1
|
Sheng T, Meng XZ, Yu Q, Lv W, Chen Y, Cong Q, Li W, Gui L, Li J, Xu X. Transcriptome analysis and CRISPR-Cas9-mediated mutagenesis identify gpr116 as a candidate gene for growth promotion in grass carp (Ctenopharyngodon idella). Comp Biochem Physiol A Mol Integr Physiol 2025; 305:111850. [PMID: 40158793 DOI: 10.1016/j.cbpa.2025.111850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Grass carp (Ctenopharyngodon idella) is an economically important aquaculture species known for its considerable variability in growth performance. In this study, we investigated the growth phenotype by comparing fast-growing and slow-growing groups. Microstructural analyses revealed that slow-growing fish exhibited significantly larger myofibrillar gaps and lower muscle fiber density. To elucidate the underlying molecular basis, we performed transcriptome (RNA-Seq) analysis of brain and dorsal muscle tissues. 328 differentially expressed genes (DEGs) were identified in dorsal muscle tissue (33 up and 295 down-regulated) and 228 in brain tissue (17 up and 211 down-regulated). Gene Ontology and KEGG enrichment analyses indicated that the DEGs were closely associated with apoptosis and angiogenesis pathways. Among the candidate genes, gpr116 was significantly up-regulated in the brain and dorsal muscle tissue of the fast-growing group. Finally, CRISPR-Cas9-mediated knockout in a zebrafish model confirmed that gpr116 deletion significantly restricted growth, underscoring its pivotal role in the growth regulation of grass carp. These discoveries lay significant groundwork for deeper exploration of growth regulation mechanisms in grass carp and offer important clues for selective breeding of key growth marker genes in this species.
Collapse
Affiliation(s)
- Tao Sheng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Xin-Zhan Meng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Qiaozhen Yu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Wenyao Lv
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Yuxuan Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Qian Cong
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Weizhong Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Lang Gui
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
2
|
Palma-Flores C, Cano-Martínez LJ, Fernández-Valverde F, Torres-Pérez I, de Los Santos S, Hernández-Hernández JM, Hernández-Herrera AF, García S, Canto P, Zentella-Dehesa A, Coral-Vázquez RM. Differential histological features and myogenic protein levels in distinct muscles of d-sarcoglycan null muscular dystrophy mouse model. J Mol Histol 2023; 54:405-413. [PMID: 37358754 DOI: 10.1007/s10735-023-10136-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
Skeletal muscle (SkM) comprises slow and fast-twitch fibers, which differ in molecular composition, function, and systemic energy consumption. In addition, muscular dystrophies (DM), a group of diverse hereditary diseases, present different patterns of muscle involvement, progression, and severity, suggesting that the regeneration-degeneration process may differ depending on the muscle type. Therefore, the study aimed to explore the expression of proteins involved in the repair process in different muscles at an early stage of muscular dystrophy in the δ-sarcoglycan null mice (Sgcd-null), a limb-girdle muscular dystrophy 2 F model. Hematoxylin & Eosin (H&E) Staining showed a high number of central nuclei in soleus (Sol), tibialis (Ta), gastrocnemius (Gas), and extensor digitorum longus (Edl) from four months Sgcd-null mice. However, fibrosis, determined by trichrome of Gomori modified staining, was only observed in Sgcd-null Sol. In addition, the number of Type I and II fibers variated differentially in the Sgcd-null muscles vs. wild-type muscles. Besides, the protein expression level of β-catenin, myomaker, MyoD, and myogenin also presented different expression levels in all the Sgcd-null muscles studied. In summary, our study reveals that muscles with different metabolic characteristics showed distinct expression patterns of proteins involved in the muscle regeneration process. These results could be relevant in designing therapies for genetic and acquired myopathy.
Collapse
Affiliation(s)
- Carlos Palma-Flores
- Catedrático CONACYT, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Luis Javier Cano-Martínez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Francisca Fernández-Valverde
- Laboratorio de Patología Experimental, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City, Mexico
| | - Itzel Torres-Pérez
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, Mexico
| | - Sergio de Los Santos
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - J Manuel Hernández-Hernández
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados, CINVESTAV-IPN, Mexico City, Mexico
| | - Adriana Fabiola Hernández-Herrera
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, Mexico
| | - Silvia García
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, Mexico
| | - Patricia Canto
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alejandro Zentella-Dehesa
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - Ramón Mauricio Coral-Vázquez
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, Mexico.
- Sección de Estudios de Posgrado e Investigación Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n Col. Casco de Santo Tomas, C.P. 11340, Mexico City, Mexico.
| |
Collapse
|
3
|
Identification and Functional Analysis of the Cell Proliferation Regulator, Insulin-like Growth Factor 1 (IGF1) in Freshwater Pearl Mussel ( Hyriopsis cumingii). BIOLOGY 2022; 11:biology11091369. [PMID: 36138849 PMCID: PMC9495379 DOI: 10.3390/biology11091369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022]
Abstract
Insulin-like growth factor 1 (IGF1) plays an important regulatory role in the regulation of growth, differentiation, and anabolism in a variety of cells. In this study, the full-length cDNA of the IGF1 gene was cloned from Hyriopsis cumingii, named HcIGF1. The expression level of HcIGF1 in six tissues (adductor muscle, foot, hepatopancreas, gill, mantle, and gonad) was determined. In addition, the localization of HcIGF1 in the mantle was analyzed by in situ hybridization, and finally the function of HcIGF1 was explored by RNA interference and prokaryotic expression. The results showed that the amino acid sequence contained a typical IIGF structural domain. The phylogenetic tree showed that HcIGF1 clustered with other marine bivalve sequences. Quantitative real-time PCR and in situ hybridization analysis showed that HcIGF1 was expressed in all tissues. The highest expression was in the foot and the lowest was in the mantle. In the mantle tissue, the hybridization signal was mainly concentrated in the outer mantle. After RNA interference, the expression of IGF1 was found to be significantly decreased (p < 0.05), and its related genes IGF1R, AKT1, and cyclin D2 were downregulated, while MAPK1 were upregulated. The recombinant HcIGF1 protein was purified and its growth-promoting effect was investigated. The results showed that the recombinant HcIGF1 protein could significantly promote the proliferative activity of the mantle cells of mussels, with the best proliferative effect at 12.5 μg/mL. The results of this study provide a new method to solve the problem of weak proliferation of shellfish cells in vitro and lay the foundation for further understanding of the growth regulation mechanism of H. cumingii, as well as a better understanding of the physiological function of IGF1 in mollusks.
Collapse
|
4
|
Dungan CM, Figueiredo VC, Wen Y, VonLehmden GL, Zdunek CJ, Thomas NT, Mobley CB, Murach KA, Brightwell CR, Long DE, Fry CS, Kern PA, McCarthy JJ, Peterson CA. Senolytic treatment rescues blunted muscle hypertrophy in old mice. GeroScience 2022; 44:1925-1940. [PMID: 35325353 PMCID: PMC9616988 DOI: 10.1007/s11357-022-00542-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/06/2022] [Indexed: 01/07/2023] Open
Abstract
With aging, skeletal muscle plasticity is attenuated in response to exercise. Here, we report that senescent cells, identified using senescence-associated β-galactosidase (SA β-Gal) activity and p21 immunohistochemistry, are very infrequent in resting muscle, but emerge approximately 2 weeks after a bout of resistance exercise in humans. We hypothesized that these cells contribute to blunted hypertrophic potential in old age. Using synergist ablation-induced mechanical overload (MOV) of the plantaris muscle to model resistance training in adult (5-6-month) and old (23-24-month) male C57BL/6 J mice, we found increased senescent cells in both age groups during hypertrophy. Consistent with the human data, there were negligible senescent cells in plantaris muscle from adult and old sham controls, but old mice had significantly more senescent cells 7 and 14 days following MOV relative to young. Old mice had blunted whole-muscle hypertrophy when compared to adult mice, along with smaller muscle fibers, specifically glycolytic type 2x + 2b fibers. To ablate senescent cells using a hit-and-run approach, old mice were treated with vehicle or a senolytic cocktail consisting of 5 mg/kg dasatinib and 50 mg/kg quercetin (D + Q) on days 7 and 10 during 14 days of MOV; control mice underwent sham surgery with or without senolytic treatment. Old mice given D + Q had larger muscles and muscle fibers after 14 days of MOV, fewer senescent cells when compared to vehicle-treated old mice, and changes in the expression of genes (i.e., Igf1, Ddit4, Mmp14) that are associated with hypertrophic growth. Our data collectively show that senescent cells emerge in human and mouse skeletal muscle following a hypertrophic stimulus and that D + Q improves muscle growth in old mice.
Collapse
Affiliation(s)
- Cory M Dungan
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA.
- College of Health Sciences, University of Kentucky, 900 S. Limestone, CTW 445, Lexington, KY, 40536, USA.
| | | | - Yuan Wen
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| | | | | | - Nicholas T Thomas
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - C Brooks Mobley
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- School of Kinesiology, Auburn University, Auburn, AL, USA
| | - Kevin A Murach
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Camille R Brightwell
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Douglas E Long
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| | - Christopher S Fry
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Philip A Kern
- Department of Internal Medicine, Division of Endocrinology, University of Kentucky, Lexington, KY, USA
| | - John J McCarthy
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Charlotte A Peterson
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
5
|
Swanson DL, Zhang Y, Jimenez AG. Skeletal muscle and metabolic flexibility in response to changing energy demands in wild birds. Front Physiol 2022; 13:961392. [PMID: 35936893 PMCID: PMC9353400 DOI: 10.3389/fphys.2022.961392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/29/2022] [Indexed: 12/20/2022] Open
Abstract
Phenotypically plastic responses of animals to adjust to environmental variation are pervasive. Reversible plasticity (i.e., phenotypic flexibility), where adult phenotypes can be reversibly altered according to prevailing environmental conditions, allow for better matching of phenotypes to the environment and can generate fitness benefits but may also be associated with costs that trade-off with capacity for flexibility. Here, we review the literature on avian metabolic and muscle plasticity in response to season, temperature, migration and experimental manipulation of flight costs, and employ an integrative approach to explore the phenotypic flexibility of metabolic rates and skeletal muscle in wild birds. Basal (minimum maintenance metabolic rate) and summit (maximum cold-induced metabolic rate) metabolic rates are flexible traits in birds, typically increasing with increasing energy demands. Because skeletal muscles are important for energy use at the organismal level, especially to maximum rates of energy use during exercise or shivering thermogenesis, we consider flexibility of skeletal muscle at the tissue and ultrastructural levels in response to variations in the thermal environment and in workloads due to flight exercise. We also examine two major muscle remodeling regulatory pathways: myostatin and insulin-like growth factor -1 (IGF-1). Changes in myostatin and IGF-1 pathways are sometimes, but not always, regulated in a manner consistent with metabolic rate and muscle mass flexibility in response to changing energy demands in wild birds, but few studies have examined such variation so additional study is needed to fully understand roles for these pathways in regulating metabolic flexibility in birds. Muscle ultrastrutural variation in terms of muscle fiber diameter and associated myonuclear domain (MND) in birds is plastic and highly responsive to thermal variation and increases in workload, however, only a few studies have examined ultrastructural flexibility in avian muscle. Additionally, the relationship between myostatin, IGF-1, and satellite cell (SC) proliferation as it relates to avian muscle flexibility has not been addressed in birds and represents a promising avenue for future study.
Collapse
Affiliation(s)
- David L. Swanson
- Department of Biology, University of South Dakota, Vermillion, SD, United States
| | - Yufeng Zhang
- College of Health Science, University of Memphis, Memphis, TN, United States
| | - Ana Gabriela Jimenez
- Department of Biology, Colgate University, Hamilton, NY, United States
- *Correspondence: Ana Gabriela Jimenez,
| |
Collapse
|
6
|
Ferrari R, Xie B, Assaf E, Morder K, Scott M, Liao H, Calderon MJ, Ross M, Loughran P, Watkins SC, Pipinos I, Casale G, Tzeng E, McEnaney R, Sachdev U. Inflammatory Caspase Activity Mediates HMGB1 Release and Differentiation in Myoblasts Affected by Peripheral Arterial Disease. Cells 2022; 11:1163. [PMID: 35406727 PMCID: PMC8997414 DOI: 10.3390/cells11071163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/10/2022] Open
Abstract
Introduction: We previously showed that caspase-1 and -11, which are activated by inflammasomes, mediate recovery from muscle ischemia in mice. We hypothesized that similar to murine models, inflammatory caspases modulate myogenicity and inflammation in ischemic muscle disease. Methods: Caspase activity was measured in ischemic and perfused human myoblasts in response to the NLRP3 and AIM2 inflammasome agonists (nigericin and poly(dA:dT), respectively) with and without specific caspase-1 or pan-caspase inhibition. mRNA levels of myogenic markers and caspase-1 were assessed, and protein levels of caspases-1, -4, -5, and -3 were measured by Western blot. Results: When compared to perfused cells, ischemic myoblasts demonstrated attenuated MyoD and myogenin and elevated caspase-1 mRNA. Ischemic myoblasts also had significantly higher enzymatic caspase activity with poly(dA:dT) (p < 0.001), but not nigericin stimulation. Inhibition of caspase activity including caspase-4/-5, but not caspase-1, blocked activation effects of poly(dA:dT). Ischemic myoblasts had elevated cleaved caspase-5. Inhibition of caspase activity deterred differentiation in ischemic but not perfused myoblasts and reduced the release of HMGB1 from both groups. Conclusion: Inflammatory caspases can be activated in ischemic myoblasts by AIM2 and influence ischemic myoblast differentiation and release of pro-angiogenic HMGB1. AIM2 inflammasome involvement suggests a role as a DNA damage sensor, and our data suggest that caspase-5 rather than caspase-1 may mediate the downstream mediator of this pathway.
Collapse
Affiliation(s)
- Ricardo Ferrari
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (R.F.); (B.X.); (E.A.); (K.M.); (M.S.); (H.L.); (E.T.); (R.M.)
| | - Bowen Xie
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (R.F.); (B.X.); (E.A.); (K.M.); (M.S.); (H.L.); (E.T.); (R.M.)
| | - Edwyn Assaf
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (R.F.); (B.X.); (E.A.); (K.M.); (M.S.); (H.L.); (E.T.); (R.M.)
| | - Kristin Morder
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (R.F.); (B.X.); (E.A.); (K.M.); (M.S.); (H.L.); (E.T.); (R.M.)
| | - Melanie Scott
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (R.F.); (B.X.); (E.A.); (K.M.); (M.S.); (H.L.); (E.T.); (R.M.)
| | - Hong Liao
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (R.F.); (B.X.); (E.A.); (K.M.); (M.S.); (H.L.); (E.T.); (R.M.)
| | - Michael J. Calderon
- University of Pittsburgh Center for Biologic Imaging, Pittsburgh, PA 15213, USA; (M.J.C.); (M.R.); (P.L.); (S.C.W.)
| | - Mark Ross
- University of Pittsburgh Center for Biologic Imaging, Pittsburgh, PA 15213, USA; (M.J.C.); (M.R.); (P.L.); (S.C.W.)
| | - Patricia Loughran
- University of Pittsburgh Center for Biologic Imaging, Pittsburgh, PA 15213, USA; (M.J.C.); (M.R.); (P.L.); (S.C.W.)
| | - Simon C. Watkins
- University of Pittsburgh Center for Biologic Imaging, Pittsburgh, PA 15213, USA; (M.J.C.); (M.R.); (P.L.); (S.C.W.)
| | - Iraklis Pipinos
- Department of Surgery, University of Nebraska, Omaha, NE 68198, USA; (I.P.); (G.C.)
- Department of Surgery, Veterans Affairs Hospital, Pittsburgh, PA 15240, USA
| | - George Casale
- Department of Surgery, University of Nebraska, Omaha, NE 68198, USA; (I.P.); (G.C.)
| | - Edith Tzeng
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (R.F.); (B.X.); (E.A.); (K.M.); (M.S.); (H.L.); (E.T.); (R.M.)
- Department of Surgery, Veterans Affairs Hospital, Pittsburgh, PA 15240, USA
| | - Ryan McEnaney
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (R.F.); (B.X.); (E.A.); (K.M.); (M.S.); (H.L.); (E.T.); (R.M.)
- Department of Surgery, Veterans Affairs Hospital, Pittsburgh, PA 15240, USA
| | - Ulka Sachdev
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (R.F.); (B.X.); (E.A.); (K.M.); (M.S.); (H.L.); (E.T.); (R.M.)
| |
Collapse
|
7
|
Lu W, Xiao W, Xie W, Fu X, Pan L, Jin H, Yu Y, Zhang Y, Li Y. The Role of Osteokines in Sarcopenia: Therapeutic Directions and Application Prospects. Front Cell Dev Biol 2021; 9:735374. [PMID: 34650980 PMCID: PMC8505767 DOI: 10.3389/fcell.2021.735374] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022] Open
Abstract
Sarcopenia is an age-related disease in which muscle mass, strength and function may decline with age or can be secondary to cachexia or malnutrition and can lead to weakness, falls and even death. With the increase in life expectancy, sarcopenia has become a major threat to the health of the elderly. Currently, our understanding of bone-muscle interactions is not limited to their mechanical coupling. Bone and muscle have been identified as secretory endocrine organs, and their interaction may affect the function of each. Both muscle-derived factors and osteokines can play a role in regulating muscle and bone metabolism via autocrine, paracrine and endocrine mechanisms. Herein, we comprehensively summarize the latest research progress on the effects of the osteokines FGF-23, IGF-1, RANKL and osteocalcin on muscle to explore whether these cytokines can be utilized to treat and prevent sarcopenia.
Collapse
Affiliation(s)
- Wenhao Lu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenfeng Xiao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenqing Xie
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Fu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Linyuan Pan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongfu Jin
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yongle Yu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yi Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yusheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Molecular Mechanisms Underlying the Beneficial Effects of Exercise on Brain Function and Neurological Disorders. Int J Mol Sci 2021; 22:ijms22084052. [PMID: 33919972 PMCID: PMC8070923 DOI: 10.3390/ijms22084052] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
As life expectancy has increased, particularly in developed countries, due to medical advances and increased prosperity, age-related neurological diseases and mental health disorders have become more prevalent health issues, reducing the well-being and quality of life of sufferers and their families. In recent decades, due to reduced work-related levels of physical activity, and key research insights, prescribing adequate exercise has become an innovative strategy to prevent or delay the onset of these pathologies and has been demonstrated to have therapeutic benefits when used as a sole or combination treatment. Recent evidence suggests that the beneficial effects of exercise on the brain are related to several underlying mechanisms related to muscle–brain, liver–brain and gut–brain crosstalk. Therefore, this review aims to summarize the most relevant current knowledge of the impact of exercise on mood disorders and neurodegenerative diseases, and to highlight the established and potential underlying mechanisms involved in exercise–brain communication and their benefits for physiology and brain function.
Collapse
|
9
|
Millward DJ. Interactions between Growth of Muscle and Stature: Mechanisms Involved and Their Nutritional Sensitivity to Dietary Protein: The Protein-Stat Revisited. Nutrients 2021; 13:729. [PMID: 33668846 PMCID: PMC7996181 DOI: 10.3390/nu13030729] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Childhood growth and its sensitivity to dietary protein is reviewed within a Protein-Stat model of growth regulation. The coordination of growth of muscle and stature is a combination of genetic programming, and of two-way mechanical interactions involving the mechanotransduction of muscle growth through stretching by bone length growth, the core Protein-Stat feature, and the strengthening of bone through muscle contraction via the mechanostat. Thus, growth in bone length is the initiating event and this is always observed. Endocrine and cellular mechanisms of growth in stature are reviewed in terms of the growth hormone-insulin like growth factor-1 (GH-IGF-1) and thyroid axes and the sex hormones, which together mediate endochondral ossification in the growth plate and bone lengthening. Cellular mechanisms of muscle growth during development are then reviewed identifying (a) the difficulties posed by the need to maintain its ultrastructure during myofibre hypertrophy within the extracellular matrix and the concept of muscle as concentric "bags" allowing growth to be conceived as bag enlargement and filling, (b) the cellular and molecular mechanisms involved in the mechanotransduction of satellite and mesenchymal stromal cells, to enable both connective tissue remodelling and provision of new myonuclei to aid myofibre hypertrophy and (c) the implications of myofibre hypertrophy for protein turnover within the myonuclear domain. Experimental data from rodent and avian animal models illustrate likely changes in DNA domain size and protein turnover during developmental and stretch-induced muscle growth and between different muscle fibre types. Growth of muscle in male rats during adulthood suggests that "bag enlargement" is achieved mainly through the action of mesenchymal stromal cells. Current understanding of the nutritional regulation of protein deposition in muscle, deriving from experimental studies in animals and human adults, is reviewed, identifying regulation by amino acids, insulin and myofibre volume changes acting to increase both ribosomal capacity and efficiency of muscle protein synthesis via the mechanistic target of rapamycin complex 1 (mTORC1) and the phenomenon of a "bag-full" inhibitory signal has been identified in human skeletal muscle. The final section deals with the nutritional sensitivity of growth of muscle and stature to dietary protein in children. Growth in length/height as a function of dietary protein intake is described in the context of the breastfed child as the normative growth model, and the "Early Protein Hypothesis" linking high protein intakes in infancy to later adiposity. The extensive paediatric studies on serum IGF-1 and child growth are reviewed but their clinical relevance is of limited value for understanding growth regulation; a role in energy metabolism and homeostasis, acting with insulin to mediate adiposity, is probably more important. Information on the influence of dietary protein on muscle mass per se as opposed to lean body mass is limited but suggests that increased protein intake in children is unable to promote muscle growth in excess of that linked to genotypic growth in length/height. One possible exception is milk protein intake, which cohort and cross-cultural studies suggest can increase height and associated muscle growth, although such effects have yet to be demonstrated by randomised controlled trials.
Collapse
Affiliation(s)
- D Joe Millward
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
10
|
Lee J, Kim C, Lee, H, Hwang JK. Inhibitory Effects of Standardized Leonurus japonicus Extract and Its Bioactive Leonurine on TNF-α-Induced Muscle Atrophy in L6 Myotubes. J Microbiol Biotechnol 2020; 30:1896-1904. [PMID: 32627754 PMCID: PMC9728349 DOI: 10.4014/jmb.2005.05023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022]
Abstract
Muscle atrophy, characterized by a reduced number and size of myofibers, occurs due to immobilization, aging, and several chronic diseases. Leonurus japonicus, belonging to the Labiatae family, is widely used as a traditional medicine in Korea, China, and Japan. Previous studies have reported that L. japonicus has various physiological activities, such as anti-bacteria, anti-cancer, and liver protection. Leonurine, which is a major bioactive in L. japonicas, is known to possess biological effects including anti-inflammation, anti-fibrosis, anti-angiogenesis, and anti-diabetes. However, the preventive effects of L. japonicas and leonurine on muscle have not been reported. The current study aimed to determine the inhibitory effects of standardized L. japonicus extract (LJE) and leonurine on muscle atrophy by clarifying their underlying molecular mechanisms in tumor necrosis factor-alpha (TNF-α)-stimulated L6 myotubes. LJE and leonurine stimulated the phosphatidylinositol 3-kinase/Akt pathway that was reduced by TNF-α treatment. LJE and leonurine not only increased the mammalian target of rapamycin pathway for protein anabolism but also decreased the mRNA expression of E3 ubiquitin ligases by blocking the translocation of Forkhead box O, which is closely linked with proteolysis. Additionally, LJE and leonurine alleviated inflammatory responses by downregulating TNF-α and interleukin-6 mRNA expression and reducing the protein expression of nuclear factor-kappa B, a major transcriptional factor of proinflammatory cytokines. Collectively, LJE and leonurine have potential as therapeutic candidates for inhibiting the development of skeletal muscle atrophy by activating the PI3K/Akt pathway and reducing inflammatory responses.
Collapse
Affiliation(s)
- Jiyeon Lee
- Department of Biomaterials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea,R&D Center, FND Net, Seoul 05706, Republic of Korea
| | - Changhee Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 0722, Republic of Korea
| | - Hyerin Lee,
- Graduate Program in Bioindustrial Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jae-Kwan Hwang
- Department of Biomaterials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 0722, Republic of Korea,Graduate Program in Bioindustrial Engineering, Yonsei University, Seoul 03722, Republic of Korea,Corresponding authors Phone: +82-2-362-7265 Fax: +82-2-2123-5881 E-mail:
| |
Collapse
|
11
|
O'Neill EN, Cosenza ZA, Baar K, Block DE. Considerations for the development of cost-effective cell culture media for cultivated meat production. Compr Rev Food Sci Food Saf 2020; 20:686-709. [PMID: 33325139 DOI: 10.1111/1541-4337.12678] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/28/2022]
Abstract
Innovation in cultivated meat development has been rapidly accelerating in recent years because it holds the potential to help attenuate issues facing production of dietary protein for a growing world population. There are technical obstacles still hindering large-scale commercialization of cultivated meat, of which many are related to the media that are used to culture the muscle, fat, and connective tissue cells. While animal cell culture media has been used and refined for roughly a century, it has not been specifically designed with the requirements of cultivated meat in mind. Perhaps the most common industrial use of animal cell culture is currently the production of therapeutic monoclonal antibodies, which sell for orders of magnitude more than meat. Successful production of cultivated meat requires media that is food grade with minimal cost, can regulate large-scale cell proliferation and differentiation, has acceptable sensory qualities, and is animal ingredient-free. Much insight into strategies for achieving media formulations with these qualities can be obtained from knowledge of conventional culture media applications and from the metabolic pathways involved in myogenesis and protein synthesis. In addition, application of principles used to optimize media for large-scale microbial fermentation processes producing lower value commodity chemicals and food ingredients can also be instructive. As such, the present review shall provide an overview of the current understanding of cell culture media as it relates to cultivated meat.
Collapse
Affiliation(s)
- Edward N O'Neill
- Department of Food Science and Technology, University of California, Davis, California.,Department of Viticulture and Enology, University of California, Davis, California
| | - Zachary A Cosenza
- Department of Viticulture and Enology, University of California, Davis, California.,Department of Chemical Engineering, University of California, Davis, California
| | - Keith Baar
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California.,Department of Physiology and Membrane Biology, University of California, Davis, California
| | - David E Block
- Department of Viticulture and Enology, University of California, Davis, California.,Department of Chemical Engineering, University of California, Davis, California
| |
Collapse
|
12
|
Pereira LJ, Macari S, Coimbra CC, Pereira TDSF, Barrioni BR, Gomez RS, Silva TA, Paiva SM. Aerobic and resistance training improve alveolar bone quality and interferes with bone-remodeling during orthodontic tooth movement in mice. Bone 2020; 138:115496. [PMID: 32585320 DOI: 10.1016/j.bone.2020.115496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/27/2022]
Abstract
The direct effects of physical activity on long bones are already recognized. However, little information is available regarding distant osseous sites, such as maxillary bone. We evaluated the influence of physical training on alveolar bone quality, with and without mechanically-induced load during orthodontic tooth movement in mice. Forty-two C57BL/6 mice were divided into sedentary, resistance and aerobic training groups. Training period lasted for eight weeks and mechanical loads (orthodontic tooth movement - OTM) were applied during the last 14 days of training. Both types of training enhanced the quality of maxillary bone, increasing bone mineral density (BMD), trabecular bone volume (BV) and bone volume/total volume ratio (BV/TV). OTM significantly reduced in trained groups. Consistently, the number of osteoblasts increased whereas the number of osteoclasts decreased on the OTM side in trained groups in comparison to the sedentary group. IGF-1, RUNX2 and OPG genes expression were also increased. The RANKL/OPG ratio and IL-6 expression were reduced in the maxillary bone. Similar results were verified in the femoral bone. In line with these findings, physical training resulted in a decrease of osteoclast differentiation from femoral bone marrow; as well as the force required to fracture the tibia of trained animals increased. Physical training also caused EDL muscle hypertrophy and increased expression of IGF-1 and IGF-1/Myostatin ratio in the gastrocnemius muscle, whereas FNDC5 gene expression was similar among groups in femur, but decreased in alveolar bone submitted to OTM. In conclusion, physical training increased bone quality, not only on long bones, but also in a distant site such as the maxilla. Differences were more evident in the course of maxillary mechanical loading. Mechanisms involve systemic and local effects on bone cells and target molecules as RANKL, OPG, IL-6 and IGF-1.
Collapse
Affiliation(s)
- Luciano J Pereira
- Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil; Universidade Federal de Lavras - UFLA, Lavras, Brazil.
| | - Soraia Macari
- Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | | | | | | | | | - Tarcília A Silva
- Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | | |
Collapse
|
13
|
Yoshida T, Delafontaine P. Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy. Cells 2020; 9:cells9091970. [PMID: 32858949 PMCID: PMC7564605 DOI: 10.3390/cells9091970] [Citation(s) in RCA: 344] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is a key growth factor that regulates both anabolic and catabolic pathways in skeletal muscle. IGF-1 increases skeletal muscle protein synthesis via PI3K/Akt/mTOR and PI3K/Akt/GSK3β pathways. PI3K/Akt can also inhibit FoxOs and suppress transcription of E3 ubiquitin ligases that regulate ubiquitin proteasome system (UPS)-mediated protein degradation. Autophagy is likely inhibited by IGF-1 via mTOR and FoxO signaling, although the contribution of autophagy regulation in IGF-1-mediated inhibition of skeletal muscle atrophy remains to be determined. Evidence has suggested that IGF-1/Akt can inhibit muscle atrophy-inducing cytokine and myostatin signaling via inhibition of the NF-κΒ and Smad pathways, respectively. Several miRNAs have been found to regulate IGF-1 signaling in skeletal muscle, and these miRs are likely regulated in different pathological conditions and contribute to the development of muscle atrophy. IGF-1 also potentiates skeletal muscle regeneration via activation of skeletal muscle stem (satellite) cells, which may contribute to muscle hypertrophy and/or inhibit atrophy. Importantly, IGF-1 levels and IGF-1R downstream signaling are suppressed in many chronic disease conditions and likely result in muscle atrophy via the combined effects of altered protein synthesis, UPS activity, autophagy, and muscle regeneration.
Collapse
Affiliation(s)
- Tadashi Yoshida
- Heart and Vascular Institute, John W. Deming Department of Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-48, New Orleans, LA 70112, USA
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Correspondence: (T.Y.); (P.D.)
| | - Patrice Delafontaine
- Heart and Vascular Institute, John W. Deming Department of Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-48, New Orleans, LA 70112, USA
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Correspondence: (T.Y.); (P.D.)
| |
Collapse
|
14
|
Baig AM, Khaleeq A. First Reports of Effects of Insulin, Human-like Insulin Receptors and Adapter Proteins in Acanthamoeba castellanii. Sci Rep 2020; 10:11759. [PMID: 32678116 PMCID: PMC7366918 DOI: 10.1038/s41598-020-63435-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 03/25/2020] [Indexed: 11/23/2022] Open
Abstract
The insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF1-R) play key roles in growth, regulation of nutrient metabolism and carbohydrate homeostasis. Insulin-like molecules in prokaryotes and other early life have been reported. However, an account of metabolic effects of insulin, transcriptomic evidence of expression of glucose transporting channels (GLUT) and homology modelling of IR and IGF1-R like proteins in unicellular life-forms have yet to be established. Acanthamoeba spp. has existed for about 2 billion years and is one of the earliest mitochondriate unicellular eukaryotic cells on Earth. Despite Acanthamoeba spp. being grown in a medium called peptone-yeast-glucose (PYG) for over 50 years, the mechanism and regulation of glucose uptake by IR or IGF1-R molecules in this microbe has not yet been reported. Several methods were utilized to validate the effects of insulin on trophozoites of A. castellanii, including: growth assays with insulin, estimation of glucose and potassium (K+) entry into the cell, and histology showing anabolic effects on proteins. Bioinformatic computational tools and homology modeling demonstrated the involvement of IR like proteins, GLUT, and adapter proteins in mediating the IR cascade. Growth assays showed proliferative effects in a dose range of 2.98-5.97 µmol/mL of insulin. After insulin exposure, A. castellanii trophozoites displayed enhanced Periodic acid-Sciff (PAS) staining. Amino acid sequence similarities and homology modelling revealed ACA1_163470 in Acanthamoeba spp. to be a homolog of human-IR. Acanthamoeba protein ACA1_336150 shares similarities with IGF1-R. Additionally, some proteins like ACA1_060920 have attributes of GLUT like channels on homology modelling and show similarity with human GLUT. Knowledge of IR and insulin effects in Acanthamoeba spp. contributes to its biology and advances current understanding behind the evolution of IR and IGF1-R signalling cascade.
Collapse
Affiliation(s)
- Abdul Mannan Baig
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan.
| | - Areeba Khaleeq
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
15
|
Skeletal muscle hypertrophy: molecular and applied aspects of exercise physiology. GERMAN JOURNAL OF EXERCISE AND SPORT RESEARCH 2020. [DOI: 10.1007/s12662-020-00652-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Torrente Y, Bella P, Tripodi L, Villa C, Farini A. Role of Insulin-Like Growth Factor Receptor 2 across Muscle Homeostasis: Implications for Treating Muscular Dystrophy. Cells 2020; 9:cells9020441. [PMID: 32075092 PMCID: PMC7072799 DOI: 10.3390/cells9020441] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
The insulin-like growth factor 2 receptor (IGF2R) plays a major role in binding and regulating the circulating and tissue levels of the mitogenic peptide insulin-like growth factor 2 (IGF2). IGF2/IGF2R interaction influences cell growth, survival, and migration in normal tissue development, and the deregulation of IGF2R expression has been associated with growth-related disease and cancer. IGF2R overexpression has been implicated in heart and muscle disease progression. Recent research findings suggest novel approaches to target IGF2R action. This review highlights recent advances in the understanding of the IGF2R structure and pathways related to muscle homeostasis.
Collapse
Affiliation(s)
- Yvan Torrente
- Correspondence: (Y.T.); (A.F.); Tel.: +39-0255033874 (Y.T.); +39-0255033852 (A.F.)
| | | | | | | | - Andrea Farini
- Correspondence: (Y.T.); (A.F.); Tel.: +39-0255033874 (Y.T.); +39-0255033852 (A.F.)
| |
Collapse
|
17
|
Fiorentino G, Esquinas AM, Annunziata A. Exercise and Chronic Obstructive Pulmonary Disease (COPD). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1228:355-368. [PMID: 32342470 DOI: 10.1007/978-981-15-1792-1_24] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Systemic effects of COPD lead to cardiovascular co-morbidities, muscle wasting and osteoporosis that, in turn, lead to inactivity and physical deconditioning. This evolution has a direct influence on the health-related quality of life (HRQoL) of patients suffering from this respiratory disease. Pharmacological therapy leads to improvement in shortness of breath, but it has a limited effect on the physical deconditioning. Pulmonary rehabilitation relieves dyspnoea and fatigue, improves emotional function and enhances the sense of control that individuals have over their condition. These improvements are moderately substantial and clinically significant. Rehabilitation serves as an essential component of the management of COPD and is beneficial in improving health-related quality of life and exercise capacity.
Collapse
Affiliation(s)
- Giuseppe Fiorentino
- Division of Respiratory Physiopathology and Rehabilitation, A.O.R.N. "Dei Colli" - Monaldi Hospital, Naples, Italy
- , Salerno, Italy
| | - Antonio M Esquinas
- Intensive Care Unit, Hospital Morales Meseguer, Murcia, Spain
- Non Invasive Ventilatory Unit, Hospital Morales Meseguer, Murcia, Spain
| | - Anna Annunziata
- Division of Respiratory Physiopathology and Rehabilitation, A.O.R.N. "Dei Colli" - Monaldi Hospital, Naples, Italy
| |
Collapse
|
18
|
Kim C, Kim MB, Hwang JK. Red Bean Extract Inhibits Immobilization-Induced Muscle Atrophy in C57BL/6N Mice. J Med Food 2019; 23:29-36. [PMID: 31532323 DOI: 10.1089/jmf.2019.4426] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Muscle atrophy, which is characterized by a decrease in muscle mass, function, and protein content, can be caused by aging, disease, and physical inactivity. Red bean or Adzuki bean (Vigna angularis) has been consumed as an edible legume. Red bean possesses various functional properties, such as antidiabetes, antiaging, anti-inflammatory, anticancer, and hepatoprotective activities. However, little is known about its potential inhibitory effect on muscle atrophy. In this study, we investigated the inhibitory effect of red bean extract (RBE) on muscle atrophy in an immobilized hindlimb muscle of C57BL/6J mice. RBE dose-dependently increased grip strength, exercise endurance, muscle weight, and myofiber area. At the molecular level, RBE significantly reduced the mRNA expression of proteolysis-related genes, such as muscle ring finger and muscle atrophy F-box by preventing the translocation of Forkhead box 3. RBE also activated the phosphatidylinositol 3 kinase/Akt pathway, subsequently stimulating the mammalian target of rapamycin/70-kDa ribosomal protein S6 kinase/eukaryotic initiation factor 4E binding protein 1 pathway involved in protein synthesis. Overall, red bean could be used as a functional food ingredient or therapeutic agent to inhibit muscle atrophy.
Collapse
Affiliation(s)
- Changhee Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Mi-Bo Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Jae-Kwan Hwang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| |
Collapse
|
19
|
Hunt LC, Stover J, Haugen B, Shaw TI, Li Y, Pagala VR, Finkelstein D, Barton ER, Fan Y, Labelle M, Peng J, Demontis F. A Key Role for the Ubiquitin Ligase UBR4 in Myofiber Hypertrophy in Drosophila and Mice. Cell Rep 2019; 28:1268-1281.e6. [PMID: 31365869 PMCID: PMC6697171 DOI: 10.1016/j.celrep.2019.06.094] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 05/07/2019] [Accepted: 06/26/2019] [Indexed: 12/31/2022] Open
Abstract
Skeletal muscle cell (myofiber) atrophy is a detrimental component of aging and cancer that primarily results from muscle protein degradation via the proteasome and ubiquitin ligases. Transcriptional upregulation of some ubiquitin ligases contributes to myofiber atrophy, but little is known about the role that most other ubiquitin ligases play in this process. To address this question, we have used RNAi screening in Drosophila to identify the function of > 320 evolutionarily conserved ubiquitin ligases in myofiber size regulation in vivo. We find that whereas RNAi for some ubiquitin ligases induces myofiber atrophy, loss of others (including the N-end rule ubiquitin ligase UBR4) promotes hypertrophy. In Drosophila and mouse myofibers, loss of UBR4 induces hypertrophy via decreased ubiquitination and degradation of a core set of target proteins, including the HAT1/RBBP4/RBBP7 histone-binding complex. Together, this study defines the repertoire of ubiquitin ligases that regulate myofiber size and the role of UBR4 in myofiber hypertrophy.
Collapse
Affiliation(s)
- Liam C Hunt
- Division of Developmental Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jared Stover
- Division of Developmental Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Benard Haugen
- Division of Developmental Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Timothy I Shaw
- Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yuxin Li
- Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Vishwajeeth R Pagala
- Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Elisabeth R Barton
- College of Health & Human Performance Applied Physiology & Kinesiology, University of Florida, 124 Florida Gym, 1864 Stadium Road, Gainesville, FL 32611, USA
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Myriam Labelle
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Junmin Peng
- Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Fabio Demontis
- Division of Developmental Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
20
|
Melatonin mediates monochromatic green light-induced satellite cell proliferation and muscle growth in chick embryo. PLoS One 2019; 14:e0216392. [PMID: 31059537 PMCID: PMC6502336 DOI: 10.1371/journal.pone.0216392] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 04/19/2019] [Indexed: 01/04/2023] Open
Abstract
Background Green light penetrates the skull and has directly affected on the secretion of melatonin in plasma, which regulates the endocrine activities to influence the muscle growth, satellite cell mitotic activity and quality properties of meat from the embryonic period to posthatch in chick. Pituitary adenylate cyclase-activating polypeptide 6–38 (PACAP6-38) could inhibit the synthesis and secretion of pineal melatonin. Finding a new way for exploring the mechanism of light-regulated muscle growth in ovo is essential for promoting the productive performance in poultry. Methods Chick embryos were exposed to darkness (D-group) and green light (G-group) throughout the embryonic period, and injected with PACAP6-38 or saline at embryonic day 8. Plasma hormone, skeletal muscle fiber areas, satellite cell proliferation activity, paired domain homeobox transcription factor 7 and myogenic regulatory factors were observed. Results By saline treatment, the percentage of proliferating cell nuclear antigen immunoreactive cells and mitotic activity of satellite cells in skeletal muscle were higher in G-group than those of in D-group at post-hatching day 0. With the increase of plasma melatonin, green light promoted the secretion of growth hormone (GH) and insulin like factor 1 (IGF-1) in plasma, the satellite cell proliferation, the size of muscle fiber, as well as the mRNA expressions of Pax7, myogenic regulatory factors and IGF-1R. After PACAP6-38 treatment to inhibit the secretion of melatonin in ovo, aforementioned parameters were remarkably decreased and the difference of these parameters was disappeared between D-group and G-group. Conclusion These data indicated that stimulation with monochromatic green light during incubation enhanced the secretion of melatonin and up-regulation of GH-IGF-1 axis to activate the satellite cells proliferation and myofiber formation, involving the expression of Pax7 and myogenic regulatory factors.
Collapse
|
21
|
Gonçalves DA, Silveira WA, Manfredi LH, Graça FA, Armani A, Bertaggia E, O Neill BT, Lautherbach N, Machado J, Nogara L, Pereira MG, Arcidiacono D, Realdon S, Kahn CR, Sandri M, Kettelhut IC, Navegantes LCC. Insulin/IGF1 signalling mediates the effects of β 2 -adrenergic agonist on muscle proteostasis and growth. J Cachexia Sarcopenia Muscle 2019; 10:455-475. [PMID: 30932373 PMCID: PMC6463755 DOI: 10.1002/jcsm.12395] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 12/18/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Stimulation of β2 -adrenoceptors can promote muscle hypertrophy and fibre type shift, and it can counteract atrophy and weakness. The underlying mechanisms remain elusive. METHODS Fed wild type (WT), 2-day fasted WT, muscle-specific insulin (INS) receptor (IR) knockout (M-IR-/- ), and MKR mice were studied with regard to acute effects of the β2 -agonist formoterol (FOR) on protein metabolism and signalling events. MKR mice express a dominant negative IGF1 receptor, which blocks both INS/IGF1 signalling. All received one injection of FOR (300 μg kg-1 subcutaneously) or saline. Skeletal muscles and serum samples were analysed from 30 to 240 min. For the study of chronic effects of FOR on muscle plasticity and function as well as intracellular signalling pathways, fed WT and MKR mice were treated with formoterol (300 μg kg-1 day-1 ) for 30 days. RESULTS In fed and fasted mice, one injection of FOR inhibited autophagosome formation (LC3-II content, 65%, P ≤ 0.05) that was paralleled by an increase in serum INS levels (4-fold to 25-fold, P ≤ 0.05) and the phosphorylation of Akt (4.4-fold to 6.5-fold, P ≤ 0.05) and ERK1/2 (50% to two-fold, P ≤ 0.05). This led to the suppression (40-70%, P ≤ 0.05) of the master regulators of atrophy, FoxOs, and the mRNA levels of their target genes. FOR enhanced (41%, P ≤ 0.05) protein synthesis only in fed condition and stimulated (4.4-fold to 35-fold, P ≤ 0.05) the prosynthetic Akt/mTOR/p70S6K pathway in both fed and fasted states. FOR effects on Akt signalling during fasting were blunted in both M-IR-/- and MKR mice. Inhibition of proteolysis markers by FOR was prevented only in MKR mice. Blockade of PI3K/Akt axis and mTORC1, but not ERK1/2, in fasted mice also suppressed the acute FOR effects on proteolysis and autophagy. Chronic stimulation of β2 -adrenoceptors in fed WT mice increased body (11%, P ≤ 0.05) and muscle (15%, P ≤ 0.05) growth and downregulated atrophy-related genes (30-40%, P ≤ 0.05), but these effects were abolished in MKR mice. Increases in muscle force caused by FOR (WT, 24%, P ≤ 0.05) were only partially impaired in MKR mice (12%, P ≤ 0.05), and FOR-induced slow-to-fast fibre type shift was not blocked at all in these animals. In MKR mice, FOR also restored the lower levels of muscle SDH activity to basal WT values and caused a marked reduction (57%, P ≤ 0.05) in the number of centrally nucleated fibers. CONCLUSIONS NS/IGF1 signalling is necessary for the anti-proteolytic and hypertrophic effects of in vivo β2 -adrenergic stimulation and appears to mediate FOR-induced enhancement of protein synthesis. INS/IGF1 signalling only partially contributes to gain in strength and does not mediate fibre type transition induced by FOR.
Collapse
Affiliation(s)
- Dawit A Gonçalves
- Department of Physiology, Ribeirão Preto Medical School/University of São Paulo, Ribeirão Preto, SP, Brazil.,Department of Biochemistry/Immunology, Ribeirão Preto Medical School/University of São Paulo, Ribeirão Preto, SP, Brazil.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Wilian A Silveira
- Department of Physiology, Ribeirão Preto Medical School/University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Leandro H Manfredi
- Department of Physiology, Ribeirão Preto Medical School/University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Flávia A Graça
- Department of Physiology, Ribeirão Preto Medical School/University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Andrea Armani
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Enrico Bertaggia
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Brian T O Neill
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Natalia Lautherbach
- Department of Physiology, Ribeirão Preto Medical School/University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Juliano Machado
- Department of Physiology, Ribeirão Preto Medical School/University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Leonardo Nogara
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Marcelo G Pereira
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Diletta Arcidiacono
- Digestive Endoscopy Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Stefano Realdon
- Digestive Endoscopy Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy.,Myology Center, University of Padova, Padova, Italy
| | - Isis C Kettelhut
- Department of Physiology, Ribeirão Preto Medical School/University of São Paulo, Ribeirão Preto, SP, Brazil.,Department of Biochemistry/Immunology, Ribeirão Preto Medical School/University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz Carlos C Navegantes
- Department of Physiology, Ribeirão Preto Medical School/University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
22
|
Dopamine neuron-derived IGF-1 controls dopamine neuron firing, skill learning, and exploration. Proc Natl Acad Sci U S A 2019; 116:3817-3826. [PMID: 30808767 PMCID: PMC6397563 DOI: 10.1073/pnas.1806820116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Midbrain dopamine neurons play a role in motivational and cognitive control of behavior. In addition, they regulate motor functions. Dysregulation of dopamine neurons has been linked to depression, schizophrenia, and addiction and their degeneration is causal to Parkinson’s disease. Peripheral hormones have been shown to regulate dopamine neurons functions. Insulin-like growth factor 1 (IGF-1) is a hormone mainly produced in the liver. With this study we discovered that midbrain dopamine neurons synthesize and release IGF-1 in an activity dependent manner. In addition, dopamine neuron-derived IGF-1 modulates dopamine synthesis and dopamine neuron firing and ultimately it controls dopamine-dependent behaviors. This study highlights the neuromodulatory role of neuron-derived IGF-1 and its role in shaping dopamine transmission in the brain. Midbrain dopamine neurons, which can be regulated by neuropeptides and hormones, play a fundamental role in controlling cognitive processes, reward mechanisms, and motor functions. The hormonal actions of insulin-like growth factor 1 (IGF-1) produced by the liver have been well described, but the role of neuronally derived IGF-1 remains largely unexplored. We discovered that dopamine neurons secrete IGF-1 from the cell bodies following depolarization, and that IGF-1 controls release of dopamine in the ventral midbrain. In addition, conditional deletion of dopamine neuron-derived IGF-1 in adult mice leads to decrease of dopamine content in the striatum and deficits in dopamine neuron firing and causes reduced spontaneous locomotion and impairments in explorative and learning behaviors. These data identify that dopamine neuron-derived IGF-1 acts as a regulator of dopamine neurons and regulates dopamine-mediated behaviors.
Collapse
|
23
|
Ma B, He X, Lu Z, Zhang L, Li J, Jiang Y, Zhou G, Gao F. Chronic heat stress affects muscle hypertrophy, muscle protein synthesis and uptake of amino acid in broilers via insulin like growth factor-mammalian target of rapamycin signal pathway. Poult Sci 2019; 97:4150-4158. [PMID: 29982693 DOI: 10.3382/ps/pey291] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022] Open
Abstract
Heat stress markedly impairs the growth performance of broilers, such as the reduction of breast muscle mass and yield. The aim of this study was to examine the molecular mechanism of depressed muscle mass and yield caused by heat stress. A total of 144 (28-day-old) male broilers were allocated randomly into 3 treatment groups: (1) the normal control group (environment temperature was 22°C), (2) the heat stress group (environment temperature was 32°C), (3) the pair-fed group (environment temperature was 22°C and pair-fed to heat stress group). The experiment lasted for 14 d (from the age of 28 to 42 d). After 14 d of heat exposure, heat stress decreased (P < 0.05) broiler average daily gain, breast muscle mass, and muscle yield, and increased (P < 0.05) feed to gain ratio. After 14 d of heat exposure, heat stress increased (P < 0.05) the activities of aspartate aminotransferase and the concentrations of uric acid and most amino acids in serum, and reduced (P < 0.05) the concentration of insulin like growth factor 1 (IGF-1) in serum. Additionally, heat stress decreased (P < 0.05) the mRNA expressions of IGF-1, IGF-1 receptor, insulin receptor substrate 1, mammalian target of rapamycin (mTOR), the 70 kD ribosomal protein S6 kinase, myogenic differentiation, myogenin, solute carrier family 38 member 2, solute carrier family 7 member 5, and solute carrier family 3 member 2 of the breast muscle. In conclusion, chronic heat stress resulted in lower breast muscle mass and yield, and decreased muscle protein synthesis and amino acid transportation by downregulating IGFs-mTOR signal pathway. These findings have important practical significance in discovering effective means to alleviate muscle loss caused by chronic heat stress.
Collapse
Affiliation(s)
- Bingbing Ma
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Xiaofang He
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Zhuang Lu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jiaolong Li
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yun Jiang
- Ginling College, Nanjing Normal University, Nanjing 210097, P.R. China
| | - Guanghong Zhou
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
24
|
Kim J, Grotegut CA, Wisler JW, Li T, Mao L, Chen M, Chen W, Rosenberg PB, Rockman HA, Lefkowitz RJ. β-arrestin 1 regulates β2-adrenergic receptor-mediated skeletal muscle hypertrophy and contractility. Skelet Muscle 2018; 8:39. [PMID: 30591079 PMCID: PMC6309084 DOI: 10.1186/s13395-018-0184-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/22/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND β2-adrenergic receptors (β2ARs) are the target of catecholamines and play fundamental roles in cardiovascular, pulmonary, and skeletal muscle physiology. An important action of β2AR stimulation on skeletal muscle is anabolic growth, which has led to the use of agonists such as clenbuterol by athletes to enhance muscle performance. While previous work has demonstrated that β2ARs can engage distinct signaling and functional cascades mediated by either G proteins or the multifunctional adaptor protein, β-arrestin, the precise role of β-arrestin in skeletal muscle physiology is not known. Here, we tested the hypothesis that agonist activation of the β2AR by clenbuterol would engage β-arrestin as a key transducer of anabolic skeletal muscle growth. METHODS The contractile force of isolated extensor digitorum longus muscle (EDL) and calcium signaling in isolated flexor digitorum brevis (FDB) fibers were examined from the wild-type (WT) and β-arrestin 1 knockout mice (βarr1KO) followed by chronic administration of clenbuterol (1 mg/kg/d). Hypertrophic responses including fiber composition and fiber size were examined by immunohistochemical imaging. We performed a targeted phosphoproteomic analysis on clenbuterol stimulated primary cultured myoblasts from WT and βarr1KO mice. Statistical significance was determined by using a two-way analysis with Sidak's or Tukey's multiple comparison test and the Student's t test. RESULTS Chronic administration of clenbuterol to WT mice enhanced the contractile force of EDL muscle and calcium signaling in isolated FDB fibers. In contrast, when administered to βarr1KO mice, the effect of clenbuterol on contractile force and calcium influx was blunted. While clenbuterol-induced hypertrophic responses were observed in WT mice, this response was abrogated in mice lacking β-arrestin 1. In primary cultured myoblasts, clenbuterol-stimulated phosphorylation of multiple pro-hypertrophy proteins required the presence of β-arrestin 1. CONCLUSIONS We have identified a previously unappreciated role for β-arrestin 1 in mediating β2AR-stimulated skeletal muscle growth and strength. We propose these findings could have important implications in the design of future pharmacologic agents aimed at reversing pathological conditions associated with skeletal muscle wasting.
Collapse
Affiliation(s)
- Jihee Kim
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Chad A Grotegut
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - James W Wisler
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Tianyu Li
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Lan Mao
- Department of Medicine, Division of Cardiology and Duke Cardiovascular Physiology Core, Duke University Medical Center, Durham, NC, USA
| | - Minyong Chen
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Wei Chen
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Paul B Rosenberg
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Howard A Rockman
- Department of Medicine, Duke University Medical Center, Durham, NC, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.,Departments of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Robert J Lefkowitz
- Department of Medicine, Duke University Medical Center, Durham, NC, USA. .,Department of Biochemistry, Duke University Medical Center, Durham, NC, USA. .,Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
25
|
Heisterberg MF, Andersen JL, Schjerling P, Bülow J, Lauersen JB, Roeber HL, Kjaer M, Mackey AL. Effect of Losartan on the Acute Response of Human Elderly Skeletal Muscle to Exercise. Med Sci Sports Exerc 2018; 50:225-235. [PMID: 29040223 DOI: 10.1249/mss.0000000000001438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE To investigate the effect of blocking the angiotensin II Type I receptor (AT1R) upon the response to acute heavy-resistance exercise in elderly human skeletal muscle. The hypothesis was that AT1R blocking would result in a superior myogenic response accompanied by down-regulation of transforming growth factor-beta and up-regulation of insulin-like growth factor-1 signaling. METHODS Twenty-eight healthy elderly men (+64 yr) were randomized into two groups, consuming either AT1R blocker (losartan, 100 mg·d) or placebo for 18 d before exercise. Participants performed one bout of heavy-unilateral-resistance exercise. Six muscle biopsies were obtained from the vastus lateralis muscles of each subject: two before exercise and four after exercise (4.5 h and 1, 4, and 7 d). Blood pressure and blood samples were collected at the same time points. Biopsies were sectioned for immunohistochemistry to determine the number of satellite cells associated with Type I and Type II fibers. Gene expression levels of Notch, connective tissue, and myogenic signaling pathways were determined by real-time reverse transcription polymerase chain reaction. RESULTS Changes over time were detected for circulating creatine kinase, the number of satellite cells per Type I fiber, and most of the gene targets, with no specific effect of losartan on these. However, when compared with placebo, losartan intake resulted in a greater suppression of myostatin messenger RNA. CONCLUSIONS In general, there does not seem to be any effect of AT1R blocking on satellite cell number or myogenic pathways in elderly men in the days after one bout of heavy-resistance exercise. However, the greater suppression of myostatin may prove to be beneficial over a long-term intervention designed to induce hypertrophy.
Collapse
Affiliation(s)
- Mette Flindt Heisterberg
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DENMARK
| | - Jesper L Andersen
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DENMARK
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DENMARK
| | - Jacob Bülow
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DENMARK
| | - Jeppe Bo Lauersen
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DENMARK
| | - Heidi L Roeber
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DENMARK
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DENMARK
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DENMARK.,Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DENMARK
| |
Collapse
|
26
|
Heisterberg MF, Andersen JL, Schjerling P, Lund A, Dalskov S, Jønsson AO, Warming N, Fogelstrøm M, Kjaer M, Mackey AL. Losartan has no additive effect on the response to heavy-resistance exercise in human elderly skeletal muscle. J Appl Physiol (1985) 2018; 125:1536-1554. [PMID: 30091666 DOI: 10.1152/japplphysiol.00106.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Our purpose here was to investigate the potential of blocking the angiotensin II type I receptor (AT1R) on the hypertrophy response of elderly human skeletal muscle to 4 mo of heavy-resistance exercise training. Fifty-eight healthy elderly men (+65 yr) were randomized into three groups, consuming either AT1R blocker (losartan, 100 mg/day) or placebo for 4 mo. Two groups performed resistance training (RT) and were treated with either losartan or placebo, and one group did not train but was treated with losartan. Quadriceps muscle biopsies, MR scans, and strength tests were performed at baseline and after 8 and 16 wk. Biopsies were sectioned for immunohistochemistry to determine the number of satellite cells, capillaries, fiber type distribution, and fiber area. Gene expression levels of myostatin, connective tissue, and myogenic signaling pathways were determined by real-time RT-PCR. Four months of heavy-resistance training led in both training groups to expected improvements in quadriceps (∼3-4%) and vastus lateralis (∼5-6%), cross-sectional area, and type II fiber area (∼10-18%), as well as dynamic (∼13%) and isometric (∼19%) quadriceps peak force, but with absolutely no effect of losartan on these outcomes. Furthermore, no changes were seen in satellite cell number with training, and most gene targets failed to show any changes induced by training or losartan treatment. We conclude that there does not appear to be any effect of AT1R blocking in elderly men during 4 mo of resistance training. Therefore, we do not find any support for using AT1R blockers for promoting muscle adaptation to training in humans. NEW & NOTEWORTHY Animal studies have suggested that blocking angiotensin II type I receptor (AT1R) enhances muscle regeneration and prevents disuse atrophy, but studies in humans are limited. Focusing on hypertrophy, satellite cells, and gene expression, we found that AT1R blocking did not result in any greater responses with 4 mo of resistance training. These results do not support previous findings and question the value of blocking AT1R in the context of preserving aging human muscle.
Collapse
Affiliation(s)
- Mette Flindt Heisterberg
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Jesper L Andersen
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Alberte Lund
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Simone Dalskov
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Anders Overgård Jønsson
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Nichlas Warming
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Mathilde Fogelstrøm
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
27
|
El-Magd MA, Saleh AA, Nafeaa AA, El-Komy SM, Afifi MA. Polymorphisms of the IGF1 gene and their association with growth traits, serum concentration and expression rate of IGF1 and IGF1R in buffalo. J Zhejiang Univ Sci B 2018; 18:1064-1074. [PMID: 29204986 DOI: 10.1631/jzus.b1600573] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The insulin-like growth factor 1 (IGF1) gene is a member of the group of somatotropin axis genes that play a significant role in cell proliferation and growth of muscles. Here, we searched for polymorphisms in buffalo IGF1 and found two novel single nucleotide polymorphisms (SNPs), G64A and G280A, in the noncoding sequences of exon 1 and exon 4, respectively. Statistical analysis of different genotypes showed that the individuals with GG genotypes had significantly (P<0.05) higher body weight (BW) and average daily gain (ADG) than those with other genotypes at ages of 3-6 months in G64A SNP and 6-9 months in G280A SNP. The combined genotypes of these two SNPs produced three haplotypes, GG/GG, AG/AG, and AA/AA, which were significantly associated (P<0.0001) with BW and ADG at an age from 3 to 12 months. Buffaloes with the homozygous GG/GG haplotype showed higher growth performance than other buffaloes. The two SNPs were correlated with mRNA levels of IGF1 and IGF1 receptor (IGF1R) in semitendinosus muscle as well as with the serum concentration level of IGF1. Also, buffaloes with GG/GG haplotype showed higher mRNA and serum concentration levels. The data revealed that these two SNPs could be valuable genetic markers for selection of Egyptian buffaloes for better performance in the population.
Collapse
Affiliation(s)
- Mohammed A El-Magd
- Department of Anatomy & Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Geish Street, Kafrelsheikh, Egypt
| | - Ayman A Saleh
- Department of Animal Wealth Development, Veterinary Genetics & Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Abeer A Nafeaa
- Department of Physiology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Shymaa M El-Komy
- Department of Animal Production, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Mohamed A Afifi
- Department of Animal Wealth Development, Biostatistics, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.,Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| |
Collapse
|
28
|
Zou Y, Dong Y, Meng Q, Zhao Y, Li N. Incorporation of a skeletal muscle-specific enhancer in the regulatory region of Igf1 upregulates IGF1 expression and induces skeletal muscle hypertrophy. Sci Rep 2018; 8:2781. [PMID: 29426944 PMCID: PMC5807547 DOI: 10.1038/s41598-018-21122-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 01/24/2018] [Indexed: 11/09/2022] Open
Abstract
In this study, we upregulated insulin-like growth factor-1 (IGF1) expression specifically in skeletal muscle by engineering an enhancer into its non-coding regions and verified the expected phenotype in a mouse model. To select an appropriate site for introducing a skeletal muscle-specific myosin light chain (MLC) enhancer, three candidate sites that exhibited the least evolutionary conservation were chosen and validated in C2C12 single-cell colonies harbouring the MLC enhancer at each site. IGF1 was dramatically upregulated in only the site 2 single-cell colony series, and it exhibited functional activity leading to the formation of extra myotubes. Therefore, we chose site 2 to generate a genetically modified (GM) mouse model with the MLC enhancer incorporated by CRISPR/Cas9 technology. The GM mice exhibited dramatically elevated IGF1 levels, which stimulated downstream pathways in skeletal muscle. Female GM mice exhibited more conspicuous muscle hypertrophy than male GM mice. The GM mice possessed similar circulating IGF1 levels and tibia length as their WT littermates; they also did not exhibit heart abnormalities. Our findings demonstrate that genetically modifying a non-coding region is a feasible method to upregulate gene expression and obtain animals with desirable traits.
Collapse
Affiliation(s)
- Yunlong Zou
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Yanjun Dong
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
| | - Qingyong Meng
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Yaofeng Zhao
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, 100193, P. R. China.
| | - Ning Li
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, 100193, P. R. China.
| |
Collapse
|
29
|
Wang Y, Bai X, Wang Z, Cao J, Dong Y, Dong Y, Chen Y. Various LED Wavelengths Affected Myofiber Development and Satellite Cell Proliferation of Chick Embryos via the IGF-1 Signaling Pathway. Photochem Photobiol 2017; 93:1492-1501. [PMID: 28708285 DOI: 10.1111/php.12806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 06/16/2017] [Indexed: 01/08/2023]
Abstract
An effect of monochromatic light illumination on muscle mass has been discovered in chickens; however, its effect on the development of embryonic muscle remains unclear. Our previous studies demonstrated that monochromatic green light promoted satellite cell proliferation and muscle growth in posthatching broilers. In this study, we investigated the effects and mechanisms of monochromatic light exposure on muscle development in late embryogenesis. Seven hundred and fifty fertile broiler eggs were randomly assigned to blue (B-group), green (G-group), red (R-group), white (W-group) lights or darkness (D-group) throughout the incubation period. The muscle weight and fiber size were highest in the G-group compared to the other groups during embryonic days (E) 17 to E20. The proliferation of satellite cells isolated from the G-group was highest, and in vivo green light remarkably increased the number of proliferating cell nuclear antigen (PCNA)-positive cells in skeletal muscle. Meanwhile, plasma IGF-1 was higher (15.5-16.2%) in the G-group than that in D- and R-groups, and the satellite cells isolated from the G-group had a more sensitive response to IGF-1. These findings demonstrate green monochromatic photobiomodulation promoted the muscle growth and satellite cell proliferation was related to the IGF-1 signaling pathway in late embryogenesis.
Collapse
Affiliation(s)
- Yao Wang
- Laboratory of Anatomy of Domestic Animals, College of Animal Medicine, China Agricultural University, Beijing, China
| | - Xinjie Bai
- Laboratory of Anatomy of Domestic Animals, College of Animal Medicine, China Agricultural University, Beijing, China
| | - Zixu Wang
- Laboratory of Anatomy of Domestic Animals, College of Animal Medicine, China Agricultural University, Beijing, China
| | - Jing Cao
- Laboratory of Anatomy of Domestic Animals, College of Animal Medicine, China Agricultural University, Beijing, China
| | - Yulan Dong
- Laboratory of Anatomy of Domestic Animals, College of Animal Medicine, China Agricultural University, Beijing, China
| | - Yanjun Dong
- Laboratory of Anatomy of Domestic Animals, College of Animal Medicine, China Agricultural University, Beijing, China
| | - Yaoxing Chen
- Laboratory of Anatomy of Domestic Animals, College of Animal Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
30
|
Hennebry A, Oldham J, Shavlakadze T, Grounds MD, Sheard P, Fiorotto ML, Falconer S, Smith HK, Berry C, Jeanplong F, Bracegirdle J, Matthews K, Nicholas G, Senna-Salerno M, Watson T, McMahon CD. IGF1 stimulates greater muscle hypertrophy in the absence of myostatin in male mice. J Endocrinol 2017; 234:187-200. [PMID: 28533420 DOI: 10.1530/joe-17-0032] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 05/22/2017] [Indexed: 01/02/2023]
Abstract
Insulin-like growth factors (IGFs) and myostatin have opposing roles in regulating the growth and size of skeletal muscle, with IGF1 stimulating, and myostatin inhibiting, growth. However, it remains unclear whether these proteins have mutually dependent, or independent, roles. To clarify this issue, we crossed myostatin null (Mstn-/-) mice with mice overexpressing Igf1 in skeletal muscle (Igf1+) to generate six genotypes of male mice; wild type (Mstn+/+ ), Mstn+/-, Mstn-/-, Mstn+/+:Igf1+, Mstn+/-:Igf1+ and Mstn-/-:Igf1+ Overexpression of Igf1 increased the mass of mixed fibre type muscles (e.g. Quadriceps femoris) by 19% over Mstn+/+ , 33% over Mstn+/- and 49% over Mstn-/- (P < 0.001). By contrast, the mass of the gonadal fat pad was correspondingly reduced with the removal of Mstn and addition of Igf1 Myostatin regulated the number, while IGF1 regulated the size of myofibres, and the deletion of Mstn and Igf1+ independently increased the proportion of fast type IIB myosin heavy chain isoforms in T. anterior (up to 10% each, P < 0.001). The abundance of AKT and rpS6 was increased in muscles of Mstn-/-mice, while phosphorylation of AKTS473 was increased in Igf1+mice (Mstn+/+:Igf1+, Mstn+/-:Igf1+ and Mstn-/-:Igf1+). Our results demonstrate that a greater than additive effect is observed on the growth of skeletal muscle and in the reduction of body fat when myostatin is absent and IGF1 is in excess. Finally, we show that myostatin and IGF1 regulate skeletal muscle size, myofibre type and gonadal fat through distinct mechanisms that involve increasing the total abundance and phosphorylation status of AKT and rpS6.
Collapse
Affiliation(s)
| | | | - Tea Shavlakadze
- School of AnatomyPhysiology & Human Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Miranda D Grounds
- School of AnatomyPhysiology & Human Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Philip Sheard
- Department of PhysiologyUniversity of Otago, Dunedin, New Zealand
| | - Marta L Fiorotto
- USDA/ARS Children's Nutrition Research CenterBaylor College of Medicine, Houston, Texas, USA
| | | | - Heather K Smith
- Department of Exercise SciencesUniversity of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Figueiredo VC, Markworth JF, Cameron-Smith D. Considerations on mTOR regulation at serine 2448: implications for muscle metabolism studies. Cell Mol Life Sci 2017; 74:2537-2545. [PMID: 28220207 PMCID: PMC11107628 DOI: 10.1007/s00018-017-2481-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 02/03/2023]
Abstract
The mammalian target of rapamycin (mTOR) complex exerts a pivotal role in protein anabolism and cell growth. Despite its importance, few studies adequately address the complexity of phosphorylation of the mTOR protein itself to enable conclusions to be drawn on the extent of kinase activation following this event. In particular, a large number of studies in the skeletal muscle biology field have measured Serine 2448 (Ser2448) phosphorylation as a proxy of mTOR kinase activity. However, the evidence to be described is that Ser2448 is not a measure of mTOR kinase activity nor is a target of AKT activity and instead has inhibitory effects on the kinase that is targeted by the downstream effector p70S6K in a negative feedback loop mechanism, which is evident when revisiting muscle research studies. It is proposed that this residue modification acts as a fine-tuning mechanism that has been gained during vertebrate evolution. In conclusion, it is recommended that Ser2448 is an inadequate measure and that preferential analysis of mTORC1 activation should focus on the downstream and effector proteins, including p70S6K and 4E-BP1, along mTOR protein partners that bind to mTOR protein to form the active complexes 1 and 2.
Collapse
Affiliation(s)
- Vandré Casagrande Figueiredo
- The Liggins Institute, University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland, 1023, New Zealand
| | - James F Markworth
- The Liggins Institute, University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland, 1023, New Zealand
| | - David Cameron-Smith
- The Liggins Institute, University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland, 1023, New Zealand.
| |
Collapse
|
32
|
Hou J, Peng X, Wang J, Zhang H, Xia J, Ge Q, Wang X, Chen X, Wu X. Mesenchymal stem cells promote endothelial progenitor cell proliferation by secreting insulin‑like growth factor‑1. Mol Med Rep 2017. [PMID: 28627605 DOI: 10.3892/mmr.2017.6741] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Bone marrow mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) interact with each other. EPCs are able to promote the self‑renewal of MSCs as niche cells in murine bone marrow, and MSCs are able to promote EPC proliferation in vitro in a co‑culture system. It has previously been reported that MSCs can secrete insulin‑like growth factor‑1 (IGF‑1), which serves critical functions in EPC proliferation. However, the mechanism underlying the IGF‑1‑mediated proliferation of EPCs remains unclear. The aim of the present study was to reveal the molecular mechanisms regulating this process. The effects of IGF‑1, which is secreted by MSCs, on EPC proliferation via the PI3K/Akt signaling pathway were examined by MTT assay, reverse transcription‑quantitative polymerase chain reaction and western blot analysis. The present study treated EPCs with various concentrations of IGF‑1. The results demonstrated that IGF‑1 significantly induced the proliferation of cultured EPCs. However, this effect was offset by treatment with the phosphatidylinositol 3‑kinase (PI3K) inhibitor LY294002. These results indicated that the pro‑proliferative effects of IGF‑1 are mediated in response to the PI3K/protein kinase B signaling pathway.
Collapse
Affiliation(s)
- Jixue Hou
- Department of Hepatic Surgery, Tongji Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xinyu Peng
- Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Jing Wang
- Out‑Patient Department, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Hongwei Zhang
- Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Jie Xia
- Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Quanhu Ge
- Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Xiaoyi Wang
- Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Xueling Chen
- Department of Immunology, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Xiangwei Wu
- Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| |
Collapse
|
33
|
Mackey AL, Kjaer M. Connective tissue regeneration in skeletal muscle after eccentric contraction-induced injury. J Appl Physiol (1985) 2017; 122:533-540. [DOI: 10.1152/japplphysiol.00577.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 12/31/2022] Open
Abstract
Human skeletal muscle has the potential to regenerate completely after injury induced under controlled experimental conditions. The events inside the myofibers as they undergo necrosis, followed closely by satellite cell-mediated myogenesis, have been mapped in detail. Much less is known about the adaptation throughout this process of both the connective tissue structures surrounding the myofibers and the fibroblasts, the cells responsible for synthesizing this connective tissue. However, the few studies investigating muscle connective tissue remodeling demonstrate a strong response that appears to be sustained for a long time after the major myofiber responses have subsided. While the use of electrical stimulation to induce eccentric contractions vs. voluntary eccentric contractions appears to lead to a greater extent of myofiber necrosis and regenerative response, this difference is not apparent when the muscle connective tissue responses are compared, although further work is required to confirm this. Pharmacological agents (growth hormone and angiotensin II type I receptor blockers) are considered in the context of accelerating the muscle connective tissue adaptation to loading. Cautioning against this, however, is the association between muscle matrix protein remodeling and protection against reinjury, which suggests that a (so far undefined) period of vulnerability to reinjury may exist during the remodeling phases. The role of individual muscle matrix components and their spatial interaction during adaptation to eccentric contractions is an unexplored field in human skeletal muscle and may provide insight into the optimal timing of rest vs. return to activity after muscle injury.
Collapse
Affiliation(s)
- Abigail L. Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; and
- Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; and
| |
Collapse
|
34
|
Bianconi D, Unseld M, Prager GW. Integrins in the Spotlight of Cancer. Int J Mol Sci 2016; 17:ijms17122037. [PMID: 27929432 PMCID: PMC5187837 DOI: 10.3390/ijms17122037] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/17/2016] [Accepted: 11/28/2016] [Indexed: 02/07/2023] Open
Abstract
Integrins are heterodimeric cell surface receptors that bind to different extracellular ligands depending on their composition and regulate all processes which enable multicellular life. In cancer, integrins trigger and play key roles in all the features that were once described as the Hallmarks of Cancer. In this review, we will discuss the contribution of integrins to these hallmarks, including uncontrolled and limitless proliferation, invasion of tumor cells, promotion of tumor angiogenesis and evasion of apoptosis and resistance to growth suppressors, by highlighting the latest findings. Further on, given the paramount role of integrins in cancer, we will present novel strategies for integrin inhibition that are starting to emerge, promising a hopeful future regarding cancer treatment.
Collapse
Affiliation(s)
- Daniela Bianconi
- Department of Internal Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Matthias Unseld
- Department of Internal Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Gerald W Prager
- Department of Internal Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
35
|
Butchart LC, Fox A, Shavlakadze T, Grounds MD. The long and short of non-coding RNAs during post-natal growth and differentiation of skeletal muscles: Focus on lncRNA and miRNAs. Differentiation 2016; 92:237-248. [DOI: 10.1016/j.diff.2016.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 04/29/2016] [Accepted: 05/09/2016] [Indexed: 10/21/2022]
|
36
|
Bai X, Wang Y, Wang Z, Cao J, Dong Y, Chen Y. In ovo exposure to monochromatic lights affect posthatch muscle growth and satellite cell proliferation of chicks: role of IGF-1. Growth Factors 2016; 34:107-18. [PMID: 27362374 DOI: 10.1080/08977194.2016.1199553] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
To study the role of IGF-1 on stimulation with monochromatic light during incubation altering posthatch muscle growth, chicken embryos were exposed to blue light, green light, red light, white light or darkness throughout embryonic period and then were raised in white light conditions upon hatching. Comparing with the other treatment groups, the chicks in green light group had heavier hatching weights, higher muscle indexes and larger muscle fibers. Both in vivo and in vitro studies showed that the number and proliferative activity of satellite cells in green light group were the highest. Plasma IGF-1 level and skeletal muscle IGF-1R mRNA level were higher in green light group. Moreover, exogenous IGF-1 increased the proliferative activity of satellite cell in a dose-dependent fashion. These results suggest that stimulation with monochromatic green light during incubation promoted posthatch muscle growth and satellite cell proliferation of chicks through IGF-1 signaling.
Collapse
Affiliation(s)
- Xinjie Bai
- a Laboratory of Anatomy of Domestic Animals , College of Animal Medicine, China Agricultural University , Haidian , Beijing , China
| | - Yao Wang
- a Laboratory of Anatomy of Domestic Animals , College of Animal Medicine, China Agricultural University , Haidian , Beijing , China
| | - Zixu Wang
- a Laboratory of Anatomy of Domestic Animals , College of Animal Medicine, China Agricultural University , Haidian , Beijing , China
| | - Jing Cao
- a Laboratory of Anatomy of Domestic Animals , College of Animal Medicine, China Agricultural University , Haidian , Beijing , China
| | - Yulan Dong
- a Laboratory of Anatomy of Domestic Animals , College of Animal Medicine, China Agricultural University , Haidian , Beijing , China
| | - Yaoxing Chen
- a Laboratory of Anatomy of Domestic Animals , College of Animal Medicine, China Agricultural University , Haidian , Beijing , China
| |
Collapse
|
37
|
Frechette DM, Krishnamoorthy D, Adler BJ, Chan ME, Rubin CT. Diminished satellite cells and elevated adipogenic gene expression in muscle as caused by ovariectomy are averted by low-magnitude mechanical signals. J Appl Physiol (1985) 2015; 119:27-36. [PMID: 25930028 PMCID: PMC4491530 DOI: 10.1152/japplphysiol.01020.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 04/23/2015] [Indexed: 12/15/2022] Open
Abstract
Age-related degeneration of the musculoskeletal system, accelerated by menopause, is further complicated by increased systemic and muscular adiposity. The purpose of this study was to identify at the molecular, cellular, and tissue levels the impact of ovariectomy on adiposity and satellite cell populations in mice and whether mechanical signals could influence any outcomes. Eight-week-old C57BL/6 mice were ovariectomized, with one half subjected to low-intensity vibration (LIV; 0.3 g/90 Hz, 15 min/day, 5 day/wk; n = 10) for 6 wk and the others sham vibrated (OVX; n = 10). Data are compared with age-matched, intact controls (AC; n = 10). In vivo μCT analysis showed that OVX mice gained 43% total (P < 0.001) and 125% visceral adiposity (P < 0.001) compared with their baseline after 6 wk, whereas LIV gained only 21% total (P = 0.01) and 70% visceral adiposity (P < 0.01). Relative to AC, expression of adipogenic genes (PPARγ, FABP4, PPARδ, and FoxO1) was upregulated in OVX muscle (P < 0.05), whereas LIV reduced these levels (P < 0.05). Adipogenic gene expression was inversely related to the percentage of total and reserve satellite cell populations in the muscle, with both declining in OVX compared with AC (-21 and -28%, respectively, P < 0.01). LIV mitigated these declines (-11 and -17%, respectively). These results provide further evidence of the negative consequences of estrogen depletion and demonstrate that mechanical signals have the potential to interrupt subsequent adipogenic gene expression and satellite cell suppression, emphasizing the importance of physical signals in protecting musculoskeletal integrity and slowing the fat phenotype.
Collapse
Affiliation(s)
| | | | - Benjamin J Adler
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY
| | - M Ete Chan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY
| | - Clinton T Rubin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY
| |
Collapse
|
38
|
Differential thiol oxidation of the signaling proteins Akt, PTEN or PP2A determines whether Akt phosphorylation is enhanced or inhibited by oxidative stress in C2C12 myotubes derived from skeletal muscle. Int J Biochem Cell Biol 2015; 62:72-9. [DOI: 10.1016/j.biocel.2015.02.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/17/2015] [Accepted: 02/20/2015] [Indexed: 11/17/2022]
|
39
|
Yang CW, Li TC, Li CI, Liu CS, Lin CH, Lin WY, Lin CC. Insulinlike Growth Factor-1 and Its Binding Protein-3 Polymorphisms Predict Circulating IGF-1 Level and Appendicular Skeletal Muscle Mass in Chinese Elderly. J Am Med Dir Assoc 2015; 16:365-70. [DOI: 10.1016/j.jamda.2014.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/21/2014] [Accepted: 11/21/2014] [Indexed: 02/01/2023]
|
40
|
Soffe Z, Radley-Crabb HG, McMahon C, Grounds MD, Shavlakadze T. Effects of loaded voluntary wheel exercise on performance and muscle hypertrophy in young and old male C57Bl/6J mice. Scand J Med Sci Sports 2015; 26:172-88. [PMID: 25653015 DOI: 10.1111/sms.12416] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2014] [Indexed: 01/05/2023]
Abstract
This study compared the capacity of young and old male C57Bl/6J mice to exercise with increasing resistance over 10 weeks, and its impact on muscle mass. Young mice (aged 15-25 weeks) were subjected to low (LR) and high (HR) resistance exercise, whereas only LR was used for old mice (107-117 weeks). Weekly patterns of voluntary wheel activity, food consumption and body weights were measured. Running patterns changed over time and with age, with two peaks of activity detected for young, but only one for old mice: speed and distance run was also less for old mice. The mass for six limb muscles was measured at the end of the experiment. The most pronounced increase in mass in response to exercise was for the soleus in young and old mice, and also quadriceps and gastrocnemius in young mice. Soleus and quadriceps muscles were analyzed histologically for myofiber number and size. A striking feature was the many small myofibers in response to exercise in young (but not old) soleus, whereas these were not present after exercise in young or old quadriceps. Overall, there was a striking difference in response to exercise between muscles and this was influenced by age.
Collapse
Affiliation(s)
- Z Soffe
- School of Anatomy, Physiology and Human Biology, the University of Western Australia, Nedlands, Western Australia, Australia
| | - H G Radley-Crabb
- School of Anatomy, Physiology and Human Biology, the University of Western Australia, Nedlands, Western Australia, Australia.,School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Curtin University, Bentley, Western Australia, Australia
| | - C McMahon
- Developmental Biology Group, Agresearch Ltd, Hamilton, New Zealand
| | - M D Grounds
- School of Anatomy, Physiology and Human Biology, the University of Western Australia, Nedlands, Western Australia, Australia
| | - T Shavlakadze
- School of Anatomy, Physiology and Human Biology, the University of Western Australia, Nedlands, Western Australia, Australia.,Developmental Biology Group, Agresearch Ltd, Hamilton, New Zealand
| |
Collapse
|
41
|
Kornegay JN, Spurney CF, Nghiem PP, Brinkmeyer-Langford CL, Hoffman EP, Nagaraju K. Pharmacologic management of Duchenne muscular dystrophy: target identification and preclinical trials. ILAR J 2015; 55:119-49. [PMID: 24936034 DOI: 10.1093/ilar/ilu011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked human disorder in which absence of the protein dystrophin causes degeneration of skeletal and cardiac muscle. For the sake of treatment development, over and above definitive genetic and cell-based therapies, there is considerable interest in drugs that target downstream disease mechanisms. Drug candidates have typically been chosen based on the nature of pathologic lesions and presumed underlying mechanisms and then tested in animal models. Mammalian dystrophinopathies have been characterized in mice (mdx mouse) and dogs (golden retriever muscular dystrophy [GRMD]). Despite promising results in the mdx mouse, some therapies have not shown efficacy in DMD. Although the GRMD model offers a higher hurdle for translation, dogs have primarily been used to test genetic and cellular therapies where there is greater risk. Failed translation of animal studies to DMD raises questions about the propriety of methods and models used to identify drug targets and test efficacy of pharmacologic intervention. The mdx mouse and GRMD dog are genetically homologous to DMD but not necessarily analogous. Subcellular species differences are undoubtedly magnified at the whole-body level in clinical trials. This problem is compounded by disparate cultures in clinical trials and preclinical studies, pointing to a need for greater rigor and transparency in animal experiments. Molecular assays such as mRNA arrays and genome-wide association studies allow identification of genetic drug targets more closely tied to disease pathogenesis. Genes in which polymorphisms have been directly linked to DMD disease progression, as with osteopontin, are particularly attractive targets.
Collapse
|
42
|
Blaauw B, Schiaffino S, Reggiani C. Mechanisms modulating skeletal muscle phenotype. Compr Physiol 2014; 3:1645-87. [PMID: 24265241 DOI: 10.1002/cphy.c130009] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mammalian skeletal muscles are composed of a variety of highly specialized fibers whose selective recruitment allows muscles to fulfill their diverse functional tasks. In addition, skeletal muscle fibers can change their structural and functional properties to perform new tasks or respond to new conditions. The adaptive changes of muscle fibers can occur in response to variations in the pattern of neural stimulation, loading conditions, availability of substrates, and hormonal signals. The new conditions can be detected by multiple sensors, from membrane receptors for hormones and cytokines, to metabolic sensors, which detect high-energy phosphate concentration, oxygen and oxygen free radicals, to calcium binding proteins, which sense variations in intracellular calcium induced by nerve activity, to load sensors located in the sarcomeric and sarcolemmal cytoskeleton. These sensors trigger cascades of signaling pathways which may ultimately lead to changes in fiber size and fiber type. Changes in fiber size reflect an imbalance in protein turnover with either protein accumulation, leading to muscle hypertrophy, or protein loss, with consequent muscle atrophy. Changes in fiber type reflect a reprogramming of gene transcription leading to a remodeling of fiber contractile properties (slow-fast transitions) or metabolic profile (glycolytic-oxidative transitions). While myonuclei are in postmitotic state, satellite cells represent a reserve of new nuclei and can be involved in the adaptive response.
Collapse
Affiliation(s)
- Bert Blaauw
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | | |
Collapse
|
43
|
The need to more precisely define aspects of skeletal muscle regeneration. Int J Biochem Cell Biol 2014; 56:56-65. [PMID: 25242742 DOI: 10.1016/j.biocel.2014.09.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/04/2014] [Accepted: 09/08/2014] [Indexed: 12/11/2022]
Abstract
A more precise definition of the term 'skeletal muscle regeneration' is required to reduce confusion and misconceptions. In this paper the term is used only for events that follow myofibre necrosis, to result in myogenesis and new muscle formation: other key events include early inflammation and revascularisation, and later fibrosis and re-innervation. The term 'muscle regeneration' is sometimes used casually for situations that do not involve myonecrosis; such as restoration of muscle mass by hypertrophy after atrophy, and other forms of damage to muscle tissue components. These situations are excluded from the definition in this paper which is focussed on mammalian muscles with the long-term aim of clinical translation to enhance new muscle formation after acute or chronic injury or during surgery to replace whole muscles. The paper briefly outlines the cellular events involved in myogenesis during development and post-natal muscle growth, discusses the role of satellite cells in mature normal muscles, and the likely incidence of myofibre necrosis/regeneration in healthy ageing mammals (even when subjected to exercise). The importance of the various components of regeneration is outlined to emphasise that problems in each of these aspects can influence overall new muscle formation; thus care is needed for correct interpretation of altered kinetics. Various markers used to identify regenerating myofibres are critically discussed and, since these can all occur in other conditions, caution is required for accurate interpretation of these cellular events. Finally, clinical situations are outlined where there is a need to enhance skeletal muscle regeneration: these include acute and chronic injuries or transplantation with bioengineering to form new muscles, therapeutic approaches to muscular dystrophies, and comment on proposed stem cell therapies to reduce age-related loss of muscle mass and function. This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation.
Collapse
|
44
|
Molecular analyses provide insight into mechanisms underlying sarcopenia and myofibre denervation in old skeletal muscles of mice. Int J Biochem Cell Biol 2014; 53:174-85. [DOI: 10.1016/j.biocel.2014.04.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/20/2014] [Accepted: 04/29/2014] [Indexed: 12/23/2022]
|
45
|
McMahon CD, Chai R, Radley-Crabb HG, Watson T, Matthews KG, Sheard PW, Soffe Z, Grounds MD, Shavlakadze T. Lifelong exercise and locally produced insulin-like growth factor-1 (IGF-1) have a modest influence on reducing age-related muscle wasting in mice. Scand J Med Sci Sports 2014; 24:e423-435. [DOI: 10.1111/sms.12200] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2014] [Indexed: 12/25/2022]
Affiliation(s)
| | - R. Chai
- School of Anatomy, Physiology & Human Biology; The University of Western Australia; Nedlands Western Australia Australia
| | - H. G. Radley-Crabb
- School of Anatomy, Physiology & Human Biology; The University of Western Australia; Nedlands Western Australia Australia
- School of Biomedical Sciences; CHIRI Biosciences Research Precinct; Faculty of Health Sciences; Curtin University; Bentley Western Australia Australia
| | - T. Watson
- Agresearch Ltd; Hamilton New Zealand
| | | | - P. W. Sheard
- Department of Physiology; University of Otago; Dunedin New Zealand
| | - Z. Soffe
- School of Anatomy, Physiology & Human Biology; The University of Western Australia; Nedlands Western Australia Australia
| | - M. D. Grounds
- School of Anatomy, Physiology & Human Biology; The University of Western Australia; Nedlands Western Australia Australia
| | - T. Shavlakadze
- School of Anatomy, Physiology & Human Biology; The University of Western Australia; Nedlands Western Australia Australia
| |
Collapse
|
46
|
Abstract
Many aspects of skeletal muscle biology are remarkably similar between mammals and tiny insects, and experimental models of mice and flies (Drosophila) provide powerful tools to understand factors controlling the growth, maintenance, degeneration (atrophy and necrosis), and regeneration of normal and diseased muscles, with potential applications to the human condition. This review compares the limb muscles of mice and the indirect flight muscles of flies, with respect to the mechanisms of adult myofiber formation, homeostasis, atrophy, hypertrophy, and the response to muscle degeneration, with some comment on myogenic precursor cells and common gene regulatory pathways. There is a striking similarity between the species for events related to muscle atrophy and hypertrophy, without contribution of any myoblast fusion. Since the flight muscles of adult flies lack a population of reserve myogenic cells (equivalent to satellite cells), this indicates that such cells are not required for maintenance of normal muscle function. However, since satellite cells are essential in postnatal mammals for myogenesis and regeneration in response to myofiber necrosis, the extent to which such regeneration might be possible in flight muscles of adult flies remains unclear. Common cellular and molecular pathways for both species are outlined related to neuromuscular disorders and to age-related loss of skeletal muscle mass and function (sarcopenia). The commonality of events related to skeletal muscles in these disparate species (with vast differences in size, growth duration, longevity, and muscle activities) emphasizes the combined value and power of these experimental animal models.
Collapse
|
47
|
Chen W, Lv YT, Zhang HX, Ruan D, Wang S, Lin YC. Developmental specificity in skeletal muscle of late-term avian embryos and its potential manipulation. Poult Sci 2013; 92:2754-64. [PMID: 24046424 DOI: 10.3382/ps.2013-03099] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Unlike the mammalian fetus, development of the avian embryo is independent of the maternal uterus and is potentially vulnerable to physiological and environmental stresses close to hatch. In contrast to the fetus of late gestation in mammals, skeletal muscle in avian embryos during final incubation shows differential developmental characteristics: 1) muscle mobilization (also called atrophy) is selectively enhanced in the type II fibers (pectoral muscle) but not in the type I fibers (biceps femoris and semimembranosus muscle), involving activation of ubiquitin-mediated protein degradation and suppression of S6K1-mediated protein translation; 2) the proliferative activity of satellite cells is decreased in the atrophied muscle of late-term embryos but enhanced at the day of hatch, probably preparing for the postnatal growth. The mobilization of muscle may represent an adaptive response of avian embryos to external (environmental) or internal (physiological) changes, considering there are developmental transitions both in hormones and requirements for glycolytic substrates from middle-term to late-term incubation. Although the exact mechanism triggering muscle fiber atrophy is still unknown, nutritional and endocrine changes may be of importance. The atrophied muscle fiber recovers as soon as feed and water are available to the hatchling. In ovo feeding of late-term embryos has been applied to improve the nutritional status and therein enhances muscle development. Similarly, in ovo exposure to higher temperature or green light during the critical period of muscle development are also demonstrated to be potential strategies to promote pre- and posthatch muscle growth.
Collapse
Affiliation(s)
- W Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | | | | | | | | | | |
Collapse
|
48
|
Huynh T, Uaesoontrachoon K, Quinn JL, Tatem KS, Heier CR, Van Der Meulen JH, Yu Q, Harris M, Nolan CJ, Haegeman G, Grounds MD, Nagaraju K. Selective modulation through the glucocorticoid receptor ameliorates muscle pathology in mdx mice. J Pathol 2013; 231:223-35. [PMID: 23794417 DOI: 10.1002/path.4231] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/11/2013] [Accepted: 06/01/2013] [Indexed: 02/05/2023]
Abstract
The over-expression of NF-κB signalling in both muscle and immune cells contribute to the pathology in dystrophic muscle. The anti-inflammatory properties of glucocorticoids, mediated predominantly through monomeric glucocorticoid receptor inhibition of transcription factors such as NF-κB (transrepression), are postulated to be an important mechanism for their beneficial effects in Duchenne muscular dystrophy. Chronic glucocorticoid therapy is associated with adverse effects on metabolism, growth, bone mineral density and the maintenance of muscle mass. These detrimental effects result from direct glucocorticoid receptor homodimer interactions with glucocorticoid response elements of the relevant genes. Compound A, a non-steroidal selective glucocorticoid receptor modulator, is capable of transrepression without transactivation. We confirm the in vitro NF-κB inhibitory activity of compound A in H-2K(b) -tsA58 mdx myoblasts and myotubes, and demonstrate improvements in disease phenotype of dystrophin deficient mdx mice. Compound A treatment in mdx mice from 18 days of post-natal age to 8 weeks of age increased the absolute and normalized forelimb and hindlimb grip strength, attenuated cathepsin-B enzyme activity (a surrogate marker for inflammation) in forelimb and hindlimb muscles, decreased serum creatine kinase levels and reduced IL-6, CCL2, IFNγ, TNF and IL-12p70 cytokine levels in gastrocnemius (GA) muscles. Compared with compound A, treatment with prednisolone, a classical glucocorticoid, in both wild-type and mdx mice was associated with reduced body weight, reduced GA, tibialis anterior and extensor digitorum longus muscle mass and shorter tibial lengths. Prednisolone increased osteopontin (Spp1) gene expression and osteopontin protein levels in the GA muscles of mdx mice and had less favourable effects on the expression of Foxo1, Foxo3, Fbxo32, Trim63, Mstn and Igf1 in GA muscles, as well as hepatic Igf1 in wild-type mice. In conclusion, selective glucocorticoid receptor modulation by compound A represents a potential therapeutic strategy to improve dystrophic pathology.
Collapse
Affiliation(s)
- Tony Huynh
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, USA; Endocrine Research Unit and the Australian National University Medical School, Canberra Hospital, ACT, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely consumed by athletes worldwide, despite growing evidence for a negative influence on the adaptation of skeletal muscle to exercise, at least in young healthy individuals. This review focuses on the potential of NSAIDs to alter the activity of satellite cells, the muscle stem cell responsible for repair and maintenance of skeletal muscle. The signaling pathways that are potentially modified by NSAID exposure are also considered. Growth factors as well as inflammatory cells and connective tissue appear to be key factors in the response of muscle under conditions where cyclooxygenase and prostaglandin activity are blocked through NSAID ingestion or infusion. Discrepancies in the literature regarding the response of young and old individuals are addressed, where it appears that the elderly may benefit from NSAID ingestion, although this clearly requires further study. The long-term implications for the muscle of the apparent inhibitory effect of NSAIDs on satellite cells in younger individuals are not clear, and it is possible these may first become apparent with chronic use in athletes training at a high level or with advancing age. Reports of the potential for NSAIDs to alter prostaglandin and growth factor signaling provide a basis for further study of the mechanism of NSAID action on satellite cells.
Collapse
Affiliation(s)
- Abigail L. Mackey
- Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital, and Centre for Healthy Ageing, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
50
|
Manfredi LH, Zanon NM, Garófalo MA, Navegantes LCC, Kettelhut IC. Effect of short-term cold exposure on skeletal muscle protein breakdown in rats. J Appl Physiol (1985) 2013; 115:1496-505. [PMID: 23908317 DOI: 10.1152/japplphysiol.00474.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Although it is well established that carbohydrate and lipid metabolism are profoundly altered by cold stress, the effects of short-term cold exposure on protein metabolism in skeletal muscle are still poorly understood. Because cold acclimation requires that an organism adjust its metabolic flux, and muscle amino acids may be an important energy source for heat production, we hypothesize that muscle proteolysis is increased and protein synthesis is decreased under such a stress condition. Herein, cold exposure for 24 h decreased rates of protein synthesis and increased overall proteolysis in both soleus and extensor digitorum longus (EDL) muscles, but it did not affect muscle weight. An increase in proteolysis was accompanied by hyperactivity of the ubiquitin-proteasome system (UPS) in both soleus and EDL, and Ca(2+)-dependent proteolysis in EDL. Furthermore, muscles of rats exposed to cold showed increased mRNA and protein levels of atrogin-1 and muscle RING finger enzyme-1 (MuRF1). Additionally, cold stress reduced phosphorylation of Akt and Forkhead box class O1 (FoxO1), a well-known effect that increases FoxO translocation to the nucleus and leads to activation of proteolysis. Plasma insulin levels were lower, whereas catecholamines, corticosterone, and thyroid hormones were higher in cold-exposed rats compared with control rats. The present data provide the first direct evidence that short-term cold exposure for 24 h decreases rates of protein synthesis and increases the UPS and Ca(2+)-dependent proteolytic processes, and increases expression of atrogin-1 and MuRF1 in skeletal muscles of young rats. The activation of atrophy induced by acute cold stress seems to be mediated at least in part through the inactivation of Akt/FoxO signaling and activation of AMP-activated protein kinase.
Collapse
Affiliation(s)
- L H Manfredi
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | |
Collapse
|