1
|
Bae Y, Lee S, Kim A, Lee S, Kim S, Park S, Noh J, Ryoo K, Yi G, Park J, Hwang EM. Astrocytic NHERF-1 Increases Seizure Susceptibility by Inhibiting Surface Expression of TREK-1. Glia 2025; 73:720-736. [PMID: 39543986 PMCID: PMC11845839 DOI: 10.1002/glia.24644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Mature hippocampal astrocytes exhibit a linear current-to-voltage (I-V) K+ membrane conductance called passive conductance. It is estimated to enable astrocytes to keep potassium homeostasis in the brain. We previously reported that the TWIK-1/TREK-1 heterodimeric channels are crucial for astrocytic passive conductance. However, the regulatory mechanism of these channels by other binding proteins remains elusive. Here, we identified Na+/H+ exchange regulator-1 (NHERF-1), a protein highly expressed in astrocytes, as a novel interaction partner for these channels. NHERF-1 endogenously bound to TWIK-1/TREK-1 in hippocampal cultured astrocytes. When NHERF-1 is overexpressed or silenced, surface expression and activity of TWIK-1/TREK-1 heterodimeric channels are inhibited or enhanced, respectively. Furthermore, we confirmed that reduced astrocytic passive conductance by NHERF-1 overexpressing in the hippocampus increases kainic acid (KA)-induced seizure sensitivity. Taken together, these results suggest that NHERF-1 is a key regulator of TWIK-1/TREK-1 heterodimeric channels in astrocytes and suppression of TREK-1 surface expression by NHERF-1 increases KA-induced seizure susceptibility via reduction of astrocytic passive conductance.
Collapse
Affiliation(s)
- Yeonju Bae
- Brain Science InstituteKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
- School of Biosystems and Biomedical Sciences, College of Health SciencesKorea UniversitySeoulRepublic of Korea
| | - Soomin Lee
- Brain Science InstituteKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
- School of Biosystems and Biomedical Sciences, College of Health SciencesKorea UniversitySeoulRepublic of Korea
| | - Ajung Kim
- Brain Science InstituteKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
| | - Shinae Lee
- Brain Science InstituteKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
- Department of bio and Brain Engineering, College of EngineeringKAISTDaejeonRepublic of Korea
| | - Seong‐Seop Kim
- School of Biosystems and Biomedical Sciences, College of Health SciencesKorea UniversitySeoulRepublic of Korea
| | - Sunyoung Park
- School of Biosystems and Biomedical Sciences, College of Health SciencesKorea UniversitySeoulRepublic of Korea
| | - Junyeol Noh
- School of Biosystems and Biomedical Sciences, College of Health SciencesKorea UniversitySeoulRepublic of Korea
| | - Kanghyun Ryoo
- School of Biosystems and Biomedical Sciences, College of Health SciencesKorea UniversitySeoulRepublic of Korea
| | - Gwan‐Su Yi
- Department of bio and Brain Engineering, College of EngineeringKAISTDaejeonRepublic of Korea
| | - Jae‐Yong Park
- School of Biosystems and Biomedical Sciences, College of Health SciencesKorea UniversitySeoulRepublic of Korea
- Astrion, Inc.SeoulRepublic of Korea
| | - Eun Mi Hwang
- Brain Science InstituteKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
- Division of Bio‐Medical Science & Technology, KIST SchoolKorea University of Science and TechnologySeoulRepublic of Korea
| |
Collapse
|
2
|
Bates A, Miller I, Travis EM, Sahu ID, Morris A, McCarrick RM, Dabney-Smith C, Lorigan GA. The Expression, Purification, Spectroscopic Characterization, and Membrane Topology Classification of KCNE4 from Recombinant E. coli. J Phys Chem B 2025; 129:228-237. [PMID: 39780724 DOI: 10.1021/acs.jpcb.4c06665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Members of the KCNE family are accessory subunits that modulate voltage-gated potassium channels. One member, KCNE4, has been shown to inhibit the potassium ion current in these channels. However, little is known about the structure, dynamics, and mode of inhibition of KCNE4, likely due to challenges in overexpressing and purifying the protein. In this study, an alternative expression and purification protocol has been developed and validated to obtain overexpressed KCNE4 for in vitro studies. This protocol was validated through SDS-PAGE, CW-EPR, CW-EPR power saturation, and CD experiments. The SDS-PAGE and CD data reveal that this protocol produces relatively pure and properly folded KCNE4 in large quantities at a lower cost. The CW-EPR and EPR power saturation spectra show that KCNE4 consists of extracellular, transmembrane, and intracellular regions. Together, these techniques indicate that this alternative protocol produces structurally and dynamically native KCNE4 without the need for mammalian cell lines. This study provides guidance for characterizing the structure and dynamics of KCNE4 in a lipid bilayer environment.
Collapse
Affiliation(s)
- Alison Bates
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| | - Ilsa Miller
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| | - Elizabeth M Travis
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
- Division of Natural Sciences, Campbellsville University, 1 University Drive, Campbellsville, Kentucky 42718, United States
| | - Andrew Morris
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| | - Carole Dabney-Smith
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States
| |
Collapse
|
3
|
Sastre D, Colomer-Molera M, Roig SR, de Benito-Bueno A, Socuéllamos PG, Fernández-Ballester G, Valenzuela C, Felipe A. Molecular mapping of KCNE4-dependent regulation of Kv1.3. Am J Physiol Cell Physiol 2024; 327:C1497-C1513. [PMID: 39466181 DOI: 10.1152/ajpcell.00499.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
The voltage-gated potassium channel Kv1.3 plays a crucial role in the immune system response. In leukocytes, the channel is co-expressed with the dominant negative regulatory subunit KCNE4, which associates with Kv1.3 to trigger intracellular retention and accelerate C-type inactivation of the channel. Previous research has demonstrated that the main association between these proteins occurs through both COOH-termini. However, these data fail to fully elucidate the KCNE4-dependent modulation of channel kinetics. In the present study, we analyzed the contribution of each KCNE4 domain to the modulation of Kv1.3. Our results further confirmed that the COOH-terminus of KCNE4 is the main determinant involved in the association-triggered intracellular retention of the channel. In addition, interactions throughout the transmembrane region were also observed. Both the COOH-terminus and, especially, the transmembrane domain of KCNE4 accentuated the C-type inactivation of Kv1.3. Our data provide, for the first time, the molecular effects that a KCNE peptide, such as KCNE4, exerts on a Shaker channel, such as Kv1.3. Our results pave the way for understanding the molecular mechanisms underlying potassium channel modulation and suggest that KCNE4 participates in the conformational rearrangement of the Kv1.3 architecture, altering the C-type inactivation of the channel.NEW & NOTEWORTHY This work defines, for the first time, the interactions between a Kv1 (Shaker) channel and a KCNE regulatory subunit. While the COOH-terminus of KCNE4 physically interacts with the channel, its transmembrane domain shapes the inactivation properties of the functional complex, fine-tuning the Kv1.3-dependent physiological response in leukocytes.
Collapse
Affiliation(s)
- Daniel Sastre
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Magalí Colomer-Molera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Sara R Roig
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | | | - Paula G Socuéllamos
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Gregorio Fernández-Ballester
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, Spain
| | - Carmen Valenzuela
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Prosdocimi E, Carpanese V, Todesca LM, Varanita T, Bachmann M, Festa M, Bonesso D, Perez-Verdaguer M, Carrer A, Velle A, Peruzzo R, Muccioli S, Doni D, Leanza L, Costantini P, Stein F, Rettel M, Felipe A, Edwards MJ, Gulbins E, Cendron L, Romualdi C, Checchetto V, Szabo I. BioID-based intact cell interactome of the Kv1.3 potassium channel identifies a Kv1.3-STAT3-p53 cellular signaling pathway. SCIENCE ADVANCES 2024; 10:eadn9361. [PMID: 39231216 PMCID: PMC11373599 DOI: 10.1126/sciadv.adn9361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024]
Abstract
Kv1.3 is a multifunctional potassium channel implicated in multiple pathologies, including cancer. However, how it is involved in disease progression is not fully clear. We interrogated the interactome of Kv1.3 in intact cells using BioID proximity labeling, revealing that Kv1.3 interacts with STAT3- and p53-linked pathways. To prove the relevance of Kv1.3 and of its interactome in the context of tumorigenesis, we generated stable melanoma clones, in which ablation of Kv1.3 remodeled gene expression, reduced proliferation and colony formation, yielded fourfold smaller tumors, and decreased metastasis in vivo in comparison to WT cells. Kv1.3 deletion or pharmacological inhibition of mitochondrial Kv1.3 increased mitochondrial Reactive Oxygen Species release, decreased STAT3 phosphorylation, stabilized the p53 tumor suppressor, promoted metabolic switch, and altered the expression of several BioID-identified Kv1.3-networking proteins in tumor tissues. Collectively, our work revealed the tumor-promoting Kv1.3-interactome landscape, thus opening the way to target Kv1.3 not only as an ion-conducting entity but also as a signaling hub.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Andrea Carrer
- Department of Biology, University of Padova, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Angelo Velle
- Department of Biology, University of Padova, Padova, Italy
| | | | | | - Davide Doni
- Department of Biology, University of Padova, Padova, Italy
| | - Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy
| | | | | | | | - Antonio Felipe
- Molecular Physiology Laboratory, Department de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | | | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Laura Cendron
- Department of Biology, University of Padova, Padova, Italy
| | | | | | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
5
|
Song M, Zhuge Y, Tu Y, Liu J, Liu W. The Multifunctional Role of KCNE2: From Cardiac Arrhythmia to Multisystem Disorders. Cells 2024; 13:1409. [PMID: 39272981 PMCID: PMC11393857 DOI: 10.3390/cells13171409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
The KCNE2 protein is encoded by the kcne2 gene and is a member of the KCNE protein family, also known as the MinK-related protein 1 (MiRP1). It is mostly present in the epicardium of the heart and gastric mucosa, and it is also found in the thyroid, pancreatic islets, liver and lung, among other locations, to a lesser extent. It is involved in numerous physiological processes because of its ubiquitous expression and partnering promiscuity, including the modulation of voltage-dependent potassium and calcium channels involved in cardiac action potential repolarization, and regulation of secretory processes in multiple epithelia, such as gastric acid secretion, thyroid hormone synthesis, generation and secretion of cerebrospinal fluid. Mutations in the KCNE2 gene or aberrant expression of the protein may play a critical role in cardiovascular, neurological, metabolic and multisystem disorders. This article provides an overview of the advancements made in understanding the physiological functions in organismal homeostasis and the pathophysiological consequences of KCNE2 in multisystem diseases.
Collapse
Affiliation(s)
| | | | | | - Jie Liu
- Department of Pathophysiology, Medical School, Shenzhen University, Shenzhen 518060, China; (M.S.); (Y.Z.); (Y.T.)
| | - Wenjuan Liu
- Department of Pathophysiology, Medical School, Shenzhen University, Shenzhen 518060, China; (M.S.); (Y.Z.); (Y.T.)
| |
Collapse
|
6
|
Sun J, Ding Y, Zhou Q, Kalds P, Han J, Zhang K, Wei Y, Wu W, Wang X, Zheng W. KCNE4 is a crucial host factor for Orf virus infection by mediating viral entry. Virol J 2024; 21:181. [PMID: 39118175 PMCID: PMC11308312 DOI: 10.1186/s12985-024-02454-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
The orf virus (ORFV) poses a serious threat to the health of domestic small ruminants (i.e., sheep and goats) and humans on a global scale, causing around $150 million in annual losses to livestock industry. However, the host factors involved in ORFV infection and replication are still elusive. In this study, we compared the RNA-seq profiles of ORFV-infected or non-infected sheep testicular interstitial cells (STICs) and identified a novel host gene, potassium voltage-gated channel subfamily E member 4 (KCNE4), as a key host factor involved in the ORFV infection. Both RNA-seq data and RT-qPCR assay revealed a significant increase in the expression of KCNE4 in the infected STICs from 9 to 48 h post infection (hpi). On the other hand, the RT-qPCR assay detected a decrease in ORFV copy number in both the STICs transfected by KCNE4 siRNA and the KCNE4 knockout (KO) HeLa cells after the ORFV infection, together with a reduced fluorescence ratio of ORFV-GFP in the KO HeLa cells at 24 hpi, indicating KCNE4 to be critical for the ORFV infection. Furthermore, the attachment and internalization assays showed decreased ORFV attachment, internalization, replication, and release by the KO HeLa cells, demonstrating a potential inhibition of ORFV entry into the cells by KCNE4. Pretreatment with the KCNE4 inhibitors such as quinidine and fluoxetine significantly repressed the ORFV infection. All our findings reveal KCNE4 as a novel host regulator of the ORFV entry and replication, shedding new insight into the interactive mechanism of ORFV infection. The study also highlights the K+ channels as possible druggable targets to impede viral infection and disease.
Collapse
Affiliation(s)
- Jiayuan Sun
- International Joint Agriculture Research Center for Animal Bio-breeding, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yige Ding
- International Joint Agriculture Research Center for Animal Bio-breeding, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Qian Zhou
- International Joint Agriculture Research Center for Animal Bio-breeding, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Peter Kalds
- Yazhouwan National Laboratory, Sanya, 572024, China
| | - Jianlin Han
- Yazhouwan National Laboratory, Sanya, 572024, China
| | - Keshan Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Yinghui Wei
- International Joint Agriculture Research Center for Animal Bio-breeding, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, China
- School of Future Technology on Bio-breeding, Northwest A&F University, Yangling, 712100, China
| | - Weiwei Wu
- Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, 830011, China
| | - Xiaolong Wang
- International Joint Agriculture Research Center for Animal Bio-breeding, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, China.
- School of Future Technology on Bio-breeding, Northwest A&F University, Yangling, 712100, China.
| | - Wenxin Zheng
- Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, 830011, China.
| |
Collapse
|
7
|
Sastre D, Colomer-Molera M, de Benito-Bueno A, Valenzuela C, Fernández-Ballester G, Felipe A. KCNE4-dependent modulation of Kv1.3 pharmacology. Biochem Pharmacol 2024; 226:116368. [PMID: 38880360 DOI: 10.1016/j.bcp.2024.116368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
The voltage-dependent potassium channel Kv1.3 is a promising therapeutic target for the treatment of autoimmune and chronic inflammatory disorders. Kv1.3 blockers are effective in treating multiple sclerosis (fampridine) and psoriasis (dalazatide). However, most Kv1.3 pharmacological antagonists are not specific enough, triggering potential side effects and limiting their therapeutic use. Functional Kv are oligomeric complexes in which the presence of ancillary subunits shapes their function and pharmacology. In leukocytes, Kv1.3 associates with KCNE4, which reduces the surface abundance and enhances the inactivation of the channel. This mechanism exerts profound consequences on Kv1.3-related physiological responses. Because KCNE peptides alter the pharmacology of Kv channels, we studied the effects of KCNE4 on Kv1.3 pharmacology to gain insights into pharmacological approaches. To that end, we used margatoxin, which binds the channel pore from the extracellular space, and Psora-4, which blocks the channel from the intracellular side. While KCNE4 apparently did not alter the affinity of either margatoxin or Psora-4, it slowed the inhibition kinetics of the latter in a stoichiometry-dependent manner. The results suggested changes in the Kv1.3 architecture in the presence of KCNE4. The data indicated that while the outer part of the channel mouth remains unaffected, KCNE4 disturbs the intracellular architecture of the complex. Various leukocyte types expressing different Kv1.3/KCNE4 configurations participate in the immune response. Our data provide evidence that the presence of these variable architectures, which affect both the structure of the complex and their pharmacology, should be considered when developing putative therapeutic approaches.
Collapse
Affiliation(s)
- Daniel Sastre
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Magalí Colomer-Molera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain
| | | | - Carmen Valenzuela
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, 28029 Madrid, Spain
| | | | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
8
|
Kozlowska J, Humphryes-Kirilov N, Pavlovets A, Connolly M, Kuncheva Z, Horner J, Manso AS, Murray C, Fox JC, McCarthy A. Unveiling new genetic insights in rheumatoid arthritis for drug discovery through Taxonomy3 analysis. Sci Rep 2024; 14:14153. [PMID: 38898196 PMCID: PMC11186831 DOI: 10.1038/s41598-024-64970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/14/2024] [Indexed: 06/21/2024] Open
Abstract
Genetic support for a drug target has been shown to increase the probability of success in drug development, with the potential to reduce attrition in the pharmaceutical industry alongside discovering novel therapeutic targets. It is therefore important to maximise the detection of genetic associations that affect disease susceptibility. Conventional statistical methods such as genome-wide association studies (GWAS) only identify some of the genetic contribution to disease, so novel analytical approaches are required to extract additional insights. C4X Discovery has developed Taxonomy3, a unique method for analysing genetic datasets based on mathematics that is novel in drug discovery. When applied to a previously published rheumatoid arthritis GWAS dataset, Taxonomy3 identified many additional novel genetic signals associated with this autoimmune disease. Follow-up studies using tool compounds support the utility of the method in identifying novel biology and tractable drug targets with genetic support for further investigation.
Collapse
Affiliation(s)
- Justyna Kozlowska
- C4X Discovery Ltd, Manchester One, 53 Portland Street, Manchester, M1 3LD, UK.
| | | | - Anastasia Pavlovets
- C4X Discovery Ltd, Manchester One, 53 Portland Street, Manchester, M1 3LD, UK
| | - Martin Connolly
- C4X Discovery Ltd, Manchester One, 53 Portland Street, Manchester, M1 3LD, UK
| | - Zhana Kuncheva
- C4X Discovery Ltd, Manchester One, 53 Portland Street, Manchester, M1 3LD, UK
| | - Jonathan Horner
- C4X Discovery Ltd, Manchester One, 53 Portland Street, Manchester, M1 3LD, UK
| | - Ana Sousa Manso
- C4X Discovery Ltd, Manchester One, 53 Portland Street, Manchester, M1 3LD, UK
| | - Clare Murray
- C4X Discovery Ltd, Manchester One, 53 Portland Street, Manchester, M1 3LD, UK
| | - J Craig Fox
- C4X Discovery Ltd, Manchester One, 53 Portland Street, Manchester, M1 3LD, UK
| | - Alun McCarthy
- C4X Discovery Ltd, Manchester One, 53 Portland Street, Manchester, M1 3LD, UK
| |
Collapse
|
9
|
Li J, Chen CT, Li P, Zhang X, Liu X, Wu W, Gu W. Lung transcriptomics reveals the underlying mechanism by which aerobic training enhances pulmonary function in chronic obstructive pulmonary disease. BMC Pulm Med 2024; 24:154. [PMID: 38532405 DOI: 10.1186/s12890-024-02967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Aerobic training is the primary method of rehabilitation for improving respiratory function in patients with chronic obstructive pulmonary disease (COPD) in remission. However, the mechanism underlying this improvement is not yet fully understood. The use of transcriptomics in rehabilitation medicine offers a promising strategy for uncovering the ways in which exercise training improves respiratory dysfunction in COPD patients. In this study, lung tissue was analyzed using transcriptomics to investigate the relationship between exercise and lung changes. METHODS Mice were exposed to cigarette smoke for 24 weeks, followed by nine weeks of moderate-intensity treadmill exercise, with a control group for comparison. Pulmonary function and structure were assessed at the end of the intervention and RNA sequencing was performed on the lung tissue. RESULTS Exercise training was found to improve airway resistance and lung ventilation indices in individuals exposed to cigarette smoke. However, the effect of this treatment on damaged alveoli was weak. The pair-to-pair comparison revealed numerous differentially expressed genes, that were closely linked to inflammation and metabolism. CONCLUSIONS Further research is necessary to confirm the cause-and-effect relationship between the identified biomarkers and the improvement in pulmonary function, as this was not examined in the present study.
Collapse
Affiliation(s)
- Jian Li
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University (Second Military Medical University), 200433, Shanghai, PR China
- Department of Sports Rehabilitation, Shanghai University of Sport, No. 399 Changhai Road, Yangpu District, 200438, Shanghai, PR China
| | - Cai-Tao Chen
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 200434, Shanghai, PR China
| | - Peijun Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, PR China
| | - Xiaoyun Zhang
- Laboratory Department of the 908th Hospital of the Joint Logistics Support Force, 330001, Nanchang, PR China
| | - Xiaodan Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, PR China
| | - Weibing Wu
- Department of Sports Rehabilitation, Shanghai University of Sport, No. 399 Changhai Road, Yangpu District, 200438, Shanghai, PR China.
| | - Wei Gu
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), No. 800 Xiangyin Road, Yangpu District, 200433, Shanghai, PR China.
| |
Collapse
|
10
|
Angi B, Muccioli S, Szabò I, Leanza L. A Meta-Analysis Study to Infer Voltage-Gated K+ Channels Prognostic Value in Different Cancer Types. Antioxidants (Basel) 2023; 12:antiox12030573. [PMID: 36978819 PMCID: PMC10045123 DOI: 10.3390/antiox12030573] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Potassium channels are often highly expressed in cancer cells with respect to healthy ones, as they provide proliferative advantages through modulating membrane potential, calcium homeostasis, and various signaling pathways. Among potassium channels, Shaker type voltage-gated Kv channels are emerging as promising pharmacological targets in oncology. Here, we queried publicly available cancer patient databases to highlight if a correlation exists between Kv channel expression and survival rate in five different cancer types. By multiple gene comparison analysis, we found a predominant expression of KCNA2, KCNA3, and KCNA5 with respect to the other KCNA genes in skin cutaneous melanoma (SKCM), uterine corpus endometrial carcinoma (UCEC), stomach adenocarcinoma (STAD), lung adenocarcinoma (LUAD), and lung squamous cell carcinoma (LUSC). This analysis highlighted a prognostic role of KCNA3 and KCNA5 in SKCM, LUAD, LUSC, and STAD, respectively. Interestingly, KCNA3 was associated with a positive prognosis in SKCM and LUAD but not in LUSC. Results obtained by the analysis of KCNA3-related differentially expressed genes (DEGs); tumor immune cell infiltration highlighted differences that may account for such differential prognosis. A meta-analysis study was conducted to investigate the role of KCNA channels in cancer using cancer patients’ datasets. Our study underlines a promising correlation between Kv channel expression in tumor cells, in infiltrating immune cells, and survival rate.
Collapse
|
11
|
Chimote AA, Alshwimi AO, Chirra M, Gawali VS, Powers-Fletcher MV, Hudock KM, Conforti L. Immune and ionic mechanisms mediating the effect of dexamethasone in severe COVID-19. Front Immunol 2023; 14:1143350. [PMID: 37033961 PMCID: PMC10080085 DOI: 10.3389/fimmu.2023.1143350] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/15/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Severe COVID-19 is characterized by cytokine storm, an excessive production of proinflammatory cytokines that contributes to acute lung damage and death. Dexamethasone is routinely used to treat severe COVID-19 and has been shown to reduce patient mortality. However, the mechanisms underlying the beneficial effects of dexamethasone are poorly understood. Methods We conducted transcriptomic analysis of peripheral blood mononuclear cells (PBMCs) from COVID-19 patients with mild disease, and patients with severe COVID-19 with and without dexamethasone treatment. We then treated healthy donor PBMCs in vitro with dexamethasone and investigated the effects of dexamethasone treatment ion channel abundance (by RT-qPCR and flow cytometry) and function (by electrophysiology, Ca2+ influx measurements and cytokine release) in T cells. Results We observed that dexamethasone treatment in severe COVID-19 inhibited pro-inflammatory and immune exhaustion pathways, circulating cytotoxic and Th1 cells, interferon (IFN) signaling, genes involved in cytokine storm, and Ca2+ signaling. Ca2+ influx is regulated by Kv1.3 potassium channels, but their role in COVID-19 pathogenesis remains elusive. Kv1.3 mRNA was increased in PBMCs of severe COVID-19 patients, and was significantly reduced in the dexamethasone-treated group. In agreement with these findings, in vitro treatment of healthy donor PBMCs with dexamethasone reduced Kv1.3 abundance in T cells and CD56dimNK cells. Furthermore, functional studies showed that dexamethasone treatment significantly reduced Kv1.3 activity, Ca2+ influx and IFN-g production in T cells. Conclusion Our findings suggest that dexamethasone attenuates inflammatory cytokine release via Kv1.3 suppression, and this mechanism contributes to dexamethasone-mediated immunosuppression in severe COVID-19.
Collapse
Affiliation(s)
- Ameet A. Chimote
- Department of Internal Medicine, Division of Nephrology, University of Cincinnati, Cincinnati, OH, United States
| | - Abdulaziz O. Alshwimi
- Department of Internal Medicine, Division of Nephrology, University of Cincinnati, Cincinnati, OH, United States
| | - Martina Chirra
- Department of Internal Medicine, Division of Nephrology, University of Cincinnati, Cincinnati, OH, United States
| | - Vaibhavkumar S. Gawali
- Department of Internal Medicine, Division of Nephrology, University of Cincinnati, Cincinnati, OH, United States
| | - Margaret V. Powers-Fletcher
- Department of Internal Medicine, Division of Infectious Diseases, University of Cincinnati, Cincinnati, OH, United States
| | - Kristin M. Hudock
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, OH, United States
- Department of Pediatrics, Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Laura Conforti
- Department of Internal Medicine, Division of Nephrology, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Laura Conforti,
| |
Collapse
|
12
|
Li R, Tao T, Ren Q, Xie S, Gao X, Wu J, Chen D, Xu C. Key Genes Are Associated with the Prognosis of Glioma, and Melittin Can Regulate the Expression of These Genes in Glioma U87 Cells. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1-18. [PMID: 39281062 PMCID: PMC11401668 DOI: 10.1155/2022/7033478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Glioma is the most common primary tumor of the central nervous system. Currently, there is no effective treatment for glioma. Melittin (MT) is the main component of bee venom, which was found to have therapeutic effects on a variety of tumors. In this study, we explored the relationship between key genes regulated by MT and the prognosis of glioma. In cultured glioma U87 and U251 cells, MT inhibited cell proliferation and induces cell apoptosis in a time- and concentration-dependent manner. RNA-seq revealed that MT upregulated 11 genes and downregulated 37 genes. These genes are mainly enriched in cell membrane signaling pathways, such as surface membrane, membrane-enclosed organelles, integral component of membrane, PPAR signaling pathway, and voltage-gated potassium channel. PPI network analysis and literature analysis of 48 genes were performed, and 8 key genes were identified, and these key genes were closely associated with clinical prognosis. Overexpression of PCDH18, PPL, DEPP1, VASN, KCNE4, MYBPH, and C5AR2 genes or low expression of MARCH4 gene in glioma patients was associated with poor survival. qPCR confirmed that MT can regulate the expression of these genes in glioma U87 cells. This study indicated that MT significantly inhibited the growth and regulated the expression of PCDH18, C5AR2, VASN, DEPP1, MYBPH, KCNE4, PPL, and MARCH4 genes in glioma U87 cells in vitro. These genes are closely related to the prognosis of patients with glioma and can be used as independent prognostic factors in patients with glioma. MT is a potential drug for the treatment of glioma.
Collapse
Affiliation(s)
- Ran Li
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, 288 Daxue Road, Shaoguan, 512005 Guangdong Province, China
- Medical College of Shaoguan University, 108 XinHua Nan Road, Shaoguan, 512005 Guangdong Province, China
- Hunan Yueyang Maternal & Child Health-Care Hospital, 693 Baling Middle Road, Yueyang, 414000 Hunan Province, China
| | - Ting Tao
- Hunan Yueyang Maternal & Child Health-Care Hospital, 693 Baling Middle Road, Yueyang, 414000 Hunan Province, China
| | - Qiuyun Ren
- Brain Function and Disease Laboratory, Shantou University Medical College, 22 Xinling Road, Shantou, 515041 Guangdong Province, China
| | - Sujun Xie
- Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405 Guangdong Province, China
| | - Xiaofen Gao
- Medical College of Shaoguan University, 108 XinHua Nan Road, Shaoguan, 512005 Guangdong Province, China
| | - Jie Wu
- Brain Function and Disease Laboratory, Shantou University Medical College, 22 Xinling Road, Shantou, 515041 Guangdong Province, China
| | - Diling Chen
- Guangzhou Laboratory, 9 XingDao HuanBei Road, Guangzhou International Bio Island, Guangzhou, 510005 Guangdong Province, China
| | - Changqiong Xu
- Medical College of Shaoguan University, 108 XinHua Nan Road, Shaoguan, 512005 Guangdong Province, China
- Hunan Yueyang Maternal & Child Health-Care Hospital, 693 Baling Middle Road, Yueyang, 414000 Hunan Province, China
| |
Collapse
|
13
|
Combining mKate2-Kv1.3 Channel and Atto488-Hongotoxin for the Studies of Peptide Pore Blockers on Living Eukaryotic Cells. Toxins (Basel) 2022; 14:toxins14120858. [PMID: 36548755 PMCID: PMC9780825 DOI: 10.3390/toxins14120858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The voltage-gated potassium Kv1.3 channel is an essential component of vital cellular processes which is also involved in the pathogenesis of some autoimmune, neuroinflammatory and oncological diseases. Pore blockers of the Kv1.3 channel are considered as potential drugs and are used to study Kv1 channels' structure and functions. Screening and study of the blockers require the assessment of their ability to bind the channel. Expanding the variety of methods used for this, we report on the development of the fluorescent competitive binding assay for measuring affinities of pore blockers to Kv1.3 at the membrane of mammalian cells. The assay constituents are hongotoxin 1 conjugated with Atto488, fluorescent mKate2-tagged Kv1.3 channel, which was designed to improve membrane expression of the channel in mammalian cells, confocal microscopy, and a special protocol of image processing. The assay is implemented in the "mix and measure", format and allows the screening of Kv1.3 blockers, such as peptide toxins, that bind to the extracellular vestibule of the K+-conducting pore, and analyzing their affinity.
Collapse
|
14
|
Abbott GW. Kv Channel Ancillary Subunits: Where Do We Go from Here? Physiology (Bethesda) 2022; 37:0. [PMID: 35797055 PMCID: PMC9394777 DOI: 10.1152/physiol.00005.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 01/10/2023] Open
Abstract
Voltage-gated potassium (Kv) channels each comprise four pore-forming α-subunits that orchestrate essential duties such as voltage sensing and K+ selectivity and conductance. In vivo, however, Kv channels also incorporate regulatory subunits-some Kv channel specific, others more general modifiers of protein folding, trafficking, and function. Understanding all the above is essential for a complete picture of the role of Kv channels in physiology and disease.
Collapse
Affiliation(s)
- Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
| |
Collapse
|
15
|
Mano R, Tanaka T, Hashiguchi S, Takahashi H, Sakata N, Kondo S, Kodama S. Induction of potassium channel regulator KCNE4 in a submandibular lymph node metastasis model. Sci Rep 2022; 12:13208. [PMID: 35915077 PMCID: PMC9343410 DOI: 10.1038/s41598-022-15926-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/01/2022] [Indexed: 12/02/2022] Open
Abstract
Cancer cells often metastasize to the lymph nodes (LNs) before disseminating throughout the body. Clinically, LN metastasis correlates with poor prognosis and influences treatment options. Many studies have shown that cancer cells communicate with immune and stromal cells to prepare a suitable niche for metastasis. In this study, mice were injected with B16-F10 murine melanoma cells to generate a tongue submandibular lymph node (SLN) metastasis model in which genes of interest could be investigated. Microarray analyses were performed on SLNs, identifying 162 upregulated genes, some of which are known metastasis genes. Among these upregulated genes, Kcne4, Slc7a11, Fscn1, and Gadd45b were not associated with metastasis, and increased expression of Kcne4 and Slc7a11 was confirmed by real-time PCR and immunohistochemistry. The roles of KCNE4 in chemokine production and cell adhesion were examined using primary lymphatic endothelial cells, and demonstrated that Ccl17 and Ccl19, which are involved in melanoma metastasis, were upregulated by KCNE4, as well as Mmp3 matrix metalloproteinase. Expression of KCNE4 was detected in human LNs with metastatic melanoma. In conclusion, we found that LN metastatic melanoma induces KCNE4 expression in the endothelium of LNs.
Collapse
Affiliation(s)
- Ryosuke Mano
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Nanakuma 7-45-1, Jonan-ku, Fukuoka, Japan
| | - Tomoko Tanaka
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Nanakuma 7-45-1, Jonan-ku, Fukuoka, Japan
| | - Shiho Hashiguchi
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Nanakuma 7-45-1, Jonan-ku, Fukuoka, Japan
| | - Hiroyuki Takahashi
- Department of Gastroenterological Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Naoaki Sakata
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Nanakuma 7-45-1, Jonan-ku, Fukuoka, Japan.
| | - Seiji Kondo
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Shohta Kodama
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Nanakuma 7-45-1, Jonan-ku, Fukuoka, Japan.
| |
Collapse
|
16
|
Roig SR, Cassinelli S, Navarro-Pérez M, Pérez-Verdaguer M, Estadella I, Capera J, Felipe A. S-acylation-dependent membrane microdomain localization of the regulatory Kvβ2.1 subunit. Cell Mol Life Sci 2022; 79:230. [PMID: 35396942 PMCID: PMC8994742 DOI: 10.1007/s00018-022-04269-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/19/2022] [Accepted: 03/19/2022] [Indexed: 12/13/2022]
Abstract
The voltage-dependent potassium (Kv) channel Kvβ family was the first identified group of modulators of Kv channels. Kvβ regulation of the α-subunits, in addition to their aldoketoreductase activity, has been under extensive study. However, scarce information about their specific α-subunit-independent biology is available. The expression of Kvβs is ubiquitous and, similar to Kv channels, is tightly regulated in leukocytes. Although Kvβ subunits exhibit cytosolic distribution, spatial localization, in close contact with plasma membrane Kv channels, is crucial for a proper immune response. Therefore, Kvβ2.1 is located near cell surface Kv1.3 channels within the immunological synapse during lymphocyte activation. The objective of this study was to analyze the structural elements that participate in the cellular distribution of Kvβs. It was demonstrated that Kvβ peptides, in addition to the cytoplasmic pattern, targeted the cell surface in the absence of Kv channels. Furthermore, Kvβ2.1, but not Kvβ1.1, targeted lipid raft microdomains in an S-acylation-dependent manner, which was concomitant with peptide localization within the immunological synapse. A pair of C-terminal cysteines (C301/C311) was mostly responsible for the specific palmitoylation of Kvβ2.1. Several insults altered Kvβ2.1 membrane localization. Therefore, growth factor-dependent proliferation enhanced surface targeting, whereas PKC activation impaired lipid raft expression. However, PSD95 stabilized Kvβ2.1 in these domains. This data shed light on the molecular mechanism by which Kvβ2.1 clusters into immunological synapses during leukocyte activation.
Collapse
Affiliation(s)
- Sara R Roig
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain.,Imaging Core Facility, Biozentrum University of Basel, 4056, Basel, Switzerland
| | - Silvia Cassinelli
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - María Navarro-Pérez
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Mireia Pérez-Verdaguer
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain.,Department of Cell Biology, School of Medicine, University of Pittsburgh, 3500 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Irene Estadella
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Jesusa Capera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain.,Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, UK
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain.
| |
Collapse
|
17
|
Faustino D, Brinkmeier H, Logotheti S, Jonitz-Heincke A, Yilmaz H, Takan I, Peters K, Bader R, Lang H, Pavlopoulou A, Pützer BM, Spitschak A. Novel integrated workflow allows production and in-depth quality assessment of multifactorial reprogrammed skeletal muscle cells from human stem cells. Cell Mol Life Sci 2022; 79:229. [PMID: 35396689 PMCID: PMC8993739 DOI: 10.1007/s00018-022-04264-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/08/2022] [Accepted: 03/20/2022] [Indexed: 11/03/2022]
Abstract
Skeletal muscle tissue engineering aims at generating biological substitutes that restore, maintain or improve normal muscle function; however, the quality of cells produced by current protocols remains insufficient. Here, we developed a multifactor-based protocol that combines adenovector (AdV)-mediated MYOD expression, small molecule inhibitor and growth factor treatment, and electrical pulse stimulation (EPS) to efficiently reprogram different types of human-derived multipotent stem cells into physiologically functional skeletal muscle cells (SMCs). The protocol was complemented through a novel in silico workflow that allows for in-depth estimation and potentially optimization of the quality of generated muscle tissue, based on the transcriptomes of transdifferentiated cells. We additionally patch-clamped phenotypic SMCs to associate their bioelectrical characteristics with their transcriptome reprogramming. Overall, we set up a comprehensive and dynamic approach at the nexus of viral vector-based technology, bioinformatics, and electrophysiology that facilitates production of high-quality skeletal muscle cells and can guide iterative cycles to improve myo-differentiation protocols.
Collapse
Affiliation(s)
- Dinis Faustino
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057, Rostock, Germany.,Department Life, Light and Matter, University of Rostock, 18059, Rostock, Germany
| | - Heinrich Brinkmeier
- Institute of Pathophysiology, University Medicine Greifswald, 17489, Greifswald, Germany
| | - Stella Logotheti
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057, Rostock, Germany.,Department Life, Light and Matter, University of Rostock, 18059, Rostock, Germany
| | - Anika Jonitz-Heincke
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Hande Yilmaz
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057, Rostock, Germany.,Department Life, Light and Matter, University of Rostock, 18059, Rostock, Germany
| | - Isil Takan
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, 35340, Izmir, Turkey
| | - Kirsten Peters
- Department of Cell Biology, Rostock University Medical Center, 18057, Rostock, Germany
| | - Rainer Bader
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Hermann Lang
- Department of Operative Dentistry and Periodontology, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, 35340, Izmir, Turkey
| | - Brigitte M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057, Rostock, Germany. .,Department Life, Light and Matter, University of Rostock, 18059, Rostock, Germany.
| | - Alf Spitschak
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057, Rostock, Germany.,Department Life, Light and Matter, University of Rostock, 18059, Rostock, Germany
| |
Collapse
|
18
|
Wright JR, Mahaut-Smith MP. Why do platelets express K + channels? Platelets 2021; 32:872-879. [PMID: 33872124 PMCID: PMC8437091 DOI: 10.1080/09537104.2021.1904135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 11/02/2022]
Abstract
Potassium ions have widespread roles in cellular homeostasis and activation as a consequence of their large outward concentration gradient across the surface membrane and ability to rapidly move through K+-selective ion channels. In platelets, the predominant K+ channels include the voltage-gated K+ channel Kv1.3, and the intermediate conductance Ca2+-activated K+ channel KCa3.1, also known as the Gardos channel. Inwardly rectifying potassium GIRK channels and KCa1.1 large conductance Ca2+-activated K+ channels have also been reported in the platelet, although they remain to be demonstrated using electrophysiological techniques. Whole-cell patch clamp and fluorescent indicator measurements in the platelet or their precursor cell reveal that Kv1.3 sets the resting membrane potential and KCa3.1 can further hyperpolarize the cell during activation, thereby controlling Ca2+ influx. Kv1.3-/- mice exhibit an increased platelet count, which may result from an increased splenic megakaryocyte development and longer platelet lifespan. This review discusses the evidence in the literature that Kv1.3, KCa3.1. GIRK and KCa1.1 channels contribute to a number of platelet functional responses, particularly collagen-evoked adhesion, procoagulant activity and GPCR function. Putative roles for other K+ channels and known accessory proteins which to date have only been detected in transcriptomic or proteomic studies, are also discussed.
Collapse
Affiliation(s)
- Joy R Wright
- Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Leicester, UK
| | | |
Collapse
|
19
|
Vallejo-Gracia A, Sastre D, Colomer-Molera M, Solé L, Navarro-Pérez M, Capera J, Roig SR, Pedrós-Gámez O, Estadella I, Szilágyi O, Panyi G, Hajdú P, Felipe A. KCNE4-dependent functional consequences of Kv1.3-related leukocyte physiology. Sci Rep 2021; 11:14632. [PMID: 34272451 PMCID: PMC8285421 DOI: 10.1038/s41598-021-94015-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
The voltage-dependent potassium channel Kv1.3 plays essential roles in the immune system, participating in leukocyte activation, proliferation and apoptosis. The regulatory subunit KCNE4 acts as an ancillary peptide of Kv1.3, modulates K+ currents and controls channel abundance at the cell surface. KCNE4-dependent regulation of the oligomeric complex fine-tunes the physiological role of Kv1.3. Thus, KCNE4 is crucial for Ca2+-dependent Kv1.3-related leukocyte functions. To better understand the role of KCNE4 in the regulation of the immune system, we manipulated its expression in various leukocyte cell lines. Jurkat T lymphocytes exhibit low KCNE4 levels, whereas CY15 dendritic cells, a model of professional antigen-presenting cells, robustly express KCNE4. When the cellular KCNE4 abundance was increased in T cells, the interaction between KCNE4 and Kv1.3 affected important T cell physiological features, such as channel rearrangement in the immunological synapse, cell growth, apoptosis and activation, as indicated by decreased IL-2 production. Conversely, ablation of KCNE4 in dendritic cells augmented proliferation. Furthermore, the LPS-dependent activation of CY15 cells, which induced Kv1.3 but not KCNE4, increased the Kv1.3-KCNE4 ratio and increased the expression of free Kv1.3 without KCNE4 interaction. Our results demonstrate that KCNE4 is a pivotal regulator of the Kv1.3 channelosome, which fine-tunes immune system physiology by modulating Kv1.3-associated leukocyte functions.
Collapse
Affiliation(s)
- Albert Vallejo-Gracia
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain.,Virology and Immunology, Gladstone Institutes, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Daniel Sastre
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Magalí Colomer-Molera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Laura Solé
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain.,Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - María Navarro-Pérez
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Jesusa Capera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Sara R Roig
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Oriol Pedrós-Gámez
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Irene Estadella
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Orsolya Szilágyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 400, 1 Egyetem Sq., Debrecen, 4032, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 400, 1 Egyetem Sq., Debrecen, 4032, Hungary
| | - Péter Hajdú
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 400, 1 Egyetem Sq., Debrecen, 4032, Hungary
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain.
| |
Collapse
|
20
|
Roig SR, Solé L, Cassinelli S, Colomer-Molera M, Sastre D, Serrano-Novillo C, Serrano-Albarrás A, Lillo MP, Tamkun MM, Felipe A. Calmodulin-dependent KCNE4 dimerization controls membrane targeting. Sci Rep 2021; 11:14046. [PMID: 34234241 PMCID: PMC8263776 DOI: 10.1038/s41598-021-93562-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/23/2021] [Indexed: 12/26/2022] Open
Abstract
The voltage-dependent potassium channel Kv1.3 participates in the immune response. Kv1.3 is essential in different cellular functions, such as proliferation, activation and apoptosis. Because aberrant expression of Kv1.3 is linked to autoimmune diseases, fine-tuning its function is crucial for leukocyte physiology. Regulatory KCNE subunits are expressed in the immune system, and KCNE4 specifically tightly regulates Kv1.3. KCNE4 modulates Kv1.3 currents slowing activation, accelerating inactivation and retaining the channel at the endoplasmic reticulum (ER), thereby altering its membrane localization. In addition, KCNE4 genomic variants are associated with immune pathologies. Therefore, an in-depth knowledge of KCNE4 function is extremely relevant for understanding immune system physiology. We demonstrate that KCNE4 dimerizes, which is unique among KCNE regulatory peptide family members. Furthermore, the juxtamembrane tetraleucine carboxyl-terminal domain of KCNE4 is a structural platform in which Kv1.3, Ca2+/calmodulin (CaM) and dimerizing KCNE4 compete for multiple interaction partners. CaM-dependent KCNE4 dimerization controls KCNE4 membrane targeting and modulates its interaction with Kv1.3. KCNE4, which is highly retained at the ER, contains an important ER retention motif near the tetraleucine motif. Upon escaping the ER in a CaM-dependent pattern, KCNE4 follows a COP-II-dependent forward trafficking mechanism. Therefore, CaM, an essential signaling molecule that controls the dimerization and membrane targeting of KCNE4, modulates the KCNE4-dependent regulation of Kv1.3, which in turn fine-tunes leukocyte physiology.
Collapse
Affiliation(s)
- Sara R Roig
- Molecular Physiology Laboratory, Dpt. de Bioquímica I Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain.,Imaging Core Facility, Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Laura Solé
- Molecular Physiology Laboratory, Dpt. de Bioquímica I Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain.,Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Silvia Cassinelli
- Molecular Physiology Laboratory, Dpt. de Bioquímica I Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Magalí Colomer-Molera
- Molecular Physiology Laboratory, Dpt. de Bioquímica I Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Daniel Sastre
- Molecular Physiology Laboratory, Dpt. de Bioquímica I Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Clara Serrano-Novillo
- Molecular Physiology Laboratory, Dpt. de Bioquímica I Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Antonio Serrano-Albarrás
- Molecular Physiology Laboratory, Dpt. de Bioquímica I Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - M Pilar Lillo
- Instituto de Química Física Rocasolano, CSIC, 28006, Madrid, Spain
| | - Michael M Tamkun
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Antonio Felipe
- Molecular Physiology Laboratory, Dpt. de Bioquímica I Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain.
| |
Collapse
|
21
|
Capera J, Pérez-Verdaguer M, Peruzzo R, Navarro-Pérez M, Martínez-Pinna J, Alberola-Die A, Morales A, Leanza L, Szabó I, Felipe A. A novel mitochondrial Kv1.3-caveolin axis controls cell survival and apoptosis. eLife 2021; 10:e69099. [PMID: 34196606 PMCID: PMC8248986 DOI: 10.7554/elife.69099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/22/2021] [Indexed: 12/16/2022] Open
Abstract
The voltage-gated potassium channel Kv1.3 plays an apparent dual physiological role by participating in activation and proliferation of leukocytes as well as promoting apoptosis in several types of tumor cells. Therefore, Kv1.3 is considered a potential pharmacological target for immunodeficiency and cancer. Different cellular locations of Kv1.3, at the plasma membrane or the mitochondria, could be responsible for such duality. While plasma membrane Kv1.3 facilitates proliferation, the mitochondrial channel modulates apoptotic signaling. Several molecular determinants of Kv1.3 drive the channel to the cell surface, but no information is available about its mitochondrial targeting. Caveolins, which are able to modulate cell survival, participate in the plasma membrane targeting of Kv1.3. The channel, via a caveolin-binding domain (CDB), associates with caveolin 1 (Cav1), which localizes Kv1.3 to lipid raft membrane microdomains. The aim of our study was to understand the role of such interactions not only for channel targeting but also for cell survival in mammalian cells. By using a caveolin association-deficient channel (Kv1.3 CDBless), we demonstrate here that while the Kv1.3-Cav1 interaction is responsible for the channel localization in the plasma membrane, a lack of such interaction accumulates Kv1.3 in the mitochondria. Kv1.3 CDBless severely affects mitochondrial physiology and cell survival, indicating that a functional link of Kv1.3 with Cav1 within the mitochondria modulates the pro-apoptotic effects of the channel. Therefore, the balance exerted by these two complementary mechanisms fine-tune the physiological role of Kv1.3 during cell survival or apoptosis. Our data highlight an unexpected role for the mitochondrial caveolin-Kv1.3 axis during cell survival and apoptosis.
Collapse
Affiliation(s)
- Jesusa Capera
- Molecular Physiology Laboratory, Dpt. de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de BarcelonaBarcelonaSpain
| | - Mireia Pérez-Verdaguer
- Molecular Physiology Laboratory, Dpt. de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de BarcelonaBarcelonaSpain
| | | | - María Navarro-Pérez
- Molecular Physiology Laboratory, Dpt. de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de BarcelonaBarcelonaSpain
| | - Juan Martínez-Pinna
- Dept de Fisiología, Genética y Microbiología, Universidad de AlicanteAlicanteSpain
| | - Armando Alberola-Die
- Dept de Fisiología, Genética y Microbiología, Universidad de AlicanteAlicanteSpain
| | - Andrés Morales
- Dept de Fisiología, Genética y Microbiología, Universidad de AlicanteAlicanteSpain
| | - Luigi Leanza
- Department of Biology, University of PadovaPadovaItaly
| | - Ildiko Szabó
- Department of Biology, University of PadovaPadovaItaly
| | - Antonio Felipe
- Molecular Physiology Laboratory, Dpt. de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de BarcelonaBarcelonaSpain
| |
Collapse
|
22
|
Reduced Graphene Oxides Modulate the Expression of Cell Receptors and Voltage-Dependent Ion Channel Genes of Glioblastoma Multiforme. Int J Mol Sci 2021; 22:ijms22020515. [PMID: 33419226 PMCID: PMC7825604 DOI: 10.3390/ijms22020515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
The development of nanotechnology based on graphene and its derivatives has aroused great scientific interest because of their unusual properties. Graphene (GN) and its derivatives, such as reduced graphene oxide (rGO), exhibit antitumor effects on glioblastoma multiforme (GBM) cells in vitro. The antitumor activity of rGO with different contents of oxygen-containing functional groups and GN was compared. Using FTIR (fourier transform infrared) analysis, the content of individual functional groups (GN/exfoliation (ExF), rGO/thermal (Term), rGO/ammonium thiosulphate (ATS), and rGO/ thiourea dioxide (TUD)) was determined. Cell membrane damage, as well as changes in the cell membrane potential, was analyzed. Additionally, the gene expression of voltage-dependent ion channels (clcn3, clcn6, cacna1b, cacna1d, nalcn, kcne4, kcnj10, and kcnb1) and extracellular receptors was determined. A reduction in the potential of the U87 glioma cell membrane was observed after treatment with rGO/ATS and rGO/TUD flakes. Moreover, it was also demonstrated that major changes in the expression of voltage-dependent ion channel genes were observed in clcn3, nalcn, and kcne4 after treatment with rGO/ATS and rGO/TUD flakes. Furthermore, the GN/ExF, rGO/ATS, and rGO/TUD flakes significantly reduced the expression of extracellular receptors (uPar, CD105) in U87 glioblastoma cells. In conclusion, the cytotoxic mechanism of rGO flakes may depend on the presence and types of oxygen-containing functional groups, which are more abundant in rGO compared to GN.
Collapse
|
23
|
Lang Y, Li F, Liu Q, Xia Z, Ji Z, Hu J, Cheng Y, Gao M, Sun F, Shen B, Xie C, Yi W, Wu Y, Yao J, Cao Z. The Kv1.3 ion channel acts as a host factor restricting viral entry. FASEB J 2020; 35:e20995. [PMID: 32910509 DOI: 10.1096/fj.202000879rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 11/11/2022]
Abstract
Virus entry into cells is the initial stage of infection and involves multiple steps, and interfering viral entry represents potential antiviral approaches. Ion channels are pore-forming membrane proteins controlling cellular ion homeostasis and regulating many physiological processes, but their roles during viral infection have rarely been explored. Here, the functional Kv1.3 ion channel was found to be expressed in human hepatic cells and tissues. The Kv1.3 was then revealed to restrict HCV entry via inhibiting endosome acidification-mediated viral membrane fusion. The Kv1.3 was also demonstrated to inhibit DENV and ZIKV with an endosome acidification-dependent entry, but have no effect on SeV with a neutral pH penetration. A Kv1.3 antagonist PAP-1 treatment accelerated animal death in ZIKV-infected Ifnar1-/- mice. Moreover, Kv1.3-deletion was found to promote weight loss and reduce survival rate in ZIKV-infected Kv1.3-/- mice. Altogether, the Kv1.3 ion channel behaves as a host factor restricting viral entry. These findings broaden understanding about ion channel biology.
Collapse
Affiliation(s)
- Yange Lang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, P.R. China
| | - Fangfang Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, P.R. China
| | - Qiang Liu
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, P.R. China
| | - Zhiqiang Xia
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, P.R. China
| | - Zhenglin Ji
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, P.R. China
| | - Juan Hu
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, P.R. China
| | - Yuting Cheng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, P.R. China
| | - Minjun Gao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, P.R. China
| | - Fang Sun
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, P.R. China
| | - Bingzheng Shen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, P.R. China
| | - Chang Xie
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, P.R. China
| | - Wei Yi
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, P.R. China.,Bio-drug Research Center, Wuhan University, Wuhan, P. R. China
| | - Jing Yao
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, P.R. China
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, P.R. China.,Bio-drug Research Center, Wuhan University, Wuhan, P. R. China.,Hubei Province Engineering and Technology Research, Center for Fluorinated Pharmaceuticals, Wuhan University, Wuhan, P.R. China
| |
Collapse
|
24
|
Direct and indirect cholesterol effects on membrane proteins with special focus on potassium channels. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158706. [DOI: 10.1016/j.bbalip.2020.158706] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/19/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022]
|
25
|
Solé L, Sastre D, Colomer-Molera M, Vallejo-Gracia A, Roig SR, Pérez-Verdaguer M, Lillo P, Tamkun MM, Felipe A. Functional Consequences of the Variable Stoichiometry of the Kv1.3-KCNE4 Complex. Cells 2020; 9:cells9051128. [PMID: 32370164 PMCID: PMC7290415 DOI: 10.3390/cells9051128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/25/2020] [Accepted: 04/30/2020] [Indexed: 12/16/2022] Open
Abstract
The voltage-gated potassium channel Kv1.3 plays a crucial role during the immune response. The channel forms oligomeric complexes by associating with several modulatory subunits. KCNE4, one of the five members of the KCNE family, binds to Kv1.3, altering channel activity and membrane expression. The association of KCNEs with Kv channels is the subject of numerous studies, and the stoichiometry of such associations has led to an ongoing debate. The number of KCNE4 subunits that can interact and modulate Kv1.3 is unknown. KCNE4 transfers important elements to the Kv1.3 channelosome that negatively regulate channel function, thereby fine-tuning leukocyte physiology. The aim of this study was to determine the stoichiometry of the functional Kv1.3-KCNE4 complex. We demonstrate that as many as four KCNE4 subunits can bind to the same Kv1.3 channel, indicating a variable Kv1.3-KCNE4 stoichiometry. While increasing the number of KCNE4 subunits steadily slowed the activation of the channel and decreased the abundance of Kv1.3 at the cell surface, the presence of a single KCNE4 peptide was sufficient for the cooperative enhancement of the inactivating function of the channel. This variable architecture, which depends on KCNE4 availability, differentially affects Kv1.3 function. Therefore, our data indicate that the physiological remodeling of KCNE4 triggers functional consequences for Kv1.3, thus affecting cell physiology.
Collapse
Affiliation(s)
- Laura Solé
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (L.S.); (D.S.); (M.C.-M.); (A.V.-G.); (S.R.R.); (M.P.-V.)
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| | - Daniel Sastre
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (L.S.); (D.S.); (M.C.-M.); (A.V.-G.); (S.R.R.); (M.P.-V.)
| | - Magalí Colomer-Molera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (L.S.); (D.S.); (M.C.-M.); (A.V.-G.); (S.R.R.); (M.P.-V.)
| | - Albert Vallejo-Gracia
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (L.S.); (D.S.); (M.C.-M.); (A.V.-G.); (S.R.R.); (M.P.-V.)
- Virology and Immunology, Gladstone Institutes, University of California San Francisco, San Francisco, CA 94158, USA
| | - Sara R. Roig
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (L.S.); (D.S.); (M.C.-M.); (A.V.-G.); (S.R.R.); (M.P.-V.)
- Imaging Core Facility, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Mireia Pérez-Verdaguer
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (L.S.); (D.S.); (M.C.-M.); (A.V.-G.); (S.R.R.); (M.P.-V.)
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Pilar Lillo
- Instituto de Química Física Rocasolano, CSIC, 28006 Madrid, Spain;
| | - Michael M. Tamkun
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (L.S.); (D.S.); (M.C.-M.); (A.V.-G.); (S.R.R.); (M.P.-V.)
- Correspondence: ; Tel.: +34-934034616; Fax: +34-934021559
| |
Collapse
|
26
|
Prosdocimi E, Checchetto V, Leanza L. Targeting the Mitochondrial Potassium Channel Kv1.3 to Kill Cancer Cells: Drugs, Strategies, and New Perspectives. SLAS DISCOVERY 2019; 24:882-892. [PMID: 31373829 DOI: 10.1177/2472555219864894] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer is the consequence of aberrations in cell growth or cell death. In this scenario, mitochondria and ion channels play a critical role in regard to cell proliferation, malignant angiogenesis, migration, and metastasis. In this review, we focus on Kv1.3 and specifically on mitoKv1.3, which showed an aberrant expression in cancer cells compared with healthy tissues and which is involved in the apoptotic pathway. In recent years, mitoKv1.3 has become an oncological target since its pharmacological modulation has been demonstrated to reduce tumor growth and progression both in vitro and in vivo using preclinical mouse models of different types of tumors.
Collapse
Affiliation(s)
| | | | - Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
27
|
Serrano-Albarrás A, Cirera-Rocosa S, Sastre D, Estadella I, Felipe A. Fighting rheumatoid arthritis: Kv1.3 as a therapeutic target. Biochem Pharmacol 2019; 165:214-220. [DOI: 10.1016/j.bcp.2019.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/12/2019] [Indexed: 01/18/2023]
|
28
|
Solé L, Roig SR, Sastre D, Vallejo-Gracia A, Serrano-Albarrás A, Ferrer-Montiel A, Fernández-Ballester G, Tamkun MM, Felipe A. The calmodulin-binding tetraleucine motif of KCNE4 is responsible for association with Kv1.3. FASEB J 2019; 33:8263-8279. [PMID: 30969795 DOI: 10.1096/fj.201801164rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The voltage-dependent potassium (Kv) channel Kv1.3 regulates leukocyte proliferation, activation, and apoptosis, and altered expression of this channel is linked to autoimmune diseases. Thus, the fine-tuning of Kv1.3 function is crucial for the immune system response. The Kv1.3 accessory protein, potassium voltage-gated channel subfamily E (KCNE) subunit 4, acts as a dominant negative regulatory subunit to both enhance inactivation and induce intracellular retention of Kv1.3. Mutations in KCNE4 also cause immune system dysfunction. Although the formation of Kv1.3-KCNE4 complexes has profound consequences for leukocyte physiology, the molecular determinants involved in the Kv1.3-KCNE4 association are unknown. We now show that KCNE4 associates with Kv1.3 via a tetraleucine motif situated within the carboxy-terminal domain of this accessory protein. This motif would function as an interaction platform, in which Kv1.3 and Ca2+/calmodulin compete for the KCNE4 interaction. Finally, we propose a structural model of the Kv1.3-KCNE4 complex. Our experimental data and the in silico structure suggest that the KCNE4 interaction hides a forward-trafficking motif within Kv1.3 in addition to adding a strong endoplasmic reticulum retention signature to the Kv1.3-KCNE4 complex. Thus, the oligomeric composition of the Kv1.3 channelosome fine-tunes the precise balance between anterograde and intracellular retention elements that control the cell surface expression of Kv1.3 and immune system physiology.-Solé, L., Roig, S. R., Sastre, D., Vallejo-Gracia, A., Serrano-Albarrás, A., Ferrer-Montiel, A., Fernández-Ballester, G., Tamkun, M. M., Felipe, A. The calmodulin-binding tetraleucine motif of KCNE4 is responsible for association with Kv1.3.
Collapse
Affiliation(s)
- Laura Solé
- Departament de Bioquímica i Biomedicina Molecular, Molecular Physiology Laboratory, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain.,Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Sara R Roig
- Departament de Bioquímica i Biomedicina Molecular, Molecular Physiology Laboratory, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Daniel Sastre
- Departament de Bioquímica i Biomedicina Molecular, Molecular Physiology Laboratory, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Albert Vallejo-Gracia
- Departament de Bioquímica i Biomedicina Molecular, Molecular Physiology Laboratory, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Antonio Serrano-Albarrás
- Departament de Bioquímica i Biomedicina Molecular, Molecular Physiology Laboratory, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Antonio Ferrer-Montiel
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Alicante, Spain
| | | | - Michael M Tamkun
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Antonio Felipe
- Departament de Bioquímica i Biomedicina Molecular, Molecular Physiology Laboratory, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
29
|
Capera J, Serrano-Novillo C, Navarro-Pérez M, Cassinelli S, Felipe A. The Potassium Channel Odyssey: Mechanisms of Traffic and Membrane Arrangement. Int J Mol Sci 2019; 20:ijms20030734. [PMID: 30744118 PMCID: PMC6386995 DOI: 10.3390/ijms20030734] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 12/29/2022] Open
Abstract
Ion channels are transmembrane proteins that conduct specific ions across biological membranes. Ion channels are present at the onset of many cellular processes, and their malfunction triggers severe pathologies. Potassium channels (KChs) share a highly conserved signature that is necessary to conduct K⁺ through the pore region. To be functional, KChs require an exquisite regulation of their subcellular location and abundance. A wide repertoire of signatures facilitates the proper targeting of the channel, fine-tuning the balance that determines traffic and location. These signature motifs can be part of the secondary or tertiary structure of the protein and are spread throughout the entire sequence. Furthermore, the association of the pore-forming subunits with different ancillary proteins forms functional complexes. These partners can modulate traffic and activity by adding their own signatures as well as by exposing or masking the existing ones. Post-translational modifications (PTMs) add a further dimension to traffic regulation. Therefore, the fate of a KCh is not fully dependent on a gene sequence but on the balance of many other factors regulating traffic. In this review, we assemble recent evidence contributing to our understanding of the spatial expression of KChs in mammalian cells. We compile specific signatures, PTMs, and associations that govern the destination of a functional channel.
Collapse
Affiliation(s)
- Jesusa Capera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain.
| | - Clara Serrano-Novillo
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain.
| | - María Navarro-Pérez
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain.
| | - Silvia Cassinelli
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain.
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain.
| |
Collapse
|
30
|
Leanza L, Checchetto V, Biasutto L, Rossa A, Costa R, Bachmann M, Zoratti M, Szabo I. Pharmacological modulation of mitochondrial ion channels. Br J Pharmacol 2019; 176:4258-4283. [PMID: 30440086 DOI: 10.1111/bph.14544] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/15/2018] [Accepted: 10/22/2018] [Indexed: 12/17/2022] Open
Abstract
The field of mitochondrial ion channels has undergone a rapid development during the last three decades, due to the molecular identification of some of the channels residing in the outer and inner membranes. Relevant information about the function of these channels in physiological and pathological settings was gained thanks to genetic models for a few, mitochondria-specific channels. However, many ion channels have multiple localizations within the cell, hampering a clear-cut determination of their function by pharmacological means. The present review summarizes our current knowledge about the ins and outs of mitochondrial ion channels, with special focus on the channels that have received much attention in recent years, namely, the voltage-dependent anion channels, the permeability transition pore (also called mitochondrial megachannel), the mitochondrial calcium uniporter and some of the inner membrane-located potassium channels. In addition, possible strategies to overcome the difficulties of specifically targeting mitochondrial channels versus their counterparts active in other membranes are discussed, as well as the possibilities of modulating channel function by small peptides that compete for binding with protein interacting partners. Altogether, these promising tools along with large-scale chemical screenings set up to identify new, specific channel modulators will hopefully allow us to pinpoint the actual function of most mitochondrial ion channels in the near future and to pharmacologically affect important pathologies in which they are involved, such as neurodegeneration, ischaemic damage and cancer. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy
| | | | - Lucia Biasutto
- CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Andrea Rossa
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Roberto Costa
- Department of Biology, University of Padova, Padova, Italy
| | | | - Mario Zoratti
- CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy.,CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
31
|
Abstract
Confocal microscopy permits the analysis of the subcellular distribution of proteins. Colocalization between target proteins and specific markers of differential cell compartments provides an efficient approach to studying protein traffic. In this chapter, we describe an automated method to denoise confocal microscopy images and assess the colocalization of their stainings using ImageJ software. As a step further from conventional single colocalization measurements, in the proposed method, we analyze stacks of three different stainings using two-by-two comparisons. To demonstrate the reliability and usefulness of our proposal, the method was used to compare the traffic of the voltage-gated Kv1.3 potassium channel, which is a well-defined plasma membrane protein, in the presence and absence of KCNE4, a regulatory subunit that strongly retains the channel intracellularly.
Collapse
|
32
|
Serrano-Albarrás A, Estadella I, Cirera-Rocosa S, Navarro-Pérez M, Felipe A. Kv1.3: a multifunctional channel with many pathological implications. Expert Opin Ther Targets 2017; 22:101-105. [PMID: 29258373 DOI: 10.1080/14728222.2017.1420170] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Antonio Serrano-Albarrás
- a Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular , Institut de Biomedicina Universitat de Barcelona (IBUB) , Barcelona , Spain
| | - Irene Estadella
- a Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular , Institut de Biomedicina Universitat de Barcelona (IBUB) , Barcelona , Spain
| | - Sergi Cirera-Rocosa
- a Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular , Institut de Biomedicina Universitat de Barcelona (IBUB) , Barcelona , Spain
| | - María Navarro-Pérez
- a Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular , Institut de Biomedicina Universitat de Barcelona (IBUB) , Barcelona , Spain
| | - Antonio Felipe
- a Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular , Institut de Biomedicina Universitat de Barcelona (IBUB) , Barcelona , Spain
| |
Collapse
|
33
|
Effects of Mahuang ( Herba Ephedra Sinica ) and Wuweizi ( Fructus Schisandrae Chinensis ) medicated serum on chemotactic migration of alveolar macrophages and inters regions macrophages in rats. J TRADIT CHIN MED 2017. [DOI: 10.1016/s0254-6272(17)30313-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Pérez-García MT, Cidad P, López-López JR. The secret life of ion channels: Kv1.3 potassium channels and proliferation. Am J Physiol Cell Physiol 2017; 314:C27-C42. [PMID: 28931540 DOI: 10.1152/ajpcell.00136.2017] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Kv1.3 channels are involved in the switch to proliferation of normally quiescent cells, being implicated in the control of cell cycle in many different cell types and in many different ways. They modulate membrane potential controlling K+ fluxes, sense changes in potential, and interact with many signaling molecules through their intracellular domains. From a mechanistic point of view, we can describe the role of Kv1.3 channels in proliferation with at least three different models. In the "membrane potential model," membrane hyperpolarization resulting from Kv1.3 activation provides the driving force for Ca2+ influx required to activate Ca2+-dependent transcription. This model explains most of the data obtained from several cells from the immune system. In the "voltage sensor model," Kv1.3 channels serve mainly as sensors that transduce electrical signals into biochemical cascades, independently of their effect on membrane potential. Kv1.3-dependent proliferation of vascular smooth muscle cells (VSMCs) could fit this model. Finally, in the "channelosome balance model," the master switch determining proliferation may be related to the control of the Kv1.3 to Kv1.5 ratio, as described in glial cells and also in VSMCs. Since the three mechanisms cannot function independently, these models are obviously not exclusive. Nevertheless, they could be exploited differentially in different cells and tissues. This large functional flexibility of Kv1.3 channels surely gives a new perspective on their functions beyond their elementary role as ion channels, although a conclusive picture of the mechanisms involved in Kv1.3 signaling to proliferation is yet to be reached.
Collapse
Affiliation(s)
- M Teresa Pérez-García
- Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas , Valladolid , Spain
| | - Pilar Cidad
- Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas , Valladolid , Spain
| | - José R López-López
- Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas , Valladolid , Spain
| |
Collapse
|
35
|
Unravelling the complexities of vascular smooth muscle ion channels: Fine tuning of activity by ancillary subunits. Pharmacol Ther 2017; 178:57-66. [PMID: 28336473 DOI: 10.1016/j.pharmthera.2017.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Which ion channel is the most important for regulating vascular tone? Which one is responsible for controlling the resting membrane potential or repolarization? Which channels are recruited by different intracellular signalling pathways or change in certain vascular diseases? Many different ion channels have been identified in the vasculature over the years and claimed as future therapeutic targets. Unfortunately, several of these ion channels are not just found in the vasculature, with many of them also found to have prominent functional roles in different organs of the body, which then leads to off-target effects. As cardiovascular diseases are expected to increase worldwide to epidemic proportions, ion channel research and the hunt for the next major therapeutic target to treat different vascular diseases has never been more important. However, I believe that the question we should now be asking is: which ancillary subunits are involved in regulating specific ion channels in the vasculature and do they have the potential to be new therapeutic targets?
Collapse
|
36
|
Fung-Leung WP, Edwards W, Liu Y, Ngo K, Angsana J, Castro G, Wu N, Liu X, Swanson RV, Wickenden AD. T Cell Subset and Stimulation Strength-Dependent Modulation of T Cell Activation by Kv1.3 Blockers. PLoS One 2017; 12:e0170102. [PMID: 28107393 PMCID: PMC5249144 DOI: 10.1371/journal.pone.0170102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 12/29/2016] [Indexed: 12/28/2022] Open
Abstract
Kv1.3 is a voltage-gated potassium channel expressed on T cells that plays an important role in T cell activation. Previous studies have shown that blocking Kv1.3 channels in human T cells during activation results in reduced calcium entry, cytokine production, and proliferation. The aim of the present study was to further explore the effects of Kv1.3 blockers on the response of different human T cell subsets under various stimulation conditions. Our studies show that, unlike the immune suppressor cyclosporine A, the inhibitory effect of Kv1.3 blockers was partial and stimulation strength dependent, with reduced inhibitory efficacy on T cells under strengthened anti-CD3/CD28 stimulations. T cell responses to allergens including house dust mites and ragweed were partially reduced by Kv1.3 blockers. The effect of Kv1.3 inhibition was dependent on T cell subsets, with stronger effects on CCR7- effector memory compared to CCR7+ central memory CD4 T cells. Calcium entry studies also revealed a population of CD4 T cells resistant to Kv1.3 blockade. Activation of CD4 T cells was accompanied with an increase in Kv1.3 currents but Kv1.3 transcripts were found to be reduced, suggesting a posttranscriptional mechanism in the regulation of Kv1.3 activities. In summary, Kv1.3 blockers inhibit T cell activation in a manner that is highly dependent on the T cell identity and stimulation strength, These findings suggest that Kv1.3 blockers inhibit T cells in a unique, conditional manner, further refining our understanding of the therapeutic potential of Kv1.3 blockers.
Collapse
Affiliation(s)
- Wai-Ping Fung-Leung
- Janssen Research & Development, L.L.C., San Diego, California, United States of America
- * E-mail:
| | - Wilson Edwards
- Janssen Research & Development, L.L.C., San Diego, California, United States of America
| | - Yi Liu
- Janssen Research & Development, L.L.C., San Diego, California, United States of America
| | - Karen Ngo
- Janssen Research & Development, L.L.C., San Diego, California, United States of America
| | - Julianty Angsana
- Janssen Research & Development, L.L.C., San Diego, California, United States of America
| | - Glenda Castro
- Janssen Research & Development, L.L.C., San Diego, California, United States of America
| | - Nancy Wu
- Janssen Research & Development, L.L.C., San Diego, California, United States of America
| | - Xuejun Liu
- Janssen Research & Development, L.L.C., San Diego, California, United States of America
| | - Ronald V. Swanson
- Janssen Research & Development, L.L.C., San Diego, California, United States of America
| | - Alan D. Wickenden
- Janssen Research & Development, L.L.C., San Diego, California, United States of America
| |
Collapse
|
37
|
Solé L, Roig SR, Vallejo-Gracia A, Serrano-Albarrás A, Martínez-Mármol R, Tamkun MM, Felipe A. The C-terminal domain of Kv1.3 regulates functional interactions with the KCNE4 subunit. J Cell Sci 2016; 129:4265-4277. [PMID: 27802162 DOI: 10.1242/jcs.191650] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/29/2016] [Indexed: 12/23/2022] Open
Abstract
The voltage-dependent K+ channel Kv1.3 (also known as KCNA3), which plays crucial roles in leukocytes, physically interacts with KCNE4. This interaction inhibits the K+ currents because the channel is retained within intracellular compartments. Thus, KCNE subunits are regulators of K+ channels in the immune system. Although the canonical interactions of KCNE subunits with Kv7 channels are under intensive investigation, the molecular determinants governing the important Kv1.3- KCNE4 association in the immune system are unknown. Our results suggest that the tertiary structure of the C-terminal domain of Kv1.3 is necessary and sufficient for such an interaction. However, this element is apparently not involved in modulating Kv1.3 gating. Furthermore, the KCNE4-dependent intracellular retention of the channel, which negatively affects the activity of Kv1.3, is mediated by two independent and additive mechanisms. First, KCNE4 masks the YMVIEE signature at the C-terminus of Kv1.3, which is crucial for the surface targeting of the channel. Second, we identify a potent endoplasmic reticulum retention motif in KCNE4 that further limits cell surface expression. Our results define specific molecular determinants that play crucial roles in the physiological function of Kv1.3 in leukocytes.
Collapse
Affiliation(s)
- Laura Solé
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, Barcelona 08028, Spain.,Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Sara R Roig
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, Barcelona 08028, Spain
| | - Albert Vallejo-Gracia
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, Barcelona 08028, Spain
| | - Antonio Serrano-Albarrás
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, Barcelona 08028, Spain
| | - Ramón Martínez-Mármol
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, Barcelona 08028, Spain.,Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Michael M Tamkun
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, Barcelona 08028, Spain
| |
Collapse
|
38
|
Abbott GW. KCNE4 and KCNE5: K(+) channel regulation and cardiac arrhythmogenesis. Gene 2016; 593:249-60. [PMID: 27484720 DOI: 10.1016/j.gene.2016.07.069] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 07/23/2016] [Accepted: 07/28/2016] [Indexed: 12/14/2022]
Abstract
KCNE proteins are single transmembrane-segment voltage-gated potassium (Kv) channel ancillary subunits that exhibit a diverse range of physiological functions. Human KCNE gene mutations are associated with various pathophysiological states, most notably cardiac arrhythmias. Of the five isoforms in the human KCNE gene family, KCNE4 and the X-linked KCNE5 are, to date, the least-studied. Recently, however, interest in these neglected genes has been stoked by their putative association with debilitating or lethal cardiac arrhythmias. The sometimes-overlapping functional effects of KCNE4 and KCNE5 vary depending on both their Kv α subunit partner and on other ancillary subunits within the channel complex, but mostly fall into two contrasting categories - either inhibition, or fine-tuning of gating kinetics. This review covers current knowledge regarding the molecular mechanisms of KCNE4 and KCNE5 function, human disease associations, and findings from very recent studies of cardiovascular pathophysiology in Kcne4(-/-) mice.
Collapse
Affiliation(s)
- Geoffrey W Abbott
- Bioelectricity Laboratory, Dept. of Pharmacology and Dept. of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
39
|
Martínez-Mármol R, Comes N, Styrczewska K, Pérez-Verdaguer M, Vicente R, Pujadas L, Soriano E, Sorkin A, Felipe A. Unconventional EGF-induced ERK1/2-mediated Kv1.3 endocytosis. Cell Mol Life Sci 2015; 73:1515-28. [PMID: 26542799 DOI: 10.1007/s00018-015-2082-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/14/2015] [Accepted: 10/26/2015] [Indexed: 12/13/2022]
Abstract
The potassium channel Kv1.3 plays roles in immunity, neuronal development and sensory discrimination. Regulation of Kv1.3 by kinase signaling has been studied. In this context, EGF binds to specific receptors (EGFR) and triggers tyrosine kinase-dependent signaling, which down-regulates Kv1.3 currents. We show that Kv1.3 undergoes EGF-dependent endocytosis. This EGF-mediated mechanism is relevant because is involved in adult neural stem cell fate determination. We demonstrated that changes in Kv1.3 subcellular distribution upon EGFR activation were due to Kv1.3 clathrin-dependent endocytosis, which targets the Kv1.3 channels to the lysosomal degradative pathway. Interestingly, our results further revealed that relevant tyrosines and other interacting motifs, such as PDZ and SH3 domains, were not involved in the EGF-dependent Kv1.3 internalization. However, a new, and yet undescribed mechanism, of ERK1/2-mediated threonine phosphorylation is crucial for the EGF-mediated Kv1.3 endocytosis. Our results demonstrate that EGF triggers the down-regulation of Kv1.3 activity and its expression at the cell surface, which is important for the development and migration of adult neural progenitors.
Collapse
Affiliation(s)
- Ramón Martínez-Mármol
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Barcelona, Spain.,Departament de Biologia Celular, Universitat de Barcelona, Barcelona, Spain
| | - Núria Comes
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Barcelona, Spain
| | - Katarzyna Styrczewska
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Barcelona, Spain
| | - Mireia Pérez-Verdaguer
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Barcelona, Spain
| | - Rubén Vicente
- Laboratory of Molecular Physiology and Channelopathies, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Lluís Pujadas
- Departament de Biologia Celular, Universitat de Barcelona, Barcelona, Spain
| | - Eduardo Soriano
- Departament de Biologia Celular, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.,Vall d´Hebron Institute of Research (VHIR) and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Barcelona, Spain. .,Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain.
| |
Collapse
|
40
|
Crump SM, Hu Z, Kant R, Levy DI, Goldstein SAN, Abbott GW. Kcne4 deletion sex- and age-specifically impairs cardiac repolarization in mice. FASEB J 2015; 30:360-9. [PMID: 26399785 DOI: 10.1096/fj.15-278754] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/08/2015] [Indexed: 02/05/2023]
Abstract
Myocardial repolarization capacity varies with sex, age, and pathology; the molecular basis for this variation is incompletely understood. Here, we show that the transcript for KCNE4, a voltage-gated potassium (Kv) channel β subunit associated with human atrial fibrillation, was 8-fold more highly expressed in the male left ventricle compared with females in young adult C57BL/6 mice (P < 0.05). Similarly, Kv current density was 25% greater in ventricular myocytes from young adult males (P < 0.05). Germ-line Kcne4 deletion eliminated the sex-specific Kv current disparity by diminishing ventricular fast transient outward current (Ito,f) and slowly activating K(+) current (IK,slow1). Kcne4 deletion also reduced Kv currents in male mouse atrial myocytes, by >45% (P < 0.001). As we previously found for Kv4.2 (which generates mouse Ito,f), heterologously expressed KCNE4 functionally regulated Kv1.5 (the Kv α subunit that generates IKslow1 in mice). Of note, in postmenopausal female mice, ventricular repolarization was impaired by Kcne4 deletion, and ventricular Kcne4 expression increased to match that of males. Moreover, castration diminished male ventricular Kcne4 expression 2.8-fold, whereas 5α-dihydrotestosterone (DHT) implants in castrated mice increased Kcne4 expression >3-fold (P = 0.01) to match noncastrated levels. KCNE4 is thereby shown to be a DHT-regulated determinant of cardiac excitability and a molecular substrate for sex- and age-dependent cardiac arrhythmogenesis.
Collapse
Affiliation(s)
- Shawn M Crump
- *Bioelectricity Laboratory, Department of Pharmacology and Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, California, USA; Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China; Section of Nephrology, Department of Medicine, University of Chicago, Chicago, Illinois, USA; and Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Zhaoyang Hu
- *Bioelectricity Laboratory, Department of Pharmacology and Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, California, USA; Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China; Section of Nephrology, Department of Medicine, University of Chicago, Chicago, Illinois, USA; and Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Ritu Kant
- *Bioelectricity Laboratory, Department of Pharmacology and Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, California, USA; Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China; Section of Nephrology, Department of Medicine, University of Chicago, Chicago, Illinois, USA; and Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Daniel I Levy
- *Bioelectricity Laboratory, Department of Pharmacology and Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, California, USA; Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China; Section of Nephrology, Department of Medicine, University of Chicago, Chicago, Illinois, USA; and Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Steve A N Goldstein
- *Bioelectricity Laboratory, Department of Pharmacology and Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, California, USA; Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China; Section of Nephrology, Department of Medicine, University of Chicago, Chicago, Illinois, USA; and Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Geoffrey W Abbott
- *Bioelectricity Laboratory, Department of Pharmacology and Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, California, USA; Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China; Section of Nephrology, Department of Medicine, University of Chicago, Chicago, Illinois, USA; and Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA
| |
Collapse
|
41
|
Jang SH, Byun JK, Jeon WI, Choi SY, Park J, Lee BH, Yang JE, Park JB, O'Grady SM, Kim DY, Ryu PD, Joo SW, Lee SY. Nuclear localization and functional characteristics of voltage-gated potassium channel Kv1.3. J Biol Chem 2015; 290:12547-57. [PMID: 25829491 PMCID: PMC4432276 DOI: 10.1074/jbc.m114.561324] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/26/2015] [Indexed: 12/29/2022] Open
Abstract
It is widely known that ion channels are expressed in the plasma membrane. However, a few studies have suggested that several ion channels including voltage-gated K(+) (Kv) channels also exist in intracellular organelles where they are involved in the biochemical events associated with cell signaling. In the present study, Western blot analysis using fractionated protein clearly indicates that Kv1.3 channels are expressed in the nuclei of MCF7, A549, and SNU-484 cancer cells and human brain tissues. In addition, Kv1.3 is located in the plasma membrane and the nucleus of Jurkat T cells. Nuclear membrane hyperpolarization after treatment with margatoxin (MgTX), a specific blocker of Kv1.3 channels, provides evidence for functional channels at the nuclear membrane of A549 cells. MgTX-induced hyperpolarization is abolished in the nuclei of Kv1.3 silenced cells, and the effects of MgTX are dependent on the magnitude of the K(+) gradient across the nuclear membrane. Selective Kv1.3 blockers induce the phosphorylation of cAMP response element-binding protein (CREB) and c-Fos activation. Moreover, Kv1.3 is shown to form a complex with the upstream binding factor 1 in the nucleus. Chromatin immunoprecipitation assay reveals that Sp1 transcription factor is directly bound to the promoter region of the Kv1.3 gene, and the Sp1 regulates Kv1.3 expression in the nucleus of A549 cells. These results demonstrate that Kv1.3 channels are primarily localized in the nucleus of several types of cancer cells and human brain tissues where they are capable of regulating nuclear membrane potential and activation of transcription factors, such as phosphorylated CREB and c-Fos.
Collapse
Affiliation(s)
- Soo Hwa Jang
- From the Laboratories of Veterinary Pharmacology and the Biomedical Research Center, School of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea
| | - Jun Kyu Byun
- From the Laboratories of Veterinary Pharmacology and
| | - Won-Il Jeon
- From the Laboratories of Veterinary Pharmacology and
| | | | - Jin Park
- the Department of Chemistry, Soongsil University, Seoul 156-743, Korea
| | - Bo Hyung Lee
- From the Laboratories of Veterinary Pharmacology and
| | - Ji Eun Yang
- From the Laboratories of Veterinary Pharmacology and
| | - Jin Bong Park
- the Department of Physiology, School of Medicine, Chungnam National University, Daejeon 305-764, Korea, and
| | - Scott M O'Grady
- the Department of Animal Science and Integrative Biology and Physiology, University of Minnesota, St. Paul, Minnesota 55455
| | - Dae-Yong Kim
- Veterinary Pathology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Korea
| | - Pan Dong Ryu
- From the Laboratories of Veterinary Pharmacology and
| | - Sang-Woo Joo
- the Department of Chemistry, Soongsil University, Seoul 156-743, Korea
| | - So Yeong Lee
- From the Laboratories of Veterinary Pharmacology and
| |
Collapse
|
42
|
Placing ion channels into a signaling network of T cells: from maturing thymocytes to healthy T lymphocytes or leukemic T lymphoblasts. BIOMED RESEARCH INTERNATIONAL 2015; 2015:750203. [PMID: 25866806 PMCID: PMC4383400 DOI: 10.1155/2015/750203] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/19/2014] [Indexed: 12/20/2022]
Abstract
T leukemogenesis is a multistep process, where the genetic errors during T cell maturation cause the healthy progenitor to convert into the leukemic precursor that lost its ability to differentiate but possesses high potential for proliferation, self-renewal, and migration. A new misdirecting "leukemogenic" signaling network appears, composed by three types of participants which are encoded by (1) genes implicated in determined stages of T cell development but deregulated by translocations or mutations, (2) genes which normally do not participate in T cell development but are upregulated, and (3) nondifferentially expressed genes which become highly interconnected with genes expressed differentially. It appears that each of three groups may contain genes coding ion channels. In T cells, ion channels are implicated in regulation of cell cycle progression, differentiation, activation, migration, and cell death. In the present review we are going to reveal a relationship between different genetic defects, which drive the T cell neoplasias, with calcium signaling and ion channels. We suggest that changes in regulation of various ion channels in different types of the T leukemias may provide the intracellular ion microenvironment favorable to maintain self-renewal capacity, arrest differentiation, induce proliferation, and enhance motility.
Collapse
|
43
|
Nakamori T, Sato K, Kinoshita M, Kanamatsu T, Sakagami H, Tanaka K, Ohki-Hamazaki H. Positive feedback of NR2B-containing NMDA receptor activity is the initial step toward visual imprinting: a model for juvenile learning. J Neurochem 2014; 132:110-23. [PMID: 25270582 DOI: 10.1111/jnc.12954] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/19/2014] [Accepted: 09/21/2014] [Indexed: 01/22/2023]
Abstract
Imprinting in chicks is a good model for elucidating the processes underlying neural plasticity changes during juvenile learning. We recently reported that neural activation of a telencephalic region, the core region of the hyperpallium densocellulare (HDCo), was critical for success of visual imprinting, and that N-Methyl-D-aspartic (NMDA) receptors containing the NR2B subunit (NR2B/NR1) in this region were essential for imprinting. Using electrophysiological and multiple-site optical imaging techniques with acute brain slices, we found that long-term potentiation (LTP) and enhancement of NR2B/NR1 currents in HDCo neurons were induced in imprinted chicks. Enhancement of NR2B/NR1 currents as well as an increase in surface NR2B expression occurred even following a brief training that was too weak to induce LTP or imprinting behavior. This means that NR2B/NR1 activation is the initial step of learning, well before the activation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors which induces LTP. We also showed that knockdown of NR2B/NR1 inhibited imprinting, and inversely, increasing the surface NR2B expression by treatment with a casein kinase 2 inhibitor successfully reduced training time required for imprinting. These results suggest that imprinting stimuli activate post-synaptic NR2B/NR1 in HDCo cells, increase NR2B/NR1 signaling through up-regulation of its expression, and induce LTP and memory acquisition. The study investigated the neural mechanism underlying juvenile learning. In the initial stage of chick imprinting, NMDA receptors containing the NMDA receptor subunit 2B (NR2B) are activated, surface expression of NR2B/NR1 (NMDA receptor subunit 1) is up-regulated, and consequently long-term potentiation is induced in the telencephalic neurons. We suggest that the positive feedback in the NR2B/NR1 activation is a unique process of juvenile learning, exhibiting rapid memory acquisition.
Collapse
Affiliation(s)
- Tomoharu Nakamori
- College of Liberal Arts and Sciences, Kitasato University, Sagamihara, Kanagawa, Japan; Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan; Human Frontier Science Program, Department of Health and Nutrition Sciences, Faculty of Human Health, Komazawa Women's University, Inagi, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Oliveras A, Roura-Ferrer M, Solé L, de la Cruz A, Prieto A, Etxebarria A, Manils J, Morales-Cano D, Condom E, Soler C, Cogolludo A, Valenzuela C, Villarroel A, Comes N, Felipe A. Functional assembly of Kv7.1/Kv7.5 channels with emerging properties on vascular muscle physiology. Arterioscler Thromb Vasc Biol 2014; 34:1522-30. [PMID: 24855057 DOI: 10.1161/atvbaha.114.303801] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Voltage-dependent K(+) (Kv) channels from the Kv7 family are expressed in blood vessels and contribute to cardiovascular physiology. Although Kv7 channel blockers trigger muscle contractions, Kv7 activators act as vasorelaxants. Kv7.1 and Kv7.5 are expressed in many vessels. Kv7.1 is under intense investigation because Kv7.1 blockers fail to modulate smooth muscle reactivity. In this study, we analyzed whether Kv7.1 and Kv7.5 may form functional heterotetrameric channels increasing the channel diversity in vascular smooth muscles. APPROACH AND RESULTS Kv7.1 and Kv7.5 currents elicited in arterial myocytes, oocyte, and mammalian expression systems suggest the formation of heterotetrameric complexes. Kv7.1/Kv7.5 heteromers, exhibiting different pharmacological characteristics, participate in the arterial tone. Kv7.1/Kv7.5 associations were confirmed by coimmunoprecipitation, fluorescence resonance energy transfer, and fluorescence recovery after photobleaching experiments. Kv7.1/Kv7.5 heterotetramers were highly retained at the endoplasmic reticulum. Studies in HEK-293 cells, heart, brain, and smooth and skeletal muscles demonstrated that the predominant presence of Kv7.5 stimulates release of Kv7.1/Kv7.5 oligomers out of lipid raft microdomains. Electrophysiological studies supported that KCNE1 and KCNE3 regulatory subunits further increased the channel diversity. Finally, the analysis of rat isolated myocytes and human blood vessels demonstrated that Kv7.1 and Kv7.5 exhibited a differential expression, which may lead to channel diversity. CONCLUSIONS Kv7.1 and Kv7.5 form heterotetrameric channels increasing the diversity of structures which fine-tune blood vessel reactivity. Because the lipid raft localization of ion channels is crucial for cardiovascular physiology, Kv7.1/Kv7.5 heteromers provide efficient spatial and temporal regulation of smooth muscle function. Our results shed light on the debate about the contribution of Kv7 channels to vasoconstriction and hypertension.
Collapse
Affiliation(s)
- Anna Oliveras
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Meritxell Roura-Ferrer
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Laura Solé
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Alicia de la Cruz
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Angela Prieto
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Ainhoa Etxebarria
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Joan Manils
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Daniel Morales-Cano
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Enric Condom
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Concepció Soler
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Angel Cogolludo
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Carmen Valenzuela
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Alvaro Villarroel
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Núria Comes
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.)
| | - Antonio Felipe
- From the Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain (A.O., M.R.-F., L.S., N.C., A.F.); Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, País Vasco, Spain (M.R.-F., A.E., A.V.); Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain (A.d.l.C., A.P., C.V.); Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge-Universitat de Barcelona, Barcelona, Spain (J.M., E.C., C.S.); and Departamento de Farmacología, Universidad Complutense de Madrid, Ciber Enfermedades Respiratorias (CibeRes), Madrid, Spain (A.C., D.M.-C.).
| |
Collapse
|
45
|
Galea CA, Nguyen HM, George Chandy K, Smith BJ, Norton RS. Domain structure and function of matrix metalloprotease 23 (MMP23): role in potassium channel trafficking. Cell Mol Life Sci 2014; 71:1191-210. [PMID: 23912897 PMCID: PMC11113776 DOI: 10.1007/s00018-013-1431-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/17/2013] [Accepted: 07/18/2013] [Indexed: 10/26/2022]
Abstract
MMP23 is a member of the matrix metalloprotease family of zinc- and calcium-dependent endopeptidases, which are involved in a wide variety of cellular functions. Its catalytic domain displays a high degree of structural homology with those of other metalloproteases, but its atypical domain architecture suggests that it may possess unique functional properties. The N-terminal MMP23 pro-domain contains a type-II transmembrane domain that anchors the protein to the plasma membrane and lacks the cysteine-switch motif that is required to maintain other MMPs in a latent state during passage to the cell surface. Instead of the C-terminal hemopexin domain common to other MMPs, MMP23 contains a small toxin-like domain (TxD) and an immunoglobulin-like cell adhesion molecule (IgCAM) domain. The MMP23 pro-domain can trap Kv1.3 but not closely-related Kv1.2 channels in the endoplasmic reticulum, preventing their passage to the cell surface, while the TxD can bind to the channel pore and block the passage of potassium ions. The MMP23 C-terminal IgCAM domain displays some similarity to Ig-like C2-type domains found in IgCAMs of the immunoglobulin superfamily, which are known to mediate protein-protein and protein-lipid interactions. MMP23 and Kv1.3 are co-expressed in a variety of tissues and together are implicated in diseases including cancer and inflammatory disorders. Further studies are required to elucidate the mechanism of action of this unique member of the MMP family.
Collapse
Affiliation(s)
- Charles A Galea
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia,
| | | | | | | | | |
Collapse
|
46
|
Zhang X, Hughes BA. KCNQ and KCNE potassium channel subunit expression in bovine retinal pigment epithelium. Exp Eye Res 2013. [DOI: 10.1016/j.exer.2013.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Comes N, Bielanska J, Vallejo-Gracia A, Serrano-Albarrás A, Marruecos L, Gómez D, Soler C, Condom E, Ramón Y Cajal S, Hernández-Losa J, Ferreres JC, Felipe A. The voltage-dependent K(+) channels Kv1.3 and Kv1.5 in human cancer. Front Physiol 2013; 4:283. [PMID: 24133455 PMCID: PMC3794381 DOI: 10.3389/fphys.2013.00283] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 09/18/2013] [Indexed: 11/20/2022] Open
Abstract
Voltage-dependent K+ channels (Kv) are involved in a number of physiological processes, including immunomodulation, cell volume regulation, apoptosis as well as differentiation. Some Kv channels participate in the proliferation and migration of normal and tumor cells, contributing to metastasis. Altered expression of Kv1.3 and Kv1.5 channels has been found in several types of tumors and cancer cells. In general, while the expression of Kv1.3 apparently exhibits no clear pattern, Kv1.5 is induced in many of the analyzed metastatic tissues. Interestingly, evidence indicates that Kv1.5 channel shows inversed correlation with malignancy in some gliomas and non-Hodgkin's lymphomas. However, Kv1.3 and Kv1.5 are similarly remodeled in some cancers. For instance, expression of Kv1.3 and Kv1.5 correlates with a certain grade of tumorigenicity in muscle sarcomas. Differential remodeling of Kv1.3 and Kv1.5 expression in human cancers may indicate their role in tumor growth and their importance as potential tumor markers. However, despite of this increasing body of information, which considers Kv1.3 and Kv1.5 as emerging tumoral markers, further research must be performed to reach any conclusion. In this review, we summarize what it has been lately documented about Kv1.3 and Kv1.5 channels in human cancer.
Collapse
Affiliation(s)
- Núria Comes
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina, Universitat de Barcelona Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Solé L, Vallejo-Gracia A, Roig SR, Serrano-Albarrás A, Marruecos L, Manils J, Gómez D, Soler C, Felipe A. KCNE gene expression is dependent on the proliferation and mode of activation of leukocytes. Channels (Austin) 2013; 7:85-96. [PMID: 23327879 DOI: 10.4161/chan.23258] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Voltage-dependent K (+) (Kv) channels are tightly regulated during the immune system response. Leukocytes have a limited repertoire of Kv channels, whose physiological role is under intense investigation. A functional Kv channel is an oligomeric complex composed of pore-forming and ancillary subunits. The KCNE gene family is a novel group of modulatory Kv channel elements in leukocytes. Here, we characterized the gene expression of KCNEs (1-5) in leukocytes and investigated their regulation during leukocyte proliferation and mode of activation. Murine bone-marrow-derived macrophages, human Jurkat T-lymphocytes and human Raji B-cells were analyzed. KCNEs (1-5) are expressed in all leukocytes lineages. Most KCNE mRNAs show cell cycle-dependent regulation and are differentially regulated under specific insults. Our results further suggest a new and yet undefined physiological role for KCNE subunits in the immune system. Putative associations of these ancillary proteins with Kv channels would yield a wide variety of biophysically and pharmacologically distinct channels that fine-tune the immunological response.
Collapse
Affiliation(s)
- Laura Solé
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular; Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Nguyen HM, Galea CA, Schmunk G, Smith BJ, Edwards RA, Norton RS, Chandy KG. Intracellular trafficking of the KV1.3 potassium channel is regulated by the prodomain of a matrix metalloprotease. J Biol Chem 2013; 288:6451-64. [PMID: 23300077 DOI: 10.1074/jbc.m112.421495] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Matrix metalloproteases (MMPs) are endopeptidases that regulate diverse biological processes. Synthesized as zymogens, MMPs become active after removal of their prodomains. Much is known about the metalloprotease activity of these enzymes, but noncanonical functions are poorly defined, and functions of the prodomains have been largely ignored. Here we report a novel metalloprotease-independent, channel-modulating function for the prodomain of MMP23 (MMP23-PD). Whole-cell patch clamping and confocal microscopy, coupled with deletion analysis, demonstrate that MMP23-PD suppresses the voltage-gated potassium channel KV1.3, but not the closely related KV1.2 channel, by trapping the channel intracellularly. Studies with KV1.2-1.3 chimeras suggest that MMP23-PD requires the presence of the KV1.3 region from the S5 trans-membrane segment to the C terminus to modulate KV1.3 channel function. NMR studies of MMP23-PD reveal a single, kinked trans-membrane α-helix, joined by a short linker to a juxtamembrane α-helix, which is associated with the surface of the membrane and protected from exchange with the solvent. The topological similarity of MMP23-PD to KCNE1, KCNE2, and KCNE4 proteins that trap KV1.3, KV1.4, KV3.3, and KV3.4 channels early in the secretory pathway suggests a shared mechanism of channel regulation. MMP23 and KV1.3 expression is enhanced and overlapping in colorectal cancers where the interaction of the two proteins could affect cell function.
Collapse
Affiliation(s)
- Hai M Nguyen
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California92697, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Kanda VA, Abbott GW. KCNE Regulation of K(+) Channel Trafficking - a Sisyphean Task? Front Physiol 2012; 3:231. [PMID: 22754540 PMCID: PMC3385356 DOI: 10.3389/fphys.2012.00231] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/08/2012] [Indexed: 11/16/2022] Open
Abstract
Voltage-gated potassium (Kv) channels shape the action potentials of excitable cells and regulate membrane potential and ion homeostasis in excitable and non-excitable cells. With 40 known members in the human genome and a variety of homomeric and heteromeric pore-forming α subunit interactions, post-translational modifications, cellular locations, and expression patterns, the functional repertoire of the Kv α subunit family is monumental. This versatility is amplified by a host of interacting proteins, including the single membrane-spanning KCNE ancillary subunits. Here, examining both the secretory and the endocytic pathways, we review recent findings illustrating the surprising virtuosity of the KCNE proteins in orchestrating not just the function, but also the composition, diaspora and retrieval of channels formed by their Kv α subunit partners.
Collapse
Affiliation(s)
- Vikram A Kanda
- Department of Biology, Manhattan College Riverdale, New York, NY, USA
| | | |
Collapse
|