1
|
Martins CS, Iv F, Suman SK, Panagiotou TC, Sidor C, Ruso-López M, Plancke CN, Omi S, Pagès R, Gomes M, Llewellyn A, Bandi SR, Ramond L, Arbizzani F, Rimoli CV, Schnorrer F, Robin F, Wilde A, LeGoff L, Pedelacq JD, Jégou A, Cabantous S, Rincon SA, Chandre C, Brasselet S, Mavrakis M. Genetically encoded reporters of actin filament organization in living cells and tissues. Cell 2025; 188:2540-2559.e27. [PMID: 40179884 DOI: 10.1016/j.cell.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 12/09/2024] [Accepted: 03/03/2025] [Indexed: 04/05/2025]
Abstract
The cytoskeletal protein actin is crucial for cell shape and integrity throughout eukaryotes. Actin filaments perform essential biological functions, including muscle contraction, cell division, and tissue morphogenesis. These diverse activities are achieved through the ability of actin filaments to be arranged into precise architectures. Much progress has been made in defining the proteome of the actin cytoskeleton, but a detailed appreciation of the dynamic organizational state of the actin filaments themselves has been hindered by available tools. Fluorescence polarization microscopy is uniquely placed for measuring actin filament organization by exploiting the sensitivity of polarized light excitation to the orientation of fluorophores attached to actin filaments. By engineering fusions of five widely used actin localization reporters to fluorescent proteins with constrained mobility, we have succeeded in developing genetically encoded, green- and red-fluorescent-protein-based reporters for non-invasive, quantitative measurements of actin filament organization in living cells and tissues by fluorescence polarization microscopy.
Collapse
Affiliation(s)
- Carla Silva Martins
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | - François Iv
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | - Shashi Kumar Suman
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement/UMR7622, 75005 Paris, France
| | - Thomas C Panagiotou
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1M1, Canada
| | - Clara Sidor
- Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living Systems, 13009 Marseille, France
| | - María Ruso-López
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca 37007, Spain
| | - Camille N Plancke
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement/UMR7622, 75005 Paris, France
| | - Shizue Omi
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | - Rebecca Pagès
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Maxime Gomes
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | - Alexander Llewellyn
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | - Sourish Reddy Bandi
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | - Laurie Ramond
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | | | - Caio Vaz Rimoli
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | - Frank Schnorrer
- Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living Systems, 13009 Marseille, France
| | - François Robin
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement/UMR7622, 75005 Paris, France
| | - Andrew Wilde
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1M1, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1M1, Canada
| | - Loïc LeGoff
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | - Jean-Denis Pedelacq
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Antoine Jégou
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Stéphanie Cabantous
- Centre de Recherche en Cancérologie de Toulouse (CRCT), Inserm, Université Paul Sabatier - Toulouse III, CNRS, 31037 Toulouse, France
| | - Sergio A Rincon
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca 37007, Spain
| | | | - Sophie Brasselet
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France.
| | - Manos Mavrakis
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France.
| |
Collapse
|
2
|
Maupérin M, Sun Y, Glandorf T, Oswald TA, Klatt N, Geil B, Mutero-Maeda A, Méan I, Jond L, Janshoff A, Yan J, Citi S. A feedback circuitry involving γ-actin, β-actin and nonmuscle myosin-2 A controls tight junction and apical cortex mechanics. Nat Commun 2025; 16:2514. [PMID: 40082413 PMCID: PMC11906862 DOI: 10.1038/s41467-025-57428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/21/2025] [Indexed: 03/16/2025] Open
Abstract
Cytoplasmic β- and γ-actin isoforms, along with non-muscle myosin 2 isoforms, are tightly regulated in epithelial cells and compose the actomyosin cytoskeleton at the apical junctional complex. However, their specific role in regulating the mechanics of the membrane cortex and the organization of junctions, and which biomechanical circuitries modulate their expression remain poorly understood. Here, we show that γ-actin depletion in MDCK and other epithelial cells results in increased expression and junctional accumulation of β-actin and increased tight junction membrane tortuosity, both dependent on nonmuscle myosin-2A upregulation. The knock-out of γ-actin also decreases apical membrane stiffness and increases dynamic exchange of the cytoplasmic tight junction proteins like ZO-1 and cingulin, without affecting tight junction organization and barrier function. In summary, our findings uncover a biomechanical circuitry linking γ-actin to β-actin expression through nonmuscle myosin-2A and reveal γ-actin as a key regulator of tight junction and apical membrane cortex mechanics, and the dynamics of cytoskeleton-associated tight junction proteins in epithelial cells.
Collapse
Affiliation(s)
- Marine Maupérin
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Yuze Sun
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Thomas Glandorf
- Georg-August Universität, Institute for Physical Chemistry, Göttingen, Germany
| | - Tabea Anne Oswald
- Georg-August Universität, Institute for Organic and Biomolecular Chemistry, Göttingen, Germany
| | - Niklas Klatt
- Georg-August Universität, Institute for Physical Chemistry, Göttingen, Germany
| | - Burkhard Geil
- Georg-August Universität, Institute for Physical Chemistry, Göttingen, Germany
| | - Annick Mutero-Maeda
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Isabelle Méan
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Lionel Jond
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Andreas Janshoff
- Georg-August Universität, Institute for Physical Chemistry, Göttingen, Germany
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Sandra Citi
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
3
|
Ryabukha YA, Zatsepina OV, Rubtsov YP. The completing of the second meiotic division by MII mouse oocytes correlates with the positioning of F-actin and mitochondria in the ooplasm. Biochimie 2025; 230:55-67. [PMID: 39577618 DOI: 10.1016/j.biochi.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024]
Abstract
Actin filaments play an essential role in the process of oocyte maturation and completion of meiosis. However, whether the localization of F-actin in the ooplasm is associated with normal completion of the second meiotic division remains unclear. Mitochondrial distribution is another important parameter correlating directly with MII oocyte capacity to finalize meiosis. Our objective was to examine the role of actin microfilaments in the distribution of mitochondria and, respectively, Metaphase II (MII) oocytes meiotic potential. We show monoclonal antibody-mediated inhibition of actin polymerization in young mouse oocytes, reduction of the amount of F-actin, and induction of mitochondrial clustering induced by antibody treatment. Similar phenotype, even in untreated eggs, was observed in in vitro oocyte aging experiments. Observed changes correlate with reduced ability of MII oocytes to extrude the second polar body and form the pronuclei. Changes in colocalization of F-actin and mitochondria likely resulted from disturbed cytoskeleton architecture. The perturbations in the amount of F-actin and its distribution largely coincide with mitochondrial redistribution. Based on these data, we suggest actin microfilament's participation in redistribution of mitochondria during MII oocyte aging in vitro. Accordingly, patterning of F-actin is indicative of high rate of the completed second meiotic division. These results help evaluating oocyte's quality and choosing optimal time between placement into culture and in vitro fertilization.
Collapse
Affiliation(s)
- Yana A Ryabukha
- Laboratory of Molecular Virology, M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Olga V Zatsepina
- Laboratory of Molecular Virology, M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Yury P Rubtsov
- Laboratory of Molecular Virology, M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|
4
|
Heissler SM, Chinthalapudi K. Structural and functional mechanisms of actin isoforms. FEBS J 2025; 292:468-482. [PMID: 38779987 PMCID: PMC11796330 DOI: 10.1111/febs.17153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/01/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Actin is a highly conserved and fundamental protein in eukaryotes and participates in a broad spectrum of cellular functions. Cells maintain a conserved ratio of actin isoforms, with muscle and non-muscle actins representing the main actin isoforms in muscle and non-muscle cells, respectively. Actin isoforms have specific and redundant functional roles and display different biochemistries, cellular localization, and interactions with myosins and actin-binding proteins. Understanding the specific roles of actin isoforms from the structural and functional perspective is crucial for elucidating the intricacies of cytoskeletal dynamics and regulation and their implications in health and disease. Here, we review how the structure contributes to the functional mechanisms of actin isoforms with a special emphasis on the questions of how post-translational modifications and disease-linked mutations affect actin isoforms biochemistry, function, and interaction with actin-binding proteins and myosin motors.
Collapse
Affiliation(s)
- Sarah M. Heissler
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart & Lung Research InstituteThe Ohio State UniversityColumbusOHUSA
| | - Krishna Chinthalapudi
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart & Lung Research InstituteThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
5
|
Chakravarty D, Vedula P, Coffin M, Chen L, Sterling S, Peshkova AD, Suzuki A, Zhao L, Patra K, Assenmacher CA, Radaelli E, Levine M, Litvinov RI, Abrams CS, Fowler VM, Kashina A. β-actin function in platelets and red blood cells can be performed by γ-actin and is therefore independent of actin isoform protein sequence. Mol Biol Cell 2025; 36:ar18. [PMID: 39705375 PMCID: PMC11809312 DOI: 10.1091/mbc.e24-04-0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 12/22/2024] Open
Abstract
Actin is an essential component of the cytoskeleton in every eukaryotic cell. β-and γ-nonmuscle actin are over 99% identical to each other at the protein level but are encoded by different genes and play distinct roles in vivo. Blood cells, especially red blood cells (RBC), contain almost exclusively β-actin, and it has been generally assumed that this bias is dictated by the unique suitability of β-actin for RBC cytoskeleton function due to its specific amino acid sequence. Here we tested this assumption by analyzing the "β-coded γ-actin" (Actbcg) mouse model, in which the β-actin gene is edited by five-point mutations to produce γ-actin protein. Strikingly, despite lacking β-actin protein, Actbcg mice had no detectable phenotypes in RBCs, and no changes in the RBC shape, integrity, deformability, and molecular composition of their spectrin-based membrane skeleton. No actin-dependent changes were observed in platelets, another anucleate cell type enriched for β-actin. Our data show that, contrary to expectations, β-actin function in mature RBCs and platelets is independent of its protein sequence and therefore its enrichment in hematopoiesis and mature blood cells is likely driven entirely by its nucleotide-dependent functions.
Collapse
Affiliation(s)
- Devasmita Chakravarty
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104
| | - Pavan Vedula
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104
| | - Megan Coffin
- Department of Biological Sciences, University of Delaware, Newark, DE 19716
| | - Li Chen
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104
| | - Stephanie Sterling
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104
| | - Alina D. Peshkova
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Aae Suzuki
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Liang Zhao
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Katrick Patra
- Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 70892
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Mark Levine
- Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 70892
| | - Rustem I. Litvinov
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Charles S. Abrams
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Velia M. Fowler
- Department of Biological Sciences, University of Delaware, Newark, DE 19716
| | - Anna Kashina
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
6
|
Levuschkina YG, Dugina VB, Shagieva GS, Boichuk SV, Eremin II, Khromova NV, Kopnin PB. Induction of Fibroblast-to-Myofibroblast Differentiation by Changing Cytoplasmic Actin Ratio. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:289-298. [PMID: 40254406 DOI: 10.1134/s000629792460412x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 04/22/2025]
Abstract
Myofibroblasts, which play a crucial role in the tumour microenvironment, represent a promising avenue for research in the field of oncotherapy. This study investigates the potential for the induced differentiation of human fibroblasts into myofibroblasts through downregulation of the γ-cytoplasmic actin (γ-CYA) achieved by RNA interference. A decrease in the γ-CYA expression in human subcutaneous fibroblasts resulted in upregulation of myofibroblast markers, including α-smooth muscle actin (α-SMA), ED-A FN, and type III collagen. These changes were accompanied by notable alterations in cellular morphology, characterized by a significant increase in cell area and the formation of pronounced supermature focal adhesions. Downregulation of γ-CYA resulted in the compensatory increase in expression of the β-cytoplasmic actin and α-SMA, and formation of the characteristic α-SMA-positive stress fibers. In conclusion, our results demonstrate that a decrease in the γ-CYA expression leads to myofibroblastic trans-differentiation of human subcutaneous fibroblasts.
Collapse
Affiliation(s)
- Yulia G Levuschkina
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vera B Dugina
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Galina S Shagieva
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Sergey V Boichuk
- Department of Pathology, Kazan State Medical University, Moscow, 420012, Russia
- Department of Radiotherapy and Radiology, Russian Medical Academy of Continuous Professional Education, Moscow, 119454, Russia
| | - Ilya I Eremin
- Petrovsky National Research Center of Surgery, Moscow, 119991, Russia
| | - Natalia V Khromova
- Scientific Research Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | - Pavel B Kopnin
- Scientific Research Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia.
| |
Collapse
|
7
|
Shagieva G, Dugina V, Burakov A, Levuschkina Y, Kudlay D, Boichuk S, Khromova N, Vasileva M, Kopnin P. Divergent Contribution of Cytoplasmic Actins to Nuclear Structure of Lung Cancer Cells. Int J Mol Sci 2024; 25:13607. [PMID: 39769373 PMCID: PMC11727787 DOI: 10.3390/ijms252413607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
A growing body of evidence suggests that actin plays a role in nuclear architecture, genome organisation, and regulation. Our study of human lung adenocarcinoma cells demonstrates that the equilibrium between actin isoforms affects the composition of the nuclear lamina, which in turn influences nuclear stiffness and cellular behaviour. The downregulation of β-actin resulted in an increase in nuclear area, accompanied by a decrease in A-type lamins and an enhancement in lamin B2. In contrast, the suppression of γ-actin led to upregulation of the lamin A/B ratio through an increase in A-type lamins. Histone H3 post-translational modifications display distinct patterns in response to decreased actin isoform expression. The level of dimethylated H3K9me2 declined while acetylated H3K9ac increased in β-actin-depleted A549 cells. In contrast, the inhibition of γ-actin expression resulted in a reduction in H3K9ac. Based on our observations, we propose that β-actin plays a role in chromatin compaction and deactivation, and is involved in the elevation of nuclear stiffness through the control of the lamins ratio. The non-muscle γ-actin is presumably responsible for chromatin decondensation and activation. The identification of novel functions for actin isoforms offers insights into the mechanisms through which they influence cell fate during development and cancer progression.
Collapse
Affiliation(s)
- Galina Shagieva
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.S.); (V.D.)
| | - Vera Dugina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.S.); (V.D.)
- Biological Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anton Burakov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.S.); (V.D.)
| | - Yulia Levuschkina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.S.); (V.D.)
| | - Dmitry Kudlay
- Department of Pharmacology, The I.M. Sechenov First Moscow State Medical University (The Sechenov University), 119991 Moscow, Russia
- Department of Pharmacognosy and Industrial Pharmacy, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Sergei Boichuk
- Department of Pathology, Kazan State Medical University, 420012 Kazan, Russia
- Department of Radiotherapy and Radiology, Russian Medical Academy of Continuous Professional Education, 119454 Moscow, Russia
| | - Natalia Khromova
- Scientific Research Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Maria Vasileva
- Scientific Research Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Pavel Kopnin
- Scientific Research Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| |
Collapse
|
8
|
Reeves J, Tournier P, Becquart P, Carton R, Tang Y, Vigilante A, Fang D, Habib SJ. Rejuvenating aged osteoprogenitors for bone repair. eLife 2024; 13:RP104068. [PMID: 39692737 DOI: 10.7554/elife.104068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
Aging is marked by a decline in tissue regeneration, posing significant challenges to an increasingly older population. Here, we investigate age-related impairments in calvarial bone healing and introduce a novel two-part rejuvenation strategy to restore youthful repair. We demonstrate that aging negatively impacts the calvarial bone structure and its osteogenic tissues, diminishing osteoprogenitor number and function and severely impairing bone formation. Notably, increasing osteogenic cell numbers locally fails to rescue repair in aged mice, identifying the presence of intrinsic cellular deficits. Our strategy combines Wnt-mediated osteoprogenitor expansion with intermittent fasting, which leads to a striking restoration of youthful levels of bone healing. We find that intermittent fasting improves osteoprogenitor function, benefits that can be recapitulated by modulating NAD+-dependent pathways or the gut microbiota, underscoring the multifaceted nature of this intervention. Mechanistically, we identify mitochondrial dysfunction as a key component in age-related decline in osteoprogenitor function and show that both cyclical nutrient deprivation and Nicotinamide mononucleotide rejuvenate mitochondrial health, enhancing osteogenesis. These findings offer a promising therapeutic avenue for restoring youthful bone repair in aged individuals, with potential implications for rejuvenating other tissues.
Collapse
Affiliation(s)
- Joshua Reeves
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
- Centre for Gene Therapy and Regenerative Medicine King's College London, London, United Kingdom
| | - Pierre Tournier
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Pierre Becquart
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Robert Carton
- Centre for Gene Therapy and Regenerative Medicine King's College London, London, United Kingdom
| | - Yin Tang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Zhejiang University, Zhejiang, China
- Department of Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Alessandra Vigilante
- Centre for Gene Therapy and Regenerative Medicine King's College London, London, United Kingdom
| | - Dong Fang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Zhejiang University, Zhejiang, China
- Department of Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Shukry J Habib
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Tsujimoto T, Ou Y, Suzuki M, Murata Y, Inubushi T, Nagata M, Ishihara Y, Yonei A, Miyashita Y, Asano Y, Sakai N, Sakata Y, Ogino H, Yamashiro T, Kurosaka H. Compromised actin dynamics underlie the orofacial cleft in Baraitser-Winter Cerebrofrontofacial syndrome with a variant in ACTB. Hum Mol Genet 2024; 33:1975-1985. [PMID: 39271101 DOI: 10.1093/hmg/ddae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/08/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Craniofacial anomalies encompassing the orofacial cleft are associated with > 30% of systemic congenital malformations. Baraitser-Winter Cerebrofrontofacial syndrome (BWCFF) is a rare genetic disorder attributed to variants in the actin beta (ACTB) or actin gamma genes that are correlated with a range of craniofacial abnormalities, including cleft lip and/or palate. The underlying pathological mechanism of BWCFF remains elusive, and it is necessary to investigate the etiology of orofacial clefts in patients with BWCFF. In this study, we identified a missense variant (c.1043C > T: p.S348L) in the ACTB gene of a patient with BWCFF and concomitant cleft lip and palate. Furthermore, we performed functional assessments of this variant using various disease models such as the MDCK cell line and Xenopus laevis. These models revealed a compromised capacity of mutated ACTB to localize to the epithelial junction, consequently affecting the behavior of epithelial cells. Additionally, we discovered that the mutated ACTB exhibited an impaired ability to bind PROFILIN1, a critical factor in actin polymerization. This defective ability may contribute to the molecular etiology of aberrant epithelial cell adhesion and migration, resulting in orofacial cleft formation in BWCFF.
Collapse
Affiliation(s)
- Takayuki Tsujimoto
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yushi Ou
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8526, Japan
| | - Makoto Suzuki
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8526, Japan
| | - Yuka Murata
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Miho Nagata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuki Ishihara
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ayumi Yonei
- Department of Genetic Counseling, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yohei Miyashita
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Norio Sakai
- Department of Genetic Counseling, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Health Science, Child Healthcare and Genetic Science, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hajime Ogino
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8526, Japan
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Hayashi K, Kobayashi M, Mori K, Nakagawa Y, Watanabe B, Ashimori A, Higashijima F, Yoshimoto T, Sunada J, Morita T, Murai T, Kirihara-Kojima S, Kimura K. The benzoylphenylurea derivative BPU17 acts as an inhibitor of prohibitin and exhibits antifibrotic activity. Exp Cell Res 2024; 442:114221. [PMID: 39182665 DOI: 10.1016/j.yexcr.2024.114221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/29/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Inflammation-induced choroidal neovascularization followed by the epithelial-mesenchymal transition (EMT) of retinal pigment epithelial cells (RPEs) is a cause of neovascular age-related macular degeneration (nAMD). RPE-derived myofibroblasts overproduce extracellular matrix, leading to subretinal fibrosis. We already have demonstrated that benzylphenylurea (BPU) derivatives inhibit the function of cancer-associated fibroblasts. Here, we investigated the anti-myofibroblast effects of BPU derivatives and examined such BPU activity on subretinal fibrosis. A BPU derivative, BPU17, exhibits the most potent anti-myofibroblast activity among dozens of BPU derivatives and inhibits subretinal fibrosis in a mouse model of retinal degeneration. Investigations with primary cultured RPEs reveal that BPU17 suppresses cell motility and collagen synthesis in RPE-derived myofibroblasts. These effects depend on repressing the serum response factor (SRF)/CArG-box-dependent transcription. BPU17 inhibits the expression of SRF cofactor, cysteine and glycine-rich protein 2 (CRP2), which activates the SRF function. Proteomics analysis reveals that BPU17 binds to prohibitin 1 (PHB1) and inhibits the PHB1-PHB2 interaction, resulting in mild defects in mitochondrial function. This impairment causes a decrease in the expression of CRP2 and suppresses collagen synthesis. Our findings suggest that BPU17 is a promising agent against nAMD and the close relationship between PHB function and EMT.
Collapse
Affiliation(s)
- Ken'ichiro Hayashi
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan.
| | - Masaaki Kobayashi
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Kotaro Mori
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yoshiaki Nakagawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Bunta Watanabe
- Chemistry Laboratory, The Jikei University School of Medicine, 8-3-1 Kokuryo, Chofu, Tokyo, 182-8570, Japan
| | - Atsushige Ashimori
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Fumiaki Higashijima
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Takuya Yoshimoto
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Junki Sunada
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| | - Tsuyoshi Morita
- Department of Biology, Wakayama Medical University School of Medicine, 580 Mikazura, Wakayama, 641-0011, Japan
| | - Toshiyuki Murai
- Department of RNA Biology and Neuroscience, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Saki Kirihara-Kojima
- Department of RNA Biology and Neuroscience, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuhiro Kimura
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
11
|
Shah R, Panagiotou TC, Cole GB, Moraes TF, Lavoie BD, McCulloch CA, Wilde A. The DIAPH3 linker specifies a β-actin network that maintains RhoA and Myosin-II at the cytokinetic furrow. Nat Commun 2024; 15:5250. [PMID: 38897998 PMCID: PMC11187180 DOI: 10.1038/s41467-024-49427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Cytokinesis is the final step of the cell division cycle that leads to the formation of two new cells. Successful cytokinesis requires significant remodelling of the plasma membrane by spatially distinct β- and γ-actin networks. These networks are generated by the formin family of actin nucleators, DIAPH3 and DIAPH1 respectively. Here we show that β- and γ-actin perform specialized and non-redundant roles in cytokinesis and cannot substitute for one another. Expression of hybrid DIAPH1 and DIAPH3 proteins with altered actin isoform specificity relocalized cytokinetic actin isoform networks within the cell, causing cytokinetic failure. Consistent with this we show that β-actin networks, but not γ-actin networks, are required for the maintenance of non-muscle myosin II and RhoA at the cytokinetic furrow. These data suggest that independent and spatially distinct actin isoform networks form scaffolds of unique interactors that facilitate localized biochemical activities to ensure successful cell division.
Collapse
Affiliation(s)
- Riya Shah
- Department of Biochemistry, University of Toronto, 661 University Ave, Toronto, ON, M5G 1M1, Canada
| | - Thomas C Panagiotou
- Department of Molecular Genetics, University of Toronto, 661 University Ave, Toronto, ON, M5G 1M1, Canada
| | - Gregory B Cole
- Department of Biochemistry, University of Toronto, 661 University Ave, Toronto, ON, M5G 1M1, Canada
| | - Trevor F Moraes
- Department of Biochemistry, University of Toronto, 661 University Ave, Toronto, ON, M5G 1M1, Canada
| | - Brigitte D Lavoie
- Department of Molecular Genetics, University of Toronto, 661 University Ave, Toronto, ON, M5G 1M1, Canada
| | | | - Andrew Wilde
- Department of Biochemistry, University of Toronto, 661 University Ave, Toronto, ON, M5G 1M1, Canada.
- Department of Molecular Genetics, University of Toronto, 661 University Ave, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
12
|
Prodromou SI, Chatzopoulou F, Saiti A, Giannopoulos-Dimitriou A, Koudoura LA, Pantazaki AA, Chatzidimitriou D, Vasiliou V, Vizirianakis IS. Hepatotoxicity assessment of innovative nutritional supplements based on olive-oil formulations enriched with natural antioxidants. Front Nutr 2024; 11:1388492. [PMID: 38812942 PMCID: PMC11133736 DOI: 10.3389/fnut.2024.1388492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/25/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction This study focuses on the assessment of extra virgin olive-oil and olive fruit-based formulations enriched with natural antioxidants as potential nutritional supplements for alleviating symptoms and long-term consequences of illnesses whose molecular pathophysiology is affected by oxidative stress and inflammation, such as Alzheimer's disease (AD). Methods Besides evaluating cell viability and proliferation capacity of human hepatocellular carcinoma HepG2 cells exposed to formulations in culture, hepatotoxicity was also considered as an additional safety measure using quantitative real-time PCR on RNA samples isolated from the cell cultures and applying approaches of targeted molecular analysis to uncover potential pathway effects through gene expression profiling. Furthermore, the formulations investigated in this work contrast the addition of natural extract with chemical forms and evaluate the antioxidant delivery mode on cell toxicity. Results The results indicate minimal cellular toxicity and a significant beneficial impact on metabolic molecular pathways in HepG2 cell cultures, thus paving the way for innovative therapeutic strategies using olive-oil and antioxidants in dietary supplements to minimize the long-term effects of oxidative stress and inflammatory signals in individuals being suffered by disorders like AD. Discussion Overall, the experimental design and the data obtained support the notion of applying innovative molecular methodologies and research techniques to evidently advance the delivery, as well as the scientific impact and validation of nutritional supplements and dietary products to improve public health and healthcare outcomes.
Collapse
Affiliation(s)
- Sofia I. Prodromou
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Fani Chatzopoulou
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Labnet Laboratories, Department of Molecular Biology and Genetics, Thessaloniki, Greece
| | - Aikaterini Saiti
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Loukia A. Koudoura
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasia A. Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Chatzidimitriou
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Health Sciences, School of Health and Life Sciences, University of Nicosia, Nicosia, Cyprus
| |
Collapse
|
13
|
Greve JN, Marquardt A, Heiringhoff R, Reindl T, Thiel C, Di Donato N, Taft MH, Manstein DJ. The non-muscle actinopathy-associated mutation E334Q in cytoskeletal γ-actin perturbs interaction of actin filaments with myosin and ADF/cofilin family proteins. eLife 2024; 12:RP93013. [PMID: 38446501 PMCID: PMC10942649 DOI: 10.7554/elife.93013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Various heterozygous cytoskeletal γ-actin mutations have been shown to cause Baraitser-Winter cerebrofrontofacial syndrome, non-syndromic hearing loss, or isolated eye coloboma. Here, we report the biochemical characterization of human cytoskeletal γ-actin carrying mutation E334Q, a mutation that leads to a hitherto unspecified non-muscle actinopathy. Following expression, purification, and removal of linker and thymosin β4 tag sequences, the p.E334Q monomers show normal integration into linear and branched actin filaments. The mutation does not affect thermal stability, actin filament nucleation, elongation, and turnover. Model building and normal mode analysis predict significant differences in the interaction of p.E334Q filaments with myosin motors and members of the ADF/cofilin family of actin-binding proteins. Assays probing the interactions of p.E334Q filaments with human class 2 and class 5 myosin motor constructs show significant reductions in sliding velocity and actin affinity. E334Q differentially affects cofilin-mediated actin dynamics by increasing the rate of cofilin-mediated de novo nucleation of actin filaments and decreasing the efficiency of cofilin-mediated filament severing. Thus, it is likely that p.E334Q-mediated changes in myosin motor activity, as well as filament turnover, contribute to the observed disease phenotype.
Collapse
Affiliation(s)
- Johannes N Greve
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | - Anja Marquardt
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | - Robin Heiringhoff
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | - Theresia Reindl
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | - Claudia Thiel
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | | | - Manuel H Taft
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | - Dietmar J Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
- Division for Structural Biochemistry, Hannover Medical SchoolHannoverGermany
- RESiST, Cluster of Excellence 2155, Hannover Medical SchoolHannoverGermany
| |
Collapse
|
14
|
van Zwam MC, Dhar A, Bosman W, van Straaten W, Weijers S, Seta E, Joosten B, van Haren J, Palani S, van den Dries K. IntAct: A nondisruptive internal tagging strategy to study the organization and function of actin isoforms. PLoS Biol 2024; 22:e3002551. [PMID: 38466773 PMCID: PMC10957077 DOI: 10.1371/journal.pbio.3002551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/21/2024] [Accepted: 02/16/2024] [Indexed: 03/13/2024] Open
Abstract
Mammals have 6 highly conserved actin isoforms with nonredundant biological functions. The molecular basis of isoform specificity, however, remains elusive due to a lack of tools. Here, we describe the development of IntAct, an internal tagging strategy to study actin isoforms in fixed and living cells. We identified a residue pair in β-actin that permits tag integration and used knock-in cell lines to demonstrate that IntAct β-actin expression and filament incorporation is indistinguishable from wild type. Furthermore, IntAct β-actin remains associated with common actin-binding proteins (ABPs) and can be targeted in living cells. We demonstrate the usability of IntAct for actin isoform investigations by showing that actin isoform-specific distribution is maintained in human cells. Lastly, we observed a variant-dependent incorporation of tagged actin variants into yeast actin patches, cables, and cytokinetic rings demonstrating cross species applicability. Together, our data indicate that IntAct is a versatile tool to study actin isoform localization, dynamics, and molecular interactions.
Collapse
Affiliation(s)
- Maxime C. van Zwam
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anubhav Dhar
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Willem Bosman
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Wendy van Straaten
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Suzanne Weijers
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Emiel Seta
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ben Joosten
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Saravanan Palani
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Koen van den Dries
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
15
|
Kyslík J, Born-Torrijos A, Holzer AS, Kosakyan A. RNAi-directed knockdown in the cnidarian fish blood parasite Sphaerospora molnari. Sci Rep 2024; 14:3545. [PMID: 38347054 PMCID: PMC10861503 DOI: 10.1038/s41598-024-54171-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/09/2024] [Indexed: 02/15/2024] Open
Abstract
RNA interference (RNAi) is an effective approach to suppress gene expression and monitor gene regulation. Despite its wide application, its use is limited in certain taxonomic groups, including cnidarians. Myxozoans are a unique group of cnidarian parasites that diverged from their free-living ancestors about 600 million years ago, with several species causing acute disease in farmed and wild fish populations. In this pioneering study we successfully applied RNAi in blood stages of the myxozoan Sphaerospora molnari, combining a dsRNA soaking approach, real-time PCR, confocal microscopy, and Western blotting. For proof of concept, we knocked down two unusual actins, one of which is known to play a critical role in S. molnari cell motility. We observed intracellular uptake of dsRNA after 30 min and accumulation in all cells of the typical myxozoan cell-in-cell structure. We successfully knocked down actin in S. molnari in vitro, with transient inhibition for 48 h. We observed the disruption of the cytoskeletal network within the primary cell and loss of the characteristic rotational cell motility. This RNAi workflow could significantly advance functional research within the Myxozoa, offering new prospects for investigating therapeutic targets and facilitating drug discovery against economically important fish parasites.
Collapse
Affiliation(s)
- Jiří Kyslík
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Ceske Budejovice, Czech Republic.
| | - Ana Born-Torrijos
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Ceske Budejovice, Czech Republic
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, PO Box 59, 1790 AB, Texel, The Netherlands
| | - Astrid S Holzer
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Ceske Budejovice, Czech Republic
- Fish Health Division, University of Veterinary Medicine, Vienna, Austria
| | - Anush Kosakyan
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Ceske Budejovice, Czech Republic
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
16
|
Truglia B, Carbone N, Ghadre I, Vallero S, Zito M, Zizzi EA, Deriu MA, Tuszynski JA. An In Silico Investigation of the Molecular Interactions between Volatile Anesthetics and Actin. Pharmaceuticals (Basel) 2023; 17:37. [PMID: 38256871 PMCID: PMC10819646 DOI: 10.3390/ph17010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Volatile anesthetics (VAs) are medicinal chemistry compounds commonly used to enable surgical procedures for patients who undergo painful treatments and can be partially or fully sedated, remaining in an unconscious state during the operation. The specific molecular mechanism of anesthesia is still an open issue, but scientific evidence supports the hypothesis of the involvement of both putative hydrophobic cavities in membrane receptors as binding pockets and interactions between anesthetics and cytoplasmic proteins. Previous studies demonstrated the binding of VAs to tubulin. Since actin is the other major component of the cytoskeleton, this study involves an investigation of its interactions with four major anesthetics: halothane, isoflurane, sevoflurane, and desflurane. Molecular docking was implemented using the Molecular Operating Environment (MOE) software (version 2022.02) and applied to a G-actin monomer, extrapolating the relative binding affinities and root-mean-square deviation (RMSD) values. A comparison with the F-actin was also made to assess if the generally accepted idea about the enhanced F-to-G-actin transformation during anesthesia is warranted. Overall, our results confirm the solvent-like behavior of anesthetics, as evidenced by Van der Waals interactions as well as the relevant hydrogen bonds formed in the case of isoflurane and sevoflurane. Also, a comparison of the interactions of anesthetics with tubulin was made. Finally, the short- and long-term effects of anesthetics are discussed for their possible impact on the occurrence of mental disorders.
Collapse
Affiliation(s)
| | | | | | - Sara Vallero
- DIMEAS, Politecnico di Torino, 10129 Turin, Italy
| | | | | | | | - J. A. Tuszynski
- DIMEAS, Politecnico di Torino, 10129 Turin, Italy
- Department of Data Science and Engineering, The Silesian University of Technology, 44-100 Gliwice, Poland
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
17
|
Nietmann P, Kaub K, Suchenko A, Stenz S, Warnecke C, Balasubramanian MK, Janshoff A. Cytosolic actin isoforms form networks with different rheological properties that indicate specific biological function. Nat Commun 2023; 14:7989. [PMID: 38042893 PMCID: PMC10693642 DOI: 10.1038/s41467-023-43653-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/15/2023] [Indexed: 12/04/2023] Open
Abstract
The implications of the existence of different actins expressed in epithelial cells for network mechanics and dynamics is investigated by microrheology and confocal imaging. γ-actin predominately found in the apical cortex forms stiffer networks compared to β-actin, which is preferentially organized in stress fibers. We attribute this to selective interactions with Mg2+-ions interconnecting the filaments' N-termini. Bundling propensity of the isoforms is different in the presence of Mg2+-ions, while crosslinkers such as α-actinin, fascin, and heavy meromyosin alter the mechanical response independent of the isoform. In the presence of myosin, β-actin networks show a large number of small contraction foci, while γ-actin displays larger but fewer foci indicative of a stronger interaction with myosin motors. We infer that subtle changes in the amino acid sequence of actin isoforms lead to alterations of the mechanical properties on the network level with potential implications for specific biological functions.
Collapse
Affiliation(s)
- Peter Nietmann
- Institute of Physical Chemistry, University of Goettingen, Tammannstr. 6, Göttingen, 37077, Germany
| | - Kevin Kaub
- Institute of Physical Chemistry, University of Goettingen, Tammannstr. 6, Göttingen, 37077, Germany
- Max Planck School Matter to Life, Max Planck Institute for Medical Research, Jahnstr. 29, Heidelberg, 69120, Germany
| | - Andrejus Suchenko
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Susanne Stenz
- Institute of Physical Chemistry, University of Goettingen, Tammannstr. 6, Göttingen, 37077, Germany
| | - Claas Warnecke
- Institute of Physical Chemistry, University of Goettingen, Tammannstr. 6, Göttingen, 37077, Germany
| | | | - Andreas Janshoff
- Institute of Physical Chemistry, University of Goettingen, Tammannstr. 6, Göttingen, 37077, Germany.
- Max Planck School Matter to Life, Max Planck Institute for Medical Research, Jahnstr. 29, Heidelberg, 69120, Germany.
| |
Collapse
|
18
|
Liu Y, Pu X, Duan M, Chen C, Zhao Y, Zhang D, Xie J. Biomimetic Fibers Derived from an Equidistant Micropillar Platform Dictate Osteocyte Fate via Mechanoreception. NANO LETTERS 2023; 23:7950-7960. [PMID: 37418659 DOI: 10.1021/acs.nanolett.3c01739] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
It is a big challenge to design a biomimetic physical microenvironment with greater similarity to in vivo tissue to observe real cell behaviors. We established a novel cell culture platform based on patterned equidistant micropillars with stiff and soft stiffnesses to mimic the changes that happened in the transition from normal to osteoporotic disease. We first demonstrated that the soft micropillar substrate decreased osteocyte synaptogenesis through synaptogyrin 1 and that this decrease was accompanied by impairment of cell mechanoperception and a decrease in cellular cytoskeletal rearrangement. We then found that the soft equidistant micropillar substrate reduced the osteocyte synaptogenesis mainly via the inactivation of Erk/MAPK signaling. We finally found that soft micropillar substrate-mediated synaptogenesis impacted the cell-to-cell communication and matrix mineralization of osteocytes. Taken together, this study provides evidence of cellular mechanical responses that are much more similar to those of real osteocytes at the bone tissue level.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610044, China
| | - Xiaohua Pu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610044, China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610044, China
| | - Cheng Chen
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China
| | - Yanfang Zhao
- Department of Pediatric Dentistry, School of Dentistry, The University of Alabama at Birmingham, 1919 7th Ave. S, Birmingham, Alabama 35233, United States
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610044, China
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610044, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610044, China
| |
Collapse
|
19
|
Bai Y, Zhao F, Wu T, Chen F, Pang X. Actin polymerization and depolymerization in developing vertebrates. Front Physiol 2023; 14:1213668. [PMID: 37745245 PMCID: PMC10515290 DOI: 10.3389/fphys.2023.1213668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Development is a complex process that occurs throughout the life cycle. F-actin, a major component of the cytoskeleton, is essential for the morphogenesis of tissues and organs during development. F-actin is formed by the polymerization of G-actin, and the dynamic balance of polymerization and depolymerization ensures proper cellular function. Disruption of this balance results in various abnormalities and defects or even embryonic lethality. Here, we reviewed recent findings on the structure of G-actin and F-actin and the polymerization of G-actin to F-actin. We also focused on the functions of actin isoforms and the underlying mechanisms of actin polymerization/depolymerization in cellular and organic morphogenesis during development. This information will extend our understanding of the role of actin polymerization in the physiologic or pathologic processes during development and may open new avenues for developing therapeutics for embryonic developmental abnormalities or tissue regeneration.
Collapse
Affiliation(s)
- Yang Bai
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Feng Zhao
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tingting Wu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Fangchun Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiaoxiao Pang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
20
|
Lambert C, Schmidt K, Karger M, Stadler M, Stradal TEB, Rottner K. Cytochalasans and Their Impact on Actin Filament Remodeling. Biomolecules 2023; 13:1247. [PMID: 37627312 PMCID: PMC10452583 DOI: 10.3390/biom13081247] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
The eukaryotic actin cytoskeleton comprises the protein itself in its monomeric and filamentous forms, G- and F-actin, as well as multiple interaction partners (actin-binding proteins, ABPs). This gives rise to a temporally and spatially controlled, dynamic network, eliciting a plethora of motility-associated processes. To interfere with the complex inter- and intracellular interactions the actin cytoskeleton confers, small molecular inhibitors have been used, foremost of all to study the relevance of actin filaments and their turnover for various cellular processes. The most prominent inhibitors act by, e.g., sequestering monomers or by interfering with the polymerization of new filaments and the elongation of existing filaments. Among these inhibitors used as tool compounds are the cytochalasans, fungal secondary metabolites known for decades and exploited for their F-actin polymerization inhibitory capabilities. In spite of their application as tool compounds for decades, comprehensive data are lacking that explain (i) how the structural deviances of the more than 400 cytochalasans described to date influence their bioactivity mechanistically and (ii) how the intricate network of ABPs reacts (or adapts) to cytochalasan binding. This review thus aims to summarize the information available concerning the structural features of cytochalasans and their influence on the described activities on cell morphology and actin cytoskeleton organization in eukaryotic cells.
Collapse
Affiliation(s)
- Christopher Lambert
- Molecular Cell Biology Group, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany;
| | - Katharina Schmidt
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Marius Karger
- Molecular Cell Biology Group, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany;
| | - Theresia E. B. Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Klemens Rottner
- Molecular Cell Biology Group, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), 38106 Braunschweig, Germany
| |
Collapse
|
21
|
Jeruzalska E, Mazur AJ. The Role of non-muscle actin paralogs in cell cycle progression and proliferation. Eur J Cell Biol 2023; 102:151315. [PMID: 37099935 DOI: 10.1016/j.ejcb.2023.151315] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
Uncontrolled cell proliferation leads to several pathologies, including cancer. Thus, this process must be tightly regulated. The cell cycle accounts for cell proliferation, and its progression is coordinated with changes in cell shape, for which cytoskeleton reorganization is responsible. Rearrangement of the cytoskeleton allows for its participation in the precise division of genetic material and cytokinesis. One of the main cytoskeletal components is filamentous actin-based structures. Mammalian cells have at least six actin paralogs, four of which are muscle-specific, while two, named β- and γ-actin, are abundantly present in all types of cells. This review summarizes the findings that establish the role of non-muscle actin paralogs in regulating cell cycle progression and proliferation. We discuss studies showing that the level of a given non-muscle actin paralog in a cell influences the cell's ability to progress through the cell cycle and, thus, proliferation. Moreover, we elaborate on the non-muscle actins' role in regulating gene transcription, interactions of actin paralogs with proteins involved in controlling cell proliferation, and the contribution of non-muscle actins to different structures in a dividing cell. The data cited in this review show that non-muscle actins regulate the cell cycle and proliferation through varying mechanisms. We point to the need for further studies addressing these mechanisms.
Collapse
Affiliation(s)
- Estera Jeruzalska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Poland
| | - Antonina J Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Poland.
| |
Collapse
|
22
|
Vedula P, Fina ME, Bell BA, Nikonov SS, Kashina A, Dong DW. β -actin is essential for structural integrity and physiological function of the retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534392. [PMID: 37034790 PMCID: PMC10081178 DOI: 10.1101/2023.03.27.534392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Lack of non-muscle β -actin gene (Actb) leads to early embryonic lethality in mice, however mice with β - to γ -actin replacement develop normally and show no detectable phenotypes at young age. Here we investigated the effect of this replacement in the retina. During aging, these mice have accelerated de-generation of retinal structure and function, including elongated microvilli and defective mitochondria of retinal pigment epithelium (RPE), abnormally bulging photoreceptor outer segments (OS) accompanied by reduced transducin concentration and light sensitivity, and accumulation of autofluorescent microglia cells in the subretinal space between RPE and OS. These defects are accompanied by changes in the F-actin binding of several key actin interacting partners, including ezrin, myosin, talin, and vinculin known to play central roles in modulating actin cytoskeleton and cell adhesion and mediating the phagocytosis of OS. Our data show that β -actin protein is essential for maintaining normal retinal structure and function.
Collapse
|
23
|
Hayashi K, Horoiwa S, Mori K, Miyata H, Labios RJ, Morita T, Kobayashi Y, Yamashiro C, Higashijima F, Yoshimoto T, Kimura K, Nakagawa Y. Role of CRP2-MRTF interaction in functions of myofibroblasts. Cell Struct Funct 2023; 48:83-98. [PMID: 37164693 PMCID: PMC10721955 DOI: 10.1247/csf.23004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/18/2023] [Indexed: 05/12/2023] Open
Abstract
Inflammatory response induces phenotypic modulation of fibroblasts into myofibroblasts. Although transforming growth factor-βs (TGF-βs) evoke such transition, the details of the mechanism are still unknown. Here, we report that a LIM domain protein, cysteine-and glycine-rich protein 2 (CSRP2 [CRP2]) plays a vital role in the functional expression profile in myofibroblasts and cancer-associated fibroblasts (CAFs). Knock-down of CRP2 severely inhibits the expression of smooth muscle cell (SMC) genes, cell motility, and CAF-mediated collective invasion of epidermoid carcinoma. We elucidate the following molecular bases: CRP2 directly binds to myocardin-related transcription factors (MRTF-A/B [MRTFs]) and serum response factor (SRF) and stabilizes the MRTF/SRF/CArG-box complex to activate SMC gene expression. Furthermore, a three-dimensional structural analysis of CRP2 identifies the amino acids required for the CRP2-MRTF-A interaction. Polar amino acids in the C-terminal half (serine-152, glutamate-154, serine-155, threonine-156, threonine-157, and threonine-159 in human CRP2) are responsible for direct binding to MRTF-A. On the other hand, hydrophobic amino acids outside the consensus sequence of the LIM domain (tryptophan-139, phenylalanine-144, leucine-153, and leucine-158 in human CRP2) play a role in stabilizing the unique structure of the LIM domain.Key words: CRP2, 3D structure, myocardin-related transcription factor, myofibroblast, cancer-associated fibroblasts.
Collapse
Affiliation(s)
- Ken’ichiro Hayashi
- Department of RNA Biology and Neuroscience, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan
| | - Shinri Horoiwa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kotaro Mori
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Miyata
- Department of Surgery, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Reuben Jacob Labios
- Department of RNA Biology and Neuroscience, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tsuyoshi Morita
- Department of Biology, Wakayama Medical University School of Medicine, 580 Mikazura, Wakayama 641-0011, Japan
| | - Yuka Kobayashi
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan
| | - Chiemi Yamashiro
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan
| | - Fumiaki Higashijima
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan
| | - Takuya Yoshimoto
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan
| | - Kazuhiro Kimura
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan
| | - Yoshiaki Nakagawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
24
|
Shakhov AS, Kovaleva PA, Churkina AS, Kireev II, Alieva IB. Colocalization Analysis of Cytoplasmic Actin Isoforms Distribution in Endothelial Cells. Biomedicines 2022; 10:3194. [PMID: 36551950 PMCID: PMC9775052 DOI: 10.3390/biomedicines10123194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Actin cytoskeleton is an essential component of living cells and plays a decisive role in many cellular processes. In mammals, β- and γ-actin are cytoplasmic actin isoforms in non-muscle cells. Despite minor differences in the amino acid sequence, β- and γ-actin localize in different cell structures and perform different functions. While cytoplasmic β-actin is involved in many intracellular processes including cell contraction, γ-actin is responsible for cell mobility and promotes tumor transformation. Numerous studies demonstrate that β- and γ-actin are spatially separated in the cytoplasm of fibroblasts and epithelial cells; this separation is functionally determined. The spatial location of β/γ-actin in endothelial cells is still a subject for discussion. Using super-resolution microscopy, we investigated the β/γ-actin colocalization in endotheliocytes and showed that the β/γ-actin colocalization degree varies widely between different parts of the marginal regions and near the cell nucleus. In the basal cytoplasm, β-actin predominates, while the ratio of isoforms evens out as it moves to the apical cytoplasm. Thus, our colocalization analysis suggests that β- and γ-actin are segregated in the endotheliocyte cytoplasm. The segregation is greatly enhanced during cell lamella activation in the nocodazole-induced endothelial barrier dysfunction, reflecting a different functional role of cytoplasmic actin isoforms in endothelial cells.
Collapse
Affiliation(s)
- Anton S. Shakhov
- A.N. Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | | | | | | | - Irina B. Alieva
- A.N. Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
25
|
Basu A, Paul MK, Weiss S. The actin cytoskeleton: Morphological changes in pre- and fully developed lung cancer. BIOPHYSICS REVIEWS 2022; 3:041304. [PMID: 38505516 PMCID: PMC10903407 DOI: 10.1063/5.0096188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 12/09/2022] [Indexed: 03/21/2024]
Abstract
Actin, a primary component of the cell cytoskeleton can have multiple isoforms, each of which can have specific properties uniquely suited for their purpose. These monomers are then bound together to form polymeric filaments utilizing adenosine triphosphate hydrolysis as a source of energy. Proteins, such as Arp2/3, VASP, formin, profilin, and cofilin, serve important roles in the polymerization process. These filaments can further be linked to form stress fibers by proteins called actin-binding proteins, such as α-actinin, myosin, fascin, filamin, zyxin, and epsin. These stress fibers are responsible for mechanotransduction, maintaining cell shape, cell motility, and intracellular cargo transport. Cancer metastasis, specifically epithelial mesenchymal transition (EMT), which is one of the key steps of the process, is accompanied by the formation of thick stress fibers through the Rho-associated protein kinase, MAPK/ERK, and Wnt pathways. Recently, with the advent of "field cancerization," pre-malignant cells have also been demonstrated to possess stress fibers and related cytoskeletal features. Analytical methods ranging from western blot and RNA-sequencing to cryo-EM and fluorescent imaging have been employed to understand the structure and dynamics of actin and related proteins including polymerization/depolymerization. More recent methods involve quantifying properties of the actin cytoskeleton from fluorescent images and utilizing them to study biological processes, such as EMT. These image analysis approaches exploit the fact that filaments have a unique structure (curvilinear) compared to the noise or other artifacts to separate them. Line segments are extracted from these filament images that have assigned lengths and orientations. Coupling such methods with statistical analysis has resulted in development of a new reporter for EMT in lung cancer cells as well as their drug responses.
Collapse
Affiliation(s)
| | | | - Shimon Weiss
- Author to whom correspondence should be addressed:
| |
Collapse
|
26
|
Ozugergin I, Piekny A. Diversity is the spice of life: An overview of how cytokinesis regulation varies with cell type. Front Cell Dev Biol 2022; 10:1007614. [PMID: 36420142 PMCID: PMC9676254 DOI: 10.3389/fcell.2022.1007614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/24/2022] [Indexed: 09/01/2023] Open
Abstract
Cytokinesis is required to physically cleave a cell into two daughters at the end of mitosis. Decades of research have led to a comprehensive understanding of the core cytokinesis machinery and how it is regulated in animal cells, however this knowledge was generated using single cells cultured in vitro, or in early embryos before tissues develop. This raises the question of how cytokinesis is regulated in diverse animal cell types and developmental contexts. Recent studies of distinct cell types in the same organism or in similar cell types from different organisms have revealed striking differences in how cytokinesis is regulated, which includes different threshold requirements for the structural components and the mechanisms that regulate them. In this review, we highlight these differences with an emphasis on pathways that are independent of the mitotic spindle, and operate through signals associated with the cortex, kinetochores, or chromatin.
Collapse
Affiliation(s)
- Imge Ozugergin
- Department of Biology, McGill University, Montreal, QC, Canada
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Alisa Piekny
- Department of Biology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
27
|
Draicchio F, Behrends V, Tillin NA, Hurren NM, Sylow L, Mackenzie R. Involvement of the extracellular matrix and integrin signalling proteins in skeletal muscle glucose uptake. J Physiol 2022; 600:4393-4408. [PMID: 36054466 PMCID: PMC9826115 DOI: 10.1113/jp283039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/03/2022] [Indexed: 01/11/2023] Open
Abstract
Whole-body euglycaemia is partly maintained by two cellular processes that encourage glucose uptake in skeletal muscle, the insulin- and contraction-stimulated pathways, with research suggesting convergence between these two processes. The normal structural integrity of the skeletal muscle requires an intact actin cytoskeleton as well as integrin-associated proteins, and thus those structures are likely fundamental for effective glucose uptake in skeletal muscle. In contrast, excessive extracellular matrix (ECM) remodelling and integrin expression in skeletal muscle may contribute to insulin resistance owing to an increased physical barrier causing reduced nutrient and hormonal flux. This review explores the role of the ECM and the actin cytoskeleton in insulin- and contraction-mediated glucose uptake in skeletal muscle. This is a clinically important area of research given that defects in the structural integrity of the ECM and integrin-associated proteins may contribute to loss of muscle function and decreased glucose uptake in type 2 diabetes.
Collapse
Affiliation(s)
- Fulvia Draicchio
- School of Life and Health SciencesWhitelands CollegeUniversity of RoehamptonLondonUK
| | - Volker Behrends
- School of Life and Health SciencesWhitelands CollegeUniversity of RoehamptonLondonUK
| | - Neale A. Tillin
- School of Life and Health SciencesWhitelands CollegeUniversity of RoehamptonLondonUK
| | - Nicholas M. Hurren
- School of Life and Health SciencesWhitelands CollegeUniversity of RoehamptonLondonUK
| | - Lykke Sylow
- Molecular Metabolism in Cancer & Ageing Research GroupDepartment of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Richard Mackenzie
- School of Life and Health SciencesWhitelands CollegeUniversity of RoehamptonLondonUK
| |
Collapse
|
28
|
Sundby LJ, Southern WM, Hawbaker KM, Trujillo JM, Perrin BJ, Ervasti JM. Nucleotide- and Protein-Dependent Functions of Actg1. Mol Biol Cell 2022; 33:ar77. [PMID: 35594181 PMCID: PMC9582642 DOI: 10.1091/mbc.e22-02-0054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/11/2022] Open
Abstract
Cytoplasmic β- and γ-actin proteins are 99% identical but support unique organismal functions. The cytoplasmic actin nucleotide sequences Actb and Actg1, respectively, are more divergent but still 89% similar. Actb-/- mice are embryonic lethal and Actb-/- cells fail to proliferate, but editing the Actb gene to express γ-actin (Actbc-g) resulted in none of the overt phenotypes of the knockout revealing protein-independent functions for Actb. To determine if Actg1 has a protein-independent function, we crossed Actbc-g and Actg1-/- mice to generate the bG/0 line, where the only cytoplasmic actin expressed is γ-actin from Actbc-g. The bG/0 mice were viable but showed a survival defect despite expressing γ-actin protein at levels no different from bG/gG with normal survival. A unique myopathy phenotype was also observed in bG/0 mice. We conclude that impaired survival and myopathy in bG/0 mice are due to loss of Actg1 nucleotide-dependent function(s). On the other hand, the bG/0 genotype rescued functions impaired by Actg1-/-, including cell proliferation and auditory function, suggesting a role for γ-actin protein in both fibroblasts and hearing. Together, these results identify nucleotide-dependent functions for Actg1 while implicating γ-actin protein in more cell-/tissue-specific functions.
Collapse
Affiliation(s)
- Lauren J. Sundby
- Program in Molecular, Cellular, Developmental Biology, and Genetics, and
| | - William M. Southern
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Katelin M. Hawbaker
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46022
| | - Jesús M. Trujillo
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Benjamin J. Perrin
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46022
| | - James M. Ervasti
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
29
|
Dugina VB, Shagieva GS, Kopnin PB. Cytoplasmic Beta and Gamma Actin Isoforms Reorganization and Regulation in Tumor Cells in Culture and Tissue. Front Pharmacol 2022; 13:895703. [PMID: 35721191 PMCID: PMC9204531 DOI: 10.3389/fphar.2022.895703] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/11/2022] [Indexed: 11/26/2022] Open
Abstract
The cytoplasmic actin isoforms (β- and γ-actins) contribute greatly to cellular processes such as cel-cell and cell-matrix interactions, as well as cell polarization, motility and division. Distinct isoforms modulations are linked to serious pathologies, so investigations of underlying mechanisms would be of major relevance not only for fundamental research but also for clinical applications. Therefore, the study of the relevant mechanisms of change in the isoform’s balance is important for basic research and for clinical studies. The disruption of actin cytoskeleton and intercellular adhesions contribute to the neoplastic transformation, as it is important for the tumor growth, invasiveness and metastasis. Cytoplasmic actins display the functional diversity: β-actin is responsible for contractility, whereas γ-actin participates in the submembrane flexible cortex organization and direction cell motility. The involvement of β- and γ-actin in cell architecture, motility, division, and adhesion junctions in normal cells is not equivalent, and the major question was following: whether isoform ratio and the distribution in the cell corresponds to pathological function. Significant data were obtained in the study of tumor and normal cells in culture, as well as on clinical material of human tissues, and via selective regulation of β- and γ-actin’s expression. Investigation of the actins’ diversity and function in cancers may help to choose the benefit treatment strategies, and to design new therapies.
Collapse
Affiliation(s)
- V. B. Dugina
- A.N. Belozerskiy Research Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
- Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - G. S. Shagieva
- A.N. Belozerskiy Research Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - P. B. Kopnin
- Research Institute of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, Moscow, Russia
- *Correspondence: P. B. Kopnin,
| |
Collapse
|
30
|
Frameshift mutation S368fs in the gene encoding cytoskeletal β-actin leads to ACTB-associated syndromic thrombocytopenia by impairing actin dynamics. Eur J Cell Biol 2022; 101:151216. [DOI: 10.1016/j.ejcb.2022.151216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022] Open
|
31
|
Choo YY, Sakai T, Komatsu S, Ikebe R, Jeffers A, Singh KP, Idell S, Tucker TA, Ikebe M. Calponin 1 contributes to myofibroblast differentiation of human pleural mesothelial cells. Am J Physiol Lung Cell Mol Physiol 2022; 322:L348-L364. [PMID: 35018804 PMCID: PMC8858681 DOI: 10.1152/ajplung.00289.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 11/22/2022] Open
Abstract
Pleural mesothelial cells (PMCs) can become myofibroblasts via mesothelial-mesenchymal transition (MesoMT) and contribute to pleural organization, fibrosis, and rind formation. However, how these transformed mesothelial cells contribute to lung fibrosis remains unclear. Here, we investigated the mechanism of contractile myofibroblast differentiation of PMCs. Transforming growth factor-β (TGF-β) induced marked upregulation of calponin 1 expression, which was correlated with notable cytoskeletal rearrangement in human PMCs (HPMCs) to produce stress fibers. Downregulation of calponin 1 expression reduced stress fiber formation. Interestingly, induced stress fibers predominantly contain α-smooth muscle actin (αSMA) associated with calponin 1 but not β-actin. Calponin 1-associated stress fibers also contained myosin II and α-actinin. Furthermore, focal adhesions were aligned with the produced stress fibers. These results suggest that calponin 1 facilitates formation of stress fibers that resemble contractile myofibrils. Supporting this notion, TGF-β significantly increased the contractile activity of HPMCs, an effect that was abolished by downregulation of calponin 1 expression. We infer that differentiation of HPMCs to contractile myofibroblasts facilitates stiffness of scar tissue in pleura to promote pleural fibrosis (PF) and that upregulation of calponin 1 plays a central role in this process.
Collapse
Affiliation(s)
- Young-Yeon Choo
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Tsuyoshi Sakai
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Satoshi Komatsu
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Reiko Ikebe
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Ann Jeffers
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Karan P Singh
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Steven Idell
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Torry A Tucker
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Mitsuo Ikebe
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| |
Collapse
|
32
|
Boiero Sanders M, Toret CP, Guillotin A, Antkowiak A, Vannier T, Robinson RC, Michelot A. Specialization of actin isoforms derived from the loss of key interactions with regulatory factors. EMBO J 2022; 41:e107982. [PMID: 35178724 PMCID: PMC8886540 DOI: 10.15252/embj.2021107982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/09/2022] Open
Abstract
A paradox of eukaryotic cells is that while some species assemble a complex actin cytoskeleton from a single ortholog, other species utilize a greater diversity of actin isoforms. The physiological consequences of using different actin isoforms, and the molecular mechanisms by which highly conserved actin isoforms are segregated into distinct networks, are poorly known. Here, we sought to understand how a simple biological system, composed of a unique actin and a limited set of actin‐binding proteins, reacts to a switch to heterologous actin expression. Using yeast as a model system and biomimetic assays, we show that such perturbation causes drastic reorganization of the actin cytoskeleton. Our results indicate that defective interaction of a heterologous actin for important regulators of actin assembly limits certain actin assembly pathways while reinforcing others. Expression of two heterologous actin variants, each specialized in assembling a different network, rescues cytoskeletal organization and confers resistance to external perturbation. Hence, while species using a unique actin have homeostatic actin networks, actin assembly pathways in species using several actin isoforms may act more independently.
Collapse
Affiliation(s)
| | - Christopher P Toret
- CNRS, IBDM, Turing Centre for Living Systems, Aix Marseille Univ, Marseille, France
| | - Audrey Guillotin
- CNRS, IBDM, Turing Centre for Living Systems, Aix Marseille Univ, Marseille, France
| | - Adrien Antkowiak
- CNRS, IBDM, Turing Centre for Living Systems, Aix Marseille Univ, Marseille, France
| | - Thomas Vannier
- CNRS, IBDM, Turing Centre for Living Systems, Aix Marseille Univ, Marseille, France
| | - Robert C Robinson
- Research Institute for Interdisciplinary Science (RIIS), Okayama University, Okayama, Japan.,School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Alphée Michelot
- CNRS, IBDM, Turing Centre for Living Systems, Aix Marseille Univ, Marseille, France
| |
Collapse
|
33
|
Kölln LS, Salem O, Valli J, Hansen CG, McConnell G. Label2label: training a neural network to selectively restore cellular structures in fluorescence microscopy. J Cell Sci 2022; 135:jcs258994. [PMID: 35022745 PMCID: PMC8918818 DOI: 10.1242/jcs.258994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/17/2021] [Indexed: 11/20/2022] Open
Abstract
Immunofluorescence microscopy is routinely used to visualise the spatial distribution of proteins that dictates their cellular function. However, unspecific antibody binding often results in high cytosolic background signals, decreasing the image contrast of a target structure. Recently, convolutional neural networks (CNNs) were successfully employed for image restoration in immunofluorescence microscopy, but current methods cannot correct for those background signals. We report a new method that trains a CNN to reduce unspecific signals in immunofluorescence images; we name this method label2label (L2L). In L2L, a CNN is trained with image pairs of two non-identical labels that target the same cellular structure. We show that after L2L training a network predicts images with significantly increased contrast of a target structure, which is further improved after implementing a multiscale structural similarity loss function. Here, our results suggest that sample differences in the training data decrease hallucination effects that are observed with other methods. We further assess the performance of a cycle generative adversarial network, and show that a CNN can be trained to separate structures in superposed immunofluorescence images of two targets.
Collapse
Affiliation(s)
- Lisa Sophie Kölln
- University of Strathclyde, Department of Physics, Glasgow G4 0NG, UK
- University of Edinburgh, Centre for Inflammation Research, Edinburgh EH16 4TJ, UK
- University of Edinburgh, Institute for Regeneration and Repair, Edinburgh EH16 4UU, UK
| | - Omar Salem
- University of Edinburgh, Centre for Inflammation Research, Edinburgh EH16 4TJ, UK
- University of Edinburgh, Institute for Regeneration and Repair, Edinburgh EH16 4UU, UK
| | - Jessica Valli
- Edinburgh Super Resolution Imaging Consortium, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Carsten Gram Hansen
- University of Edinburgh, Centre for Inflammation Research, Edinburgh EH16 4TJ, UK
- University of Edinburgh, Institute for Regeneration and Repair, Edinburgh EH16 4UU, UK
| | - Gail McConnell
- University of Strathclyde, Department of Physics, Glasgow G4 0NG, UK
| |
Collapse
|
34
|
Morel S, Schilling S, Diagbouga MR, Delucchi M, Bochaton-Piallat ML, Lemeille S, Hirsch S, Kwak BR. Effects of Low and High Aneurysmal Wall Shear Stress on Endothelial Cell Behavior: Differences and Similarities. Front Physiol 2021; 12:727338. [PMID: 34721060 PMCID: PMC8551710 DOI: 10.3389/fphys.2021.727338] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Intracranial aneurysms (IAs) result from abnormal enlargement of the arterial lumen. IAs are mostly quiescent and asymptomatic, but their rupture leads to severe brain damage or death. As the evolution of IAs is hard to predict and intricates medical decision, it is essential to improve our understanding of their pathophysiology. Wall shear stress (WSS) is proposed to influence IA growth and rupture. In this study, we investigated the effects of low and supra-high aneurysmal WSS on endothelial cells (ECs). Methods: Porcine arterial ECs were exposed for 48 h to defined levels of shear stress (2, 30, or 80 dyne/cm2) using an Ibidi flow apparatus. Immunostaining for CD31 or γ-cytoplasmic actin was performed to outline cell borders or to determine cell architecture. Geometry measurements (cell orientation, area, circularity and aspect ratio) were performed on confocal microscopy images. mRNA was extracted for RNAseq analysis. Results: ECs exposed to low or supra-high aneurysmal WSS were more circular and had a lower aspect ratio than cells exposed to physiological flow. Furthermore, they lost the alignment in the direction of flow observed under physiological conditions. The effects of low WSS on differential gene expression were stronger than those of supra-high WSS. Gene set enrichment analysis highlighted that extracellular matrix proteins, cytoskeletal proteins and more particularly the actin protein family were among the protein classes the most affected by shear stress. Interestingly, most genes showed an opposite regulation under both types of aneurysmal WSS. Immunostainings for γ-cytoplasmic actin suggested a different organization of this cytoskeletal protein between ECs exposed to physiological and both types of aneurysmal WSS. Conclusion: Under both aneurysmal low and supra-high WSS the typical arterial EC morphology molds to a more spherical shape. Whereas low WSS down-regulates the expression of cytoskeletal-related proteins and up-regulates extracellular matrix proteins, supra-high WSS induces opposite changes in gene expression of these protein classes. The differential regulation in EC gene expression observed under various WSS translate into a different organization of the ECs’ architecture. This adaptation of ECs to different aneurysmal WSS conditions may affect vascular remodeling in IAs.
Collapse
Affiliation(s)
- Sandrine Morel
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Neurosurgery Division, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Sabine Schilling
- Institute of Applied Simulation, Zurich University of Applied Sciences, Wädenswil, Switzerland.,Institute of Tourism and Mobility, Lucerne School of Business, Lucerne University of Applied Sciences and Arts, Lucerne, Switzerland
| | - Mannekomba R Diagbouga
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Matteo Delucchi
- Institute of Applied Simulation, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | | | - Sylvain Lemeille
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sven Hirsch
- Institute of Applied Simulation, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Brenda R Kwak
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
35
|
Cui S, Zhou Z, Chen X, Wei F, Richards RG, Alini M, Grad S, Li Z. Transcriptional profiling of intervertebral disc in a post-traumatic early degeneration organ culture model. JOR Spine 2021; 4:e1146. [PMID: 34611583 PMCID: PMC8479529 DOI: 10.1002/jsp2.1146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/19/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION The goal of this study is to characterize transcriptome changes and gene regulation networks in an organ culture system that mimics early post-traumatic intervertebral disc (IVD) degeneration. METHODS To mimic a traumatic insult, bovine caudal IVDs underwent one strike loading. The control group was cultured under physiological loading. At 24 hours after one strike or physiological loading, RNA was extracted from nucleus pulposus (NP) and annulus fibrosus (AF) tissue. High throughput next generation RNA sequencing was performed to identify differentially expressed genes (DEGs) between the one strike loading group and the control group. Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes analyses were performed to analyze DEGs and pathways. Protein-protein interaction (PPI) network was analyzed with cytoscape software. DEGs were verified using qRT-PCR. Degenerated human IVD tissue was collected for immunofluorescence staining to verify the expression of DEGs in human disc tissue. RESULTS One strike loading resulted in significant gene expression changes compared with physiological loading. In total 253 DEGs were found in NP tissue and 208 DEGs in AF tissue. Many of the highly dysregulated genes have known functions in disc degeneration and extracellular matrix (ECM) homeostasis. ACTB, ACTG, PFN1, MYL12B in NP tissue and FGF1, SPP1 in AF tissue were verified by qRT-PCR and immunofluorescence imaging. The identified DEGs were involved in focal adhesion, ECM-receptor interaction, PI3K-AKT, and cytokine-cytokine receptor interaction pathways. Three clusters of PPI networks were identified. GO enrichment revealed that these DEGs were mainly involved in inflammatory response, the ECM and growth factor signaling and protein folding biological process. CONCLUSION Our study revealed different DEGs, pathways, biological process and PPI networks involved in post-traumatic IVD degeneration. These findings will advance the understanding of the pathogenesis of IVD degeneration, and help to identify novel biomarkers for the disease diagnosis.
Collapse
Affiliation(s)
- Shangbin Cui
- AO Research Institute DavosDavosSwitzerland
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Zhiyu Zhou
- The Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Xu Chen
- The Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Fuxin Wei
- The Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - R. Geoff Richards
- AO Research Institute DavosDavosSwitzerland
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | | | | | - Zhen Li
- AO Research Institute DavosDavosSwitzerland
| |
Collapse
|
36
|
Dugina VB, Shagieva GS, Shakhov AS, Alieva IB. The Cytoplasmic Actins in the Regulation of Endothelial Cell Function. Int J Mol Sci 2021; 22:ijms22157836. [PMID: 34360602 PMCID: PMC8345992 DOI: 10.3390/ijms22157836] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 01/22/2023] Open
Abstract
The primary function of the endothelial cells (EC) lining the inner surface of all vessels is to regulate permeability of vascular walls and to control exchange between circulating blood and tissue fluids of organs. The EC actin cytoskeleton plays a crucial role in maintaining endothelial barrier function. Actin cytoskeleton reorganization result in EC contraction and provides a structural basis for the increase in vascular permeability, which is typical for many diseases. Actin cytoskeleton in non-muscle cells presented two actin isoforms: non-muscle β-cytoplasmic and γ-cytoplasmic actins (β-actins and γ-actins), which are encoded by ACTB and ACTG1 genes, respectively. They are ubiquitously expressed in the different cells in vivo and in vitro and the β/γ-actin ratio depends on the cell type. Both cytoplasmic actins are essential for cell survival, but they perform various functions in the interphase and cell division and play different roles in neoplastic transformation. In this review, we briefly summarize the research results of recent years and consider the features of the cytoplasmic actins: The spatial organization in close connection with their functional activity in different cell types by focusing on endothelial cells.
Collapse
Affiliation(s)
- Vera B. Dugina
- A.N. Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.B.D.); (G.S.S.); (A.S.S.)
| | - Galina S. Shagieva
- A.N. Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.B.D.); (G.S.S.); (A.S.S.)
| | - Anton S. Shakhov
- A.N. Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.B.D.); (G.S.S.); (A.S.S.)
| | - Irina B. Alieva
- A.N. Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.B.D.); (G.S.S.); (A.S.S.)
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya St., 119435 Moscow, Russia
- Correspondence:
| |
Collapse
|
37
|
Suresh R, Diaz RJ. The remodelling of actin composition as a hallmark of cancer. Transl Oncol 2021; 14:101051. [PMID: 33761369 PMCID: PMC8008238 DOI: 10.1016/j.tranon.2021.101051] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Actin is a key structural protein that makes up the cytoskeleton of cells, and plays a role in functions such as division, migration, and vesicle trafficking. It comprises six different cell-type specific isoforms: ACTA1, ACTA2, ACTB, ACTC1, ACTG1, and ACTG2. Abnormal actin isoform expression has been reported in many cancers, which led us to hypothesize that it may serve as an early biomarker of cancer. We show an overview of the different actin isoforms and highlight mechanisms by which they may contribute to tumorigenicity. Furthermore, we suggest how the aberrant expression of actin subunits can confer cells with greater proliferation ability, increased migratory capability, and chemoresistance through incorporation into the normal cellular F-actin network and altered actin binding protein interaction. Studying this fundamental change that takes place within cancer cells can further our understanding of neoplastic transformation in multiple tissue types, which can ultimately aid in the early-detection, diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Rahul Suresh
- Montreal Neurological Institute, Integrated Program in Neuroscience, McGill University, Montreal, Canada
| | - Roberto J Diaz
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, Faculty of Medicine, McGill University, Montreal, Canada.
| |
Collapse
|
38
|
Inhibition of polar actin assembly by astral microtubules is required for cytokinesis. Nat Commun 2021; 12:2409. [PMID: 33893302 PMCID: PMC8065111 DOI: 10.1038/s41467-021-22677-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
During cytokinesis, the actin cytoskeleton is partitioned into two spatially distinct actin isoform specific networks: a β-actin network that generates the equatorial contractile ring, and a γ-actin network that localizes to the cell cortex. Here we demonstrate that the opposing regulation of the β- and γ-actin networks is required for successful cytokinesis. While activation of the formin DIAPH3 at the cytokinetic furrow underlies β-actin filament production, we show that the γ-actin network is specifically depleted at the cell poles through the localized deactivation of the formin DIAPH1. During anaphase, CLIP170 is delivered by astral microtubules and displaces IQGAP1 from DIAPH1, leading to formin autoinhibition, a decrease in cortical stiffness and localized membrane blebbing. The contemporaneous production of a β-actin contractile ring at the cell equator and loss of γ-actin from the poles is required to generate a stable cytokinetic furrow and for the completion of cell division. During cell division, the actin cytoskeletal network at both the equatorial contractile ring and cell cortex are known to play a role, but the regulation of γ-actin during cytokinesis is less well understood. Here, the authors show that recruitment of β-actin to the contractile ring and loss of γ-actin from the cell poles is required for completion of cell division.
Collapse
|
39
|
Impaired Expression of Cytoplasmic Actins Leads to Chromosomal Instability of MDA-MB-231 Basal-Like Mammary Gland Cancer Cell Line. Molecules 2021; 26:molecules26082151. [PMID: 33917969 PMCID: PMC8068389 DOI: 10.3390/molecules26082151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 12/03/2022] Open
Abstract
We have shown previously that two cytoplasmic actin isoforms play different roles in neoplastic cell transformation. Namely, β-cytoplasmic actin acts as a tumor suppressor, whereas γ-cytoplasmic actin enhances malignant features of tumor cells. The distinct participation of each cytoplasmic actin in the cell cycle driving was also observed. The goal of this study was to describe the diverse roles of cytoplasmic actins in the progression of chromosomal instability of MDA-MB-231 basal-like human carcinoma cell line. We performed traditional methods of chromosome visualization, as well as 3D-IF microscopy and western blotting for CENP-A detection/quantification, to investigate chromosome morphology. Downregulation of cytoplasmic actin isoforms alters the phenotype and karyotype of MDA-MB-231 breast cancer cells. Moreover, β-actin depletion leads to the progression of chromosomal instability with endoreduplication and aneuploidy increase. On the contrary, γ-actin downregulation results not only in reduced percentage of mitotic carcinoma cells, but leads to chromosome stability, reduced polyploidy, and aneuploidy.
Collapse
|
40
|
Articular Chondrocyte Phenotype Regulation through the Cytoskeleton and the Signaling Processes That Originate from or Converge on the Cytoskeleton: Towards a Novel Understanding of the Intersection between Actin Dynamics and Chondrogenic Function. Int J Mol Sci 2021; 22:ijms22063279. [PMID: 33807043 PMCID: PMC8004672 DOI: 10.3390/ijms22063279] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023] Open
Abstract
Numerous studies have assembled a complex picture, in which extracellular stimuli and intracellular signaling pathways modulate the chondrocyte phenotype. Because many diseases are mechanobiology-related, this review asked to what extent phenotype regulators control chondrocyte function through the cytoskeleton and cytoskeleton-regulating signaling processes. Such information would generate leverage for advanced articular cartilage repair. Serial passaging, pro-inflammatory cytokine signaling (TNF-α, IL-1α, IL-1β, IL-6, and IL-8), growth factors (TGF-α), and osteoarthritis not only induce dedifferentiation but also converge on RhoA/ROCK/Rac1/mDia1/mDia2/Cdc42 to promote actin polymerization/crosslinking for stress fiber (SF) formation. SF formation takes center stage in phenotype control, as both SF formation and SOX9 phosphorylation for COL2 expression are ROCK activity-dependent. Explaining how it is molecularly possible that dedifferentiation induces low COL2 expression but high SF formation, this review theorized that, in chondrocyte SOX9, phosphorylation by ROCK might effectively be sidelined in favor of other SF-promoting ROCK substrates, based on a differential ROCK affinity. In turn, actin depolymerization for redifferentiation would “free-up” ROCK to increase COL2 expression. Moreover, the actin cytoskeleton regulates COL1 expression, modulates COL2/aggrecan fragment generation, and mediates a fibrogenic/catabolic expression profile, highlighting that actin dynamics-regulating processes decisively control the chondrocyte phenotype. This suggests modulating the balance between actin polymerization/depolymerization for therapeutically controlling the chondrocyte phenotype.
Collapse
|
41
|
Shagieva GS, Alieva IB, Chaponnier C, Dugina VB. Divergent Impact of Actin Isoforms on Division of Epithelial Cells. BIOCHEMISTRY (MOSCOW) 2021; 85:1072-1063. [PMID: 33050852 DOI: 10.1134/s0006297920090072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We investigated distribution and functions of beta- and gamma-cytoplasmic actins (CYAs) at different stages of non-neoplastic epithelial cell division using laser scanning microscopy (LSM). Here, we demonstrated that beta- and gamma-CYAs are spatially segregated in the early prophase, anaphase, telophase, and cytokinesis. Small interfering RNA (siRNA) experiments revealed that in both beta-CYA- and gamma-CYA-depleted cells, the number of cells was significantly reduced compared with the siRNA controls. Beta-CYA depletion resulted in an enlargement of the cell area in metaphase and high percentage of polynuclear cells compared with the siRNA control, indicating a potential failure of cytokinesis. Gamma-CYA depletion resulted in a reduced percentage of mitotic cells. We also observed the interdependence between the actin isoforms and the microtubule system in mitosis: (i) a decrease in the gamma-CYA led to impaired mitotic spindle organization; (ii) suppression of tubulin polymerization caused impaired beta-CYA reorganization, as incubation with colcemid blocked the transfer of short beta-actin polymers from the basal to the cortical compartment. We conclude that both actin isoforms are essential for proper cell division, but each isoform has its own specific functional role in this process.
Collapse
Affiliation(s)
- G S Shagieva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - I B Alieva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia. .,Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical Biological Agency, Moscow, 119435, Russia
| | - C Chaponnier
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, 1205, Switzerland
| | - V B Dugina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
42
|
Ruggiero C, Lalli E. Targeting the cytoskeleton against metastatic dissemination. Cancer Metastasis Rev 2021; 40:89-140. [PMID: 33471283 DOI: 10.1007/s10555-020-09936-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
Cancer is a pathology characterized by a loss or a perturbation of a number of typical features of normal cell behaviour. Indeed, the acquisition of an inappropriate migratory and invasive phenotype has been reported to be one of the hallmarks of cancer. The cytoskeleton is a complex dynamic network of highly ordered interlinking filaments playing a key role in the control of fundamental cellular processes, like cell shape maintenance, motility, division and intracellular transport. Moreover, deregulation of this complex machinery contributes to cancer progression and malignancy, enabling cells to acquire an invasive and metastatic phenotype. Metastasis accounts for 90% of death from patients affected by solid tumours, while an efficient prevention and suppression of metastatic disease still remains elusive. This results in the lack of effective therapeutic options currently available for patients with advanced disease. In this context, the cytoskeleton with its regulatory and structural proteins emerges as a novel and highly effective target to be exploited for a substantial therapeutic effort toward the development of specific anti-metastatic drugs. Here we provide an overview of the role of cytoskeleton components and interacting proteins in cancer metastasis with a special focus on small molecule compounds interfering with the actin cytoskeleton organization and function. The emerging involvement of microtubules and intermediate filaments in cancer metastasis is also reviewed.
Collapse
Affiliation(s)
- Carmen Ruggiero
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, CNRS, 660 route des Lucioles-Sophia Antipolis, 06560, Valbonne, France.
- NEOGENEX-CANCER CNRS International Associated Laboratory, 660 route des Lucioles, Sophia Antipolis, 06560, Valbonne, France.
| | - Enzo Lalli
- NEOGENEX-CANCER CNRS International Associated Laboratory, 660 route des Lucioles, Sophia Antipolis, 06560, Valbonne, France
- Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des Lucioles - Sophia Antipolis, 06560, Valbonne, France
| |
Collapse
|
43
|
Malek N, Michrowska A, Mazurkiewicz E, Mrówczyńska E, Mackiewicz P, Mazur AJ. The origin of the expressed retrotransposed gene ACTBL2 and its influence on human melanoma cells' motility and focal adhesion formation. Sci Rep 2021; 11:3329. [PMID: 33558623 PMCID: PMC7870945 DOI: 10.1038/s41598-021-82074-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/08/2021] [Indexed: 01/30/2023] Open
Abstract
We have recently found that β-actin-like protein 2 (actbl2) forms complexes with gelsolin in human melanoma cells and can polymerize. Phylogenetic and bioinformatic analyses showed that actbl2 has a common origin with two non-muscle actins, which share a separate history from the muscle actins. The actin groups' divergence started at the beginning of vertebrate evolution, and actbl2 actins are characterized by the largest number of non-conserved amino acid substitutions of all actins. We also discovered that ACTBL2 is expressed at a very low level in several melanoma cell lines, but a small subset of cells exhibited a high ACTBL2 expression. We found that clones with knocked-out ACTBL2 (CR-ACTBL2) or overexpressing actbl2 (OE-ACTBL2) differ from control cells in the invasion, focal adhesion formation, and actin polymerization ratio, as well as in the formation of lamellipodia and stress fibers. Thus, we postulate that actbl2 is the seventh actin isoform and is essential for cell motility.
Collapse
Affiliation(s)
- Natalia Malek
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Aleksandra Michrowska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Ewa Mazurkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Ewa Mrówczyńska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Paweł Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Antonina J Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wroclaw, Poland.
| |
Collapse
|
44
|
Singh K, Kim AB, Morgan KG. Non-muscle myosin II regulates aortic stiffness through effects on specific focal adhesion proteins and the non-muscle cortical cytoskeleton. J Cell Mol Med 2021; 25:2471-2483. [PMID: 33547870 PMCID: PMC7933926 DOI: 10.1111/jcmm.16170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
Non‐muscle myosin II (NMII) plays a role in many fundamental cellular processes including cell adhesion, migration, and cytokinesis. However, its role in mammalian vascular function is not well understood. Here, we investigated the function of NMII in the biomechanical and signalling properties of mouse aorta. We found that blebbistatin, an inhibitor of NMII, decreases agonist‐induced aortic stress and stiffness in a dose‐dependent manner. We also specifically demonstrate that in freshly isolated, contractile, aortic smooth muscle cells, the non‐muscle myosin IIA (NMIIA) isoform is associated with contractile filaments in the core of the cell as well as those in the non‐muscle cell cortex. However, the non‐muscle myosin IIB (NMIIB) isoform is excluded from the cell cortex and colocalizes only with contractile filaments. Furthermore, both siRNA knockdown of NMIIA and NMIIB isoforms in the differentiated A7r5 smooth muscle cell line and blebbistatin‐mediated inhibition of NM myosin II suppress agonist‐activated increases in phosphorylation of the focal adhesion proteins FAK Y925 and paxillin Y118. Thus, we show in the present study, for the first time that NMII regulates aortic stiffness and stress and that this regulation is mediated through the tension‐dependent phosphorylation of the focal adhesion proteins FAK and paxillin.
Collapse
Affiliation(s)
- Kuldeep Singh
- Department of Health Sciences, Boston University, Boston, MA, USA.,CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Anne B Kim
- Department of Health Sciences, Boston University, Boston, MA, USA
| | | |
Collapse
|
45
|
Alam MN, Yu JQ, Beale P, Huq F. Dose and Sequence Dependent Synergism from the Combination of Oxaliplatin with Emetine and Patulin Against Colorectal Cancer. Anticancer Agents Med Chem 2021; 20:264-273. [PMID: 31736447 DOI: 10.2174/1871520619666191021112042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Colorectal cancer is the third most commonly diagnosed cancer in the world, causing many deaths every year. Combined chemotherapy has opened a new horizon in treating colorectal cancer. The objective of the present study is to investigate the activity of oxaliplatin in combination with emetine and patulin against colorectal cancer models. METHODS IC50 values of oxaliplatin, emetine and patulin were determined against human colorectal cancer cell lines (HT-29 and Caco-2) using MTT reduction assay. Synergistic, antagonistic and additive effects from the selected binary combinations were determined as a factor of sequence of administration and added concentrations. Proteomics was carried out to identify the proteins which were accountable for combined drug action applying to the selected drug combination. RESULTS Oxaliplatin in combination with patulin produced synergism against human colorectal cancer models depending on dose and sequence of drug administration. Bolus administration of oxaliplatin with patulin proved to be the best in terms of synergistic outcome. Altered expressions of nine proteins (ACTG, PROF1, PPIA, PDIA3, COF1, GSTP1, ALDOA, TBA1C and TBB5) were considered for combined drug actions of oxaliplatin with patulin. CONCLUSION Bolus administration of oxaliplatin with patulin has the potential to be used in the treatment of colorectal cancer, and would warrant further evaluation using suitable animal model.
Collapse
Affiliation(s)
- Md Nur Alam
- Discipline of Pathology, Sydney Medical School, A26-RC Mills Room 105, University of Sydney, Sydney, NSW, Australia
| | - Jun Q Yu
- Discipline of Pathology, Sydney Medical School, A26-RC Mills Room 105, University of Sydney, Sydney, NSW, Australia
| | - Philip Beale
- Sydney Cancer Centre, Concord Hospital, Sydney, NSW 2139, Australia
| | - Fazlul Huq
- Discipline of Pathology, Sydney Medical School, A26-RC Mills Room 105, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
46
|
Younesi FS, Son DO, Firmino J, Hinz B. Myofibroblast Markers and Microscopy Detection Methods in Cell Culture and Histology. Methods Mol Biol 2021; 2299:17-47. [PMID: 34028733 DOI: 10.1007/978-1-0716-1382-5_3] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The identification of myofibroblasts is essential for mechanistic in vitro studies, cell-based drug tests, and to assess the level of fibrosis in experimental animal or human fibrosis. The name myo-fibroblast was chosen in 1971 to express that the formation of contractile features-stress fibers is the essential criterion to define these cells. Additional neo-expression of α-smooth muscle actin (α-SMA) in stress fibers has become the most widely used molecular marker. Here, we briefly introduce the concept of different myofibroblast activation states, of which the highly contractile α-SMA-positive phenotype represents a most advanced functional stage. We provide targeted immunofluorescence protocols to assess this phenotype, and publicly accessible image analysis tools to quantify the level of myofibroblast activation in culture and in tissues.
Collapse
Affiliation(s)
- Fereshteh S Younesi
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Dong Ok Son
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Joao Firmino
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Collaborative Advanced Microscopy Laboratories of Dentistry (CAMiLoD), Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada. .,Collaborative Advanced Microscopy Laboratories of Dentistry (CAMiLoD), Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
47
|
Vanslembrouck B, Ampe C, Hengel J. Time for rethinking the different β‐actin transgenic mouse models? Cytoskeleton (Hoboken) 2020; 77:527-543. [DOI: 10.1002/cm.21647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 01/23/2023]
Affiliation(s)
- Bieke Vanslembrouck
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences Ghent University Ghent Belgium
| | - Christophe Ampe
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences Ghent University Ghent Belgium
| | - Jolanda Hengel
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences Ghent University Ghent Belgium
| |
Collapse
|
48
|
Xy Ling N, Langendorf CG, Hoque A, Galic S, Loh K, Kemp BE, Gundlach AL, Oakhill JS, Scott JW. Functional analysis of an R311C variant of Ca 2+ -calmodulin-dependent protein kinase kinase-2 (CaMKK2) found as a de novo mutation in a patient with bipolar disorder. Bipolar Disord 2020; 22:841-848. [PMID: 32216002 DOI: 10.1111/bdi.12901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Loss-of-function mutations in the gene encoding the calcium-calmodulin (Ca2+ -CaM)-dependent protein kinase kinase-2 (CaMKK2) enzyme are linked to bipolar disorder. Recently, a de novo arginine to cysteine (R311C) mutation in CaMKK2 was identified from a whole exome sequencing study of bipolar patients and their unaffected parents. The aim of the present study was to determine the functional consequences of the R311C mutation on CaMKK2 activity and regulation by Ca2+ -CaM. METHODS The effects of the R311C mutation on CaMKK2 activity and Ca2+ -CaM activation were examined using a radiolabeled adenosine triphosphate (ATP) kinase assay. We performed immunoblot analysis to determine whether the R311C mutation impacts threonine-85 (T85) autophosphorylation, an activating phosphorylation site on CaMKK2 that has also been implicated in bipolar disorder. We also expressed the R311C mutant in CaMKK2 knockout HAP1 cells and used immunoblot analysis and an MTS reduction assay to study its effects on Ca2+ -dependent downstream signaling and cell viability, respectively. RESULTS The R311C mutation maps to the conserved HRD motif within the catalytic loop of CaMKK2 and caused a marked reduction in kinase activity and Ca2+ -CaM activation. The R311C mutation virtually abolished T85 autophosphorylation in response to Ca2+ -CaM and exerted a dominant-negative effect in cells as it impaired the ability of wild-type CaMKK2 to initiate downstream signaling and maintain cell viability. CONCLUSIONS The highly disruptive, loss-of-function impact of the de novo R311C mutation in human CaMKK2 provides a compelling functional rationale for being considered a potential rare monogenic cause of bipolar disorder.
Collapse
Affiliation(s)
- Naomi Xy Ling
- St Vincent's Institute and Department of Medicine, The University of Melbourne, Fitzroy, Australia
| | - Christopher G Langendorf
- St Vincent's Institute and Department of Medicine, The University of Melbourne, Fitzroy, Australia
| | - Ashfaqul Hoque
- St Vincent's Institute and Department of Medicine, The University of Melbourne, Fitzroy, Australia
| | - Sandra Galic
- St Vincent's Institute and Department of Medicine, The University of Melbourne, Fitzroy, Australia
| | - Kim Loh
- St Vincent's Institute and Department of Medicine, The University of Melbourne, Fitzroy, Australia
| | - Bruce E Kemp
- St Vincent's Institute and Department of Medicine, The University of Melbourne, Fitzroy, Australia.,Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Jonathan S Oakhill
- St Vincent's Institute and Department of Medicine, The University of Melbourne, Fitzroy, Australia.,Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - John W Scott
- St Vincent's Institute and Department of Medicine, The University of Melbourne, Fitzroy, Australia.,Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia.,The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| |
Collapse
|
49
|
Scurci I, Akondi KB, Pinheiro I, Paolini-Bertrand M, Borgeat A, Cerini F, Hartley O. CCR5 tyrosine sulfation heterogeneity generates cell surface receptor subpopulations with different ligand binding properties. Biochim Biophys Acta Gen Subj 2020; 1865:129753. [PMID: 32991968 DOI: 10.1016/j.bbagen.2020.129753] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Chemokine receptor tyrosine sulfation plays a key role in the binding of chemokines. It has been suggested that receptor sulfation is heterogeneous, but no experimental evidence has been provided so far. The potent anti-HIV chemokine analog 5P12-RANTES has been proposed to owe its inhibitory activity to a capacity to bind a larger pool of cell surface CCR5 receptors than native chemokines such as CCL5, but the molecular details underlying this phenomenon have not been elucidated. METHODS We investigated the CCR5 sulfation heterogeneity and the sensitivity of CCR5 ligands to receptor sulfation by performing ELISA assays on synthetic N-terminal sulfopeptides and by performing binding assays on CCR5-expressing cells under conditions that modulate CCR5 sulfation levels. RESULTS Two commonly used anti-CCR5 monoclonal antibodies with epitopes in the sulfated N-terminal domain of CCR5 show contrasting binding profiles on CCR5 sulfopeptides, incomplete competition with each other for cell surface CCR5, and opposing sensitivities to cellular treatments that affect CCR5 sulfation levels. 5P12-RANTES is less sensitive than native CCL5 to conditions that affect cellular CCR5 sulfation. CONCLUSIONS CCR5 sulfation is heterogeneous and this affects the binding properties of both native chemokines and antibodies. Enhanced capacity to bind to CCR5 is a component of the inhibitory mechanism of 5P12-RANTES. GENERAL SIGNIFICANCE We provide the first experimental evidence for sulfation heterogeneity of chemokine receptors and its impact on ligand binding, a phenomenon that is important both for the understanding of chemokine cell biology and for the development of drugs that target chemokine receptors.
Collapse
Affiliation(s)
- I Scurci
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - K B Akondi
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - I Pinheiro
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - M Paolini-Bertrand
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - A Borgeat
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - F Cerini
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - O Hartley
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland; Orion Biotechnology, Avenue de Sécheron 15, 1202 Genève, Switzerland.
| |
Collapse
|
50
|
Fasoli S, Andreani G, Dondi F, Ferlizza E, Bellei E, Isani G. Urinary Reference Values and First Insight into the Urinary Proteome of Captive Giraffes. Animals (Basel) 2020; 10:E1696. [PMID: 32961670 PMCID: PMC7552697 DOI: 10.3390/ani10091696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 11/16/2022] Open
Abstract
Urinalysis is widely recognized to be a useful tool in routine health investigations, since it can diagnose numerous pathologies. Considering the paucity of knowledge concerning giraffes, urine from 44 giraffes (Giraffa camelopardalis) (18 males and 26 females, from 3 months of age to 21 years of age) underwent routine urinalysis, 1D-electrophoresis, and protein identification using mass spectrometry, with the aim of identifying the urinary reference values and the urine proteome. The urine specific gravity (USG), urine total proteins (uTP), urine creatinine (uCr), and urine protein:creatinine ratio (UPC) reference values, reported as the median, and lower limit (LL) and upper limit (UL), were 1.030 (1006-1.049), 17.58 (4.54-35.31) mg/dL, 154.62 (39.59-357.95) mg/dL, and 0.11 (0.07-0.16), respectively. Mass spectrometry, together with electrophoresis, revealed a pattern of common urinary proteins; albumin, lysozyme C, and ubiquitin were the most represented proteins in the giraffe urine. It has been hypothesized that these proteins could act as a defense against microbes. Moreover, in giraffes, urinalysis could be a valid tool for gauging renal function and physiological status changes.
Collapse
Affiliation(s)
- Sabrina Fasoli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (S.F.); (F.D.); (G.I.)
| | - Giulia Andreani
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (S.F.); (F.D.); (G.I.)
| | - Francesco Dondi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (S.F.); (F.D.); (G.I.)
| | - Enea Ferlizza
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy;
| | - Elisa Bellei
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, Proteomic Lab, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Gloria Isani
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (S.F.); (F.D.); (G.I.)
| |
Collapse
|