1
|
Fischer D. Cnicin: a promising drug for promoting nerve repair. Front Cell Dev Biol 2025; 13:1558525. [PMID: 40313717 PMCID: PMC12043582 DOI: 10.3389/fcell.2025.1558525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/13/2025] [Indexed: 05/03/2025] Open
Abstract
Traumatic peripheral nerve injuries frequently result in irreversible functional deficits. While neurons possess an intrinsic capacity for axonal regeneration, the temporal constraints and the slow pace of neurite outgrowth often impede the complete restoration of sensory and motor capabilities. This impairment, often culminating in chronic disability, represents a significant clinical challenge, as there are currently no approved pharmacological interventions available to accelerate axon regeneration and improve functional recovery. This perspective focuses on recent scientific advancements that have identified sesquiterpene lactones, a family of naturally derived plant metabolites, as potential therapeutic candidates for treating peripheral nerve trauma. Preclinical investigations employing parthenolide and cnicin have revealed that these compounds can substantially augment axonal extension and functional recovery in diverse in vivo animal paradigms and primary human neuronal cultures. The favorable bioavailability of cnicin following oral administration, coupled with its notable tolerability at dosages considerably largely surpassing the therapeutic range, underscores its substantial potential as an effective pharmacological treatment for addressing the challenges associated with nerve regeneration and restoring sensory and motor functions.
Collapse
Affiliation(s)
- Dietmar Fischer
- Center of Pharmacology, Institute for Pharmacology 2, Medical Faculty and University of Cologne, Cologne, Germany
| |
Collapse
|
2
|
Conze C, Trushina NI, Monteiro-Abreu N, Singh L, Romero DV, Wienbeuker E, Schwarze AS, Holtmannspötter M, Bakota L, Brandt R. Redox signaling modulates axonal microtubule organization and induces a specific phosphorylation signature of microtubule-regulating proteins. Redox Biol 2025; 83:103626. [PMID: 40222271 PMCID: PMC12019850 DOI: 10.1016/j.redox.2025.103626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025] Open
Abstract
Many life processes are regulated by physiological redox signaling, but excessive oxidative stress can damage biomolecules and contribute to disease. Neuronal microtubules are critically involved in axon homeostasis, regulation of axonal transport, and neurodegenerative processes. However, whether and how physiological redox signaling affects axonal microtubules is largely unknown. Using live cell imaging and super-resolution microscopy, we show that subtoxic concentrations of the central redox metabolite hydrogen peroxide increase axonal microtubule dynamics, alter the structure of the axonal microtubule array, and affect the efficiency of axonal transport. We report that the mitochondria-targeting antioxidant SkQ1 and the microtubule stabilizer EpoD abolish the increase in microtubule dynamics. We found that hydrogen peroxide specifically modulates the phosphorylation state of microtubule-regulating proteins, which differs from arsenite as an alternative stress inducer, and induces a largely non-overlapping phosphorylation pattern of MAP1B as a main target. Cell-wide phosphoproteome analysis revealed signaling pathways that are inversely activated by hydrogen peroxide and arsenite. In particular, hydrogen peroxide treatment was associated with kinases that suppress apoptosis and regulate brain metabolism (PRKDC, CK2, PDKs), suggesting that these pathways play a central role in physiological redox signaling and modulation of axonal microtubule organization. The results suggest that the redox metabolite and second messenger hydrogen peroxide induces rapid and local reorganization of the microtubule array in response to mitochondrial activity or as a messenger from neighboring cells by activating specific signaling cascades.
Collapse
Affiliation(s)
- Christian Conze
- Department of Neurobiology, School of Biology/Chemistry, Osnabrück University, Germany
| | - Nataliya I Trushina
- Department of Neurobiology, School of Biology/Chemistry, Osnabrück University, Germany
| | - Nanci Monteiro-Abreu
- Department of Neurobiology, School of Biology/Chemistry, Osnabrück University, Germany
| | - Lisha Singh
- Department of Neurobiology, School of Biology/Chemistry, Osnabrück University, Germany
| | - Daniel Villar Romero
- Department of Neurobiology, School of Biology/Chemistry, Osnabrück University, Germany
| | - Eike Wienbeuker
- Department of Neurobiology, School of Biology/Chemistry, Osnabrück University, Germany
| | - Anna-Sophie Schwarze
- Department of Neurobiology, School of Biology/Chemistry, Osnabrück University, Germany
| | | | - Lidia Bakota
- Department of Neurobiology, School of Biology/Chemistry, Osnabrück University, Germany
| | - Roland Brandt
- Department of Neurobiology, School of Biology/Chemistry, Osnabrück University, Germany; Center for Cellular Nanoanalytics, Osnabrück University, Germany; Institute of Cognitive Science, Osnabrück University, Germany.
| |
Collapse
|
3
|
Tan TC, Shen Y, Stine LB, Mitchell B, Okada K, McKenney RJ, Ori-McKenney KM. Microtubule-associated protein, MAP1B, encodes functionally distinct polypeptides. J Biol Chem 2024; 300:107792. [PMID: 39305956 PMCID: PMC11530598 DOI: 10.1016/j.jbc.2024.107792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 10/18/2024] Open
Abstract
Microtubule-associated protein, MAP1B, is crucial for neuronal morphogenesis and disruptions in MAP1B function are correlated with neurodevelopmental disorders. MAP1B encodes a single polypeptide that is processed into discrete proteins, a heavy chain (HC) and a light chain (LC); however, it is unclear if these two chains operate individually or as a complex within the cell. In vivo studies have characterized the contribution of MAP1B HC and LC to microtubule and actin-based processes, but their molecular mechanisms of action are unknown. Using in vitro reconstitution with purified proteins, we dissect the biophysical properties of the HC and LC and uncover distinct binding behaviors and functional roles for these MAPs. Our biochemical assays indicate that MAP1B HC and LC do not form a constitutive complex, supporting the hypothesis that these proteins operate independently within cells. Both HC and LC inhibit the microtubule motors, kinesin-3, kinesin-4, and dynein, and differentially affect the severing activity of spastin. Notably, MAP1B LC binds to actin filaments in vitro and can simultaneously bind and cross-link actin filaments and microtubules, a function not observed for MAP1B HC. Phosphorylation of MAP1B HC by dual-specificity, tyrosine phosphorylation-regulated kinase 1a negatively regulates its actin-binding activity without significantly affecting its microtubule-binding capacity, suggesting a dynamic contribution of MAP1B HC in cytoskeletal organization. Overall, our study provides new insights into the distinct functional properties of MAP1B HC and LC, underscoring their roles in coordinating cytoskeletal networks during neuronal development.
Collapse
Affiliation(s)
- Tracy C Tan
- Department of Molecular and Cellular Biology, University of California, Davis, California, USA
| | - Yusheng Shen
- Department of Molecular and Cellular Biology, University of California, Davis, California, USA
| | - Lily B Stine
- Department of Molecular and Cellular Biology, University of California, Davis, California, USA
| | - Barbara Mitchell
- Department of Molecular and Cellular Biology, University of California, Davis, California, USA
| | - Kyoko Okada
- Department of Molecular and Cellular Biology, University of California, Davis, California, USA
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, California, USA.
| | | |
Collapse
|
4
|
Ziak J, Dorskind JM, Trigg B, Sudarsanam S, Jin XO, Hand RA, Kolodkin AL. Microtubule-binding protein MAP1B regulates interstitial axon branching of cortical neurons via the tubulin tyrosination cycle. EMBO J 2024; 43:1214-1243. [PMID: 38388748 PMCID: PMC10987652 DOI: 10.1038/s44318-024-00050-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Regulation of directed axon guidance and branching during development is essential for the generation of neuronal networks. However, the molecular mechanisms that underlie interstitial (or collateral) axon branching in the mammalian brain remain unresolved. Here, we investigate interstitial axon branching in vivo using an approach for precise labeling of layer 2/3 callosal projection neurons (CPNs). This method allows for quantitative analysis of axonal morphology at high acuity and also manipulation of gene expression in well-defined temporal windows. We find that the GSK3β serine/threonine kinase promotes interstitial axon branching in layer 2/3 CPNs by releasing MAP1B-mediated inhibition of axon branching. Further, we find that the tubulin tyrosination cycle is a key downstream component of GSK3β/MAP1B signaling. These data suggest a cell-autonomous molecular regulation of cortical neuron axon morphology, in which GSK3β can release a MAP1B-mediated brake on interstitial axon branching upstream of the posttranslational tubulin code.
Collapse
Affiliation(s)
- Jakub Ziak
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD, 21205, USA
| | - Joelle M Dorskind
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD, 21205, USA
- Novartis Institutes for BioMedical Research, Boston, MA, USA
| | - Brian Trigg
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD, 21205, USA
| | - Sriram Sudarsanam
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD, 21205, USA
| | - Xinyu O Jin
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD, 21205, USA
| | - Randal A Hand
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD, 21205, USA
- Prilenia Therapeutics, Boston, MA, USA
| | - Alex L Kolodkin
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD, 21205, USA.
| |
Collapse
|
5
|
Arseni C, Samiotaki M, Panayotou G, Simos G, Mylonis I. Combinatorial regulation by ERK1/2 and CK1δ protein kinases leads to HIF-1α association with microtubules and facilitates its symmetrical distribution during mitosis. Cell Mol Life Sci 2024; 81:72. [PMID: 38300329 PMCID: PMC10834586 DOI: 10.1007/s00018-024-05120-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/13/2023] [Accepted: 01/07/2024] [Indexed: 02/02/2024]
Abstract
Hypoxia-inducible factor-1 (HIF-1) is the key transcriptional mediator of the cellular response to hypoxia and is also involved in cancer progression. Regulation of its oxygen-sensitive HIF-1α subunit involves post-translational modifications that control its stability, subcellular localization, and activity. We have previously reported that phosphorylation of the HIF-1α C-terminal domain by ERK1/2 promotes HIF-1α nuclear accumulation and stimulates HIF-1 activity while lack of this modification triggers HIF-1α nuclear export and its association with mitochondria. On the other hand, modification of the N-terminal domain of HIF-1α by CK1δ impairs HIF-1 activity by obstructing the formation of a HIF-1α/ARNT heterodimer. Investigation of these two antagonistic events by expressing double phospho-site mutants in HIF1A-/- cells under hypoxia revealed independent and additive phosphorylation effects that can create a gradient of HIF-1α subcellular localization and transcriptional activity. Furthermore, modification by CK1δ caused mitochondrial release of the non-nuclear HIF-1α form and binding to microtubules via its N-terminal domain. In agreement, endogenous HIF-1α could be shown to co-localize with mitotic spindle microtubules and interact with tubulin, both of which were inhibited by CK1δ silencing or inhibition. Moreover, CK1δ expression was necessary for equal partitioning of mother cell-produced HIF-1α to the daughter cell nuclei at the end of mitosis. Overall, our results suggest that phosphorylation by CK1δ stimulates the association of non-nuclear HIF-1α with microtubules, which may serve as a means to establish a symmetric distribution of HIF-1α during cell division under low oxygen conditions.
Collapse
Affiliation(s)
- Christina Arseni
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500, Larissa, Greece
| | - Martina Samiotaki
- Institute for Bio-Innovation, BSRC "Alexander Fleming", 16672, Vari, Greece
| | - George Panayotou
- Institute for Bio-Innovation, BSRC "Alexander Fleming", 16672, Vari, Greece
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500, Larissa, Greece.
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, Canada.
| | - Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500, Larissa, Greece.
| |
Collapse
|
6
|
Leung TCN, Lu SN, Chu CN, Lee J, Liu X, Ngai SM. Temporal Quantitative Proteomic and Phosphoproteomic Profiling of SH-SY5Y and IMR-32 Neuroblastoma Cells during All- Trans-Retinoic Acid-Induced Neuronal Differentiation. Int J Mol Sci 2024; 25:1047. [PMID: 38256121 PMCID: PMC10816102 DOI: 10.3390/ijms25021047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/05/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
The human neuroblastoma cell lines SH-SY5Y and IMR-32 can be differentiated into neuron-like phenotypes through treatment with all-trans-retinoic acid (ATRA). After differentiation, these cell lines are extensively utilized as in vitro models to study various aspects of neuronal cell biology. However, temporal and quantitative profiling of the proteome and phosphoproteome of SH-SY5Y and IMR-32 cells throughout ATRA-induced differentiation has been limited. Here, we performed relative quantification of the proteomes and phosphoproteomes of SH-SY5Y and IMR-32 cells at multiple time points during ATRA-induced differentiation. Relative quantification of proteins and phosphopeptides with subsequent gene ontology analysis revealed that several biological processes, including cytoskeleton organization, cell division, chaperone function and protein folding, and one-carbon metabolism, were associated with ATRA-induced differentiation in both cell lines. Furthermore, kinase-substrate enrichment analysis predicted altered activities of several kinases during differentiation. Among these, CDK5 exhibited increased activity, while CDK2 displayed reduced activity. The data presented serve as a valuable resource for investigating temporal protein and phosphoprotein abundance changes in SH-SY5Y and IMR-32 cells during ATRA-induced differentiation.
Collapse
Affiliation(s)
- Thomas C. N. Leung
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Scott Ninghai Lu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.N.L.); (C.N.C.); (J.L.); (X.L.)
| | - Cheuk Ning Chu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.N.L.); (C.N.C.); (J.L.); (X.L.)
| | - Joy Lee
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.N.L.); (C.N.C.); (J.L.); (X.L.)
| | - Xingyu Liu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.N.L.); (C.N.C.); (J.L.); (X.L.)
| | - Sai Ming Ngai
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.N.L.); (C.N.C.); (J.L.); (X.L.)
- AoE Centre for Genomic Studies on Plant-Environment Interaction for Sustainable Agriculture and Food Security, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
7
|
Ziak J, Dorskind J, Trigg B, Sudarsanam S, Hand R, Kolodkin AL. MAP1B Regulates Cortical Neuron Interstitial Axon Branching Through the Tubulin Tyrosination Cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560024. [PMID: 37873083 PMCID: PMC10592918 DOI: 10.1101/2023.10.02.560024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Regulation of directed axon guidance and branching during development is essential for the generation of neuronal networks. However, the molecular mechanisms that underlie interstitial axon branching in the mammalian brain remain unresolved. Here, we investigate interstitial axon branching in vivo using an approach for precise labeling of layer 2/3 callosal projection neurons (CPNs), allowing for quantitative analysis of axonal morphology at high acuity and also manipulation of gene expression in well-defined temporal windows. We find that the GSK3β serine/threonine kinase promotes interstitial axon branching in layer 2/3 CPNs by releasing MAP1B-mediated inhibition of axon branching. Further, we find that the tubulin tyrosination cycle is a key downstream component of GSK3β/MAP1B signaling. We propose that MAP1B functions as a brake on axon branching that can be released by GSK3β activation, regulating the tubulin code and thereby playing an integral role in sculpting cortical neuron axon morphology.
Collapse
Affiliation(s)
- Jakub Ziak
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD 21205
| | - Joelle Dorskind
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD 21205
- Novartis Institutes for BioMedical Research, Boston, MA
| | - Brian Trigg
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD 21205
| | - Sriram Sudarsanam
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD 21205
| | - Randal Hand
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD 21205
- Prilenia Therapeutics, Boston, MA
| | - Alex L. Kolodkin
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins Kavli Neuroscience Discovery Institute, The Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD 21205
| |
Collapse
|
8
|
Hogg EKJ, Findlay GM. Functions of SRPK, CLK and DYRK kinases in stem cells, development, and human developmental disorders. FEBS Lett 2023; 597:2375-2415. [PMID: 37607329 PMCID: PMC10952393 DOI: 10.1002/1873-3468.14723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023]
Abstract
Human developmental disorders encompass a wide range of debilitating physical conditions and intellectual disabilities. Perturbation of protein kinase signalling underlies the development of some of these disorders. For example, disrupted SRPK signalling is associated with intellectual disabilities, and the gene dosage of DYRKs can dictate the pathology of disorders including Down's syndrome. Here, we review the emerging roles of the CMGC kinase families SRPK, CLK, DYRK, and sub-family HIPK during embryonic development and in developmental disorders. In particular, SRPK, CLK, and DYRK kinase families have key roles in developmental signalling and stem cell regulation, and can co-ordinate neuronal development and function. Genetic studies in model organisms reveal critical phenotypes including embryonic lethality, sterility, musculoskeletal errors, and most notably, altered neurological behaviours arising from defects of the neuroectoderm and altered neuronal signalling. Further unpicking the mechanisms of specific kinases using human stem cell models of neuronal differentiation and function will improve our understanding of human developmental disorders and may provide avenues for therapeutic strategies.
Collapse
Affiliation(s)
- Elizabeth K. J. Hogg
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| | - Greg M. Findlay
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| |
Collapse
|
9
|
Minckley TF, Salvagio LA, Fudge DH, Verhey K, Markus SM, Qin Y. Zn2+ decoration of microtubules arrests axonal transport and displaces tau, doublecortin, and MAP2C. J Cell Biol 2023; 222:e202208121. [PMID: 37326602 PMCID: PMC10276529 DOI: 10.1083/jcb.202208121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/31/2023] [Accepted: 05/11/2023] [Indexed: 06/17/2023] Open
Abstract
Intracellular Zn2+ concentrations increase via depolarization-mediated influx or intracellular release, but the immediate effects of Zn2+ signals on neuron function are not fully understood. By simultaneous recording of cytosolic Zn2+ and organelle motility, we find that elevated Zn2+ (IC50 ≈ 5-10 nM) reduces both lysosomal and mitochondrial motility in primary rat hippocampal neurons and HeLa cells. Using live-cell confocal microscopy and in vitro single-molecule TIRF imaging, we reveal that Zn2+ inhibits activity of motor proteins (kinesin and dynein) without disrupting their microtubule binding. Instead, Zn2+ directly binds to microtubules and selectively promotes detachment of tau, DCX, and MAP2C, but not MAP1B, MAP4, MAP7, MAP9, or p150glued. Bioinformatic predictions and structural modeling show that the Zn2+ binding sites on microtubules partially overlap with the microtubule binding sites of tau, DCX, dynein, and kinesin. Our results reveal that intraneuronal Zn2+ regulates axonal transport and microtubule-based processes by interacting with microtubules.
Collapse
Affiliation(s)
- Taylor F. Minckley
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | | | - Dylan H. Fudge
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Kristen Verhey
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Steven M. Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Yan Qin
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| |
Collapse
|
10
|
Wang J, Jia C, Gao Q, Zhang J, Gu X. iASPP regulates neurite development by interacting with Spectrin proteins. Front Mol Neurosci 2023; 16:1154770. [PMID: 37284462 PMCID: PMC10240065 DOI: 10.3389/fnmol.2023.1154770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/24/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Since its discovery in 1999, a substantial body of research has shown that iASPP is highly expressed in various kinds of tumors, interacts with p53, and promotes cancer cell survival by antagonizing the apoptotic activity of p53. However, its role in neurodevelopment is still unknown. Methods We studied the role of iASPP in neuronal differentiation through different neuronal differentiation cellular models, combined with immunohistochemistry, RNA interference and gene overexpression, and studied the molecular mechanism involved in the regulation of neuronal development by iASPP through coimmunoprecipitation coupled with mass spectrometry (CoIP-MS) and coimmunoprecipitation (CoIP). Results In this study, we found that the expression of iASPP gradually decreased during neuronal development. iASPP silencing promotes neuronal differentiation, while its overexpression inhibited neurite differentiation in a variety of neuronal differentiation cellular models. iASPP associated with the cytoskeleton-related protein Sptan1 and dephosphorylated the serine residues in the last spectrin repeat domain of Sptan1 by recruiting PP1. The non-phosphorylated and phosphomimetic mutant form of Sptbn1 inhibited and promoted neuronal cell development respectively. Conclusion Overall, we demonstrate that iASPP suppressed neurite development by inhibiting phosphorylation of Sptbn1.
Collapse
Affiliation(s)
- Junhao Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Chunhong Jia
- Department of Neonatology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiong Gao
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jiwen Zhang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xi Gu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
11
|
Fernandez Bessone I, Navarro J, Martinez E, Karmirian K, Holubiec M, Alloatti M, Goto-Silva L, Arnaiz Yepez C, Martins-de-Souza D, Minardi Nascimento J, Bruno L, Saez TM, Rehen SK, Falzone TL. DYRK1A Regulates the Bidirectional Axonal Transport of APP in Human-Derived Neurons. J Neurosci 2022; 42:6344-6358. [PMID: 35803734 PMCID: PMC9398544 DOI: 10.1523/jneurosci.2551-21.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/01/2022] [Accepted: 06/17/2022] [Indexed: 11/21/2022] Open
Abstract
Dyrk1a triplication in Down's syndrome and its overexpression in Alzheimer's disease suggest a role for increased DYRK1A activity in the abnormal metabolism of APP. Transport defects are early phenotypes in the progression of Alzheimer's disease, which lead to APP processing impairments. However, whether DYRK1A regulates the intracellular transport and delivery of APP in human neurons remains unknown. From a proteomic dataset of human cerebral organoids treated with harmine, a DYRK1A inhibitor, we found expression changes in protein clusters associated with the control of microtubule-based transport and in close interaction with the APP vesicle. Live imaging of APP axonal transport in human-derived neurons treated with harmine or overexpressing a dominant negative DYRK1A revealed a reduction in APP vesicle density and enhanced the stochastic behavior of retrograde vesicle transport. Moreover, harmine increased the fraction of slow segmental velocities and changed speed transitions supporting a DYRK1A-mediated effect in the exchange of active motor configuration. Contrarily, the overexpression of DYRK1A in human polarized neurons increased the axonal density of APP vesicles and enhanced the processivity of retrograde APP. In addition, increased DYRK1A activity induced faster retrograde segmental velocities together with significant changes in slow to fast anterograde and retrograde speed transitions, suggesting the facilitation of the active motor configuration. Our results highlight DYRK1A as a modulator of the axonal transport machinery driving APP intracellular distribution in neurons, and stress DYRK1A inhibition as a putative therapeutic intervention to restore APP axonal transport in Down's syndrome and Alzheimer's disease.SIGNIFICANCE STATEMENT Axonal transport defects are early events in the progression of neurodegenerative diseases, such as Alzheimer's disease. However, the molecular mechanisms underlying transport defects remain elusive. Dyrk1a kinase is triplicated in Down's syndrome and overexpressed in Alzheimer's disease, suggesting that DYRK1A dysfunction affects molecular pathways leading to early-onset neurodegeneration. Here, we show by live imaging of human-derived neurons that DYRK1A activity differentially regulates the intracellular trafficking of APP. Further, single-particle analysis revealed DYRK1A as a modulator of axonal transport and the configuration of active motors within the APP vesicle. Our work highlights DYRK1A as a regulator of APP axonal transport and metabolism, supporting DYRK1A inhibition as a therapeutic strategy to restore intracellular dynamics in Alzheimer's disease.
Collapse
Affiliation(s)
- Iván Fernandez Bessone
- Instituto de Biología Celular y Neurociencia IBCN, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina C1121ABG
| | - Jordi Navarro
- Instituto de Biología Celular y Neurociencia IBCN, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina C1121ABG
| | - Emanuel Martinez
- Instituto de Biología Celular y Neurociencia IBCN, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina C1121ABG
| | - Karina Karmirian
- D'Or Institute for Research and Education, Rio de Janeiro, Brasil, RJ, 22281-100
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Brasil, RJ, 21941-902
| | - Mariana Holubiec
- Instituto de Biología Celular y Neurociencia IBCN, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina C1121ABG
| | - Matias Alloatti
- Instituto de Biología Celular y Neurociencia IBCN, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina C1121ABG
| | - Livia Goto-Silva
- D'Or Institute for Research and Education, Rio de Janeiro, Brasil, RJ, 22281-100
| | - Cayetana Arnaiz Yepez
- Instituto de Biología Celular y Neurociencia IBCN, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina C1121ABG
| | - Daniel Martins-de-Souza
- D'Or Institute for Research and Education, Rio de Janeiro, Brasil, RJ, 22281-100
- Laboratory of Neuroproteomics, University of Campinas Campinas, Brasil, SP, 13083-970
- Instituto Nacional de Biomarcadores Em Neuropsiquiatria, Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brasil, SP, 13083-970
- Experimental Medicine Research Cluster, University of Campinas, Campinas, Brasil, SP, 13083-970
| | | | - Luciana Bruno
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina C1428EGA
| | - Trinidad M Saez
- Instituto de Biología Celular y Neurociencia IBCN, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina C1121ABG
| | - Stevens K Rehen
- D'Or Institute for Research and Education, Rio de Janeiro, Brasil, RJ, 22281-100
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Brasil, RJ, 21941-902
| | - Tomás L Falzone
- Instituto de Biología Celular y Neurociencia IBCN, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina C1121ABG
- Instituto de Investigación en Biomedicina de Buenos Aires, Partner Institute of the Max Planck Society, Buenos Aires, Argentina C1425FQD
| |
Collapse
|
12
|
Glycogen Synthase Kinase 3: Ion Channels, Plasticity, and Diseases. Int J Mol Sci 2022; 23:ijms23084413. [PMID: 35457230 PMCID: PMC9028019 DOI: 10.3390/ijms23084413] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022] Open
Abstract
Glycogen synthase kinase 3β (GSK3) is a multifaceted serine/threonine (S/T) kinase expressed in all eukaryotic cells. GSK3β is highly enriched in neurons in the central nervous system where it acts as a central hub for intracellular signaling downstream of receptors critical for neuronal function. Unlike other kinases, GSK3β is constitutively active, and its modulation mainly involves inhibition via upstream regulatory pathways rather than increased activation. Through an intricate converging signaling system, a fine-tuned balance of active and inactive GSK3β acts as a central point for the phosphorylation of numerous primed and unprimed substrates. Although the full range of molecular targets is still unknown, recent results show that voltage-gated ion channels are among the downstream targets of GSK3β. Here, we discuss the direct and indirect mechanisms by which GSK3β phosphorylates voltage-gated Na+ channels (Nav1.2 and Nav1.6) and voltage-gated K+ channels (Kv4 and Kv7) and their physiological effects on intrinsic excitability, neuronal plasticity, and behavior. We also present evidence for how unbalanced GSK3β activity can lead to maladaptive plasticity that ultimately renders neuronal circuitry more vulnerable, increasing the risk for developing neuropsychiatric disorders. In conclusion, GSK3β-dependent modulation of voltage-gated ion channels may serve as an important pharmacological target for neurotherapeutic development.
Collapse
|
13
|
Atas-Ozcan H, Brault V, Duchon A, Herault Y. Dyrk1a from Gene Function in Development and Physiology to Dosage Correction across Life Span in Down Syndrome. Genes (Basel) 2021; 12:1833. [PMID: 34828439 PMCID: PMC8624927 DOI: 10.3390/genes12111833] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 01/12/2023] Open
Abstract
Down syndrome is the main cause of intellectual disabilities with a large set of comorbidities from developmental origins but also that appeared across life span. Investigation of the genetic overdosage found in Down syndrome, due to the trisomy of human chromosome 21, has pointed to one main driver gene, the Dual-specificity tyrosine-regulated kinase 1A (Dyrk1a). Dyrk1a is a murine homolog of the drosophila minibrain gene. It has been found to be involved in many biological processes during development and in adulthood. Further analysis showed its haploinsufficiency in mental retardation disease 7 and its involvement in Alzheimer's disease. DYRK1A plays a role in major developmental steps of brain development, controlling the proliferation of neural progenitors, the migration of neurons, their dendritogenesis and the function of the synapse. Several strategies targeting the overdosage of DYRK1A in DS with specific kinase inhibitors have showed promising evidence that DS cognitive conditions can be alleviated. Nevertheless, providing conditions for proper temporal treatment and to tackle the neurodevelopmental and the neurodegenerative aspects of DS across life span is still an open question.
Collapse
Affiliation(s)
- Helin Atas-Ozcan
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
| | - Véronique Brault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
| | - Arnaud Duchon
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
- Université de Strasbourg, CNRS, INSERM, Celphedia, Phenomin-Institut Clinique de la Souris (ICS), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| |
Collapse
|
14
|
Proteomic Analysis Unveils Expressional Changes in Cytoskeleton- and Synaptic Plasticity-Associated Proteins in Rat Brain Six Months after Withdrawal from Morphine. Life (Basel) 2021; 11:life11070683. [PMID: 34357055 PMCID: PMC8304287 DOI: 10.3390/life11070683] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/28/2021] [Accepted: 07/10/2021] [Indexed: 11/17/2022] Open
Abstract
Drug withdrawal is associated with abstinence symptoms including deficits in cognitive functions that may persist even after prolonged discontinuation of drug intake. Cognitive deficits are, at least partially, caused by alterations in synaptic plasticity but the precise molecular mechanisms have not yet been fully identified. In the present study, changes in proteomic and phosphoproteomic profiles of selected brain regions (cortex, hippocampus, striatum, and cerebellum) from rats abstaining for six months after cessation of chronic treatment with morphine were determined by label-free quantitative (LFQ) proteomic analysis. Interestingly, prolonged morphine withdrawal was found to be associated especially with alterations in protein phosphorylation and to a lesser extent in protein expression. Gene ontology (GO) term analysis revealed enrichment in biological processes related to synaptic plasticity, cytoskeleton organization, and GTPase activity. More specifically, significant changes were observed in proteins localized in synaptic vesicles (e.g., synapsin-1, SV2a, Rab3a), in the active zone of the presynaptic nerve terminal (e.g., Bassoon, Piccolo, Rims1), and in the postsynaptic density (e.g., cadherin 13, catenins, Arhgap35, Shank3, Arhgef7). Other differentially phosphorylated proteins were associated with microtubule dynamics (microtubule-associated proteins, Tppp, collapsin response mediator proteins) and the actin–spectrin network (e.g., spectrins, adducins, band 4.1-like protein 1). Taken together, a six-month morphine withdrawal was manifested by significant alterations in the phosphorylation of synaptic proteins. The altered phosphorylation patterns modulating the function of synaptic proteins may contribute to long-term neuroadaptations induced by drug use and withdrawal.
Collapse
|
15
|
Cui L, Zheng J, Zhao Q, Chen JR, Liu H, Peng G, Wu Y, Chen C, He Q, Shi H, Yin S, Friedman RA, Chen Y, Guan MX. Mutations of MAP1B encoding a microtubule-associated phosphoprotein cause sensorineural hearing loss. JCI Insight 2020; 5:136046. [PMID: 33268592 PMCID: PMC7714412 DOI: 10.1172/jci.insight.136046] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 10/28/2020] [Indexed: 12/20/2022] Open
Abstract
The pathophysiology underlying spiral ganglion cell defect–induced deafness remains elusive. Using the whole exome sequencing approach, in combination with functional assays and a mouse disease model, we identified the potentially novel deafness-causative MAP1B gene encoding a highly conserved microtubule-associated protein. Three novel heterozygous MAP1B mutations (c.4198A>G, p.1400S>G; c.2768T>C, p.923I>T; c.5512T>C, p.1838F>L) were cosegregated with autosomal dominant inheritance of nonsyndromic sensorineural hearing loss in 3 unrelated Chinese families. Here, we show that MAP1B is highly expressed in the spiral ganglion neurons in the mouse cochlea. Using otic sensory neuron–like cells, generated by pluripotent stem cells from patients carrying the MAP1B mutation and control subject, we demonstrated that the p.1400S>G mutation caused the reduced levels and deficient phosphorylation of MAP1B, which are involved in the microtubule stability and dynamics. Strikingly, otic sensory neuron–like cells exhibited disturbed dynamics of microtubules, axonal elongation, and defects in electrophysiological properties. Dysfunctions of these derived otic sensory neuron–like cells were rescued by genetically correcting MAP1B mutation using CRISPR/Cas9 technology. Involvement of MAP1B in hearing was confirmed by audiometric evaluation of Map1b heterozygous KO mice. These mutant mice displayed late-onset progressive sensorineural hearing loss that was more pronounced in the high frequencies. The spiral ganglion neurons isolated from Map1b mutant mice exhibited the deficient phosphorylation and disturbed dynamics of microtubules. Map1b deficiency yielded defects in the morphology and electrophysiology of spiral ganglion neurons, but it did not affect the morphologies of cochlea in mice. Therefore, our data demonstrate that dysfunctions of spiral ganglion neurons induced by MAP1B deficiency caused hearing loss. Dysfunctions of spiral ganglion neurons caused by Map1b deficiency leads to sensorineural hearing loss.
Collapse
Affiliation(s)
- Limei Cui
- Division of Medical Genetics and Genomics, The Children's Hospital.,Institute of Genetics and.,Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Zheng
- Division of Medical Genetics and Genomics, The Children's Hospital
| | - Qiong Zhao
- Division of Medical Genetics and Genomics, The Children's Hospital.,Institute of Genetics and.,Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jia-Rong Chen
- Division of Medical Genetics and Genomics, The Children's Hospital.,Institute of Genetics and
| | | | - Guanghua Peng
- Deaprtment of Otorhinolaryngology, the Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yue Wu
- Division of Medical Genetics and Genomics, The Children's Hospital
| | - Chao Chen
- Division of Medical Genetics and Genomics, The Children's Hospital.,Institute of Genetics and
| | | | - Haosong Shi
- Department of Otorhinolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shankai Yin
- Department of Otorhinolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rick A Friedman
- Division of Otolaryngology, University of California at San Diego School of Medicine, La Jolla California, USA
| | - Ye Chen
- Division of Medical Genetics and Genomics, The Children's Hospital.,Institute of Genetics and.,Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital.,Institute of Genetics and.,Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Otolaryngology, University of California at San Diego School of Medicine, La Jolla California, USA.,Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Hangzhou, Zhejiang, China.,Joint Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
De Toma I, Ortega M, Aloy P, Sabidó E, Dierssen M. DYRK1A Overexpression Alters Cognition and Neural-Related Proteomic Pathways in the Hippocampus That Are Rescued by Green Tea Extract and/or Environmental Enrichment. Front Mol Neurosci 2019; 12:272. [PMID: 31803016 PMCID: PMC6873902 DOI: 10.3389/fnmol.2019.00272] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022] Open
Abstract
Down syndrome (DS), caused by trisomy of chromosome 21, is the most common genetic cause of intellectual disability. We recently discovered that green tea extracts containing epigallocatechin-3-gallate (EGCG) improve cognition in mice transgenic for Dyrk1a (TgDyrk1A) and in a trisomic DS mouse model (Ts65Dn). Interestingly, paired with cognitive stimulation, green tea has beneficial pro-cognitive effects in DS individuals. Dual Specificity Tyrosine-Phosphorylation-Regulated Kinase 1A (DYRK1A) is a major candidate to explain the cognitive phenotypes of DS, and inhibiting its activity is a promising pro-cognitive therapy. DYRK1A kinase activity can be normalized in the hippocampus of transgenic DYRK1A mice administering green tea extracts, but also submitting the animals to environmental enrichment (EE). However, many other mechanisms could also explain the pro-cognitive effects of green tea extracts and EE. To underpin the overall alterations arising upon DYRK1A overexpression and the molecular processes underneath the pro-cognitive effects, we used quantitative proteomics. We investigated the hippocampal (phospho)proteome in basal conditions and after treatment with a green tea extract containing EGCG and/or EE in TgDyrk1A and control mice. We found that Dyrk1A overexpression alters protein and phosphoprotein levels of key postsynaptic and plasticity-related pathways and that these alterations were rescued upon the cognitive enhancer treatments.
Collapse
Affiliation(s)
- Ilario De Toma
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Mireia Ortega
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Patrick Aloy
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Eduard Sabidó
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Proteomic Unit, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mara Dierssen
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| |
Collapse
|
17
|
Muñiz Moreno MDM, Brault V, Birling MC, Pavlovic G, Herault Y. Modeling Down syndrome in animals from the early stage to the 4.0 models and next. PROGRESS IN BRAIN RESEARCH 2019; 251:91-143. [PMID: 32057313 DOI: 10.1016/bs.pbr.2019.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The genotype-phenotype relationship and the physiopathology of Down Syndrome (DS) have been explored in the last 20 years with more and more relevant mouse models. From the early age of transgenesis to the new CRISPR/CAS9-derived chromosomal engineering and the transchromosomic technologies, mouse models have been key to identify homologous genes or entire regions homologous to the human chromosome 21 that are necessary or sufficient to induce DS features, to investigate the complexity of the genetic interactions that are involved in DS and to explore therapeutic strategies. In this review we report the new developments made, how genomic data and new genetic tools have deeply changed our way of making models, extended our panel of animal models, and increased our understanding of the neurobiology of the disease. But even if we have made an incredible progress which promises to make DS a curable condition, we are facing new research challenges to nurture our knowledge of DS pathophysiology as a neurodevelopmental disorder with many comorbidities during ageing.
Collapse
Affiliation(s)
- Maria Del Mar Muñiz Moreno
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Véronique Brault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Marie-Christine Birling
- Université de Strasbourg, CNRS, INSERM, PHENOMIN Institut Clinique de la Souris, Illkirch, France
| | - Guillaume Pavlovic
- Université de Strasbourg, CNRS, INSERM, PHENOMIN Institut Clinique de la Souris, Illkirch, France
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Université de Strasbourg, CNRS, INSERM, PHENOMIN Institut Clinique de la Souris, Illkirch, France.
| |
Collapse
|
18
|
Effects of siRNA-Mediated Knockdown of GSK3β on Retinal Ganglion Cell Survival and Neurite/Axon Growth. Cells 2019; 8:cells8090956. [PMID: 31443508 PMCID: PMC6769828 DOI: 10.3390/cells8090956] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
There are contradictory reports on the role of the serine/threonine kinase isoform glycogen synthase kinase-3β (GSK3β) after injury to the central nervous system (CNS). Some report that GSK3 activity promotes axonal growth or myelin disinhibition, whilst others report that GSK3 activity prevents axon regeneration. In this study, we sought to clarify if suppression of GSK3β alone and in combination with the cellular-stress-induced factor RTP801 (also known as REDD1: regulated in development and DNA damage response protein), using translationally relevant siRNAs, promotes retinal ganglion cell (RGC) survival and neurite outgrowth/axon regeneration. Adult mixed retinal cell cultures, prepared from rats at five days after optic nerve crush (ONC) to activate retinal glia, were treated with siRNA to GSK3β (siGSK3β) alone or in combination with siRTP801 and RGC survival and neurite outgrowth were quantified in the presence and absence of Rapamycin or inhibitory Nogo-A peptides. In in vivo experiments, either siGSK3β alone or in combination with siRTP801 were intravitreally injected every eight days after ONC and RGC survival and axon regeneration was assessed at 24 days. Optimal doses of siGSK3β alone promoted significant RGC survival, increasing the number of RGC with neurites without affecting neurite length, an effect that was sensitive to Rapamycin. In addition, knockdown of GSK3β overcame Nogo-A-mediated neurite growth inhibition. Knockdown of GSK3β after ONC in vivo enhanced RGC survival but not axon number or length, without potentiating glial activation. Knockdown of RTP801 increased both RGC survival and axon regeneration, whilst the combined knockdown of GSK3β and RTP801 significantly increased RGC survival, neurite outgrowth, and axon regeneration over and above that observed for siGSK3β or siRTP801 alone. These results suggest that GSK3β suppression promotes RGC survival and axon initiation whilst, when in combination with RTP801, it also enhanced disinhibited axon elongation.
Collapse
|
19
|
Axonal pathology in hPSC-based models of Parkinson's disease results from loss of Nrf2 transcriptional activity at the Map1b gene locus. Proc Natl Acad Sci U S A 2019; 116:14280-14289. [PMID: 31235589 DOI: 10.1073/pnas.1900576116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
While mutations in the SNCA gene (α-synuclein [α-syn]) are causal in rare familial forms of Parkinson's disease (PD), the prevalence of α-syn aggregates in the cortices of sporadic disease cases emphasizes the need to understand the link between α-syn accumulation and disease pathogenesis. By employing a combination of human pluripotent stem cells (hPSCs) that harbor the SNCA-A53T mutation contrasted against isogenic controls, we evaluated the consequences of α-syn accumulation in human A9-type dopaminergic (DA) neurons (hNs). We show that the early accumulation of α-syn in SNCA-A53T hNs results in changes in gene expression consistent with the expression profile of the substantia nigra (SN) from PD patients, analyzed post mortem. Differentially expressed genes from both PD patient SN and SNCA-A53T hNs were associated with regulatory motifs transcriptionally activated by the antioxidant response pathway, particularly Nrf2 gene targets. Differentially expressed gene targets were also enriched for gene ontologies related to microtubule binding processes. We thus assessed the relationship between Nrf2-mediated gene expression and neuritic pathology in SNCA-A53T hNs. We show that SNCA-mutant hNs have deficits in neuritic length and complexity relative to isogenic controls as well as contorted axons with Tau-positive varicosities. Furthermore, we show that mutant α-syn fails to complex with protein kinase C (PKC), which, in turn, results in impaired activation of Nrf2. These neuritic defects result from impaired Nrf2 activity on antioxidant response elements (AREs) localized to a microtubule-associated protein (Map1b) gene enhancer and are rescued by forced expression of Map1b as well as by both Nrf2 overexpression and pharmaceutical activation in PD neurons.
Collapse
|
20
|
Granno S, Nixon-Abell J, Berwick DC, Tosh J, Heaton G, Almudimeegh S, Nagda Z, Rain JC, Zanda M, Plagnol V, Tybulewicz VLJ, Cleverley K, Wiseman FK, Fisher EMC, Harvey K. Downregulated Wnt/β-catenin signalling in the Down syndrome hippocampus. Sci Rep 2019; 9:7322. [PMID: 31086297 PMCID: PMC6513850 DOI: 10.1038/s41598-019-43820-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/29/2019] [Indexed: 12/14/2022] Open
Abstract
Pathological mechanisms underlying Down syndrome (DS)/Trisomy 21, including dysregulation of essential signalling processes remain poorly understood. Combining bioinformatics with RNA and protein analysis, we identified downregulation of the Wnt/β-catenin pathway in the hippocampus of adult DS individuals with Alzheimer's disease and the 'Tc1' DS mouse model. Providing a potential underlying molecular pathway, we demonstrate that the chromosome 21 kinase DYRK1A regulates Wnt signalling via a novel bimodal mechanism. Under basal conditions, DYRK1A is a negative regulator of Wnt/β-catenin. Following pathway activation, however, DYRK1A exerts the opposite effect, increasing signalling activity. In summary, we identified downregulation of hippocampal Wnt/β-catenin signalling in DS, possibly mediated by a dose dependent effect of the chromosome 21-encoded kinase DYRK1A. Overall, we propose that dosage imbalance of the Hsa21 gene DYRK1A affects downstream Wnt target genes. Therefore, modulation of Wnt signalling may open unexplored avenues for DS and Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Simone Granno
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- Department of Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Jonathon Nixon-Abell
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | - Daniel C Berwick
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- School of Health, Life and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK6 7AA, UK
| | - Justin Tosh
- Department of Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - George Heaton
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Sultan Almudimeegh
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Zenisha Nagda
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jean-Christophe Rain
- Hybrigenics Services - Fondation Jérôme Lejeune, 3-5 Impasse Reille, 75014, Paris, France
| | - Manuela Zanda
- UCL Genetics Institute, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Vincent Plagnol
- UCL Genetics Institute, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Victor L J Tybulewicz
- The Francis Crick Institute, 1 Midland Rd, Kings Cross, London, NW1 1AT, UK
- Department of Medicine, Imperial College, London, W12 0NN, UK
- London Down Syndrome Consortium (LonDownS), London, UK
| | - Karen Cleverley
- Department of Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Frances K Wiseman
- Department of Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- London Down Syndrome Consortium (LonDownS), London, UK
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- London Down Syndrome Consortium (LonDownS), London, UK
| | - Kirsten Harvey
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| |
Collapse
|
21
|
Roewenstrunk J, Di Vona C, Chen J, Borras E, Dong C, Arató K, Sabidó E, Huen MSY, de la Luna S. A comprehensive proteomics-based interaction screen that links DYRK1A to RNF169 and to the DNA damage response. Sci Rep 2019; 9:6014. [PMID: 30979931 PMCID: PMC6461666 DOI: 10.1038/s41598-019-42445-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/29/2019] [Indexed: 12/15/2022] Open
Abstract
Dysregulation of the DYRK1A protein kinase has been associated with human disease. On the one hand, its overexpression in trisomy 21 has been linked to certain pathological traits of Down syndrome, while on the other, inactivating mutations in just one allele are responsible for a distinct yet rare clinical syndrome, DYRK1A haploinsufficiency. Moreover, altered expression of this kinase may also provoke other human pathologies, including cancer and diabetes. Although a few DYRK1A substrates have been described, its upstream regulators and downstream targets are still poorly understood, an information that could shed light on the functions of DYRK1A in the cell. Here, we carried out a proteomic screen using antibody-based affinity purification coupled to mass spectrometry to identify proteins that directly or indirectly bind to endogenous DYRK1A. We show that the use of a cell line not expressing DYRK1A, generated by CRISPR/Cas9 technology, was needed in order to discriminate between true positives and non-specific interactions. Most of the proteins identified in the screen are novel candidate DYRK1A interactors linked to a variety of activities in the cell. The in-depth characterization of DYRK1A's functional interaction with one of them, the E3 ubiquitin ligase RNF169, revealed a role for this kinase in the DNA damage response. We found that RNF169 is a DYRK1A substrate and we identified several of its phosphorylation sites. In particular, one of these sites appears to modify the ability of RNF169 to displace 53BP1 from sites of DNA damage. Indeed, DYRK1A depletion increases cell sensitivity to ionizing irradiation. Therefore, our unbiased proteomic screen has revealed a novel activity of DYRK1A, expanding the complex role of this kinase in controlling cell homeostasis.
Collapse
Affiliation(s)
- Julia Roewenstrunk
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Chiara Di Vona
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Jie Chen
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, S.A.R., Hong Kong, China
| | - Eva Borras
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Chao Dong
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, S.A.R., Hong Kong, China
| | - Krisztina Arató
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Eduard Sabidó
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Michael S Y Huen
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, S.A.R., Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, S.A.R., Hong Kong, China
| | - Susana de la Luna
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain.
| |
Collapse
|
22
|
Arbones ML, Thomazeau A, Nakano-Kobayashi A, Hagiwara M, Delabar JM. DYRK1A and cognition: A lifelong relationship. Pharmacol Ther 2019; 194:199-221. [PMID: 30268771 DOI: 10.1016/j.pharmthera.2018.09.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The dosage of the serine threonine kinase DYRK1A is critical in the central nervous system (CNS) during development and aging. This review analyzes the functions of this kinase by considering its interacting partners and pathways. The role of DYRK1A in controlling the differentiation of prenatal newly formed neurons is presented separately from its role at the pre- and post-synaptic levels in the adult CNS; its effects on synaptic plasticity are also discussed. Because this kinase is positioned at the crossroads of many important processes, genetic dosage errors in this protein produce devastating effects arising from DYRK1A deficiency, such as in MRD7, an autism spectrum disorder, or from DYRK1A excess, such as in Down syndrome. Effects of these errors have been shown in various animal models including Drosophila, zebrafish, and mice. Dysregulation of DYRK1A levels also occurs in neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Finally, this review describes inhibitors that have been assessed in vivo. Accurate targeting of DYRK1A levels in the brain, with either inhibitors or activators, is a future research challenge.
Collapse
Affiliation(s)
- Maria L Arbones
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028 Barcelona, Spain.
| | - Aurore Thomazeau
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| | - Akiko Nakano-Kobayashi
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Jean M Delabar
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| |
Collapse
|
23
|
Dowjat K, Adayev T, Wojda U, Brzozowska K, Barczak A, Gabryelewicz T, Hwang YW. Abnormalities of DYRK1A-Cytoskeleton Complexes in the Blood Cells as Potential Biomarkers of Alzheimer's Disease. J Alzheimers Dis 2019; 72:1059-1075. [PMID: 31683476 PMCID: PMC6971831 DOI: 10.3233/jad-190475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND DYRK1A is implicated in mental retardation and Alzheimer's disease (AD) dementia of Down syndrome (DS) individuals. The protein is associated with cytoskeleton and altered expression has been shown to impair the cytoskeletal network via dosage effect. OBJECTIVE Our original observations of marked reduction of cytoskeletal proteins associated with DYRK1A in brains and lymphoblastoid cell lines from DS and AD prompted an investigation whether cytoskeleton abnormalities could potentially be used as biomarkers of AD. METHODS Our assay relied on quantification of co-immunoprecipitated cytoskeletal proteins with DYRK1A (co-IP assay) and analysis of the profile of G- and F-actin fractions obtained by high-speed centrifugations (spin-down assay). RESULTS In co-IP assay, both DS and AD samples displayed reduced abundance of associated cytoskeletal proteins. In spin-down assay, G-actin fractions of controls displayed two closely spaced bands of actin in SDS-PAGE; while in AD and DS, only the upper band of the doublet was present. In both assays, alterations of actin cytoskeleton were present in DS, sporadic and familial AD cases, and in asymptomatic persons who later progressed to confirmed AD, but not in non-AD donors. In blind testing involving six AD and six controls, the above tests positively identified ten cases. Analysis of blood samples revealed the diversity of mild cognitive impairment (MCI) cases regarding the presence of the AD biomarker allowing distinction between likely prodromal AD and non-AD MCI cases. CONCLUSIONS Both brain tissue and lymphocytes from DS and AD displayed similar semi-quantitative and qualitative alterations of actin cytoskeleton. Their specificity for AD-type dementia and the presence before clinical onset of the disease make them suitable biomarker candidates for early and definite diagnosis of AD. The presence of alterations in peripheral tissue points to systemic underlying mechanisms and suggests that early dysfunction of cytoskeleton may be a predisposing factor in the development of AD.
Collapse
Affiliation(s)
- Karol Dowjat
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, NY, USA
| | - Tatyana Adayev
- Department of Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, NY, USA
| | - Urszula Wojda
- Laboratory of Preclinical Testing of Higher Standard, Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Katarzyna Brzozowska
- Laboratory of Preclinical Testing of Higher Standard, Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Anna Barczak
- Department of Neurodegenerative Disorders, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Gabryelewicz
- Department of Neurodegenerative Disorders, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Yu-Wen Hwang
- Department of Molecular Biology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, NY, USA
| |
Collapse
|
24
|
Jarhad DB, Mashelkar KK, Kim HR, Noh M, Jeong LS. Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A (DYRK1A) Inhibitors as Potential Therapeutics. J Med Chem 2018; 61:9791-9810. [PMID: 29985601 DOI: 10.1021/acs.jmedchem.8b00185] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a member of an evolutionarily conserved family of protein kinases that belongs to the CMGC group of kinases. DYRK1A, encoded by a gene located in the human chromosome 21q22.2 region, has attracted attention due to its association with both neuropathological phenotypes and cancer susceptibility in patients with Down syndrome (DS). Inhibition of DYRK1A attenuates cognitive dysfunctions in animal models for both DS and Alzheimer's disease (AD). Furthermore, DYRK1A has been studied as a potential cancer therapeutic target because of its role in the regulation of cell cycle progression by affecting both tumor suppressors and oncogenes. Consequently, selective synthetic inhibitors have been developed to determine the role of DYRK1A in various human diseases. Our perspective includes a comprehensive review of potent and selective DYRK1A inhibitors and their forthcoming therapeutic applications.
Collapse
Affiliation(s)
- Dnyandev B Jarhad
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Korea
| | - Karishma K Mashelkar
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Korea
| | - Hong-Rae Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Korea
| | - Minsoo Noh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Korea
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Korea
| |
Collapse
|
25
|
Nguyen TL, Duchon A, Manousopoulou A, Loaëc N, Villiers B, Pani G, Karatas M, Mechling AE, Harsan LA, Limanton E, Bazureau JP, Carreaux F, Garbis SD, Meijer L, Herault Y. Correction of cognitive deficits in mouse models of Down syndrome by a pharmacological inhibitor of DYRK1A. Dis Model Mech 2018; 11:dmm035634. [PMID: 30115750 PMCID: PMC6176987 DOI: 10.1242/dmm.035634] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022] Open
Abstract
Growing evidence supports the implication of DYRK1A in the development of cognitive deficits seen in Down syndrome (DS) and Alzheimer's disease (AD). We here demonstrate that pharmacological inhibition of brain DYRK1A is able to correct recognition memory deficits in three DS mouse models with increasing genetic complexity [Tg(Dyrk1a), Ts65Dn, Dp1Yey], all expressing an extra copy of Dyrk1a Overexpressed DYRK1A accumulates in the cytoplasm and at the synapse. Treatment of the three DS models with the pharmacological DYRK1A inhibitor leucettine L41 leads to normalization of DYRK1A activity and corrects the novel object cognitive impairment observed in these models. Brain functional magnetic resonance imaging reveals that this cognitive improvement is paralleled by functional connectivity remodelling of core brain areas involved in learning/memory processes. The impact of Dyrk1a trisomy and L41 treatment on brain phosphoproteins was investigated by a quantitative phosphoproteomics method, revealing the implication of synaptic (synapsin 1) and cytoskeletal components involved in synaptic response and axonal organization. These results encourage the development of DYRK1A inhibitors as drug candidates to treat cognitive deficits associated with DS and AD.
Collapse
Affiliation(s)
- Thu Lan Nguyen
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics, 67400 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67400 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, 67400 Illkirch, France
- Université de Strasbourg, 67400 Illkirch, France
- ManRos Therapeutics, Perharidy Research Center, 29680 Roscoff, Bretagne, France
| | - Arnaud Duchon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics, 67400 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67400 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, 67400 Illkirch, France
- Université de Strasbourg, 67400 Illkirch, France
| | - Antigoni Manousopoulou
- Faculty of Medicine/Cancer Sciences & Clinical and Experimental Medicine, University of Southampton, Center for Proteomic Research, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Nadège Loaëc
- ManRos Therapeutics, Perharidy Research Center, 29680 Roscoff, Bretagne, France
| | - Benoît Villiers
- ManRos Therapeutics, Perharidy Research Center, 29680 Roscoff, Bretagne, France
| | - Guillaume Pani
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics, 67400 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67400 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, 67400 Illkirch, France
- Université de Strasbourg, 67400 Illkirch, France
| | - Meltem Karatas
- Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (IMIS), UMR 7357, and University Hospital Strasbourg, Department of Biophysics and Nuclear Medicine, University of Strasbourg, 67400 Illkirch, France
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Breisacher Strasse 60a, 79106 Freiburg, Germany
| | - Anna E Mechling
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Breisacher Strasse 60a, 79106 Freiburg, Germany
| | - Laura-Adela Harsan
- Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (IMIS), UMR 7357, and University Hospital Strasbourg, Department of Biophysics and Nuclear Medicine, University of Strasbourg, 67400 Illkirch, France
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Breisacher Strasse 60a, 79106 Freiburg, Germany
| | - Emmanuelle Limanton
- Université de Rennes 1, ISCR (Institut des sciences chimiques de Rennes)-UMR, 6226, 35000 Rennes, France
| | - Jean-Pierre Bazureau
- Université de Rennes 1, ISCR (Institut des sciences chimiques de Rennes)-UMR, 6226, 35000 Rennes, France
| | - François Carreaux
- Université de Rennes 1, ISCR (Institut des sciences chimiques de Rennes)-UMR, 6226, 35000 Rennes, France
| | - Spiros D Garbis
- Faculty of Medicine/Cancer Sciences & Clinical and Experimental Medicine, University of Southampton, Center for Proteomic Research, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Laurent Meijer
- ManRos Therapeutics, Perharidy Research Center, 29680 Roscoff, Bretagne, France
| | - Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics, 67400 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67400 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, 67400 Illkirch, France
- Université de Strasbourg, 67400 Illkirch, France
| |
Collapse
|
26
|
Duda P, Wiśniewski J, Wójtowicz T, Wójcicka O, Jaśkiewicz M, Drulis-Fajdasz D, Rakus D, McCubrey JA, Gizak A. Targeting GSK3 signaling as a potential therapy of neurodegenerative diseases and aging. Expert Opin Ther Targets 2018; 22:833-848. [PMID: 30244615 DOI: 10.1080/14728222.2018.1526925] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Glycogen synthase kinase 3 (GSK3) is at the center of cellular signaling and controls various aspects of brain functions, including development of the nervous system, neuronal plasticity and onset of neurodegenerative disorders. Areas covered: In this review, recent efforts in elucidating the roles of GSK3 in neuronal plasticity and development of brain pathologies; Alzheimer's and Parkinson's disease, schizophrenia, and age-related neurodegeneration are described. The effect of microglia and astrocytes on development of the pathological states is also discussed. Expert opinion: GSK3β and its signaling pathway partners hold great promise as therapeutic target(s) for a multitude of neurological disorders. Activity of the kinase is often elevated in brain disorders. However, due to the wide range of GSK3 cellular targets, global inhibition of the kinase leads to severe side-effects and GSK3 inhibitors rarely reach Phase-2 clinical trials. Thus, a selective modulation of a specific cellular pool of GSK3 or specific down- or upstream partners of the kinase might provide more efficient anti-neurodegenerative therapies.
Collapse
Affiliation(s)
- Przemysław Duda
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| | - Janusz Wiśniewski
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| | - Tomasz Wójtowicz
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| | - Olga Wójcicka
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| | - Michał Jaśkiewicz
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| | - Dominika Drulis-Fajdasz
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| | - Dariusz Rakus
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| | - James A McCubrey
- b Department of Microbiology and Immunology , Brody School of Medicine at East Carolina University , Greenville , NC , USA
| | - Agnieszka Gizak
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| |
Collapse
|
27
|
Walters GB, Gustafsson O, Sveinbjornsson G, Eiriksdottir VK, Agustsdottir AB, Jonsdottir GA, Steinberg S, Gunnarsson AF, Magnusson MI, Unnsteinsdottir U, Lee AL, Jonasdottir A, Sigurdsson A, Jonasdottir A, Skuladottir A, Jonsson L, Nawaz MS, Sulem P, Frigge M, Ingason A, Love A, Norddhal GL, Zervas M, Gudbjartsson DF, Ulfarsson MO, Saemundsen E, Stefansson H, Stefansson K. MAP1B mutations cause intellectual disability and extensive white matter deficit. Nat Commun 2018; 9:3456. [PMID: 30150678 PMCID: PMC6110722 DOI: 10.1038/s41467-018-05595-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/13/2018] [Indexed: 12/22/2022] Open
Abstract
Discovery of coding variants in genes that confer risk of neurodevelopmental disorders is an important step towards understanding the pathophysiology of these disorders. Whole-genome sequencing of 31,463 Icelanders uncovers a frameshift variant (E712KfsTer10) in microtubule-associated protein 1B (MAP1B) that associates with ID/low IQ in a large pedigree (genome-wide corrected P = 0.022). Additional stop-gain variants in MAP1B (E1032Ter and R1664Ter) validate the association with ID and IQ. Carriers have 24% less white matter (WM) volume (β = −2.1SD, P = 5.1 × 10−8), 47% less corpus callosum (CC) volume (β = −2.4SD, P = 5.5 × 10−10) and lower brain-wide fractional anisotropy (P = 6.7 × 10−4). In summary, we show that loss of MAP1B function affects general cognitive ability through a profound, brain-wide WM deficit with likely disordered or compromised axons. Intellectual disability (ID) is characterized by an intelligence quotient of below 70 and impaired adaptive skills. Here, analyzing whole genome sequences from 31,463 Icelanders, Walters et al. identify variants in MAP1B associated with ID and extensive brain-wide white matter deficits.
Collapse
Affiliation(s)
- G Bragi Walters
- deCODE genetics/Amgen, Reykjavik, 101, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
| | | | | | | | | | | | | | | | | | | | - Amy L Lee
- deCODE genetics/Amgen, Reykjavik, 101, Iceland
| | | | | | | | | | - Lina Jonsson
- deCODE genetics/Amgen, Reykjavik, 101, Iceland.,Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 405 30, Sweden
| | - Muhammad S Nawaz
- deCODE genetics/Amgen, Reykjavik, 101, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
| | | | - Mike Frigge
- deCODE genetics/Amgen, Reykjavik, 101, Iceland
| | | | - Askell Love
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland.,Department of Radiology, Landspitali University Hospital, Fossvogur, Reykjavik, 108, Iceland
| | | | - Mark Zervas
- deCODE genetics/Amgen, Reykjavik, 101, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Reykjavik, 101, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Magnus O Ulfarsson
- deCODE genetics/Amgen, Reykjavik, 101, Iceland.,Faculty of Electrical and Computer Engineering, University of Iceland, Reykjavik, 101, Iceland
| | - Evald Saemundsen
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland.,The State Diagnostic and Counselling Centre, Kopavogur, 200, Iceland
| | | | - Kari Stefansson
- deCODE genetics/Amgen, Reykjavik, 101, Iceland. .,Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland.
| |
Collapse
|
28
|
Dang T, Duan WY, Yu B, Tong DL, Cheng C, Zhang YF, Wu W, Ye K, Zhang WX, Wu M, Wu BB, An Y, Qiu ZL, Wu BL. Autism-associated Dyrk1a truncation mutants impair neuronal dendritic and spine growth and interfere with postnatal cortical development. Mol Psychiatry 2018; 23:747-758. [PMID: 28167836 PMCID: PMC5822466 DOI: 10.1038/mp.2016.253] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 10/07/2016] [Accepted: 10/17/2016] [Indexed: 11/30/2022]
Abstract
Autism is a prevailing neurodevelopmental disorder with a large genetic/genomic component. Recently, the dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1 A (DYRK1A) gene was implicated as a risk factor for autism spectrum disorder (ASD). We identified five DYRK1A variants in ASD patients and found that the dose of DYRK1A protein has a crucial role in various aspects of postnatal neural development. Dyrk1a loss of function and gain of function led to defects in dendritic growth, dendritic spine development and radial migration during cortical development. Importantly, two autism-associated truncations, R205X and E239X, were shown to be Dyrk1a loss-of-function mutants. Studies of the truncated Dyrk1a mutants may provide new insights into the role of Dyrk1a in brain development, as well as the role of Dyrk1a loss of function in the pathophysiology of autism.
Collapse
Affiliation(s)
- T Dang
- Children’s Hospital of Fudan University and Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China
| | - W Y Duan
- Exome Sequencing Collaboration at Boston Children’s Hospital and Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - B Yu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - D L Tong
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - C Cheng
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Y F Zhang
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - W Wu
- Exome Sequencing Collaboration at Boston Children’s Hospital and Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - K Ye
- Exome Sequencing Collaboration at Boston Children’s Hospital and Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - W X Zhang
- Exome Sequencing Collaboration at Boston Children’s Hospital and Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - M Wu
- Children’s Hospital of Fudan University and Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China
- Exome Sequencing Collaboration at Boston Children’s Hospital and Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - B B Wu
- Children’s Hospital of Fudan University and Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China
- Exome Sequencing Collaboration at Boston Children’s Hospital and Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Y An
- Children’s Hospital of Fudan University and Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China
- Exome Sequencing Collaboration at Boston Children’s Hospital and Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Z L Qiu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - B L Wu
- Children’s Hospital of Fudan University and Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China
- Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Takahara T, Arai Y, Kono Y, Shibata H, Maki M. A microtubule-associated protein MAP1B binds to and regulates localization of a calcium-binding protein ALG-2. Biochem Biophys Res Commun 2018; 497:492-498. [PMID: 29432744 DOI: 10.1016/j.bbrc.2018.02.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 10/18/2022]
Abstract
MAP1B (microtubule-associated protein 1B) binds to microtubules and regulates microtubule dynamics. Previously, we showed calcium-dependent interaction between MAP1B and a calcium-binding protein ALG-2 (apoptosis-linked gene 2), which is involved in regulation of the protein secretion pathway. Although ALG-2 generally binds to proteins through two consensus binding motifs such as ABM-1 and ABM-2, the absence of these motifs in MAP1B suggests a unique binding mode between MAP1B and ALG-2. Here, we identified the region of mouse MAP1B responsible for binding to ALG-2, and found point mutations that abrogated binding of MAP1B to ALG-2. Furthermore, interaction between MAP1B and ALG-2 selectively prevented ALG-2 from binding to proteins with ABM-2 such as Sec31A, suggesting competition between MAP1B and ABM-2-containing proteins for binding to ALG-2. Consistently, in MAP1B knockout cells, co-localization of ALG-2 with Sec31A was increased. Moreover, overexpression of wild-type MAP1B, but not the MAP1B mutant defective in ALG-2 binding, altered localizations of ALG-2 and Sec31A into dispersed distributions, suggesting that MAP1B regulates localizations of ALG-2 and Sec31A in the cells. Finally, we found two cancer-associated mutations of human MAP1B located near ALG-2 binding sites. The introduction of the corresponding mutations in mouse MAP1B dramatically reduced the binding ability to ALG-2. Thus, these results suggest that MAP1B plays a role in regulation of ALG-2 and Sec31A localizations, and that dysregulation of calcium-dependent binding of ALG-2 to MAP1B might influence pathological conditions such as cancers.
Collapse
Affiliation(s)
- Terunao Takahara
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Aichi, Japan.
| | - Yumika Arai
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Aichi, Japan
| | - Yuta Kono
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Aichi, Japan
| | - Hideki Shibata
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Aichi, Japan
| | - Masatoshi Maki
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Aichi, Japan.
| |
Collapse
|
30
|
Ramkumar A, Jong BY, Ori-McKenney KM. ReMAPping the microtubule landscape: How phosphorylation dictates the activities of microtubule-associated proteins. Dev Dyn 2017; 247:138-155. [PMID: 28980356 DOI: 10.1002/dvdy.24599] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/11/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022] Open
Abstract
Classical microtubule-associated proteins (MAPs) were originally identified based on their co-purification with microtubules assembled from mammalian brain lysate. They have since been found to perform a range of functions involved in regulating the dynamics of the microtubule cytoskeleton. Most of these MAPs play integral roles in microtubule organization during neuronal development, microtubule remodeling during neuronal activity, and microtubule stabilization during neuronal maintenance. As a result, mutations in MAPs contribute to neurodevelopmental disorders, psychiatric conditions, and neurodegenerative diseases. MAPs are post-translationally regulated by phosphorylation depending on developmental time point and cellular context. Phosphorylation can affect the microtubule affinity, cellular localization, or overall function of a particular MAP and can thus have profound implications for neuronal health. Here we review MAP1, MAP2, MAP4, MAP6, MAP7, MAP9, tau, and DCX, and how each is regulated by phosphorylation in neuronal physiology and disease. Developmental Dynamics 247:138-155, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amrita Ramkumar
- Department of Molecular and Cellular Biology, University of California, Davis, CA
| | - Brigette Y Jong
- Department of Molecular and Cellular Biology, University of California, Davis, CA
| | | |
Collapse
|
31
|
Leibinger M, Andreadaki A, Golla R, Levin E, Hilla AM, Diekmann H, Fischer D. Boosting CNS axon regeneration by harnessing antagonistic effects of GSK3 activity. Proc Natl Acad Sci U S A 2017; 114:E5454-E5463. [PMID: 28630333 PMCID: PMC5502600 DOI: 10.1073/pnas.1621225114] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Implications of GSK3 activity for axon regeneration are often inconsistent, if not controversial. Sustained GSK3 activity in GSK3S/A knock-in mice reportedly accelerates peripheral nerve regeneration via increased MAP1B phosphorylation and concomitantly reduces microtubule detyrosination. In contrast, the current study shows that lens injury-stimulated optic nerve regeneration was significantly compromised in these knock-in mice. Phosphorylation of MAP1B and CRMP2 was expectedly increased in retinal ganglion cell (RGC) axons upon enhanced GSK3 activity, but, surprisingly, no GSK3-mediated CRMP2 inhibition was detected in sciatic nerves, thus revealing a fundamental difference between central and peripheral axons. Conversely, genetic or shRNA-mediated conditional KO/knockdown of GSK3β reduced inhibitory phosphorylation of CRMP2 in RGCs and improved optic nerve regeneration. Accordingly, GSK3β KO-mediated neurite growth promotion and myelin disinhibition were abrogated by CRMP2 inhibition and largely mimicked in WT neurons upon expression of constitutively active CRMP2 (CRMP2T/A). These results underscore the prevalent requirement of active CRMP2 for optic nerve regeneration. Strikingly, expression of CRMP2T/A in GSK3S/A RGCs further boosted optic nerve regeneration, with axons reaching the optic chiasm within 3 wk. Thus, active GSK3 can also markedly promote axonal growth in central nerves if CRMP2 concurrently remains active. Similar to peripheral nerves, GSK3-mediated MAP1B phosphorylation/activation and the reduction of microtubule detyrosination contributed to this effect. Overall, these findings reconcile conflicting data on GSK3-mediated axon regeneration. In addition, the concept of complementary modulation of normally antagonistically targeted GSK3 substrates offers a therapeutically applicable approach to potentiate the regenerative outcome in the injured CNS.
Collapse
Affiliation(s)
- Marco Leibinger
- Division of Experimental Neurology, Department of Neurology, Heinrich Heine University of Düsseldorf, 40225 Duesseldorf, Germany
| | - Anastasia Andreadaki
- Division of Experimental Neurology, Department of Neurology, Heinrich Heine University of Düsseldorf, 40225 Duesseldorf, Germany
| | - Renate Golla
- Division of Experimental Neurology, Department of Neurology, Heinrich Heine University of Düsseldorf, 40225 Duesseldorf, Germany
| | - Evgeny Levin
- Division of Experimental Neurology, Department of Neurology, Heinrich Heine University of Düsseldorf, 40225 Duesseldorf, Germany
| | - Alexander M Hilla
- Division of Experimental Neurology, Department of Neurology, Heinrich Heine University of Düsseldorf, 40225 Duesseldorf, Germany
| | - Heike Diekmann
- Division of Experimental Neurology, Department of Neurology, Heinrich Heine University of Düsseldorf, 40225 Duesseldorf, Germany
| | - Dietmar Fischer
- Division of Experimental Neurology, Department of Neurology, Heinrich Heine University of Düsseldorf, 40225 Duesseldorf, Germany
| |
Collapse
|
32
|
Mamon LA, Ginanova VR, Kliver SF, Yakimova AO, Atsapkina AA, Golubkova EV. RNA-binding proteins of the NXF (nuclear export factor) family and their connection with the cytoskeleton. Cytoskeleton (Hoboken) 2017; 74:161-169. [PMID: 28296067 DOI: 10.1002/cm.21362] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/04/2017] [Accepted: 03/08/2017] [Indexed: 02/05/2023]
Abstract
The mutual relationship between mRNA and the cytoskeleton can be seen from two points of view. On the one hand, the cytoskeleton is necessary for mRNA trafficking and anchoring to subcellular domains. On the other hand, cytoskeletal growth and rearrangement require the translation of mRNAs that are connected to the cytoskeleton. β-actin mRNA localization may influence dynamic changes in the actin cytoskeleton. In the cytoplasm, long-lived mRNAs exist in the form of RNP (ribonucleoprotein) complexes, where they interact with RNA-binding proteins, including NXF (Nuclear eXport Factor). Dm NXF1 is an evolutionarily conserved protein in Drosophila melanogaster that has orthologs in different animals. The universal function of nxf1 genes is the nuclear export of different mRNAs in various organisms. In this mini-review, we briefly discuss the evidence demonstrating that Dm NXF1 fulfils not only universal but also specialized cytoplasmic functions. This protein is detected not only in the nucleus but also in the cytoplasm. It is a component of neuronal granules. Dm NXF1 marks nuclear division spindles during early embryogenesis and the dense body on one side of the elongated spermatid nuclei. The characteristic features of sbr mutants (sbr10 and sbr5 ) are impairment of chromosome segregation and spindle formation anomalies during female meiosis. sbr12 mutant sterile males with immobile spermatozoa exhibit disturbances in the axoneme, mitochondrial derivatives and cytokinesis. These data allow us to propose that the Dm NXF1 proteins transport certain mRNAs in neurites and interact with localized mRNAs that are necessary for dynamic changes of the cytoskeleton.
Collapse
Affiliation(s)
- L A Mamon
- Department of Genetics and Biotechnology, Faculty of Biology, St Petersburg State University Universitetskaya nab. 7-9, Saint-Petersburg, 199034, Russia
| | - V R Ginanova
- Department of Genetics and Biotechnology, Faculty of Biology, St Petersburg State University Universitetskaya nab. 7-9, Saint-Petersburg, 199034, Russia
| | - S F Kliver
- Department of Genetics and Biotechnology, Faculty of Biology, St Petersburg State University Universitetskaya nab. 7-9, Saint-Petersburg, 199034, Russia
| | - A O Yakimova
- Department of Genetics and Biotechnology, Faculty of Biology, St Petersburg State University Universitetskaya nab. 7-9, Saint-Petersburg, 199034, Russia
| | - A A Atsapkina
- Department of Genetics and Biotechnology, Faculty of Biology, St Petersburg State University Universitetskaya nab. 7-9, Saint-Petersburg, 199034, Russia
| | - E V Golubkova
- Department of Genetics and Biotechnology, Faculty of Biology, St Petersburg State University Universitetskaya nab. 7-9, Saint-Petersburg, 199034, Russia
| |
Collapse
|
33
|
Yin J, Schaaf CP. Autism genetics - an overview. Prenat Diagn 2016; 37:14-30. [DOI: 10.1002/pd.4942] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/04/2016] [Accepted: 10/11/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Jiani Yin
- Department of Molecular and Human Genetics; Baylor College of Medicine; Houston TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital; Houston TX USA
| | - Christian P. Schaaf
- Department of Molecular and Human Genetics; Baylor College of Medicine; Houston TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital; Houston TX USA
| |
Collapse
|
34
|
Wu J, He Z, Wang DL, Sun FL. Depletion of JMJD5 sensitizes tumor cells to microtubule-destabilizing agents by altering microtubule stability. Cell Cycle 2016; 15:2980-2991. [PMID: 27715397 DOI: 10.1080/15384101.2016.1234548] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Microtubules play essential roles in mitosis, cell migration, and intracellular trafficking. Drugs that target microtubules have demonstrated great clinical success in cancer treatment due to their capacity to impair microtubule dynamics in both mitotic and interphase stages. In a previous report, we demonstrated that JMJD5 associated with mitotic spindle and was required for proper mitosis. However, it remains elusive whether JMJD5 could regulate the stability of cytoskeletal microtubules and whether it affects the efficacy of microtubule-targeting agents. In this study, we find that JMJD5 localizes not only to the nucleus, a fraction of it also localizes to the cytoplasm. JMJD5 depletion decreases the acetylation and detyrosination of α-tubulin, both of which are markers of microtubule stability. In addition, microtubules in JMJD5-depleted cells are more sensitive to nocodazole-induced depolymerization, whereas JMJD5 overexpression increases α-tubulin detyrosination and enhances the resistance of microtubules to nocodazole. Mechanistic studies revealed that JMJD5 regulates MAP1B protein levels and that MAP1B overexpression rescued the microtubule destabilization induced by JMJD5 depletion. Furthermore, JMJD5 depletion significantly promoted apoptosis in cancer cells treated with the microtubule-targeting anti-cancer drugs vinblastine or colchicine. Together, these findings suggest that JMJD5 is required to regulate the stability of cytoskeletal microtubules and that JMJD5 depletion increases the susceptibility of cancer cells to microtubule-destabilizing agents.
Collapse
Affiliation(s)
- Junyu Wu
- a Department of Basic Medical Sciences , School of Medicine, Tsinghua University , Beijing , China
| | - Zhimin He
- a Department of Basic Medical Sciences , School of Medicine, Tsinghua University , Beijing , China
| | - Da-Liang Wang
- a Department of Basic Medical Sciences , School of Medicine, Tsinghua University , Beijing , China
| | - Fang-Lin Sun
- a Department of Basic Medical Sciences , School of Medicine, Tsinghua University , Beijing , China.,b Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University , Shanghai , China
| |
Collapse
|
35
|
Promotion of Functional Nerve Regeneration by Inhibition of Microtubule Detyrosination. J Neurosci 2016; 36:3890-902. [PMID: 27053198 DOI: 10.1523/jneurosci.4486-15.2016] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/26/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Functional recovery of injured peripheral neurons often remains incomplete, but the clinical outcome can be improved by increasing the axonal growth rate. Adult transgenic GSK3α(S/A)/β(S/A) knock-in mice with sustained GSK3 activity show markedly accelerated sciatic nerve regeneration. Here, we unraveled the molecular mechanism underlying this phenomenon, which led to a novel pharmacological approach for the promotion of functional recovery after nerve injury.In vitroandin vivoanalysis of GSK3 single knock-in mice revealed the unexpected contribution of GSK3α in addition to GSK3β, as both GSK3(S/A) knock-ins improved axon regeneration. Moreover, growth stimulation depended on overall GSK3 activity, correlating with increased phosphorylation of microtubule-associated protein 1B and reduced microtubule detyrosination in axonal tips. Pharmacological inhibition of detyrosination by parthenolide or cnicin mimicked this axon growth promotion in wild-type animals, although it had no effect in GSK3α(S/A)/β(S/A) mice. These results support the conclusion that sustained GSK3 activity primarily targets microtubules in growing axons, maintaining them in a more dynamic state to facilitate growth. Accordingly, further manipulation of microtubule stability using either paclitaxel or nocodazole compromised the effects of parthenolide. Strikingly, either local or systemic application of parthenolide in wild-type mice dose-dependently acceleratedin vivoaxon regeneration and functional recovery similar to GSK3α(S/A)/β(S/A) mice. Thus, reducing microtubule detyrosination in axonal tips may be a novel, clinically suitable strategy to treat nerve damage. SIGNIFICANCE STATEMENT Peripheral nerve regeneration often remains incomplete, due to an insufficient growth rate of injured axons. Transgenic mice with sustained GSK3 activity showed markedly accelerated nerve regeneration upon injury. Here, we identified the molecular mechanism underlying this phenomenon and provide a novel therapeutic principle for promoting nerve repair. Analysis of transgenic mice revealed a dependence on overall GSK3 activity and reduction of microtubule detyrosination in axonal tips. Pharmacological inhibition of detyrosination by parthenolide fully mimicked this axon growth promotion in wild-type mice. Strikingly, local or systemic treatment with parthenolidein vivomarkedly accelerated axon regeneration and functional recovery. Thus, pharmacological inhibition of microtubule detyrosination may be a novel, clinically suitable strategy for nerve repair with potential relevance for human patients.
Collapse
|
36
|
Duchon A, Herault Y. DYRK1A, a Dosage-Sensitive Gene Involved in Neurodevelopmental Disorders, Is a Target for Drug Development in Down Syndrome. Front Behav Neurosci 2016; 10:104. [PMID: 27375444 PMCID: PMC4891327 DOI: 10.3389/fnbeh.2016.00104] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 05/17/2016] [Indexed: 01/12/2023] Open
Abstract
Down syndrome (DS) is one of the leading causes of intellectual disability, and patients with DS face various health issues, including learning and memory deficits, congenital heart disease, Alzheimer's disease (AD), leukemia, and cancer, leading to huge medical and social costs. Remarkable advances on DS research have been made in improving cognitive function in mouse models for future therapeutic approaches in patients. Among the different approaches, DYRK1A inhibitors have emerged as promising therapeutics to reduce DS cognitive deficits. DYRK1A is a dual-specificity kinase that is overexpressed in DS and plays a key role in neurogenesis, outgrowth of axons and dendrites, neuronal trafficking and aging. Its pivotal role in the DS phenotype makes it a prime target for the development of therapeutics. Recently, disruption of DYRK1A has been found in Autosomal Dominant Mental Retardation 7 (MRD7), resulting in severe mental deficiency. Recent advances in the development of kinase inhibitors are expected, in the near future, to remove DS from the list of incurable diseases, providing certain conditions such as drug dosage and correct timing for the optimum long-term treatment. In addition the exact molecular and cellular mechanisms that are targeted by the inhibition of DYRK1A are still to be discovered.
Collapse
Affiliation(s)
- Arnaud Duchon
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirch, France; UMR7104, Centre National de la Recherche ScientifiqueIllkirch, France; U964, Institut National de la Santé et de la Recherche MédicaleIllkirch, France; Université de StrasbourgIllkirch, France
| | - Yann Herault
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirch, France; UMR7104, Centre National de la Recherche ScientifiqueIllkirch, France; U964, Institut National de la Santé et de la Recherche MédicaleIllkirch, France; Université de StrasbourgIllkirch, France; PHENOMIN, Institut Clinique de la Souris, Groupement d'Intérêt Économique-Centre Européen de Recherche en Biologie et en Médecine, CNRS, INSERMIllkirch-Graffenstaden, France
| |
Collapse
|
37
|
Bronicki LM, Redin C, Drunat S, Piton A, Lyons M, Passemard S, Baumann C, Faivre L, Thevenon J, Rivière JB, Isidor B, Gan G, Francannet C, Willems M, Gunel M, Jones JR, Gleeson JG, Mandel JL, Stevenson RE, Friez MJ, Aylsworth AS. Ten new cases further delineate the syndromic intellectual disability phenotype caused by mutations in DYRK1A. Eur J Hum Genet 2015; 23:1482-7. [PMID: 25920557 PMCID: PMC4613470 DOI: 10.1038/ejhg.2015.29] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/18/2014] [Accepted: 01/28/2015] [Indexed: 01/12/2023] Open
Abstract
The dual-specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) gene, located on chromosome 21q22.13 within the Down syndrome critical region, has been implicated in syndromic intellectual disability associated with Down syndrome and autism. DYRK1A has a critical role in brain growth and development primarily by regulating cell proliferation, neurogenesis, neuronal plasticity and survival. Several patients have been reported with chromosome 21 aberrations such as partial monosomy, involving multiple genes including DYRK1A. In addition, seven other individuals have been described with chromosomal rearrangements, intragenic deletions or truncating mutations that disrupt specifically DYRK1A. Most of these patients have microcephaly and all have significant intellectual disability. In the present study, we report 10 unrelated individuals with DYRK1A-associated intellectual disability (ID) who display a recurrent pattern of clinical manifestations including primary or acquired microcephaly, ID ranging from mild to severe, speech delay or absence, seizures, autism, motor delay, deep-set eyes, poor feeding and poor weight gain. We identified unique truncating and non-synonymous mutations (three nonsense, four frameshift and two missense) in DYRK1A in nine patients and a large chromosomal deletion that encompassed DYRK1A in one patient. On the basis of increasing identification of mutations in DYRK1A, we suggest that this gene be considered potentially causative in patients presenting with ID, primary or acquired microcephaly, feeding problems and absent or delayed speech with or without seizures.
Collapse
Affiliation(s)
| | - Claire Redin
- Department of Translational Medicine and Neurogenetics, IGBMC, CNRS UMR 7104, INSERM U964, Strasbourg University, Strasbourg, France
| | - Severine Drunat
- Department of Genetics and INSERM U1141, Robert Debré Hospital, Paris, France
| | - Amélie Piton
- Department of Translational Medicine and Neurogenetics, IGBMC, CNRS UMR 7104, INSERM U964, Strasbourg University, Strasbourg, France
- Laboratoire de diagnostic génétique, Faculty of Medicine and CHU Strasbourg, Strasbourg, France
| | | | - Sandrine Passemard
- Department of Genetics and INSERM U1141, Robert Debré Hospital, Paris, France
| | | | - Laurence Faivre
- Fédération Hospitalo- Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon, Dijon, France
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
| | - Julien Thevenon
- Fédération Hospitalo- Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon, Dijon, France
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
| | - Jean-Baptiste Rivière
- Fédération Hospitalo- Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon, Dijon, France
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
- Laboratoire de Génétique Moléculaire, Plateau Technique de Biologie, Centre Hospitalier Universitaire Dijon, Dijon, France
| | - Bertrand Isidor
- Medical Genetics- Clinical Genetics Unit, CHU de Nantes, Nantes-Cedex, France
| | - Grace Gan
- Department of Translational Medicine and Neurogenetics, IGBMC, CNRS UMR 7104, INSERM U964, Strasbourg University, Strasbourg, France
| | - Christine Francannet
- Service de génétique médicale, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - Marjolaine Willems
- Department of Medical Genetics, Reference Center for Rare Diseases, Developmental Disorders and Multiple Congenital Anomalies, Arnaud de Villeneuve Hospital, Montpellier, France
| | - Murat Gunel
- Department of Genetics and Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | | | - Joseph G Gleeson
- Department of Neurosciences, Howard Hughes Medical Institute, Rady Children's Hospital, University of California, San Diego, La Jolla, CA, USA
| | - Jean-Louis Mandel
- Department of Translational Medicine and Neurogenetics, IGBMC, CNRS UMR 7104, INSERM U964, Strasbourg University, Strasbourg, France
- Laboratoire de diagnostic génétique, Faculty of Medicine and CHU Strasbourg, Strasbourg, France
| | | | | | - Arthur S Aylsworth
- Departments of Pediatrics and Genetics, Division of Genetics and Metabolism, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
38
|
Copf T. Importance of gene dosage in controlling dendritic arbor formation during development. Eur J Neurosci 2015; 42:2234-49. [PMID: 26108333 DOI: 10.1111/ejn.13002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/05/2015] [Accepted: 06/18/2015] [Indexed: 12/11/2022]
Abstract
Proper dendrite morphology is crucial for normal nervous system functioning. While a number of genes have been implicated in dendrite morphogenesis in both invertebrates and mammals, it remains unclear how developing dendrites respond to changes in gene dosage and what type of patterns their responses may follow. To understand this, I review here evidence from the recent literature, focusing on the genetic studies performed in the Drosophila larval dendritic arborization class IV neuron, an excellent cell type to understand dendrite morphogenesis. I summarize how class IV arbors change morphology in response to developmental fluctuations in the expression levels of 47 genes, studied by means of genetic manipulations such as loss-of-function and gain-of-function, and for which sufficient information is available. I find that arbors can respond to changing gene dosage in several distinct ways, each characterized by a singular dose-response curve. Interestingly, in 72% of cases arbors are sensitive, and thus adjust their morphology, in response to both decreases and increases in the expression of a given gene, indicating that dendrite morphogenesis is a process particularly sensitive to gene dosage. By summarizing the parallels between Drosophila and mammals, I show that many Drosophila dendrite morphogenesis genes have orthologs in mammals, and that some of these are associated with mammalian dendrite outgrowth and human neurodevelopmental disorders. One notable disease-related molecule is kinase Dyrk1A, thought to be a causative factor in Down syndrome. Both increases and decreases in Dyrk1A gene dosage lead to impaired dendrite morphogenesis, which may contribute to Down syndrome pathoetiology.
Collapse
Affiliation(s)
- Tijana Copf
- Institute of Molecular Biology and Biotechnology, Nikolaou Plastira 100, PO Box 1385, Heraklion, GR-70013, Crete, Greece
| |
Collapse
|
39
|
Whiting JL, Nygren PJ, Tunquist BJ, Langeberg LK, Seternes OM, Scott JD. Protein Kinase A Opposes the Phosphorylation-dependent Recruitment of Glycogen Synthase Kinase 3β to A-kinase Anchoring Protein 220. J Biol Chem 2015; 290:19445-57. [PMID: 26088133 DOI: 10.1074/jbc.m115.654822] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Indexed: 02/04/2023] Open
Abstract
The proximity of an enzyme to its substrate can influence rate and magnitude of catalysis. A-kinase anchoring protein 220 (AKAP220) is a multivalent anchoring protein that can sequester a variety of signal transduction enzymes. These include protein kinase A (PKA) and glycogen synthase kinase 3β (GSK3β). Using a combination of molecular and cellular approaches we show that GSK3β phosphorylation of Thr-1132 on AKAP220 initiates recruitment of this kinase into the enzyme scaffold. We also find that AKAP220 anchors GSK3β and its substrate β-catenin in membrane ruffles. Interestingly, GSK3β can be released from the multienzyme complex in response to PKA phosphorylation on serine 9, which suppresses GSK3β activity. The signaling scaffold may enhance this regulatory mechanism, as AKAP220 has the capacity to anchor two PKA holoenzymes. Site 1 on AKAP220 (residues 610-623) preferentially interacts with RII, whereas site 2 (residues 1633-1646) exhibits a dual specificity for RI and RII. In vitro affinity measurements revealed that site 2 on AKAP220 binds RII with ∼10-fold higher affinity than site 1. Occupancy of both R subunit binding sites on AKAP220 could provide a mechanism to amplify local cAMP responses and enable cross-talk between PKA and GSK3β.
Collapse
Affiliation(s)
- Jennifer L Whiting
- From the Howard Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Patrick J Nygren
- From the Howard Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Brian J Tunquist
- Translational Oncology, Array BioPharma, Inc., Boulder, Colorado 80301, and
| | - Lorene K Langeberg
- From the Howard Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Ole-Morten Seternes
- From the Howard Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195, Department of Pharmacy, University of Tromsø, The Arctic University of Norway, 9037 Tromsø, Norway
| | - John D Scott
- From the Howard Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195,
| |
Collapse
|
40
|
Thompson BJ, Bhansali R, Diebold L, Cook DE, Stolzenburg L, Casagrande AS, Besson T, Leblond B, Désiré L, Malinge S, Crispino JD. DYRK1A controls the transition from proliferation to quiescence during lymphoid development by destabilizing Cyclin D3. J Exp Med 2015; 212:953-70. [PMID: 26008897 PMCID: PMC4451127 DOI: 10.1084/jem.20150002] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 04/29/2015] [Indexed: 11/16/2022] Open
Abstract
Pre-B and pre-T lymphocytes must orchestrate a transition from a highly proliferative state to a quiescent one during development. Cyclin D3 is essential for these cells' proliferation, but little is known about its posttranslational regulation at this stage. Here, we show that the dual specificity tyrosine-regulated kinase 1A (DYRK1A) restrains Cyclin D3 protein levels by phosphorylating T283 to induce its degradation. Loss of DYRK1A activity, via genetic inactivation or pharmacologic inhibition in mice, caused accumulation of Cyclin D3 protein, incomplete repression of E2F-mediated gene transcription, and failure to properly couple cell cycle exit with differentiation. Expression of a nonphosphorylatable Cyclin D3 T283A mutant recapitulated these defects, whereas inhibition of Cyclin D:CDK4/6 mitigated the effects of DYRK1A inhibition or loss. These data uncover a previously unknown role for DYRK1A in lymphopoiesis, and demonstrate how Cyclin D3 protein stability is negatively regulated during exit from the proliferative phases of B and T cell development.
Collapse
Affiliation(s)
| | - Rahul Bhansali
- Division of Hematology/Oncology, Northwestern University, Chicago, IL 60208
| | - Lauren Diebold
- Division of Hematology/Oncology, Northwestern University, Chicago, IL 60208
| | - Daniel E Cook
- Division of Hematology/Oncology, Northwestern University, Chicago, IL 60208
| | | | | | - Thierry Besson
- Normandie Université, COBRA, UMR 6014 and FR 3038; Université Rouen; INSA Rouen; Centre National de la Recherche Scientifique, Bâtiment IRCOF, 76821 Mont St. Aignan, France
| | | | | | | | - John D Crispino
- Division of Hematology/Oncology, Northwestern University, Chicago, IL 60208
| |
Collapse
|
41
|
Yang M, Wu M, Xia P, Wang C, Yan P, Gao Q, Liu J, Wang H, Duan X, Yang X. The role of microtubule-associated protein 1B in axonal growth and neuronal migration in the central nervous system. Neural Regen Res 2015; 7:842-8. [PMID: 25737712 PMCID: PMC4342712 DOI: 10.3969/j.issn.1673-5374.2012.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/08/2012] [Indexed: 01/22/2023] Open
Abstract
In this review, we discuss the role of microtubule-associated protein 1B (MAP1B) and its phosphorylation in axonal development and regeneration in the central nervous system. MAP1B exhibits similar functions during axonal development and regeneration. MAP1B and phosphorylated MAP1B in neurons and axons maintain a dynamic balance between cytoskeletal components, and regulate the stability and interaction of microtubules and actin to promote axonal growth, neural connectivity and regeneration in the central nervous system.
Collapse
Affiliation(s)
- Maoguang Yang
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Minfei Wu
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Peng Xia
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Chunxin Wang
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Peng Yan
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Qi Gao
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Jian Liu
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Haitao Wang
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Xingwei Duan
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Xiaoyu Yang
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
42
|
Edelmann MJ, Shack LA, Naske CD, Walters KB, Nanduri B. SILAC-based quantitative proteomic analysis of human lung cell response to copper oxide nanoparticles. PLoS One 2014; 9:e114390. [PMID: 25470785 PMCID: PMC4255034 DOI: 10.1371/journal.pone.0114390] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/09/2014] [Indexed: 12/03/2022] Open
Abstract
Copper (II) oxide (CuO) nanoparticles (NP) are widely used in industry and medicine. In our study we evaluated the response of BEAS-2B human lung cells to CuO NP, using Stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics and phosphoproteomics. Pathway modeling of the protein differential expression showed that CuO NP affect proteins relevant in cellular function and maintenance, protein synthesis, cell death and survival, cell cycle and cell morphology. Some of the signaling pathways represented by BEAS-2B proteins responsive to the NP included mTOR signaling, protein ubiquitination pathway, actin cytoskeleton signaling and epithelial adherens junction signaling. Follow-up experiments showed that CuO NP altered actin cytoskeleton, protein phosphorylation and protein ubiquitination level.
Collapse
Affiliation(s)
- Mariola J. Edelmann
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi, United States of America
- Department of Basic Sciences, College of Veterinary Medicine, 240 Wise Center Drive, Mississippi State University, Mississippi, United States of America
| | - Leslie A. Shack
- Department of Basic Sciences, College of Veterinary Medicine, 240 Wise Center Drive, Mississippi State University, Mississippi, United States of America
| | - Caitlin D. Naske
- Department of Chemical Engineering, Mississippi State University, Mississippi, United States of America
| | - Keisha B. Walters
- Department of Chemical Engineering, Mississippi State University, Mississippi, United States of America
| | - Bindu Nanduri
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi, United States of America
- Department of Basic Sciences, College of Veterinary Medicine, 240 Wise Center Drive, Mississippi State University, Mississippi, United States of America
- * E-mail:
| |
Collapse
|
43
|
Gobrecht P, Leibinger M, Andreadaki A, Fischer D. Sustained GSK3 activity markedly facilitates nerve regeneration. Nat Commun 2014; 5:4561. [PMID: 25078444 DOI: 10.1038/ncomms5561] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/30/2014] [Indexed: 12/16/2022] Open
Abstract
Promotion of axonal growth of injured DRG neurons improves the functional recovery associated with peripheral nerve regeneration. Both isoforms of glycogen synthase kinase 3 (GSK3; α and β) are phosphorylated and inactivated via phosphatidylinositide 3-kinase (PI3K)/AKT signalling upon sciatic nerve crush (SNC). However, the role of GSK3 phosphorylation in this context is highly controversial. Here we use knock-in mice expressing GSK3 isoforms resistant to inhibitory PI3K/AKT phosphorylation, and unexpectedly find markedly accelerated axon growth of DRG neurons in culture and in vivo after SNC compared with controls. Moreover, this enhanced regeneration strikingly accelerates functional recovery after SNC. These effects are GSK3 activity dependent and associated with elevated MAP1B phosphorylation. Altogether, our data suggest that PI3K/AKT-mediated inhibitory phosphorylation of GSK3 limits the regenerative outcome after peripheral nerve injury. Therefore, suppression of this internal 'regenerative break' may potentially provide a new perspective for the clinical treatment of nerve injuries.
Collapse
Affiliation(s)
- Philipp Gobrecht
- Division of Experimental Neurology, Department of Neurology, Heinrich Heine University of Düsseldorf, Merowingerplatz 1a, 40225 Düsseldorf, Germany
| | - Marco Leibinger
- Division of Experimental Neurology, Department of Neurology, Heinrich Heine University of Düsseldorf, Merowingerplatz 1a, 40225 Düsseldorf, Germany
| | - Anastasia Andreadaki
- Division of Experimental Neurology, Department of Neurology, Heinrich Heine University of Düsseldorf, Merowingerplatz 1a, 40225 Düsseldorf, Germany
| | - Dietmar Fischer
- Division of Experimental Neurology, Department of Neurology, Heinrich Heine University of Düsseldorf, Merowingerplatz 1a, 40225 Düsseldorf, Germany
| |
Collapse
|
44
|
Brot S, Smaoune H, Youssef-Issa M, Malleval C, Benetollo C, Besançon R, Auger C, Moradi-Améli M, Honnorat J. Collapsin response-mediator protein 5 (CRMP5) phosphorylation at threonine 516 regulates neurite outgrowth inhibition. Eur J Neurosci 2014; 40:3010-20. [DOI: 10.1111/ejn.12674] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 06/16/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Sébastien Brot
- Lyon Neuroscience Research Center; INSERM; UMR-S1028; CNRS UMR5292; Neuro-Oncology & Neuro-Inflammation Team; Lyon F-69372 France
- Université de Lyon; Université Claude Bernard Lyon 1; Lyon F-69000 France
| | - Hinda Smaoune
- Lyon Neuroscience Research Center; INSERM; UMR-S1028; CNRS UMR5292; Neuro-Oncology & Neuro-Inflammation Team; Lyon F-69372 France
- Université de Lyon; Université Claude Bernard Lyon 1; Lyon F-69000 France
| | - Mina Youssef-Issa
- Lyon Neuroscience Research Center; INSERM; UMR-S1028; CNRS UMR5292; Neuro-Oncology & Neuro-Inflammation Team; Lyon F-69372 France
- Université de Lyon; Université Claude Bernard Lyon 1; Lyon F-69000 France
| | - Céline Malleval
- Lyon Neuroscience Research Center; INSERM; UMR-S1028; CNRS UMR5292; Neuro-Oncology & Neuro-Inflammation Team; Lyon F-69372 France
- Université de Lyon; Université Claude Bernard Lyon 1; Lyon F-69000 France
| | - Claire Benetollo
- Neurogenetic and Optogenetic Platform; Lyon Neuroscience Research Center; Lyon Cedex 08 F-69372 France
| | - Roger Besançon
- Lyon Neuroscience Research Center; INSERM; UMR-S1028; CNRS UMR5292; Neuro-Oncology & Neuro-Inflammation Team; Lyon F-69372 France
- Université de Lyon; Université Claude Bernard Lyon 1; Lyon F-69000 France
| | - Carole Auger
- Lyon Neuroscience Research Center; INSERM; UMR-S1028; CNRS UMR5292; Neuro-Oncology & Neuro-Inflammation Team; Lyon F-69372 France
- Université de Lyon; Université Claude Bernard Lyon 1; Lyon F-69000 France
| | - Mahnaz Moradi-Améli
- Lyon Neuroscience Research Center; INSERM; UMR-S1028; CNRS UMR5292; Neuro-Oncology & Neuro-Inflammation Team; Lyon F-69372 France
- Université de Lyon; Université Claude Bernard Lyon 1; Lyon F-69000 France
| | - Jérôme Honnorat
- Lyon Neuroscience Research Center; INSERM; UMR-S1028; CNRS UMR5292; Neuro-Oncology & Neuro-Inflammation Team; Lyon F-69372 France
- Université de Lyon; Université Claude Bernard Lyon 1; Lyon F-69000 France
- Hospices Civils de Lyon; Neuro-Oncologie; Bron F-69677 France
| |
Collapse
|
45
|
Krisenko MO, Cartagena A, Raman A, Geahlen RL. Nanomechanical property maps of breast cancer cells as determined by multiharmonic atomic force microscopy reveal Syk-dependent changes in microtubule stability mediated by MAP1B. Biochemistry 2014; 54:60-8. [PMID: 24914616 PMCID: PMC4295795 DOI: 10.1021/bi500325n] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
The
Syk protein-tyrosine kinase, a well-characterized modulator
of immune recognition receptor signaling, also plays important, but
poorly characterized, roles in tumor progression, acting as an inhibitor
of cellular motility and metastasis in highly invasive cancer cells.
Multiharmonic
atomic force microscopy (AFM) was used to map nanomechanical properties
of live MDA-MB-231 breast cancer cells either lacking or expressing
Syk. The expression of Syk dramatically altered the cellular topography,
reduced cell height, increased elasticity, increased viscosity, and
allowed visualization of a more substantial microtubule network. The
microtubules of Syk-expressing cells were more stable to nocodazole-induced
depolymerization and were more highly acetylated than those of Syk-deficient
cells. Silencing of MAP1B, a major substrate for Syk in MDA-MB-231
cells, attenuated Syk-dependent microtubule stability and reversed
much of the effect of Syk on cellular topography, stiffness, and viscosity.
This study illustrates the use of multiharmonic AFM both to quantitatively
map the local nanomechanical properties
of living cells and to identify the underlying mechanisms by which
these properties are modulated by signal transduction machinery.
Collapse
Affiliation(s)
- Mariya O Krisenko
- Department of Medicinal Chemistry and Molecular Pharmacology, ‡School of Mechanical Engineering, §Purdue Center for Cancer Research, and ∥Birck Nanotechnology Center, Purdue University , West Lafayette, Indiana 47907, United States
| | | | | | | |
Collapse
|
46
|
Liz MA, Mar FM, Santos TE, Pimentel HI, Marques AM, Morgado MM, Vieira S, Sousa VF, Pemble H, Wittmann T, Sutherland C, Woodgett JR, Sousa MM. Neuronal deletion of GSK3β increases microtubule speed in the growth cone and enhances axon regeneration via CRMP-2 and independently of MAP1B and CLASP2. BMC Biol 2014; 12:47. [PMID: 24923837 PMCID: PMC4229956 DOI: 10.1186/1741-7007-12-47] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/07/2014] [Indexed: 02/08/2023] Open
Abstract
Background In the adult central nervous system, axonal regeneration is abortive. Regulators of microtubule dynamics have emerged as attractive targets to promote axonal growth following injury as microtubule organization is pivotal for growth cone formation. In this study, we used conditioned neurons with high regenerative capacity to further dissect cytoskeletal mechanisms that might be involved in the gain of intrinsic axon growth capacity. Results Following a phospho-site broad signaling pathway screen, we found that in conditioned neurons with high regenerative capacity, decreased glycogen synthase kinase 3β (GSK3β) activity and increased microtubule growth speed in the growth cone were present. To investigate the importance of GSK3β regulation during axonal regeneration in vivo, we used three genetic mouse models with high, intermediate or no GSK3β activity in neurons. Following spinal cord injury, reduced GSK3β levels or complete neuronal deletion of GSK3β led to increased growth cone microtubule growth speed and promoted axon regeneration. While several microtubule-interacting proteins are GSK3β substrates, phospho-mimetic collapsin response mediator protein 2 (T/D-CRMP-2) was sufficient to decrease microtubule growth speed and neurite outgrowth of conditioned neurons and of GSK3β-depleted neurons, prevailing over the effect of decreased levels of phosphorylated microtubule-associated protein 1B (MAP1B) and through a mechanism unrelated to decreased levels of phosphorylated cytoplasmic linker associated protein 2 (CLASP2). In addition, phospho-resistant T/A-CRMP-2 counteracted the inhibitory myelin effect on neurite growth, further supporting the GSK3β-CRMP-2 relevance during axon regeneration. Conclusions Our work shows that increased microtubule growth speed in the growth cone is present in conditions of increased axonal growth, and is achieved following inactivation of the GSK3β-CRMP-2 pathway, enhancing axon regeneration through the glial scar. In this context, our results support that a precise control of microtubule dynamics, specifically in the growth cone, is required to optimize axon regrowth.
Collapse
|
47
|
Liu Q, Liu N, Zang S, Liu H, Wang P, Ji C, Sun X. Tumor suppressor DYRK1A effects on proliferation and chemoresistance of AML cells by downregulating c-Myc. PLoS One 2014; 9:e98853. [PMID: 24901999 PMCID: PMC4047119 DOI: 10.1371/journal.pone.0098853] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/07/2014] [Indexed: 01/12/2023] Open
Abstract
Acute myeloid leukemia (AML), caused by abnormal proliferation and accumulation of hematopoietic progenitor cells, is one of the most common malignancies in adults. We reported here DYRK1A expression level was reduced in the bone marrow of adult AML patients, comparing to normal controls. Overexpression of DYRK1A inhibited the proliferation of AML cell lines by increasing the proportion of cells undergoing G0/G1 phase. We reasoned that the proliferative inhibition was due to downregulation of c-Myc by DYRK1A, through mediating its degradation. Moreover, overexpression of c-Myc markedly reversed AML cell growth inhibition induced by DYRK1A. DYRK1A also had significantly lower expression in relapsed/refractory AML patients, comparing to newly-diagnosed AML patients, which indicated the role of DYRK1A in chemoresistance of AML. Our study provided functional evidences for DYRK1A as a potential tumor suppressor in AML.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Cell Cycle/genetics
- Cell Line, Tumor
- Cell Proliferation
- Down-Regulation
- Drug Resistance, Neoplasm/genetics
- Female
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Male
- Middle Aged
- Protein Serine-Threonine Kinases/metabolism
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins c-myc/genetics
- Recurrence
- Young Adult
- Dyrk Kinases
Collapse
Affiliation(s)
- Qiang Liu
- Key Lab of Otolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Na Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Shaolei Zang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Heng Liu
- Key Lab of Otolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Pin Wang
- Key Lab of Otolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiulian Sun
- Key Lab of Otolaryngology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
48
|
Villarroel-Campos D, Gonzalez-Billault C. The MAP1B case: an old MAP that is new again. Dev Neurobiol 2014; 74:953-71. [PMID: 24700609 DOI: 10.1002/dneu.22178] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/27/2014] [Accepted: 03/31/2014] [Indexed: 12/24/2022]
Abstract
The functions of microtubule-associated protein 1B (MAP1B) have historically been linked to the development of the nervous system, based on its very early expression in neurons and glial cells. Moreover, mice in which MAP1B is genetically inactivated have been used extensively to show its role in axonal elongation, neuronal migration, and axonal guidance. In the last few years, it has become apparent that MAP1B has other cellular and molecular functions that are not related to its microtubule-stabilizing properties in the embryonic and adult brain. In this review, we present a systematic review of the canonical and novel functions of MAP1B and propose that, in addition to regulating the polymerization of microtubule and actin microfilaments, MAP1B also acts as a signaling protein involved in normal physiology and pathological conditions in the nervous system.
Collapse
Affiliation(s)
- David Villarroel-Campos
- Laboratory of Cell and Neuronal Dynamics (Cenedyn), Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | | |
Collapse
|
49
|
De la Torre R, De Sola S, Pons M, Duchon A, de Lagran MM, Farré M, Fitó M, Benejam B, Langohr K, Rodriguez J, Pujadas M, Bizot JC, Cuenca A, Janel N, Catuara S, Covas MI, Blehaut H, Herault Y, Delabar JM, Dierssen M. Epigallocatechin-3-gallate, a DYRK1A inhibitor, rescues cognitive deficits in Down syndrome mouse models and in humans. Mol Nutr Food Res 2014; 58:278-88. [PMID: 24039182 DOI: 10.1002/mnfr.201300325] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/04/2013] [Accepted: 07/07/2013] [Indexed: 12/17/2022]
Abstract
SCOPE Trisomy for human chromosome 21 results in Down syndrome (DS), which is among the most complex genetic perturbations leading to intellectual disability. Accumulating data suggest that overexpression of the dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A), is a critical pathogenic mechanisms in the intellectual deficit. METHODS AND RESULTS Here we show that the green tea flavonol epigallocatechin-gallate (EGCG), a DYRK1A inhibitor, rescues the cognitive deficits of both segmental trisomy 16 (Ts65Dn) and transgenic mice overexpressing Dyrk1A in a trisomic or disomic genetic background, respectively. It also significantly reverses cognitive deficits in a pilot study in DS individuals with effects on memory recognition, working memory and quality of life. We used the mouse models to ensure that EGCG was able to reduce DYRK1A kinase activity in the hippocampus and found that it also induced significant changes in plasma homocysteine levels, which were correlated with Dyrk1A expression levels. Thus, we could use plasma homocysteine levels as an efficacy biomarker in our human study. CONCLUSION We conclude that EGCG is a promising therapeutic tool for cognitive enhancement in DS, and its efficacy may depend of Dyrk1A inhibition.
Collapse
Affiliation(s)
- Rafael De la Torre
- Human Pharmacology and Clinical Neurosciences Research Group-Neurosciences Program, IMIM-Hospital del Mar Research Institute, Barcelona, Spain; Cardiovascular Risk and Nutrition Research Group-Inflammatory and Cardiovascular Disorders Program, IMIM-Hospital del Mar Research Institute, and CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Barcelona, Spain; University Pompeu Fabra, CEXS-UPF, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kaczmarski W, Barua M, Mazur-Kolecka B, Frackowiak J, Dowjat W, Mehta P, Bolton D, Hwang YW, Rabe A, Albertini G, Wegiel J. Intracellular distribution of differentially phosphorylated dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A). J Neurosci Res 2014; 92:162-73. [PMID: 24327345 PMCID: PMC3951420 DOI: 10.1002/jnr.23279] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 06/20/2013] [Accepted: 06/21/2013] [Indexed: 01/16/2023]
Abstract
The gene encoding dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is located within the Down syndrome (DS) critical region of chromosome 21. DYRK1A interacts with a plethora of substrates in the cytosol, cytoskeleton, and nucleus. Its overexpression is a contributing factor to the developmental alterations and age-associated pathology observed in DS. We hypothesized that the intracellular distribution of DYRK1A and cell-compartment-specific functions are associated with DYRK1A posttranslational modifications. Fractionation showed that, in both human and mouse brain, almost 80% of DYRK1A was associated with the cytoskeleton, and the remaining DYRK1A was present in the cytosolic and nuclear fractions. Coimmunoprecipitation revealed that DYRK1A in the brain cytoskeleton fraction forms complexes with filamentous actin, neurofilaments, and tubulin. Two-dimensional gel analysis of the fractions revealed DYRK1A with distinct isoelectric points: 5.5-6.5 in the nucleus, 7.2-8.2 in the cytoskeleton, and 8.7 in the cytosol. Phosphate-affinity gel electrophoresis demonstrated several bands of DYRK1A with different mobility shifts for nuclear, cytoskeletal, and cytosolic DYRK1A, indicating modification by phosphorylation. Mass spectrometry analysis disclosed one phosphorylated site in the cytosolic DYRK1A and multiple phosphorylated residues in the cytoskeletal DYRK1A, including two not previously described. This study supports the hypothesis that intracellular distribution and compartment-specific functions of DYRK1A may depend on its phosphorylation pattern.
Collapse
Affiliation(s)
- Wojciech Kaczmarski
- Department of Developmental Neurobiology, NYS Institute for Basic
Research in Developmental Disabilities, Staten Island, New York, USA
| | - Madhabi Barua
- Department of Developmental Neurobiology, NYS Institute for Basic
Research in Developmental Disabilities, Staten Island, New York, USA
| | - Bozena Mazur-Kolecka
- Department of Developmental Neurobiology, NYS Institute for Basic
Research in Developmental Disabilities, Staten Island, New York, USA
| | - Janusz Frackowiak
- Department of Developmental Neurobiology, NYS Institute for Basic
Research in Developmental Disabilities, Staten Island, New York, USA
| | - Wieslaw Dowjat
- Department of Developmental Neurobiology, NYS Institute for Basic
Research in Developmental Disabilities, Staten Island, New York, USA
| | - Pankaj Mehta
- Department of Developmental Neurobiology, NYS Institute for Basic
Research in Developmental Disabilities, Staten Island, New York, USA
| | - David Bolton
- Department of Molecular Biology, NYS Institute for Basic Research in
Developmental Disabilities, Staten Island, New York, USA
| | - Yu-Wen Hwang
- Department of Molecular Biology, NYS Institute for Basic Research in
Developmental Disabilities, Staten Island, New York, USA
| | - Ausma Rabe
- Department of Developmental Neurobiology, NYS Institute for Basic
Research in Developmental Disabilities, Staten Island, New York, USA
| | - Giorgio Albertini
- Instituto di Ricovero e Cura a Carattere Scientifico, San Raffaele
Pisana, Rome, Italy
| | - Jerzy Wegiel
- Department of Developmental Neurobiology, NYS Institute for Basic
Research in Developmental Disabilities, Staten Island, New York, USA
| |
Collapse
|