1
|
Wen YC, Lin YW, Ho KH, Yang YC, Lai FR, Chu CY, Chen JQ, Lee WJ, Chien MH. The oncogenic ADAMTS1-VCAN-EGFR cyclic axis drives anoikis resistance and invasion in renal cell carcinoma. Cell Mol Biol Lett 2024; 29:126. [PMID: 39333870 PMCID: PMC11429190 DOI: 10.1186/s11658-024-00643-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Metastasis, the leading cause of renal cell carcinoma (RCC) mortality, involves cancer cells resisting anoikis and invading. Until now, the role of the matrix metalloproteinase (MMP)-related enzyme, A disintegrin and metalloprotease with thrombospondin motifs 1 (ADAMTS1), in RCC anoikis regulation remains unclear. METHODS The clinical significance of ADAMTS1 and its associated molecules in patients with RCC was investigated using data from the Gene Expression Omnibus (GEO) and TCGA datasets. Human phosphoreceptor tyrosine kinase (RTK) array, luciferase reporter assays, immunoprecipitation (IP) assays, western blotting, and real-time reverse-transcription quantitative polymerase chain reaction (RT-qPCR) were used to elucidate the underlying mechanisms of ADAMTS1. Functional assays, including anoikis resistance assays, invasion assays, and a Zebrafish xenotransplantation model, were conducted to assess the roles of ADAMTS1 in conferring resistance to anoikis in RCC. RESULTS This study found elevated ADAMTS1 transcripts in RCC tissues that were correlated with a poor prognosis. ADAMTS1 manipulation significantly affected cell anoikis through the mitochondrial pathway in RCC cells. Human receptor tyrosine kinase (RTK) array screening identified that epidermal growth factor receptor (EGFR) activation was responsible for ADAMTS1-induced anoikis resistance and invasion. Further investigations revealed that enzymatically active ADAMTS1-induced versican V1 (VCAN V1) proteolysis led to EGFR transactivation, which in turn, through positive feedback, regulated ADAMTS1. Additionally, ADAMTS1 can form a complex with p53 to influence EGFR signaling. In vivo, VCAN or EGFR knockdown reversed ADAMTS1-induced prometastatic characteristics of RCC. A clinical analysis revealed a positive correlation between ADAMTS1 and VCAN or the EGFR and patients with RCC with high ADAMTS1 and VCAN expression had the worst prognoses. CONCLUSIONS Our results collectively uncover a novel cyclic axis involving ADAMTS1-VCAN-EGFR, which significantly contributes to RCC invasion and resistance to anoikis, thus presenting a promising therapeutic target for RCC metastasis.
Collapse
Affiliation(s)
- Yu-Ching Wen
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Urology, School of Medicine, College of Medicine and TMU Research Center of Urology and Kidney (TMU-RCUK), Taipei Medical University, Taipei, Taiwan
| | - Yung-Wei Lin
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Urology, School of Medicine, College of Medicine and TMU Research Center of Urology and Kidney (TMU-RCUK), Taipei Medical University, Taipei, Taiwan
- International Master/PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Hao Ho
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - Yi-Chieh Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Feng-Ru Lai
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - Chih-Ying Chu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - Ji-Qing Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Department of Cancer Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Wei-Jiunn Lee
- Department of Urology, School of Medicine, College of Medicine and TMU Research Center of Urology and Kidney (TMU-RCUK), Taipei Medical University, Taipei, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan.
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, 111 Xinglong Rd., Sec. 3, Wenshan Dist, Taipei, 11696, Taiwan.
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital Taipei, Taipei, Taiwan.
| |
Collapse
|
2
|
Silva D, Quintas C, Gonçalves J, Fresco P. β 2-Adrenoceptor Activation Favor Acquisition of Tumorigenic Properties in Non-Tumorigenic MCF-10A Breast Epithelial Cells. Cells 2024; 13:262. [PMID: 38334654 PMCID: PMC10854540 DOI: 10.3390/cells13030262] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
Noradrenaline and adrenaline, and their cognate receptors, are currently accepted to participate in cancer progression. They may also participate in cancer initiation, although their role in this phase is much less explored. The aim of this work was to study the influence of adrenergic stimulation in several processes related to breast cancer carcinogenesis, using several adrenergic agonists in the MCF-10A non-tumorigenic breast cells. Activation of the β-adrenoceptors promoted an epithelial phenotype in MCF-10A cells, revealed by an increased expression of the epithelial marker E-cadherin and a decrease in the mesenchymal markers, N-cadherin and vimentin. MCF-10A cell motility and migration were also impaired after the β-adrenoceptors activation. Concomitant with this effect, β-adrenoceptors decrease cell protrusions (lamellipodia and filopodia) while increasing cell adhesion. Activation of the β-adrenoceptors also decreases MCF-10A cell proliferation. When the MCF-10A cells were cultured under low attachment conditions, activation the of β- (likely β2) or of α2-adrenoceptors had protective effects against cell death, suggesting a pro-survival role of these adrenoceptors. Overall, our results showed that, in breast cells, adrenoceptor activation (mainly through β-adrenoceptors) may be a risk factor in breast cancer by inducing some cancer hallmarks, providing a mechanistic explanation for the increase in breast cancer incidences that may be associated with conditions that cause massive adrenergic stimulation, such as stress.
Collapse
Affiliation(s)
- Dany Silva
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (D.S.); (C.Q.); (P.F.)
- UCIBIO—Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal
| | - Clara Quintas
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (D.S.); (C.Q.); (P.F.)
- UCIBIO—Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal
| | - Jorge Gonçalves
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (D.S.); (C.Q.); (P.F.)
- UCIBIO—Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal
| | - Paula Fresco
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (D.S.); (C.Q.); (P.F.)
- UCIBIO—Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
3
|
Dai Y, Zhang X, Ou Y, Zou L, Zhang D, Yang Q, Qin Y, Du X, Li W, Yuan Z, Xiao Z, Wen Q. Anoikis resistance--protagonists of breast cancer cells survive and metastasize after ECM detachment. Cell Commun Signal 2023; 21:190. [PMID: 37537585 PMCID: PMC10399053 DOI: 10.1186/s12964-023-01183-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/04/2023] [Indexed: 08/05/2023] Open
Abstract
Breast cancer exhibits the highest global incidence among all tumor types. Regardless of the type of breast cancer, metastasis is a crucial cause of poor prognosis. Anoikis, a form of apoptosis initiated by cell detachment from the native environment, is an outside-in process commencing with the disruption of cytosolic connectors such as integrin-ECM and cadherin-cell. This disruption subsequently leads to intracellular cytoskeletal and signaling pathway alterations, ultimately activating caspases and initiating programmed cell death. Development of an anoikis-resistant phenotype is a critical initial step in tumor metastasis. Breast cancer employs a series of stromal alterations to suppress anoikis in cancer cells. Comprehensive investigation of anoikis resistance mechanisms can inform strategies for preventing and regressing metastatic breast cancer. The present review first outlines the physiological mechanisms of anoikis, elucidating the alterations in signaling pathways, cytoskeleton, and protein targets that transpire from the outside in upon adhesion loss in normal breast cells. The specific anoikis resistance mechanisms induced by pathological changes in various spatial structures during breast cancer development are also discussed. Additionally, the genetic loci of targets altered in the development of anoikis resistance in breast cancer, are summarized. Finally, the micro-RNAs and targeted drugs reported in the literature concerning anoikis are compiled, with keratocin being the most functionally comprehensive. Video Abstract.
Collapse
Affiliation(s)
- Yalan Dai
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Oncology, Garze Tibetan Autonomous Prefecture People's Hospital, Kangding, China
| | - Xinyi Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Yingjun Ou
- Clinical Medicine School, Southwest Medicial Univercity, Luzhou, China
- Orthopaedics, Garze Tibetan Autonomous Prefecture People's Hospital, Kangding, China
| | - Linglin Zou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Duoli Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qingfan Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Qin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiuju Du
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wei Li
- Southwest Medical University, Luzhou, China
| | | | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
4
|
Albarakati N, Al-Ghamdi H, Al-Sowayan B, Alshareeda A. Homologous recombination mRNAs (RAD21, RAD50 and BARD1) have a potentially poor prognostic role in ERBB2-low bladder cancer patients. Sci Rep 2023; 13:11738. [PMID: 37474724 PMCID: PMC10359419 DOI: 10.1038/s41598-023-38923-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER2/ERBB2) factor is known to be implicated in many malignancies and the potential of it as a prognostic biomarker was reported years ago. Molecular subtypes of HER2/ERBB2 negative and positive with distinct clinical outcomes have been identified in recent years; however, it is still under investigation for bladder cancer. This study evaluates the biological and prognostic significance of RAD21, RAD50 and BARD1 (homologous recombination biomarkers) mRNA levels with ERBB2 low and high expression to explore their impact on bladder cancer patient survival and cancer aggressiveness. The expression of ERBB2, RAD21, RAD50 and BARD1 mRNA levels was assessed in The Cancer Genome Atlas (TCGA) bladder cancer dataset along with four validation cohorts. Outcome analysis was evaluated using disease-free survival (DFS) and overall survival (OS). Univariate and multivariate analysis were used to evaluate the relationship between RAD21, RAD50, BARD1 and ERBB2 expression and clinicopathological variables. A significant increase in mRNA expression levels of RAD21, RAD50 and BARD1 was noticed in ERBB2-low patients compared to ERBB2-high patients. This overexpression of the homologous recombination repair transcripts was associated with poor outcome in ERBB2-low tumors, not in ERBB2-high tumors. Furthermore, the combined expression of high RAD21/RAD50, high RAD21/BARD1 or high RAD50/BARD1 were significantly associated with worse DFS and a better outcome for those with low co-expression in the ERBB2-low cohort. High expression of either RAD21/RAD50 or RAD21/BARD1 in ERBB2-low cohort associated with higher chance of metastasis. In addition, gene expression of BARD1 alone or in combination with RAD50 acted as an independent prognostic factor for worst survival. The data presented in this study reveal a connection between RAD21, RAD50, BARD1 and ERBB2 and patient survival. Importantly, it provided novel findings and potential prognostic markers, particularly in ERBB2-low bladder cancer.
Collapse
Affiliation(s)
- Nada Albarakati
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Jeddah, Kingdom of Saudi Arabia.
- King Saud Bin Abdulaziz University for Health Sciences, Ministry of the National Guard-Health Affairs, Riyadh, Saudi Arabia.
| | - Hanin Al-Ghamdi
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Jeddah, Kingdom of Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Ministry of the National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Batla Al-Sowayan
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Ministry of the National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Alaa Alshareeda
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Ministry of the National Guard-Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Liu X, Chipurupalli S, Jiang P, Tavasoli M, Yoo BH, McPhee M, Mazinani S, Francia G, Kerbel RS, Rosen KV. ErbB2/Her2-dependent downregulation of a cell death-promoting protein BLNK in breast cancer cells is required for 3D breast tumor growth. Cell Death Dis 2022; 13:687. [PMID: 35933456 PMCID: PMC9357009 DOI: 10.1038/s41419-022-05117-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 01/21/2023]
Abstract
A significant proportion of breast cancers are driven by ErbB2/Her2 oncoprotein that they overexpress. These malignancies are typically treated with various ErbB2-targeted drugs, but many such cancers develop resistance to these agents and become incurable. Conceivably, treatment of ErbB2-positive cancers could be facilitated by use of agents blocking oncogenic signaling mechanisms downstream of ErbB2. However, current understanding of these mechanisms is limited. The ability of solid tumor cells to resist anoikis, cell death triggered by cell detachment from the extracellular matrix (ECM), is thought to be critical for 3D tumor growth. In an effort to understand the mechanisms of ErbB2-driven breast cancer cell anoikis resistance we found that detachment of non-malignant breast epithelial cells from the ECM upregulates a cell death-promoting tumor suppressor adapter protein BLNK and that ErbB2 blocks this upregulation by reducing tumor cell levels of transcription factor IRF6. We further observed that trastuzumab, a therapeutic anti-ErbB2 antibody, upregulates BLNK in human trastuzumab-sensitive but not trastuzumab-resistant ErbB2-positive breast cancer cells. Moreover, we established that BLNK promotes anoikis by activating p38 MAP kinase and that ErbB2-dependent BLNK downregulation blocks breast cancer cell anoikis. In search for pharmacological approaches allowing to upregulate BLNK in tumor cells we found that clinically approved proteasome inhibitor bortezomib upregulates IRF6 and BLNK in human breast cancer cells and inhibits their 3D growth in a BLNK-dependent manner. In addition, we found that BLNK upregulation in human ErbB2-positive breast cancer cells blocks their ability to form tumors in mice. Furthermore, we used publicly available data on mRNA levels in multiple breast cancers to demonstrate that increased BLNK mRNA levels correlate with increased relapse-free survival in a cohort of approximately 400 patients with ErbB2-positive breast cancer. In summary, we discovered a novel mechanism of ErbB2-driven 3D breast tumor growth mediated by ErbB2-dependent BLNK downregulation.
Collapse
Affiliation(s)
- Xiaoyang Liu
- grid.55602.340000 0004 1936 8200Departments of Pediatrics & Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS Canada
| | - Sandhya Chipurupalli
- grid.55602.340000 0004 1936 8200Departments of Pediatrics & Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS Canada
| | - Peijia Jiang
- grid.55602.340000 0004 1936 8200Departments of Pediatrics & Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS Canada
| | - Mahtab Tavasoli
- grid.55602.340000 0004 1936 8200Department of Pharmacology, Department of Pediatrics, Dalhousie University, Halifax, NS Canada
| | - Byong Hoon Yoo
- grid.55602.340000 0004 1936 8200Departments of Pediatrics & Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS Canada
| | - Michael McPhee
- grid.55602.340000 0004 1936 8200Departments of Pediatrics & Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS Canada
| | - Sina Mazinani
- grid.55602.340000 0004 1936 8200Departments of Pediatrics & Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS Canada
| | - Giulio Francia
- grid.267324.60000 0001 0668 0420Border Biomedical Research Center, University of Texas at El Paso (UTEP), El Paso, TX USA
| | - Robert S. Kerbel
- grid.17063.330000 0001 2157 2938Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938University of Toronto Department of Medical Biophysics, Toronto, ON Canada
| | - Kirill V. Rosen
- grid.55602.340000 0004 1936 8200Departments of Pediatrics & Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS Canada
| |
Collapse
|
6
|
Hsu YJ, Yin YJ, Tsai KF, Jian CC, Liang ZW, Hsu CY, Wang CC. TGFBR3 supports anoikis through suppressing ATF4 signaling. J Cell Sci 2022; 135:276173. [PMID: 35912788 DOI: 10.1242/jcs.258396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/18/2022] [Indexed: 11/20/2022] Open
Abstract
Epithelial morphogenesis and oncogenic transformation can cause loss of cell adhesion, and detached cells are eliminated by anoikis. Here, we reveal that transforming growth factor beta receptor 3 (TGFBR3) acts as an anoikis mediator through the coordination of activating transcription factor 4 (ATF4). In breast cancer, TGFBR3 is progressively lost, but elevated TGFBR3 is associated with a histologic subtype characterized by cellular adhesion defects. Dissecting the impact of extracellular matrix (ECM) deprivation, we demonstrate that ECM loss promotes TGFBR3 expression, which in turn differentiates cell aggregates to a prosurvival phenotype and drives the intrinsic apoptotic pathway. We demonstrate that inhibition of TGFBR3 impairs epithelial anoikis by activating ATF4 signaling. These preclinical findings provide a rationale for therapeutic inhibition of ATF4 in the subgroup of breast cancer patients with low TGFBR3 expression.
Collapse
Affiliation(s)
- Yu-Jhen Hsu
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yih-Jia Yin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan.,Department of Medical Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Kai-Feng Tsai
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Cian-Chun Jian
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Zi-Wen Liang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chien-Yu Hsu
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chun-Chao Wang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan.,Department of Medical Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
7
|
Lu P, Foley J, Zhu C, McNamara K, Sirinukunwattana K, Vennam S, Varma S, Fehri H, Srivastava A, Zhu S, Rittscher J, Mallick P, Curtis C, West R. Transcriptome and genome evolution during HER2-amplified breast neoplasia. Breast Cancer Res 2021; 23:73. [PMID: 34266469 PMCID: PMC8281634 DOI: 10.1186/s13058-021-01451-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/03/2021] [Indexed: 01/05/2023] Open
Abstract
Background The acquisition of oncogenic drivers is a critical feature of cancer progression. For some carcinomas, it is clear that certain genetic drivers occur early in neoplasia and others late. Why these drivers are selected and how these changes alter the neoplasia’s fitness is less understood. Methods Here we use spatially oriented genomic approaches to identify transcriptomic and genetic changes at the single-duct level within precursor neoplasia associated with invasive breast cancer. We study HER2 amplification in ductal carcinoma in situ (DCIS) as an event that can be both quantified and spatially located via fluorescence in situ hybridization (FISH) and immunohistochemistry on fixed paraffin-embedded tissue. Results By combining the HER2-FISH with the laser capture microdissection (LCM) Smart-3SEQ method, we found that HER2 amplification in DCIS alters the transcriptomic profiles and increases diversity of copy number variations (CNVs). Particularly, interferon signaling pathway is activated by HER2 amplification in DCIS, which may provide a prolonged interferon signaling activation in HER2-positive breast cancer. Multiple subclones of HER2-amplified DCIS with distinct CNV profiles are observed, suggesting that multiple events occurred for the acquisition of HER2 amplification. Notably, DCIS acquires key transcriptomic changes and CNV events prior to HER2 amplification, suggesting that pre-amplified DCIS may create a cellular state primed to gain HER2 amplification for growth advantage. Conclusion By using genomic methods that are spatially oriented, this study identifies several features that appear to generate insights into neoplastic progression in precancer lesions at a single-duct level. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-021-01451-6.
Collapse
Affiliation(s)
- Peipei Lu
- Department of Pathology, Stanford University, Stanford, CA, USA.
| | - Joseph Foley
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Chunfang Zhu
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Katherine McNamara
- Department of Medicine and Genetics, Stanford University, Stanford, CA, USA
| | - Korsuk Sirinukunwattana
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK.,Big Data Institute/Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Sujay Vennam
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Sushama Varma
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Hamid Fehri
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK.,Big Data Institute/Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Arunima Srivastava
- Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA
| | - Shirley Zhu
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Jens Rittscher
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Parag Mallick
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Christina Curtis
- Department of Medicine and Genetics, Stanford University, Stanford, CA, USA
| | - Robert West
- Department of Pathology, Stanford University, Stanford, CA, USA
| |
Collapse
|
8
|
Surette A, Yoo BH, Younis T, Matheson K, Rameh T, Snowdon J, Bethune G, Rosen KV. Tumor levels of the mediators of ErbB2-driven anoikis resistance correlate with breast cancer relapse in patients receiving trastuzumab-based therapies. Breast Cancer Res Treat 2021; 187:743-758. [PMID: 33728523 DOI: 10.1007/s10549-021-06164-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/24/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE Patients with ErbB2/Her2 oncoprotein-positive breast cancers often receive neoadjuvant therapies (NATs) containing the anti-ErbB2 antibody trastuzumab. Tumors that are still present after NATs are resected, and patients continue receiving trastuzumab. These cancers are associated with high relapse risk. Whether relapse will occur cannot be presently reliably predicted. The ability to make such predictions could improve disease management. We found previously that ErbB2 blocks breast tumor cell anoikis, apoptosis induced by cell detachment from the extracellular matrix, by downregulating the pro-apoptotic protein Irf6 and upregulating the anti-apoptotic protein Epidermal Growth Factor Receptor (EGFR) in the cells and, thus, promotes their three-dimensional growth. We now tested whether tumor levels of these proteins before and after NATs correlate with patients' relapse-free survival (RFS) and overall survival (OS). METHODS We selected archival breast tumor samples collected from 37 women with ErbB2-positive stages II and III breast cancer before and after NATs. We used immunohistochemistry to test whether levels of the indicated proteins in respective tumors correlate with RFS and OS. RESULTS We observed that the presence of high Irf6 levels in the tumors following NATs correlated with reduced RFS and OS. Perhaps not by coincidence, we noticed that trastuzumab-sensitive ErbB2-positive breast cancer cells selected for the ability to overproduce exogenous Irf6 in culture acquired trastuzumab resistance. Finally, EGFR presence in patients' tumors before or after NATs was associated with decreased RFS and OS. CONCLUSIONS This study could help identify patients with ErbB2-positive tumors that are at increased risk of disease relapse following NATs.
Collapse
Affiliation(s)
- Alexi Surette
- Department of Pathology, Dalhousie University, Rm 714 Mackenzie Bldg, 5788 University Ave, Halifax, NS, B3H 1V8, Canada
| | - Byong Hoon Yoo
- Departments of Pediatrics & Biochemistry and Molecular Biology, Atlantic Research Centre, Dalhousie University, Rm C-304, CRC, 5849 University Avenue, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Tallal Younis
- Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Kara Matheson
- Nova Scotia Health Authority Centre for Clinical Research, Halifax, NS, Canada
| | - Tarek Rameh
- Department of Laboratory Medicine, Saint John Regional Hospital, Saint John, NB, Canada
| | | | - Gillian Bethune
- Department of Pathology, Dalhousie University, Rm 714 Mackenzie Bldg, 5788 University Ave, Halifax, NS, B3H 1V8, Canada.
| | - Kirill V Rosen
- Departments of Pediatrics & Biochemistry and Molecular Biology, Atlantic Research Centre, Dalhousie University, Rm C-304, CRC, 5849 University Avenue, PO Box 15000, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
9
|
Jang EJ, Sung JY, Yoo HE, Jang H, Shim J, Oh ES, Goh SH, Kim YN. FAM188B Downregulation Sensitizes Lung Cancer Cells to Anoikis via EGFR Downregulation and Inhibits Tumor Metastasis In Vivo. Cancers (Basel) 2021; 13:cancers13020247. [PMID: 33440835 PMCID: PMC7826942 DOI: 10.3390/cancers13020247] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/26/2020] [Accepted: 01/08/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Cancer cells should acquire anoikis resistance for successful metastasis. Family with sequence similarity 188 member B (FAM188B) has been identified as a new deubiquitinase (DUB) member. Here, we demonstrate that FAM188B knockdown makes lung cancer cells sensitive to anoikis and inhibits lung metastasis. FAM188B knockdown reduced the levels of tumor proteins such as EGFR and FOXM1, suggesting that FAM188B may be a potential target controlling tumor malignancies. Abstract Anoikis is a type of apoptosis induced by cell detachment from the extracellular matrix (ECM), which removes mislocalized cells. Acquisition of anoikis resistance is critical for cancer cells to survive during circulation and, thus, metastasize at a secondary site. Although the sensitization of cancer cells to anoikis is a potential strategy to prevent metastasis, the mechanism underlying anoikis resistance is not well defined. Although family with sequence similarity 188 member B (FAM188B) is predicted as a new deubiquitinase (DUB) member, its biological function has not been fully studied. In this study, we demonstrated that FAM188B knockdown sensitized anoikis of lung cancer cell lines expressing WT-EGFR (A549 and H1299) or TKI-resistant EGFR mutant T790M/L858R (H1975). FAM188B knockdown using si-FAM188B inhibited the growth of all three human lung cancer cell lines cultured in both attachment and suspension conditions. FAM188B knockdown resulted in EGFR downregulation and thus decreased its activity. FAM188B knockdown decreased the activities of several oncogenic proteins downstream of EGFR that are involved in anoikis resistance, including pAkt, pSrc, and pSTAT3, with little changes to their protein levels. Intriguingly, si-FAM188B treatment increased EGFR mRNA levels but decreased its protein levels, which was reversed by treatment with the proteasomal inhibitor MG132, indicating that FAM188B regulates EGFR levels via the proteasomal pathway. In addition, cells transfected with si-FAM188B had decreased expression of FOXM1, an oncogenic transcription factor involved in cell growth and survival. Moreover, FAM188B downregulation reduced metastatic characteristics, such as cell adhesion, invasion, and migration, as well as growth in 3D culture conditions. Finally, tail vein injection of si-FAM188B-treated A549 cells resulted in a decrease in lung metastasis and an increase in mice survival in vivo. Taken together, these findings indicate that FAM188B plays an important role in anoikis resistance and metastatic characteristics by maintaining the levels of various oncogenic proteins and/or their activity, leading to tumor malignancy. Our study suggests FAM188B as a potential target for controlling tumor malignancy.
Collapse
Affiliation(s)
- Eun-Ju Jang
- Division of Translational Science, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Gyeonggi-do, Korea; (E.-J.J.); (J.Y.S.); (H.-E.Y.); (J.S.)
| | - Jee Young Sung
- Division of Translational Science, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Gyeonggi-do, Korea; (E.-J.J.); (J.Y.S.); (H.-E.Y.); (J.S.)
| | - Ha-Eun Yoo
- Division of Translational Science, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Gyeonggi-do, Korea; (E.-J.J.); (J.Y.S.); (H.-E.Y.); (J.S.)
- Department of Life Sciences, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Korea;
| | - Hyonchol Jang
- Division of Cancer Biology, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Gyeonggi-do, Korea;
| | - Jaegal Shim
- Division of Translational Science, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Gyeonggi-do, Korea; (E.-J.J.); (J.Y.S.); (H.-E.Y.); (J.S.)
| | - Eok-Soo Oh
- Department of Life Sciences, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Korea;
| | - Sung-Ho Goh
- Division of Precision Medicine, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Gyeonggi-do, Korea
- Correspondence: (S.-H.G.); (Y.-N.K.); Tel.: +82-31-920-2477 (S.-H.G.); +82-31-920-2415 (Y.-N.K.); Fax: +82-31-920-2468 (S.-H.G.)
| | - Yong-Nyun Kim
- Division of Translational Science, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Gyeonggi-do, Korea; (E.-J.J.); (J.Y.S.); (H.-E.Y.); (J.S.)
- Correspondence: (S.-H.G.); (Y.-N.K.); Tel.: +82-31-920-2477 (S.-H.G.); +82-31-920-2415 (Y.-N.K.); Fax: +82-31-920-2468 (S.-H.G.)
| |
Collapse
|
10
|
Kozlova NI, Morozevich GE, Gevorkian NM, Berman AE. Implication of integrins α3β1 and α5β1 in invasion and anoikis of SK-Mel-147 human melanoma cells: non-canonical functions of protein kinase Akt. Aging (Albany NY) 2020; 12:24345-24356. [PMID: 33260159 PMCID: PMC7762463 DOI: 10.18632/aging.202243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/03/2020] [Indexed: 05/11/2023]
Abstract
Downregulation of integrins α3β1 and α5β1 strongly decreased cell colony formation and in vitro invasion and markedly enhanced anoikis in SK-Mel-147 human melanoma cells. These modifications were accompanied by a marked increase in the levels of active Akt protein kinase, which indicated it played a non-canonical function in the melanoma cells. Pharmacological inhibition of Akt1, an Akt isozyme, in cells depleted of α3β1 or α5β1 restored their invasive activity, while inhibition of the Akt 2 isoform did not cause a visible effect. Similar to our previous results with the α2β1 integrin, this finding suggested that in signaling pathways initiated by α3β1 and α5β1, the Akt1 isoform performs a non-canonical function in regulating invasive phenotype of melanoma cells. In contrast, when the effects of Akt inhibitors on anoikis of the melanoma cells were compared, the Akt2 isoform demonstrated a non-canonical activity in which Akt2 suppression led to a significant attenuation of apoptosis in cells with downregulated α3β1 or α5β1. Our results were the first evidence that, in the same tumor cells, different integrins can control various manifestations of tumor progression through distinct signaling pathways that are both common to various integrins and specific to a particular receptor.
Collapse
Affiliation(s)
| | | | - Nina M. Gevorkian
- VN Orekhovich Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - Albert E. Berman
- VN Orekhovich Institute of Biomedical Chemistry, Moscow 119121, Russia
| |
Collapse
|
11
|
Abstract
Anoikis resistance is an essential property of cancer cells that allow the extra-cellular matrix-detached cells to survive in a suspended state in body fluid in order to metastasize and invade to distant organs. It is known that integrins play an important role in anoikis resistance, but detailed mechanisms are not well understood. Here we report that highly metastatic colon cancer cells showed a higher degree of anoikis resistance than the normal intestinal epithelial cells. These anoikis-resistant cancer cells express high-levels of integrin-α2, β1, and activated EGFR in the anchorage-independent state than the anchorage-dependent state. In contrast, normal intestinal epithelial cells failed to elevate these proteins. Interestingly, a higher co-association of EGFR with integrin-α2β1/-α5β1 was observed on the surface of anoikis-resistant cells. Thus, in the absence of extra-cellular matrix, integrins in association with EGFR activates downstream effectors ERK and AKT and suppress Caspase-3 activation to induce anoikis resistance as was confirmed from the gene-ablation and pharmacological inhibitor studies. Interestingly, these anoikis-resistant cancer cells express high-level of cancer stem cell signatures (CD24, CD44, CD133, EpCAM) and pluripotent stem cell markers (OCT-4, SOX-2, Nanog) as well as drug-resistant pumps (ABCG2, MDR1, MRP1). Altogether, our findings unravel the interplay between integrin-α2β1/-α5β1 and EGFR in anoikis resistance and suggest that the resistant cells are cancer initiating or cancer stem cells, which may serve as a promising target to combat metastasis of cancer.
Collapse
|
12
|
Uncovering mutation-specific morphogenic phenotypes and paracrine-mediated vessel dysfunction in a biomimetic vascularized mammary duct platform. Nat Commun 2020; 11:3377. [PMID: 32632100 PMCID: PMC7338408 DOI: 10.1038/s41467-020-17102-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 06/05/2020] [Indexed: 12/15/2022] Open
Abstract
The mammary gland is a highly vascularized tissue capable of expansion and regression during development and disease. To enable mechanistic insight into the coordinated morphogenic crosstalk between the epithelium and vasculature, we introduce a 3D microfluidic platform that juxtaposes a human mammary duct in proximity to a perfused endothelial vessel. Both compartments recapitulate stable architectural features of native tissue and the ability to undergo distinct forms of branching morphogenesis. Modeling HER2/ERBB2 amplification or activating PIK3CA(H1047R) mutation each produces ductal changes observed in invasive progression, yet with striking morphogenic and behavioral differences. Interestingly, PI3KαH1047R ducts also elicit increased permeability and structural disorganization of the endothelium, and we identify the distinct secretion of IL-6 as the paracrine cause of PI3KαH1047R-associated vascular dysfunction. These results demonstrate the functionality of a model system that facilitates the dissection of 3D morphogenic behaviors and bidirectional signaling between mammary epithelium and endothelium during homeostasis and pathogenesis.
Collapse
|
13
|
Akella NM, Le Minh G, Ciraku L, Mukherjee A, Bacigalupa ZA, Mukhopadhyay D, Sodi VL, Reginato MJ. O-GlcNAc Transferase Regulates Cancer Stem-like Potential of Breast Cancer Cells. Mol Cancer Res 2020; 18:585-598. [PMID: 31974291 PMCID: PMC7127962 DOI: 10.1158/1541-7786.mcr-19-0732] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/06/2019] [Accepted: 01/16/2020] [Indexed: 01/01/2023]
Abstract
Breast tumors are heterogeneous and composed of different subpopulation of cells, each with dynamic roles that can change with stage, site, and microenvironment. Cellular heterogeneity is, in part, due to cancer stem-like cells (CSC) that share properties with stem cells and are associated with treatment resistance. CSCs rewire metabolism to meet energy demands of increased growth and biosynthesis. O-GlcNAc transferase enzyme (OGT) uses UDP-GlcNAc as a substrate for adding O-GlcNAc moieties to nuclear and cytoplasmic proteins. OGT/O-GlcNAc levels are elevated in multiple cancers and reducing OGT in cancer cells blocks tumor growth. Here, we report that breast CSCs enriched in mammosphere cultures contain elevated OGT/O-GlcNAcylation. Inhibition of OGT genetically or pharmacologically reduced mammosphere forming efficiency, the CD44H/CD24L, NANOG+, and ALDH+ CSC population in breast cancer cells. Conversely, breast cancer cells overexpressing OGT increased mammosphere formation, CSC populations in vitro, and also increased tumor initiation and CSC frequency in vivo. Furthermore, OGT regulates expression of a number of epithelial-to-mesenchymal transition and CSC markers including CD44, NANOG, and c-Myc. In addition, we identify Krüppel-like factor 8 (KLF8) as a novel regulator of breast cancer mammosphere formation and a critical target of OGT in regulating CSCs. IMPLICATIONS: These findings demonstrate that OGT plays a key role in the regulation of breast CSCs in vitro and tumor initiation in vivo, in part, via regulation of KLF8, and thus inhibition of OGT may serve as a therapeutic strategy to regulate tumor-initiating activity.
Collapse
Affiliation(s)
- Neha M Akella
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Giang Le Minh
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Lorela Ciraku
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Ayonika Mukherjee
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Zachary A Bacigalupa
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Dimpi Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Valerie L Sodi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Mauricio J Reginato
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
14
|
Swaminathan S, Cranston AN, Clyne AM. A Three-Dimensional In Vitro Coculture Model to Quantify Breast Epithelial Cell Adhesion to Endothelial Cells. Tissue Eng Part C Methods 2019; 25:609-618. [PMID: 31441384 PMCID: PMC7718851 DOI: 10.1089/ten.tec.2019.0122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional (3D) in vitro culture models better recapitulate the tissue microenvironment, and therefore may provide a better platform to evaluate therapeutic effects on adhesive cell-cell interactions. The objective of this study was to determine if AD-01, a peptide derivative of FK506-binding protein like that is reported to bind to the adhesion receptor CD44, would induce a greater reduction in breast epithelial spheroid adhesion to endothelial tube-like networks in our 3D coculture model system compared to two-dimensional (2D) culture. MCF10A, MCF10A-NeuN, MDA-MB-231, and MCF7 breast epithelial cells were pretreated with AD-01 either as single cells or as spheroids. Breast epithelial cell adhesion to 2D tissue culture substrates was first measured, followed by spheroid formation (breast cell-cell adhesion) and spheroid adhesion to Matrigel or endothelial networks. Finally, CD44 expression was quantified in breast epithelial cells in 2D and 3D culture. Our results show that AD-01 had the largest effect on spheroid formation, specifically in breast cancer cell lines. AD-01 also inhibited breast cancer spheroid adhesion to and migration along endothelial networks. The different breast epithelial cell lines expressed more CD44 when cultured as 3D spheroids, but this did not universally translate into higher protein levels. This study shows that 3D coculture models can enable unique insights into cell adhesion, migration, and cell-cell interactions, thereby enhancing understanding of basic biological mechanisms. Furthermore, such 3D coculture systems may also represent a more relevant testing platform for understanding the mechanism-of-action of new therapeutic agents. Impact Statement Cell adhesion is inherently different in two dimensional (2D) compared to three dimensional (3D) culture; yet, most adhesion assays in academia and industry are still conducted in 2D because few simple, yet effective, adhesion models exist in 3D. Recently we developed a 3D in vitro coculture model to examine breast epithelial spheroid interactions with endothelial tubes. We now show that this 3D coculture model can effectively be used to interrogate and quantify drug-induced differences in breast epithelial cell adhesion that are unique to 3D cocultures. This 3D coculture adhesion model can furthermore be modified for use with other cell types to better predict drug effects on cell-vasculature adhesion.
Collapse
Affiliation(s)
- Swathi Swaminathan
- Mechanical Engineering and Mechanics, Drexel University, Philadelphia, Pennsylvania
| | - Aaron N. Cranston
- Centre for Precision Therapeutics, Health Sciences Building, Almac Discovery Ltd., Belfast, United Kingdom
| | - Alisa Morss Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| |
Collapse
|
15
|
Xu J, Lv H, Zhang B, Xu F, Zhu H, Chen B, Zhu C, Shen J. miR-30b-5p acts as a tumor suppressor microRNA in esophageal squamous cell carcinoma. J Thorac Dis 2019; 11:3015-3029. [PMID: 31463131 DOI: 10.21037/jtd.2019.07.50] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background To study miR-30b-5p expression in esophageal squamous cell carcinoma (ESCC) by comparisons between tumor tissues and matched adjacent non-cancerous tissues to elucidate the correlation between miR-30b-5p expression and ESCC clinical parameters, and to explore the signaling pathways associated with miR-30b-5p and key target genes. Methods Clinical data, cancer tissues, and adjacent non-cancerous tissues of 32 patients diagnosed with ESCC were collected from Taizhou Hospital of Zhejiang Province. The expression levels of miR-30b-5p were determined by real-time polymerase chain reaction (RT-PCR). mRNA data for ESCC tissues and normal tissues, and clinical materials of patients with ESCC were obtained from the Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA). Associations between miR-30b-5p expression and clinical features of patients with ESCC and overall survival were explored. A bioinformatics analysis was performed to determine the pathways and key miR-30b-5p targets associated with ESCC. Additionally, a cytological experiment was performed to evaluate the biological functions of miR-30b-5p. Finally, correlations between miR-30b-5p and key targets involved in PI3K/Akt signaling pathways were validated by western blotting. Results The expression level of miR-30b-5p in the 32 ESCC tissues was significantly lower than that in adjacent normal tissues (P<0.01) and was significantly disparate in the T stage, with higher expression in T1 than in T2 (P<0.05). Among the patients with higher expression levels of miR-30b-5p in ESCC tissues than in adjacent normal tissues, patients with higher expression of miR-30b-5p had a better prognosis (P<0.05). An analysis of gene chip data from the GEO database showed similar results. A gene enrichment analysis indicated a series of pathways that may be associated with the downregulation of miR-30b-5p, including focal adhesion, ECM-receptor interaction, and PI3K/Akt signaling pathways. Seven key target genes (PDGFRB, VIM, ITGA5, ACTN1, THBS2, SERPINE1, and RUNX2) were identified; these were found to be upregulated in ESCC tissues and were negatively correlated with miR-30b-5p. Functional experiments showed that miR-30b-5p attenuated migration (P<0.01) and invasion (P<0.05) in the Eca109 cell line. Moreover, the levels of ITGA5, PDGFRB, p-PI3K, and p-AKT, which are involved in the PI3K/Akt signaling pathway, were decreased in the miR-30b-5p-overexpressing Eca109 cell line. Conclusions Upregulated miR-30b-5p may inhibit migration and invasion in ESCC by targeting ITGA5, PDGFRB, and signaling pathways, such as PI3K/Akt, involved in ESCC regulation. Our results indicate that miR-30b-5p plays an important role in the occurrence and progression of ESCC and is a potential therapeutic target.
Collapse
Affiliation(s)
- Jianfeng Xu
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou 317000, China
| | - Haiyan Lv
- Enze Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou 317000, China
| | - Bo Zhang
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou 317000, China
| | - Feng Xu
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou 317000, China
| | - Hongyu Zhu
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou 317000, China
| | - Baofu Chen
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou 317000, China
| | - Chengchu Zhu
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou 317000, China
| | - Jianfei Shen
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou 317000, China
| |
Collapse
|
16
|
Chen J, Ji T, Wu D, Jiang S, Zhao J, Lin H, Cai X. Human mesenchymal stem cells promote tumor growth via MAPK pathway and metastasis by epithelial mesenchymal transition and integrin α5 in hepatocellular carcinoma. Cell Death Dis 2019; 10:425. [PMID: 31142737 PMCID: PMC6541606 DOI: 10.1038/s41419-019-1622-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/14/2019] [Accepted: 04/29/2019] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) appear to be a potential vehicle for anticancer drugs due to their excellent tumor tropism ability. However, the interactions between MSCs and hepatocellular carcinoma (HCC) are quite controversial and the underlying mechanisms are ambiguous. In this study, an investigation was conducted into the effect of human MSCs (hMSCs) on tumor proliferation and metastasis both in xenograft and orthotopic models. It was discovered that hMSCs could promote tumor growth though activating mitogen-activated protein kinase (MAPK) signaling pathway and promote metastasis by epithelial mesenchymal transition (EMT) in vivo. To test whether hMSCs could induce immunosuppressive effects, the expression of the Natural killer (NK) cell marker CD56 was measured by immunohistochemical staining and the expression of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) were measured by qRT-PCR. It was found out that CD56 expression significantly decreased, while TNF-α and IL-6 expression increased in the hMSCs-treated tissues. Mechanistically, RNA sequencing was performed, which led to a discovery that integrin α5 (ITGA5) was over-expressed in hMSCs-treated HCC. ITGA5 siRNAs blocked the hMSCs-induced migration and invasion of HCC, while over-expression of ITGA5 promoted the migration and invasion ability in HCC-hMSCs, indicating that the expression of ITGA5 is associated with hMSCs-induced tumor metastasis. These findings suggest that hMSCs may play a vital role in HCC proliferation and metastasis and could be identified as a putative therapeutic target in HCC.
Collapse
Affiliation(s)
- Jiang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, Zhejiang, China
| | - Tong Ji
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, Zhejiang, China
| | - Di Wu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, Zhejiang, China
| | - Shi Jiang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, Zhejiang, China
| | - Jie Zhao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, Zhejiang, China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, Zhejiang, China.
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, Zhejiang, China.
| |
Collapse
|
17
|
Komemi O, Shochet GE, Pomeranz M, Fishman A, Pasmanik-Chor M, Drucker L, Matalon ST, Lishner M. Placenta-conditioned extracellular matrix (ECM) activates breast cancer cell survival mechanisms: A key for future distant metastases. Int J Cancer 2019; 144:1633-1644. [PMID: 30194759 DOI: 10.1002/ijc.31861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 08/02/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022]
Abstract
The extracellular matrix (ECM) affects cancer cell characteristics. Inability of normal epithelial cells to attach to the ECM induces apoptosis (anoikis). Cancer cells are often anoikis resistant, a prerequisite for their metastatic spread. Previously we demonstrated that the placenta manipulates its surrounding ECM in a way that prevents breast cancer cells (BCCL) attachment and induces their motility and aggregation. This fits with the fact that although breast cancer during pregnancy is often advanced, metastasis to the placenta is rarely observed. Placental intervillous space provides suitable conditions for cancer cell arrival. Yet, the outcome of the short communication between the placental ECM to the BCCL and its effect on BCCL malignant potential are unknown, and are the focus of our study. In the current study we analyzed the effect of placental ECM on BCCL survival pathways and drug resistance. Microarray analysis suggested activation of the NF-κB and stress response pathways. Indeed, the placenta-conditioned ECM induced autophagy in ERα + BCCL, inactivated the NF-κB inhibitor (IκB) and increased integrin α5 in the BCCL. The autophagy mediated MCF-7 and T47D migration and the placental ECM-BCCL interactions reduced the BCCL sensitivity to Taxol. We also demonstrated by using siRNA that integrin α5 was responsible for the MCF-7 autophagy and suggest this molecule as a suitable target for therapy.
Collapse
Affiliation(s)
- Oded Komemi
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Meir Pomeranz
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Obstetrics & Gynecology, Meir Medical Center, Kfar Saba, Israel
| | - Ami Fishman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Obstetrics & Gynecology, Meir Medical Center, Kfar Saba, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Liat Drucker
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shelly Tartakover Matalon
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michael Lishner
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Internal Medicine A, Meir Medical Center, Kfar Saba, Israel
| |
Collapse
|
18
|
Kozlova NI, Morozevich GE, Ushakova NA, Berman AE. Implication of integrin α2β1 in anoikis of SK-Mel-147 human melanoma cells: a non-canonical function of Akt protein kinase. Oncotarget 2019; 10:1829-1839. [PMID: 30956761 PMCID: PMC6443001 DOI: 10.18632/oncotarget.26746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/15/2019] [Indexed: 11/25/2022] Open
Abstract
Suppression of anoikis, a kind of apoptosis caused by disruption of contacts between cell and extracellular matrix, is an important prerequisite for cancer cell metastasis. In this communication, we demonstrate that shRNA-mediated depletion of α2 integrin subunit induces anoikis and substantially decreases colony-forming potential in SK-Mel-147 human melanoma cells. Suppression of α2β1 upregulates the levels of pro-apoptotic protein p53 and cyclin-dependent kinase inhibitors p21 and p27. Concomitantly, we detected decrease in the levels of anti-apoptotic protein Bcl-2 and cell cycle regulator c-Myc. Moreover, depletion of α2β1 reduces the activity of protein kinase Erk, while increases activity of Akt kinase. Pharmacological inhibition of P3IK kinase, an upstream activator of Akt, greatly enhanced anoikis in control cells while reduced that in cells with decreased levels of α2β1. Of three isoforms of Akt, down-regulation of Akt1 greatly diminished anoikis of cells depleted of α2β1, while down-regulation of Akt2 and Akt3 sharply increased anoikis in these cells. These findings were supported by the data of pharmacological inhibition of the Akt isoforms. Our results demonstrate for the first time that anoikis induced by α2β1 integrin knockdown can be attenuated by Akt1 inhibition.
Collapse
Affiliation(s)
| | | | | | - Albert E Berman
- VN Orekhovich Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
19
|
Epstein Shochet G, Brook E, Eyal O, Edelstein E, Shitrit D. Epidermal growth factor receptor paracrine upregulation in idiopathic pulmonary fibrosis fibroblasts is blocked by nintedanib. Am J Physiol Lung Cell Mol Physiol 2019; 316:L1025-L1034. [PMID: 30810067 DOI: 10.1152/ajplung.00526.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although present in normal cells, epidermal growth factor receptor (EGFR) is overexpressed in a variety of tumors and has been associated with decreased survival. Because activated fibroblasts are considered key effectors in fibrosis and because metastatic and fibrotic processes were shown to share similar signaling pathways, we investigated the contribution of EGFR signaling to idiopathic pulmonary fibrosis (IPF) progression in lung fibroblasts derived from patients with IPF (IPF-HLF). EGFR expression and EGFR-related signaling were evaluated by Western blot and immunohistochemistry. Supernatants (SN) from cultured IPF-HLF and N-HLF were added to N-HLF, and their effect on cell phenotype was tested. Growth factor levels in the SN were measured by ELISA-based arrays. EGFR activity was blocked by erlotinib (Tarceva, 0.1-0.5 µM). Expression of EGFR, phosphorylated (p)EGFR-1068 and pAkt-473 was significantly higher in IPF-HLF compared with lung fibroblasts from control donors (N-HLF) (P < 0.05). Apparent expression of p/total EGFR and pAkt-473 was found in the myofibroblastic foci of IPF patients. Erlotinib significantly inhibited IPF-HLF but not N-HLF proliferation. IPF-HLF-SN elevated N-HLF cell number, viability, EGFR expression, and pAkt-473 and ERK1/2 phosphorylation (P < 0.05). Because high basic fibroblast growth factor levels were found in the IPF-HLF-SN, nintedanib (10-100 nM) was used to inhibit fibroblast growth factor receptor (FGFR) activation. Unlike erlotinib, nintedanib completely blocked IPF-HLF-SNs' effects on the N-HLF cells in a concentration-dependent manner. In summary, IPF-HLF paracrine signaling elevates EGFR expression, which in turn, affects N-HLF survival. The FGF-EGFR interplay facilitates cellular responses that could potentially promote fibrotic disease. This interplay was successfully blocked by nintedanib.
Collapse
Affiliation(s)
- Gali Epstein Shochet
- Pulmonary Department, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv , Israel
| | - Elizabetha Brook
- Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv , Israel
| | - Omer Eyal
- Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv , Israel
| | - Evgeny Edelstein
- Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv , Israel.,Pathology Department, Meir Medical Center, Kfar Saba, Israel
| | - David Shitrit
- Pulmonary Department, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv , Israel
| |
Collapse
|
20
|
Gupta P, Gupta N, Fofaria NM, Ranjan A, Srivastava SK. HER2-mediated GLI2 stabilization promotes anoikis resistance and metastasis of breast cancer cells. Cancer Lett 2019; 442:68-81. [PMID: 30409762 PMCID: PMC6311434 DOI: 10.1016/j.canlet.2018.10.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/09/2018] [Accepted: 10/17/2018] [Indexed: 10/28/2022]
Abstract
Breast cancer metastasis is a multi-step process and requires cells to overcome anoikis. Anoikis is defined as cell-death that occurs due to loss of cell adhesion. During the course of cancer progression, tumor cells acquire resistance to anoikis. However, mechanisms of anoikis resistance are not clear. Human epidermal growth receptor 2 (HER2) overexpressing breast tumors are known to be highly aggressive and metastatic. The mechanisms correlating HER2 with metastasis are poorly understood. We observed increased anoikis resistance in HER2 overexpressing breast cancer cells. In addition, we identified that HER2 overexpression was also associated with increased sonic hedgehog (SHH) signaling especially GLI2, and that inhibition of SHH pathway suppressed anoikis resistance. GSK3β is known to facilitate proteasome-mediated degradation of GLI2. Moreover, we observed that silencing of GLI2 resulted in reduced migration and invasion of HER2 overexpressing cells. Anoikis resistant HER2 overexpressing cells also showed increased rate and extent of metastasis in vivo, as compared to wild type anoikis resistant cells. Taken together, this study indicates a novel role of HER2/GSK3β/GLI2 axis in anoikis resistance and metastasis, and that GLI2 could be a potential target for anti-cancer therapies.
Collapse
Affiliation(s)
- Parul Gupta
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Nehal Gupta
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Neel M Fofaria
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Alok Ranjan
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Sanjay K Srivastava
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA; Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA.
| |
Collapse
|
21
|
Swaminathan S, Hamid Q, Sun W, Clyne AM. Bioprinting of 3D breast epithelial spheroids for human cancer models. Biofabrication 2019; 11:025003. [PMID: 30616234 PMCID: PMC7731635 DOI: 10.1088/1758-5090/aafc49] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
3D human cancer models provide a better platform for drug efficacy studies than conventional 2D culture, since they recapitulate important aspects of the in vivo microenvironment. While biofabrication has advanced model creation, bioprinting generally involves extruding individual cells in a bioink and then waiting for these cells to self-assemble into a hierarchical 3D tissue. This self-assembly is time consuming and requires complex cellular interactions with other cell types, extracellular matrix components, and growth factors. We therefore investigated if we could directly bioprint pre-formed 3D spheroids in alginate-based bioinks to create a model tissue that could be used almost immediately. Human breast epithelial cell lines were bioprinted as individual cells or as pre-formed spheroids, either in monoculture or co-culture with vascular endothelial cells. While individual breast cells only spontaneously formed spheroids in Matrigel-based bioink, pre-formed breast spheroids maintained their viability, architecture, and function after bioprinting. Bioprinted breast spheroids were more resistant to paclitaxel than individually printed breast cells; however, this effect was abrogated by endothelial cell co-culture. This study shows that 3D cellular structure bioprinting has potential to create tissue models that quickly replicate the tumor microenvironment.
Collapse
Affiliation(s)
- Swathi Swaminathan
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 19104, United States of America
| | | | | | | |
Collapse
|
22
|
Bhat AA, Uppada S, Achkar IW, Hashem S, Yadav SK, Shanmugakonar M, Al-Naemi HA, Haris M, Uddin S. Tight Junction Proteins and Signaling Pathways in Cancer and Inflammation: A Functional Crosstalk. Front Physiol 2019; 9:1942. [PMID: 30728783 PMCID: PMC6351700 DOI: 10.3389/fphys.2018.01942] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 12/22/2018] [Indexed: 12/14/2022] Open
Abstract
The ability of epithelial cells to organize through cell-cell adhesion into a functioning epithelium serves the purpose of a tight epithelial protective barrier. Contacts between adjacent cells are made up of tight junctions (TJ), adherens junctions (AJ), and desmosomes with unique cellular functions and a complex molecular composition. These proteins mediate firm mechanical stability, serves as a gatekeeper for the paracellular pathway, and helps in preserving tissue homeostasis. TJ proteins are involved in maintaining cell polarity, in establishing organ-specific apical domains and also in recruiting signaling proteins involved in the regulation of various important cellular functions including proliferation, differentiation, and migration. As a vital component of the epithelial barrier, TJs are under a constant threat from proinflammatory mediators, pathogenic viruses and bacteria, aiding inflammation and the development of disease. Inflammatory bowel disease (IBD) patients reveal loss of TJ barrier function, increased levels of proinflammatory cytokines, and immune dysregulation; yet, the relationship between these events is partly understood. Although TJ barrier defects are inadequate to cause experimental IBD, mucosal immune activation is changed in response to augmented epithelial permeability. Thus, the current studies suggest that altered barrier function may predispose or increase disease progression and therapies targeted to specifically restore the barrier function may provide a substitute or supplement to immunologic-based therapies. This review provides a brief introduction about the TJs, AJs, structure and function of TJ proteins. The link between TJ proteins and key signaling pathways in cell proliferation, transformation, and metastasis is discussed thoroughly. We also discuss the compromised intestinal TJ integrity under inflammatory conditions, and the signaling mechanisms involved that bridge inflammation and cancer.
Collapse
Affiliation(s)
- Ajaz A. Bhat
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Srijayaprakash Uppada
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Iman W. Achkar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Sheema Hashem
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Santosh K. Yadav
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | | | - Hamda A. Al-Naemi
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
- Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar
| | - Mohammad Haris
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
23
|
ErbB2-driven downregulation of the transcription factor Irf6 in breast epithelial cells is required for their 3D growth. Breast Cancer Res 2018; 20:151. [PMID: 30545388 PMCID: PMC6293553 DOI: 10.1186/s13058-018-1080-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/12/2018] [Indexed: 01/01/2023] Open
Abstract
Background The ability of solid tumor cells to resist anoikis, apoptosis triggered by cell detachment from the extracellular matrix (ECM), is thought to be critical for 3D tumor growth. ErbB2/Her2 oncoprotein is often overproduced by breast tumor cells and blocks their anoikis by partially understood mechanisms. In our effort to understand them better, we observed that detachment of nonmalignant human breast epithelial cells from the ECM upregulates the transcription factor Irf6. Irf6 is thought to play an important role in mammary gland homeostasis and causes apoptosis by unknown mechanisms. We noticed that ErbB2, when overproduced by detached breast epithelial cells, downregulates Irf6. Methods To test whether ErbB2 downregulates Irf6 in human ErbB2-positive breast cancer cells, we examined the effect of ErbB2 inhibitors, such as the anti-ErbB2 antibody trastuzumab or the ErbB2/epidermal growth factor receptor small-molecule inhibitor lapatinib, on Irf6 in these cells. Moreover, we performed Irf6 IHC analysis of tumor samples derived from the locally advanced ErbB2-positive breast cancers before and after neoadjuvant trastuzumab-based therapies. To examine the role of Irf6 in anoikis of nonmalignant and ErbB2-overproducing breast epithelial cells, we studied anoikis after knocking down Irf6 in the former cells by RNA interference and after overproducing Irf6 in the latter cells. To examine the mechanisms by which cell detachment and ErbB2 control Irf6 expression in breast epithelial cells, we tested the effects of genetic and pharmacological inhibitors of the known ErbB2-dependent signaling pathways on Irf6 in these cells. Results We observed that trastuzumab and lapatinib upregulate Irf6 in ErbB2-positive human breast tumor cells and that neoadjuvant trastuzumab-based therapies tend to upregulate Irf6 in human breast tumors. We found that detachment-induced Irf6 upregulation in nonmalignant breast epithelial cells requires the presence of the transcription factor ∆Np63α and that Irf6 mediates their anoikis. We showed that ErbB2 blocks Irf6 upregulation in ErbB2-overproducing cells by activating the mitogen-activated protein kinases that inhibit ∆Np63α-dependent signals required for Irf6 upregulation. Finally, we demonstrated that ErbB2-driven Irf6 downregulation in ErbB2-overproducing breast epithelial cells blocks their anoikis and promotes their anchorage-independent growth. Conclusions We have demonstrated that ErbB2 blocks anoikis of breast epithelial cells by downregulating Irf6. Electronic supplementary material The online version of this article (10.1186/s13058-018-1080-1) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Kozlova NI, Morozevich GE, Ushakova NA, Berman AE. Implication of Integrin α2β1 in Proliferation and Invasion of Human Breast Carcinoma and Melanoma Cells: Noncanonical Function of Akt Protein Kinase. BIOCHEMISTRY (MOSCOW) 2018; 83:738-745. [PMID: 30195330 DOI: 10.1134/s0006297918060111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Blocking the expression of integrin α2β1, which was accomplished by transduction of α2-specific shRNA, resulted in significant inhibition of proliferation and clonal activity in human MCF-7 breast carcinoma and SK-Mel-147 melanoma cells. Along with these changes, deprivation of α2β1 caused a sharp decrease in melanoma cell invasion in vitro. Analysis of integrin-mediating signal pathways that control cell behavior revealed a significant increase in activity of Akt protein kinase in response to depletion of α2β1. The increase in Akt activity that accompanies a suppressive effect on cell invasion contradicts well-known Akt function aimed at stimulation of tumor progression. This contradiction could be explained by the "reversed" (noncanonical) role played by Akt in some cells that consists in suppression rather than promotion of invasive phenotype. To test this suggestion, the effects of Akt inhibitors on invasive activity of SK-Mel-147 cells were investigated. If the above suggestion is true, then inhibition of Akt in cells depleted of α2β1 should result in the restoration of their invasive activity. It appeared that treatment with LY294002, which inhibits all Akt isoforms (Akt1, Akt2, Akt3), not only failed to restore the invasive phenotype of melanoma cells but further attenuated their invasive activity. However, treatment of the cells with an Akt1-specific inhibitor significantly increased their invasion. Thus, the stimulating effect of α2β1 integrin on invasion of melanoma cells is realized through a mechanism based on inhibition of one of the Akt isoforms, which in these cells exhibits a noncanonical function consisting in suppression of invasion.
Collapse
Affiliation(s)
- N I Kozlova
- Orekhovich Institute of Biomedical Chemistry, Russian Academy of Sciences, Moscow, 119121, Russia
| | - G E Morozevich
- Orekhovich Institute of Biomedical Chemistry, Russian Academy of Sciences, Moscow, 119121, Russia
| | - N A Ushakova
- Orekhovich Institute of Biomedical Chemistry, Russian Academy of Sciences, Moscow, 119121, Russia
| | - A E Berman
- Orekhovich Institute of Biomedical Chemistry, Russian Academy of Sciences, Moscow, 119121, Russia.
| |
Collapse
|
25
|
Gudipaty SA, Conner CM, Rosenblatt J, Montell DJ. Unconventional Ways to Live and Die: Cell Death and Survival in Development, Homeostasis, and Disease. Annu Rev Cell Dev Biol 2018; 34:311-332. [PMID: 30089222 DOI: 10.1146/annurev-cellbio-100616-060748] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Balancing cell death and survival is essential for normal development and homeostasis and for preventing diseases, especially cancer. Conventional cell death pathways include apoptosis, a form of programmed cell death controlled by a well-defined biochemical pathway, and necrosis, the lysis of acutely injured cells. New types of regulated cell death include necroptosis, pyroptosis, ferroptosis, phagoptosis, and entosis. Autophagy can promote survival or can cause death. Newly described processes of anastasis and resuscitation show that, remarkably, cells can recover from the brink of apoptosis or necroptosis. Important new work shows that epithelia achieve homeostasis by extruding excess cells, which then die by anoikis due to loss of survival signals. This mechanically regulated process both maintains barrier function as cells die and matches rates of proliferation and death. In this review, we describe these unconventional ways in which cells have evolved to die or survive, as well as the contributions that these processes make to homeostasis and cancer.
Collapse
Affiliation(s)
- Swapna A Gudipaty
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Christopher M Conner
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA;
| | - Jody Rosenblatt
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Denise J Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA;
| |
Collapse
|
26
|
Role of Membrane Cholesterol Levels in Activation of Lyn upon Cell Detachment. Int J Mol Sci 2018; 19:ijms19061811. [PMID: 29921831 PMCID: PMC6032236 DOI: 10.3390/ijms19061811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/14/2022] Open
Abstract
Cholesterol, a major component of the plasma membrane, determines the physical properties of biological membranes and plays a critical role in the assembly of membrane microdomains. Enrichment or deprivation of membrane cholesterol affects the activities of many signaling molecules at the plasma membrane. Cell detachment changes the structure of the plasma membrane and influences the localizations of lipids, including cholesterol. Recent studies showed that cell detachment changes the activities of a variety of signaling molecules. We previously reported that the localization and the function of the Src-family kinase Lyn are critically regulated by its membrane anchorage through lipid modifications. More recently, we found that the localization and the activity of Lyn were changed upon cell detachment, although the manners of which vary between cell types. In this review, we highlight the changes in the localization of Lyn and a role of cholesterol in the regulation of Lyn’s activation following cell detachment.
Collapse
|
27
|
da Costa PE, Batista WL, Moraes MS, Stern A, Monteiro HP. Src kinase activation by nitric oxide promotes resistance to anoikis in tumour cell lines. Free Radic Res 2018; 52:592-604. [PMID: 29651879 DOI: 10.1080/10715762.2018.1455095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Tumour progression involves the establishment of tumour metastases at distant sites. Resistance to anoikis, a form of cell death that occurs when cells lose contact with the extracellular matrix and with neighbouring cells, is essential for metastases. NO has been associated with anoikis. NO treated HeLa cells and murine melanoma cells in suspension triggered a nitric oxide (NO)-Src kinase signalling circuitry that enabled resistance to anoikis. Two NO donors, sodium nitroprusside (SNP) (500 µM) and DETANO (125 µM), protected against cell death derived from detachment of a growth permissive surface (experimental anoikis). Under conditions of NO-mediated Src activation the following were observed: (a) down-regulation of the pro-apoptotic proteins Bim and cleaved caspase-3 and the cell surface protein, E-cadherin, (b) up-regulation of caveolin-1, and (c) the dissociation of cell aggregates formed when cells are detached from a growth permissive surface. Efficiency of reattachment of tumour cells in suspension and treated with different concentrations of an NO donor, was dependent on the NO concentration. These findings indicate that NO-activated Src kinase triggers a signalling circuitry that provides resistance to anoikis, and allows for metastases.
Collapse
Affiliation(s)
- Paulo E da Costa
- a Department of Biochemistry- Center for Cellular and Molecular Therapy (CTCMol) , Escola Paulista de Medicina - Universidade Federal de São Paulo , Campus São Paulo, São Paulo , Brazil
| | - Wagner L Batista
- b Department of Pharmaceutical Sciences , Universidade Federal de São Paulo , Campus Diadema, São Paulo , Brazil
| | - Miriam S Moraes
- c Institute of Biosciences, Universidade de São Paulo , São Paulo , Brazil
| | - Arnold Stern
- d New York University School of Medicine , New York , NY , USA
| | - Hugo P Monteiro
- a Department of Biochemistry- Center for Cellular and Molecular Therapy (CTCMol) , Escola Paulista de Medicina - Universidade Federal de São Paulo , Campus São Paulo, São Paulo , Brazil
| |
Collapse
|
28
|
Prateep A, Sumkhemthong S, Karnsomwan W, De-Eknamkul W, Chamni S, Chanvorachote P, Chaotham C. Avicequinone B sensitizes anoikis in human lung cancer cells. J Biomed Sci 2018; 25:32. [PMID: 29631569 PMCID: PMC5890350 DOI: 10.1186/s12929-018-0435-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/03/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND During metastasis, cancer cells require anokis resistant mechanism to survive until reach the distant secondary tissues. As anoikis sensitization may benefit for cancer therapy, this study demonstrated the potential of avicequinone B, a natural furanonaphthoquinone found in mangrove tree (Avicenniaceae) to sensitize anoikis in human lung cancer cells. METHODS Anoikis inducing effect was investigated in human lung cancer H460, H292 and H23 cells that were cultured in ultra-low attachment plate with non-cytotoxic concentrations of avicequinone B. Viability of detached cells was evaluated by XTT assay at 0-24 h of incubation time. Soft agar assay was performed to investigate the inhibitory effect of avicequinone B on anchorage-independent growth. The alteration of anoikis regulating molecules including survival and apoptosis proteins were elucidated by western blot analysis. RESULTS Avicequinone B at 4 μM significantly induced anoikis and inhibited proliferation under detachment condition in various human lung cancer cells. The reduction of anti-apoptotic proteins including anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) and myeloid cell leukemia 1 (Mcl-1) associating with the diminution of integrin/focal adhesion kinase (FAK)/Proto-oncogene tyrosine-protein kinase (Src) signals were detected in avicequinone B-treated cells. CONCLUSIONS Avicequinone B sensitized anoikis in human lung cancer cells through down-regulation of anti-apoptosis proteins and integrin-mediated survival signaling.
Collapse
Affiliation(s)
- Arisara Prateep
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Somruethai Sumkhemthong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wiranpat Karnsomwan
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 10330, Bangkok, Thailand
| | - Wanchai De-Eknamkul
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 10330, Bangkok, Thailand
| | - Supakarn Chamni
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 10330, Bangkok, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand. .,Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand. .,Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
29
|
Ohsawa S, Vaughen J, Igaki T. Cell Extrusion: A Stress-Responsive Force for Good or Evil in Epithelial Homeostasis. Dev Cell 2018; 44:284-296. [PMID: 29408235 DOI: 10.1016/j.devcel.2018.01.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 12/31/2022]
Abstract
Epithelial tissues robustly respond to internal and external stressors via dynamic cellular rearrangements. Cell extrusion acts as a key regulator of epithelial homeostasis by removing apoptotic cells, orchestrating morphogenesis, and mediating competitive cellular battles during tumorigenesis. Here, we delineate the diverse functions of cell extrusion during development and disease. We emphasize the expanding role for apoptotic cell extrusion in exerting morphogenetic forces, as well as the strong intersection of cell extrusion with cell competition, a homeostatic mechanism that eliminates aberrant or unfit cells. While cell competition and extrusion can exert potent, tumor-suppressive effects, dysregulation of either critical homeostatic program can fuel cancer progression.
Collapse
Affiliation(s)
- Shizue Ohsawa
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - John Vaughen
- Department of Developmental Biology, Stanford School of Medicine, Beckman Center, 279 Campus Drive B300, Stanford, CA 94305, USA
| | - Tatsushi Igaki
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
30
|
Swaminathan S, Ngo O, Basehore S, Clyne AM. Vascular Endothelial-Breast Epithelial Cell Coculture Model Created from 3D Cell Structures. ACS Biomater Sci Eng 2017; 3:2999-3006. [PMID: 33418720 DOI: 10.1021/acsbiomaterials.6b00624] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Endothelial cell interactions with normal and cancerous breast epithelial cells have been widely studied in tissue growth and development, as well as in angiogenesis and metastasis. Despite the understanding that 3D multicellular architecture is critical to the cell phenotype, 3D vascular structures have not yet been cocultured with 3D breast spheroids in vitro. The objective of this study was therefore to create a hierarchical, multiscale model of vascular endothelial-breast epithelial cell interactions in which both cell types were assembled into their 3D architectures. The model was successfully fabricated by adding preformed breast spheroids onto preformed endothelial tube-like networks. Through this model, we observed that breast spheroids maintain vascular tube-like networks. Over time, breast epithelial cells migrate out of the spheroid structure along the endothelial networks. This research shows that 3D cell structures serve as an important building block for creating multicellular coculture models to study physiologically relevant cell-cell interactions.
Collapse
Affiliation(s)
- Swathi Swaminathan
- Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Olivia Ngo
- Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Sarah Basehore
- Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Alisa Morss Clyne
- Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
31
|
Khan IA, Yoo BH, Rak J, Rosen KV. Mek activity is required for ErbB2 expression in breast cancer cells detached from the extracellular matrix. Oncotarget 2017; 8:105383-105396. [PMID: 29285258 PMCID: PMC5739645 DOI: 10.18632/oncotarget.22194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/09/2017] [Indexed: 12/15/2022] Open
Abstract
Detachment of non-malignant epithelial cells from the extracellullar matrix (ECM) triggers their growth arrest and apoptosis. Conversely, carcinoma cells can grow without adhesion to the ECM. This capacity for anchorage-independent growth is thought to be critical for tumor progression. ErbB2/Her2 oncoprotein is overproduced by a significant fraction of breast cancers and promotes anchorage-independent tumor cell growth by poorly understood mechanisms. In an effort to understand them we found that in order to produce ErbB2, detached breast cancer cells require the activity of an ErbB2 effector protein kinase Mek and that Mek-driven ErbB2 expression is neccesary for anchorage-independent growth of such cells. We observed that Mek inhibition does not alter ErbB2 mRNA levels in detached cancer cells and that ErbB2 protein loss induced by this inhibition can be blocked by a lysosomal inhibitor. We also noticed that an increase of the density of cancer cells detached from the ECM downregulates a Mek effector protein kinase Erk and causes ErbB2 loss. Those cells that survive after ErbB2 loss display resistance to trastuzumab, an anti-ErbB2 antibody used for ErbB2-positive breast cancer treatment. Thus, Mek-induced ErbB2 stabilization in detached breast cancer cells is critical for their ability to grow anchorage-independently and their trastuzumab sensitivity.
Collapse
Affiliation(s)
- Iman A Khan
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Byong H Yoo
- Department of Pediatrics, Dalhousie University, Halifax, Canada
| | - Janusz Rak
- Department of Pediatrics, McGill University, Montreal, Canada.,The Research Institute of the McGill University Health Centre, Montreal Children's Hospital, Montreal, Canada
| | - Kirill V Rosen
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.,Department of Pediatrics, Dalhousie University, Halifax, Canada
| |
Collapse
|
32
|
miR-330-5p suppresses glioblastoma cell proliferation and invasiveness through targeting ITGA5. Biosci Rep 2017; 37:BSR20170019. [PMID: 28336765 PMCID: PMC5479020 DOI: 10.1042/bsr20170019] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/19/2017] [Accepted: 03/22/2017] [Indexed: 12/19/2022] Open
Abstract
The present study intended to investigate the biological effects of miR-330-5p on glioblastoma (GBM) cell proliferation and invasiveness by targeting integrin α5 (ITGA5). The expressions of miR-330-5p and ITGA5 mRNA in GBM cell lines (U87, U251, and U373) and normal brain glial cell line (HEB) were detected using RT-qPCR. Protein expression of ITGA5 was examined using Western blot. The present study used MTT assay, colony formation assay, Transwell assay, wound healing assay, and flow cytometry analysis in order to determine the biological functions of GBM cells (including cell proliferation, invasion, migration, apoptosis, and cell cycle). The present study applied dual-luciferase reporter gene assay to identify the target relationship between miR-330-5p and ITGA5. miR-330-5p was low-expressed in GBM cell lines while ITGA5 was high-expressed compared with HEB. miR-330-5p could directly target ITGA5 as well as suppress its expression in GBM cells. Up-regulation of miR-330-5p and down-regulation of ITGA5 both have an inhibitory effect on cell proliferation, invasion, and migration. Meanwhile, they could also promote GBM cell apoptosis. miR-330-5p could suppress proliferation and invasion of GBM cells through targeting ITGA5.
Collapse
|
33
|
Epstein Shochet G, Brook E, Israeli-Shani L, Edelstein E, Shitrit D. Fibroblast paracrine TNF-α signaling elevates integrin A5 expression in idiopathic pulmonary fibrosis (IPF). Respir Res 2017. [PMID: 28629363 PMCID: PMC5477311 DOI: 10.1186/s12931-017-0606-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with a poor prognosis. Inflammatory cytokines play a significant role in IPF pathology. However, the fibroblast itself is also believed to be the primary effector in IPF. We hypothesized that the fibroblasts themselves secrete pro-inflammatory cytokines that could propagate IPF by affecting normal neighboring cells. Thus, we explored the effects of IPF fibroblast derived media on normal fibroblast characteristics. Methods Primary IPF/normal tissue derived fibroblast cultures were established and their supernatants were collected (IPF/N-SN, respectively). These supernatants were added to normal fibroblasts. Cell death (caspase-3, western blot), proliferation, viability (WST-1), migration (scratch test) and cell detachment (crystal violet and fibronectin adhesion assays) were tested. 10 inflammatory cytokines were measured by ELISA-based quantitative array. Integrin α5 (ITGA5), pIκBα, p/total STAT3 levels were measured by western blot/IHC. TNF-α involvement was confirmed using Infliximab ®, anti-TNF-α mAb. Results The IPF-SN facilitated fibroblast cell detachment and reduced cell migration (p < 0.05). Nevertheless, these effects were reversed when cells were seeded on fibronectin. The exposure to the IPF-SN also elevated ITGA5 levels, the fibronectin receptor, in addition to NFκB pathway activation (pIκBα↑ 150%, p < 0.05). In accordance, IPF derived fibroblasts were found to express higher ITGA5 than the normal cells (44%↑, p < 0.05). ITGA5 was also expressed in the fibroblastic foci. The IPF-SN contained high TNF-α levels (3-fold, p < 0.05), and Infliximab pretreatment successfully reversed all the above observations. Conclusion We suggest a possible mechanism in which IPF fibroblast secreted TNF-α modifies neighboring fibroblast cell behavior.
Collapse
Affiliation(s)
- Gali Epstein Shochet
- Pulmonary Department, Meir Medical Center, 59 Tchernichovsky St, Kfar Saba, 44281, Israel.
| | - Elizabetha Brook
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lilach Israeli-Shani
- Pulmonary Department, Meir Medical Center, 59 Tchernichovsky St, Kfar Saba, 44281, Israel
| | - Evgeny Edelstein
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pathology Department, Meir Medical Center, 59 Tchernichovsky St, Kfar Saba, 44281, Israel
| | - David Shitrit
- Pulmonary Department, Meir Medical Center, 59 Tchernichovsky St, Kfar Saba, 44281, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
34
|
Kozlova NI, Morozevich GE, Ushakova NA, Gevorkian NM, Berman AE. Differences between integrin α5β1 and EGRF receptor in signal pathways controlling proliferation and apoptosis of MCF-7/Dox human breast carcinoma cells. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2016. [DOI: 10.1134/s1990750816030082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Iwanicki MP, Chen HY, Iavarone C, Zervantonakis IK, Muranen T, Novak M, Ince TA, Drapkin R, Brugge JS. Mutant p53 regulates ovarian cancer transformed phenotypes through autocrine matrix deposition. JCI Insight 2016; 1:86829. [PMID: 27482544 DOI: 10.1172/jci.insight.86829] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGS-OvCa) harbors p53 mutations and can originate from the epithelial cell compartment of the fallopian tube fimbriae. From this site, neoplastic cells detach, survive in the peritoneal cavity, and form cellular clusters that intercalate into the mesothelium to form ovarian and peritoneal masses. To examine the contribution of mutant p53 to phenotypic alterations associated with HGS-OvCA, we developed live-cell microscopy assays that recapitulate these early events in cultured fallopian tube nonciliated epithelial (FNE) cells. Expression of stabilizing mutant variants of p53, but not depletion of endogenous wild-type p53, in FNE cells promoted survival and cell-cell aggregation under conditions of cell detachment, leading to the formation of cell clusters with mesothelium-intercalation capacity. Mutant p53R175H-induced phenotypes were dependent on fibronectin production, α5β1 fibronectin receptor engagement, and TWIST1 expression. These results indicate that FNE cells expressing stabilizing p53 mutants acquire anchorage independence and subsequent mesothelial intercalation capacity through a mechanism involving mesenchymal transition and matrix production. These findings provide important new insights into activities of mutant p53 in the cells of origin of HGS-OvCa.
Collapse
Affiliation(s)
- Marcin P Iwanicki
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hsing-Yu Chen
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Claudia Iavarone
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Taru Muranen
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marián Novak
- Dana-Farber Cancer Institute, Department of Medical Oncology, Center for Molecular Oncologic Pathology, Boston, Massachusetts, USA
| | - Tan A Ince
- Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ronny Drapkin
- Dana-Farber Cancer Institute, Department of Medical Oncology, Center for Molecular Oncologic Pathology, Boston, Massachusetts, USA.,Penn Ovarian Cancer Research Center, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Ferrer CM, Lu TY, Bacigalupa ZA, Katsetos CD, Sinclair DA, Reginato MJ. O-GlcNAcylation regulates breast cancer metastasis via SIRT1 modulation of FOXM1 pathway. Oncogene 2016; 36:559-569. [PMID: 27345396 PMCID: PMC5192006 DOI: 10.1038/onc.2016.228] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 03/24/2016] [Accepted: 04/15/2016] [Indexed: 12/15/2022]
Abstract
Tumors utilize aerobic glycolysis to support growth and invasion. However, the molecular mechanisms that link metabolism with invasion are not well understood. The nutrient sensor O-linked-β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) modifies intracellular proteins with N-acetylglucosamine. Cancers display elevated O-GlcNAcylation and suppression of O-GlcNAcylation inhibits cancer invasion and metastasis. Here, we show that the regulation of cancer invasion by OGT is dependent on the NAD+-dependent deacetylase SIRT1. Reducing O-GlcNAcylation elevates SIRT1 levels and activity in an AMPK-dependent manner. Reduced O-GlcNAcylation in cancer cells leads to SIRT1-mediated proteasomal degradation of oncogenic transcription factor FOXM1 in a MEK/ERK-dependent manner. SIRT1 is critical for OGT-mediated regulation of FOXM1 ubiquitination and reducing SIRT1 activity reverses OGT-mediated regulation of FOXM1. Moreover, we show that SIRT1 levels are required for OGT-mediated regulation of invasion and metastasis in breast cancer cells. Thus, O-GlcNAcylation is a central component linking metabolism to invasion and metastasis via a SIRT1/ /FOXM1 axis.
Collapse
Affiliation(s)
- C M Ferrer
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - T Y Lu
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Z A Bacigalupa
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - C D Katsetos
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA, USA.,Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, PA, USA
| | - D A Sinclair
- Paul F. Glenn Labs for the Biological Mechanisms of Aging, Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - M J Reginato
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
37
|
Tamaskovic R, Schwill M, Nagy-Davidescu G, Jost C, Schaefer DC, Verdurmen WPR, Schaefer JV, Honegger A, Plückthun A. Intermolecular biparatopic trapping of ErbB2 prevents compensatory activation of PI3K/AKT via RAS-p110 crosstalk. Nat Commun 2016; 7:11672. [PMID: 27255951 PMCID: PMC4895728 DOI: 10.1038/ncomms11672] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 04/18/2016] [Indexed: 02/07/2023] Open
Abstract
Compensatory mechanisms, such as relief of AKT-ErbB3-negative feedback, are known to desensitize ErbB2-dependent tumours to targeted therapy. Here we describe an adaptation mechanism leading to reactivation of the PI3K/AKT pathway during trastuzumab treatment, which occurs independently of ErbB3 re-phosphorylation. This signalling bypass of phospho-ErbB3 operates in ErbB2-overexpressing cells via RAS-PI3K crosstalk and is attributable to active ErbB2 homodimers. As demonstrated by dual blockade of ErbB2/RAS and ErbB3 by means of pharmacological inhibition, RNA interference or by specific protein binders obstructing the RAS–p110α interaction, both routes must be blocked to prevent reactivation of the PI3K/AKT pathway. Applying these general principles, we developed biparatopic designed ankyrin repeat proteins (DARPins) trapping ErbB2 in a dimerization-incompetent state, which entail pan-ErbB inhibition and a permanent OFF state in the oncogenic signalling, thereby triggering extensive apoptosis in ErbB2-addicted tumours. Thus, these novel insights into mechanisms underlying network robustness provide a guide for overcoming adaptation response to ErbB2/ErbB3-targeted therapy. Targeted therapy of ErbB2-dependent tumours often provokes an adaptive response leading to reactivation of the PI3K/AKT pathway. Here the authors identify an ErbB3-independent compensatory mechanism comprising Ras/PI3K activation directly by ErbB2, and develop biparatopic panErbB inhibitors to block this mode of resistance.
Collapse
Affiliation(s)
- Rastislav Tamaskovic
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, Zurich 8057, Switzerland
| | - Martin Schwill
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, Zurich 8057, Switzerland
| | - Gabriela Nagy-Davidescu
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, Zurich 8057, Switzerland
| | - Christian Jost
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, Zurich 8057, Switzerland
| | - Dagmar C Schaefer
- Institute of Laboratory Animal Science, University of Zurich, Winterthurerstr. 190, Zurich 8057, Switzerland
| | - Wouter P R Verdurmen
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, Zurich 8057, Switzerland
| | - Jonas V Schaefer
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, Zurich 8057, Switzerland
| | - Annemarie Honegger
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, Zurich 8057, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, Zurich 8057, Switzerland
| |
Collapse
|
38
|
Nintedanib (BIBF 1120) blocks the tumor promoting signals of lung fibroblast soluble microenvironment. Lung Cancer 2016; 96:7-14. [DOI: 10.1016/j.lungcan.2016.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/19/2016] [Accepted: 03/25/2016] [Indexed: 12/21/2022]
|
39
|
Khan IA, Yoo BH, Masson O, Baron S, Corkery D, Dellaire G, Attardi LD, Rosen KV. ErbB2-dependent downregulation of a pro-apoptotic protein Perp is required for oncogenic transformation of breast epithelial cells. Oncogene 2016; 35:5759-5769. [PMID: 27109096 DOI: 10.1038/onc.2016.109] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/21/2015] [Accepted: 01/19/2016] [Indexed: 12/14/2022]
Abstract
The ability of breast cancer cells to resist anoikis, apoptosis caused by detachment of the non-malignant epithelial cells from the extracellular matrix (ECM), is thought to be critical for breast tumor growth, invasion and metastasis. ErbB2, an oncoprotein that is often overproduced in breast tumors, can block breast cancer cell anoikis via mechanisms that are understood only in part. In an effort to understand them better we found that detachment of the non-malignant human breast epithelial cells from the ECM upregulates a protein Perp in these cells. Perp is a component of the desmosomes, multiprotein complexes involved in cell-to-cell adhesion. Perp can cause apoptosis via unknown mechanisms. We demonstrated that Perp upregulation by cell detachment is driven by detachment-induced loss of epidermal growth factor receptor (EGFR). We also found that Perp knockdown by RNA interference (RNAi) rescues detached cells from death which indicates that Perp contributes to their anoikis. We observed that ErbB2, when overexpressed in detached breast epithelial cells, causes Perp downregulation. Furthermore, ErbB2-directed RNAi or treatment with lapatinib, an ErbB2/EGFR small-molecule inhibitor used for breast cancer therapy, upregulated Perp in ErbB2-positive human breast and ovarian carcinoma cells. We established that ErbB2 downregulates Perp by activating an ErbB2 effector protein kinase Mek that blocks detachment-induced EGFR loss in a manner that requires the presence of a signaling protein Sprouty-2. Finally, we observed that restoration of the wild-type Perp levels in ErbB2-overproducing breast epithelial cells increases their anoikis susceptibility and blocks their clonogenicity in the absence of adhesion to the ECM. In summary, we have identified a novel mechanism of ErbB2-mediated mechanism of anoikis resistance of ErbB2-overproducing breast epithelial cells. This mechanism allows such cells to grow without adhesion to the ECM and is driven by ErbB2-induced activation of Mek, subsequent EGFR upregulation and further EGFR-dependent Perp loss.
Collapse
Affiliation(s)
- I A Khan
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - B H Yoo
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - O Masson
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - S Baron
- Department of Radiation and Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - D Corkery
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - G Dellaire
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - L D Attardi
- Department of Radiation and Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - K V Rosen
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
40
|
Epstein Shochet G, Drucker L, Pomeranz M, Fishman A, Pasmanik-Chor M, Tartakover-Matalon S, Lishner M. First trimester human placenta prevents breast cancer cell attachment to the matrix: The role of extracellular matrix. Mol Carcinog 2016; 56:62-74. [PMID: 26859229 DOI: 10.1002/mc.22473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 12/27/2015] [Accepted: 01/28/2016] [Indexed: 01/13/2023]
Abstract
The extracellular matrix (ECM) affects cancer cell characteristics. Its detachment from the ECM induces cell apoptosis, termed anoikis. Cancer cells can develop anoikis resistance, a necessary step for metastasis, by switching integrins, over-expressing growth factor receptors, and inducing epithelial mesenchymal transition (EMT). The placenta is a non-supportive microenvironment for cancer cells. We showed that breast cancer cells (BCCL) were eliminated from placental implantation sites. During implantation, the placenta manipulates its surrounding matrix, which may induce BCCL elimination. Here, we explored the effect of placenta-induced ECM manipulations on BCCL. During experiments, BCCL (MCF-7/T47D) were cultured on placenta/BCCL-conditioned ECM (Matrigel used for first trimester placenta/BCCL culture and cleared by NH4 OH). After culturing the cells, we analyzed cancer cell phenotype (death, count, aggregation, MMP) and signaling (microarray analysis and pathway validation). We found that the BCCL did not attach to previous placental implantation sites and instead, similarly to anoikis-resistant cells, migrated away, displayed increased MMP levels/activity, and formed aggregates in distant areas. T47D were less affected than the MCF-7 cells, since MCF-7 also showed modest increases in cell death, EMT, and increased proliferation. Microarray analysis of the MCF-7 highlighted changes in the integrin, estrogen, EGFR, and TGFβ pathways. Indeed, placental ECM reduced ERα, induced Smad3/JNK phosphorylation and increased integrin-α5 expression (RGD-dependent integrin) in the BCCL. Addition of RGD or TGFβR/JNK inhibitors reversed the phenotypic changes. This study helps explain the absence of metastases to the placenta and why advanced cancer is found in pregnancy, and provides possible therapeutic targets for anoikis-resistant cells. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gali Epstein Shochet
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liat Drucker
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Meir Pomeranz
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
| | - Ami Fishman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shelly Tartakover-Matalon
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michael Lishner
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Internal Medicine A, Meir Medical Center, Kfar Saba, Israel
| |
Collapse
|
41
|
Abstract
Heat shock protein 90 (Hsp90) is a highly expressed chaperone that modulates the function and stability of hundreds of cellular client proteins. In this capacity, Hsp90 impacts human health in myriad ways and it is accordingly a high-interest molecular target in the oncology setting. This interest has led to a large number of clinical trials to evaluate the potential benefit of Hsp90 inhibitors in cancer treatment and, more recently, in combination with chemotherapeutic agents. Although these studies are still ongoing, some issues have arisen, such as toxicity effects associated with administration of these agents. We and others have identified a novel role for Hsp90 outside of cancer cells. This extracellular Hsp90 (eHsp90) was shown to be critical for the regulation of tumor invasiveness and metastasis, central processes associated with cancer lethality. Since these initial papers, a considerable cohort of studies has expanded upon this role, implicating eHsp90 in the activation of a number of proteins that support tumor cell invasion. As eHsp90 is preferentially detected on the surface of tumor cells, and within their surrounding microenvironment, it is possible that drugs capable of selectively targeting eHsp90 may exploit this differential expression. This selectivity may, in turn, enable treatment regimens with reduced target-related toxicity. This review will focus on our current understanding of eHsp90, particularly in cancer, and we will discuss the relevance of eHsp90 as a biomarker for invasive cancer and its potential as a drug target.
Collapse
Affiliation(s)
- Daniel Senh Wong
- Graduate Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Daniel G Jay
- Department of Developmental, Molecular, and Chemical Biology, School of Medicine, Tufts University, Boston, Massachusetts, USA.
| |
Collapse
|
42
|
Kozlova N, Morozevich G, Ushakova N, Gevorkian N, Berman A. Implication of integrin alpha5beta1 signal pathways in proliferation and apoptosis of MCF-7/Dox human breast carcinoma cells. ACTA ACUST UNITED AC 2016; 62:272-8. [DOI: 10.18097/pbmc20166203272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In MCF-7/Dox human breast carcinoma cells, down-regulation of integrin alpha5beta1 and inhibition of epidermal growth factor receptor (EGFR) markedly reduced rates of cell proliferation. Mitotic cycle analysis showed that alpha5beta1 down-regulation resulted in cell cycle arrest at the S phase, followed by a significant increase in the population of apoptotic cells (subG1 population). Inhibition of EGFR activity also caused cell cycle arrest at the S-phase but without any increase in the subG1 population. Down-regulation of alpha5beta1 and EGFR inhibition resulted in a significant decrease of cell content of the active (phosphorylated) forms of FAK and Erk protein kinases. The data obtained suggest that alpha5beta1 integrin is implicated in cell growth control via inhibition of apoptotic cell death and through EGFR activation.
Collapse
Affiliation(s)
- N.I. Kozlova
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | | | - A.E. Berman
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
43
|
Karakashev SV, Reginato MJ. Hypoxia/HIF1α induces lapatinib resistance in ERBB2-positive breast cancer cells via regulation of DUSP2. Oncotarget 2015; 6:1967-80. [PMID: 25596742 PMCID: PMC4385829 DOI: 10.18632/oncotarget.2806] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/25/2014] [Indexed: 11/25/2022] Open
Abstract
ERBB2/HER2 belongs to the EGFR-family of receptor tyrosine kinases and its overexpression can promote tumor progression. Breast cancer patients with ERBB2 amplifications are currently treated with lapatinib, a small-molecule kinase inhibitor that specifically blocks EGFR/ERBB2 signaling. Here, we show that hypoxia, via HIF-1, induces resistance to lapatinib-mediated effects in ERBB2-expressing mammary epithelial and ERBB2-positive breast cancer cells. Lapatinib-mediated growth inhibition and apoptosis in three-dimensional (3D) cultures are decreased under hypoxic conditions. Hypoxia can maintain activation of signaling pathways downstream from ERBB2 including AKT and ERK in the presence of lapatinib. HIF-1 is both required and sufficient to induce lapatinib resistance as overexpression of stable HIF-1 in ERBB2-expressing cells blocks lapatinib-mediated effects and maintains ERBB2-downstream signaling under normoxic conditions. Under hypoxia, activation of ERK signaling is required for lapatinib resistance as treatment with MEK inhibitor trametinib reverses hypoxia-mediated lapatinib resistance. HIF-1 can bypass the lapatinib-treated inhibition of the ERK pathway via inhibition of the dual-specificity phosphatase 2 (DUSP2). Indeed, overexpression of DUSP2 in ErbB2-positve breast cancer cells reverses hypoxia-mediated lapatinib resistance. Thus, our results provide rationale for therapeutic evaluation of the treatment of hypoxic ERBB2 expressing breast tumors with a combination of lapatinib and MEK inhibitors.
Collapse
Affiliation(s)
- Sergey V Karakashev
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Mauricio J Reginato
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
44
|
Xie JJ, Guo JC, Wu ZY, Xu XE, Wu JY, Chen B, Ran LQ, Liao LD, Li EM, Xu LY. Integrin α5 promotes tumor progression and is an independent unfavorable prognostic factor in esophageal squamous cell carcinoma. Hum Pathol 2015; 48:69-75. [PMID: 26772401 DOI: 10.1016/j.humpath.2015.09.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 12/12/2022]
Abstract
The integrin family plays a major role in complex biological events such as differentiation, development, wound healing, and the altered adhesive and invasive properties of tumor cells. The expression and function of integrin α5 in esophageal squamous cell carcinoma (ESCC) are not clear. Here, by using tissue microarrays and immunohistochemical method, integrin α5 expression was retrospectively evaluated in 147 samples of human ESCC. Results showed that expression of integrin α5 was heterogeneous and varied from negative to intense expression in a membrane and cytoplasmic distribution manner. High expression of integrin α5 was significantly correlated with lymph node metastasis (P = .042) and tumor size (P = .042). Kaplan-Meier analysis revealed that high expression of integrin α5 was related to poor overall survival of ESCC patients (P = .018). Multivariate analysis suggested that integrin α5 expression status was an independent prognostic factor for ESCC (P = .003). Moreover, integrin α5 expression was associated with the survival of patients with lymph node metastasis (P = .020), but did not influence the survival of patients without lymph node metastasis. Finally, we found that RNAi-mediated knockdown of integrin α5 led to decreased growth, migration, and invasion of ESCC cells. Combined, integrin α5 might play important roles in the progression of ESCC. Integrin α5 is a novel biomarker to predict the prognosis of ESCC patients.
Collapse
Affiliation(s)
- Jian-Jun Xie
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Medical College of Shantou University, Shantou 515041, PR China; Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 515041, PR China.
| | - Jin-Cheng Guo
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Medical College of Shantou University, Shantou 515041, PR China; Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 515041, PR China
| | - Zhi-Yong Wu
- Department of Oncologic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou 515041, PR China
| | - Xiu-E Xu
- Institute of Oncologic Pathology, Medical College of Shantou University, Shantou 515041, PR China
| | - Jian-Yi Wu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Medical College of Shantou University, Shantou 515041, PR China; Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 515041, PR China
| | - Bo Chen
- Institute of Oncologic Pathology, Medical College of Shantou University, Shantou 515041, PR China
| | - Li-Qiang Ran
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Medical College of Shantou University, Shantou 515041, PR China; Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 515041, PR China
| | - Lian-Di Liao
- Institute of Oncologic Pathology, Medical College of Shantou University, Shantou 515041, PR China
| | - En-Min Li
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Medical College of Shantou University, Shantou 515041, PR China; Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 515041, PR China
| | - Li-Yan Xu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Medical College of Shantou University, Shantou 515041, PR China; Institute of Oncologic Pathology, Medical College of Shantou University, Shantou 515041, PR China.
| |
Collapse
|
45
|
Helicobacter pylori CagA Suppresses Apoptosis through Activation of AKT in a Nontransformed Epithelial Cell Model of Glandular Acini Formation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:761501. [PMID: 26557697 PMCID: PMC4628739 DOI: 10.1155/2015/761501] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 02/07/2023]
Abstract
H. pylori infection is the most important environmental risk to develop gastric cancer, mainly through its virulence factor CagA. In vitro models of CagA function have demonstrated a phosphoprotein activity targeting multiple cellular signaling pathways, while cagA transgenic mice develop carcinomas of the gastrointestinal tract, supporting oncogenic functions. However, it is still not completely clear how CagA alters cellular processes associated with carcinogenic events. In this study, we evaluated the capacity of H. pylori CagA positive and negative strains to alter nontransformed MCF-10A glandular acini formation. We found that CagA positive strains inhibited lumen formation arguing for an evasion of apoptosis activity of central acini cells. In agreement, CagA positive strains induced a cell survival activity that correlated with phosphorylation of AKT and of proapoptotic proteins BIM and BAD. Anoikis is a specific type of apoptosis characterized by AKT and BIM activation and it is the mechanism responsible for lumen formation of MCF-10A acini in vitro and mammary glands in vivo. Anoikis resistance is also a common mechanism of invading tumor cells. Our data support that CagA positive strains signaling function targets the AKT and BIM signaling pathway and this could contribute to its oncogenic activity through anoikis evasion.
Collapse
|
46
|
Morozevich GE, Kozlova NI, Susova OY, Karalkin PA, Berman AE. Implication of α2β1 integrin in anoikis of MCF-7 human breast carcinoma cells. BIOCHEMISTRY (MOSCOW) 2015; 80:97-103. [PMID: 25754044 DOI: 10.1134/s0006297915010113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Silencing of α2β1 integrin expression significantly promoted anchorage-dependent apoptosis (anoikis) and drastically reduced clonal activity of MCF-7 human breast carcinoma cells. Depletion of α2β1 enhanced the production of apoptotic protein p53 and of inhibitor of cyclin-dependent protein kinases, p27, while downregulating antiapoptotic protein Bcl-2 and multifunctional protein cMyc. Blocking the expression of α2β1 had no effect on activity of protein kinase Akt, but it sharply increased the kinase activity of Erk1/2. Pharmacological inhibition of Erk1/2 had a minor effect on anoikis of control cells, while it reduced anoikis of cells with downregulated α2β1 to the level of control cells. The data show for the first time that integrin α2β1 is implicated in the protection of tumor cells from anoikis through a mechanism based on the inhibition of protein kinase Erk.
Collapse
Affiliation(s)
- G E Morozevich
- Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, 119121, Russia.
| | | | | | | | | |
Collapse
|
47
|
Meinhardt G, Kaltenberger S, Fiala C, Knöfler M, Pollheimer J. ERBB2 gene amplification increases during the transition of proximal EGFR(+) to distal HLA-G(+) first trimester cell column trophoblasts. Placenta 2015; 36:803-8. [PMID: 26071215 DOI: 10.1016/j.placenta.2015.05.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/11/2015] [Accepted: 05/27/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Although, DNA copy-number alterations (CNAs) have been well documented in a number of adverse phenotypic conditions, accumulating data suggest that CNAs also occur during physiological processes. Interestingly, extravillous trophoblasts induce the expression of the transforming, proto-oncogene ERBB2, which is frequently amplified in human cancer. However, no data are available to address whether trophoblast-related ERBB2 expression might also be linked to genomic amplification. METHODS Dual color silver as well as fluorescence in situ hybridization analyses were carried out to evaluate frequency and degree of ERBB2 gene and chromosome 17 copy numbers in first trimester placental cell columns and isolated trophoblasts. Proliferative EGFR(+) and differentiated HLA-G(+) trophoblasts were identified or separated by means of in situ immunofluorescence co-stainings and magnetic beads cell isolation, respectively. RESULTS ERBB2 gene amplification is detected in approximately 40% of isolated HLA-G(+) trophoblasts. Although already detectable in EGFR(+) cells, the percentage and extent of ERBB2 amplification was markedly increased in HLA-G(+) trophoblasts in situ and after isolation. Accordingly, HLA-G(+) trophoblasts highly express ERBB2 on protein level. Finally, ERBB2 copy number variations occur independently of aneuploidy as the majority of ERBB2 amplifying cells were cytogenetically diploid for chromosome 17. DISCUSSION ERBB2 gene amplification is a frequent event during EVT differentiation. This finding challenges the long standing paradigm, which associates gene amplification with pathological conditions and further supports recent evidences suggesting that CNAs are a normal feature of developmental processes.
Collapse
Affiliation(s)
- G Meinhardt
- Department of Obstetrics and Fetal-Maternal Medicine, Reproductive Biology Unit, Medical University of Vienna, Austria
| | - S Kaltenberger
- Clinical Institute of Pathology, Medical University of Vienna, Austria
| | - C Fiala
- Gynmed Clinic, Vienna, Austria
| | - M Knöfler
- Department of Obstetrics and Fetal-Maternal Medicine, Reproductive Biology Unit, Medical University of Vienna, Austria
| | - J Pollheimer
- Department of Obstetrics and Fetal-Maternal Medicine, Reproductive Biology Unit, Medical University of Vienna, Austria.
| |
Collapse
|
48
|
ATM kinase sustains HER2 tumorigenicity in breast cancer. Nat Commun 2015; 6:6886. [PMID: 25881002 DOI: 10.1038/ncomms7886] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 03/09/2015] [Indexed: 12/15/2022] Open
Abstract
ATM kinase preserves genomic stability by acting as a tumour suppressor. However, its identification as a component of several signalling networks suggests a dualism for ATM in cancer. Here we report that ATM expression and activity promotes HER2-dependent tumorigenicity in vitro and in vivo. We reveal a correlation between ATM activation and the reduced time to recurrence in patients diagnosed with invasive HER2-positive breast cancer. Furthermore, we identify ATM as a novel modulator of HER2 protein stability that acts by promoting a complex of HER2 with the chaperone HSP90, therefore preventing HER2 ubiquitination and degradation. As a consequence, ATM sustains AKT activation downstream of HER2 and may modulate the response to therapeutic approaches, suggesting that the status of ATM activity may be informative for the treatment and prognosis of HER2-positive tumours. Our findings provide evidence for ATM's tumorigenic potential revising the canonical role of ATM as a pure tumour suppressor.
Collapse
|
49
|
ERK-regulated αB-crystallin induction by matrix detachment inhibits anoikis and promotes lung metastasis in vivo. Oncogene 2015; 34:5626-34. [PMID: 25684139 PMCID: PMC4537846 DOI: 10.1038/onc.2015.12] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 12/11/2014] [Accepted: 01/02/2015] [Indexed: 01/25/2023]
Abstract
Evasion of extracellular matrix detachment-induced apoptosis ('anoikis') is a defining characteristic of metastatic tumor cells. The ability of metastatic carcinoma cells to survive matrix detachment and escape anoikis enables them to disseminate as viable circulating tumor cells and seed distant organs. Here we report that αB-crystallin, an antiapoptotic molecular chaperone implicated in the pathogenesis of diverse poor-prognosis solid tumors, is induced by matrix detachment and confers anoikis resistance. Specifically, we demonstrate that matrix detachment downregulates extracellular signal-regulated kinase (ERK) activity and increases αB-crystallin protein and messenger RNA (mRNA) levels. Moreover, we show that ERK inhibition in adherent cancer cells mimics matrix detachment by increasing αB-crystallin protein and mRNA levels, whereas constitutive ERK activation suppresses αB-crystallin induction during matrix detachment. These findings indicate that ERK inhibition is both necessary and sufficient for αB-crystallin induction by matrix detachment. To examine the functional consequences of αB-crystallin induction in anoikis, we stably silenced αB-crystallin in two different metastatic carcinoma cell lines. Strikingly, silencing αB-crystallin increased matrix detachment-induced caspase activation and apoptosis but did not affect cell viability of adherent cancer cells. In addition, silencing αB-crystallin in metastatic carcinoma cells reduced the number of viable circulating tumor cells and inhibited lung metastasis in two orthotopic models, but had little or no effect on primary tumor growth. Taken together, our findings point to αB-crystallin as a novel regulator of anoikis resistance that is induced by matrix detachment-mediated suppression of ERK signaling and promotes lung metastasis. Our results also suggest that αB-crystallin represents a promising molecular target for antimetastatic therapies.
Collapse
|
50
|
Rayavarapu RR, Heiden B, Pagani N, Shaw MM, Shuff S, Zhang S, Schafer ZT. The role of multicellular aggregation in the survival of ErbB2-positive breast cancer cells during extracellular matrix detachment. J Biol Chem 2015; 290:8722-33. [PMID: 25681438 DOI: 10.1074/jbc.m114.612754] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Indexed: 12/18/2022] Open
Abstract
The metastasis of cancer cells from the site of the primary tumor to distant sites in the body represents the most deadly manifestation of cancer. In order for metastasis to occur, cancer cells need to evade anoikis, which is defined as apoptosis caused by loss of attachment to extracellular matrix (ECM). Signaling from ErbB2 has previously been linked to the evasion of anoikis in breast cancer cells but the precise molecular mechanisms by which ErbB2 blocks anoikis have yet to be unveiled. In this study, we have identified a novel mechanism by which anoikis is inhibited in ErbB2-expressing cells: multicellular aggregation during ECM-detachment. Our data demonstrate that disruption of aggregation in ErbB2-positive cells is sufficient to induce anoikis and that this anoikis inhibition is a result of aggregation-induced stabilization of EGFR and consequent ERK/MAPK survival signaling. Furthermore, these data suggest that ECM-detached ErbB2-expressing cells may be uniquely susceptible to targeted therapy against EGFR and that this sensitivity could be exploited for specific elimination of ECM-detached cancer cells.
Collapse
Affiliation(s)
- Raju R Rayavarapu
- From the Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - Brendan Heiden
- From the Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - Nicholas Pagani
- From the Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - Melissa M Shaw
- From the Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - Sydney Shuff
- From the Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - Siyuan Zhang
- From the Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - Zachary T Schafer
- From the Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|