1
|
Vaizoglu RD, Erdem B, Gul M, Acar C, Ozdemirel HO, Saglar Ozer E, Mergen H. Investigation of Fibrillar Aggregates Formed by Pathogenic Pre-pro-vasopressin Mutants that Cause ADNDI. J Clin Endocrinol Metab 2025; 110:1577-1586. [PMID: 39449655 DOI: 10.1210/clinem/dgae749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/26/2024] [Accepted: 10/23/2024] [Indexed: 10/26/2024]
Abstract
CONTEXT Aggregations of unfolded or misfolded proteins, both inside and outside cells, are implicated in numerous diseases, collectively known as amyloidosis. Particularly, autosomal dominant neurohypophyseal diabetes insipidus (ADNDI) is a rare disease caused by mutations in the AVP-NPII gene, leading to the inability to secrete arginine vasopressin. These misfolded proteins accumulate within the endoplasmic reticulum (ER), causing cellular dysfunction. OBJECTIVE This study aimed to investigate the formation of amyloid-like aggregates within the cell resulting from misfolded mutant precursor proteins, which induce disulfide-linked oligomers due to the G45C, 207_209delGGC, G88V, C98X, C104F, E108D-1, E108D-2 and R122H mutations identified by our group in the AVP-NPII gene of ADNDI patients. METHODS Deglycosylation studies were performed to analyze the glycosylation patterns of mutant protein precursors. The involvement of these precursors in the ER-related degradation pathway was studied by conducting protease inhibition experiments. Disulfide-linked oligomer analysis determined the oligomerization status of the mutant precursors. Immunofluorescence and electron microscopy studies provided evidence of aggregate structures in the ER lumen. In vitro studies involved bacterial expression and fibril formation in Escherichia coli (E. coli). RESULTS Our findings demonstrated that the N-glycan structure of mutant precursors remains intact within the ER. Protease inhibition experiments indicated the involvement of these precursors in the ER-related degradation pathway. Disulfide-linked oligomer analysis revealed homo-oligomer structures in mutations. Immunofluorescence and electron microscopy studies confirmed the presence of aggregate structures in the ER lumen. In vitro studies showed that mutant precursors could form fibril structures in E. coli. CONCLUSION Our study may support the idea that ADNDI belongs to the group of neurodegenerative diseases due to the formation of fibrillar amyloid aggregates in the cell.
Collapse
Affiliation(s)
- Refika Dilara Vaizoglu
- Department of Biology, Universities District, Hacettepe University, Faculty of Science, Molecular Biology Section, Beytepe Campus, Cankaya/Ankara 06800, Turkey
| | - Beril Erdem
- Department of Biology, Universities District, Hacettepe University, Faculty of Science, Molecular Biology Section, Beytepe Campus, Cankaya/Ankara 06800, Turkey
| | - Mehmet Gul
- Inonu University, Faculty of Medicine, Basic Medical Sciences, Histology and Embryology Section, Malatya 44280, Turkey
| | - Ceren Acar
- Department of Molecular Biology and Genetics, Inonu University, Faculty of Arts and Science, Malatya 44280, Turkey
| | - Huseyin Ozgur Ozdemirel
- Department of Biology, Universities District, Hacettepe University, Faculty of Science, Molecular Biology Section, Beytepe Campus, Cankaya/Ankara 06800, Turkey
| | - Emel Saglar Ozer
- Department of Biology, Universities District, Hacettepe University, Faculty of Science, Molecular Biology Section, Beytepe Campus, Cankaya/Ankara 06800, Turkey
| | - Hatice Mergen
- Department of Biology, Universities District, Hacettepe University, Faculty of Science, Molecular Biology Section, Beytepe Campus, Cankaya/Ankara 06800, Turkey
| |
Collapse
|
2
|
Yang J, Zhi Y, Wen S, Pan X, Wang H, He X, Lu Y, Zhu Y, Chen Y, Shi G. Characterization of dietary and herbal sourced natural compounds that modulate SEL1L-HRD1 ERAD activity and alleviate protein misfolding in the ER. J Nutr Biochem 2023; 111:109178. [PMID: 36228974 DOI: 10.1016/j.jnutbio.2022.109178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/22/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022]
Abstract
Dysregulated production of peptide hormones is the key pathogenic factor of various endocrine diseases. Endoplasmic reticulum (ER) associated degradation (ERAD) is a critical machinery in maintaining ER proteostasis in mammalian cells by degrading misfolded proteins. Dysfunction of ERAD leads to maturation defect of many peptide hormones, such as provasopressin (proAVP), which results in the occurrence of Central Diabetes Insipidus. However, drugs targeting ERAD to regulate the production of peptide hormones are very limited. Herbal products provide not only nutritional sources, but also alternative therapeutics for chronic diseases. Virtual screening provides an effective and high-throughput strategy for identifying protein structure-based interacting compounds extracted from a variety of dietary or herbal sources, which could be served as (pro)drugs for preventing or treating endocrine diseases. Here, we performed a virtual screening by directly targeting SEL1L of the most conserved SEL1L-HRD1 ERAD machinery. Further, we analyzed 58 top-ranked compounds and demonstrated that Cryptochlorogenic acid (CCA) showed strong affinity with the binding pocket of SEL1L with HRD1. Through structure-based docking, protein expression assays, and FACS analysis, we revealed that CCA enhanced ERAD activity and promoted the degradation of misfolded proAVP, thus facilitated the secretion of well-folded proAVP. These results provide us with insights into drug discovery strategies targeting ER protein homeostasis, as well as candidate compounds for treating hormone-related diseases.
Collapse
Affiliation(s)
- Jifeng Yang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yaping Zhi
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shiyi Wen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xuya Pan
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Heting Wang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xuemin He
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Lu
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yanhua Zhu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanming Chen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Guojun Shi
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Christ-Crain M, Refardt J, Winzeler B. Approach to the Patient: "Utility of the Copeptin Assay". J Clin Endocrinol Metab 2022; 107:1727-1738. [PMID: 35137148 PMCID: PMC9113794 DOI: 10.1210/clinem/dgac070] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Indexed: 11/19/2022]
Abstract
Copeptin derives from the same precursor peptide preprovasopressin as arginine vasopressin (AVP). The secretion of both peptides is stimulated by similar physiological processes, such as osmotic stimulation, hypovolemia, or stress. AVP is difficult to measure due to complex preanalytical requirements and due to technical difficulties. In the last years, copeptin was found to be a stable, sensitive, and simple to measure surrogate marker of AVP release. Different immunoassays exist to measure copeptin. The 2 assays which have most often be used in clinical studies are the original sandwich immunoluminometric assay and its automated immunofluorescent successor. In addition, various enzyme-linked immunosorbent assay have been developed. With the availability of the copeptin assay, the differential diagnosis of diabetes insipidus was recently revisited. The goal for this article is therefore to first review the physiology of copeptin, and second to describe its use as marker for the differential diagnosis of vasopressin-dependent fluid disorders, mainly diabetes insipidus but also hyper- and hyponatremia. Furthermore, we highlight the role of copeptin as prognostic marker in other acute and chronic diseases.
Collapse
Affiliation(s)
- Mirjam Christ-Crain
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031 Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, 4031 Basel, Switzerland
- Correspondence: Mirjam Christ-Crain, MD, PhD, Department of Endocrinology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland.
| | - Julie Refardt
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031 Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, 4031 Basel, Switzerland
| | - Bettina Winzeler
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031 Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, 4031 Basel, Switzerland
| |
Collapse
|
4
|
Chambers JE, Zubkov N, Kubánková M, Nixon-Abell J, Mela I, Abreu S, Schwiening M, Lavarda G, López-Duarte I, Dickens JA, Torres T, Kaminski CF, Holt LJ, Avezov E, Huntington JA, George-Hyslop PS, Kuimova MK, Marciniak SJ. Z-α 1-antitrypsin polymers impose molecular filtration in the endoplasmic reticulum after undergoing phase transition to a solid state. SCIENCE ADVANCES 2022; 8:eabm2094. [PMID: 35394846 PMCID: PMC8993113 DOI: 10.1126/sciadv.abm2094] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/16/2022] [Indexed: 05/06/2023]
Abstract
Misfolding of secretory proteins in the endoplasmic reticulum (ER) features in many human diseases. In α1-antitrypsin deficiency, the pathogenic Z variant aberrantly assembles into polymers in the hepatocyte ER, leading to cirrhosis. We show that α1-antitrypsin polymers undergo a liquid:solid phase transition, forming a protein matrix that retards mobility of ER proteins by size-dependent molecular filtration. The Z-α1-antitrypsin phase transition is promoted during ER stress by an ATF6-mediated unfolded protein response. Furthermore, the ER chaperone calreticulin promotes Z-α1-antitrypsin solidification and increases protein matrix stiffness. Single-particle tracking reveals that solidification initiates in cells with normal ER morphology, previously assumed to represent a healthy pool. We show that Z-α1-antitrypsin-induced hypersensitivity to ER stress can be explained by immobilization of ER chaperones within the polymer matrix. This previously unidentified mechanism of ER dysfunction provides a template for understanding a diverse group of related proteinopathies and identifies ER chaperones as potential therapeutic targets.
Collapse
Affiliation(s)
- Joseph E. Chambers
- Cambridge Institute for Medical Research (CIMR), Department of Medicine, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Nikita Zubkov
- Cambridge Institute for Medical Research (CIMR), Department of Medicine, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Markéta Kubánková
- Department of Chemistry, Imperial College London, Wood Lane, London W12 0BZ, UK
| | - Jonathon Nixon-Abell
- Cambridge Institute for Medical Research (CIMR), Department of Medicine, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Ioanna Mela
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Susana Abreu
- Cambridge Institute for Medical Research (CIMR), Department of Medicine, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Max Schwiening
- Cambridge Institute for Medical Research (CIMR), Department of Medicine, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Giulia Lavarda
- Departamento de Química Orgánica and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Ismael López-Duarte
- Departamento de Química Orgánica and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Jennifer A. Dickens
- Cambridge Institute for Medical Research (CIMR), Department of Medicine, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Tomás Torres
- Departamento de Química Orgánica and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
- IMDEA Nanociencia, Campus de Cantoblanco, Madrid 28049, Spain
| | - Clemens F. Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Liam J. Holt
- Institute for Systems Genetics, New York University Grossman School of Medicine, 435 E 30th St, New York, NY 10016, USA
| | - Edward Avezov
- Department of Clinical Neurosciences and UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0AH, UK
| | - James A. Huntington
- Cambridge Institute for Medical Research (CIMR), Department of Medicine, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Peter St George-Hyslop
- Cambridge Institute for Medical Research (CIMR), Department of Medicine, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
- Department of Medicine (Neurology), Temerty Faculty of Medicine, University of Toronto, University Health Network, Toronto, ON M5T 0S8, Canada
- Taub Institute For Research on Alzheimer’s Disease and the Ageing Brain, Department of Neurology, Columbia University Irvine Medical Center, 630 West 1/68 Street, New York, NY 10032, USA
| | - Marina K. Kuimova
- Department of Chemistry, Imperial College London, Wood Lane, London W12 0BZ, UK
| | - Stefan J. Marciniak
- Cambridge Institute for Medical Research (CIMR), Department of Medicine, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
- Royal Papworth Hospital, Cambridge CB2 0AY, UK
| |
Collapse
|
5
|
Lebeau PF, Platko K, Byun JH, Makda Y, Austin RC. The Emerging Roles of Intracellular PCSK9 and Their Implications in Endoplasmic Reticulum Stress and Metabolic Diseases. Metabolites 2022; 12:metabo12030215. [PMID: 35323658 PMCID: PMC8954296 DOI: 10.3390/metabo12030215] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
The importance of the proprotein convertase subtilisin/kexin type-9 (PCSK9) gene was quickly recognized by the scientific community as the third locus for familial hypercholesterolemia. By promoting the degradation of the low-density lipoprotein receptor (LDLR), secreted PCSK9 protein plays a vital role in the regulation of circulating cholesterol levels and cardiovascular disease risk. For this reason, the majority of published works have focused on the secreted form of PCSK9 since its initial characterization in 2003. In recent years, however, PCSK9 has been shown to play roles in a variety of cellular pathways and disease contexts in LDLR-dependent and -independent manners. This article examines the current body of literature that uncovers the intracellular and LDLR-independent roles of PCSK9 and also explores the many downstream implications in metabolic diseases.
Collapse
|
6
|
Reck J, Beuret N, Demirci E, Prescianotto-Baschong C, Spiess M. Small disulfide loops in peptide hormones mediate self-aggregation and secretory granule sorting. Life Sci Alliance 2022; 5:5/5/e202101279. [PMID: 35086936 PMCID: PMC8807871 DOI: 10.26508/lsa.202101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/24/2022] Open
Abstract
Unlike constitutively secreted proteins, peptide hormones are stored in densely packed secretory granules, before regulated release upon stimulation. Secretory granules are formed at the TGN by self-aggregation of prohormones as functional amyloids. The nonapeptide hormone vasopressin, which forms a small disulfide loop, was shown to be responsible for granule formation of its precursor in the TGN as well as for toxic fibrillar aggregation of unfolded mutants in the ER. Several other hormone precursors also contain similar small disulfide loops suggesting their function as a general device to mediate aggregation for granule sorting. To test this hypothesis, we studied the capacity of small disulfide loops of different hormone precursors to mediate aggregation in the ER and the TGN. They indeed induced ER aggregation in Neuro-2a and COS-1 cells. Fused to a constitutively secreted reporter protein, they also promoted sorting into secretory granules, enhanced stimulated secretion, and increased Lubrol insolubility in AtT20 cells. These results support the hypothesis that small disulfide loops act as novel signals for sorting into secretory granules by self-aggregation.
Collapse
|
7
|
Sugawara L, Nakamura T, Ishizuka Y, Maegawa H. A case of central diabetes insipidus due to neurophysin II gene abnormality diagnosed based on a family history of nocturnal enuresis. Endocr J 2022; 69:95-100. [PMID: 34544934 DOI: 10.1507/endocrj.ej21-0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The etiology of central diabetes insipidus (DI) is classified into (1) idiopathic, (2) familial, and (3) secondary. Of these, familial central diabetes insipidus shows an autosomal dominant inheritance. We herein report a case in which this disease was diagnosed based on a family history of nocturnal enuresis. A 40-year-old man had had symptoms of polydipsia, polyuria and nocturia since childhood and found that his daughter had the same symptoms. Despite reaching nine years old, his daughter's nocturnal enuresis still had not improved, resulting in her consulting a pediatrician. She was suspected of having familial neurohypophyseal diabetes insipidus (FNDI) based on her family history and was referred along with her father for a detailed examination and treatment. A hypertonic saline load test (HSLT) to evaluate the arginine vasopressin (AVP) reaction was performed in both the proband and his daughter. The results showed no increase in AVP levels in response to high plasma osmolality. The water deprivation test (WDT) revealed he was suffering from partial DI. Based on the above findings and considering the possibility of familial central diabetes insipidus, we performed a gene mutation analysis of AVP-neurophysin II (NPII). Both the father and daughter had an exon 2 abnormality in this gene (c232_234delGAG; pGlu78del), and this gene mutation is known to cause NPII protein abnormality, abolishing the function of AVP as a carrier protein. This case was considered to have provided an opportunity to understand the role of an NPII gene abnormality in familial central diabetes insipidus.
Collapse
Affiliation(s)
- Lucia Sugawara
- Department of Endocrinology and Metabolism, Omihachiman Community Medical Center, Omihachiman, Shiga 523-0082, Japan
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2092, Japan
| | - Takaaki Nakamura
- Department of Endocrinology and Metabolism, Omihachiman Community Medical Center, Omihachiman, Shiga 523-0082, Japan
| | - Yoshitaka Ishizuka
- Department of Endocrinology and Metabolism, Omihachiman Community Medical Center, Omihachiman, Shiga 523-0082, Japan
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2092, Japan
| |
Collapse
|
8
|
Li H, Sun S. Protein Aggregation in the ER: Calm behind the Storm. Cells 2021; 10:cells10123337. [PMID: 34943844 PMCID: PMC8699410 DOI: 10.3390/cells10123337] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
As one of the largest organelles in eukaryotic cells, the endoplasmic reticulum (ER) plays a vital role in the synthesis, folding, and assembly of secretory and membrane proteins. To maintain its homeostasis, the ER is equipped with an elaborate network of protein folding chaperones and multiple quality control pathways whose cooperative actions safeguard the fidelity of protein biogenesis. However, due to genetic abnormalities, the error-prone nature of protein folding and assembly, and/or defects or limited capacities of the protein quality control systems, nascent proteins may become misfolded and fail to exit the ER. If not cleared efficiently, the progressive accumulation of misfolded proteins within the ER may result in the formation of toxic protein aggregates, leading to the so-called “ER storage diseases”. In this review, we first summarize our current understanding of the protein folding and quality control networks in the ER, including chaperones, unfolded protein response (UPR), ER-associated protein degradation (ERAD), and ER-selective autophagy (ER-phagy). We then survey recent research progress on a few ER storage diseases, with a focus on the role of ER quality control in the disease etiology, followed by a discussion on outstanding questions and emerging concepts in the field.
Collapse
Affiliation(s)
- Haisen Li
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Shengyi Sun
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Correspondence:
| |
Collapse
|
9
|
Săcărescu A, Turliuc MD, Brănișteanu DD. Role of copeptin in the diagnosis of traumatic neuroendocrine dysfunction. Neuropeptides 2021; 89:102167. [PMID: 34175655 DOI: 10.1016/j.npep.2021.102167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/08/2021] [Accepted: 06/20/2021] [Indexed: 11/22/2022]
Abstract
Traumatic neuroendocrine dysfunction may present with diabetes insipidus (DI) or with the syndrome of inappropriate antidiuretic hormone secretion (SIADH). Both these pathologies involve a disturbance in the antidiuretic hormone (ADH) secretion, causing dysnatremias. Diagnosis of posttraumatic ADH dysfunction is hampered by technical difficulties in ADH assessment, and relies mostly on non-specific serum sodium, serum and urine osmolality and diuresis, often leading to misdiagnosis in the acute care setting. Research now focuses on the diagnostic role of copeptin, a peptide secreted together with ADH in an equimolar fashion, and which can be accurately evaluated. Recent studies identified cut-off values of 2.6 pmol/L for baseline copeptin and of 4.9 and 3.8 pmol/L for hypertonic saline infusion and arginine infusion stimulated copeptin, respectively, for the diagnosis of DI in patients with polyuria-polydipsia syndrome. Although SIADH is more difficult to be explored due to its heterogeneity, a ratio of copeptin to urinary sodium below 30 pmol/mmol identifies euvolemic hyponatremia. Exploring the role of copeptin assessment in patients with traumatic brain injury (TBI) in the acute phase may improve their diagnosis accuracy, management and outcome.
Collapse
Affiliation(s)
- Alina Săcărescu
- Department of Medical Specialties II, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii, Iasi 700115, Romania; Department of Neurology, Clinical Rehabilitation Hospital, 14 Pantelimon Halipa, Iasi 700661, Romania.
| | - Mihaela-Dana Turliuc
- Department of Surgery II, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii, Iasi 700115, Romania; Department of Neurosurgery II, "Prof. Dr. N. Oblu" Clinical Emergency Hospital, 2 Ateneului, Iasi 700309, Romania
| | - Dumitru D Brănișteanu
- Department of Medical Specialties II, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii, Iasi 700115, Romania; Department of Endocrinology, "Sf. Spiridon" Clinical County Emergency Hospital", 1 Independentei, Iasi 700111, Romania
| |
Collapse
|
10
|
Alvelos MI, Francisco Â, Gomes L, Paiva I, Melo M, Marques P, Gama-de-Sousa S, Carreiro S, Quintela T, Gonçalves I, Lemos MC. Familial neurohypophyseal diabetes insipidus: clinical, genetic and functional studies of novel mutations in the arginine vasopressin gene. Pituitary 2021; 24:400-411. [PMID: 33433888 DOI: 10.1007/s11102-020-01119-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 11/27/2022]
Abstract
PURPOSE Familial neurohypophyseal diabetes insipidus (FNDI) is a rare disorder characterized by childhood-onset progressive polyuria and polydipsia due to mutations in the arginine vasopressin (AVP) gene. The aim of the study was to describe the clinical and molecular characteristics of families with neurohypophyseal diabetes insipidus. METHODS Five Portuguese families with autosomal dominant FNDI underwent sequencing of the AVP gene and the identified mutations were functionally characterized by in vitro studies. RESULTS Three novel and two recurrent heterozygous mutations were identified in the AVP gene. These consisted of one initiation codon mutation in the signal peptide coding region (c.2T > C, p.Met1?), three missense mutations in the neurophysin II (NPII) coding region (c.154T > C, p.Cys52Arg; c.289C > G, p.Arg97Gly; and c.293G > C, p.Cys98Ser), and one nonsense mutation in the NPII coding region (c.343G > T, p.Glu115Ter). In vitro transfection of neuronal cells with expression vectors containing each mutation showed that the mutations resulted in intracellular retention of the vasopressin prohormone. Patients showed progressive symptoms of polyuria and polydipsia, but with wide variability in severity and age at onset. No clear genotype-phenotype correlation was observed. CONCLUSION The intracellular accumulation of mutant vasopressin precursors supports the role of cellular toxicity of the mutant proteins in the etiology of the disorder and explains the progressive onset of the disorder. These findings further expand the AVP mutational spectrum in FNDI and contribute to the understanding of the molecular pathogenic mechanisms involved in FNDI.
Collapse
Affiliation(s)
- Maria Inês Alvelos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilha, Portugal
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ângela Francisco
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilha, Portugal
| | - Leonor Gomes
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de Coimbra, 3000-075, Coimbra, Portugal
| | - Isabel Paiva
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de Coimbra, 3000-075, Coimbra, Portugal
| | - Miguel Melo
- Serviço de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitário de Coimbra, 3000-075, Coimbra, Portugal
| | - Pedro Marques
- Serviço de Endocrinologia, Instituto Português de Oncologia de Lisboa, 1099-023, Lisboa, Portugal
| | - Susana Gama-de-Sousa
- Serviço de Pediatria, Centro Hospitalar do Médio Ave, Unidade de V. N. Famalicão, 4761-917, Vila Nova de Famalicão, Portugal
| | - Sofia Carreiro
- Serviço de Patologia Clínica, Instituto Português de Oncologia de Coimbra, 3000-075, Coimbra, Portugal
| | - Telma Quintela
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilha, Portugal
| | - Isabel Gonçalves
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilha, Portugal
| | - Manuel Carlos Lemos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilha, Portugal.
| |
Collapse
|
11
|
Feldkamp LLI, Kaminsky E, Kienitz T, Quinkler M. Central Diabetes Insipidus Caused by Arginine Vasopressin Gene Mutation: Report of a Novel Mutation and Review of Literature. Horm Metab Res 2020; 52:796-802. [PMID: 32629514 DOI: 10.1055/a-1175-1307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Familial neurohypophyseal diabetes insipidus (FNDI) is an autosomal dominant hereditary disorder characterized by severe polydipsia and polyuria that usually presents in early childhood. In this study, we describe a new arginine vasopressin (AVP) gene mutation in an ethnic German family with FNDI and provide an overview of disease-associated AVP-gene mutations that are already described in literature. Three members of a German family with neurohypophyseal diabetes insipidus were studied. Isolated DNA from peripheral blood samples was used for mutation analysis by sequencing the whole coding region of AVP-NPII gene. Furthermore, we searched the electronic databases MEDLINE (Pubmed) as well as HGMD, LOVD-ClinVar, db-SNP and genomAD in order to compare our cases to that of other patients with FNDI. Genetic analysis of the patients revealed a novel heterozygote missense mutation in exon 2 of the AVP gene (c.274T>G), which has not yet been described in literature. We identified reports of more than 90 disease-associated mutations in the AVP gene in literature. The novel mutation of the AVP gene seems to cause FNDI in the presented German family. Similar to our newly detected mutation, most mutations causing FNDI are found in exon 2 of the AVP gene coding for neurophysin II. Clinically, it is important to think of FNDI in young children presenting with polydipsia and polyuria.
Collapse
Affiliation(s)
- Lara L I Feldkamp
- Endocrinology in Charlottenburg, Berlin, Germany
- Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Tina Kienitz
- Endocrinology in Charlottenburg, Berlin, Germany
| | | |
Collapse
|
12
|
Miyata T, Hagiwara D, Hodai Y, Miwata T, Kawaguchi Y, Kurimoto J, Ozaki H, Mitsumoto K, Takagi H, Suga H, Kobayashi T, Sugiyama M, Onoue T, Ito Y, Iwama S, Banno R, Matsumoto M, Kawakami N, Ohno N, Sakamoto H, Arima H. Degradation of Mutant Protein Aggregates within the Endoplasmic Reticulum of Vasopressin Neurons. iScience 2020; 23:101648. [PMID: 33103081 PMCID: PMC7578753 DOI: 10.1016/j.isci.2020.101648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/08/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Misfolded or unfolded proteins in the ER are said to be degraded only after translocation or isolation from the ER. Here, we describe a mechanism by which mutant proteins are degraded within the ER. Aggregates of mutant arginine vasopressin (AVP) precursor were confined to ER-associated compartments (ERACs) connected to the ER in AVP neurons of a mouse model of familial neurohypophysial diabetes insipidus. The ERACs were enclosed by membranes, an ER chaperone and marker protein of phagophores and autophagosomes were expressed around the aggregates, and lysosomes fused with the ERACs. Moreover, lysosome-related molecules were present within the ERACs, and aggregate degradation within the ERACs was dependent on autophagic-lysosomal activity. Thus, we demonstrate that protein aggregates can be degraded by autophagic-lysosomal machinery within specialized compartments of the ER. Mutant AVP precursors are confined to ERACs connected to the ER of FNDI AVP neurons Lysosomes fuse with ERACs surrounded by phagophore-like membranes Lysosome-related molecules are localized within ERACs Rapamycin reduces and chloroquine increases protein aggregate accumulation in ERACs
Collapse
Affiliation(s)
- Takashi Miyata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yuichi Hodai
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tsutomu Miwata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yohei Kawaguchi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Junki Kurimoto
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hajime Ozaki
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kazuki Mitsumoto
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hiroshi Takagi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tomoko Kobayashi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yoshihiro Ito
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.,Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya 464-8601, Japan
| | - Mami Matsumoto
- Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki 444-8787, Japan
| | - Natsuko Kawakami
- Ushimado Marine Institute, Graduate School of Natural Science and Technology, Okayama University, Setouchi 701-4303, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, School of Medicine, Shimotsuke 329-0498, Japan.,Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki 444-8787, Japan
| | - Hirotaka Sakamoto
- Ushimado Marine Institute, Graduate School of Natural Science and Technology, Okayama University, Setouchi 701-4303, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
13
|
Abstract
The two main differential diagnoses of central diabetes insipidus are nephrogenic diabetes insipidus and primary polydipsia. Reliable distinction between those entities is essential as treatment differs substantially with the wrong treatment potentially leading to serious complications. Past diagnostic measures using the indirect water deprivation test had several pitfalls, resulting in a low diagnostic accuracy. With the introduction of copeptin, a stable and reliable surrogate marker for arginine vasopressin, diagnosis of diabetes insipidus was new evaluated. While unstimulated basal copeptin measurement reliably diagnoses nephrogenic diabetes insipidus, a stimulation test is needed to differentiate patients with central diabetes insipidus from patients with primary polydipsia. Stimulation can either be achieved through hypertonic saline infusion or arginine infusion. While the former showed high diagnostic accuracy and superiority over the indirect water deprivation test in a recent validation study, the diagnostic accuracy for arginine-stimulated copeptin was slightly lower, but superior in test tolerance. In summary of the recent findings, a new copeptin based diagnostic algorithm is proposed for the reliable diagnosis of diabetes insipidus.
Collapse
Affiliation(s)
- Julie Refardt
- Departments of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Switzerland; University of Basel, Basel, Switzerland.
| |
Collapse
|
14
|
Abstract
In the majority of cases, hereditary neurohypophyseal diabetes insipidus (DI) is a monogenic disorder caused by mutations in the AVP gene. Dominant transmission is by far the most common form. In these patients, symptoms develop gradually at various ages during childhood, progressing with complete penetrance to polyuria and polydipsia that is usually severe. In autosomal dominant neurohypophyseal DI (ADNDI), the mutant prohormone is folding deficient and consequently retained in the ER, where it forms amyloid-like fibrillar aggregates. Degradation by proteasomes occurs, but their clearance capacity appears to be insufficient. Postmortem studies in affected individuals suggest a neurodegenerative process confined to vasopressinergic neurons. Other forms of genetic neurohypophyseal DI include the very rare autosomal recessive type, also caused by mutations in the AVP gene, and complex multiorgan disorders, such as Wolfram syndrome. In all individuals where a congenital form of DI is suspected, including nephrogenic types, genetic analysis should be performed.
Collapse
Affiliation(s)
- Martin Spiess
- University of Basel, Biozentrum, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland.
| | - Nicole Beuret
- University of Basel, Biozentrum, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland.
| | - Jonas Rutishauser
- University of Basel, Biozentrum, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland; Kantonsspital Baden, Clinical Trial Unit, Im Ergel 1, CH-5405 Baden, Switzerland.
| |
Collapse
|
15
|
García-Castaño A, Madariaga L, Pérez de Nanclares G, Vela A, Rica I, Gaztambide S, Martínez R, Martinez de LaPiscina I, Urrutia I, Aguayo A, Velasco O, Castaño L. Forty-One Individuals With Mutations in the AVP-NPII Gene Associated With Familial Neurohypophyseal Diabetes Insipidus. J Clin Endocrinol Metab 2020; 105:5735194. [PMID: 32052034 DOI: 10.1210/clinem/dgaa069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/07/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Familial neurohypophyseal diabetes insipidus is a rare disease produced by a deficiency in the secretion of antidiuretic hormone and is caused by mutations in the arginine vasopressin gene. OBJECTIVE Clinical, biochemical, and genetic characterization of a group of patients clinically diagnosed with familial neurohypophyseal diabetes insipidus, 1 of the largest cohorts of patients with protein neurophysin II (AVP-NPII) gene alterations studied so far. DESIGN The AVP-NPII gene was screened for mutations by PCR followed by direct Sanger sequencing in 15 different unrelated families from Spain. RESULTS The 15 probands presented with polyuria and polydipsia as the most important symptoms at the time of diagnosis. In these patients, the disease was diagnosed at a median of 6 years of age. We observed 11 likely pathogenic variants. Importantly, 4 of the AVP-NPII variants were novel (p.(Tyr21Cys), p.(Gly45Ser), p.(Cys75Tyr), p.(Gly88Cys)). CONCLUSIONS Cytotoxicity seems to be due to consequences common to all the variants found in our cohort, which are not able to fold correctly and pass the quality control of the ER. In concordance, we found autosomal dominant familial neurohypophyseal diabetes insipidus in the 15 families studied.
Collapse
Affiliation(s)
| | - Leire Madariaga
- Biocruces Bizkaia Health Research Institute, CIBERDEM, CIBERER, Barakaldo, Spain
- Hospital Universitario Cruces, Barakaldo, Spain
- UPV/EHU, Leioa, Spain
| | - Gustavo Pérez de Nanclares
- Biocruces Bizkaia Health Research Institute, CIBERDEM, CIBERER, Barakaldo, Spain
- Hospital Universitario Cruces, Barakaldo, Spain
| | - Amaia Vela
- Biocruces Bizkaia Health Research Institute, CIBERDEM, CIBERER, Barakaldo, Spain
- Hospital Universitario Cruces, Barakaldo, Spain
- UPV/EHU, Leioa, Spain
| | - Itxaso Rica
- Biocruces Bizkaia Health Research Institute, CIBERDEM, CIBERER, Barakaldo, Spain
- Hospital Universitario Cruces, Barakaldo, Spain
| | - Sonia Gaztambide
- Biocruces Bizkaia Health Research Institute, CIBERDEM, CIBERER, Barakaldo, Spain
- Hospital Universitario Cruces, Barakaldo, Spain
- UPV/EHU, Leioa, Spain
| | - Rosa Martínez
- Biocruces Bizkaia Health Research Institute, CIBERDEM, CIBERER, Barakaldo, Spain
| | | | - Inés Urrutia
- Biocruces Bizkaia Health Research Institute, CIBERDEM, CIBERER, Barakaldo, Spain
| | - Anibal Aguayo
- Biocruces Bizkaia Health Research Institute, CIBERDEM, CIBERER, Barakaldo, Spain
- Hospital Universitario Cruces, Barakaldo, Spain
| | - Olaia Velasco
- Biocruces Bizkaia Health Research Institute, CIBERDEM, CIBERER, Barakaldo, Spain
| | | | - Luis Castaño
- Biocruces Bizkaia Health Research Institute, CIBERDEM, CIBERER, Barakaldo, Spain
- Hospital Universitario Cruces, Barakaldo, Spain
- UPV/EHU, Leioa, Spain
| |
Collapse
|
16
|
Amyloid-like aggregation of provasopressin. VITAMINS AND HORMONES 2020. [PMID: 32138954 DOI: 10.1016/bs.vh.2019.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
The antidiuretic hormone vasopressin is synthesized as a longer precursor protein. After folding in the endoplasmic reticulum (ER), provasopressin is transported through the secretory pathway, forms secretory granules in the trans-Golgi network (TGN), is processed, and finally secreted into the circulation. Mutations in provasopressin cause autosomal dominant diabetes insipidus. They prevent native protein folding and cause fibrillar, amyloid-like aggregation in the ER, which eventually results in cell death. Secretory granules of peptide hormones were proposed to constitute functional amyloids and thus might be the cause of amyloid formation of misfolded mutant protein in the ER. Indeed, the same two segments in the precursor-vasopressin and a C-terminal glycopeptide-were found to be responsible for pathological aggregation in the ER and physiological aggregation in granule formation in the TGN. Furthermore, even wild-type provasopressin tends to aggregate in the ER, but is controlled by ER-associated degradation. When essential components thereof, Sel1L or Hrd1, were inactivated, wild-type provasopressin accumulated as fibrillar aggregates in vasopressinergic neurons in mice, causing diabetes insipidus. Evolution of amyloidogenic sequences for granule formation thus made provasopressin dependent on ER quality control mechanisms. These principles may similarly apply to other peptide hormones.
Collapse
|
17
|
Spiess M, Friberg M, Beuret N, Prescianotto-Baschong C, Rutishauser J. Role of protein aggregation and degradation in autosomal dominant neurohypophyseal diabetes insipidus. Mol Cell Endocrinol 2020; 501:110653. [PMID: 31785344 DOI: 10.1016/j.mce.2019.110653] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022]
Abstract
This review focuses on the cellular and molecular aspects underlying familial neurohypophyseal diabetes insipidus (DI), a rare disorder that is usually transmitted in an autosomal-dominant fashion. The disease, manifesting in infancy or early childhood and gradually progressing in severity, is caused by fully penetrant heterozygous mutations in the gene encoding prepro-vasopressin-neurophysin II, the precursor of the antidiuretic hormone arginine vasopressin (AVP). Post mortem studies in affected adults have shown cell degeneration in vasopressinergic hypothalamic nuclei. Studies in cells expressing pathogenic mutants and knock-in rodent models have shown that the mutant precursors are folding incompetent and fail to exit the endoplasmic reticulum (ER), as occurs normally with proteins that have entered the regulated secretory pathway. A portion of these mutants is eliminated via ER-associated degradation (ERAD) by proteasomes after retrotranslocation to the cytosol. Another portion forms large disulfide-linked fibrillar aggregates within the ER, in which wild-type precursor is trapped. Aggregation capacity is independently conferred by two domains of the prohormone, namely the AVP moiety and the C-terminal glycopeptide (copeptin). The same domains are also required for packaging into dense-core secretory granules and regulated secretion, suggesting a disturbed balance between the physiological self-aggregation at the trans-Golgi network and avoiding premature aggregate formation at the ER in the disease. The critical role of ERAD in maintaining physiological water balance has been underscored by experiments in mice expressing wild-type AVP but lacking critical components of the ERAD machinery. These animals also develop DI and show amyloid-like aggregates in the ER lumen. Thus, the capacity of the ERAD is exceeded in autosomal dominant DI, which can be viewed as a neurodegenerative disorder associated with the formation of amyloid ER aggregates. While DI symptoms develop prior to detectable cell death in transgenic DI mice, the eventual loss of vasopressinergic neurons is accompanied by autophagy, but the mechanism leading to cell degeneration in autosomal dominant neurohypophyseal DI still remains unknown.
Collapse
Affiliation(s)
- Martin Spiess
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland
| | - Michael Friberg
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland
| | - Nicole Beuret
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland
| | | | - Jonas Rutishauser
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland.
| |
Collapse
|
18
|
Christ-Crain M, Fenske WK. Copeptin in the differential diagnosis of hypotonic polyuria. J Endocrinol Invest 2020; 43:21-30. [PMID: 31368050 DOI: 10.1007/s40618-019-01087-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/17/2019] [Indexed: 11/26/2022]
Abstract
COPEPTIN Copeptin is secreted in equimolar amount to Arginine Vasopressin (AVP) but can easily be measured with a sandwich immunoassay. Both peptides, copeptin and AVP, show a high correlation. Accordingly, copeptin mirrors the amount of AVP in the circulation and its measurement provides an attractive marker in the differential diagnosis of diabetes insipidus. THE POLYURIA POLYDIPSIA SYNDROME Diabetes insipidus-either central or nephrogenic-has to be differentiated from primary polydipsia. Differentiation is crucial since wrong treatment can have deleterious consequences. Since many decades, the "gold standard" for differential diagnosis has been the classical water deprivation test, which has several limitations leading to an overall limited diagnostic accuracy. In addition, the test has a long duration of 17 hours and is cumbersome for patients. Clinical signs and symptoms as well as MRI characteristics overlap between patients with diabetes insipidus and primary polydipsia. Direct measurement of AVP upon osmotic stimulation was first shown to overcome these limitations, but failed to enter clinical practice mainly due to technical limitations of the AVP assay. COPEPTIN AS DIAGNOSTIC TOOL IN THE POLYURIA POLYDIPSIA SYNDROME We have recently shown that copeptin, without prior water deprivation, identifies patients with nephrogenic diabetes insipidus. On the other hand, for the more difficult differentiation between central diabetes insipidus and primary polydipsia, a copeptin level of 4.9 pmol/L stimulated with hypertonic saline infusion differentiates between these two entities with a high diagnostic accuracy, and is superior to the water deprivation test. It is important to note that close sodium monitoring during the hypertonic saline test is a prerequisite. CONCLUSION Therefore, we propose that copeptin upon hypertonic saline infusion should become the new standard test in the differential diagnosis of diabetes insipidus.
Collapse
Affiliation(s)
- M Christ-Crain
- Department of Endocrinology, Diabetology and Metabolism, University Hospital of Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland.
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, University Hospital Leipzig, Leipzig, Germany.
| | - W K Fenske
- Department of Endocrinology, Diabetology and Metabolism, University Hospital of Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland.
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, University Hospital Leipzig, Leipzig, Germany.
| |
Collapse
|
19
|
Christ-Crain M. Diabetes Insipidus: New Concepts for Diagnosis. Neuroendocrinology 2020; 110:859-867. [PMID: 31986514 DOI: 10.1159/000505548] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/18/2019] [Indexed: 11/19/2022]
Abstract
Diabetes insipidus (DI), be it from central or from nephrogenic origin, has to be differentiated from primary polydipsia. This differentiation is crucial since wrong treatment can have dangerous consequences. For decades, the "gold standard" for differential diagnosis has been the standard water deprivation test. However, this test has several limitations leading to an overall limited diagnostic accuracy. In addition, the test has a long duration of 17 h and is cumbersome for patients. Also clinical signs and symptoms and MRI characteristics overlap between patients with DI and primary polydipsia. Direct measurement of arginine vasopressin (AVP) upon osmotic stimulation was first shown to overcome these limitations, but failed to enter clinical practice mainly due to technical limitations of the AVP assay. Copeptin is secreted in equimolar ratio to AVP, mirroring AVP concentrations in the circulation. We have shown that copeptin, without prior fluid deprivation, identifies patients with nephrogenic DI. For the more difficult differentiation between central DI and primary polydipsia, a copeptin level of 4.9 pmol/L stimulated with hypertonic saline infusion differentiates between these 2 entities with a high diagnostic accuracy and is superior to the water deprivation test. However, it is important to note that close and regular sodium monitoring every 30 min during the hypertonic saline test is a prerequisite, which is not possible in all hospitals. Furthermore, side effects are common. Therefore, a nonosmotic stimulation test would be advantageous. Arginine significantly stimulates copeptin and therefore is a novel, so far unknown stimulus of this peptide. Consequently, infusion of arginine with subsequent copeptin measurement was shown to be an even simpler and better tolerated test, but head to head comparison is still lacking.
Collapse
Affiliation(s)
- Mirjam Christ-Crain
- Department of Endocrinology, Diabetology and Metabolism University Hospital Basel, Basel, Switzerland,
- Department of Clinical Research, University of Basel, Basel, Switzerland,
| |
Collapse
|
20
|
Bhattacharya A, Qi L. ER-associated degradation in health and disease - from substrate to organism. J Cell Sci 2019; 132:132/23/jcs232850. [PMID: 31792042 DOI: 10.1242/jcs.232850] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The recent literature has revolutionized our view on the vital importance of endoplasmic reticulum (ER)-associated degradation (ERAD) in health and disease. Suppressor/enhancer of Lin-12-like (Sel1L)-HMG-coA reductase degradation protein 1 (Hrd1)-mediated ERAD has emerged as a crucial determinant of normal physiology and as a sentinel against disease pathogenesis in the body, in a largely substrate- and cell type-specific manner. In this Review, we highlight three features of ERAD, constitutive versus inducible ERAD, quality versus quantity control of ERAD and ERAD-mediated regulation of nuclear gene transcription, through which ERAD exerts a profound impact on a number of physiological processes.
Collapse
Affiliation(s)
- Asmita Bhattacharya
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA.,Graduate Program of Genetics, Genomics and Development, Cornell University, Ithaca, NY 14853, USA
| | - Ling Qi
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA .,Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| |
Collapse
|
21
|
Abstract
When protein/peptides aggregate, they usually form the amyloid state consisting of cross β-sheet structure built by repetitively stacked β-strands forming long fibrils. Amyloids are usually associated with disease including Alzheimer's. However, amyloid has many useful features. It efficiently transforms protein from the soluble to the insoluble state in an essentially two-state process, while its repetitive structure provides high stability and a robust prion-like replication mechanism. Accordingly, amyloid is used by nature in multifaceted and ingenious ways of life, ranging from bacteria and fungi to mammals. These include (1) Structure: Templating for small chemical molecules (Pmel17), biofilm formation in bacteria (curli), assisting aerial hyphae formation in streptomycetes (chaplins) or monolayer formation at a surface (hydrophobins). (2) Reservoirs: A storage state for peptide/proteins to protect them from their surroundings or vice versa (storage of peptide hormones in mammalian secretory granules or major basic protein in eosinophils). (3) Information carriers: The fungal immune system (HET-s prion in Podospora anserina, yeast prions) or long-term memory (e.g., mnemons in yeast, cytoplasmic polyadenylation element-binding protein in aplysia). Aggregation is also used to (4) "suppress" the function of the soluble protein (e.g., Cdc19 in yeast stress granules), or (5) "signaling" through formation of oligomers (e.g., HET-s prion, necroptosis-related proteins RIP1/RIP3). This review summarizes current knowledge on functional amyloids with a focus on the amyloid systems curli in bacteria, HET-s prion in P. anserina, and peptide hormone storage in mammals together with an attempt to highlight differences between functional and disease-associated amyloids.
Collapse
Affiliation(s)
- Daniel Otzen
- iNANO, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Roland Riek
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, CH-8093 Zürich, Switzerland
| |
Collapse
|
22
|
Refardt J, Winzeler B, Christ-Crain M. Copeptin and its role in the diagnosis of diabetes insipidus and the syndrome of inappropriate antidiuresis. Clin Endocrinol (Oxf) 2019; 91:22-32. [PMID: 31004513 PMCID: PMC6850413 DOI: 10.1111/cen.13991] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/08/2019] [Accepted: 04/15/2019] [Indexed: 01/14/2023]
Abstract
Copeptin is secreted in an equimolar amount to arginine vasopressin (AVP) but can easily be measured in plasma or serum with a sandwich immunoassay. The main stimuli for copeptin are similar to AVP, that is an increase in osmolality and a decrease in arterial blood volume and pressure. A high correlation between copeptin and AVP has been shown. Accordingly, copeptin mirrors the amount of AVP in the circulation. Copeptin has, therefore, been evaluated as diagnostic biomarker in vasopressin-dependent disorders of body fluid homeostasis. Disorders of body fluid homeostasis are common and can be divided into hyper- and hypoosmolar circumstances: the classical hyperosmolar disorder is diabetes insipidus, while the most common hypoosmolar disorder is the syndrome of inappropriate antidiuresis (SIAD). Copeptin measurement has led to a "revival" of the direct test in the differential diagnosis of diabetes insipidus. Baseline copeptin levels, without prior thirsting, unequivocally identify patients with nephrogenic diabetes insipidus. In contrast, for the difficult differentiation between central diabetes insipidus and primary polydipsia, a stimulated copeptin level of 4.9 pmol/L upon hypertonic saline infusion differentiates these two entities with a high diagnostic accuracy and is clearly superior to the classical water deprivation test. On the contrary, in the SIAD, copeptin measurement is of only little diagnostic value. Copeptin levels widely overlap in patients with hyponatraemia and emphasize the heterogeneity of the disease. Additionally, a variety of factors lead to unspecific copeptin elevations in the acute setting further complicating its interpretation. The broad use of copeptin as diagnostic marker in hyponatraemia and specifically to detect cancer-related disease in SIADH patients can, therefore, not be recommended.
Collapse
Affiliation(s)
- Julie Refardt
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Bettina Winzeler
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Mirjam Christ-Crain
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
23
|
Christ-Crain M. EJE AWARD 2019: New diagnostic approaches for patients with polyuria polydipsia syndrome. Eur J Endocrinol 2019; 181:R11-R21. [PMID: 31067508 PMCID: PMC6598864 DOI: 10.1530/eje-19-0163] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/08/2019] [Indexed: 02/02/2023]
Abstract
Diabetes insipidus (DI), be it from central or nephrogenic origin, must be differentiated from secondary forms of hypotonic polyuria such as primary polydipsia. Differentiation is crucial since wrong treatment can have deleterious consequences. Since decades, the gold standard for differentiation has been the water deprivation test, which has limitations leading to an overall unsatisfying diagnostic accuracy. Furthermore, it is cumbersome for patients with a long test duration. Clinical signs and symptoms and MRI characteristics overlap between patients with DI and primary polydipsia. The direct test including vasopressin (AVP) measurement upon osmotic stimulation was meant to overcome these limitations, but failed to enter clinical practice mainly due to technical constraints of the AVP assay. Copeptin is secreted in equimolar amount to AVP but can easily be measured with a sandwich immunoassay. A high correlation between copeptin and AVP has been shown. Accordingly, copeptin mirrors the amount of AVP in the circulation and has led to a 'revival' of the direct test in the differential diagnosis of DI. We have shown that a baseline copeptin, without prior thirsting, unequivocally identifies patients with nephrogenic DI. In contrast, for the differentiation between central DI and primary polydipsia, a stimulated copeptin level of 4.9 pmol/L upon hypertonic saline infusion differentiates these two entities with a high diagnostic accuracy and is superior to the water deprivation test. Close sodium monitoring during the test is a prerequisite. Further new test methods are currently evaluated and might provide an even simpler way of differential diagnosis in the future.
Collapse
Affiliation(s)
- Mirjam Christ-Crain
- Department of Endocrinology, Diabetology and Metabolism and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
24
|
Tao YX, Conn PM. Pharmacoperones as Novel Therapeutics for Diverse Protein Conformational Diseases. Physiol Rev 2018; 98:697-725. [PMID: 29442594 DOI: 10.1152/physrev.00029.2016] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
After synthesis, proteins are folded into their native conformations aided by molecular chaperones. Dysfunction in folding caused by genetic mutations in numerous genes causes protein conformational diseases. Membrane proteins are more prone to misfolding due to their more intricate folding than soluble proteins. Misfolded proteins are detected by the cellular quality control systems, especially in the endoplasmic reticulum, and proteins may be retained there for eventual degradation by the ubiquitin-proteasome system or through autophagy. Some misfolded proteins aggregate, leading to pathologies in numerous neurological diseases. In vitro, modulating mutant protein folding by altering molecular chaperone expression can ameliorate some misfolding. Some small molecules known as chemical chaperones also correct mutant protein misfolding in vitro and in vivo. However, due to their lack of specificity, their potential as therapeutics is limited. Another class of compounds, known as pharmacological chaperones (pharmacoperones), binds with high specificity to misfolded proteins, either as enzyme substrates or receptor ligands, leading to decreased folding energy barriers and correction of the misfolding. Because many of the misfolded proteins are misrouted but do not have defects in function per se, pharmacoperones have promising potential in advancing to the clinic as therapeutics, since correcting routing may ameliorate the underlying mechanism of disease. This review will comprehensively summarize this exciting area of research, surveying the literature from in vitro studies in cell lines to transgenic animal models and clinical trials in several protein misfolding diseases.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University , Auburn, Alabama ; and Departments of Internal Medicine and Cell Biology, Texas Tech University Health Science Center , Lubbock, Texas
| | - P Michael Conn
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University , Auburn, Alabama ; and Departments of Internal Medicine and Cell Biology, Texas Tech University Health Science Center , Lubbock, Texas
| |
Collapse
|
25
|
Mainieri D, Marrano CA, Prinsi B, Maffi D, Tschofen M, Espen L, Stöger E, Faoro F, Pedrazzini E, Vitale A. Maize 16-kD γ-zein forms very unusual disulfide-bonded polymers in the endoplasmic reticulum: implications for prolamin evolution. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5013-5027. [PMID: 30085182 PMCID: PMC6184761 DOI: 10.1093/jxb/ery287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/25/2018] [Indexed: 05/22/2023]
Abstract
In the lumen of the endoplasmic reticulum (ER), prolamin storage proteins of cereal seeds form very large, ordered heteropolymers termed protein bodies (PBs), which are insoluble unless treated with alcohol or reducing agents. In maize PBs, 16-kD γ-zein locates at the interface between a core of alcohol-soluble α-zeins and the outermost layer mainly composed of the reduced-soluble 27-kD γ-zein. 16-kD γ-zein originates from 27-kD γ-zein upon whole-genome duplication and is mainly characterized by deletions in the N-terminal domain that eliminate most Pro-rich repeats and part of the Cys residues involved in inter-chain bonds. 27-kD γ-zein also forms insoluble PBs when expressed in transgenic vegetative tissues. We show that in Arabidopsis leaves, 16-kD γ-zein assembles into disulfide-linked polymers that fail to efficiently become insoluble. Instead of forming PBs, these polymers accumulate as very unusual threads that markedly enlarge the ER lumen, resembling amyloid-like fibers. Domain-swapping between the two γ-zeins indicates that the N-terminal region of 16-kD γ-zein has a dominant effect in preventing full insolubilization. Therefore, a newly evolved prolamin has lost the ability to form homotypic PBs, and has acquired a new function in the assembly of natural, heteropolymeric PBs.
Collapse
Affiliation(s)
- Davide Mainieri
- Istituto di Biologia e Biotecnologia Agraria, CNR, Milano, Italy
| | | | - Bhakti Prinsi
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Dario Maffi
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Marc Tschofen
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Luca Espen
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Eva Stöger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Franco Faoro
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Emanuela Pedrazzini
- Istituto di Biologia e Biotecnologia Agraria, CNR, Milano, Italy
- Correspondence: or
| | - Alessandro Vitale
- Istituto di Biologia e Biotecnologia Agraria, CNR, Milano, Italy
- Correspondence: or
| |
Collapse
|
26
|
Hagiwara D, Grinevich V, Arima H. A novel mechanism of autophagy-associated cell death of vasopressin neurons in familial neurohypophysial diabetes insipidus. Cell Tissue Res 2018; 375:259-266. [PMID: 29961215 DOI: 10.1007/s00441-018-2872-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/09/2018] [Indexed: 10/28/2022]
Abstract
Familial neurohypophysial diabetes insipidus (FNDI), characterized by delayed-onset progressive polyuria and loss of arginine vasopressin (AVP) neuron, is an autosomal dominant disorder caused by AVP gene mutations. We previously generated a knock-in mouse model for FNDI, which recapitulated the phenotype of human FNDI. To address the mechanisms underlying AVP neuron loss, we subjected FNDI mice to intermittent water deprivation, which accelerated the phenotype and induced AVP neuron loss within a relative short period. Electron microscopic analyses revealed that aggregates were confined to a sub-compartment of the endoplasmic reticulum (ER), ER-associated compartment (ERAC), in AVP neurons of FNDI mice under normal conditions. In contrast, aggregates scattered throughout the dilated ER lumen, and phagophores, autophagosome precursors, emerged and surrounded the ER containing scattered aggregates in FNDI mice subjected to water deprivation for 4 weeks, suggesting that failure of ERAC formation leads to autophagy induction for degradation of aggregates. Furthermore, the cytoplasm was entirely occupied with large vacuoles in AVP neurons of FNDI mice subjected to water deprivation for 12 weeks, at which stage 30-40% of AVP neurons were lost. Our data demonstrated that although autophagy should primarily be a protective mechanism, continuous autophagy leads to gradual loss of organelles including ER, resulting in autophagy-associated cell death of AVP neurons in FNDI mice.
Collapse
Affiliation(s)
- Daisuke Hagiwara
- Schaller Research Group on Neuropeptides, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Valery Grinevich
- Schaller Research Group on Neuropeptides, German Cancer Research Center (DKFZ), Heidelberg, Germany.,CellNetworks Cluster of Excellence, University of Heidelberg, Heidelberg, Germany.,Central Institute of Mental Health, Mannheim, Germany
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
27
|
Lebeau P, Platko K, Al-Hashimi AA, Byun JH, Lhoták Š, Holzapfel N, Gyulay G, Igdoura SA, Cool DR, Trigatti B, Seidah NG, Austin RC. Loss-of-function PCSK9 mutants evade the unfolded protein response sensor GRP78 and fail to induce endoplasmic reticulum stress when retained. J Biol Chem 2018; 293:7329-7343. [PMID: 29593095 DOI: 10.1074/jbc.ra117.001049] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/15/2018] [Indexed: 01/07/2023] Open
Abstract
The proprotein convertase subtilisin/kexin type-9 (PCSK9) plays a central role in cardiovascular disease (CVD) by degrading hepatic low-density lipoprotein receptor (LDLR). As such, loss-of-function (LOF) PCSK9 variants that fail to exit the endoplasmic reticulum (ER) increase hepatic LDLR levels and lower the risk of developing CVD. The retention of misfolded protein in the ER can cause ER stress and activate the unfolded protein response (UPR). In this study, we investigated whether a variety of LOF PCSK9 variants that are retained in the ER can cause ER stress and hepatic cytotoxicity. Although overexpression of these PCSK9 variants caused an accumulation in the ER of hepatocytes, UPR activation or apoptosis was not observed. Furthermore, ER retention of endogenous PCSK9 via splice switching also failed to induce the UPR. Consistent with these in vitro studies, overexpression of PCSK9 in the livers of mice had no impact on UPR activation. To elucidate the cellular mechanism to explain these surprising findings, we observed that the 94-kDa glucose-regulated protein (GRP94) sequesters PCSK9 away from the 78-kDa glucose-regulated protein (GRP78), the major activator of the UPR. As a result, GRP94 knockdown increased the stability of GRP78-PCSK9 complex and resulted in UPR activation following overexpression of ER-retained PCSK9 variants relative to WT secreted controls. Given that overexpression of these LOF PCSK9 variants does not cause UPR activation under normal homeostatic conditions, therapeutic strategies aimed at blocking the autocatalytic cleavage of PCSK9 in the ER represent a viable strategy for reducing circulating PCSK9.
Collapse
Affiliation(s)
- Paul Lebeau
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada
| | - Khrystyna Platko
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada
| | - Ali A Al-Hashimi
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada
| | - Jae Hyun Byun
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada
| | - Šárka Lhoták
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada
| | - Nicholas Holzapfel
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada
| | - Gabriel Gyulay
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada
| | - Suleiman A Igdoura
- Departments of Biology and Pathology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - David R Cool
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, 45435-0001
| | - Bernardo Trigatti
- Thrombosis and Atherosclerosis Research Institute (TaARI), Hamilton Health Sciences and McMaster University, Hamilton, Ontario L8L 2X2, Canada; Departments of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, University of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Richard C Austin
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada; Thrombosis and Atherosclerosis Research Institute (TaARI), Hamilton Health Sciences and McMaster University, Hamilton, Ontario L8L 2X2, Canada.
| |
Collapse
|
28
|
Shi G, Somlo DRM, Kim GH, Prescianotto-Baschong C, Sun S, Beuret N, Long Q, Rutishauser J, Arvan P, Spiess M, Qi L. ER-associated degradation is required for vasopressin prohormone processing and systemic water homeostasis. J Clin Invest 2017; 127:3897-3912. [PMID: 28920920 DOI: 10.1172/jci94771] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022] Open
Abstract
Peptide hormones are crucial regulators of many aspects of human physiology. Mutations that alter these signaling peptides are associated with physiological imbalances that underlie diseases. However, the conformational maturation of peptide hormone precursors (prohormones) in the ER remains largely unexplored. Here, we report that conformational maturation of proAVP, the precursor for the antidiuretic hormone arginine-vasopressin, within the ER requires the ER-associated degradation (ERAD) activity of the Sel1L-Hrd1 protein complex. Serum hyperosmolality induces expression of both ERAD components and proAVP in AVP-producing neurons. Mice with global or AVP neuron-specific ablation of Se1L-Hrd1 ERAD progressively developed polyuria and polydipsia, characteristics of diabetes insipidus. Mechanistically, we found that ERAD deficiency causes marked ER retention and aggregation of a large proportion of all proAVP protein. Further, we show that proAVP is an endogenous substrate of Sel1L-Hrd1 ERAD. The inability to clear misfolded proAVP with highly reactive cysteine thiols in the absence of Sel1L-Hrd1 ERAD causes proAVP to accumulate and participate in inappropriate intermolecular disulfide-bonded aggregates, promoted by the enzymatic activity of protein disulfide isomerase (PDI). This study highlights a pathway linking ERAD to prohormone conformational maturation in neuroendocrine cells, expanding the role of ERAD in providing a conducive ER environment for nascent proteins to reach proper conformation.
Collapse
Affiliation(s)
- Guojun Shi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Diane RM Somlo
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Geun Hyang Kim
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Shengyi Sun
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | | | - Qiaoming Long
- Cam-Su Mouse Genomic Resources Center, Suzhou University, Suzhou, Jiangsu, China
| | | | - Peter Arvan
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Ling Qi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
29
|
Abstract
Diabetes insipidus is a disease characterized by polyuria and polydipsia due to inadequate release of arginine vasopressin from the posterior pituitary gland (neurohypophyseal diabetes insipidus) or due to arginine vasopressin insensitivity by the renal distal tubule, leading to a deficiency in tubular water reabsorption (nephrogenic diabetes insipidus). This article reviews the genetics of diabetes insipidus in the context of its diagnosis, clinical presentation, and therapy.
Collapse
Affiliation(s)
- Marie Helene Schernthaner-Reiter
- Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria; Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 31 Center Drive, Bethesda, MD 20892, USA.
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 31 Center Drive, Bethesda, MD 20892, USA
| | - Anton Luger
- Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| |
Collapse
|
30
|
Qi L, Tsai B, Arvan P. New Insights into the Physiological Role of Endoplasmic Reticulum-Associated Degradation. Trends Cell Biol 2017; 27:430-440. [PMID: 28131647 DOI: 10.1016/j.tcb.2016.12.002] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/04/2016] [Accepted: 12/23/2016] [Indexed: 12/13/2022]
Abstract
Many human diseases are associated with mutations causing protein misfolding and aggregation in the endoplasmic reticulum (ER). ER-associated degradation (ERAD) is a principal quality-control mechanism responsible for targeting misfolded ER proteins for cytosolic degradation. However, despite years of effort, the physiological role of ERAD in vivo remains largely unknown. Several recent studies have reported intriguing phenotypes of mice deficient for ERAD function in specific cell types. These studies highlight that mammalian ERAD has been designed to perform a wide-range of cell-type-specific functions in vivo in a substrate-dependent manner.
Collapse
Affiliation(s)
- Ling Qi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA; Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI 48105, USA.
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Peter Arvan
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA; Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| |
Collapse
|
31
|
Beuret N, Hasler F, Prescianotto-Baschong C, Birk J, Rutishauser J, Spiess M. Amyloid-like aggregation of provasopressin in diabetes insipidus and secretory granule sorting. BMC Biol 2017; 15:5. [PMID: 28122547 PMCID: PMC5267430 DOI: 10.1186/s12915-017-0347-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/04/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Aggregation of peptide hormone precursors in the trans-Golgi network is an essential process in the biogenesis of secretory granules in endocrine cells. It has recently been proposed that this aggregation corresponds to the formation of functional amyloids. Our previous finding that dominant mutations in provasopressin, which cause cell degeneration and diabetes insipidus, prevent native folding and produce fibrillar aggregates in the endoplasmic reticulum (ER) might thus reflect mislocalized amyloid formation by sequences that evolved to mediate granule sorting. RESULTS Here we identified two sequences responsible for fibrillar aggregation of mutant precursors in the ER: the N-terminal vasopressin nonapeptide and the C-terminal glycopeptide. To test their role in granule sorting, the glycopeptide was deleted and/or vasopressin mutated to inactivate ER aggregation while still permitting precursor folding and ER exit. These mutations strongly reduced sorting into granules and regulated secretion in endocrine AtT20 cells. CONCLUSION The same sequences - vasopressin and the glycopeptide - mediate physiological aggregation of the wild-type hormone precursor into secretory granules and the pathological fibrillar aggregation of disease mutants in the ER. These findings support the amyloid hypothesis for secretory granule biogenesis.
Collapse
Affiliation(s)
- Nicole Beuret
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland
| | - Franziska Hasler
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland
| | | | - Julia Birk
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland
| | - Jonas Rutishauser
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland
| | - Martin Spiess
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland.
| |
Collapse
|
32
|
Riek R, Eisenberg DS. The activities of amyloids from a structural perspective. Nature 2016; 539:227-235. [PMID: 27830791 DOI: 10.1038/nature20416] [Citation(s) in RCA: 360] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/14/2016] [Indexed: 12/16/2022]
Abstract
The aggregation of proteins into structures known as amyloids is observed in many neurodegenerative diseases, including Alzheimer's disease. Amyloids are composed of pairs of tightly interacting, many stranded and repetitive intermolecular β-sheets, which form the cross-β-sheet structure. This structure enables amyloids to grow by recruitment of the same protein and its repetition can transform a weak biological activity into a potent one through cooperativity and avidity. Amyloids therefore have the potential to self-replicate and can adapt to the environment, yielding cell-to-cell transmissibility, prion infectivity and toxicity.
Collapse
Affiliation(s)
- Roland Riek
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zürich, Switzerland
| | - David S Eisenberg
- UCLA-DOE Institute, Los Angeles, California 90095-1570, USA.,Howard Hughes Medical Institute, Los Angeles, California 90095-1570, USA
| |
Collapse
|
33
|
Bernal A, Mahía J, Puerto A. Animal models of Central Diabetes Insipidus: Human relevance of acquired beyond hereditary syndromes and the role of oxytocin. Neurosci Biobehav Rev 2016; 66:1-14. [DOI: 10.1016/j.neubiorev.2016.02.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/23/2016] [Accepted: 02/27/2016] [Indexed: 12/18/2022]
|
34
|
Bichet DG, Rice L, Levallois-Gignac J. A need for a systematic genetic evaluation of hereditary polyuric patients. Clin Kidney J 2016; 9:177-9. [PMID: 26985365 PMCID: PMC4792633 DOI: 10.1093/ckj/sfw006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 11/20/2022] Open
Affiliation(s)
- Daniel G. Bichet
- Department of Medicine and Molecular and Integrative Physiology, University of Montreal, and Service de Néphrologie, Hôpital du Sacré-Coeur de Montréal, Montréal, Québec, Canada
| | - Lawrence Rice
- Weill Cornell Medical College, Houston Methodist Hospital, Houston TX, USA
| | - Jasmin Levallois-Gignac
- Division of Nephrology, Dr Georges-L.-Dumont University Hospital Centre, Moncton, New Brunswick, Canada
| |
Collapse
|
35
|
Ilhan M, Tiryakioglu NO, Karaman O, Coskunpinar E, Yildiz RS, Turgut S, Tiryakioglu D, Toprak H, Tasan E. A novel AVP gene mutation in a Turkish family with neurohypophyseal diabetes insipidus. J Endocrinol Invest 2016. [PMID: 26208472 DOI: 10.1007/s40618-015-0357-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE Familial neurohypophyseal diabetes insipidus (FNDI) is a rare, autosomal dominant, inherited disorder which is characterized by severe polydipsia and polyuria generally presenting in early childhood. In the present study, we aimed to analyze the AVP gene in a Turkish family with FNDI. METHODS Four patients with neurohypophyseal diabetes insipidus and ten healthy members of the family were studied. Diabetes insipidus was diagnosed by the water deprivation test in affected family members. Mutation analysis was performed by sequencing the whole coding region of AVP-NPII gene using DNA isolated from peripheral blood samples. RESULTS Urine osmolality was low (<300 mOsm/kg) during water deprivation test, and an increase more than 50 % in urine osmolality and recovery of the symptoms were observed by the administration of desmopressin in all patients. Plasma copeptin levels were lower than expected according to plasma osmolality. Pituitary MRI revealed partial empty sella with a bright spot in index patient and a normal neurohypophysis in the other affected subjects. Genetic screening revealed a novel, heterozygous mutation designated as c.-3A>C in all patients. CONCLUSION c.-3A>C mutation in 5'UTR of AVP gene in this family might lead to the truncation of signal peptide, aggregation of AVP in the cytoplasm instead of targeting in the endoplasmic reticulum, thereby could disrupt AVP secretion without causing neuronal cytotoxicity, which might explain the presence of bright spot. The predicted effect of this mutation should be investigated by further in vitro molecular studies.
Collapse
Affiliation(s)
- M Ilhan
- Department of Endocrinology and Metabolism, Bezmialem University, Vatan Caddesi, 34093, Istanbul, Turkey.
| | - N O Tiryakioglu
- Department of Molecular Biology and Genetics, Halic University, Istanbul, Turkey
| | - O Karaman
- Department of Endocrinology and Metabolism, Bezmialem University, Vatan Caddesi, 34093, Istanbul, Turkey
| | - E Coskunpinar
- Division of Medical Genetics, Department of Internal Medicine, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - R S Yildiz
- Department of Internal Medicine, Bezmialem University, Vatan Caddesi, 34093, Istanbul, Turkey
| | - S Turgut
- Department of Internal Medicine, Bezmialem University, Vatan Caddesi, 34093, Istanbul, Turkey
| | - D Tiryakioglu
- Department of Basic Oncology, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - H Toprak
- Department of Radiology, Bezmialem University, Vatan Caddesi, 34093, Istanbul, Turkey
| | - E Tasan
- Department of Endocrinology and Metabolism, Bezmialem University, Vatan Caddesi, 34093, Istanbul, Turkey
| |
Collapse
|
36
|
Abstract
Neurohypophyseal diabetes insipidus is characterized by polyuria and polydipsia owing to partial or complete deficiency of the antidiuretic hormone, arginine vasopressin (AVP). Although in most patients non-hereditary causes underlie the disorder, genetic forms have long been recognized and studied both in vivo and in vitro. In most affected families, the disease is transmitted in an autosomal dominant manner, whereas autosomal recessive forms are much less frequent. Both phenotypes can be caused by mutations in the vasopressin-neurophysin II (AVP) gene. In transfected cells expressing dominant mutations, the mutated hormone precursor is retained in the endoplasmic reticulum, where it forms fibrillar aggregates. Autopsy studies in humans and a murine knock-in model suggest that the dominant phenotype results from toxicity to vasopressinergic neurons, but the mechanisms leading to cell death remain unclear. Recessive transmission results from AVP with reduced biologic activity or the deletion of the locus. Genetic neurohypophyseal diabetes insipidus occurring in the context of diabetes mellitus, optic atrophy, and deafness is termed DIDMOAD or Wolfram syndrome, a genetically and phenotypically heterogeneous autosomal recessive disorder caused by mutations in the wolframin (WFS 1) gene.
Collapse
Affiliation(s)
- Jonas Rutishauser
- Kantonsspital Baselland, Department of Medicine, CH-4101 Bruderholz, Switzerland; University of Basel, Biozentrum, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland.
| | - Martin Spiess
- University of Basel, Biozentrum, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland.
| | - Peter Kopp
- Northwestern University, Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Tarry 15, 303 East Chicago Ave., Chicago, IL 60611, USA.
| |
Collapse
|
37
|
Qureshi S, Galiveeti S, Bichet DG, Roth J. Diabetes insipidus: celebrating a century of vasopressin therapy. Endocrinology 2014; 155:4605-21. [PMID: 25211589 DOI: 10.1210/en.2014-1385] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Diabetes mellitus, widely known to the ancients for polyuria and glycosuria, budded off diabetes insipidus (DI) about 200 years ago, based on the glucose-free polyuria that characterized a subset of patients. In the late 19th century, clinicians identified the posterior pituitary as the site of pathology, and pharmacologists found multiple bioactivities there. Early in the 20th century, the amelioration of the polyuria with extracts of the posterior pituitary inaugurated a new era in therapy and advanced the hypothesis that DI was due to a hormone deficiency. Decades later, a subset of patients with polyuria unresponsive to therapy were recognized, leading to the distinction between central DI and nephrogenic DI, an early example of a hormone-resistant condition. Recognition that the posterior pituitary had 2 hormones was followed by du Vigneaud's Nobel Prize winning isolation, sequencing, and chemical synthesis of oxytocin and vasopressin. The pure hormones accelerated the development of bioassays and immunoassays that confirmed the hormone deficiency in vasopressin-sensitive DI and abundant levels of hormone in patients with the nephrogenic disorder. With both forms of the disease, acquired and inborn defects were recognized. Emerging concepts of receptors and of genetic analysis led to the recognition of patients with mutations in the genes for 1) arginine vasopressin (AVP), 2) the AVP receptor 2 (AVPR2), and 3) the aquaporin 2 water channel (AQP2). We recount here the multiple skeins of clinical and laboratory research that intersected frequently over the centuries since the first recognition of DI.
Collapse
Affiliation(s)
- Sana Qureshi
- Laboratory of Diabetes and Diabetes-Related Disorders (S.Q., S.G., J.R.), Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York 11030; Albert Einstein College of Medicine (S.Q., J.R.), Yeshiva University, Bronx, New York 10461; James J Peters VA Medical Center (S.G.), Mount Sinai Medical Center Health System, Bronx, New York 10029; Hôpital du Sacré-Coeur de Montréal (D.G.B.), Groupe des Protéines Membranaires, Université de Montréal, Montréal, Québec, Canada H4J IC5; and Hofstra North Shore-Long Island Jewish School of Medicine (J.R.), North Shore-Long Island Jewish Health System, Hempstead, New York 11549
| | | | | | | |
Collapse
|
38
|
Arginine vasopressin neuronal loss results from autophagy-associated cell death in a mouse model for familial neurohypophysial diabetes insipidus. Cell Death Dis 2014; 5:e1148. [PMID: 24675466 PMCID: PMC3973212 DOI: 10.1038/cddis.2014.124] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 01/17/2023]
Abstract
Familial neurohypophysial diabetes insipidus (FNDI) characterized by progressive polyuria is mostly caused by mutations in the gene encoding neurophysin II (NPII), which is the carrier protein of the antidiuretic hormone, arginine vasopressin (AVP). Although accumulation of mutant NPII in the endoplasmic reticulum (ER) could be toxic for AVP neurons, the precise mechanisms of cell death of AVP neurons, reported in autopsy studies, remain unclear. Here, we subjected FNDI model mice to intermittent water deprivation (WD) in order to promote the phenotypes. Electron microscopic analyses demonstrated that, while aggregates are confined to a certain compartment of the ER in the AVP neurons of FNDI mice with water access ad libitum, they were scattered throughout the dilated ER lumen in the FNDI mice subjected to WD for 4 weeks. It is also demonstrated that phagophores, the autophagosome precursors, emerged in the vicinity of aggregates and engulfed the ER containing scattered aggregates. Immunohistochemical analyses revealed that expression of p62, an adapter protein between ubiquitin and autophagosome, was elicited on autophagosomal membranes in the AVP neurons, suggesting selective autophagy induction at this time point. Treatment of hypothalamic explants of green fluorescent protein (GFP)-microtubule-associated protein 1 light chain 3 (LC3) transgenic mice with an ER stressor thapsigargin increased the number of GFP-LC3 puncta, suggesting that ER stress could induce autophagosome formation in the hypothalamus of wild-type mice as well. The cytoplasm of AVP neurons in FNDI mice was occupied with vacuoles in the mice subjected to WD for 12 weeks, when 30–40% of AVP neurons are lost. Our data thus demonstrated that autophagy was induced in the AVP neurons subjected to ER stress in FNDI mice. Although autophagy should primarily be protective for neurons, it is suggested that the organelles including ER were lost over time through autophagy, leading to autophagy-associated cell death of AVP neurons.
Collapse
|
39
|
Maione L, Albarel F, Bouchard P, Gallant M, Flanagan CA, Bobe R, Cohen-Tannoudji J, Pivonello R, Colao A, Brue T, Millar RP, Lombes M, Young J, Guiochon-Mantel A, Bouligand J. R31C GNRH1 mutation and congenital hypogonadotropic hypogonadism. PLoS One 2013; 8:e69616. [PMID: 23936060 PMCID: PMC3723855 DOI: 10.1371/journal.pone.0069616] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 06/11/2013] [Indexed: 01/27/2023] Open
Abstract
Normosmic congenital hypogonadotropic hypogonadism (nCHH) is a rare reproductive disease leading to lack of puberty and infertility. Loss-of-function mutations of GNRH1 gene are a very rare cause of autosomal recessive nCHH. R31C GNRH1 is the only missense mutation that affects the conserved GnRH decapeptide sequence. This mutation was identified in a CpG islet in nine nCHH subjects from four unrelated families, giving evidence for a putative “hot spot”. Interestingly, all the nCHH patients carry this mutation in heterozygosis that strikingly contrasts with the recessive inheritance associated with frame shift and non-sense mutations. Therefore, after exclusion of a second genetic event, a comprehensive functional characterization of the mutant R31C GnRH was undertaken. Using different cellular models, we clearly demonstrate a dramatic reduction of the mutant decapeptide capacity to bind GnRH-receptor, to activate MAPK pathway and to trigger inositol phosphate accumulation and intracellular calcium mobilization. In addition it is less able than wild type to induce lh-beta transcription and LH secretion in gonadotrope cells. Finally, the absence of a negative dominance in vitro offers a unique opportunity to discuss the complex in vivo patho-physiology of this form of nCHH.
Collapse
Affiliation(s)
- Luigi Maione
- Université Paris-Sud, Faculté de Médecine Paris-Sud Unité mixte de Recherche en Santé 693, Le Kremlin Bicetre, France
- Service d'Endocrinologie et des Maladies de la Reproduction, Hopital Bicetre, Assistance Publique Hopitaux de Paris, Le Kremlin-Bicêtre, France
- Università degli Studi di Napoli Federico II, Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia e Metabolismo, Napoli, Italy
| | - Frederique Albarel
- Département d'Endocrinologie et Centre de Référence des Maladies Rares d'Origine Hypophysaire, Hopital de la Timone, Marseille, France
| | - Philippe Bouchard
- Service d'Endocrinologie, diabétologie et endocrinologie de la reproduction, Hopital Saint-Antoine, Assistance Publique-Hopitaux de Paris, Paris, France
| | - Megan Gallant
- University of Cape Town Medical School, Medical Research Council, Receptor Biology Research Unit, Institute of Infectious Diseases and Molecular Medicine, Observatory, Cape Town, South Africa
| | - Colleen A. Flanagan
- University of Cape Town Medical School, Medical Research Council, Receptor Biology Research Unit, Institute of Infectious Diseases and Molecular Medicine, Observatory, Cape Town, South Africa
- School of Physiology, University of the Witwatersrand Faculty of Health Sciences, Parktown, Johannesburg, South Africa
| | - Regis Bobe
- Université Paris-Sud, Unité mixte de Recherche en Santé 770, Le Kremlin-Bicetre, France
| | - Joelle Cohen-Tannoudji
- Equipe Physiologie de l'Axe Gonadotrope, Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, Université Paris Diderot-Paris 7, Paris, France
| | - Rosario Pivonello
- Università degli Studi di Napoli Federico II, Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia e Metabolismo, Napoli, Italy
| | - Annamaria Colao
- Università degli Studi di Napoli Federico II, Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia e Metabolismo, Napoli, Italy
| | - Thierry Brue
- Département d'Endocrinologie et Centre de Référence des Maladies Rares d'Origine Hypophysaire, Hopital de la Timone, Marseille, France
| | - Robert P. Millar
- University of Cape Town Medical School, Medical Research Council, Receptor Biology Research Unit, Institute of Infectious Diseases and Molecular Medicine, Observatory, Cape Town, South Africa
- Mammal Research Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa and Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, Scotland
| | - Marc Lombes
- Université Paris-Sud, Faculté de Médecine Paris-Sud Unité mixte de Recherche en Santé 693, Le Kremlin Bicetre, France
| | - Jacques Young
- Université Paris-Sud, Faculté de Médecine Paris-Sud Unité mixte de Recherche en Santé 693, Le Kremlin Bicetre, France
- Service d'Endocrinologie et des Maladies de la Reproduction, Hopital Bicetre, Assistance Publique Hopitaux de Paris, Le Kremlin-Bicêtre, France
| | - Anne Guiochon-Mantel
- Université Paris-Sud, Faculté de Médecine Paris-Sud Unité mixte de Recherche en Santé 693, Le Kremlin Bicetre, France
- Laboratoire de Génétique moléculaire, Pharmacogénétique et Hormonologie, Hopital Bicetre, Assistance Publique Hopitaux de Paris, Le Kremlin-Bicetre, France
| | - Jerome Bouligand
- Université Paris-Sud, Faculté de Médecine Paris-Sud Unité mixte de Recherche en Santé 693, Le Kremlin Bicetre, France
- Laboratoire de Génétique moléculaire, Pharmacogénétique et Hormonologie, Hopital Bicetre, Assistance Publique Hopitaux de Paris, Le Kremlin-Bicetre, France
- * E-mail:
| |
Collapse
|
40
|
Birkegaard C, Christensen JH, Falorni A, Marzotti S, Minarelli V, Gregersen N, Rittig S. A novel variation in the AVP gene resulting in familial neurohypophyseal diabetes insipidus in a large Italian kindred. Pituitary 2013; 16:152-7. [PMID: 22695750 DOI: 10.1007/s11102-012-0392-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Familial neurohypophyseal diabetes insipidus (FNDI) is mostly an autosomal dominant inherited disorder presenting with severe polydipsia and polyuria typically in early childhood. To date, 69 different variations in the AVP gene encoding the AVP prohormone have been identified in autosomal dominant FNDI (adFNDI). In this study we present a family of seven generations, in which a novel variation in the AVP gene seems to cause adFNDI. Clinical assessment by 24 h urine collection, water deprivation test, desmopressin (dDAVP) challenge, and magnetic resonance imaging (MRI) of the posterior pituitary are presented. The diagnosis of adFNDI was confirmed by direct DNA sequence analysis of the AVP gene. Inheritance pattern and clinical history clearly pointed towards adFNDI. Inability of concentrating urine upon dehydration was demonstrated by a water deprivation test, and neurohypophyseal diabetes insipidus was strongly suspected after dDAVP administration, during which renal concentration ability quadrupled. MRI revealed a very weak pituitary "bright spot" in each of six subjects and a further reduction in the size of the neurohypophysis in a 7-year follow-up MRI scan in one subject. DNA sequence analysis revealed heterozygousity for a novel g.1785T > C gene variation predicting a p.Leu63Pro substitution in four affected subjects. Genetic testing in the diagnostic evaluation of families in which diabetes insipidus segregates is highly recommended in that interpretation of clinical assessments can be difficult. Furthermore, presymptomatic diagnosis can ease the parental concern of the carrier status of their offspring, and also avoid unnecessary surveillance of those being unaffected.
Collapse
Affiliation(s)
- Camilla Birkegaard
- Department of Pediatrics, Aarhus University Hospital, Brendstrupgaardsvej 100, 8200 Aarhus, Denmark.
| | | | | | | | | | | | | |
Collapse
|
41
|
Ye D, Dong F, Lu W, Zhang Z, Lu X, Li C, Liu Y. A missense mutation in the arginine-vasopressin neurophysin-II gene causes autosomal dominant neurohypophyseal diabetes insipidus in a Chinese family. Clin Endocrinol (Oxf) 2013; 78:920-5. [PMID: 23252994 DOI: 10.1111/cen.12129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/10/2012] [Accepted: 12/14/2012] [Indexed: 12/19/2022]
Abstract
BACKGROUND Familial neurohypophyseal diabetes insipidus, an autosomal dominant disorder, is mostly caused by mutations in the genes that encode AVP or its intracellular binding protein, neurophysin-II. The mutations lead to aberrant preprohormone processing and progressive destruction of AVP-secreting cells, which gradually manifests a progressive polyuria and polydipsia during early childhood, and a disorder of water homeostasis. OBJECTIVE We characterized the clinical and biochemical features, and sequenced the AVP neurophysin-II(AVP-NPII) gene of the affected individuals with autosomal dominant neurohypophyseal diabetes insipidus(ADNDI)to determine whether this disease was genetically determined. PATIENTS AND METHODS We obtained the histories of eight affected and four unaffected family individuals. The diagnosis of ADNDI was established using a water deprivation test and exogenous AVP administration. For molecular analysis, genomic DNA was extracted and the AVP-NPII gene was amplified using polymerase chain reaction and sequenced. RESULTS The eight affected individuals showed different spectra of age of onsets (7-15 years) and urine volumes (132-253 ml/kg/24 h). All affected individuals responded to vasopressin administration, with a resolution of symptoms and an increase in urine osmolality by more than 50%. The characteristic hyperintense signal in the posterior pituitary on T1-weighted magnetic resonance imaging was absent in six family members and present in one. Sequencing analysis revealed a missense heterozygous mutation 1516G > T (Gly17Val) in exon 2 of the AVP-NPII gene among the ADNDI individuals. CONCLUSIONS We identified a missense mutation in the AVP-NPII gene and the same mutation showed different spectra of age of onsets and urine volumes in a new Chinese family with ADNDI. The mutation may provide a molecular basis for understanding the characteristics of NPII and add to our knowledge of the pathogenesis of ADNDI, which would allow the presymptomatic diagnosis of asymptomatic subjects.
Collapse
Affiliation(s)
- Dan Ye
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Medical School of Zhejiang University, Zhejiang, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Moeller HB, Rittig S, Fenton RA. Nephrogenic diabetes insipidus: essential insights into the molecular background and potential therapies for treatment. Endocr Rev 2013; 34:278-301. [PMID: 23360744 PMCID: PMC3610677 DOI: 10.1210/er.2012-1044] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The water channel aquaporin-2 (AQP2), expressed in the kidney collecting ducts, plays a pivotal role in maintaining body water balance. The channel is regulated by the peptide hormone arginine vasopressin (AVP), which exerts its effects through the type 2 vasopressin receptor (AVPR2). Disrupted function or regulation of AQP2 or the AVPR2 results in nephrogenic diabetes insipidus (NDI), a common clinical condition of renal origin characterized by polydipsia and polyuria. Over several years, major research efforts have advanced our understanding of NDI at the genetic, cellular, molecular, and biological levels. NDI is commonly characterized as hereditary (congenital) NDI, arising from genetic mutations in the AVPR2 or AQP2; or acquired NDI, due to for exmple medical treatment or electrolyte disturbances. In this article, we provide a comprehensive overview of the genetic, cell biological, and pathophysiological causes of NDI, with emphasis on the congenital forms and the acquired forms arising from lithium and other drug therapies, acute and chronic renal failure, and disturbed levels of calcium and potassium. Additionally, we provide an overview of the exciting new treatment strategies that have been recently proposed for alleviating the symptoms of some forms of the disease and for bypassing G protein-coupled receptor signaling.
Collapse
Affiliation(s)
- Hanne B Moeller
- Department of Biomedicine, Aarhus University, and Department of Pediatrics, Aarhus University Hospital, Wilhelm Meyers Alle 3, Building 1234, Aarhus 8000, Denmark.
| | | | | |
Collapse
|
43
|
Abstract
Oxytocin (OT) and vasopressin (VP) are two closely related neuropeptides, widely known for their peripheral hormonal effects. Specific receptors have also been found in the brain, where their neuromodulatory actions have meanwhile been described in a large number of regions. Recently, it has become possible to study their endogenous neuropeptide release with the help of OT/VP promoter-driven expression of fluorescent proteins and light-activated ion channels. In this review, I summarize the neuromodulatory effects of OT and VP in different brain regions by grouping these into different behavioral systems, highlighting their concerted, and at times opposite, effects on different aspects of behavior.
Collapse
Affiliation(s)
- Ron Stoop
- Centre for Psychiatric Neurosciences, Lausanne University Hospital Center, Lausanne, Switzerland.
| |
Collapse
|
44
|
Haspel N, Laurent AD, Zanuy D, Nussinov R, Alemán C, Puiggalí J, Revilla-López G. Conformational exploration of two peptides and their hybrid polymer conjugates: potentialities as self-aggregating materials. J Phys Chem B 2012; 116:13941-52. [PMID: 23157485 PMCID: PMC7512015 DOI: 10.1021/jp3043363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In this work we elucidate the conformational preferences of two amyloid-forming peptides, Arginine-Vasopressin and Neuromedin-K, and two new biomacromolecular conjugates obtained by linking the two peptides to a polyester (poly(R-lactic acid)) chain. The conformational properties of the new hybrid conjugates have been assessed through molecular dynamics simulations and compared to those of their individual components. Our results suggest that the free unconjugated peptides tend to adopt backbone arrangements which resemble a β-hairpin shape, a conformation which has been reported to facilitate amyloid self-aggregation. The backbone conformational preferences of the unlinked peptides are maintained in the peptide-polymer hybrid. Yet significant differences in the side-chains nonbonding interactions patterns were detected between the two states. This suggests that the conformational profile of the peptides' backbones is preserved when linked to the polymer, maintaining the amyloid precursor-like structure. Additionally, several hydrodynamic parameters were computed for both the polylactic acid and for the conjugates: no significant differences were observed, which suggests that the peptide moiety of the hybrid does not significantly affect the conformational tendencies of the polymer chain. Combined, our results provide a conformational exploration of two amyloid-forming peptides and first steps toward the design of two feasible self-aggregating hybrid materials.
Collapse
Affiliation(s)
- Nurit Haspel
- UMass Boston, Department of Compuer Science, Boston, MA 02125 USA
| | - Adèle D. Laurent
- Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politecnica de Catalunya, Diagonal 647, Barcelona E-08028, Spain
| | - David Zanuy
- Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politecnica de Catalunya, Diagonal 647, Barcelona E-08028, Spain
| | - Ruth Nussinov
- Basic Research Program, SAIC-Frederick, Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, Maryland 21702
- Department of Human Genetics and Molecular Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Carlos Alemán
- Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politecnica de Catalunya, Diagonal 647, Barcelona E-08028, Spain
- Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C’, C/Pasqual i Vila s/n, Barcelona E-08028, Spain
| | - Jordi Puiggalí
- Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politecnica de Catalunya, Diagonal 647, Barcelona E-08028, Spain
| | - Guillem Revilla-López
- Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politecnica de Catalunya, Diagonal 647, Barcelona E-08028, Spain
| |
Collapse
|
45
|
Jendle J, Christensen JH, Kvistgaard H, Gregersen N, Rittig S. Late-onset familial neurohypophyseal diabetes insipidus due to a novel mutation in the AVP gene. Clin Endocrinol (Oxf) 2012; 77:586-92. [PMID: 22524462 DOI: 10.1111/j.1365-2265.2012.04417.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Familial neurohypophyseal diabetes insipidus (FNDI) is mainly an autosomal dominant inherited disorder presenting with severe polydipsia and polyuria in early childhood. In this study, we aimed to determine the molecular genetics and clinical characteristics of a large Swedish-Norwegian family presenting with very late-onset autosomal dominant FNDI. PATIENTS Six probands with a history of developing polyuria and polydipsia during adolescence were studied. MEASUREMENTS Information on family demography was collected by personal interview with family members. The genetic cause of FNDI was identified by DNA sequencing analysis of the coding regions of the AVP gene. The clinical characteristics were determined by the measurement of basal urine production and osmolality as well as by measurements of concurrent levels of plasma AVP, plasma osmolality, and urine osmolality during fluid deprivation and bolus injection of DDAVP. The integrity of the neurohypophysis was evaluated by magnetic resonance imaging. RESULTS The mean age of encountering the first clinical symptoms in the family was 14·8 years (range 3-30 years) (n = 17). All six affected subjects investigated were heterozygous for a novel mutation in the AVP gene (g.1848C>T) predicting a p.Pro84Leu substitution in the AVP precursor protein. We found partial deficiency in evoked AVP secretion during fluid deprivation in one subject and complete deficiency in another. The pituitary bright spot was absent in all six affected subjects studied. CONCLUSION A novel mutation in the AVP gene predicted to cause a neurophysin II dimerization defect is causing surprisingly late onset of FNDI in a large, six generation, Swedish-Norwegian family. The mutation is associated with both complete and partial deficiency in evoked AVP secretion during fluid deprivation in patients who have suffered from FNDI for decades.
Collapse
Affiliation(s)
- Johan Jendle
- School of Health and Medical Sciences, Örebro University, Örebro, Sweden.
| | | | | | | | | |
Collapse
|
46
|
Luo Y, Wang B, Qiu Y, Zhang C, Jin C, Zhao Y, Zhu Q, Ma X. Clinical and molecular analysis of a Chinese family with autosomal dominant neurohypophyseal diabetes insipidus associated with a novel missense mutation in the vasopressin-neurophysin II gene. Endocrine 2012; 42:208-13. [PMID: 22307687 DOI: 10.1007/s12020-012-9606-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 01/11/2012] [Indexed: 11/28/2022]
Abstract
The objective of this study is to identify the genetic defects in a Chinese family with autosomal dominant familial neurohypophyseal diabetes insipidus. Complete physical examination, fluid deprivation, and DDAVP tests were performed in three affected and three healthy members of the family. Genomic DNA was extracted from leukocytes of venous blood of these individuals for polymerase chain reaction amplification and direct sequencing of all three coding exons of arginine vasopressin-neurophysin II (AVP-NPII) gene. Seven members of this family were suspected to have symptomatic vasopressin-deficient diabetes insipidus. The water deprivation test in all the patients confirmed the diagnosis of vasopressin-deficient diabetes insipidus, with the pedigree demonstrating an autosomal dominant inheritance. Direct sequence analysis revealed a novel mutation (c.193T>A) and a synonymous mutation (c.192C>A) in the AVP-NPII gene. The missense mutation resulted in the substitution of cysteine by serine at a highly conserved codon 65 of exon 2 of the AVP-NPII gene in all affected individuals, but not in unaffected members. We concluded that a novel missense mutation in the AVP-NPII gene caused neurohypophyseal diabetes insipidus in this family, due to impaired neurophysin function as a carrier protein for AVP. The Cys65 is essential for NPII in the formation of a salt bridge with AVP. Presence of this mutation suggests that the portion of the neurophysin peptide encoded by this sequence is important for the normal expression of vasopressin.
Collapse
Affiliation(s)
- Yongfeng Luo
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Yan Z, Hoffmann A, Kaiser EK, Grunwald WC, Cool DR. Misfolding of Mutated Vasopressin Causes ER-Retention and Activation of ER-Stress Markers in Neuro-2a Cells. ACTA ACUST UNITED AC 2011; 4:136-146. [PMID: 24567768 PMCID: PMC3932059 DOI: 10.2174/1876528901104010136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arginine-vasopressin (AVP) is a peptide hormone normally secreted from neuroendocrine cells via the regulated secretory pathway. In Familial Neurohypophyseal Diabetes Insipidus (FNDI), an autosomal dominant form of central diabetes insipidus, mutations of pro-vasopressin appear to accumulate in the endoplasmic reticulum (ER) causing a lack of biologically active AVP in the blood. To investigate the effect of pro-vasopressin mutations regarding intracellular functions of protein targeting and secretion, we created two FNDI-associated amino acid substitution mutants, e.g., G14R, and G17V in frame with green fluorescent protein (GFP) and pro-vasopressin (VP) in frame with red fluorescent protein (VP-RFP). Fluorescence microscopy of Neuro-2a cells expressing these constructs revealed co-localization of VP-GFP and VP-RFP to punctate granules along the length and accumulating at the tips of neurites, characteristic of regulated secretory granules. In contrast, the two FNDI-associated amino acid substitution mutants, e.g., G14R-GFP, and G17VGFP, were localized to a perinuclear region of the Neuro-2a cells characteristic of the endoplasmic reticulum. Co-expression of these mutants with VP-RFP showed VP-RFP was retained in the ER, co-localized with the mutants suggesting the formation of heterodimers as found in FNDI. Stimulated secretion experiments indicated that VP-GFP was secreted in an inducible manner whereas, G14R-GFP and G17V-GFP were retained to nearly 100% within the cells. Analysis by western blotting and semi-quantitative RT-PCR indicated an increased protein and mRNA expression for an ER resident molecular chaperone, BiP. Further analysis of ER-storage disease-associated proteins such as caspase 12 and CHOP showed an increase in these as well. The results suggest that G14R-GFP and G17V-GFP are retained in the ER of Neuro-2a cells, resulting in up-regulation of the molecular chaperone BiP, and activation of the ER-storage disease-associated caspase cascade system.
Collapse
Affiliation(s)
- Zhongyu Yan
- Department of Pharmacology & Toxicology, Wright State University, Dayton, OH 45435
| | - Andrea Hoffmann
- Department of Pharmacology & Toxicology, Wright State University, Dayton, OH 45435
| | - Erin Kelly Kaiser
- Department of Pharmacology & Toxicology, Wright State University, Dayton, OH 45435
| | - William C Grunwald
- Department of Pharmacology & Toxicology, Wright State University, Dayton, OH 45435
| | - David R Cool
- Department of Pharmacology & Toxicology, Wright State University, Dayton, OH 45435
| |
Collapse
|
49
|
Llop-Tous I, Madurga S, Giralt E, Marzabal P, Torrent M, Ludevid MD. Relevant elements of a maize gamma-zein domain involved in protein body biogenesis. J Biol Chem 2010; 285:35633-44. [PMID: 20829359 PMCID: PMC2975188 DOI: 10.1074/jbc.m110.116285] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 09/08/2010] [Indexed: 11/06/2022] Open
Abstract
The N-terminal proline-rich domain of γ-zein (Zera) plays an important role in protein body (PB) formation not only in the original host (maize seeds) but in a broad spectrum of eukaryotic cells. However, the elements within the Zera sequence that are involved in the biogenesis of PBs have not been clearly identified. Here, we focused on amino acid sequence motifs that could be involved in Zera oligomerization, leading to PB-like structures in Nicotiana benthamiana leaves. By using fusions of Zera with fluorescent proteins, we found that the lack of the repeat region (PPPVHL)(8) of Zera resulted in the secretion of the fusion protein but that this repeat by itself did not form PBs. Although the repeat region containing eight units was the most efficient for Zera self-assembly, shorter repeats of 4-6 units still formed small multimers. Based on site-directed mutagenesis of Zera cysteine residues and analysis of multimer formation, we conclude that the two N-terminal Cys residues of Zera (Cys(7) and Cys(9)) are critical for oligomerization. Immunoelectron microscopy and confocal studies on PB development over time revealed that early, small, Zera-derived oligomers were sequestered in buds along the rough ER and that the mature size of the PBs could be attained by both cross-linking of preformed multimers and the incorporation of new chains of Zera fusions synthesized by active membrane-bound ribosomes. Based on these results and on the behavior of the Zera structure determined by molecular dynamics simulation studies, we propose a model of Zera-induced PB biogenesis.
Collapse
Affiliation(s)
- Immaculada Llop-Tous
- From the Centre de Recerca en Agrigenòmica, Consejo Superior de Investigaciones Científicas, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Sergio Madurga
- the Departament de Química Física and IQTCUB, Universidad de Barcelona, Martí Franquès 1, 08028 Barcelona, Spain
| | - Ernest Giralt
- the Institut de Recerca Biomèdica, Parc Científic de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain, and
| | | | - Margarita Torrent
- From the Centre de Recerca en Agrigenòmica, Consejo Superior de Investigaciones Científicas, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - M. Dolors Ludevid
- From the Centre de Recerca en Agrigenòmica, Consejo Superior de Investigaciones Científicas, Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
50
|
Bernascone I, Janas S, Ikehata M, Trudu M, Corbelli A, Schaeffer C, Rastaldi MP, Devuyst O, Rampoldi L. A transgenic mouse model for uromodulin-associated kidney diseases shows specific tubulo-interstitial damage, urinary concentrating defect and renal failure. Hum Mol Genet 2010; 19:2998-3010. [PMID: 20472742 DOI: 10.1093/hmg/ddq205] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Uromodulin-associated kidney diseases (UAKD) are autosomal-dominant disorders characterized by alteration of urinary concentrating ability, tubulo-interstitial fibrosis, hyperuricaemia and renal cysts at the cortico-medullary junction. UAKD are caused by mutations in UMOD, the gene encoding uromodulin. Although uromodulin is the most abundant protein secreted in urine, its physiological role remains elusive. Several in vitro studies demonstrated that mutations in uromodulin lead to endoplasmic reticulum (ER) retention of mutant protein, but their relevance in vivo has not been studied. We here report on the generation and characterization of the first transgenic mouse model for UAKD. Transgenic mice that express the C147W mutant uromodulin (Tg(Umod)(C147W)), corresponding to the well-established patient mutation C148W, were compared with expression-matched transgenic mice expressing the wild-type protein (Tg(Umod)(wt)). Tg(Umod)(C147W) mice recapitulate most of the UAKD features, with urinary concentrating defect of renal origin and progressive renal injury, i.e. tubulo-interstitial fibrosis with inflammatory cell infiltration, tubule dilation and specific damage of the thick ascending limb of Henle's loop, leading to mild renal failure. As observed in patients, Tg(Umod)(C147W) mice show a marked reduction of urinary uromodulin excretion. Mutant uromodulin trafficking to the plasma membrane is indeed impaired as it is retained in the ER of expressing cells leading to ER hyperplasia. The Tg(Umod)(C147W) mice represent a unique model that recapitulates most of the features associated with UAKD. Our data clearly demonstrate a gain-of-toxic function of uromodulin mutations providing insights into the pathogenetic mechanism of the disease. These findings may also be relevant for other tubulo-interstitial or ER-storage disorders.
Collapse
Affiliation(s)
- Ilenia Bernascone
- Division of Genetics and Cell Biology, Dulbecco Telethon Institute, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|