1
|
Wang B, Guo H, Liu D, Wu S, Liu J, Lan X, Huang H, An F, Zhu J, Ji J, Wang L, Ouyang H, Li M. ETS1-HMGA2 Axis Promotes Human Limbal Epithelial Stem Cell Proliferation. Invest Ophthalmol Vis Sci 2023; 64:12. [PMID: 36652264 PMCID: PMC9855287 DOI: 10.1167/iovs.64.1.12] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Purpose This study aimed to investigate the role and molecular mechanism of ETS1 in the proliferation and differentiation of human limbal epithelial stem cells (LESCs). Methods RNA-seq and quantitative real-time PCR were used to determine gene expression changes when ETS1 and HMGA2 was knocked down using short-hairpin RNAs or overexpressed by lentivirus. Immunofluorescence and flow cytometry experiments were performed to assess the roles of ETS1 and HMGA2 in LESC proliferation. ETS1-bound cis-regulatory elements and target genes in LESCs were identified using chromatin immunoprecipitation sequencing. The epigenetic features of ETS1-binding sites were assessed by the published histone modification and chromatin accessibility profiles. Results ETS1 was robustly expressed in LESCs but dramatically reduced on differentiation into corneal epithelial cells (CECs). ETS1 knockdown in LESCs inhibited cellular proliferation and activated CEC markers (KRT3, KRT12, CLU, and ALDH3A1). When ETS1 was overexpressed during CEC differentiation, LESC-associated genes were upregulated while CEC-associated genes were downregulated. The genome-wide binding profile of ETS1 was identified in LESCs. ETS1 occupied H3K4me3-marked promoters and H3K27ac/H3K4me1-marked enhancers. ETS1-binding sites were also enriched for chromatin accessibility signal. HMGA2 showed a consistent expression pattern with ETS1. ETS1 activates HMAG2 by binding to its promoter. Knockdown and overexpression experiments suggested that HMGA2 can promote LESC proliferation and inhibits its differentiation. Conclusions ETS1 promotes LESC proliferation and inhibits its differentiation via activating HMGA2.
Collapse
Affiliation(s)
- Bofeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Huizhen Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Dongmei Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Siqi Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jiafeng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xihong Lan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Huaxing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Fengjiao An
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jin Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jianping Ji
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Li Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Mingsen Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
2
|
Laky K, Kinard JL, Li JM, Moore IN, Lack J, Fischer ER, Kabat J, Latanich R, Zachos NC, Limkar AR, Weissler KA, Thompson RW, Wynn TA, Dietz HC, Guerrerio AL, Frischmeyer-Guerrerio PA. Epithelial-intrinsic defects in TGFβR signaling drive local allergic inflammation manifesting as eosinophilic esophagitis. Sci Immunol 2023; 8:eabp9940. [PMID: 36608150 PMCID: PMC10106118 DOI: 10.1126/sciimmunol.abp9940] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Allergic diseases are a global health challenge. Individuals harboring loss-of-function variants in transforming growth factor-β receptor (TGFβR) genes have an increased prevalence of allergic disorders, including eosinophilic esophagitis. Allergic diseases typically localize to mucosal barriers, implicating epithelial dysfunction as a cardinal feature of allergic disease. Here, we describe an essential role for TGFβ in the control of tissue-specific immune homeostasis that provides mechanistic insight into these clinical associations. Mice expressing a TGFβR1 loss-of-function variant identified in atopic patients spontaneously develop disease that clinically, immunologically, histologically, and transcriptionally recapitulates eosinophilic esophagitis. In vivo and in vitro, TGFβR1 variant-expressing epithelial cells are hyperproliferative, fail to differentiate properly, and overexpress innate proinflammatory mediators, which persist in the absence of lymphocytes or external allergens. Together, our results support the concept that TGFβ plays a fundamental, nonredundant, epithelial cell-intrinsic role in controlling tissue-specific allergic inflammation that is independent of its role in adaptive immunity.
Collapse
Affiliation(s)
- Karen Laky
- Food Allergy Research Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessica L Kinard
- Food Allergy Research Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jenny Min Li
- Food Allergy Research Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Justin Lack
- Collaborative Bioinformatics Resource, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Elizabeth R Fischer
- Electron Microscopy Unit, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Juraj Kabat
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rachel Latanich
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Nicholas C Zachos
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ajinkya R Limkar
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine A Weissler
- Food Allergy Research Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert W Thompson
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas A Wynn
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Anthony L Guerrerio
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Pamela A Frischmeyer-Guerrerio
- Food Allergy Research Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Lysine demethylase 5A promotes prostate adenocarcinoma progression by suppressing microRNA-330-3p expression and activating the COPB2/PI3K/AKT axis in an ETS1-dependent manner. J Cell Commun Signal 2022; 16:579-599. [PMID: 35581421 PMCID: PMC9733758 DOI: 10.1007/s12079-022-00671-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 02/04/2022] [Indexed: 12/24/2022] Open
Abstract
Lysine demethylase 5A (KDM5A) is a histone demethylase frequently involved in cancer progression. This research aimed to explore the function of KDM5A in prostate adenocarcinoma (PRAD) and the molecular mechanism. KDM5A was highly expressed in collected PRAD tissues and acquired PRAD cells. High KDM5A expression was correlated with reduced survival and poor prognosis of patients with PRAD. Knockdown of KDM5A suppressed the proliferation, colony formation, migration, and invasiveness of PRAD cells and reduced angiogenesis ability of endothelial cells. Downstream molecules implicated in KDM5A mediation were predicted using integrated bioinformatic analyses. KDM5A enhanced ETS proto-oncogene 1 (ETS1) expression through demethylation of H3K4me2 at its promoter. ETS1 suppressed the transcription activity of miR-330-3p, and either further ETS1 overexpression or miR-330-3p inhibition blocked the functions of KDM5A knockdown in PRAD. miR-330-3p targeted coatomer protein complex subunit β2 (COPB2) mRNA. Downregulation of miR-330-3p restored the expression of COPB2 and activated the PI3K/AKT pathway in PRAD. The results in vitro were reproduced in vivo where KDM5A downregulation suppressed the growth and metastasis of xenograft tumors in nude mice. In conclusion, this study demonstrated that KDM5A promoted PRAD by suppressing miR-330-3p and activating the COPB2/PI3K/AKT axis in an ETS1-dependent manner.
Collapse
|
4
|
Portal C, Wang Z, Scott DK, Wolosin JM, Iomini C. The c-Myc Oncogene Maintains Corneal Epithelial Architecture at Homeostasis, Modulates p63 Expression, and Enhances Proliferation During Tissue Repair. Invest Ophthalmol Vis Sci 2022; 63:3. [PMID: 35103750 PMCID: PMC8822362 DOI: 10.1167/iovs.63.2.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The transcription factor c-Myc (Myc) plays central regulatory roles in both self-renewal and differentiation of progenitors of multiple cell lineages. Here, we address its function in corneal epithelium (CE) maintenance and repair. Methods Myc ablation in the limbal–corneal epithelium was achieved by crossing a floxed Myc mouse allele (Mycfl/fl) with a mouse line expressing the Cre recombinase gene under the keratin (Krt) 14 promoter. CE stratification and protein localization were assessed by histology of paraffin and plastic sections and by immunohistochemistry of frozen sections, respectively. Protein levels and gene expression were determined by western blot and real-time quantitative PCR, respectively. CE wound closure was tracked by fluorescein staining. Results At birth, mutant mice appeared indistinguishable from control littermates; however, their rates of postnatal weight gain were 67% lower than those of controls. After weaning, mutants also exhibited spontaneous skin ulcerations, predominantly in the tail and lower lip, and died 45 to 60 days after birth. The mutant CE displayed an increase in stratal thickness, increased levels of Krt12 in superficial cells, and decreased exfoliation rates. Accordingly, the absence of Myc perturbed protein and mRNA levels of genes modulating differentiation and proliferation processes, including ΔNp63β, Ets1, and two Notch target genes, Hey1 and Maml1. Furthermore, Myc promoted CE wound closure and wound-induced hyperproliferation. Conclusions Myc regulates the balance among CE stratification, differentiation, and surface exfoliation and promotes the transition to the hyperproliferative state during wound healing. Its effect on this balance may be exerted through the control of multiple regulators of cell fate, including isoforms of tumor protein p63.
Collapse
Affiliation(s)
- Céline Portal
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Zheng Wang
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Donald K Scott
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - J Mario Wolosin
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Carlo Iomini
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
5
|
Arunachalam D, Ramanathan SM, Menon A, Madhav L, Ramaswamy G, Namperumalsamy VP, Prajna L, Kuppamuthu D. Expression of immune response genes in human corneal epithelial cells interacting with Aspergillus flavus conidia. BMC Genomics 2022; 23:5. [PMID: 34983375 PMCID: PMC8728928 DOI: 10.1186/s12864-021-08218-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022] Open
Abstract
Background Aspergillus flavus, one of the causative agents of human fungal keratitis, can be phagocytosed by human corneal epithelial (HCE) cells and the conidia containing phagosomes mature into phagolysosomes. But the immunological responses of human corneal epithelial cells interacting with A. flavus are not clear. In this study, we report the expression of immune response related genes of HCE cells exposed to A. flavus spores using targeted transcriptomics. Methods Human corneal epithelial cell line and primary cultures were grown in a six-well plate and used for coculture experiments. Internalization of the conidia was confirmed by immunofluorescence microscopy of the colocalized endosomal markers CD71 and LAMP1. Total RNA was isolated, and the quantity and quality of the isolated RNA were assessed using Qubit and Bioanalyzer. NanoString nCounter platform was used for the analysis of mRNA abundance using the Human Immunology panel. R-package and nSolver software were used for data analysis. KEGG and FunRich 3.1.3 tools were used to analyze the differentially expressed genes. Results Different morphotypes of conidia were observed after 6 h of coculture with human corneal epithelial cells and found to be internalized by epithelial cells. NanoString profiling showed more than 20 differentially expressed genes in immortalized human corneal epithelial cell line and more than ten differentially expressed genes in primary corneal epithelial cells. Distinct set of genes were altered in their expression in cell line and primary corneal epithelial cells. KEGG pathway analysis revealed that genes associated with TNF signaling, NF-KB signaling, and Th17 signaling were up-regulated, and genes associated with chemokine signaling and B cell receptor signaling were down regulated. FunRich pathway analysis showed that pathways such as CDC42 signaling, PI3K signaling, and Arf6 trafficking events were activated by the clinical isolates CI1123 and CI1698 in both type of cells. Conclusions Combining the transcript analysis data from cell lines and primary cultures, we showed the up regulation of immune defense genes in A. flavus infected cells. At the same time, chemokine signaling and B cell signaling pathways are downregulated. The variability in the expression levels in the immortalized cell line and the primary cultures is likely due to the variable epigenetic reprogramming in the immortalized cells and primary cultures in the absence of any changes in the genome. It highlights the importance of using both cell types in host-pathogen interaction studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08218-5.
Collapse
Affiliation(s)
- Divya Arunachalam
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India.,Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Shruthi Mahalakshmi Ramanathan
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Athul Menon
- Theracues Innovations Private Limited, Bangalore, India, Karnataka
| | - Lekshmi Madhav
- Theracues Innovations Private Limited, Bangalore, India, Karnataka
| | | | | | - Lalitha Prajna
- Department of Ocular Microbiology, Aravind Eye Hospital, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Dharmalingam Kuppamuthu
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India. .,Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India. .,Aravind Medical Research Foundation, Dr. G.Venkataswamy Eye Research Institute, Aravind Eye Care System, No.1 Anna Nagar, Madurai, Tamil Nadu, India.
| |
Collapse
|
6
|
Identifying an lncRNA-Related ceRNA Network to Reveal Novel Targets for a Cutaneous Squamous Cell Carcinoma. BIOLOGY 2021; 10:biology10050432. [PMID: 34068010 PMCID: PMC8152267 DOI: 10.3390/biology10050432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/03/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023]
Abstract
Simple Summary The exact functions and molecular mechanism of lncRNAs, acting as competitive endogenous RNAs in a cutaneous squamous cell carcinoma, remain unexplored. The present study was conducted to identify the differentially expressed lncRNAs and mRNAs and establish the lncRNA-related competing endogenous RNA networks associated with a cutaneous squamous cell carcinoma. A competing endogenous RNA network consisting of 137 miRNA-lncRNA and 221 miRNA-mRNA pairs was constructed. As for the functional analysis of the mRNAs in the network, a FoxO signaling pathway, an autophagy and cellular senescence were the top enrichment terms based on the Kyoto Encyclopedia of Genes and Genomes analysis. We identified five core mRNAs and built a core mRNA-associated competing endogenous RNA network. Finally, one lncRNA HLA-F-AS1 and three mRNAs named AGO4, E2F1 and CCND1 in the core mRNA-associated competing endogenous RNA network were validated with the same expression patterns. The core mRNAs and their associated lncRNAs may provide potential therapeutic targets for cutaneous squamous cell carcinomas. Abstract A cutaneous squamous cell carcinoma (cSCC) derived from keratinocytes is the second most common cause of non-melanoma skin cancer. The accumulation of the mutational burden of genes and cellular DNA damage caused by the risk factors (e.g., exposure to ultraviolet radiation) contribute to the aberrant proliferation of keratinocytes and the formation of a cSCC. A cSCC encompasses a spectrum of diseases that range from recursor actinic keratosis (AK) and squamous cell carcinoma (SCC) in situ (SCCIS) to invasive cSCCs and further metastatic SCCs. Emerging evidence has revealed that lncRNAs are involved in the biological process of a cSCC. According to the ceRNA regulatory theory, lncRNAs act as natural miRNA sponges and interact with miRNA response elements, thereby regulating the mRNA expression of their down-stream targets. This study was designed to search for the potential lncRNAs that may become potential therapeutic targets or biomarkers of a cSCC. Considering the spirit of the study to be adequately justified, we collected microarray-based datasets of 19 cSCC tissues and 12 normal skin samples from the GEO database (GSE42677 and GSE45164). After screening the differentially expressed genes via a limma package, we identified 24 differentially expressed lncRNAs (DElncRNAs) and 3221 differentially expressed mRNAs (DEmRNAs). The miRcode, miRTarBase, miRDB and TargetScan databases were used to predict miRNAs that could interact with DElncRNAs and DEmRNAs. A total of 137 miRNA-lncRNA and 221 miRNA-mRNA pairs were retained in the ceRNA network, consisting of 31 miRNAs, 11 DElncRNAs and 155 DEmRNAs. For the functional analysis, the top enriched biological process was enhancer sequence-specific DNA binding in Gene Ontology (GO) terms. The FoxO signaling pathway, autophagy and cellular senescence were the top enrichment terms based on a Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The combination of a STRING tool and Cytoscape software (plug-in MCODE) identified five core mRNAs and built a core mRNA-associated ceRNA network. The expression for five identified core mRNAs and their related nine lncRNAs was validated using the external dataset GSE7553. Finally, one lncRNA HLA-F-AS1 and three mRNAs named AGO4, E2F1 and CCND1 were validated with the same expression patterns. We speculate that lncRNA HLA-F-AS1 may sponge miR-17-5p or miR-20b-5p to regulate the expression of CCND1 and E2F1 in the cSCC. The present study may provide potential diagnostic and therapeutic targets for cSCC patients.
Collapse
|
7
|
Bryja A, Latosiński G, Jankowski M, Angelova Volponi A, Mozdziak P, Shibli JA, Bryl R, Spaczyńska J, Piotrowska-Kempisty H, Krawiec K, Kempisty B, Dyszkiewicz-Konwińska M. Transcriptomic and Morphological Analysis of Cells Derived from Porcine Buccal Mucosa-Studies on an In Vitro Model. Animals (Basel) 2020; 11:ani11010015. [PMID: 33374146 PMCID: PMC7824432 DOI: 10.3390/ani11010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Domestic pigs express high phylogenetic similarity to humans and are often used as a compatible model in biomedical research. Porcine tissues are used as an accessible biomaterial in human skin transplants and tissue architecture reconstruction. We used transcriptional analysis to investigate the dynamics of complex biological system of the mucosa. Additionally, we performed computer analysis of microscopic images of cultured cells in vitro. Computer analysis of images identified epithelial cells and connective tissue cells in in vitro culture. Abstract Transcriptional analysis and live-cell imaging are a powerful tool to investigate the dynamics of complex biological systems. In vitro expanded porcine oral mucosal cells, consisting of populations of epithelial and connective lineages, are interesting and complex systems for study via microarray transcriptomic assays to analyze gene expression profile. The transcriptomic analysis included 56 ontological groups with particular focus on 7 gene ontology groups that are related to the processes of differentiation and development. Most analyzed genes were upregulated after 7 days and downregulated after 15 and 30 days of in vitro culture. The performed transcriptomic analysis was then extended to include automated analysis of differential interference contrast microscopy (DIC) images obtained during in vitro culture. The analysis of DIC imaging allowed to identify the different populations of keratinocytes and fibroblasts during seven days of in vitro culture, and it was possible to evaluate the proportion of these two populations of cells. Porcine mucosa may be a suitable model for reference research on human tissues. In addition, it can provide a reference point for research on the use of cells, scaffolds, or tissues derived from transgenic animals for applications in human tissues reconstruction.
Collapse
Affiliation(s)
- Artur Bryja
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (A.B.); (M.J.); (R.B.); (M.D.-K.)
| | - Grzegorz Latosiński
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznań, Poland; (G.L.); (K.K.)
| | - Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (A.B.); (M.J.); (R.B.); (M.D.-K.)
| | - Ana Angelova Volponi
- Department of Craniofacial Development and Stem Cell Biology, King’s College University of London, London WC2R 2LS, UK;
| | - Paul Mozdziak
- Graduate Physiology Program, North Carolina State University, Raleigh, NC 27695, USA;
| | - Jamil A. Shibli
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, Guarulhos 07030-010, SP, Brazil;
| | - Rut Bryl
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (A.B.); (M.J.); (R.B.); (M.D.-K.)
| | - Julia Spaczyńska
- Department of Toxicology, Poznan University of Medical Sciences, 61-631 Poznań, Poland; (J.S.); (H.P.-K.)
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 61-631 Poznań, Poland; (J.S.); (H.P.-K.)
| | - Krzysztof Krawiec
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznań, Poland; (G.L.); (K.K.)
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (A.B.); (M.J.); (R.B.); (M.D.-K.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland
- Department of Veterinary Surgery, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland
- Correspondence: ; Tel.: +48-61-8546418
| | - Marta Dyszkiewicz-Konwińska
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (A.B.); (M.J.); (R.B.); (M.D.-K.)
- Department of Biomaterials and Experimental Dentistry, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| |
Collapse
|
8
|
Das Mahapatra K, Pasquali L, Søndergaard JN, Lapins J, Nemeth IB, Baltás E, Kemény L, Homey B, Moldovan LI, Kjems J, Kutter C, Sonkoly E, Kristensen LS, Pivarcsi A. A comprehensive analysis of coding and non-coding transcriptomic changes in cutaneous squamous cell carcinoma. Sci Rep 2020; 10:3637. [PMID: 32108138 PMCID: PMC7046790 DOI: 10.1038/s41598-020-59660-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022] Open
Abstract
Cutaneous Squamous Cell Carcinoma (cSCC) is the most common and fastest-increasing cancer with metastatic potential. Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) are novel regulators of gene expression. To identify mRNAs, lncRNAs and circRNAs, which can be involved in cSCC, RNA-seq was performed on nine cSCCs and seven healthy skin samples. Representative transcripts were validated by NanoString nCounter assays using an extended cohort, which also included samples from pre-cancerous skin lesions (actinic keratosis). 5,352 protein-coding genes, 908 lncRNAs and 55 circular RNAs were identified to be differentially expressed in cSCC. Targets of 519 transcription factors were enriched among differentially expressed genes, 105 of which displayed altered level in cSCCs, including fundamental regulators of skin development (MYC, RELA, ETS1, TP63). Pathways related to cell cycle, apoptosis, inflammation and epidermal differentiation were enriched. In addition to known oncogenic lncRNAs (PVT1, LUCAT1, CASC9), a set of skin-specific lncRNAs were were identified to be dysregulated. A global downregulation of circRNAs was observed in cSCC, and novel skin-enriched circRNAs, circ_IFFO2 and circ_POF1B, were identified and validated. In conclusion, a reference set of coding and non-coding transcripts were identified in cSCC, which may become potential therapeutic targets or biomarkers.
Collapse
Affiliation(s)
- Kunal Das Mahapatra
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lorenzo Pasquali
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Nørskov Søndergaard
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Science for Life Laboratory, SE-171 77, Stockholm, Sweden
| | - Jan Lapins
- Unit of Dermatology, Karolinska University Hospital, SE-17176, Stockholm, Sweden
| | - István Balazs Nemeth
- Department of Dermatology and Allergology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Eszter Baltás
- Department of Dermatology and Allergology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Lajos Kemény
- Department of Dermatology and Allergology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Bernhard Homey
- Department of Dermatology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Liviu-Ionut Moldovan
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Claudia Kutter
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Science for Life Laboratory, SE-171 77, Stockholm, Sweden
| | - Enikö Sonkoly
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Unit of Dermatology, Karolinska University Hospital, SE-17176, Stockholm, Sweden
| | - Lasse Sommer Kristensen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Andor Pivarcsi
- Dermatology and Venereology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden. .,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden. .,Research Institute of Translational Biomedicine, University of Szeged, Szeged, Hungary.
| |
Collapse
|
9
|
Liu H, Duncan K, Helverson A, Kumari P, Mumm C, Xiao Y, Carlson JC, Darbellay F, Visel A, Leslie E, Breheny P, Erives AJ, Cornell RA. Analysis of zebrafish periderm enhancers facilitates identification of a regulatory variant near human KRT8/18. eLife 2020; 9:e51325. [PMID: 32031521 PMCID: PMC7039683 DOI: 10.7554/elife.51325] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 02/06/2020] [Indexed: 12/18/2022] Open
Abstract
Genome-wide association studies for non-syndromic orofacial clefting (OFC) have identified single nucleotide polymorphisms (SNPs) at loci where the presumed risk-relevant gene is expressed in oral periderm. The functional subsets of such SNPs are difficult to predict because the sequence underpinnings of periderm enhancers are unknown. We applied ATAC-seq to models of human palate periderm, including zebrafish periderm, mouse embryonic palate epithelia, and a human oral epithelium cell line, and to complementary mesenchymal cell types. We identified sets of enhancers specific to the epithelial cells and trained gapped-kmer support-vector-machine classifiers on these sets. We used the classifiers to predict the effects of 14 OFC-associated SNPs at 12q13 near KRT18. All the classifiers picked the same SNP as having the strongest effect, but the significance was highest with the classifier trained on zebrafish periderm. Reporter and deletion analyses support this SNP as lying within a periderm enhancer regulating KRT18/KRT8 expression.
Collapse
Affiliation(s)
- Huan Liu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan UniversityWuhanChina
- Department of Anatomy and Cell Biology, University of IowaIowa CityUnited States
- Department of Periodontology, School of Stomatology, Wuhan UniversityWuhanChina
| | - Kaylia Duncan
- Interdisciplinary Program in Molecular Medicine, University of IowaIowa CityUnited States
| | - Annika Helverson
- Department of Anatomy and Cell Biology, University of IowaIowa CityUnited States
| | - Priyanka Kumari
- Department of Anatomy and Cell Biology, University of IowaIowa CityUnited States
| | - Camille Mumm
- Department of Anatomy and Cell Biology, University of IowaIowa CityUnited States
| | - Yao Xiao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan UniversityWuhanChina
| | | | - Fabrice Darbellay
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley LaboratoriesBerkeleyUnited States
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley LaboratoriesBerkeleyUnited States
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley LaboratoriesBerkeleyUnited States
- University of California, MercedMercedUnited States
| | - Elizabeth Leslie
- Department of Human Genetics, Emory University School of MedicineAtlantaGeorgia
| | - Patrick Breheny
- Department of Biostatistics, University of IowaIowa CityUnited States
| | - Albert J Erives
- Department of Biology, University of IowaIowa CityUnited States
| | - Robert A Cornell
- Department of Anatomy and Cell Biology, University of IowaIowa CityUnited States
- Interdisciplinary Program in Molecular Medicine, University of IowaIowa CityUnited States
| |
Collapse
|
10
|
Nguyen CTK, Sawangarun W, Mandasari M, Morita KI, Harada H, Kayamori K, Yamaguchi A, Sakamoto K. AIRE is induced in oral squamous cell carcinoma and promotes cancer gene expression. PLoS One 2020; 15:e0222689. [PMID: 32012175 PMCID: PMC6996854 DOI: 10.1371/journal.pone.0222689] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/02/2020] [Indexed: 12/23/2022] Open
Abstract
Autoimmune regulator (AIRE) is a transcriptional regulator that is primarily expressed in medullary epithelial cells, where it induces tissue-specific antigen expression. Under pathological conditions, AIRE expression is induced in epidermal cells and promotes skin tumor development. This study aimed to clarify the role of AIRE in the pathogenesis of oral squamous cell carcinoma (OSCC). AIRE expression was evaluated in six OSCC cell lines and in OSCC tissue specimens. Expression of STAT1, ICAM1, CXCL10, CXCL11, and MMP9 was elevated in 293A cells stably expressing AIRE, and conversely, was decreased in AIRE-knockout HSC3 OSCC cells when compared to the respective controls. Upregulation of STAT1, and ICAM in OSCC cells was confirmed in tissue specimens by immunohistochemistry. We provide evidence that AIRE exerts transcriptional control in cooperation with ETS1. Expression of STAT1, ICAM1, CXCL10, CXCL11, and MMP9 was increased in 293A cells upon Ets1 transfection, and coexpression of AIRE further increased the expression of these proteins. AIRE coprecipitated with ETS1 in a modified immunoprecipitation assay using formaldehyde crosslinking. Chromatin immunoprecipitation and quantitative PCR analysis revealed that promoter fragments of STAT1, ICAM1, CXCL10, and MMP9 were enriched in the AIRE precipitates. These results indicate that AIRE is induced in OSCC and supports cancer-related gene expression in cooperation with ETS1. This is a novel function of AIRE in extrathymic tissues under the pathological condition.
Collapse
Affiliation(s)
- Chi Thi Kim Nguyen
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Wanlada Sawangarun
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masita Mandasari
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kei-ichi Morita
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Bioresource Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kou Kayamori
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Yamaguchi
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Kei Sakamoto
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
11
|
Splicing and Chromatin Factors Jointly Regulate Epidermal Differentiation. Cell Rep 2019; 25:1292-1303.e5. [PMID: 30380419 DOI: 10.1016/j.celrep.2018.10.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/04/2018] [Accepted: 10/03/2018] [Indexed: 12/21/2022] Open
Abstract
Epidermal homeostasis requires balanced progenitor cell proliferation and loss of differentiated cells from the epidermal surface. During this process, cells undergo major changes in their transcriptional programs to accommodate new cellular functions. We found that transcriptional and post-transcriptional mechanisms underlying these changes jointly control genes involved in cell adhesion, a key process in epidermal maintenance. Using siRNA-based perturbation screens, we identified DNA and/or RNA binding regulators of epidermal differentiation. Computational modeling and experimental validation identified functional interactions between the matrin-type 2 zinc-finger protein ZMAT2 and the epigenetic modifiers ING5, SMARCA5, BRD1, UHRF1, BPTF, and SMARCC2. ZMAT2 is an interactor of the pre-spliceosome that is required to keep cells in an undifferentiated, proliferative state. RNA immunoprecipitation and transcriptome-wide RNA splicing analysis showed that ZMAT2 associates with and regulates transcripts involved in cell adhesion in conjunction with ING5. Thus, joint control by splicing regulation, histone, and DNA modification is important to maintain epidermal cells in an undifferentiated state.
Collapse
|
12
|
Chu Y, Elrod N, Wang C, Li L, Chen T, Routh A, Xia Z, Li W, Wagner EJ, Ji P. Nudt21 regulates the alternative polyadenylation of Pak1 and is predictive in the prognosis of glioblastoma patients. Oncogene 2019; 38:4154-4168. [PMID: 30705404 PMCID: PMC6533131 DOI: 10.1038/s41388-019-0714-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 12/09/2018] [Accepted: 01/18/2019] [Indexed: 02/03/2023]
Abstract
Alternative polyadenylation (APA) has emerged as a prevalent feature associated with cancer development and progression. The advantage of APA to tumor progression is to induce oncogenes through 3'-UTR shortening, and to inactivate tumor suppressor genes via the re-routing of microRNA competition. We previously identified the Mammalian Cleavage Factor I-25 (CFIm25) (encoded by Nudt21 gene) as a master APA regulator whose expression levels directly impact the tumorigenicity of glioblastoma (GBM) in vitro and in vivo. Despite its importance, the role of Nudt21 in GBM development is not known and the genes subject to Nudt21 APA regulation that contribute to GBM progression have not been identified. Here, we find that Nudt21 is reduced in low grade glioma (LGG) and all four subtypes of high grade glioma (GBM). Reduced expression of Nudt21 associates with worse survival in TCGA LGG cohorts and two TCGA GBM cohorts. Moreover, although CFIm25 was initially identified as biochemically associated with both CFIm59 and CFIm68, we observed three CFIm distinct subcomplexes exist and CFIm59 protein level is dependent on Nudt21 expression in GBM cells, but CFIm68 is not, and that only CFIm59 predicts prognosis of GBM patients similar to Nudt21. Through the use of Poly(A)-Click-Seq to characterize APA, we define the mRNAs subject to 3'-UTR shortening upon Nudt21 depletion in GBM cells and observed enrichment in genes important in the Ras signaling pathway, including Pak1. Remarkably, we find that Pak1 expression is regulated by Nudt21 through its 3'-UTR APA, and the combination of Pak1 and Nudt21 expression generates an even stronger prognostic indicator of GBM survival versus either value used alone. Collectively, our data uncover Nudt21 and its downstream target Pak1 as a potential "combination biomarker" for predicting prognosis of GBM patients.
Collapse
Affiliation(s)
- Yuan Chu
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
- Endoscopy Center, Zhongshan Hospital and Endoscopy Research Institute, Fudan University, Shanghai, China
| | - Nathan Elrod
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Chaojie Wang
- Department of Molecular Microbiology and Immunology, Computational Biology Program, OHSU, Portland, OR, 97273, USA
| | - Lei Li
- Daniel Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Tao Chen
- Endoscopy Center, Zhongshan Hospital and Endoscopy Research Institute, Fudan University, Shanghai, China
| | - Andrew Routh
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
- Sealy Centre for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Zheng Xia
- Department of Molecular Microbiology and Immunology, Computational Biology Program, OHSU, Portland, OR, 97273, USA
| | - Wei Li
- Daniel Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Eric J Wagner
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Centre for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| | - Ping Ji
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
13
|
Lee CG, Kwon HK, Kang H, Kim Y, Nam JH, Won YH, Park S, Kim T, Kang K, Rudra D, Jun CD, Park ZY, Im SH. Ets1 suppresses atopic dermatitis by suppressing pathogenic T cell responses. JCI Insight 2019; 4:e124202. [PMID: 30843878 PMCID: PMC6483523 DOI: 10.1172/jci.insight.124202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/29/2019] [Indexed: 01/03/2023] Open
Abstract
Atopic dermatitis (AD) is a complex inflammatory skin disease mediated by immune cells of both adaptive and innate types. Among them, CD4+ Th cells are one of major players of AD pathogenesis. Although the pathogenic role of Th2 cells has been well characterized, Th17/Th22 cells are also implicated in the pathogenesis of AD. However, the molecular mechanisms underlying pathogenic immune responses in AD remain unclear. We sought to investigate how the defect in the AD susceptibility gene, Ets1, is involved in AD pathogenesis in human and mice and its clinical relevance in disease severity by identifying Ets1 target genes and binding partners. Consistent with the decrease in ETS1 levels in severe AD patients and the experimental AD-like skin inflammation model, T cell-specific Ets1-deficient mice (Ets1ΔdLck) developed severe AD-like symptoms with increased pathogenic Th cell responses. A T cell-intrinsic increase of gp130 expression upon Ets1 deficiency promotes the gp130-mediated IL-6 signaling pathway, thereby leading to the development of severe AD-like symptoms. Functional blocking of gp130 by selective inhibitor SC144 ameliorated the disease pathogenesis by reducing pathogenic Th cell responses. Our results reveal a protective role of Ets1 in restricting pathogenic Th cell responses and suggest a potential therapeutic target for AD treatment.
Collapse
Affiliation(s)
- Choong-Gu Lee
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute of Natural Products, Gangneung, South Korea
- Academy of Immunology and Microbiology (AIM), Institute for Basic Science (IBS), Pohang, South Korea
| | - Ho-Keun Kwon
- Department of Microbiology, College of Medicine, Yonsei University, Seoul, South Korea
| | - Hyeji Kang
- Academy of Immunology and Microbiology (AIM), Institute for Basic Science (IBS), Pohang, South Korea
| | - Young Kim
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | | | - Young Ho Won
- Department of Dermatology, Chonnam National University Medical School, Gwangju, South Korea
| | - Sunhee Park
- Academy of Immunology and Microbiology (AIM), Institute for Basic Science (IBS), Pohang, South Korea
| | - Taemook Kim
- Department of Microbiology, Dankook University, Cheonan, South Korea
| | - Keunsoo Kang
- Department of Microbiology, Dankook University, Cheonan, South Korea
| | - Dipayan Rudra
- Academy of Immunology and Microbiology (AIM), Institute for Basic Science (IBS), Pohang, South Korea
- Division of Integrative Biosciences and Biotechnology (IBB), Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Zee Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Sin-Hyeog Im
- Academy of Immunology and Microbiology (AIM), Institute for Basic Science (IBS), Pohang, South Korea
- Division of Integrative Biosciences and Biotechnology (IBB), Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| |
Collapse
|
14
|
Sterile Inflammation Enhances ECM Degradation in Integrin β1 KO Embryonic Skin. Cell Rep 2018; 16:3334-3347. [PMID: 27653694 DOI: 10.1016/j.celrep.2016.08.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/14/2016] [Accepted: 08/18/2016] [Indexed: 01/02/2023] Open
Abstract
Epidermal knockout of integrin β1 results in complete disorganization of the basement membrane (BM), resulting in neonatal lethality. Here, we report that this disorganization is exacerbated by an early embryonic inflammatory response involving the recruitment of tissue-resident and monocyte-derived macrophages to the dermal-epidermal junction, associated with increased matrix metalloproteinase activity. Remarkably, the skin barrier in the integrin β1 knockout animals is intact, suggesting that this inflammatory response is initiated in a sterile environment. We demonstrate that the molecular mechanism involves de novo expression of integrin αvβ6 in the basal epidermal cells, which activates a TGF-β1 driven inflammatory cascade resulting in upregulation of dermal NF-κB in a Tenascin C-dependent manner. Importantly, treatment of β1 KO embryos in utero with small molecule inhibitors of TGF-βR1 and NF-κB results in marked rescue of the BM defects and amelioration of immune response, revealing an unconventional immuno-protective role for integrin β1 during BM remodeling.
Collapse
|
15
|
Tomar S, Plotnik JP, Haley J, Scantland J, Dasari S, Sheikh Z, Emerson R, Lenz D, Hollenhorst PC, Mitra AK. ETS1 induction by the microenvironment promotes ovarian cancer metastasis through focal adhesion kinase. Cancer Lett 2018; 414:190-204. [DOI: 10.1016/j.canlet.2017.11.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/23/2017] [Accepted: 11/11/2017] [Indexed: 12/12/2022]
|
16
|
D'Arcangelo D, Tinaburri L, Dellambra E. The Role of p16 INK4a Pathway in Human Epidermal Stem Cell Self-Renewal, Aging and Cancer. Int J Mol Sci 2017; 18:ijms18071591. [PMID: 28737694 PMCID: PMC5536078 DOI: 10.3390/ijms18071591] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/13/2017] [Accepted: 07/19/2017] [Indexed: 12/31/2022] Open
Abstract
The epidermis is a self-renewing tissue. The balance between proliferation and differentiation processes is tightly regulated to ensure the maintenance of the stem cell (SC) population in the epidermis during life. Aging and cancer may be considered related endpoints of accumulating damages within epidermal self-renewing compartment. p16INK4a is a potent inhibitor of the G1/S-phase transition of the cell cycle. p16INK4a governs the processes of SC self-renewal in several tissues and its deregulation may result in aging or tumor development. Keratinocytes are equipped with several epigenetic enzymes and transcription factors that shape the gene expression signatures of different epidermal layers and allow dynamic and coordinated expression changes to finely balance keratinocyte self-renewal and differentiation. These factors converge their activity in the basal layer to repress p16INK4a expression, protecting cells from senescence, and preserving epidermal homeostasis and regeneration. Several stress stimuli may activate p16INK4a expression that orchestrates cell cycle exit and senescence response. In the present review, we discuss the role of p16INK4a regulators in human epidermal SC self-renewal, aging and cancer.
Collapse
Affiliation(s)
- Daniela D'Arcangelo
- Laboratory of Vascular Pathology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Fondazione Luigi Maria Monti (FLMM), via Monti di Creta 104, 00167 Rome, Italy.
| | - Lavinia Tinaburri
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Fondazione Luigi Maria Monti (FLMM), via Monti di Creta 104, 00167 Rome, Italy.
| | - Elena Dellambra
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Fondazione Luigi Maria Monti (FLMM), via Monti di Creta 104, 00167 Rome, Italy.
| |
Collapse
|
17
|
Alva-Murillo N, Ochoa-Zarzosa A, López-Meza JE. Sodium Octanoate Modulates the Innate Immune Response of Bovine Mammary Epithelial Cells through the TLR2/P38/JNK/ERK1/2 Pathway: Implications during Staphylococcus aureus Internalization. Front Cell Infect Microbiol 2017; 7:78. [PMID: 28361042 PMCID: PMC5350129 DOI: 10.3389/fcimb.2017.00078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 02/27/2017] [Indexed: 12/19/2022] Open
Abstract
Bovine mammary epithelial cells (bMECs) contribute to mammary gland defense against invading pathogens, such as Staphylococcus aureus (intracellular facultative), which is recognized by TLR2. In a previous report, we showed that sodium octanoate [NaO, a medium chain fatty acid (C8)] induces (0.25 mM) or inhibits (1 mM) S. aureus internalization into bMECs and differentially regulates the innate immune response (IIR). However, the molecular mechanisms have not been described, which was the aim of this study. The results showed that α5β1 integrin membrane abundance (MA) was increased in 0.25 mM NaO-treated cells, but TLR2 or CD36 MA was not modified. When these receptors were blocked individually, 0.25 mM NaO-increased S. aureus internalization was notably reduced. Interestingly, in this condition, the IIR of the bMECs was impaired because MAPK (p38, JNK, and ERK1/2) phosphorylation and the activation of transcription factors related to these pathways were decreased. In addition, the 1 mM NaO treatment induced TLR2 MA, but neither the integrin nor CD36 MA was modified. The reduction in S. aureus internalization induced by 1 mM NaO was increased further when TLR2 was blocked. In addition, the phosphorylation levels of the MAPKs increased, and 13 transcriptional factors related to the IIR were slightly activated (CBF, CDP, c-Myb, AP-1, Ets-1/Pea-3, FAST-1, GAS/ISRE, AP-2, NFAT-1, OCT-1, RAR/DR-5, RXR/DR-1, and Stat-3). Moreover, the 1 mM NaO treatment up-regulated gene expression of IL-8 and RANTES and secretion of IL-1β. Notably, when 1 mM NaO-treated bMECs were challenged with S. aureus, the gene expression of IL-8 and IL-10 increased, while IL-1β secretion was reduced. In conclusion, our results showed that α5β1 integrin, TLR2 and CD36 are involved in 0.25 mM NaO-increased S. aureus internalization in bMECs. In addition, 1 mM NaO activates bMECs via the TLR2 signaling pathways (p38, JNK, and ERK1/2), which improves IIR before S. aureus invasion. Additionally, NaO (1 mM) might exert anti-inflammatory effects after bacterial internalization.
Collapse
Affiliation(s)
- Nayeli Alva-Murillo
- Licenciatura en Genómica Alimentaria, Universidad de La Ciénega del Estado de Michoacán de OcampoSahuayo, Mexico
| | - Alejandra Ochoa-Zarzosa
- Facultad de Medicina Veterinaria y Zootecnia, Centro Multidisciplinario de Estudios en Biotecnología, Universidad Michoacana de San Nicolás de HidalgoMorelia, Mexico
| | - Joel E. López-Meza
- Facultad de Medicina Veterinaria y Zootecnia, Centro Multidisciplinario de Estudios en Biotecnología, Universidad Michoacana de San Nicolás de HidalgoMorelia, Mexico
| |
Collapse
|
18
|
PNPLA1 has a crucial role in skin barrier function by directing acylceramide biosynthesis. Nat Commun 2017; 8:14609. [PMID: 28248300 PMCID: PMC5337976 DOI: 10.1038/ncomms14609] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 01/10/2017] [Indexed: 02/07/2023] Open
Abstract
Mutations in patatin-like phospholipase domain-containing 1 (PNPLA1) cause autosomal recessive congenital ichthyosis, but the mechanism involved remains unclear. Here we show that PNPLA1, an enzyme expressed in differentiated keratinocytes, plays a crucial role in the biosynthesis of ω-O-acylceramide, a lipid component essential for skin barrier. Global or keratinocyte-specific Pnpla1-deficient neonates die due to epidermal permeability barrier defects with severe transepidermal water loss, decreased intercellular lipid lamellae in the stratum corneum, and aberrant keratinocyte differentiation. In Pnpla1−/− epidermis, unique linoleate-containing lipids including acylceramides, acylglucosylceramides and (O-acyl)-ω-hydroxy fatty acids are almost absent with reciprocal increases in their putative precursors, indicating that PNPLA1 catalyses the ω-O-esterification with linoleic acid to form acylceramides. Moreover, acylceramide supplementation partially rescues the altered differentiation of Pnpla1−/− keratinocytes. Our findings provide valuable insight into the skin barrier formation and ichthyosis development, and may contribute to novel therapeutic strategies for treatment of epidermal barrier defects. Loss-of-function mutations in PNPLA1, a gene encoding an enzyme with unknown function, cause dry and scaling skin in humans. Using mouse models with PNPLA1 deficiency, the authors show that PNPLA1 participates in the biosynthesis of acylceramide, a lipid component essential for skin barrier function.
Collapse
|
19
|
Xu M, Zhang Y, Cheng H, Liu Y, Zou X, Zhan N, Xiao S, Xia Y. Transcription factor 7-like 1 dysregulates keratinocyte differentiation through upregulating lipocalin 2. Cell Death Discov 2016; 2:16028. [PMID: 27551519 PMCID: PMC4979464 DOI: 10.1038/cddiscovery.2016.28] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 02/07/2023] Open
Abstract
Recent studies strongly suggested that transcription factor 7-like 1 (Tcf7l1, also known as Tcf3) is involved in the differentiation of several types of cells, and demonstrated that Tcf7l1 modulates keratinocytes physiologically through regulating lipocalin 2 (LCN2), a key regulator of cell differentiation. To reveal the potential role of Tcf7l1 in the dysregulation of keratinocyte differentiation, both Tcf7l1 and LCN2 were determined in a variety of skin disorders. The in vitro effect of Tcf7l1 on keratinocyte differentiation was studied by culturing SCC-13 cells, and the human foreskin keratinocytes (HFKs) that were transfected with vectors for overexpressing human papillomavirus E6/E7 or Tcf7l1 genes. We found that both Tcf7l1 and LCN2 were highly expressed in those diseases characterized by defective keratinocyte differentiation (especially psoriasis vulgaris, condyloma acuminatum, squamous cell carcinoma, etc). Moreover, compared with control HFKs, SCC-13 cells and E6/E7-harboring HFKs expressed more Tcf7l1 and LCN2. Tcf7l1 siRNA transfection decreased LCN2 but increased involucrin and loricrin in HFKs under calcium stimuli. Conversely, Tcf7l1 overexpression in SCC-13 cells or vector-transfected HFKs induced lower involucrin and loricrin expression and less keratinocyte apoptosis, both of which, however, were partially abrogated by LCN2 siRNA or neutralizing anti-LCN2 antibody. Interestingly, the Tcf7l1 expression in HFKs correlated positively with the MMP-2 level, and the inhibition of MMP-2 decreased the LCN2 level and even attenuated the effect of Tcf7l1 on LCN2 expression. Therefore, Tcf7l1 dysregulates keratinocyte differentiation, possibly through upregulating the LCN2 pathway in an MMP-2 mediated manner. Elucidating the interaction between Tcf7l1 and LCN2 may help understand disordered cell differentiation in some skin diseases.
Collapse
Affiliation(s)
- M Xu
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University , Xi'an 710004, China
| | - Y Zhang
- Intensive Care Unit, China Gezhouba Group Central Hospital, The Third Clinical Medical College of China Three Gorges University , Yichang, China
| | - H Cheng
- Department of Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University , Xi'an, China
| | - Y Liu
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University , Xi'an 710004, China
| | - X Zou
- Department of Dermatology, Hubei Maternity and Child Health Hospital , Wuhan, China
| | - N Zhan
- Department of Pathology, Renmin Hospital of Wuhan University , Wuhan, China
| | - S Xiao
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University , Xi'an 710004, China
| | - Y Xia
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University , Xi'an 710004, China
| |
Collapse
|
20
|
Vedak P, Kroshinsky D, St. John J, Xavier RJ, Yajnik V, Ananthakrishnan AN. Genetic basis of TNF-α antagonist associated psoriasis in inflammatory bowel diseases: a genotype-phenotype analysis. Aliment Pharmacol Ther 2016; 43:697-704. [PMID: 26806281 PMCID: PMC4755796 DOI: 10.1111/apt.13542] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 12/23/2015] [Accepted: 01/07/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND Anti-tumour necrosis factor (anti-TNF) biologic associated psoriasis has been reported in inflammatory bowel disease (IBD) patients. However, little is known regarding its pathogenesis. AIM To identify potential genetic predispositions to anti-TNF associated psoriasis in IBD patients. METHODS This retrospective chart review included IBD patients enrolled in a prospective registry. Cases of anti-TNF associated psoriasis and idiopathic psoriasis unrelated to anti-TNF exposure were confirmed by an expert dermatologist. All patients were genotyped on the Illumina Immunochip. A weighted genetic risk score ascertaining genetic pre-disposition towards psoriasis was calculated and overall genetic pre-disposition as well as differential distribution of individual polymorphisms was compared across the three groups. RESULTS Our study included 724 IBD patients who initiated anti-TNF therapy and did not develop psoriasis, 35 patients with anti-TNF associated psoriasis, and 38 patients with idiopathic psoriasis. Anti-TNF users who developed psoriasis had a modest but statistically significantly greater psoriasis genetic risk score than anti-TNF controls (mean 0.64 vs. 0.61, P = 0.04), and had a similar genetic risk score as those with idiopathic psoriasis (0.64 vs. 0.62, P = 0.22). Two loci associated with NOS2 and ETS1 genes achieved P < 0.05 when comparing anti-TNF associated psoriasis to anti-TNF controls. Three loci were significantly different between anti-TNF associated psoriasis and idiopathic psoriasis including a polymorphism near NOS2 encoding for inducible nitric oxide synthase that is produced by dendritic cells in skin lesions in psoriasis. CONCLUSION Patients with anti-TNF associated psoriasis had a modestly greater genetic pre-disposition towards psoriasis but no single causative polymorphism was identified.
Collapse
Affiliation(s)
- Priyanka Vedak
- Department of Dermatology, Massachusetts General Hospital
| | | | | | - Ramnik J Xavier
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School
| | - Vijay Yajnik
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School
| | | |
Collapse
|
21
|
Paternoster L, Standl M, Waage J, Baurecht H, Hotze M, Strachan DP, Curtin JA, Bønnelykke K, Tian C, Takahashi A, Esparza-Gordillo J, Alves AC, Thyssen JP, den Dekker HT, Ferreira MA, Altmaier E, Sleiman PM, Xiao FL, Gonzalez JR, Marenholz I, Kalb B, Yanes MP, Xu CJ, Carstensen L, Groen-Blokhuis MM, Venturini C, Pennell CE, Barton SJ, Levin AM, Curjuric I, Bustamante M, Kreiner-Møller E, Lockett GA, Bacelis J, Bunyavanich S, Myers RA, Matanovic A, Kumar A, Tung JY, Hirota T, Kubo M, McArdle WL, Henderson AJ, Kemp JP, Zheng J, Smith GD, Rüschendorf F, Bauerfeind A, Lee-Kirsch MA, Arnold A, Homuth G, Schmidt CO, Mangold E, Cichon S, Keil T, Rodríguez E, Peters A, Franke A, Lieb W, Novak N, Fölster-Holst R, Horikoshi M, Pekkanen J, Sebert S, Husemoen LL, Grarup N, de Jongste JC, Rivadeneira F, Hofman A, Jaddoe VW, Pasmans SG, Elbert NJ, Uitterlinden AG, Marks GB, Thompson PJ, Matheson MC, Robertson CF, Ried JS, Li J, Zuo XB, Zheng XD, Yin XY, Sun LD, McAleer MA, O'Regan GM, Fahy CM, Campbell LE, Macek M, Kurek M, Hu D, Eng C, Postma DS, Feenstra B, Geller F, Hottenga JJ, Middeldorp CM, Hysi P, Bataille V, Spector T, et alPaternoster L, Standl M, Waage J, Baurecht H, Hotze M, Strachan DP, Curtin JA, Bønnelykke K, Tian C, Takahashi A, Esparza-Gordillo J, Alves AC, Thyssen JP, den Dekker HT, Ferreira MA, Altmaier E, Sleiman PM, Xiao FL, Gonzalez JR, Marenholz I, Kalb B, Yanes MP, Xu CJ, Carstensen L, Groen-Blokhuis MM, Venturini C, Pennell CE, Barton SJ, Levin AM, Curjuric I, Bustamante M, Kreiner-Møller E, Lockett GA, Bacelis J, Bunyavanich S, Myers RA, Matanovic A, Kumar A, Tung JY, Hirota T, Kubo M, McArdle WL, Henderson AJ, Kemp JP, Zheng J, Smith GD, Rüschendorf F, Bauerfeind A, Lee-Kirsch MA, Arnold A, Homuth G, Schmidt CO, Mangold E, Cichon S, Keil T, Rodríguez E, Peters A, Franke A, Lieb W, Novak N, Fölster-Holst R, Horikoshi M, Pekkanen J, Sebert S, Husemoen LL, Grarup N, de Jongste JC, Rivadeneira F, Hofman A, Jaddoe VW, Pasmans SG, Elbert NJ, Uitterlinden AG, Marks GB, Thompson PJ, Matheson MC, Robertson CF, Ried JS, Li J, Zuo XB, Zheng XD, Yin XY, Sun LD, McAleer MA, O'Regan GM, Fahy CM, Campbell LE, Macek M, Kurek M, Hu D, Eng C, Postma DS, Feenstra B, Geller F, Hottenga JJ, Middeldorp CM, Hysi P, Bataille V, Spector T, Tiesler CM, Thiering E, Pahukasahasram B, Yang JJ, Imboden M, Huntsman S, Vilor-Tejedor N, Relton CL, Myhre R, Nystad W, Custovic A, Weiss ST, Meyers DA, Söderhäll C, Melén E, Ober C, Raby BA, Simpson A, Jacobsson B, Holloway JW, Bisgaard H, Sunyer J, Hensch NMP, Williams LK, Godfrey KM, Wang CA, Boomsma DI, Melbye M, Koppelman GH, Jarvis D, McLean WI, Irvine AD, Zhang XJ, Hakonarson H, Gieger C, Burchard EG, Martin NG, Duijts L, Linneberg A, Jarvelin MR, Noethen MM, Lau S, Hübner N, Lee YA, Tamari M, Hinds DA, Glass D, Brown SJ, Heinrich J, Evans DM, Weidinger S. Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis. Nat Genet 2015; 47:1449-1456. [PMID: 26482879 PMCID: PMC4753676 DOI: 10.1038/ng.3424] [Show More Authors] [Citation(s) in RCA: 472] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 09/25/2015] [Indexed: 12/14/2022]
Abstract
Genetic association studies have identified 21 loci associated with atopic dermatitis risk predominantly in populations of European ancestry. To identify further susceptibility loci for this common complex skin disease, we performed a meta-analysis of >15 million genetic variants in 21,399 cases and 95,464 controls from populations of European, African, Japanese and Latino ancestry, followed by replication in 32,059 cases and 228,628 controls from 18 studies. We identified 10 novel risk loci, bringing the total number of known atopic dermatitis risk loci to 31 (with novel secondary signals at 4 of these). Notably, the new loci include candidate genes with roles in regulation of innate host defenses and T-cell function, underscoring the important contribution of (auto-)immune mechanisms to atopic dermatitis pathogenesis.
Collapse
Affiliation(s)
- Lavinia Paternoster
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Marie Standl
- Institute of Epidemiology I, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Johannes Waage
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Hansjörg Baurecht
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Melanie Hotze
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - David P Strachan
- Population Health Research Institute, St George's, University of London, London, UK
| | - John A Curtin
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Chao Tian
- 23andMe, Inc., Mountain View, CA, USA
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, Center for Integrative Medical Sciences, Institute of Physical and Chemical Research (RIKEN), Yokohama, Japan
| | - Jorge Esparza-Gordillo
- Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany.,Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Alexessander Couto Alves
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Jacob P Thyssen
- National Allergy Research Centre, Department of Dermatology and Allergology, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Herman T den Dekker
- Department of Pediatrics, Erasmus MC, Rotterdam, the Netherlands.,Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands.,The Generation R Study Group, Erasmus MC, Rotterdam, the Netherlands
| | | | - Elisabeth Altmaier
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Patrick Ma Sleiman
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, PA, USA.,Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Feng Li Xiao
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
| | - Juan R Gonzalez
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
| | - Ingo Marenholz
- Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany.,Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Birgit Kalb
- Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany.,Pediatric Pneumology and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Pino Yanes
- Department of Medicine, University of California, San Francisco, CA, USA.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Cheng-Jian Xu
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands.,University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Lisbeth Carstensen
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Maria M Groen-Blokhuis
- Dept Biological Psychology, Netherlands Twin Register, VU University, Amsterdam, the Netherlands
| | - Cristina Venturini
- KCL Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Craig E Pennell
- School of Women's and Infants' Health, The University of Western Australia (UWA), Perth, Australia
| | - Sheila J Barton
- Medical Research Council (MRC) Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Albert M Levin
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
| | - Ivan Curjuric
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Mariona Bustamante
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.,Centre for Genomic Regulation (CRG), Barcelona, Spain.,Pompeu Fabra University (UPF), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Eskil Kreiner-Møller
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Gabrielle A Lockett
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jonas Bacelis
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hosptial, Gothenburg, Sweden
| | - Supinda Bunyavanich
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel A Myers
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Anja Matanovic
- Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany.,Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ashish Kumar
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Tomomitsu Hirota
- Laboratory for Respiratory and Allergic Diseases, Center for Integrative Medical Sciences, Institute of Physical and Chemical Research (RIKEN), Yokohama, Japan
| | - Michiaki Kubo
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, Institute of Physical and Chemical Research (RIKEN), Yokohama, Japan
| | - Wendy L McArdle
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - A J Henderson
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - John P Kemp
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,School of Social and Community Medicine, University of Bristol, Bristol, UK.,University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, Australia
| | - Jie Zheng
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - George Davey Smith
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,School of Social and Community Medicine, University of Bristol, Bristol, UK
| | | | - Anja Bauerfeind
- Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany
| | - Min Ae Lee-Kirsch
- Klinik für Kinder- und Jugendmedizin, Technical University Dresden, Dresden, Germany
| | - Andreas Arnold
- Clinic and Polyclinic of Dermatology, University Medicine Greifswald, Greifswald, Germany
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Carsten O Schmidt
- Institute for Community Medicine, Study of Health in Pomerania/KEF, University Medicine Greifswald, Greifswald, Germany
| | | | - Sven Cichon
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany.,Division of Medical Genetics, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland.,Institute of Neuroscience and Medicine (INM-1), Structural and Functional Organisation of the Brain, Genomic Imaging, Research Centre Jülich, Jülich, Germany
| | - Thomas Keil
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Clinical Epidemiology and Biometry, University of Würzburg, Würzburg, Germany
| | - Elke Rodríguez
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Annette Peters
- Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Deutsches Forschungszentrum für Herz-Kreislauferkrankungen (DZHK) (German Research Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Wolfgang Lieb
- Institute of Epidemiology, Christian-Albrechts University Kiel, Kiel, Germany
| | - Natalija Novak
- Department of Dermatology and Allergy, University of Bonn Medical Center, Bonn, Germany
| | - Regina Fölster-Holst
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Momoko Horikoshi
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Juha Pekkanen
- Unit of Living Environment and Health, National Institute for Health and Welfare, Kuopio, Finland.,Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Sylvain Sebert
- Center for Life-course and Systems Epidemiology, Faculty of Medicine, University of Oulu, Finland.,Biocenter Oulu, University of Oulu, Finland
| | - Lise L Husemoen
- Research Centre for Prevention and Health, Capital Region of Denmark, Copenhagen, Denmark
| | - Niels Grarup
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands.,The Generation R Study Group, Erasmus MC, Rotterdam, the Netherlands.,Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Vincent Wv Jaddoe
- Department of Pediatrics, Erasmus MC, Rotterdam, the Netherlands.,Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands.,The Generation R Study Group, Erasmus MC, Rotterdam, the Netherlands
| | | | - Niels J Elbert
- The Generation R Study Group, Erasmus MC, Rotterdam, the Netherlands.,Department of Dermatology, Erasmus MC, Rotterdam, the Netherlands
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands.,Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Guy B Marks
- Woolcock Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Philip J Thompson
- Lung Institute of Western Australia, QE II Medical Centre Nedlands , Western Australia, Australia.,School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - Melanie C Matheson
- Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | | | | | - Janina S Ried
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jin Li
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, PA, USA
| | - Xian Bo Zuo
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
| | - Xiao Dong Zheng
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
| | - Xian Yong Yin
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
| | - Liang Dan Sun
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
| | - Maeve A McAleer
- National Children's Research Centre, Crumlin, Dublin, Ireland.,Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | | | | | - Linda E Campbell
- Centre for Dermatology and Genetic Medicine, University of Dundee, Dundee, UK
| | - Milan Macek
- Department of Biology and Medical Genetics, University Hospital Motol and 2nd Faculty of Medicine of Charles University, Prague, Czech Republic
| | - Michael Kurek
- Department of Clinical Allergology, Pomeranian, Pomeranian Medical University, Szczecin, Poland
| | - Donglei Hu
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Dirkje S Postma
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Jouke Jan Hottenga
- Dept Biological Psychology, Netherlands Twin Register, VU University, Amsterdam, the Netherlands
| | - Christel M Middeldorp
- Dept Biological Psychology, Netherlands Twin Register, VU University, Amsterdam, the Netherlands
| | - Pirro Hysi
- KCL Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Veronique Bataille
- KCL Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Tim Spector
- KCL Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Carla Mt Tiesler
- Institute of Epidemiology I, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Ludwig-Maximilians-University of Munich, Dr. von Hauner Children's Hospital, Division of Metabolic Diseases and Nutritional Medicine, Munich, Germany
| | - Elisabeth Thiering
- Institute of Epidemiology I, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Ludwig-Maximilians-University of Munich, Dr. von Hauner Children's Hospital, Division of Metabolic Diseases and Nutritional Medicine, Munich, Germany
| | - Badri Pahukasahasram
- Center for Health Policy and Health Services Research, Henry Ford Health System, Detroit, MI, USA
| | - James J Yang
- School of Nursing, University of Michigan, Ann Arbor, MI, USA
| | - Medea Imboden
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Scott Huntsman
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Natàlia Vilor-Tejedor
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.,Pompeu Fabra University (UPF), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Caroline L Relton
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Ronny Myhre
- Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - Wenche Nystad
- Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - Adnan Custovic
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Deborah A Meyers
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Cilla Söderhäll
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.,Center for Innovative Medicine (CIMED), Karolinska Institutet, Stockholm, Sweden
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Sachs' Children's Hospital, Stockholm, Sweden
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Benjamin A Raby
- Channing Division of Network Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Angela Simpson
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hosptial, Gothenburg, Sweden.,Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Hans Bisgaard
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jordi Sunyer
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.,Pompeu Fabra University (UPF), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.,Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Nicole M Probst Hensch
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - L Keoki Williams
- Center for Health Policy and Health Services Research, Henry Ford Health System, Detroit, MI, USA.,Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Keith M Godfrey
- Medical Research Council (MRC) Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK.,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service (NHS) Foundation Trust, Southampton, UK
| | - Carol A Wang
- School of Women's and Infants' Health, The University of Western Australia (UWA), Perth, Australia
| | - Dorret I Boomsma
- Dept Biological Psychology, Netherlands Twin Register, VU University, Amsterdam, the Netherlands.,Institute for Health and Care Research (EMGO), VU University, Amsterdam, the Netherlands
| | - Mads Melbye
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Medicine, Stanford School of Medicine, Stanford, California, USA
| | - Gerard H Koppelman
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Department of Pediatric Pulmonology and Pediatric Allergology, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Deborah Jarvis
- Respiratory Epidemiology, Occupational Medicine and Public Health; National Heart and Lung Institute; Imperial College; London, UK.,Medical Research Council-Public Health England Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Wh Irwin McLean
- Centre for Dermatology and Genetic Medicine, University of Dundee, Dundee, UK
| | - Alan D Irvine
- National Children's Research Centre, Crumlin, Dublin, Ireland.,Our Lady's Children's Hospital, Crumlin, Dublin, Ireland.,Clinical Medicine, Trinity College Dublin, Dublin, Ireland
| | - Xue Jun Zhang
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
| | - Hakon Hakonarson
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, PA, USA.,Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Esteban G Burchard
- Department of Medicine, University of California, San Francisco, CA, USA.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | | | - Liesbeth Duijts
- Department of Pediatrics, Erasmus MC, Rotterdam, the Netherlands.,Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands.,The Generation R Study Group, Erasmus MC, Rotterdam, the Netherlands
| | - Allan Linneberg
- Research Centre for Prevention and Health, Capital Region of Denmark, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Experimental Research, Rigshospitalet, Glostrup, Denmark
| | - Marjo-Riitta Jarvelin
- Biocenter Oulu, University of Oulu, Finland.,Department of Epidemiology and Biostatistics, Medical Research Council (MRC) Health Protection Agency (HPE) Centre for Environment and Health, School of Public Health, Imperial College London, London, UK.,Center for Life Course Epidemiology, Faculty of Medicine, University of Oulu, Oulu, Finland.,Unit of Primary Care, Oulu University Hospital, Oulu, Finland
| | - Markus M Noethen
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Susanne Lau
- Pediatric Pneumology and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Norbert Hübner
- Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany
| | - Young-Ae Lee
- Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany.,Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mayumi Tamari
- Laboratory for Respiratory and Allergic Diseases, Center for Integrative Medical Sciences, Institute of Physical and Chemical Research (RIKEN), Yokohama, Japan
| | | | - Daniel Glass
- KCL Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Sara J Brown
- Centre for Dermatology and Genetic Medicine, University of Dundee, Dundee, UK.,Department of Dermatology, Ninewells Hospital and Medical School, Dundee, UK
| | - Joachim Heinrich
- Institute of Epidemiology I, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - David M Evans
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,School of Social and Community Medicine, University of Bristol, Bristol, UK.,University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, Australia.,These authors jointly directed this work
| | - Stephan Weidinger
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.,These authors jointly directed this work
| |
Collapse
|
22
|
Dittmer J. The role of the transcription factor Ets1 in carcinoma. Semin Cancer Biol 2015; 35:20-38. [PMID: 26392377 DOI: 10.1016/j.semcancer.2015.09.010] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 12/12/2022]
Abstract
Ets1 belongs to the large family of the ETS domain family of transcription factors and is involved in cancer progression. In most carcinomas, Ets1 expression is linked to poor survival. In breast cancer, Ets1 is primarily expressed in the triple-negative subtype, which is associated with unfavorable prognosis. Ets1 contributes to the acquisition of cancer cell invasiveness, to EMT (epithelial-to-mesenchymal transition), to the development of drug resistance and neo-angiogenesis. The aim of this review is to summarize the current knowledge on the functions of Ets1 in carcinoma progression and on the mechanisms that regulate Ets1 activity in cancer.
Collapse
Affiliation(s)
- Jürgen Dittmer
- Clinic for Gynecology, Martin Luther University Halle-Wittenberg, Germany.
| |
Collapse
|
23
|
Luo A, Yu X, Li G, Ma G, Chen H, Ding F, Li Y, Liu Z. Differentiation-associated genes regulated by c-Jun and decreased in the progression of esophageal squamous cell carcinoma. PLoS One 2014; 9:e96610. [PMID: 24796531 PMCID: PMC4010476 DOI: 10.1371/journal.pone.0096610] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 04/10/2014] [Indexed: 12/20/2022] Open
Abstract
Transcription factor c-Jun plays a key role in controlling epithelium cell proliferation, apoptosis and differentiation. However, molecular mechanism and biological functions of c-Jun in squamous differentiation and the progression of esophageal squamous cell carcinoma (ESCC) remain elusive. In this study, we found that c-Jun bound directly to the promoter region, and activated the transcription of differentiation-associated genes including cystatin A, involucrin and SPRR3 in vivo. Ectopic expression of c-Jun enhanced SPRR3 transactivation in KYSE450 cells. Conversely, TAM67, a dominant negative mutant of c-Jun, inhibited SPRR3 transactivation. c-Jun increased expression of SPPR3 mainly via a PKC/JNK pathway in response to TPA in KYSE450 cells. Furthermore, c-Jun was remarkably reduced in esophageal cancer. Interestingly, cystatin A, involucrin and SPRR3 were significantly downregulated as well, and associated with differentiation grade. Expression of c-Jun was correlated with the expression of these genes in normal epithelium and ESCC. Importantly, the expression of these genes was remarkably decreased during the malignant transformation from normal epithelium to low-grade intraepithelial neoplasia (LGIN) or high-grade intraepithelial neoplasia (HGIN). The expression of cystatin A and involucrin was significantly reduced from LGIN to HGIN. These results suggest c-Jun was involved in the regulation of differentiation-associated genes in ESCC. These genes might serve as the potential markers in distinguishing normal epithelium from esophageal squamous intraepithelial neoplasia.
Collapse
Affiliation(s)
- Aiping Luo
- State Key Lab of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinfeng Yu
- Department of Pharmacology, School of Chemical Biology & Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Guichang Li
- Department of Media and Biology Control, Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Gang Ma
- State Key Lab of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongyan Chen
- State Key Lab of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Fang Ding
- State Key Lab of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yi Li
- State Key Lab of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihua Liu
- State Key Lab of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
24
|
Chin SS, Romano RA, Nagarajan P, Sinha S, Garrett-Sinha LA. Aberrant epidermal differentiation and disrupted ΔNp63/Notch regulatory axis in Ets1 transgenic mice. Biol Open 2013; 2:1336-45. [PMID: 24337118 PMCID: PMC3863418 DOI: 10.1242/bio.20135397] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The transcription factor Ets1 is expressed at low levels in epidermal keratinocytes under physiological conditions, but is over-expressed in cutaneous squamous cell carcinoma (SCC). We previously showed that over-expression of Ets1 in differentiated keratinocytes of the skin leads to significant pro-tumorigenic alterations. Here, we further extend these studies by testing the effects of over-expressing Ets1 in the proliferative basal keratinocytes of the skin, which includes the putative epidermal stem cells. We show that induction of the Ets1 transgene in the basal layer of skin during embryogenesis results in epidermal hyperplasia and impaired differentiation accompanied by attenuated expression of spinous and granular layer markers. A similar hyper-proliferative skin phenotype was observed when the transgene was induced in the basal layer of the skin of adult mice leading to hair loss and open sores. The Ets1-mediated phenotype is accompanied by a variety of changes in gene expression including alterations in Notch signaling, a crucial mediator of normal skin differentiation. Finally, we show that Ets1 disrupts Notch signaling in part via its ability to upregulate ΔNp63, an established transcriptional repressor of several of the Notch receptors. Given the established tumor suppressive role for Notch signaling in skin tumorigenesis, the demonstrated ability of Ets1 to interfere with this signaling pathway may be important in mediating its pro-tumorigenic activities.
Collapse
Affiliation(s)
- Shu Shien Chin
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | | | | | | | | |
Collapse
|
25
|
Review of Ets1 structure, function, and roles in immunity. Cell Mol Life Sci 2013; 70:3375-90. [PMID: 23288305 DOI: 10.1007/s00018-012-1243-7] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 11/20/2012] [Accepted: 12/11/2012] [Indexed: 10/27/2022]
Abstract
The Ets1 transcription factor is a member of the Ets gene family and is highly conserved throughout evolution. Ets1 is known to regulate a number of important biological processes in normal cells and in tumors. In particular, Ets1 has been associated with regulation of immune cell function and with an aggressive behavior in tumors that express it at high levels. Here we review and summarize the general features of Ets1 and describe its roles in immunity and autoimmunity, with a focus on its roles in B lymphocytes. We also review evidence that suggests that Ets1 may play a role in malignant transformation of hematopoietic malignancies including B cell malignancies.
Collapse
|
26
|
Tsoi LC, Spain SL, Knight J, Ellinghaus E, Stuart PE, Capon F, Ding J, Li Y, Tejasvi T, Gudjonsson JE, Kang HM, Allen MH, McManus R, Novelli G, Samuelsson L, Schalkwijk J, Ståhle M, Burden AD, Smith CH, Cork MJ, Estivill X, Bowcock AM, Krueger GG, Weger W, Worthington J, Tazi-Ahnini R, Nestle FO, Hayday A, Hoffmann P, Winkelmann J, Wijmenga C, Langford C, Edkins S, Andrews R, Blackburn H, Strange A, Band G, Pearson RD, Vukcevic D, Spencer CCA, Deloukas P, Mrowietz U, Schreiber S, Weidinger S, Koks S, Kingo K, Esko T, Metspalu A, Lim HW, Voorhees JJ, Weichenthal M, Wichmann HE, Chandran V, Rosen CF, Rahman P, Gladman DD, Griffiths CEM, Reis A, Kere J, Collaborative Association Study of Psoriasis, Genetic Analysis of Psoriasis Consortium, Psoriasis Association Genetics Extension, Wellcome Trust Case Control Consortium 2, Nair RP, Franke A, Barker JNWN, Abecasis GR, Elder JT, Trembath RC. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat Genet 2012; 44:1341-8. [PMID: 23143594 PMCID: PMC3510312 DOI: 10.1038/ng.2467] [Citation(s) in RCA: 768] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 10/17/2012] [Indexed: 02/08/2023]
Abstract
To gain further insight into the genetic architecture of psoriasis, we conducted a meta-analysis of 3 genome-wide association studies (GWAS) and 2 independent data sets genotyped on the Immunochip, including 10,588 cases and 22,806 controls. We identified 15 new susceptibility loci, increasing to 36 the number associated with psoriasis in European individuals. We also identified, using conditional analyses, five independent signals within previously known loci. The newly identified loci shared with other autoimmune diseases include candidate genes with roles in regulating T-cell function (such as RUNX3, TAGAP and STAT3). Notably, they included candidate genes whose products are involved in innate host defense, including interferon-mediated antiviral responses (DDX58), macrophage activation (ZC3H12C) and nuclear factor (NF)-κB signaling (CARD14 and CARM1). These results portend a better understanding of shared and distinctive genetic determinants of immune-mediated inflammatory disorders and emphasize the importance of the skin in innate and acquired host defense.
Collapse
Affiliation(s)
- Lam C Tsoi
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan Ann Arbor, MI 48109, USA
| | - Sarah L Spain
- Division of Genetics and Molecular Medicine, King’s College London, London, UK
| | - Jo Knight
- Neuroscience Research, Centre for Addiction and Mental Health, Toronto, ON, Canada M5T 1R8
- National Institute for Health Research (NIHR), Biomedical Research Centre, Guy’s and St. Thomas’ NHS Foundation Trust
| | - Eva Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, 24105 Kiel, Germany
| | - Philip E Stuart
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Francesca Capon
- Division of Genetics and Molecular Medicine, King’s College London, London, UK
| | - Jun Ding
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan Ann Arbor, MI 48109, USA
| | - Yanming Li
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan Ann Arbor, MI 48109, USA
| | - Trilokraj Tejasvi
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Hyun M Kang
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan Ann Arbor, MI 48109, USA
| | - Michael H Allen
- Division of Genetics and Molecular Medicine, King’s College London, London, UK
| | - Ross McManus
- Department of Clinical Medicine Trinity College Dublin, Ireland
- Institute of Molecular Medicine, Trinity College Dublin, Ireland
| | - Giuseppe Novelli
- National Agency for Evaluation of Universities and Research Institutes (ANVUR)
- Research Center San Pietro Hospital, Rome, Italy
| | - Lena Samuelsson
- Department of Medical and Clinical Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Joost Schalkwijk
- Department of Dermatology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Mona Ståhle
- Dermatology Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Catherine H Smith
- St John’s Institute of Dermatology, King’s College London, London, UK
| | - Michael J Cork
- Academic Unit of Dermatology Research, Department of Infection and Immunity, The University of Sheffield, Sheffield, UK
| | - Xavier Estivill
- Genes and Disease Programme, Centre for Genomic Regulation (CRG) and UPF, Hospital del Mar Research Institute (CRG) and Public Health and Epidemiology Network Biomedical Research Centre (CIBERESP), Barcelona, Spain
| | - Anne M Bowcock
- Division of Human Genetics, Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | | | - Wolfgang Weger
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Jane Worthington
- Arthritis Research UK Epidemiology Unit, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Rachid Tazi-Ahnini
- Academic Unit of Dermatology Research, Department of Infection and Immunity, The University of Sheffield, Sheffield, UK
| | - Frank O Nestle
- Division of Genetics and Molecular Medicine, King’s College London, London, UK
| | - Adrian Hayday
- Division of Immunology, Infection and Inflammatory Disease; King’s College London, London, UK
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, 54127 Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, 54127 Bonn, Germany
| | - Juliane Winkelmann
- Department of Neurology, Technische Universität München, Munich, Germany
- Institute of Human Genetics, Technische Universität München, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Munich, Germany
| | - Cisca Wijmenga
- Genetics Department, University Medical Center and University of Groningen, Groningen, The Netherlands
| | | | - Sarah Edkins
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | | | | | - Amy Strange
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7LJ, UK
| | - Gavin Band
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7LJ, UK
| | - Richard D Pearson
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7LJ, UK
| | - Damjan Vukcevic
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7LJ, UK
| | - Chris CA Spencer
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7LJ, UK
| | | | - Ulrich Mrowietz
- Department of Dermatology, University Hospital, Schleswig-Holstein, Christian-Albrechts-University, 24105 Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, 24105 Kiel, Germany
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, 24105 Kiel, Germany
- PopGen biobank, University Hospital S.-H., Kiel, Germany
| | - Stephan Weidinger
- Department of Dermatology, University Hospital, Schleswig-Holstein, Christian-Albrechts-University, 24105 Kiel, Germany
| | - Sulev Koks
- Department of Physiology, Centre of Translational Medicine and Centre for Translational Genomics, University of Tartu, 50409 Tartu, Estonia
| | - Külli Kingo
- Department of Dermatology and Venerology, University of Tartu, 50409 Tartu, Estonia
| | - Tonu Esko
- Estonian Genome Center, University of Tartu, 51010 Tartu, Estonia
| | - Andres Metspalu
- Estonian Genome Center, University of Tartu, 51010 Tartu, Estonia
| | - Henry W Lim
- Department of Dermatology, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - John J Voorhees
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael Weichenthal
- Department of Dermatology, University Hospital, Schleswig-Holstein, Christian-Albrechts-University, 24105 Kiel, Germany
| | - H. Erich Wichmann
- Institute of Epidemiology I, Helmholtz Centre Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-University, 81377 Munich, Germany
- Klinikum Grosshadern, 81377 Munich, Germany
| | - Vinod Chandran
- Department of Medicine, Division of Rheumatology, University of Toronto, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada
| | - Cheryl F Rosen
- Department of Medicine, Division of Dermatology, University of Toronto, Toronto Western Hospital, Toronto, Ontario M5T 2S8
| | - Proton Rahman
- Department of Medicine, Memorial University, St. John’s, Newfoundland A1C 5B8, Canada
| | - Dafna D Gladman
- Department of Medicine, Division of Rheumatology, University of Toronto, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada
| | - Christopher EM Griffiths
- Dermatological Sciences, Salford Royal NHS Foundation Trust, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Andre Reis
- Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Department of Medical Genetics, University of Helsinki, Finland
| | | | | | | | | | - Rajan P Nair
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, 24105 Kiel, Germany
| | - Jonathan NWN Barker
- Division of Genetics and Molecular Medicine, King’s College London, London, UK
- St John’s Institute of Dermatology, King’s College London, London, UK
| | - Goncalo R Abecasis
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan Ann Arbor, MI 48109, USA
| | - James T Elder
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
- Ann Arbor Veterans Affairs Hospital, Ann Arbor, MI, 48105, USA
| | - Richard C Trembath
- Division of Genetics and Molecular Medicine, King’s College London, London, UK
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, London, UK
| |
Collapse
|
27
|
Remeseiro S, Cuadrado A, Gómez-López G, Pisano DG, Losada A. A unique role of cohesin-SA1 in gene regulation and development. EMBO J 2012; 31:2090-102. [PMID: 22415368 PMCID: PMC3343463 DOI: 10.1038/emboj.2012.60] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 02/20/2012] [Indexed: 01/21/2023] Open
Abstract
Vertebrates have two cohesin complexes that consist of Smc1, Smc3, Rad21/Scc1 and either SA1 or SA2, but their functional specificity is unclear. Mouse embryos lacking SA1 show developmental delay and die before birth. Comparison of the genome-wide distribution of cohesin in wild-type and SA1-null cells reveals that SA1 is largely responsible for cohesin accumulation at promoters and at sites bound by the insulator protein CTCF. As a consequence, ablation of SA1 alters transcription of genes involved in biological processes related to Cornelia de Lange syndrome (CdLS), a genetic disorder linked to dysfunction of cohesin. We show that the presence of cohesin-SA1 at the promoter of myc and of protocadherin genes positively regulates their expression, a task that cannot be assumed by cohesin-SA2. Lack of SA1 also alters cohesin-binding pattern along some gene clusters and leads to dysregulation of genes within. We hypothesize that impaired cohesin-SA1 function in gene expression underlies the molecular aetiology of CdLS.
Collapse
Affiliation(s)
- Silvia Remeseiro
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Cuadrado
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Gonzalo Gómez-López
- Bioinformatics Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - David G Pisano
- Bioinformatics Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
28
|
Okano J, Lichti U, Mamiya S, Aronova M, Zhang G, Yuspa SH, Hamada H, Sakai Y, Morasso MI. Increased retinoic acid levels through ablation of Cyp26b1 determine the processes of embryonic skin barrier formation and peridermal development. J Cell Sci 2012; 125:1827-36. [PMID: 22366455 DOI: 10.1242/jcs.101550] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The process by which the periderm transitions to stratified epidermis with the establishment of the skin barrier is unknown. Understanding the cellular and molecular processes involved is crucial for the treatment of human pathologies, where abnormal skin development and barrier dysfunction are associated with hypothermia and perinatal dehydration. For the first time, we demonstrate that retinoic acid (RA) levels are important for periderm desquamation, embryonic skin differentiation and barrier formation. Although excess exogenous RA has been known to have teratogenic effects, little is known about the consequences of elevated endogenous retinoids in skin during embryogenesis. Absence of cytochrome P450, family 26, subfamily b, polypeptide 1 (Cyp26b1), a retinoic-acid-degrading enzyme, results in aberrant epidermal differentiation and filaggrin expression, defective cornified envelopes and skin barrier formation, in conjunction with peridermal retention. We show that these alterations are RA dependent because administration of exogenous RA in vivo and to organotypic skin cultures phenocopy Cyp26b1(-/-) skin abnormalities. Furthermore, utilizing the Flaky tail (Ft/Ft) mice, a mouse model for human ichthyosis, characterized by mutations in the filaggrin gene, we establish that proper differentiation and barrier formation is a prerequisite for periderm sloughing. These results are important in understanding pathologies associated with abnormal embryonic skin development and barrier dysfunction.
Collapse
Affiliation(s)
- Junko Okano
- Developmental Skin Biology Section, NIAMS, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|