1
|
Wang Y, Curson JE, Ramnath D, Das Gupta K, Reid RC, Karunakaran D, Fairlie DP, Sweet MJ. Histone deacetylase 7 activates 6-phosphogluconate dehydrogenase via an enzyme-independent mechanism that involves the N-terminal protein-protein interaction domain. Biochem J 2024; 481:1569-1584. [PMID: 39373581 PMCID: PMC11555707 DOI: 10.1042/bcj20240380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/08/2024]
Abstract
Histone deacetylase 7 (HDAC7) is a member of the class IIa family of classical HDACs with important roles in cell development, differentiation, and activation, including in macrophages and other innate immune cells. HDAC7 and other class IIa HDACs act as transcriptional repressors in the nucleus but, in some cell types, they can also act in the cytoplasm to modify non-nuclear proteins and/or scaffold signalling complexes. In macrophages, HDAC7 is a cytoplasmic protein with both pro- and anti-inflammatory functions, with the latter activity involving activation of the pentose phosphate pathway (PPP) enzyme 6-phosphogluconate dehydrogenase (6PGD) and the generation of anti-inflammatory metabolite ribulose-5-phosphate. Here, we used ectopic expression systems and biochemical approaches to investigate the mechanism by which HDAC7 promotes 6PGD enzyme activity. We reveal that HDAC7 enzyme activity is not required for its activation of 6PGD and that the N-terminal protein-protein interaction domain of HDAC7 is sufficient to initiate this response. Mechanistically, the N-terminus of HDAC7 increases the affinity of 6PGD for NADP+, promotes the generation of a shorter form of 6PGD, and enhances the formation of higher order protein complexes, implicating its scaffolding function in engagement of the PPP. This contrasts with the pro-inflammatory function of HDAC7 in macrophages, in which it promotes deacetylation of the glycolytic enzyme pyruvate kinase M2 for inflammatory cytokine production.
Collapse
Affiliation(s)
- Yizhuo Wang
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - James E.B. Curson
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Divya Ramnath
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kaustav Das Gupta
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Robert C. Reid
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Denuja Karunakaran
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia
- Victorian Heart Institute, Victorian Heart Hospital, Clayton, Victoria 3168, Australia
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - David P. Fairlie
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Matthew J. Sweet
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
2
|
Yang H, Guo K, Ding P, Ning J, Zhang Y, Wang Y, Wang Z, Liu G, Shao C, Pan M, Ma Z, Yan X, Han J. Histone deacetylases: Regulation of vascular homeostasis via endothelial cells and vascular smooth muscle cells and the role in vascular pathogenesis. Genes Dis 2024; 11:101216. [PMID: 39281836 PMCID: PMC11396065 DOI: 10.1016/j.gendis.2024.101216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 09/18/2024] Open
Abstract
Histone deacetylases (HDACs) are proteases that play a key role in chromosome structural modification and gene expression regulation, and the involvement of HDACs in cancer, the nervous system, and the metabolic and immune system has been well reviewed. Our understanding of the function of HDACs in the vascular system has recently progressed, and a significant variety of HDAC inhibitors have been shown to be effective in the treatment of vascular diseases. However, few reviews have focused on the role of HDACs in the vascular system. In this study, the role of HDACs in the regulation of the vascular system mainly involving endothelial cells and vascular smooth muscle cells was discussed based on recent updates, and the role of HDACs in different vascular pathogenesis was summarized as well. Furthermore, the therapeutic effects and prospects of HDAC inhibitors were also addressed in this review.
Collapse
Affiliation(s)
- Hanyi Yang
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
- Xi'an Medical University, Xi'an, Shaanxi 710086, China
| | - Kai Guo
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, China
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Peng Ding
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Jiayi Ning
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
- Xi'an Medical University, Xi'an, Shaanxi 710086, China
| | - Yimeng Zhang
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
- Xi'an Medical University, Xi'an, Shaanxi 710086, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Zhaoyang Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Guanglin Liu
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Changjian Shao
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Minghong Pan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Zhiqiang Ma
- Department of Medical Oncology, Senior Department of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, Beijing 100853, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| |
Collapse
|
3
|
Sarkar A, Pawar SV, Chopra K, Jain M. Gamut of glycolytic enzymes in vascular smooth muscle cell proliferation: Implications for vascular proliferative diseases. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167021. [PMID: 38216067 DOI: 10.1016/j.bbadis.2024.167021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Vascular smooth muscle cells (VSMCs) are the predominant cell type in the media of the blood vessels and are responsible for maintaining vascular tone. Emerging evidence confirms that VSMCs possess high plasticity. During vascular injury, VSMCs switch from a "contractile" phenotype to an extremely proliferative "synthetic" phenotype. The balance between both strongly affects the progression of vascular remodeling in many cardiovascular pathologies such as restenosis, atherosclerosis and aortic aneurism. Proliferating cells demand high energy requirements and to meet this necessity, alteration in cellular bioenergetics seems to be essential. Glycolysis, fatty acid metabolism, and amino acid metabolism act as a fuel for VSMC proliferation. Metabolic reprogramming of VSMCs is dynamically variable that involves multiple mechanisms and encompasses the coordination of various signaling molecules, proteins, and enzymes. Here, we systemically reviewed the metabolic changes together with the possible treatments that are still under investigation underlying VSMC plasticity which provides a promising direction for the treatment of diseases associated with VSMC proliferation. A better understanding of the interaction between metabolism with associated signaling may uncover additional targets for better therapeutic strategies in vascular disorders.
Collapse
Affiliation(s)
- Ankan Sarkar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Sandip V Pawar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Kanwaljit Chopra
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Manish Jain
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.
| |
Collapse
|
4
|
Wang Y, Abrol R, Mak JYW, Das Gupta K, Ramnath D, Karunakaran D, Fairlie DP, Sweet MJ. Histone deacetylase 7: a signalling hub controlling development, inflammation, metabolism and disease. FEBS J 2023; 290:2805-2832. [PMID: 35303381 PMCID: PMC10952174 DOI: 10.1111/febs.16437] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/02/2022] [Accepted: 03/16/2022] [Indexed: 12/20/2022]
Abstract
Histone deacetylases (HDACs) catalyse removal of acetyl groups from lysine residues on both histone and non-histone proteins to control numerous cellular processes. Of the 11 zinc-dependent classical HDACs, HDAC4, 5, 7 and 9 are class IIa HDAC enzymes that regulate cellular and developmental processes through both enzymatic and non-enzymatic mechanisms. Over the last two decades, HDAC7 has been associated with key roles in numerous physiological and pathological processes. Molecular, cellular, in vivo and disease association studies have revealed that HDAC7 acts through multiple mechanisms to control biological processes in immune cells, osteoclasts, muscle, the endothelium and epithelium. This HDAC protein regulates gene expression, cell proliferation, cell differentiation and cell survival and consequently controls development, angiogenesis, immune functions, inflammation and metabolism. This review focuses on the cell biology of HDAC7, including the regulation of its cellular localisation and molecular mechanisms of action, as well as its associative and causal links with cancer and inflammatory, metabolic and fibrotic diseases. We also review the development status of small molecule inhibitors targeting HDAC7 and their potential for intervention in different disease contexts.
Collapse
Affiliation(s)
- Yizhuo Wang
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
- IMB Centre for Inflammation and Disease ResearchThe University of QueenslandSt. LuciaAustralia
| | - Rishika Abrol
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
- IMB Centre for Inflammation and Disease ResearchThe University of QueenslandSt. LuciaAustralia
| | - Jeffrey Y. W. Mak
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
| | - Kaustav Das Gupta
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
- IMB Centre for Inflammation and Disease ResearchThe University of QueenslandSt. LuciaAustralia
| | - Divya Ramnath
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
- IMB Centre for Inflammation and Disease ResearchThe University of QueenslandSt. LuciaAustralia
| | - Denuja Karunakaran
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
- IMB Centre for Inflammation and Disease ResearchThe University of QueenslandSt. LuciaAustralia
| | - David P. Fairlie
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
- IMB Centre for Inflammation and Disease ResearchThe University of QueenslandSt. LuciaAustralia
- Australian Infectious Diseases Research CentreThe University of QueenslandSt. LuciaAustralia
| | - Matthew J. Sweet
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
- IMB Centre for Inflammation and Disease ResearchThe University of QueenslandSt. LuciaAustralia
- Australian Infectious Diseases Research CentreThe University of QueenslandSt. LuciaAustralia
| |
Collapse
|
5
|
Agosto LM, Mallory MJ, Ferretti MB, Blake D, Krick KS, Gazzara MR, Garcia BA, Lynch KW. Alternative splicing of HDAC7 regulates its interaction with 14-3-3 proteins to alter histone marks and target gene expression. Cell Rep 2023; 42:112273. [PMID: 36933216 PMCID: PMC10113009 DOI: 10.1016/j.celrep.2023.112273] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/28/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023] Open
Abstract
Chromatin regulation and alternative splicing are both critical mechanisms guiding gene expression. Studies have demonstrated that histone modifications can influence alternative splicing decisions, but less is known about how alternative splicing may impact chromatin. Here, we demonstrate that several genes encoding histone-modifying enzymes are alternatively spliced downstream of T cell signaling pathways, including HDAC7, a gene previously implicated in controlling gene expression and differentiation in T cells. Using CRISPR-Cas9 gene editing and cDNA expression, we show that differential inclusion of HDAC7 exon 9 controls the interaction of HDAC7 with protein chaperones, resulting in changes to histone modifications and gene expression. Notably, the long isoform, which is induced by the RNA-binding protein CELF2, promotes expression of several critical T cell surface proteins including CD3, CD28, and CD69. Thus, we demonstrate that alternative splicing of HDAC7 has a global impact on histone modification and gene expression that contributes to T cell development.
Collapse
Affiliation(s)
- Laura M Agosto
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Mallory
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Max B Ferretti
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Davia Blake
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keegan S Krick
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew R Gazzara
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Genomic and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA; Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Li T, Wu H, Wang P, Kim AM, Jia J, Nolta JA, Zhou P. HDACs regulate the differentiation of endothelial cells from human iPSCs. Cell Biochem Funct 2022; 40:589-599. [PMID: 35789099 PMCID: PMC9391285 DOI: 10.1002/cbf.3729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/18/2022] [Accepted: 06/20/2022] [Indexed: 11/08/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) possess the potential to differentiate toward vascular cells including endothelial cells (ECs), pericytes, and smooth muscle cells. Epigenetic mechanisms including DNA methylation and histone modification play a crucial role in regulating lineage differentiation and specification. Herein, we utilized a three-stage protocol to induce differentiation of mesoderm, vascular progenitors, and ECs from hiPSCs and investigated the regulatory effects of histone acetylation on the differentiation processes. We found that the expression of several histone deacetylases (HDACs), including HDAC1, HDAC5, and HDAC7, were greatly upregulated at the second stage and downregulated at the third stage. Interestingly, although HDAC1 remained in the nucleus during the EC differentiation, HDAC5 and HDAC7 displayed cytosol/nuclear translocation during the differentiation process. Inhibition of HDACs with sodium butyrate (NaBt) or BML210 could hinder the differentiation of vascular progenitors at the second stage and facilitate EC induction at the third stage. Further investigation revealed that HDAC may modulate the stepwise EC differentiation via regulating the expression of endothelial transcription factors ERG, ETS1, and MEF2C. Opposite to the expression of EC markers, the smooth muscle/pericyte marker ACTA2 was upregulated at the second stage and downregulated at the third stage by NaBt. The stage-specific regulation of ACTA2 by HDAC inhibition was likely through regulating the expression of TGFβ2 and PDGFB. This study suggests that HDACs play different roles at different stages of EC induction by promoting the commitment of vascular progenitors and impeding the later stage differentiation of ECs.
Collapse
Affiliation(s)
- Tao Li
- Department of Medical Laboratory, School of Medicine, Hunan Normal University, Changsha, Hunan, China.,Stem Cell Program, University of California Davis Medical Center, Sacramento, California, USA
| | - Haopeng Wu
- Department of Medical Laboratory, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Pingping Wang
- Department of Medical Laboratory, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Amy M Kim
- Stem Cell Program, University of California Davis Medical Center, Sacramento, California, USA
| | - Junjing Jia
- Stem Cell Program, University of California Davis Medical Center, Sacramento, California, USA
| | - Jan A Nolta
- Stem Cell Program, University of California Davis Medical Center, Sacramento, California, USA.,Department of Internal Medicine, Unversity of California Davis Medical Center, Sacramento, California, USA.,University of California Davis Gene Therapy Center, Sacramento, California, USA
| | - Ping Zhou
- Stem Cell Program, University of California Davis Medical Center, Sacramento, California, USA.,Department of Internal Medicine, Unversity of California Davis Medical Center, Sacramento, California, USA.,University of California Davis Gene Therapy Center, Sacramento, California, USA
| |
Collapse
|
7
|
Luan Y, Liu H, Luan Y, Yang Y, Yang J, Ren KD. New Insight in HDACs: Potential Therapeutic Targets for the Treatment of Atherosclerosis. Front Pharmacol 2022; 13:863677. [PMID: 35529430 PMCID: PMC9068932 DOI: 10.3389/fphar.2022.863677] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis (AS) features include progressive hardening and reduced elasticity of arteries. AS is the leading cause of morbidity and mortality. An increasing amount of evidence showed that epigenetic modifications on genes serve are a main cause of several diseases, including AS. Histone deacetylases (HDACs) promote the deacetylation at lysine residues, thereby condensing the chromatin structures and further inhibiting the transcription of downstream genes. HDACs widely affect various physiological and pathological processes through transcriptional regulation or deacetylation of other non-histone proteins. In recent years, the role of HDACs in vascular systems has been revealed, and their effects on atherosclerosis have been widely reported. In this review, we discuss the members of HDACs in vascular systems, determine the diverse roles of HDACs in AS, and reveal the effects of HDAC inhibitors on AS progression. We provide new insights into the potential of HDAC inhibitors as drugs for AS treatment.
Collapse
Affiliation(s)
- Yi Luan
- Research Center for Clinical System Biology, Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Liu
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Ying Luan
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Yang Yang
- Research Center for Clinical System Biology, Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai-Di Ren
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Liu C, Niu K, Xiao Q. Updated perspectives on vascular cell specification and pluripotent stem cell-derived vascular organoids for studying vasculopathies. Cardiovasc Res 2022; 118:97-114. [PMID: 33135070 PMCID: PMC8752356 DOI: 10.1093/cvr/cvaa313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/15/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Vasculopathy is a pathological process occurring in the blood vessel wall, which could affect the haemostasis and physiological functions of all the vital tissues/organs and is one of the main underlying causes for a variety of human diseases including cardiovascular diseases. Current pharmacological interventions aiming to either delay or stop progression of vasculopathies are suboptimal, thus searching novel, targeted, risk-reducing therapeutic agents, or vascular grafts with full regenerative potential for patients with vascular abnormalities are urgently needed. Since first reported, pluripotent stem cells (PSCs), particularly human-induced PSCs, have open new avenue in all research disciplines including cardiovascular regenerative medicine and disease remodelling. Assisting with recent technological breakthroughs in tissue engineering, in vitro construction of tissue organoid made a tremendous stride in the past decade. In this review, we provide an update of the main signal pathways involved in vascular cell differentiation from human PSCs and an extensive overview of PSC-derived tissue organoids, highlighting the most recent discoveries in the field of blood vessel organoids as well as vascularization of other complex tissue organoids, with the aim of discussing the key cellular and molecular players in generating vascular organoids.
Collapse
MESH Headings
- Blood Vessels/metabolism
- Blood Vessels/pathology
- Blood Vessels/physiopathology
- Cell Culture Techniques
- Cell Differentiation
- Cell Lineage
- Cells, Cultured
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Humans
- Induced Pluripotent Stem Cells/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neovascularization, Pathologic
- Neovascularization, Physiologic
- Organoids
- Phenotype
- Signal Transduction
- Vascular Diseases/metabolism
- Vascular Diseases/pathology
- Vascular Diseases/physiopathology
Collapse
Affiliation(s)
- Chenxin Liu
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Heart Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Kaiyuan Niu
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Heart Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Heart Centre, Charterhouse Square, London EC1M 6BQ, UK
- Key Laboratory of Cardiovascular Diseases at The Second Affiliated Hospital
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, Guangdong 511436, China
| |
Collapse
|
9
|
Neumann DP, Goodall GJ, Gregory PA. The Quaking RNA-binding proteins as regulators of cell differentiation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1724. [PMID: 35298877 PMCID: PMC9786888 DOI: 10.1002/wrna.1724] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/30/2022]
Abstract
The RNA-binding protein Quaking (QKI) has emerged as a potent regulator of cellular differentiation in developmental and pathological processes. The QKI gene is itself alternatively spliced to produce three major isoforms, QKI-5, QKI-6, and QKI-7, that possess very distinct functions. Here, we highlight roles of the different QKI isoforms in neuronal, vascular, muscle, and monocyte cell differentiation, and during epithelial-mesenchymal transition in cancer progression. QKI isoforms control cell differentiation through regulating alternative splicing, mRNA stability and translation, with activities in gene transcription now also becoming evident. These diverse functions of the QKI isoforms contribute to their broad influences on RNA metabolism and cellular differentiation. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Daniel P. Neumann
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSouth Australia
| | - Gregory J. Goodall
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSouth Australia,Faculty of Health and Medical SciencesThe University of AdelaideAdelaideSouth Australia
| | - Philip A. Gregory
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSouth Australia,Faculty of Health and Medical SciencesThe University of AdelaideAdelaideSouth Australia
| |
Collapse
|
10
|
Guo Z, Mo Z. Regulation of endothelial cell differentiation in embryonic vascular development and its therapeutic potential in cardiovascular diseases. Life Sci 2021; 276:119406. [PMID: 33785330 DOI: 10.1016/j.lfs.2021.119406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/05/2021] [Accepted: 03/14/2021] [Indexed: 12/17/2022]
Abstract
During vertebrate development, the cardiovascular system begins operating earlier than any other organ in the embryo. Endothelial cell (EC) forms the inner lining of blood vessels, and its extensive proliferation and migration are requisite for vasculogenesis and angiogenesis. Many aspects of cellular biology are involved in vasculogenesis and angiogenesis, including the tip versus stalk cell specification. Recently, epigenetics has attracted growing attention in regulating embryonic vascular development and controlling EC differentiation. Some proteins that regulate chromatin structure have been shown to be directly implicated in human cardiovascular diseases. Additionally, the roles of important EC signaling such as vascular endothelial growth factor and its receptors, angiopoietin-1 and tyrosine kinase containing immunoglobulin and epidermal growth factor homology domain-2, and transforming growth factor-β in EC differentiation during embryonic vasculature development are briefly discussed in this review. Recently, the transplantation of human induced pluripotent stem cell (iPSC)-ECs are promising approaches for the treatment of ischemic cardiovascular disease including myocardial infarction. Patient-specific iPSC-derived EC is a potential new target to study differences in gene expression or response to drugs. However, clinical application of the iPSC-ECs in regenerative medicine is often limited by the challenges of maintaining cell viability and function. Therefore, novel insights into the molecular mechanisms underlying EC differentiation might provide a better understanding of embryonic vascular development and bring out more effective EC-based therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Zi Guo
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaohui Mo
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
11
|
Yang F, Chen Q, Yang M, Maguire EM, Yu X, He S, Xiao R, Wang CS, An W, Wu W, Zhou Y, Xiao Q, Zhang L. Macrophage-derived MMP-8 determines smooth muscle cell differentiation from adventitia stem/progenitor cells and promotes neointima hyperplasia. Cardiovasc Res 2020; 116:211-225. [PMID: 30778537 DOI: 10.1093/cvr/cvz044] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/17/2019] [Accepted: 02/13/2019] [Indexed: 02/06/2023] Open
Abstract
AIMS Emerging evidence has suggested that adventitia stem/progenitor cells (AdSPCs) migrate into the intima of arteries in response to injury, where they differentiate towards smooth muscle cells (SMCs) and participate in neointimal hyperplasia. We have previously identified matrix metalloproteinase-8 (MMP8) as a key player in atherogenesis. In this study, we aimed to investigate the functional roles of macrophage-derived MMP8 in AdSPC differentiation and injury-induced arterial remodelling. METHODS AND RESULTS We first observed an important role for MMP8 in SMC differentiation from embryonic stem cells, but this effect was not seen in AdSPCs. Instead, through macrophages/AdSPCs co-culture and macrophage conditional culture medium studies, we have demonstrated that the MMP8 protein secreted from macrophages promotes SMC differentiation from AdSPCs. Mechanistically, we showed that macrophage-derived MMP8 promotes SMC differentiation from AdSPCs through modulating transforming growth factor-β activity and a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10)/Notch1 signalling. We further demonstrated that the binding site for CBF1, Suppressor of Hairless, and Lag-1 (CSL) within SMC gene promoters is responsible for Notch1 mediated SMC differentiation. Finally, we demonstrated that macrophage-derived MMP8 increased injury-induced neointimal SMC hyperplasia by activating ADAM10/Notch1 signalling. CONCLUSIONS We have identified macrophage-derived MMP8 as a regulator in SMC differentiation from AdSPCs and neointimal SMC hyperplasia in response to injury. Our data provide new insights into the roles of MMP8 in AdSPC differentiation and the pathogenesis of neointima formation in the context of angiographic restenosis, and therefore may aid in the development of novel therapeutic agents for the prevention of this disease.
Collapse
Affiliation(s)
- Feng Yang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, Zhejiang, China.,William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Qishan Chen
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, Zhejiang, China.,William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Mei Yang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, Zhejiang, China.,William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Eithne Margaret Maguire
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Xiaotian Yu
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Shiping He
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Rui Xiao
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Claire S Wang
- Gonville & Caius College, University of Cambridge, Trinity Street, Cambridge, CB2 1TA, UK
| | - Weiwei An
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Wei Wu
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Yijiang Zhou
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, Zhejiang, China
| | - Qingzhong Xiao
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, Zhejiang, China.,William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK.,Key Laboratory of Cardiovascular Diseases, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, Guangdong, 511436, China.,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, Guangdong, 511436, China
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, Zhejiang, China
| |
Collapse
|
12
|
Yang J, Moraga A, Xu J, Zhao Y, Luo P, Lao KH, Margariti A, Zhao Q, Ding W, Wang G, Zhang M, Zheng L, Zhang Z, Hu Y, Wang W, Shen L, Smith A, Shah AM, Wang Q, Zeng L. A histone deacetylase 7-derived peptide promotes vascular regeneration via facilitating 14-3-3γ phosphorylation. Stem Cells 2020; 38:556-573. [PMID: 31721359 PMCID: PMC7187271 DOI: 10.1002/stem.3122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
Abstract
Histone deacetylase 7 (HDAC7) plays a pivotal role in the maintenance of the endothelium integrity. In this study, we demonstrated that the intron-containing Hdac7 mRNA existed in the cytosol and that ribosomes bound to a short open reading frame (sORF) within the 5'-terminal noncoding area of this Hdac7 mRNA in response to vascular endothelial growth factor (VEGF) stimulation in the isolated stem cell antigen-1 positive (Sca1+ ) vascular progenitor cells (VPCs). A 7-amino acid (7A) peptide has been demonstrated to be translated from the sORF in Sca1+ -VPCs in vitro and in vivo. The 7A peptide was shown to receive phosphate group from the activated mitogen-activated protein kinase MEKK1 and transfer it to 14-3-3 gamma protein, forming an MEKK1-7A-14-3-3γ signal pathway downstream VEGF. The exogenous synthetic 7A peptide could increase Sca1+ -VPCs cell migration, re-endothelialization in the femoral artery injury, and angiogenesis in hind limb ischemia. A Hd7-7sFLAG transgenic mice line was generated as the loss-of-function model, in which the 7A peptide was replaced by a FLAG-tagged scrabbled peptide. Loss of the endogenous 7A impaired Sca1+ -VPCs cell migration, re-endothelialization of the injured femoral artery, and angiogenesis in ischemic tissues, which could be partially rescued by the addition of the exogenous 7A/7Ap peptide. This study provides evidence that sORFs can be alternatively translated and the derived peptides may play an important role in physiological processes including vascular remodeling.
Collapse
Affiliation(s)
- Junyao Yang
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK.,Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ana Moraga
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Jing Xu
- Institute of Bioengineering, Queen Mary University of London, London, UK
| | - Yue Zhao
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Peiyi Luo
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Ka Hou Lao
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Andriana Margariti
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Wei Ding
- Institute of Bioengineering, Queen Mary University of London, London, UK
| | - Gang Wang
- Department of Emergency Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Min Zhang
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Lei Zheng
- Southern Medical University, Guangzhou, People's Republic of China
| | - Zhongyi Zhang
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Yanhua Hu
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Wen Wang
- Institute of Bioengineering, Queen Mary University of London, London, UK
| | - Lisong Shen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Alberto Smith
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Ajay M Shah
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Qian Wang
- Southern Medical University, Guangzhou, People's Republic of China
| | - Lingfang Zeng
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| |
Collapse
|
13
|
Caines R, Cochrane A, Kelaini S, Vila-Gonzalez M, Yang C, Eleftheriadou M, Moez A, Stitt AW, Zeng L, Grieve DJ, Margariti A. The RNA-binding protein QKI controls alternative splicing in vascular cells, producing an effective model for therapy. J Cell Sci 2019; 132:jcs.230276. [PMID: 31331967 DOI: 10.1242/jcs.230276] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/10/2019] [Indexed: 12/31/2022] Open
Abstract
Dysfunction of endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) leads to ischaemia, the central pathology of cardiovascular disease. Stem cell technology will revolutionise regenerative medicine, but a need remains to understand key mechanisms of vascular differentiation. RNA-binding proteins have emerged as novel post-transcriptional regulators of alternative splicing and we have previously shown that the RNA-binding protein Quaking (QKI) plays roles in EC differentiation. In this study, we decipher the role of the alternative splicing isoform Quaking 6 (QKI-6) to induce VSMC differentiation from induced pluripotent stem cells (iPSCs). PDGF-BB stimulation induced QKI-6, which bound to HDAC7 intron 1 via the QKI-binding motif, promoting HDAC7 splicing and iPS-VSMC differentiation. Overexpression of QKI-6 transcriptionally activated SM22 (also known as TAGLN), while QKI-6 knockdown diminished differentiation capability. VSMCs overexpressing QKI-6 demonstrated greater contractile ability, and upon combination with iPS-ECs-overexpressing the alternative splicing isoform Quaking 5 (QKI-5), exhibited higher angiogenic potential in vivo than control cells alone. This study demonstrates that QKI-6 is critical for modulation of HDAC7 splicing, regulating phenotypically and functionally robust iPS-VSMCs. These findings also highlight that the QKI isoforms hold key roles in alternative splicing, giving rise to cells which can be used in vascular therapy or for disease modelling.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Rachel Caines
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Amy Cochrane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Sophia Kelaini
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Marta Vila-Gonzalez
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Chunbo Yang
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Magdalini Eleftheriadou
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Arya Moez
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Lingfang Zeng
- Cardiovascular Division, King's College London, London SE5 9NU, UK
| | - David J Grieve
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Andriana Margariti
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| |
Collapse
|
14
|
Pan Y, Yang J, Wei Y, Wang H, Jiao R, Moraga A, Zhang Z, Hu Y, Kong D, Xu Q, Zeng L, Zhao Q. Histone Deacetylase 7-Derived Peptides Play a Vital Role in Vascular Repair and Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800006. [PMID: 30128229 PMCID: PMC6097091 DOI: 10.1002/advs.201800006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/19/2018] [Indexed: 05/19/2023]
Abstract
Cardiovascular disease is a leading cause of morbidity and mortality globally. Accumulating evidence indicates that local resident stem/progenitor cells play an important role in vascular regeneration. Recently, it is demonstrated that a histone deacetylase 7-derived 7-amino acid peptide (7A, MHSPGAD) is critical in modulating the mobilization and orientated differentiation of these stem/progenitor cells. Here, its therapeutic efficacy in vascular repair and regeneration is evaluated. In vitro functional analyses reveal that the 7A peptide, in particular phosphorylated 7A (7Ap, MH[pSer]PGAD), could increase stem cell antigen-1 positive (Sca1+) vascular progenitor cell (VPC) migration and differentiation toward an endothelial cell lineage. Furthermore, local delivery of 7A as well as 7Ap could enhance angiogenesis and ameliorate vascular injury in ischaemic tissues; these findings are confirmed in a femoral artery injury model and a hindlimb ischaemia model, respectively. Importantly, sustained delivery of 7A, especially 7Ap, from tissue-engineered vascular grafts could attract Sca1+-VPC cells into the grafts, contributing to endothelialization and intima/media formation in the vascular graft. These results suggest that this novel type of peptides has great translational potential in vascular regenerative medicine.
Collapse
Affiliation(s)
- Yiwa Pan
- State key Laboratory of Medicinal Chemical Biology and Key Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai UniversityTianjin300071P. R. China
| | - Junyao Yang
- Cardiovascular DivisionFaculty of Life Science and MedicineKing's College LondonLondonSE5 9NUUK
| | - Yongzhen Wei
- State key Laboratory of Medicinal Chemical Biology and Key Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai UniversityTianjin300071P. R. China
| | - He Wang
- State key Laboratory of Medicinal Chemical Biology and Key Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai UniversityTianjin300071P. R. China
| | - Rongkuan Jiao
- State key Laboratory of Medicinal Chemical Biology and Key Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai UniversityTianjin300071P. R. China
| | - Ana Moraga
- Cardiovascular DivisionFaculty of Life Science and MedicineKing's College LondonLondonSE5 9NUUK
| | - Zhongyi Zhang
- Cardiovascular DivisionFaculty of Life Science and MedicineKing's College LondonLondonSE5 9NUUK
| | - Yanhua Hu
- Cardiovascular DivisionFaculty of Life Science and MedicineKing's College LondonLondonSE5 9NUUK
| | - Deling Kong
- State key Laboratory of Medicinal Chemical Biology and Key Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai UniversityTianjin300071P. R. China
| | - Qingbo Xu
- Cardiovascular DivisionFaculty of Life Science and MedicineKing's College LondonLondonSE5 9NUUK
| | - Lingfang Zeng
- Cardiovascular DivisionFaculty of Life Science and MedicineKing's College LondonLondonSE5 9NUUK
| | - Qiang Zhao
- State key Laboratory of Medicinal Chemical Biology and Key Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai UniversityTianjin300071P. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu221000China
| |
Collapse
|
15
|
Class I histone deacetylase (HDAC) inhibitor CI-994 promotes functional recovery following spinal cord injury. Cell Death Dis 2018; 9:460. [PMID: 29700327 PMCID: PMC5919919 DOI: 10.1038/s41419-018-0543-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 03/12/2018] [Accepted: 03/30/2018] [Indexed: 12/21/2022]
Abstract
Spinal cord injury (SCI) induces severe and long-lasting neurological disability. Accumulating evidence has suggested that histone deacetylase (HDAC) inhibitors exert neuroprotective effects against various insults and deficits in the central nervous system. In the present study, we assessed the effect of the class I HDAC inhibitor CI-994 in a mouse model of SCI. Following SCI, mice were treated with either dimethyl sulfoxide (control vehicle) or 1, 10, or 30 mg/kg CI-994. Level of acetylated histone H3 expression was increased in the motor cortex and spinal cord of 10 mg/kg CCI-994-treated mice after SCI. CI-994 increased histone H3 acetylation in the myeloperoxidase-positive neutrophils and CD68-positive microglia/macrophages in the spinal cord. Although it did not appear to contribute to corticospinal tract axonal reorganization, intraperitoneal injection of CI-994 promoted behavioral recovery following SCI. Furthermore, administration of CI-994 suppressed neutrophil accumulation, inflammatory cytokine expressions, and neuronal loss as early as 3 days following injury. Thus, our findings indicate that HDAC inhibitors may improve functional recovery following SCI, especially during the early stages of the disease.
Collapse
|
16
|
Lund RJ, Rahkonen N, Malonzo M, Kauko L, Emani MR, Kivinen V, Närvä E, Kemppainen E, Laiho A, Skottman H, Hovatta O, Rasool O, Nykter M, Lähdesmäki H, Lahesmaa R. RNA Polymerase III Subunit POLR3G Regulates Specific Subsets of PolyA + and SmallRNA Transcriptomes and Splicing in Human Pluripotent Stem Cells. Stem Cell Reports 2018; 8:1442-1454. [PMID: 28494942 PMCID: PMC5425787 DOI: 10.1016/j.stemcr.2017.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 04/13/2017] [Accepted: 04/13/2017] [Indexed: 11/17/2022] Open
Abstract
POLR3G is expressed at high levels in human pluripotent stem cells (hPSCs) and is required for maintenance of stem cell state through mechanisms not known in detail. To explore how POLR3G regulates stem cell state, we carried out deep-sequencing analysis of polyA+ and smallRNA transcriptomes present in hPSCs and regulated in POLR3G-dependent manner. Our data reveal that POLR3G regulates a specific subset of the hPSC transcriptome, including multiple transcript types, such as protein-coding genes, long intervening non-coding RNAs, microRNAs and small nucleolar RNAs, and affects RNA splicing. The primary function of POLR3G is in the maintenance rather than repression of transcription. The majority of POLR3G polyA+ transcriptome is regulated during differentiation, and the key pluripotency factors bind to the promoters of at least 30% of the POLR3G-regulated transcripts. Among the direct targets of POLR3G, POLG is potentially important in sustaining stem cell status in a POLR3G-dependent manner.
Collapse
Affiliation(s)
- Riikka J Lund
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland.
| | - Nelly Rahkonen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Maia Malonzo
- Department of Computer Science, Aalto University, Espoo 02150, Finland
| | - Leni Kauko
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Maheswara Reddy Emani
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Virpi Kivinen
- Faculty of Medicine and Life Sciences, BioMediTech, University of Tampere, Tampere 33014, Finland
| | - Elisa Närvä
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Esko Kemppainen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Asta Laiho
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Heli Skottman
- Faculty of Medicine and Life Sciences, BioMediTech, University of Tampere, Tampere 33014, Finland
| | - Outi Hovatta
- Department CLINTEC, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm 171 77, Sweden
| | - Omid Rasool
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Matti Nykter
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland; Faculty of Medicine and Life Sciences, BioMediTech, University of Tampere, Tampere 33014, Finland
| | - Harri Lähdesmäki
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland; Department of Computer Science, Aalto University, Espoo 02150, Finland
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
| |
Collapse
|
17
|
Maguire EM, Xiao Q, Xu Q. Differentiation and Application of Induced Pluripotent Stem Cell–Derived Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2017; 37:2026-2037. [DOI: 10.1161/atvbaha.117.309196] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023]
Abstract
Vascular smooth muscle cells (VSMCs) play a role in the development of vascular disease, for example, neointimal formation, arterial aneurysm, and Marfan syndrome caused by genetic mutations in VSMCs, but little is known about the mechanisms of the disease process. Advances in induced pluripotent stem cell technology have now made it possible to derive VSMCs from several different somatic cells using a selection of protocols. As such, researchers have set out to delineate key signaling processes involved in triggering VSMC gene expression to grasp the extent of gene regulatory networks involved in phenotype commitment. This technology has also paved the way for investigations into diseases affecting VSMC behavior and function, which may be treatable once an identifiable culprit molecule or gene has been repaired. Moreover, induced pluripotent stem cell–derived VSMCs are also being considered for their use in tissue-engineered blood vessels as they may prove more beneficial than using autologous vessels. Finally, while several issues remains to be clarified before induced pluripotent stem cell–derived VSMCs can become used in regenerative medicine, they do offer both clinicians and researchers hope for both treating and understanding vascular disease. In this review, we aim to update the recent progress on VSMC generation from stem cells and the underlying molecular mechanisms of VSMC differentiation. We will also explore how the use of induced pluripotent stem cell–derived VSMCs has changed the game for regenerative medicine by offering new therapeutic avenues to clinicians, as well as providing researchers with a new platform for modeling of vascular disease.
Collapse
Affiliation(s)
- Eithne Margaret Maguire
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (E.M.M., Q. Xiao); and Cardiovascular Division, King’s College London BHF Centre, United Kingdom (Q. Xu)
| | - Qingzhong Xiao
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (E.M.M., Q. Xiao); and Cardiovascular Division, King’s College London BHF Centre, United Kingdom (Q. Xu)
| | - Qingbo Xu
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (E.M.M., Q. Xiao); and Cardiovascular Division, King’s College London BHF Centre, United Kingdom (Q. Xu)
| |
Collapse
|
18
|
Wu Y, Li Z, Yang M, Dai B, Hu F, Yang F, Zhu J, Chen T, Zhang L. MicroRNA-214 regulates smooth muscle cell differentiation from stem cells by targeting RNA-binding protein QKI. Oncotarget 2017; 8:19866-19878. [PMID: 28186995 PMCID: PMC5386729 DOI: 10.18632/oncotarget.15189] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 11/30/2016] [Indexed: 12/15/2022] Open
Abstract
MicroRNA-214(miR-214) has been recently reported to regulate angiogenesis and embryonic stem cells (ESCs) differentiation. However, very little is known about its functional role in vascular smooth muscle cells (VSMCs) differentiation from ESCs. In the present study, we assessed the hypothesis that miR-214 and its target genes play an important role in VSMCs differentiation. Murine ESCs were seeded on collagen-coated flasks and cultured in differentiation medium for 2 to 8 days to allow VSMCs differentiation. miR-214 was significantly upregulated during VSMCs differentiation. miR-214 overexpression and knockdown in differentiating ESCs significantly promoted and inhibited VSMCs -specific genes expression, respectively. Importantly, miR-214 overexpression in ESCs promoted VSMCs differentiation in vivo. Quaking (QKI) was predicted as one of the major targets of miR-214, which was negatively regulated by miR-214. Luciferase assay showed miR-214 substantially inhibited wild type, but not the mutant version of QKI-3-UTR-luciferase activity in differentiating ESCs, further confirming a negative regulation role of miR-214 in QKI gene expression. Mechanistically, our data showed that miR-214 regulated VSMCs gene expression during VSMCs differentiation from ESCs through suppression of QKI. We further demonstrated that QKI down-regulated the expression of SRF, MEF2C and Myocd through transcriptional repression and direct binding to promoters of the SRF, MEF2c and Myocd genes. Taken together, we have uncovered a central role of miR-214 in ESC-VSMC differentiation, and successfully identified QKI as a functional modulating target in miR-214 mediated VSMCs differentiation.
Collapse
Affiliation(s)
- Yutao Wu
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Zhoubin Li
- Department of Lung Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Mei Yang
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Bing Dai
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Feng Hu
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Feng Yang
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Jianhua Zhu
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Ting Chen
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Li Zhang
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
19
|
Shen EM, McCloskey KE. Development of Mural Cells: From In Vivo Understanding to In Vitro Recapitulation. Stem Cells Dev 2017; 26:1020-1041. [DOI: 10.1089/scd.2017.0020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Edwin M. Shen
- Graduate Program in Biological Engineering and Small-scale Technologies
| | - Kara E. McCloskey
- Graduate Program in Biological Engineering and Small-scale Technologies
- School of Engineering, University of California, Merced, Merced, California
| |
Collapse
|
20
|
Cochrane A, Kelaini S, Tsifaki M, Bojdo J, Vilà-González M, Drehmer D, Caines R, Magee C, Eleftheriadou M, Hu Y, Grieve D, Stitt AW, Zeng L, Xu Q, Margariti A. Quaking Is a Key Regulator of Endothelial Cell Differentiation, Neovascularization, and Angiogenesis. Stem Cells 2017; 35:952-966. [PMID: 28207177 PMCID: PMC5396345 DOI: 10.1002/stem.2594] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/10/2017] [Accepted: 01/24/2017] [Indexed: 12/28/2022]
Abstract
The capability to derive endothelial cell (ECs) from induced pluripotent stem cells (iPSCs) holds huge therapeutic potential for cardiovascular disease. This study elucidates the precise role of the RNA‐binding protein Quaking isoform 5 (QKI‐5) during EC differentiation from both mouse and human iPSCs (hiPSCs) and dissects how RNA‐binding proteins can improve differentiation efficiency toward cell therapy for important vascular diseases. iPSCs represent an attractive cellular approach for regenerative medicine today as they can be used to generate patient‐specific therapeutic cells toward autologous cell therapy. In this study, using the model of iPSCs differentiation toward ECs, the QKI‐5 was found to be an important regulator of STAT3 stabilization and vascular endothelial growth factor receptor 2 (VEGFR2) activation during the EC differentiation process. QKI‐5 was induced during EC differentiation, resulting in stabilization of STAT3 expression and modulation of VEGFR2 transcriptional activation as well as VEGF secretion through direct binding to the 3′ UTR of STAT3. Importantly, mouse iPS‐ECs overexpressing QKI‐5 significantly improved angiogenesis and neovascularization and blood flow recovery in experimental hind limb ischemia. Notably, hiPSCs overexpressing QKI‐5, induced angiogenesis on Matrigel plug assays in vivo only 7 days after subcutaneous injection in SCID mice. These results highlight a clear functional benefit of QKI‐5 in neovascularization, blood flow recovery, and angiogenesis. Thus, they provide support to the growing consensus that elucidation of the molecular mechanisms underlying EC differentiation will ultimately advance stem cell regenerative therapy and eventually make the treatment of cardiovascular disease a reality. The RNA binding protein QKI‐5 is induced during EC differentiation from iPSCs. RNA binding protein QKI‐5 was induced during EC differentiation in parallel with the EC marker CD144. Immunofluorescence staining showing that QKI‐5 is localized in the nucleus and stained in parallel with CD144 in differentiated ECs (scale bar = 50 µm). stemcells2017 Stem Cells2017;35:952–966
Collapse
Affiliation(s)
- Amy Cochrane
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Sophia Kelaini
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Marianna Tsifaki
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - James Bojdo
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Marta Vilà-González
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Daiana Drehmer
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Rachel Caines
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Corey Magee
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Magdalini Eleftheriadou
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Yanhua Hu
- Cardiovascular Division, King's College London, London, United Kingdom
| | - David Grieve
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Alan W Stitt
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Lingfang Zeng
- Cardiovascular Division, King's College London, London, United Kingdom
| | - Qingbo Xu
- Cardiovascular Division, King's College London, London, United Kingdom
| | - Andriana Margariti
- The Wellcome-Wolfson Building, Centre for Experimental Medicine, Queen's University Belfast, United Kingdom
| |
Collapse
|
21
|
Tuano NK, Okabe J, Ziemann M, Cooper ME, El-Osta A. Set7 mediated interactions regulate transcriptional networks in embryonic stem cells. Nucleic Acids Res 2016; 44:9206-9217. [PMID: 27439711 PMCID: PMC5100561 DOI: 10.1093/nar/gkw621] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/01/2016] [Indexed: 12/17/2022] Open
Abstract
Histone methylation by lysine methyltransferase enzymes regulate the expression of genes implicated in lineage specificity and cellular differentiation. While it is known that Set7 catalyzes mono-methylation of histone and non-histone proteins, the functional importance of this enzyme in stem cell differentiation remains poorly understood. We show Set7 expression is increased during mouse embryonic stem cell (mESC) differentiation and is regulated by the pluripotency factors, Oct4 and Sox2. Transcriptional network analyses reveal smooth muscle (SM) associated genes are subject to Set7-mediated regulation. Furthermore, pharmacological inhibition of Set7 activity confirms this regulation. We observe Set7-mediated modification of serum response factor (SRF) and mono-methylation of histone H4 lysine 4 (H3K4me1) regulate gene expression. We conclude the broad substrate specificity of Set7 serves to control key transcriptional networks in embryonic stem cells.
Collapse
Affiliation(s)
- Natasha K Tuano
- Epigenetics in Human Health and Disease Laboratory, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria 3004, Australia
| | - Jun Okabe
- Epigenetics in Human Health and Disease Laboratory, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria 3004, Australia .,Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia
| | - Mark Ziemann
- Epigenetics in Human Health and Disease Laboratory, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria 3004, Australia.,Epigenomic Profiling Facility, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria 3004, Australia
| | - Mark E Cooper
- Junvenile Diabetes Research Foundation (JDRF) Danielle Alberti Centre for Diabetic Complications, Diabetes Division, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria 3004, Australia
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Laboratory, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria 3004, Australia .,Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia.,Epigenomic Profiling Facility, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria 3004, Australia.,Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
22
|
Di Giorgio E, Brancolini C. Regulation of class IIa HDAC activities: it is not only matter of subcellular localization. Epigenomics 2016; 8:251-69. [DOI: 10.2217/epi.15.106] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In response to environmental cues, enzymes that influence the functions of proteins, through reversible post-translational modifications supervise the coordination of cell behavior like orchestral conductors. Class IIa histone deacetylases (HDACs) belong to this category. Even though in vertebrates these deacetylases have discarded the core enzymatic activity, class IIa HDACs can assemble into multiprotein complexes devoted to transcriptional reprogramming, including but not limited to epigenetic changes. Class IIa HDACs are subjected to variegated and interconnected layers of regulation, which reflect the wide range of biological responses under the scrutiny of this gene family. Here, we discuss about the key mechanisms that fine tune class IIa HDACs activities.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Department of Medical & Biological Sciences, Università degli Studi di Udine., P.le Kolbe 4 - 33100 Udine, Italy
| | - Claudio Brancolini
- Department of Medical & Biological Sciences, Università degli Studi di Udine., P.le Kolbe 4 - 33100 Udine, Italy
| |
Collapse
|
23
|
Yang J, Margariti A, Zeng L. Analysis of Histone Deacetylase 7 (HDAC7) Alternative Splicing and Its Role in Embryonic Stem Cell Differentiation Toward Smooth Muscle Lineage. Methods Mol Biol 2016; 1436:95-108. [PMID: 27246210 DOI: 10.1007/978-1-4939-3667-0_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Histone deacetylases (HDACs) have a central role in the regulation of gene expression, which undergoes alternative splicing during embryonic stem cell (ES) cell differentiation. Alternative splicing gives rise to vast diversity over gene information, arousing public concerns in the last decade. In this chapter, we describe a strategy to detect HDAC7 alternative splicing and analyze its function on ES cell differentiation.
Collapse
Affiliation(s)
- Junyao Yang
- Cardiovascular Division, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Andriana Margariti
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Lingfang Zeng
- Cardiovascular Division, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK.
| |
Collapse
|
24
|
Shi N, Chen SY. Smooth Muscle Cell Differentiation: Model Systems, Regulatory Mechanisms, and Vascular Diseases. J Cell Physiol 2015; 231:777-87. [DOI: 10.1002/jcp.25208] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Ning Shi
- Department of Physiology and Pharmacology; University of Georgia; Athens Georgia
| | - Shi-You Chen
- Department of Physiology and Pharmacology; University of Georgia; Athens Georgia
| |
Collapse
|
25
|
Zeng L, Li Y, Yang J, Wang G, Margariti A, Xiao Q, Zampetaki A, Yin X, Mayr M, Mori K, Wang W, Hu Y, Xu Q. XBP 1-Deficiency Abrogates Neointimal Lesion of Injured Vessels Via Cross Talk With the PDGF Signaling. Arterioscler Thromb Vasc Biol 2015; 35:2134-44. [PMID: 26315405 DOI: 10.1161/atvbaha.115.305420] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 08/16/2015] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Smooth muscle cell (SMC) migration and proliferation play an essential role in neointimal formation after vascular injury. In this study, we intended to investigate whether the X-box-binding protein 1 (XBP1) was involved in these processes. APPROACH AND RESULTS In vivo studies on femoral artery injury models revealed that vascular injury triggered an immediate upregulation of XBP1 expression and splicing in vascular SMCs and that XBP1 deficiency in SMCs significantly abrogated neointimal formation in the injured vessels. In vitro studies indicated that platelet-derived growth factor-BB triggered XBP1 splicing in SMCs via the interaction between platelet-derived growth factor receptor β and the inositol-requiring enzyme 1α. The spliced XBP1 (XBP1s) increased SMC migration via PI3K/Akt activation and proliferation via downregulating calponin h1 (CNN1). XBP1s directed the transcription of mir-1274B that targeted CNN1 mRNA degradation. Proteomic analysis of culture media revealed that XBP1s decreased transforming growth factor (TGF)-β family proteins secretion via transcriptional suppression. TGF-β3 but not TGF-β1 or TGF-β2 attenuated XBP1s-induced CNN1 decrease and SMC proliferation. CONCLUSIONS This study demonstrates for the first time that XBP1 is crucial for SMC proliferation via modulating the platelet-derived growth factor/TGF-β pathways, leading to neointimal formation.
Collapse
Affiliation(s)
- Lingfang Zeng
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China (G.W.); Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom (A.M.); and Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan (K.M.).
| | - Yi Li
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China (G.W.); Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom (A.M.); and Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan (K.M.)
| | - Juanyao Yang
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China (G.W.); Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom (A.M.); and Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan (K.M.)
| | - Gang Wang
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China (G.W.); Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom (A.M.); and Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan (K.M.)
| | - Andriana Margariti
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China (G.W.); Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom (A.M.); and Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan (K.M.)
| | - Qingzhong Xiao
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China (G.W.); Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom (A.M.); and Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan (K.M.)
| | - Anna Zampetaki
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China (G.W.); Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom (A.M.); and Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan (K.M.)
| | - Xiaoke Yin
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China (G.W.); Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom (A.M.); and Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan (K.M.)
| | - Manuel Mayr
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China (G.W.); Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom (A.M.); and Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan (K.M.)
| | - Kazutoshi Mori
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China (G.W.); Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom (A.M.); and Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan (K.M.)
| | - Wen Wang
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China (G.W.); Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom (A.M.); and Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan (K.M.)
| | - Yanhua Hu
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China (G.W.); Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom (A.M.); and Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan (K.M.)
| | - Qingbo Xu
- From the Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China (G.W.); Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom (A.M.); and Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan (K.M.).
| |
Collapse
|
26
|
Schmitz ML, de la Vega L. New Insights into the Role of Histone Deacetylases as Coactivators of Inflammatory Gene Expression. Antioxid Redox Signal 2015; 23:85-98. [PMID: 24359078 DOI: 10.1089/ars.2013.5750] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SIGNIFICANCE The expression and/or activity of histone deacetylases (HDACs) can be regulated by a variety of environmental conditions, including inflammation and oxidative stress. These events result in diminished or exaggerated protein acetylation, both of which can be causative for many ailments. While the anti-inflammatory activity of HDAC inhibitors (HDACis) is well known, recent studies started unraveling details of the molecular mechanisms underlying the pro-inflammatory function of HDACs. RECENT ADVANCES Recent evidence shows that HDACs are found in association with transcribed regions and ensure proper transcription by maintaining acetylation homeostasis. We also discuss current insights in the molecular mechanisms mediating acetylation-dependent inhibition of pro-inflammatory transcription factors of the NF-κB, HIF-1, IRF, and STAT families. CRITICAL ISSUES The high number of acetylations and the complexity of the regulatory consequences make it difficult to assign biological effects directly to a single acetylation event. The vast majority of acetylated proteins are nonhistone proteins, and it remains to be shown whether the therapeutic effects of HDACis are attributable to altered histone acetylation. FUTURE DIRECTIONS In the traditional view, only exaggerated acetylation is harmful and causative for diseases. Recent data show the relevance of acetylation homeostasis and suggest that both diminished and inflated acetylation can enable the development of ailments. Since acetylation of nonhistone proteins is essential for the induction of a substantial part of the inflammatory gene expression program, HDACis are more than "epigenetic drugs." The identification of substrates for individual HDACs will be the prerequisite for the adequate use of highly specific HDACis.
Collapse
Affiliation(s)
- Michael Lienhard Schmitz
- 1 Medical Faculty, Institute of Biochemistry, Justus-Liebig-University , Giessen, Germany .,2 The German Center for Lung Research, Giessen, Germany
| | - Laureano de la Vega
- 3 Division of Cancer Research, Medical Research Institute, Jacqui Wood Cancer Centre, University of Dundee , Ninewells Hospital and Medical School, Dundee, United Kingdom
| |
Collapse
|
27
|
Yang JY, Wang Q, Wang W, Zeng LF. Histone deacetylases and cardiovascular cell lineage commitment. World J Stem Cells 2015; 7:852-858. [PMID: 26131315 PMCID: PMC4478631 DOI: 10.4252/wjsc.v7.i5.852] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/14/2015] [Accepted: 04/07/2015] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVDs), which include all diseases of the heart and circulation system, are the leading cause of deaths on the globally. During the development of CVDs, choric inflammatory, lipid metabolism disorder and endothelial dysfunction are widely recognized risk factors. Recently, the new treatment for CVDs that designed to regenerate the damaged myocardium and injured vascular endothelium and improve recovery by the use of stem cells, attracts more and more public attention. Histone deacetylases (HDACs) are a family of enzymes that remove acetyl groups from lysine residues of histone proteins allowing the histones to wrap the DNA more tightly and commonly known as epigenetic regulators of gene transcription. HDACs play indispensable roles in nearly all biological processes, such as transcriptional regulation, cell cycle progression and developmental events, and have originally shown to be involved in cancer and neurological diseases. HDACs are also found to play crucial roles in cardiovascular diseases by modulating vascular cell homeostasis (e.g., proliferation, migration, and apoptosis of both ECs and SMCs). This review focuses on the roles of different members of HDACs and HDAC inhibitor on stem cell/ progenitor cell differentiation toward vascular cell lineages (endothelial cells, smooth muscle cells and Cardiomyocytes) and its potential therapeutics.
Collapse
|
28
|
Wang X, Karamariti E, Simpson R, Wang W, Xu Q. Dickkopf Homolog 3 Induces Stem Cell Differentiation into Smooth Muscle Lineage via ATF6 Signalling. J Biol Chem 2015; 290:19844-52. [PMID: 26105053 PMCID: PMC4528144 DOI: 10.1074/jbc.m115.641415] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Indexed: 11/13/2022] Open
Abstract
Smooth muscle cells (SMCs) are a key component of healthy and tissue engineered vessels and play a crucial role in vascular development and the pathogenic events of vascular remodeling i.e. restenosis. However, the cell source from which they can be isolated is limited. Embryonic stem (ES) cells that have the remarkable capability to differentiate into vascular SMCs in response to specific stimuli provide a useful model for studying SMC differentiation. Previous studies suggested that dickkopf homolog 3 (DKK3) has a role in human partially induced pluripotent stem cell to SMC differentiation. Here, we demonstrate that the expression of DKK3 is essential for the expression of SMC markers and myocardin at both the mRNA and protein levels during mouse ES cell differentiation into SMCs (ESC-SMC differentiation). Overexpression of DKK3 leads to further up-regulation of the aforementioned markers. Further investigation indicates that DKK3 added as a cytokine activates activating transcription factor 6 (ATF6), leading to the increased binding of ATF6 on the myocardin promoter and increased its expression. In addition, inhibition of extracellular signal-regulated kinases 1/2 (ERK1/2) promotes the expression of ATF6 and leads to further increase of myocardin transcription. Our findings offer a novel mechanism by which DKK3 regulates ESC-SMC differentiation by activating ATF6 and promoting myocardin expression.
Collapse
Affiliation(s)
- Xiaocong Wang
- From the Cardiovascular Division, King's College London BHF Centre, London SE5 9NU, United Kingdom and the Institute of Bioengineering, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Eirini Karamariti
- From the Cardiovascular Division, King's College London BHF Centre, London SE5 9NU, United Kingdom and
| | - Russell Simpson
- From the Cardiovascular Division, King's College London BHF Centre, London SE5 9NU, United Kingdom and
| | - Wen Wang
- the Institute of Bioengineering, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Qingbo Xu
- From the Cardiovascular Division, King's College London BHF Centre, London SE5 9NU, United Kingdom and
| |
Collapse
|
29
|
Wang G, Jacquet L, Karamariti E, Xu Q. Origin and differentiation of vascular smooth muscle cells. J Physiol 2015; 593:3013-30. [PMID: 25952975 PMCID: PMC4532522 DOI: 10.1113/jp270033] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/19/2015] [Indexed: 12/18/2022] Open
Abstract
Vascular smooth muscle cells (SMCs), a major structural component of the vessel wall, not only play a key role in maintaining vascular structure but also perform various functions. During embryogenesis, SMC recruitment from their progenitors is an important step in the formation of the embryonic vascular system. SMCs in the arterial wall are mostly quiescent but can display a contractile phenotype in adults. Under pathophysiological conditions, i.e. vascular remodelling after endothelial dysfunction or damage, contractile SMCs found in the media switch to a secretory type, which will facilitate their ability to migrate to the intima and proliferate to contribute to neointimal lesions. However, recent evidence suggests that the mobilization and recruitment of abundant stem/progenitor cells present in the vessel wall are largely responsible for SMC accumulation in the intima during vascular remodelling such as neointimal hyperplasia and arteriosclerosis. Therefore, understanding the regulatory mechanisms that control SMC differentiation from vascular progenitors is essential for exploring therapeutic targets for potential clinical applications. In this article, we review the origin and differentiation of SMCs from stem/progenitor cells during cardiovascular development and in the adult, highlighting the environmental cues and signalling pathways that control phenotypic modulation within the vasculature.
![]()
Collapse
Affiliation(s)
- Gang Wang
- Department of Emergency Medicine, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Laureen Jacquet
- Cardiovascular Division, King's College London BHF Centre, London, UK
| | - Eirini Karamariti
- Cardiovascular Division, King's College London BHF Centre, London, UK
| | - Qingbo Xu
- Cardiovascular Division, King's College London BHF Centre, London, UK
| |
Collapse
|
30
|
Zhao H, Wen G, Wen G, Huang Y, Yu X, Chen Q, Afzal TA, Luong LA, Zhu J, Ye S, Shu Y, Zhang L, Xiao Q. MicroRNA-22 regulates smooth muscle cell differentiation from stem cells by targeting methyl CpG-binding protein 2. Arterioscler Thromb Vasc Biol 2015; 35:918-29. [PMID: 25722434 DOI: 10.1161/atvbaha.114.305212] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE In this study, we attempted to uncover the functional impact of microRNA-22 (miR-22) and its target gene in smooth muscle cell (SMC) differentiation and delineate the molecular mechanism involved. APPROACH AND RESULTS miR-22 was found to be significantly upregulated during SMC differentiation from embryonic stem cells and adventitia stem/progenitor cells. Enforced expression of miR-22 by its mimic, while knockdown of miR-22 by its antagomiR, promotes or inhibits SMC differentiation from embryonic stem cells and adventitia stem/progenitor cells, respectively. Expectedly, miR-22 overexpression in stem cells promoted SMC differentiation in vivo. Methyl CpG-binding protein 2 (MECP2) was predicted as one of the top targets of miR-22. Interestingly, the gene expression levels of MECP2 were significantly decreased during SMC differentiation, and MECP2 was dramatically decreased in miR-22 overexpressing cells but significantly increased when miR-22 was knockdown in the differentiating stem cells. Importantly, luciferase assay showed that miR-22 substantially inhibited wild-type, but not mutant MECP2-3' untranslated region-luciferase activity. In addition, modulation of MECP2 expression levels affects multiple SMC-specific gene expression in differentiated embryonic stem cells. Mechanistically, our data showed that MECP2 could transcriptionally repress SMC gene expression through modulating various SMC transcription factors, as well as several proven SMC differentiation regulators. Evidence also revealed that enrichment of H3K9 trimethylation around the promoter regions of the SMC differentiation regulators genes were significantly increased by MECP2 overexpression. Finally, miR-22 was upregulated by platelet-derived growth factor-BB and transforming growth factor-β through a transcriptional mechanism during SMC differentiation. CONCLUSIONS miR-22 plays an important role in SMC differentiation, and epigenetic regulation through MECP2 is required for miR-22 mediated SMC differentiation.
Collapse
Affiliation(s)
- Hanqing Zhao
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (H.Z., G.W., Y.H., X.Y., Q.C., T.A.A., L.A.L., Y.S., Q.X.); and Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China (Y.H., Q.C., J.Z., L.Z.)
| | | | - Guammei Wen
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (H.Z., G.W., Y.H., X.Y., Q.C., T.A.A., L.A.L., Y.S., Q.X.); and Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China (Y.H., Q.C., J.Z., L.Z.)
| | - Yuan Huang
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (H.Z., G.W., Y.H., X.Y., Q.C., T.A.A., L.A.L., Y.S., Q.X.); and Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China (Y.H., Q.C., J.Z., L.Z.)
| | - Xiaotian Yu
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (H.Z., G.W., Y.H., X.Y., Q.C., T.A.A., L.A.L., Y.S., Q.X.); and Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China (Y.H., Q.C., J.Z., L.Z.)
| | - Qishan Chen
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (H.Z., G.W., Y.H., X.Y., Q.C., T.A.A., L.A.L., Y.S., Q.X.); and Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China (Y.H., Q.C., J.Z., L.Z.)
| | - Tayyab Adeel Afzal
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (H.Z., G.W., Y.H., X.Y., Q.C., T.A.A., L.A.L., Y.S., Q.X.); and Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China (Y.H., Q.C., J.Z., L.Z.)
| | - Le Anh Luong
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (H.Z., G.W., Y.H., X.Y., Q.C., T.A.A., L.A.L., Y.S., Q.X.); and Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China (Y.H., Q.C., J.Z., L.Z.)
| | - Jianhua Zhu
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (H.Z., G.W., Y.H., X.Y., Q.C., T.A.A., L.A.L., Y.S., Q.X.); and Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China (Y.H., Q.C., J.Z., L.Z.)
| | | | - Ye Shu
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (H.Z., G.W., Y.H., X.Y., Q.C., T.A.A., L.A.L., Y.S., Q.X.); and Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China (Y.H., Q.C., J.Z., L.Z.)
| | - Li Zhang
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (H.Z., G.W., Y.H., X.Y., Q.C., T.A.A., L.A.L., Y.S., Q.X.); and Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China (Y.H., Q.C., J.Z., L.Z.).
| | - Qingzhong Xiao
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom (H.Z., G.W., Y.H., X.Y., Q.C., T.A.A., L.A.L., Y.S., Q.X.); and Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China (Y.H., Q.C., J.Z., L.Z.)
| |
Collapse
|
31
|
Fraineau S, Palii CG, Allan DS, Brand M. Epigenetic regulation of endothelial-cell-mediated vascular repair. FEBS J 2015; 282:1605-29. [PMID: 25546332 DOI: 10.1111/febs.13183] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 01/16/2023]
Abstract
Maintenance of vascular integrity is essential for the prevention of vascular disease and for recovery following cardiovascular, cerebrovascular and peripheral vascular events including limb ischemia, heart attack and stroke. Endothelial stem/progenitor cells have recently gained considerable interest due to their potential use in stem cell therapies to mediate revascularization after ischemic injury. Therefore, there is an urgent need to understand fundamental mechanisms regulating vascular repair in specific cell types to develop new beneficial therapeutic interventions. In this review, we highlight recent studies demonstrating that epigenetic mechanisms (including post-translational modifications of DNA and histones as well as non-coding RNA-mediated processes) play essential roles in the regulation of endothelial stem/progenitor cell functions through modifying chromatin structure. Furthermore, we discuss the potential of using small molecules that modulate the activities of epigenetic enzymes to enhance the vascular repair function of endothelial cells and offer insight on potential strategies that may accelerate clinical applications.
Collapse
Affiliation(s)
- Sylvain Fraineau
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Canada; Ottawa Institute of Systems Biology, Canada
| | | | | | | |
Collapse
|
32
|
Yu X, Zhang L, Wen G, Zhao H, Luong LA, Chen Q, Huang Y, Zhu J, Ye S, Xu Q, Wang W, Xiao Q. Upregulated sirtuin 1 by miRNA-34a is required for smooth muscle cell differentiation from pluripotent stem cells. Cell Death Differ 2014; 22:1170-80. [PMID: 25526086 DOI: 10.1038/cdd.2014.206] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 12/31/2022] Open
Abstract
microRNA-34a (miR-34a) and sirtuin 1 (SirT1) have been extensively studied in tumour biology and longevity/aging, but little is known about their functional roles in smooth muscle cell (SMC) differentiation from pluripotent stem cells. Using well-established SMC differentiation models, we have demonstrated that miR-34a has an important role in SMC differentiation from murine and human embryonic stem cells. Surprisingly, deacetylase sirtuin 1 (SirT1), one of the top predicted targets, was positively regulated by miR-34a during SMC differentiation. Mechanistically, we demonstrated that miR-34a promoted differentiating stem cells' arrest at G0/G1 phase and observed a significantly decreased incorporation of miR-34a and SirT1 RNA into Ago2-RISC complex upon SMC differentiation. Importantly, we have identified SirT1 as a transcriptional activator in the regulation of SMC gene programme. Finally, our data showed that SirT1 modulated the enrichment of H3K9 tri-methylation around the SMC gene-promoter regions. Taken together, our data reveal a specific regulatory pathway that miR-34a positively regulates its target gene SirT1 in a cellular context-dependent and sequence-specific manner and suggest a functional role for this pathway in SMC differentiation from stem cells in vitro and in vivo.
Collapse
Affiliation(s)
- X Yu
- 1] Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK [2] Institute of Bioengineering, Queen Mary University of London, London E1 4NS, UK
| | - L Zhang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310003, China
| | - G Wen
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - H Zhao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - L A Luong
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Q Chen
- 1] Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK [2] Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310003, China
| | - Y Huang
- 1] Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK [2] Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310003, China
| | - J Zhu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310003, China
| | - S Ye
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Q Xu
- Cardiovascular Division, King's College London British Heart Foundation Centre, London SE5 9NU, UK
| | - W Wang
- Institute of Bioengineering, Queen Mary University of London, London E1 4NS, UK
| | - Q Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| |
Collapse
|
33
|
Li L, Zhang W, Chai X, Zhang Q, Xie J, Chen S, Zhao S. Neuronal maturation and laminar formation in the chicken optic tectum are accompanied by the transition of phosphorylated cofilin from cytoplasm to nucleus. Gene Expr Patterns 2014; 16:75-85. [PMID: 25290739 DOI: 10.1016/j.gep.2014.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 11/17/2022]
Abstract
Laminar formation in the chicken optic tectum requires processes that coordinate proliferation, migration and differentiation of neurons, in which the dynamics of actin filaments are crucial. Cofilin plays pivotal roles in regulating actin arrangement via its phosphorylation on Ser3. Given poor studies on the profile of phosphorylated cofilin (p-cofilin) in the developing tectum, we investigated its expression pattern. As determined by immunofluorescence histochemistry and western blotting, p-cofilin could be detected in most tectal layers except for the neural epithelium. In addition, we found p-cofilin was expressed both in the cytoplasm and the nucleus. During development, the expression of the cytoplasmic p-cofilin was decreasing and the nuclear p-cofilin was gradually increasing, but the total level of p-cofilin was down regulated. Double-labeling experiments revealed that the nuclear p-cofilin could be labeled in mature neurons but undetected in immature neurons. Furthermore, the number of cells co-stained with nuclear p-cofilin and NeuN was up-regulated during lamination and 60% cells were detected to be mature neurons that can express nuclear p-cofilin just at the first appearance of completed laminae. Our results demonstrate that the maturation of neurons is accompanied by this cytoplasm-to-nucleus transition of p-cofilin, and the nuclear p-cofilin can work effectively as a marker in the laminar formation of the chicken optic tectum.
Collapse
Affiliation(s)
- Lingling Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Wei Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Xuejun Chai
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Qi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Jiongfang Xie
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Shulin Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 Shaanxi, China.
| |
Collapse
|
34
|
Luo Z, Wen G, Wang G, Pu X, Ye S, Xu Q, Wang W, Xiao Q. MicroRNA-200C and -150 play an important role in endothelial cell differentiation and vasculogenesis by targeting transcription repressor ZEB1. Stem Cells 2014; 31:1749-62. [PMID: 23765923 DOI: 10.1002/stem.1448] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 04/30/2013] [Accepted: 05/06/2013] [Indexed: 12/19/2022]
Abstract
To investigate the role of miRNA in controlling human embryonic stem (hES) cell differentiation toward the endothelial lineage and chick embryonic blood vessel formation, undifferentiated hES cells were first cultured on Matrigel-coated flasks and in endothelial cell growth medium-2 (EGM-2) to initiate endothelial cell (EC) differentiation. CD146(+) cells were isolated from differentiating hES cells and expanded in vitro. The in vitro expanded CD146(+) cells were positive for EC markers, capable of Ac-LDL uptake, lectin binding, and the formation of vascular structures in vitro and in vivo. miRNA gain/loss-of-function analyses revealed that miR-150 and miR-200c were crucial in EC differentiation. Transcriptional repressor zinc finger E-box-binding homeobox 1 (ZEB1) was identified as the communal target gene of miRNA-200C and -150, and inhibition of ZEB1 was required for miRNA-200C or -150 mediated EC gene expressions. Moreover, we demonstrated that ZEB1 could transcriptionally repress EC gene expression through direct binding to promoters of EC genes. Finally, we also demonstrated that miRNA-200c and -150 played an important role in chick embryonic blood vessel formation by in vivo inhibition of miRNA-200C or -150 in developing chick embryos, and blocking ZEB1 signaling in CD146-positive cells could rescue the inhibitory effects of miR-200c inhibiton in in vivo vasculogenesis. Our findings revealed that miR-150 and miR-200c play an important role in human endothelial lineage specification and chick embryonic vasculogenesis by targeting ZEB1.
Collapse
Affiliation(s)
- Zhenling Luo
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom; Institute of Bioengineering, Queen Mary University of London, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Huang Y, Lin L, Yu X, Wen G, Pu X, Zhao H, Fang C, Zhu J, Ye S, Zhang L, Xiao Q. Functional involvements of heterogeneous nuclear ribonucleoprotein A1 in smooth muscle differentiation from stem cells in vitro and in vivo. Stem Cells 2014; 31:906-17. [PMID: 23335105 DOI: 10.1002/stem.1324] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/14/2012] [Indexed: 02/02/2023]
Abstract
To investigate the functional involvements of heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) in smooth muscle cell (SMC) differentiation from stem cells, embryonic stem cells were cultivated on collagen IV-coated plates to allow for SMC differentiation. We found that hnRNPA1 gene and protein expression was upregulated significantly during differentiation and coexpressed with SMC differentiation markers in the stem cell-derived SMCs as well as embryonic SMCs of 12.5 days of mouse embryos. hnRNPA1 knockdown resulted in downregulation of smooth muscle markers and transcription factors, while enforced expression of hnRNPA1 enhanced the expression of these genes. Importantly, knockdown of hnRNPA1 also resulted in impairment of SMC differentiation in vivo. Moreover, we demonstrated that hnRNPA1 could transcriptionally regulate SMC gene expression through direct binding to promoters of Acta2 and Tagln genes using luciferase and chromatin immunoprecipitation assays. We further demonstrated that the binding sites for serum response factor (SRF), a well-investigated SMC transcription factor, within the promoter region of the Acta2 and Tagln genes were responsible for hnRNPA1-mediated Acta2 and Tagln gene expression using in vitro site-specific mutagenesis and luciferase activity analyses. Finally, we also demonstrated that hnRNPA1 upregulated the expression of SRF, myocyte-specific enhancer factor 2c (MEF2c), and myocardin through transcriptional activation and direct binding to promoters of the SRF, MEF2c, and Myocd genes. Our findings demonstrated that hnRNPA1 plays a functional role in SMC differentiation from stem cells in vitro and in vivo. This indicates that hnRNPA1 is a potential modulating target for deriving SMCs from stem cells and cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Yuan Huang
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zheng XL. Myocardin and smooth muscle differentiation. Arch Biochem Biophys 2014; 543:48-56. [DOI: 10.1016/j.abb.2013.12.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/15/2013] [Accepted: 12/18/2013] [Indexed: 01/08/2023]
|
37
|
Over-expression of HSP47 augments mouse embryonic stem cell smooth muscle differentiation and chemotaxis. PLoS One 2014; 9:e86118. [PMID: 24454956 PMCID: PMC3894195 DOI: 10.1371/journal.pone.0086118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/10/2013] [Indexed: 01/25/2023] Open
Abstract
In the recent decade, embryonic stem cells (ESC) have emerged as an attractive cell source of smooth muscle cells (SMC) for vascular tissue engineering owing to their unlimited self-renewal and differentiation capacities. Despite their promise in therapy, their efficacy is still hampered by the lack of definitive SMC differentiation mechanisms and difficulties in successful trafficking of the ESC towards a site of injury or target tissue. Heat shock protein 47 (HSP47) is a 47-kDa molecular chaperone that is required for the maturation of various types of collagen and has been shown to be a critical modulator of different pathological and physiological processes. To date, the role of HSP47 on ESC to SMC differentiation or ESC chemotaxis is not known and may represent a potential molecular approach by which ESC can be manipulated to increase their efficacy in clinic. We provide evidence that HSP47 is highly expressed during ESC differentiation into the SMC lineage and that HSP47 reduction results in an attenuation of the differentiation. Our experiments using a HSP47 plasmid transfection system show that gene over-expression is sufficient to induce ESC-SMC differentiation, even in the absence of exogenous stimuli. Furthermore, HSP47 over-expression in ESC also increases their chemotaxis and migratory responses towards a panel of chemokines, likely via the upregulation of chemokine receptors. Our findings provide direct evidence of induced ESC migration and differentiation into SMC via the over-expression of HSP47, thus identifying a novel approach of molecular manipulation that can potentially be exploited to improve stem cell therapy for vascular repair and regeneration.
Collapse
|
38
|
Zeng L, Wang G, Ummarino D, Margariti A, Xu Q, Xiao Q, Wang W, Zhang Z, Yin X, Mayr M, Cockerill G, Li JYS, Chien S, Hu Y, Xu Q. Histone deacetylase 3 unconventional splicing mediates endothelial-to-mesenchymal transition through transforming growth factor β2. J Biol Chem 2013; 288:31853-66. [PMID: 24045946 DOI: 10.1074/jbc.m113.463745] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Histone deacetylase 3 (HDAC3) plays a critical role in the maintenance of endothelial integrity and other physiological processes. In this study, we demonstrated that HDAC3 undergoes unconventional splicing during stem cell differentiation. Four different splicing variants have been identified, designated as HD3α, -β, -γ, and -δ, respectively. HD3α was confirmed in stem cell differentiation by specific antibody against the sequences from intron 12. Immunofluorescence staining indicated that the HD3α isoform co-localized with CD31-positive or α-smooth muscle actin-positive cells at different developmental stages of mouse embryos. Overexpression of HD3α reprogrammed human aortic endothelial cells into mesenchymal cells featuring an endothelial-to-mesenchymal transition (EndMT) phenotype. HD3α directly interacts with HDAC3 and Akt1 and selectively activates transforming growth factor β2 (TGFβ2) secretion and cleavage. TGFβ2 functioned as an autocrine and/or paracrine EndMT factor. The HD3α-induced EndMT was both PI3K/Akt- and TGFβ2-dependent. This study provides the first evidence of the role of HDAC3 splicing in the maintenance of endothelial integrity.
Collapse
Affiliation(s)
- Lingfang Zeng
- From the Cardiovascular Division, King's College London BHF Centre, 125 Cold Harbour Lane, London SE5 9NU, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chen Y, Wong MM, Campagnolo P, Simpson R, Winkler B, Margariti A, Hu Y, Xu Q. Adventitial stem cells in vein grafts display multilineage potential that contributes to neointimal formation. Arterioscler Thromb Vasc Biol 2013; 33:1844-51. [PMID: 23744989 DOI: 10.1161/atvbaha.113.300902] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE This study was designed to carry out the characterization of stem cells within the adventitia and to elucidate their functional role in the pathogenesis of vein graft atherosclerosis. APPROACH AND RESULTS A mouse vein graft model was used to investigate the functional role of adventitial stem/progenitor cells on atherosclerosis. The adventitia of vein grafts underwent significant remodeling during early stages of vessel grafting and displayed markedly heterogeneous cell compositions. Immunofluorescence staining indicated a significant number of stem cell antigen-1-positive cells that were closely located to vasa vasorum. In vitro clonogenic assays demonstrated 1% to 11% of growing rates from adventitial cell cultures, most of which could be differentiated into smooth muscle cells (SMCs). These stem cell antigen-1-positive cells also displayed a potential to differentiate into adipogenic, osteogenic, or chondrogenic lineages in vitro. In light of the proatherogenic roles of SMCs in atherosclerosis, we focused on the functional roles of progenitor-SMC differentiation, in which we subsequently demonstrated that it was driven by direct interaction of the integrin/collagen IV axis. The ex vivo bioreactor system revealed the migratory capacity of stem cell antigen-1-positive progenitor cells into the vessel wall in response to stromal cell-derived factor-1. Stem cell antigen-1-positive cells that were applied to the outer layer of vein grafts showed enhanced atherosclerosis in apolipoprotein E-deficient mice, which contributed to ≈ 30% of neointimal SMCs. CONCLUSIONS We demonstrate that during pathological conditions in vein grafting, the adventitia harbors stem/progenitor cells that can actively participate in the pathogenesis of vascular disease via differentiation into SMCs.
Collapse
Affiliation(s)
- Yikuan Chen
- Department of Vascular Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Functions of heterogeneous nuclear ribonucleoproteins in stem cell potency and differentiation. BIOMED RESEARCH INTERNATIONAL 2013; 2013:623978. [PMID: 23984388 PMCID: PMC3745930 DOI: 10.1155/2013/623978] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/02/2013] [Accepted: 07/04/2013] [Indexed: 12/26/2022]
Abstract
Stem cells possess huge importance in developmental biology, disease modelling, cell replacement therapy, and tissue engineering in regenerative medicine because they have the remarkable potential for self-renewal and to differentiate into almost all the cell types in the human body. Elucidation of molecular mechanisms regulating stem cell potency and differentiation is essential and critical for extensive application. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are modular proteins consisting of RNA-binding motifs and auxiliary domains characterized by extensive and divergent functions in nucleic acid metabolism. Multiple roles of hnRNPs in transcriptional and posttranscriptional regulation enable them to be effective gene expression regulators. More recent findings show that hnRNP proteins are crucial factors implicated in maintenance of stem cell self-renewal and pluripotency and cell differentiation. The hnRNPs interact with certain sequences in target gene promoter regions to initiate transcription. In addition, they recognize 3′UTR or 5′UTR of specific gene mRNA forming mRNP complex to regulate mRNA stability and translation. Both of these regulatory pathways lead to modulation of gene expression that is associated with stem cell proliferation, cell cycle control, pluripotency, and committed differentiation.
Collapse
|
41
|
Shakespear MR, Hohenhaus DM, Kelly GM, Kamal NA, Gupta P, Labzin LI, Schroder K, Garceau V, Barbero S, Iyer A, Hume DA, Reid RC, Irvine KM, Fairlie DP, Sweet MJ. Histone deacetylase 7 promotes Toll-like receptor 4-dependent proinflammatory gene expression in macrophages. J Biol Chem 2013; 288:25362-25374. [PMID: 23853092 DOI: 10.1074/jbc.m113.496281] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Broad-spectrum inhibitors of histone deacetylases (HDACs) constrain Toll-like receptor (TLR)-inducible production of key proinflammatory mediators. Here we investigated HDAC-dependent inflammatory responses in mouse macrophages. Of the classical Hdacs, Hdac7 was expressed at elevated levels in inflammatory macrophages (thioglycollate-elicited peritoneal macrophages) as compared with bone marrow-derived macrophages and the RAW264 cell line. Overexpression of a specific, alternatively spliced isoform of Hdac7 lacking the N-terminal 22 amino acids (Hdac7-u), but not the Refseq Hdac7 (Hdac7-s), promoted LPS-inducible expression of Hdac-dependent genes (Edn1, Il-12p40, and Il-6) in RAW264 cells. A novel class IIa-selective HDAC inhibitor reduced recombinant human HDAC7 enzyme activity as well as TLR-induced production of inflammatory mediators in thioglycollate-elicited peritoneal macrophages. Both LPS and Hdac7-u up-regulated the activity of the Edn1 promoter in an HDAC-dependent fashion in RAW264 cells. A hypoxia-inducible factor (HIF) 1 binding site in this promoter was required for HDAC-dependent TLR-inducible promoter activity and for Hdac7- and HIF-1α-mediated trans-activation. Coimmunoprecipitation assays showed that both Hdac7-u and Hdac7-s interacted with HIF-1α, whereas only Hdac7-s interacted with the transcriptional repressor CtBP1. Thus, Hdac7-u positively regulates HIF-1α-dependent TLR signaling in macrophages, whereas an interaction with CtBP1 likely prevents Hdac7-s from exerting this effect. Hdac7 may represent a potential inflammatory disease target.
Collapse
Affiliation(s)
- Melanie R Shakespear
- From the Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4072, Australia and
| | - Daniel M Hohenhaus
- From the Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4072, Australia and
| | - Greg M Kelly
- From the Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4072, Australia and
| | - Nabilah A Kamal
- From the Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4072, Australia and
| | - Praveer Gupta
- From the Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4072, Australia and
| | - Larisa I Labzin
- From the Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4072, Australia and
| | - Kate Schroder
- From the Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4072, Australia and
| | - Valerie Garceau
- the Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin EH25 9PS Scotland, United Kingdom
| | - Sheila Barbero
- From the Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4072, Australia and
| | - Abishek Iyer
- From the Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4072, Australia and
| | - David A Hume
- the Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin EH25 9PS Scotland, United Kingdom
| | - Robert C Reid
- From the Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4072, Australia and
| | - Katharine M Irvine
- From the Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4072, Australia and
| | - David P Fairlie
- From the Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4072, Australia and
| | - Matthew J Sweet
- From the Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Queensland 4072, Australia and.
| |
Collapse
|
42
|
Karamariti E, Margariti A, Winkler B, Wang X, Hong X, Baban D, Ragoussis J, Huang Y, Han JDJ, Wong MM, Sag CM, Shah AM, Hu Y, Xu Q. Smooth muscle cells differentiated from reprogrammed embryonic lung fibroblasts through DKK3 signaling are potent for tissue engineering of vascular grafts. Circ Res 2013; 112:1433-43. [PMID: 23529184 DOI: 10.1161/circresaha.111.300415] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RATIONALE Smooth muscle cells (SMCs) are a key component of tissue-engineered vessels. However, the sources by which they can be isolated are limited. OBJECTIVE We hypothesized that a large number of SMCs could be obtained by direct reprogramming of fibroblasts, that is, direct differentiation of specific cell lineages before the cells reaching the pluripotent state. METHODS AND RESULTS We designed a combined protocol of reprogramming and differentiation of human neonatal lung fibroblasts. Four reprogramming factors (OCT4, SOX2, KLF4, and cMYC) were overexpressed in fibroblasts under reprogramming conditions for 4 days with cells defined as partially-induced pluripotent stem (PiPS) cells. PiPS cells did not form tumors in vivo after subcutaneous transplantation in severe combined immunodeficiency mice and differentiated into SMCs when seeded on collagen IV and maintained in differentiation media. PiPS-SMCs expressed a panel of SMC markers at mRNA and protein levels. Furthermore, the gene dickkopf 3 was found to be involved in the mechanism of PiPS-SMC differentiation. It was revealed that dickkopf 3 transcriptionally regulated SM22 by potentiation of Wnt signaling and interaction with Kremen1. Finally, PiPS-SMCs repopulated decellularized vessel grafts and ultimately gave rise to functional tissue-engineered vessels when combined with previously established PiPS-endothelial cells, leading to increased survival of severe combined immunodeficiency mice after transplantation of the vessel as a vascular graft. CONCLUSIONS We developed a protocol to generate SMCs from PiPS cells through a dickkopf 3 signaling pathway, useful for generating tissue-engineered vessels. These findings provide a new insight into the mechanisms of SMC differentiation with vast therapeutic potential.
Collapse
Affiliation(s)
- Eirini Karamariti
- Cardiovascular Division, British Heart Foundation Centre, King's College London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Reactive oxygen species in vascular formation and development. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:374963. [PMID: 23401740 PMCID: PMC3564431 DOI: 10.1155/2013/374963] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/29/2012] [Accepted: 12/29/2012] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species (ROS) are derived from the metabolism of oxygen and are traditionally viewed as toxic byproducts that cause damage to biomolecules. It is now becoming widely acknowledged that ROS are key modulators in a variety of biological processes and pathological states. ROS mediate key signaling transduction pathways by reversible oxidation of certain signaling components and are involved in the signaling of growth factors, G-protein-coupled receptors, Notch, and Wnt and its downstream cascades including MAPK, JAK-STAT, NF-κB, and PI3K/AKT. Vascular formation and development is one of the most important events during embryogenesis and is vital for postnasal tissue repair. In this paper, we will discuss how ROS regulate different steps in vascular development, including smooth muscle cell differentiation, angiogenesis, endothelial progenitor cells recruitment, and vascular cell migration.
Collapse
|
44
|
Margariti A, Li H, Chen T, Martin D, Vizcay-Barrena G, Alam S, Karamariti E, Xiao Q, Zampetaki A, Zhang Z, Wang W, Jiang Z, Gao C, Ma B, Chen YG, Cockerill G, Hu Y, Xu Q, Zeng L. XBP1 mRNA splicing triggers an autophagic response in endothelial cells through BECLIN-1 transcriptional activation. J Biol Chem 2013; 288:859-72. [PMID: 23184933 PMCID: PMC3543035 DOI: 10.1074/jbc.m112.412783] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 11/13/2012] [Indexed: 11/06/2022] Open
Abstract
Sustained activation of X-box-binding protein 1 (XBP1) results in endothelial cell (EC) apoptosis and atherosclerosis development. The present study provides evidence that XBP1 mRNA splicing triggered an autophagic response in ECs by inducing autophagic vesicle formation and markers of autophagy BECLIN-1 and microtubule-associated protein 1 light chain 3β (LC3-βII). Endostatin activated autophagic gene expression through XBP1 mRNA splicing in an inositol-requiring enzyme 1α (IRE1α)-dependent manner. Knockdown of XBP1 or IRE1α by shRNA in ECs ablated endostatin-induced autophagosome formation. Importantly, data from arterial vessels from XBP1 EC conditional knock-out (XBP1eko) mice demonstrated that XBP1 deficiency in ECs reduced the basal level of LC3β expression and ablated response to endostatin. Chromatin immunoprecipitation assays further revealed that the spliced XBP1 isoform bound directly to the BECLIN-1 promoter at the region from nt -537 to -755. BECLIN-1 deficiency in ECs abolished the XBP1-induced autophagy response, whereas spliced XBP1 did not induce transcriptional activation of a truncated BECLIN-1 promoter. These results suggest that XBP1 mRNA splicing triggers an autophagic signal pathway through transcriptional regulation of BECLIN-1.
Collapse
Affiliation(s)
- Andriana Margariti
- From the Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
| | - Hongling Li
- From the Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
| | - Ting Chen
- the Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Daniel Martin
- From the Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
| | - Gema Vizcay-Barrena
- the Centre for Ultrastructural Imaging, King's College London, Guy's Campus, London WC2R 2LS, United Kingdom
| | - Saydul Alam
- From the Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
| | - Eirini Karamariti
- From the Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
| | - Qingzhong Xiao
- the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Anna Zampetaki
- From the Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
| | - Zhongyi Zhang
- From the Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
| | - Wen Wang
- the School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Zhixin Jiang
- the Centre Laboratory, 305th Hospital of the People's Liberation Army, Beijing 100017, China
| | - Chan Gao
- the State Key Laboratory of Bio-membrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China, and
| | - Benyu Ma
- the State Key Laboratory of Bio-membrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China, and
| | - Ye-Guang Chen
- the State Key Laboratory of Bio-membrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China, and
| | - Gillian Cockerill
- the Department of Cardiovascular Science, St. George's University of London, London SW17 0RE, United Kingdom
| | - Yanhua Hu
- From the Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
| | - Qingbo Xu
- From the Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
| | - Lingfang Zeng
- From the Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
| |
Collapse
|
45
|
Park HS, Choi GH, Hahn S, Yoo YS, Lee JY, Lee T. Potential role of vascular smooth muscle cell-like progenitor cell therapy in the suppression of experimental abdominal aortic aneurysms. Biochem Biophys Res Commun 2013; 431:326-31. [PMID: 23291168 DOI: 10.1016/j.bbrc.2012.12.099] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 12/25/2012] [Indexed: 10/27/2022]
Abstract
Abdominal aortic aneurysms (AAA) are a growing problem worldwide, yet there is no known medical therapy. The pathogenesis involves degradation of the elastic lamina by two combined mechanisms: increased degradation of elastin by matrix metalloproteinases (MMP) and decreased formation of elastin due to apoptosis of vascular smooth muscle cells (VSMC). In this study, we set out to examine the potential role of stem cells in the attenuation of AAA formation by inhibition of these pathogenetic mechanisms. Muscle-derived stem cells from murine skeletal muscles were isolated and stimulated with PDGF-BB in vitro for differentiation to VSMC-like progenitor cells (VSMC-PC). These cells were implanted in to elastase-induced AAAs in rats. The cell therapy group had decreased rate of aneurysm formation compared to control, and MMP expression at the genetic, protein and enzymatic level were also significantly decreased. Furthermore, direct implantation of VSMC-PCs in the intima of harvested aortas was visualized under immunofluorescent staining, suggesting that these cells were responsible for the inhibition of MMPs and consequent attenuation of AAA formation. These results show a promising role of stem cell therapy for the treatment of AAAs, and with further studies, may be able to reach clinical significance.
Collapse
Affiliation(s)
- Hyung Sub Park
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Gyeonggi, Republic of Korea
| | | | | | | | | | | |
Collapse
|
46
|
Zheng X, Wu Y, Zhu L, Chen Q, Zhou Y, Yan H, Chen T, Xiao Q, Zhu J, Zhang L. Angiotensin II promotes differentiation of mouse embryonic stem cells to smooth muscle cells through PI3-kinase signaling pathway and NF-κB. Differentiation 2013; 85:41-54. [DOI: 10.1016/j.diff.2012.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 11/21/2012] [Accepted: 11/26/2012] [Indexed: 12/30/2022]
|
47
|
Descamps B, Emanueli C. Vascular differentiation from embryonic stem cells: Novel technologies and therapeutic promises. Vascul Pharmacol 2012; 56:267-79. [DOI: 10.1016/j.vph.2012.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 12/04/2011] [Indexed: 01/25/2023]
|
48
|
Zhang L, Zhou Y, Zhu J, Xu Q. An updated view on stem cell differentiation into smooth muscle cells. Vascul Pharmacol 2012; 56:280-7. [PMID: 22421140 DOI: 10.1016/j.vph.2012.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 02/17/2012] [Accepted: 02/28/2012] [Indexed: 12/16/2022]
Abstract
Stem cells possess the ability of self-renewal and give rise to specific cell types. The differentiation of stem cells involves environmental factors, transduction of extra and intra-cellular signals, regulation of gene expression by transcriptional factors, microRNAs and chromosome structural modifiers. Vascular SMCs play a profound role in blood vessel physiology and participate in a number of cardiovascular diseases such as atherosclerosis, hypertension and restenosis. In addition, SMCs could be a crucial cell component for vascular tissue engineering. In this review, we aim to update the recent progress on the mechanisms of SMC differentiation from stem cells, which involve reactive oxygen species, epigenetic modifiers, transcription factors and microRNAs coordinately regulated during stem cell differentiation. We will also discuss the potential application of stem cell therapy for patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Li Zhang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou 310003, PR China
| | | | | | | |
Collapse
|
49
|
Spin JM, Maegdefessel L, Tsao PS. Vascular smooth muscle cell phenotypic plasticity: focus on chromatin remodelling. Cardiovasc Res 2012; 95:147-55. [PMID: 22362814 DOI: 10.1093/cvr/cvs098] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Differentiated vascular smooth muscle cells (SMCs) retain the capacity to modify their phenotype in response to inflammation or injury. This phenotypic switching is a crucial component of vascular disease, and is partly dependent on epigenetic regulation. An appreciation has been building in the literature for the essential role chromatin remodelling plays both in SMC lineage determination and in influencing changes in SMC behaviour and state. This process includes numerous chromatin regulatory elements and pathways such as histone acetyltransferases, deacetylases, and methyltransferases and other factors that act at SMC-specific marker sites to silence or permit access to the cellular transcriptional machinery and on other key regulatory elements such as myocardin and Kruppel-like factor 4 (KLF4). Various stimuli known to alter the SMC phenotype, such as transforming growth factor beta (TGF-β), platelet-derived growth factor (PDGF), oxidized phospholipids, and retinoic acid, appear to act in part through effects upon SMC chromatin structure. In recent years, specific covalent histone modifications that appear to establish SMC determinacy have been identified, while others alter the differentiation state. In this article, we review the mechanisms of chromatin remodelling as it applies to the SMC phenotype.
Collapse
Affiliation(s)
- Joshua M Spin
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, 300 Pasteur Drive, Falk CVRC, Stanford, CA 94305, USA
| | | | | |
Collapse
|
50
|
Zhou B, Margariti A, Zeng L, Habi O, Xiao Q, Martin D, Wang G, Hu Y, Wang X, Xu Q. Splicing of histone deacetylase 7 modulates smooth muscle cell proliferation and neointima formation through nuclear β-catenin translocation. Arterioscler Thromb Vasc Biol 2012; 31:2676-84. [PMID: 21836063 DOI: 10.1161/atvbaha.111.230888] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Vascular smooth muscle cell (SMC) proliferation has an indispensable role in the pathogenesis of vascular disease, but the mechanism is not fully elucidated. The epigenetic enzyme histone deacetylase 7 (HDAC7) is involved in endothelial homeostasis and SMC differentiation and could have a role in SMC proliferation. In this study, we sought to examine the effect of 2 HDAC7 isoforms on SMC proliferation and neointima formation. METHODS AND RESULTS We demonstrated that overexpression of unspliced HDAC7 (HDAC7u) could suppress SMC proliferation through downregulation of cyclin D1 and cell cycle arrest, whereas spliced HDAC7 (HDAC7s) could not. Small interfering RNA (siRNA)-mediated knockdown of HDAC7 increased SMC proliferation and induced nuclear translocation of β-catenin. Additional experiments showed that only HDAC7u could bind to β-catenin and retain it in the cytoplasm. Reporter gene assay and reverse transcription polymerase chain reaction revealed a reduction of β-catenin activity in cells overexpressing HDAC7u but not HDAC7s. Deletion studies indicated that the C-terminal region of HDAC7u is responsible for the interaction with β-catenin. However, the addition of amino acids to the N terminus of HDAC7u disrupted the binding, further strengthening our hypothesis that HDAC7s does not interact with β-catenin. The growth factor platelet-derived growth factor-BB increased the splicing of HDAC7 while simultaneously decreasing the expression of HDAC7u. Importantly, in an animal model of femoral artery wire injury, we demonstrated that knockdown of HDAC7 by siRNA aggravates neointima formation in comparison with control siRNA. CONCLUSION Our findings demonstrate that splicing of HDAC7 modulates SMC proliferation and neointima formation through β-catenin nuclear translocation, which provides a potential therapeutic target in vascular disease.
Collapse
Affiliation(s)
- Boda Zhou
- Department of Physiology, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|