronyl C5-epimerase. THE JOURNAL OF IMMUNOLOGY 2010; 184:3656-64. [PMID: 20208005 DOI: 10.4049/jimmunol.0902200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of lymphoid organs depends on cross talk between hematopoietic cells and mesenchymal stromal cells and on vascularization of the lymphoid primordia. These processes are orchestrated by cytokines, chemokines, and angiogenic factors that require tight spatiotemporal regulation. Heparan sulfate (HS) proteoglycans are molecules designed to specifically bind and regulate the bioactivity of soluble protein ligands. Their binding capacity and specificity are controlled by modification of the HS side chain by HS-modifying enzymes. Although HS proteoglycans have been implicated in the morphogenesis of several organ systems, their role in controlling lymphoid organ development has thus far remained unexplored. In this study, we report that modification of HS by the HS-modifying enzyme glucuronyl C5-epimerase (Glce), which controls HS chain flexibility, is required for proper lymphoid organ development. Glce(-/-) mice show a strongly reduced size of the fetal spleen as well as a spectrum of defects in thymus and lymph node development, ranging from dislocation to complete absence of the organ anlage. Once established, however, the Glce(-/-) primordia recruited lymphocytes and developed normal architectural features. Furthermore, Glce(-/-) lymph node anlagen transplanted into wild-type recipient mice allowed undisturbed lymphocyte maturation. Our results indicate that modification of HS by Glce is required for controlling the activity of molecules that are instructive for early lymphoid tissue morphogenesis but may be dispensable at later developmental stages and for lymphocyte maturation and differentiation.
Collapse
Affiliation(s)
- Rogier M Reijmers
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Parker RB, Kohler JJ. Regulation of intracellular signaling by extracellular glycan remodeling. ACS Chem Biol 2010; 5:35-46. [PMID: 19968325 DOI: 10.1021/cb9002514] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The plasma membrane of eukaryotic cells is coated with carbohydrates. By virtue of their extracellular position and recognizable chemical features, cell surface glycans mediate many receptor-ligand interactions. Recently, mammalian extracellular hydrolytic enzymes have been shown to modify the structure of cell surface glycans and consequently alter their binding properties. These cell surface glycan remodeling events can cause rapid changes in critical signal transduction phenomena. This Review highlights recent studies on the roles of eukaryotic extracellular sialidases, sulfatases, and a deacetylase in regulation of intracellular signaling. We also describe possible therapies that target extracellular glycan remodeling processes and discuss the potential for new discoveries in this area.
Collapse
Affiliation(s)
- Randy B. Parker
- Division of Translational Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9185
| | - Jennifer J. Kohler
- Division of Translational Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9185
| |
Collapse
|
33
|
Ringvall M, Kjellén L. Mice deficient in heparan sulfate N-deacetylase/N-sulfotransferase 1. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 93:35-58. [PMID: 20807640 DOI: 10.1016/s1877-1173(10)93003-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ndsts (N-deacetylase/N-sulfotransferases) are enzymes responsible for N-sulfation during heparan sulfate (HS) and heparin biosynthesis. In this review, basic features of the Ndst1 enzyme are covered and a brief description of HS biosynthesis and its regulation is presented. Effects of Ndst1 deficiency on embryonic development are described. These include immature lungs, craniofacial dysplasia and eye developmental defects, branching defect during lacrimal gland development, delayed mineralization of the skeleton, and reduced pericyte recruitment during vascular development. A brief account of the effects of Ndst1 deficiency in selective cell types in adult mice is also given.
Collapse
Affiliation(s)
- Maria Ringvall
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
34
|
Common genetic variants in pre-microRNAs are associated with risk of coal workers' pneumoconiosis. J Hum Genet 2009; 55:13-7. [DOI: 10.1038/jhg.2009.112] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
35
|
Zuberi RI, Ge XN, Jiang S, Bahaie NS, Kang BN, Hosseinkhani RM, Frenzel EM, Fuster MM, Esko JD, Rao SP, Sriramarao P. Deficiency of endothelial heparan sulfates attenuates allergic airway inflammation. THE JOURNAL OF IMMUNOLOGY 2009; 183:3971-9. [PMID: 19710461 DOI: 10.4049/jimmunol.0901604] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The effect of targeted inactivation of the gene encoding N-deacetylase/N-sulfotransferase-1 (Ndst1), a key enzyme involved in the biosynthesis of heparan sulfate (HS) chains, on the inflammatory response associated with allergic inflammation in a murine model of OVA-induced acute airway inflammation was investigated. OVA-exposed Ndst1(f/f)TekCre(+) (mutant) mice deficient in endothelial and leukocyte Ndst1 demonstrated significantly decreased allergen-induced airway hyperresponsiveness and inflammation characterized by a significant reduction in airway recruitment of inflammatory cells (eosinophils, macrophages, neutrophils, and lymphocytes), diminished IL-5, IL-2, TGF-beta1, and eotaxin levels, as well as decreased expression of TGF-beta1 and the angiogenic protein FIZZ1 (found in inflammatory zone 1) in lung tissue compared with OVA-exposed Ndst1(f/f)TekCre(-) wild-type littermates. Furthermore, murine eosinophils demonstrated significantly decreased rolling on lung endothelial cells (ECs) from mutant mice compared with wild-type ECs under conditions of flow in vitro. Treatment of wild-type ECs, but not eosinophils, with anti-HS Abs significantly inhibited eosinophil rolling, mimicking that observed with Ndst1-deficient ECs. In vivo, trafficking of circulating leukocytes in lung microvessels of allergen-challenged Ndst1-deficient mice was significantly lower than that observed in corresponding WT littermates. Endothelial-expressed HS plays an important role in allergic airway inflammation through the regulation of recruitment of inflammatory cells to the airways by mediating interaction of leukocytes with the vascular endothelium. Furthermore, HS may also participate by sequestering and modulating the activity of allergic asthma-relevant mediators such as IL-5, IL-2, and TGF-beta1.
Collapse
Affiliation(s)
- Riaz I Zuberi
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St Paul, MN 55108, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|