1
|
Ulrichs H, Shekhar S. Regulation of actin dynamics by Twinfilin. Curr Opin Cell Biol 2025; 92:102459. [PMID: 39765045 PMCID: PMC11769735 DOI: 10.1016/j.ceb.2024.102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 01/28/2025]
Abstract
Twinfilin is an evolutionarily conserved actin-binding protein initially mischaracterized as a tyrosine kinase but later recognized as a key regulator of cellular actin dynamics. As a member of the ADF-H family, twinfilin binds both actin monomers and filaments. Its role in sequestering G-actin is well-established, but its effects on actin filaments have been debated. While early studies suggested twinfilin caps filament barbed ends, later research demonstrated its role in nucleotide-specific barbed-end depolymerization. Further, it was initially thought to be a processive depolymerase. Recent structural and single-molecule studies have however challenged this view, indicating that twinfilin binding events result in the removal of only one or two actin subunits from the barbed end. Additionally, twinfilin directly binds capping protein (CP) and facilitates uncapping of CP-bound barbed ends. Here, we summarize twinfilin's cellular and tissue-specific localization, and examine its evolving role in regulating cellular actin dynamics in light of its known biochemical functions.
Collapse
Affiliation(s)
- Heidi Ulrichs
- Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - Shashank Shekhar
- Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
2
|
Díez-Sainz E, Milagro FI, Aranaz P, Riezu-Boj JI, Batrow PL, Contu L, Gautier N, Amri EZ, Mothe-Satney I, Lorente-Cebrián S. Human miR-1 Stimulates Metabolic and Thermogenic-Related Genes in Adipocytes. Int J Mol Sci 2024; 26:276. [PMID: 39796132 PMCID: PMC11720367 DOI: 10.3390/ijms26010276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/03/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
MicroRNAs play a pivotal role in the regulation of adipose tissue function and have emerged as promising therapeutic candidates for the management of obesity and associated comorbidities. Among them, miR-1 could be a potential biomarker for metabolic diseases and contribute to metabolic homeostasis. However, thorough research is required to fully elucidate the impact of miR-1 on human adipocyte thermogenesis and metabolism. This study aimed to explore the effect of miR-1 on human adipocyte browning, a process whose activation has been linked to obesity protection and counteraction. Human multipotent adipose-derived stem cells, hMADS cells, were differentiated into white and brown-like adipocytes and transfected with miR-1 mimics for gene expression and western blotting analyses. miR-1 inhibited the expression of its previously validated target PTK9/TWF1 and modulated the expression profile of key genes involved in thermogenesis and adipocyte browning (increased UCP1 at mRNA and protein level, increased CPT1M, decreased HIF3A), adipocyte differentiation and metabolism (decreased PLIN1, FASN, RXRA, PPARG, FABP4, MAPKAPK2), as well as genes related to the cytoskeleton (decreased ACTB) and extracellular matrix (decreased COL1A1). These findings suggest that miR-1 can modulate the expression of adipocyte human genes associated with thermogenesis and metabolism, which could hold value for eventual therapeutic potential in obesity.
Collapse
Affiliation(s)
- Ester Díez-Sainz
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (E.D.-S.); (P.A.); (J.I.R.-B.)
| | - Fermín I. Milagro
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (E.D.-S.); (P.A.); (J.I.R.-B.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Paula Aranaz
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (E.D.-S.); (P.A.); (J.I.R.-B.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - José I. Riezu-Boj
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (E.D.-S.); (P.A.); (J.I.R.-B.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Pierre-Louis Batrow
- CNRS, Inserm, Institut de Biologie Valrose (iBV), Université Côte d’Azur, 06107 Nice, France; (P.-L.B.); (L.C.); (N.G.); (E.-Z.A.); (I.M.-S.)
| | - Laura Contu
- CNRS, Inserm, Institut de Biologie Valrose (iBV), Université Côte d’Azur, 06107 Nice, France; (P.-L.B.); (L.C.); (N.G.); (E.-Z.A.); (I.M.-S.)
| | - Nadine Gautier
- CNRS, Inserm, Institut de Biologie Valrose (iBV), Université Côte d’Azur, 06107 Nice, France; (P.-L.B.); (L.C.); (N.G.); (E.-Z.A.); (I.M.-S.)
| | - Ez-Zoubir Amri
- CNRS, Inserm, Institut de Biologie Valrose (iBV), Université Côte d’Azur, 06107 Nice, France; (P.-L.B.); (L.C.); (N.G.); (E.-Z.A.); (I.M.-S.)
| | - Isabelle Mothe-Satney
- CNRS, Inserm, Institut de Biologie Valrose (iBV), Université Côte d’Azur, 06107 Nice, France; (P.-L.B.); (L.C.); (N.G.); (E.-Z.A.); (I.M.-S.)
| | - Silvia Lorente-Cebrián
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Health and Sport Science, University of Zaragoza, 50009 Zaragoza, Spain;
- Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-Centro de Investigación y Tecnología Agroalimentaria (CITA), 50013 Zaragoza, Spain
- Aragón Health Research Institute (IIS-Aragon), 50009 Zaragoza, Spain
| |
Collapse
|
3
|
Rasool D, Jahani-Asl A. Master regulators of neurogenesis: the dynamic roles of Ephrin receptors across diverse cellular niches. Transl Psychiatry 2024; 14:462. [PMID: 39505843 PMCID: PMC11541728 DOI: 10.1038/s41398-024-03168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/20/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
The ephrin receptors (EphRs) are the largest family of receptor tyrosine kinases (RTKs) that are abundantly expressed in the developing brain and play important roles at different stages of neurogenesis ranging from neural stem cell (NSC) fate specification to neural migration, morphogenesis, and circuit assembly. Defects in EphR signalling have been associated with several pathologies including neurodevelopmental disorders (NDDs), intellectual disability (ID), and neurodegenerative diseases (NDs). Here, we review our current understanding of the complex and dynamic role of EphRs in the brain and discuss how deregulation of these receptors contributes to disease, highlighting their potential as valuable druggable targets.
Collapse
Affiliation(s)
- Dilan Rasool
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
| | - Arezu Jahani-Asl
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada.
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada.
- Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Blvd. West, Montréal, QC, H4A 3T2, Canada.
- Regenerative Medicine Program, and Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.
- Ottawa Institutes of System Biology, University of Ottawa, Health Sciences Campus, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
4
|
Fatehi Hassanabad A, Zarzycki AN, Patel VB, Fedak PWM. Current concepts in the epigenetic regulation of cardiac fibrosis. Cardiovasc Pathol 2024; 73:107673. [PMID: 38996851 DOI: 10.1016/j.carpath.2024.107673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024] Open
Abstract
Cardiac fibrosis is a significant driver of congestive heart failure, a syndrome that continues to affect a growing patient population globally. Cardiac fibrosis results from a constellation of complex processes at the transcription, receptor, and signaling axes levels. Various mediators and signaling cascades, such as the transformation growth factor-beta pathway, have been implicated in the pathophysiology of cardiac tissue fibrosis. Our understanding of these markers and pathways has improved in recent years as more advanced technologies and assays have been developed, allowing for better delineation of the crosstalk between specific factors. There is mounting evidence suggesting that epigenetic modulation plays a pivotal role in the progression of cardiac fibrosis. Transcriptional regulation of key pro- and antifibrotic pathways can accentuate or blunt the rate and extent of fibrosis at the tissue level. Exosomes, micro-RNAs, and long noncoding RNAs all belong to factors that can impact the epigenetic signature in cardiac fibrosis. Herein, we comprehensively review the latest literature about exosomes, their contents, and cardiac fibrosis. In doing so, we highlight the specific transcriptional factors with pro- or antifibrotic properties. We also assimilate the data supporting these mediators' potential utility as diagnostic or prognostic biomarkers. Finally, we offer insight into where further work can be done to fill existing gaps to translate preclinical findings better and improve clinical outcomes.
Collapse
Affiliation(s)
- Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anna N Zarzycki
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vaibhav B Patel
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
5
|
Ismaeel A, Peck BD, Montgomery MM, Burke BI, Goh J, Kang G, Franco AB, Xia Q, Goljanek-Whysall K, McDonagh B, McLendon JM, Koopmans PJ, Jacko D, Schaaf K, Bloch W, Gehlert S, Wen Y, Murach KA, Peterson CA, Boudreau RL, Fisher-Wellman KH, McCarthy JJ. microRNA-1 Regulates Metabolic Flexibility in Skeletal Muscle via Pyruvate Metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607377. [PMID: 39149347 PMCID: PMC11326265 DOI: 10.1101/2024.08.09.607377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
MicroRNA-1 (miR-1) is the most abundant miRNA in adult skeletal muscle. To determine the function of miR-1 in adult skeletal muscle, we generated an inducible, skeletal muscle-specific miR-1 knockout (KO) mouse. Integration of RNA-sequencing (RNA-seq) data from miR-1 KO muscle with Argonaute 2 enhanced crosslinking and immunoprecipitation sequencing (AGO2 eCLIP-seq) from human skeletal muscle identified miR-1 target genes involved with glycolysis and pyruvate metabolism. The loss of miR-1 in skeletal muscle induced cancer-like metabolic reprogramming, as shown by higher pyruvate kinase muscle isozyme M2 (PKM2) protein levels, which promoted glycolysis. Comprehensive bioenergetic and metabolic phenotyping combined with skeletal muscle proteomics and metabolomics further demonstrated that miR-1 KO induced metabolic inflexibility as a result of pyruvate oxidation resistance. While the genetic loss of miR-1 reduced endurance exercise performance in mice and in C. elegans, the physiological down-regulation of miR-1 expression in response to a hypertrophic stimulus in both humans and mice causes a similar metabolic reprogramming that supports muscle cell growth. Taken together, these data identify a novel post-translational mechanism of adult skeletal muscle metabolism regulation mediated by miR-1.
Collapse
Affiliation(s)
- Ahmed Ismaeel
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Bailey D Peck
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - McLane M Montgomery
- Department of Physiology, East Carolina University, Brody School of Medicine, Greenville, NC, USA
| | - Benjamin I Burke
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Jensen Goh
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Gyumin Kang
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Abigail B Franco
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Mass Spectrometry and Proteomics Core, University of Kentucky, Lexington, KY, USA
| | - Qin Xia
- Discipline of Physiology, School of Medicine, College of Medicine, Nursing, and Health Sciences, University of Galway, Galway, Ireland
| | - Katarzyna Goljanek-Whysall
- Discipline of Physiology, School of Medicine, College of Medicine, Nursing, and Health Sciences, University of Galway, Galway, Ireland
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, College of Medicine, Nursing, and Health Sciences, University of Galway, Galway, Ireland
| | - Jared M McLendon
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Pieter J Koopmans
- Department Health, Human Performance, & Recreation, University of Arkansas, Fayetteville, AR, USA
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, USA
| | - Daniel Jacko
- Institute of Cardiovascular Research and Sports Medicine, German Sport University, Cologne, Germany
- Olympic Base Center, North Rhine-Westphalia/Rhineland, Cologne, Germany
| | - Kirill Schaaf
- Institute of Cardiovascular Research and Sports Medicine, German Sport University, Cologne, Germany
- Olympic Base Center, North Rhine-Westphalia/Rhineland, Cologne, Germany
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sports Medicine, German Sport University, Cologne, Germany
| | - Sebastian Gehlert
- Institute of Cardiovascular Research and Sports Medicine, German Sport University, Cologne, Germany
- Department for the Biosciences of Sports, Institute of Sports Science, University of Hildesheim, Hildesheim, Germany
| | - Yuan Wen
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Kevin A Murach
- Department Health, Human Performance, & Recreation, University of Arkansas, Fayetteville, AR, USA
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, USA
| | - Charlotte A Peterson
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Ryan L Boudreau
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kelsey H Fisher-Wellman
- Department of Physiology, East Carolina University, Brody School of Medicine, Greenville, NC, USA
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
6
|
DeGroat W, Abdelhalim H, Patel K, Mendhe D, Zeeshan S, Ahmed Z. Discovering biomarkers associated and predicting cardiovascular disease with high accuracy using a novel nexus of machine learning techniques for precision medicine. Sci Rep 2024; 14:1. [PMID: 38167627 PMCID: PMC10762256 DOI: 10.1038/s41598-023-50600-8] [Citation(s) in RCA: 148] [Impact Index Per Article: 148.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
Personalized interventions are deemed vital given the intricate characteristics, advancement, inherent genetic composition, and diversity of cardiovascular diseases (CVDs). The appropriate utilization of artificial intelligence (AI) and machine learning (ML) methodologies can yield novel understandings of CVDs, enabling improved personalized treatments through predictive analysis and deep phenotyping. In this study, we proposed and employed a novel approach combining traditional statistics and a nexus of cutting-edge AI/ML techniques to identify significant biomarkers for our predictive engine by analyzing the complete transcriptome of CVD patients. After robust gene expression data pre-processing, we utilized three statistical tests (Pearson correlation, Chi-square test, and ANOVA) to assess the differences in transcriptomic expression and clinical characteristics between healthy individuals and CVD patients. Next, the recursive feature elimination classifier assigned rankings to transcriptomic features based on their relation to the case-control variable. The top ten percent of commonly observed significant biomarkers were evaluated using four unique ML classifiers (Random Forest, Support Vector Machine, Xtreme Gradient Boosting Decision Trees, and k-Nearest Neighbors). After optimizing hyperparameters, the ensembled models, which were implemented using a soft voting classifier, accurately differentiated between patients and healthy individuals. We have uncovered 18 transcriptomic biomarkers that are highly significant in the CVD population that were used to predict disease with up to 96% accuracy. Additionally, we cross-validated our results with clinical records collected from patients in our cohort. The identified biomarkers served as potential indicators for early detection of CVDs. With its successful implementation, our newly developed predictive engine provides a valuable framework for identifying patients with CVDs based on their biomarker profiles.
Collapse
Affiliation(s)
- William DeGroat
- Health Care Policy and Aging Research, Rutgers Institute for Health, Rutgers University, 112 Paterson St, New Brunswick, NJ, 08901, USA
| | - Habiba Abdelhalim
- Health Care Policy and Aging Research, Rutgers Institute for Health, Rutgers University, 112 Paterson St, New Brunswick, NJ, 08901, USA
| | - Kush Patel
- Health Care Policy and Aging Research, Rutgers Institute for Health, Rutgers University, 112 Paterson St, New Brunswick, NJ, 08901, USA
| | - Dinesh Mendhe
- Health Care Policy and Aging Research, Rutgers Institute for Health, Rutgers University, 112 Paterson St, New Brunswick, NJ, 08901, USA
| | - Saman Zeeshan
- Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany St, New Brunswick, NJ, USA
| | - Zeeshan Ahmed
- Health Care Policy and Aging Research, Rutgers Institute for Health, Rutgers University, 112 Paterson St, New Brunswick, NJ, 08901, USA.
- Department of Medicine/Cardiovascular Disease and Hypertension, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, 125 Paterson St, New Brunswick, NJ, USA.
| |
Collapse
|
7
|
Cai S, Chang J, Su M, Wei Y, Sun H, Chen C, Yiu KH. miR-455-5p promotes pathological cardiac remodeling via suppression of PRMT1-mediated Notch signaling pathway. Cell Mol Life Sci 2023; 80:359. [PMID: 37951845 PMCID: PMC10640488 DOI: 10.1007/s00018-023-04987-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/05/2023] [Accepted: 09/27/2023] [Indexed: 11/14/2023]
Abstract
Pathological cardiac remodeling plays an essential role in the progression of cardiovascular diseases, and numerous microRNAs have been reported to participate in pathological cardiac remodeling. However, the potential role of microRNA-455-5p (miR-455-5p) in this process remains to be elucidated. In the present study, we focused on clarifying the function and searching the direct target of miR-455-5p, as well as exploring its underlying mechanisms in pathological cardiac remodeling. We found that overexpression of miR-455-5p by transfection of miR-455-5p mimic in vitro or tail vain injection of miR-455-5p agomir in vivo provoked cardiac remodeling, whereas genetic knockdown of miR-455-5p attenuated the isoprenaline-induced cardiac remodeling. Besides, miR-455-5p directly targeted to 3'-untranslated region of protein arginine methyltransferase 1 (PRMT1) and subsequently downregulated PRMT1 level. Furthermore, we found that PRMT1 protected against cardiac hypertrophy and fibrosis in vitro. Mechanistically, miR-455-5p induced cardiac remodeling by downregulating PRMT1-induced asymmetric di-methylation on R1748, R1750, R1751 and R1752 of Notch1, resulting in suppression of recruitment of Presenilin, Notch1 cleavage, NICD releasing and Notch signaling pathway. Finally, circulating miR-455-5p was positively correlated with parameters of left ventricular wall thickening. Taken together, miR-455-5p plays a provocative role in cardiac remodeling via inactivation of the PRMT1-mediated Notch signaling pathway, suggesting miR-455-5p/PRMT1/Notch1 signaling axis as potential therapeutic targets for pathological cardiac remodeling.
Collapse
Affiliation(s)
- Sidong Cai
- Division of Cardiology, Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Junlei Chang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Mengqi Su
- Division of Cardiology, Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yinxia Wei
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Haoran Sun
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Cong Chen
- Division of Cardiology, Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| | - Kai-Hang Yiu
- Division of Cardiology, Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
8
|
Ulrichs H, Gaska I, Shekhar S. Multicomponent regulation of actin barbed end assembly by twinfilin, formin and capping protein. Nat Commun 2023; 14:3981. [PMID: 37414761 PMCID: PMC10326068 DOI: 10.1038/s41467-023-39655-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/22/2023] [Indexed: 07/08/2023] Open
Abstract
Cells control actin assembly by regulating reactions at actin filament barbed ends. Formins accelerate elongation, capping protein (CP) arrests growth and twinfilin promotes depolymerization at barbed ends. How these distinct activities get integrated within a shared cytoplasm is unclear. Using microfluidics-assisted TIRF microscopy, we find that formin, CP and twinfilin can simultaneously bind filament barbed ends. Three‑color, single-molecule experiments reveal that twinfilin cannot bind barbed ends occupied by formin unless CP is present. This trimeric complex is short-lived (~1 s), and results in dissociation of CP by twinfilin, promoting formin-based elongation. Thus, the depolymerase twinfilin acts as a pro-formin pro-polymerization factor when both CP and formin are present. While one twinfilin binding event is sufficient to displace CP from the barbed-end trimeric complex, ~31 twinfilin binding events are required to remove CP from a CP-capped barbed end. Our findings establish a paradigm where polymerases, depolymerases and cappers together tune actin assembly.
Collapse
Affiliation(s)
- Heidi Ulrichs
- Department of Physics, Emory University, Atlanta, GA, 30322, USA
- Department of Cell Biology, Emory University, Atlanta, GA, 30322, USA
| | - Ignas Gaska
- Department of Physics, Emory University, Atlanta, GA, 30322, USA
- Department of Cell Biology, Emory University, Atlanta, GA, 30322, USA
| | - Shashank Shekhar
- Department of Physics, Emory University, Atlanta, GA, 30322, USA.
- Department of Cell Biology, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
9
|
Guo L, Cai Y, Wang B, Zhang F, Zhao H, Liu L, Tao L. Characterization of the circulating transcriptome expression profile and identification of novel miRNA biomarkers in hypertrophic cardiomyopathy. Eur J Med Res 2023; 28:205. [PMID: 37391825 PMCID: PMC10314611 DOI: 10.1186/s40001-023-01159-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/07/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM), one of the most common genetic cardiovascular diseases, but cannot be explained by single genetic factors. Circulating microRNAs (miRNAs) are stable and highly conserved. Inflammation and immune response participate in HCM pathophysiology, but whether the miRNA profile changes correspondingly in human peripheral blood mononuclear cells (PBMCs) with HCM is unclear. Herein, we aimed to investigate the circulating non-coding RNA (ncRNA) expression profile in PBMCs and identify potential miRNAs for HCM biomarkers. METHODS A Custom CeRNA Human Gene Expression Microarray was used to identify differentially expressed (DE) mRNAs, miRNAs, and ncRNAs (including circRNA and lncRNA) in HCM PBMCs. Weighted correlation network analysis (WGCNA) was used to identify HCM-related miRNA and mRNA modules. The mRNAs and miRNAs from the key modules were used to construct a co-expression network. Three separate machine learning algorithms (random forest, support vector machine, and logistic regression) were applied to identify potential biomarkers based on miRNAs from the HCM co-expression network. Gene Expression Omnibus (GEO) database (GSE188324) and experimental samples were used for further verification. Gene set enrichment analysis (GSEA) and competing endogenous RNA (ceRNA) network was used to determine the potential functions of the selected miRNAs in HCM. RESULTS We identified 1194 DE-mRNAs, 232 DE-miRNAs and 7696 DE-ncRNAs in HCM samples compared with normal controls from the microarray data sets. WGCNA identified key miRNA modules and mRNA modules evidently associated with HCM. We constructed a miRNA‒mRNA co-expression network based on these modules. A total of three hub miRNAs (miR-924, miR-98 and miR-1) were identified by random forest, and the areas under the receiver operator characteristic curves of miR-924, miR-98 and miR-1 were 0.829, 0.866, and 0.866, respectively. CONCLUSIONS We elucidated the transcriptome expression profile in PBMCs and identified three hub miRNAs (miR-924, miR-98 and miR-1) as potential biomarkers for HCM detection.
Collapse
Affiliation(s)
- Lanyan Guo
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaan Xi, China
| | - Yue Cai
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaan Xi, China
| | - Bo Wang
- Department of Ultrasound, Xijing Hospital, the Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaan Xi, China
| | - Fuyang Zhang
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaan Xi, China
| | - Hang Zhao
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaan Xi, China
| | - Liwen Liu
- Department of Ultrasound, Xijing Hospital, the Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaan Xi, China.
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, Shaan Xi, China.
| |
Collapse
|
10
|
Ulrichs H, Gaska I, Shekhar S. Multicomponent regulation of actin barbed end assembly by twinfilin, formin and capping protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538010. [PMID: 37163095 PMCID: PMC10168238 DOI: 10.1101/2023.04.24.538010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Living cells assemble their actin networks by regulating reactions at the barbed end of actin filaments. Formins accelerate elongation, capping protein (CP) arrests growth and twinfilin promotes depolymerization at barbed ends. How cells integrate these disparate activities within a shared cytoplasm to produce diverse actin networks, each with distinct morphologies and finely tuned assembly kinetics, is unclear. We used microfluidics-assisted TIRF microscopy to investigate how formin mDia1, CP and twinfilin influence the elongation of actin filament barbed ends. We discovered that the three proteins can simultaneously bind a barbed end in a multiprotein complex. Three-color single molecule experiments showed that twinfilin cannot bind actin filament ends occupied by formin mDia1 unless CP is present. The trimeric complex is short-lived (∼1s) and results in rapid dissociation of CP by twinfilin causing resumption of rapid formin- based elongation. Thus, the depolymerase twinfilin acts as a pro-formin factor that promotes polymerization when both CP and formin are present. While a single twinfilin binding event is sufficient to displace CP from the trimeric complex, it takes about 30 independent twinfilin binding events to remove capping protein from CP-bound barbed end. Our findings establish a new paradigm in which polymerases, depolymerases and cappers work in concert to tune cellular actin assembly.
Collapse
Affiliation(s)
- Heidi Ulrichs
- Department of Physics, Emory University, Atlanta, GA 30322
- Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - Ignas Gaska
- Department of Physics, Emory University, Atlanta, GA 30322
- Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - Shashank Shekhar
- Department of Physics, Emory University, Atlanta, GA 30322
- Department of Cell Biology, Emory University, Atlanta, GA 30322
| |
Collapse
|
11
|
Reiss AB, Ahmed S, Johnson M, Saeedullah U, De Leon J. Exosomes in Cardiovascular Disease: From Mechanism to Therapeutic Target. Metabolites 2023; 13:479. [PMID: 37110138 PMCID: PMC10142472 DOI: 10.3390/metabo13040479] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality globally. In recent decades, clinical research has made significant advances, resulting in improved survival and recovery rates for patients with CVD. Despite this progress, there is substantial residual CVD risk and an unmet need for better treatment. The complex and multifaceted pathophysiological mechanisms underlying the development of CVD pose a challenge for researchers seeking effective therapeutic interventions. Consequently, exosomes have emerged as a new focus for CVD research because their role as intercellular communicators gives them the potential to act as noninvasive diagnostic biomarkers and therapeutic nanocarriers. In the heart and vasculature, cell types such as cardiomyocytes, endothelial cells, vascular smooth muscle, cardiac fibroblasts, inflammatory cells, and resident stem cells are involved in cardiac homeostasis via the release of exosomes. Exosomes encapsulate cell-type specific miRNAs, and this miRNA content fluctuates in response to the pathophysiological setting of the heart, indicating that the pathways affected by these differentially expressed miRNAs may be targets for new treatments. This review discusses a number of miRNAs and the evidence that supports their clinical relevance in CVD. The latest technologies in applying exosomal vesicles as cargo delivery vehicles for gene therapy, tissue regeneration, and cell repair are described.
Collapse
Affiliation(s)
- Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | | | | | | | | |
Collapse
|
12
|
Mohan IK, Baba KSSS, Iyyapu R, Thirumalasetty S, Satish OS. Advances in congestive heart failure biomarkers. Adv Clin Chem 2022; 112:205-248. [PMID: 36642484 DOI: 10.1016/bs.acc.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Congestive heart failure (CHF) is the leading cause of morbidity and mortality in the elderly worldwide. Although many biomarkers associated with in heart failure, these are generally prognostic and identify patients with moderate and severe disease. Unfortunately, the role of biomarkers in decision making for early and advanced heart failure remains largely unexplored. Previous studies suggest the natriuretic peptides have the potential to improve the diagnosis of heart failure, but they still have significant limitations related to cut-off values. Although some promising cardiac biomarkers have emerged, comprehensive data from large cohort studies is lacking. The utility of multiple biomarkers that reflect various pathophysiologic pathways are increasingly being explored in heart failure risk stratification and to diagnose disease conditions promptly and accurately. MicroRNAs serve as mediators and/or regulators of renin-angiotensin-induced cardiac remodeling by directly targeting enzymes, receptors and signaling molecules. The role of miRNA in HF diagnosis is a promising area of research and further exploration may offer both diagnostic and prognostic applications and phenotype-specific targets. In this review, we provide insight into the classification of different biochemical and molecular markers associated with CHF, examine clinical usefulness in CHF and highlight the most clinically relevant.
Collapse
Affiliation(s)
| | - K S S Sai Baba
- Nizam's Institute of Medical Sciences, Panjagutta, Hyderabad, Telangana, India
| | - Rohit Iyyapu
- Katuri Medical College & Hospital, Guntur, Andhra Pradesh, India
| | | | - O Sai Satish
- Nizam's Institute of Medical Sciences, Panjagutta, Hyderabad, Telangana, India
| |
Collapse
|
13
|
Zhang S, Li R, Ma Y, Yan Y, Ma M, Zhang K, Zhou Y, Li L, Pan L, Ying H, Xue Y. Thyroid-stimulating hormone regulates cardiac function through modulating HCN2 via targeting microRNA-1a. FASEB J 2022; 36:e22561. [PMID: 36125044 DOI: 10.1096/fj.202200574r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/11/2022] [Accepted: 09/09/2022] [Indexed: 11/11/2022]
Abstract
Previous studies have found microRNA-1 (miR-1) and hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) may be involved in the pathogenesis of thyroid hormone (TH) induced cardiac hypertrophy. However, little is known about the role of miR-1 and HCN2 in thyroid stimulation hormone (TSH)-induced cardiac dysfunction. In order to investigate the molecular mechanisms of TSH induced cardiac dysfunction and the role of miR-1/HCN2 in that process, we evaluated the expression of miR-1a/HCN2 in the ventricular myocardium of hypothyroid mice and in TSH-stimulated H9c2 cardiomyocytes. Our data revealed that hypothyroidism mice had smaller hearts, ventricular muscle atrophy, and cardiac contractile dysfunction compared with euthyroid controls. The upregulation of miR-1a and downregulation of HCN2 were found in ventricular myocardium of hypothyroid mice and TSH-stimulated H9c2 cardiomyocytes, indicating that miR-1a and HCN2 may be involved in TSH-induced cardiac dysfunction. We also found that the regulation of miR-1a and HCN2 expression and HCN2 channel activity by TSH requires TSHR, while the regulation of HCN2 expression and HCN2 channel function by TSH requires miR-1a. Thus, our data revealed the potential mechanism of TSH-induced cardiac dysfunction and might shed new light on the pathological role of miR-1a/HCN2 in hypothyroid heart disease.
Collapse
Affiliation(s)
- Shengjie Zhang
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.,CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ran Li
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yiruo Ma
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ying Yan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mei Ma
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Keqin Zhang
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yun Zhou
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ling Li
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lingling Pan
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao Ying
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ying Xue
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
14
|
Chen MY, Meng XF, Han YP, Yan JL, Xiao C, Qian LB. Profile of crosstalk between glucose and lipid metabolic disturbance and diabetic cardiomyopathy: Inflammation and oxidative stress. Front Endocrinol (Lausanne) 2022; 13:983713. [PMID: 36187088 PMCID: PMC9521548 DOI: 10.3389/fendo.2022.983713] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, the risk, such as hypertension, obesity and diabetes mellitus, of cardiovascular diseases has been increasing explosively with the development of living conditions and the expansion of social psychological pressure. The disturbance of glucose and lipid metabolism contributes to both collapse of myocardial structure and cardiac dysfunction, which ultimately leads to diabetic cardiomyopathy. The pathogenesis of diabetic cardiomyopathy is multifactorial, including inflammatory cascade activation, oxidative/nitrative stress, and the following impaired Ca2+ handling induced by insulin resistance/hyperinsulinemia, hyperglycemia, hyperlipidemia in diabetes. Some key alterations of cellular signaling network, such as translocation of CD36 to sarcolemma, activation of NLRP3 inflammasome, up-regulation of AGE/RAGE system, and disequilibrium of micro-RNA, mediate diabetic oxidative stress/inflammation related myocardial remodeling and ventricular dysfunction in the context of glucose and lipid metabolic disturbance. Here, we summarized the detailed oxidative stress/inflammation network by which the abnormality of glucose and lipid metabolism facilitates diabetic cardiomyopathy.
Collapse
Affiliation(s)
| | | | | | | | - Chi Xiao
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Ling-Bo Qian
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
15
|
Gan L, Liu D, Xie D, Bond Lau W, Liu J, Christopher TA, Lopez B, Liu L, Hu H, Yao P, He Y, Gao E, Koch WJ, Zhao J, Ma XL, Cao Y, Wang Y. Ischemic Heart-Derived Small Extracellular Vesicles Impair Adipocyte Function. Circ Res 2022; 130:48-66. [PMID: 34763521 DOI: 10.1161/circresaha.121.320157] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Patients with acute myocardial infarction suffer systemic metabolic dysfunction via incompletely understood mechanisms. Adipocytes play critical role in metabolic homeostasis. The impact of acute myocardial infarction upon adipocyte function is unclear. Small extracellular vesicles (sEVs) critically contribute to organ-organ communication. Whether and how small extracellular vesicle mediate post-MI cardiomyocyte/adipocyte communication remain unknown. METHODS Plasma sEVs were isolated from sham control (Pla-sEVSham) or 3 hours after myocardial ischemia/reperfusion (Pla-sEVMI/R) and incubated with adipocytes for 24 hours. Compared with Pla-sEVSham, Pla-sEVMI/R significantly altered expression of genes known to be important in adipocyte function, including a well-known metabolic regulatory/cardioprotective adipokine, APN (adiponectin). Pla-sEVMI/R activated 2 (PERK-CHOP and ATF6 [transcription factor 6]-EDEM [ER degradation enhancing alpha-mannosidase like protein 1] pathways) of the 3 endoplasmic reticulum (ER) stress pathways in adipocytes. These pathological alterations were also observed in adipocytes treated with sEVs isolated from adult cardiomyocytes subjected to in vivo myocardial ischemia/reperfusion (MI/R) (Myo-sEVMI/R). Bioinformatic/RT-qPCR analysis demonstrates that the members of miR-23-27-24 cluster are significantly increased in Pla-sEVMI/R, Myo-sEVMI/R, and adipose tissue of MI/R animals. Administration of cardiomyocyte-specific miR-23-27-24 sponges abolished adipocyte miR-23-27-24 elevation in MI/R animals, supporting the cardiomyocyte origin of adipocyte miR-23-27-24 cluster. In similar fashion to Myo-sEVMI/R, a miR-27a mimic activated PERK-CHOP and ATF6-EDEM-mediated ER stress. Conversely, a miR-27a inhibitor significantly attenuated Myo-sEVMI/R-induced ER stress and restored APN production. RESULTS An unbiased approach identified EDEM3 (ER degradation enhancing alpha-mannosidase like protein 3) as a novel downstream target of miR-27a. Adipocyte EDEM3 deficiency phenocopied multiple pathological alterations caused by Myo-sEVMI/R, whereas EDEM3 overexpression attenuated Myo-sEVMI/R-resulted ER stress. Finally, administration of GW4869 or cardiomyocyte-specific miR-23-27-24 cluster sponges attenuated adipocyte ER stress, improved adipocyte endocrine function, and restored plasma APN levels in MI/R animals. CONCLUSIONS We demonstrate for the first time that MI/R causes significant adipocyte ER stress and endocrine dysfunction by releasing miR-23-27-24 cluster-enriched small extracellular vesicle. Targeting small extracellular vesicle-mediated cardiomyocyte-adipocyte pathological communication may be of therapeutic potential to prevent metabolic dysfunction after MI/R.
Collapse
Affiliation(s)
- Lu Gan
- Laboratory of Emergency Medicine, Department of Emergency Medicine and National Clinical Research Center for Geriatrics, West China Hospital (L.G., L.L., H.H., P.Y., Y.H., Y.C.), Sichuan University, Chengdu, China
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (L.G., D.L., D.X., W.B.L., J.L., T.A.C., B.L., P.Y., J.Z., X.-L.M., Y.W.)
| | - Demin Liu
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (L.G., D.L., D.X., W.B.L., J.L., T.A.C., B.L., P.Y., J.Z., X.-L.M., Y.W.)
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China (D.L.)
| | - Dina Xie
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (L.G., D.L., D.X., W.B.L., J.L., T.A.C., B.L., P.Y., J.Z., X.-L.M., Y.W.)
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (L.G., D.L., D.X., W.B.L., J.L., T.A.C., B.L., P.Y., J.Z., X.-L.M., Y.W.)
| | - Jing Liu
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (L.G., D.L., D.X., W.B.L., J.L., T.A.C., B.L., P.Y., J.Z., X.-L.M., Y.W.)
| | - Theodore A Christopher
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (L.G., D.L., D.X., W.B.L., J.L., T.A.C., B.L., P.Y., J.Z., X.-L.M., Y.W.)
| | - Bernard Lopez
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (L.G., D.L., D.X., W.B.L., J.L., T.A.C., B.L., P.Y., J.Z., X.-L.M., Y.W.)
| | - Lian Liu
- Laboratory of Emergency Medicine, Department of Emergency Medicine and National Clinical Research Center for Geriatrics, West China Hospital (L.G., L.L., H.H., P.Y., Y.H., Y.C.), Sichuan University, Chengdu, China
| | - Hang Hu
- Laboratory of Emergency Medicine, Department of Emergency Medicine and National Clinical Research Center for Geriatrics, West China Hospital (L.G., L.L., H.H., P.Y., Y.H., Y.C.), Sichuan University, Chengdu, China
| | - Peng Yao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (L.G., D.L., D.X., W.B.L., J.L., T.A.C., B.L., P.Y., J.Z., X.-L.M., Y.W.)
| | - Yarong He
- Laboratory of Emergency Medicine, Department of Emergency Medicine and National Clinical Research Center for Geriatrics, West China Hospital (L.G., L.L., H.H., P.Y., Y.H., Y.C.), Sichuan University, Chengdu, China
| | - Erhe Gao
- Laboratory of Emergency Medicine, Department of Emergency Medicine and National Clinical Research Center for Geriatrics, West China Hospital (L.G., L.L., H.H., P.Y., Y.H., Y.C.), Sichuan University, Chengdu, China
- Center for Translational Medicine, Temple University, Philadelphia, PA (E.G., W.J.K.)
| | - Walter J Koch
- Center for Translational Medicine, Temple University, Philadelphia, PA (E.G., W.J.K.)
| | - Jianli Zhao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (L.G., D.L., D.X., W.B.L., J.L., T.A.C., B.L., P.Y., J.Z., X.-L.M., Y.W.)
| | - Xin-Liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (L.G., D.L., D.X., W.B.L., J.L., T.A.C., B.L., P.Y., J.Z., X.-L.M., Y.W.)
| | - Yu Cao
- Disaster Medical Center (Y.C.), Sichuan University, Chengdu, China
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (L.G., D.L., D.X., W.B.L., J.L., T.A.C., B.L., P.Y., J.Z., X.-L.M., Y.W.)
| |
Collapse
|
16
|
Pathophysiology of heart failure and an overview of therapies. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
17
|
Role of miR-653 and miR-29c in downregulation of CYP1A2 expression in hepatocellular carcinoma. Pharmacol Rep 2021; 74:148-158. [PMID: 34780054 DOI: 10.1007/s43440-021-00338-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a major contributor to the worldwide cancer burden. Recent studies on HCC have demonstrated dramatic alterations in expression of several cytochrome P450 (CYP) family members that play a crucial role in biotransformation of many drugs and other xenobiotics; however, the mechanisms responsible for their deregulation remain unclear. METHODS We investigated a potential involvement of miRNAs in downregulation of expression of CYPs observed in HCC tumors. We compared miRNA expression profiles (TaqMan Array Human MicroRNA v3.0 TLDA qPCR) between HCC human patient tumors with strong (CYP-) and weak/no (CYP+) downregulation of drug-metabolizing CYPs. The role of significantly deregulated miRNAs in modulation of expression of the CYPs and associated xenobiotic receptors was then investigated in human liver HepaRG cells transfected with relevant miRNA mimics or inhibitors. RESULTS We identified five differentially expressed miRNAs in CYP- versus CYP+ tumors, namely miR-29c, miR-125b1, miR-505, miR-653 and miR-675. The two most-upregulated miRNAs found in CYP- tumor samples, miR-29c and miR-653, were found to act as efficient suppressors of CYP1A2 or AHR expression. CONCLUSIONS Our results revealed a novel role of miR-653 and miR-29c in regulation of expresion of CYPs involved in crucial biotransformation processes in liver, which are often deregulated during liver cancer progression.
Collapse
|
18
|
Alteration of twinfilin1 expression underlies opioid withdrawal-induced remodeling of actin cytoskeleton at synapses and formation of aversive memory. Mol Psychiatry 2021; 26:6218-6236. [PMID: 33963280 DOI: 10.1038/s41380-021-01111-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/26/2021] [Accepted: 04/09/2021] [Indexed: 11/08/2022]
Abstract
Exposure to drugs of abuse induces alterations of dendritic spine morphology and density that has been proposed to be a cellular basis of long-lasting addictive memory and heavily depend on remodeling of its underlying actin cytoskeleton by the actin cytoskeleton regulators. However, the actin cytoskeleton regulators involved and the specific mechanisms whereby drugs of abuse alter their expression or function are largely unknown. Twinfilin (Twf1) is a highly conserved actin-depolymerizing factor that regulates actin dynamics in organisms from yeast to mammals. Despite abundant expression of Twf1 in mammalian brain, little is known about its importance for brain functions such as experience-dependent synaptic and behavioral plasticity. Here we show that conditioned morphine withdrawal (CMW)-induced synaptic structure and behavior plasticity depends on downregulation of Twf1 in the amygdala of rats. Genetically manipulating Twf1 expression in the amygdala bidirectionally regulates CMW-induced changes in actin polymerization, spine density and behavior. We further demonstrate that downregulation of Twf1 is due to upregulation of miR101a expression via a previously unrecognized mechanism involving CMW-induced increases in miR101a nuclear processing via phosphorylation of MeCP2 at Ser421. Our findings establish the importance of Twf1 in regulating opioid-induced synaptic and behavioral plasticity and demonstrate its value as a potential therapeutic target for the treatment of opioid addiction.
Collapse
|
19
|
Hanousková B, Vávrová G, Ambrož M, Boušová I, Karlsen TA, Skálová L, Matoušková P. MicroRNAs mediated regulation of glutathione peroxidase 7 expression and its changes during adipogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194734. [PMID: 34339889 DOI: 10.1016/j.bbagrm.2021.194734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 12/19/2022]
Abstract
Glutathione peroxidase 7 (GPx7) acts as an intracellular stress sensor/transmitter and plays an important role in adipocyte differentiation and the prevention of obesity related pathologies. For this reason, finding the regulatory mechanisms that control GPx7 expression is of great importance. As microRNAs (miRNAs) could participate in the regulation of GPx7 expression, we studied the inhibition of GPx7 expression by four selected miRNAs with relation to obesity and adipogenesis. The effect of the transfection of selected miRNAs mimics on GPx7 expression was tested in three cell models (HEK293, SW480, AT-MSC). The interaction of selected miRNAs with the 3'UTR of GPx7 was followed up on using a luciferase gene reporter assay. In addition, the levels of GPx7 and selected miRNAs in adipose tissue mesenchymal stem cells (AT-MSC) and mature adipocytes from four human donors were compared, with the changes in these levels during adipogenesis analyzed. Our results show for the first time that miR-137 and miR-29b bind to the 3'UTR region of GPx7 and inhibit the expression of this enzyme at the mRNA and protein level in all the human cells tested. However, no negative correlation between miR-137 nor miR-29b level and GPx7 was observed during adipogenesis. Despite the confirmed inhibition of GPx7 expression by miR-137 and miR-29b, the action of these two molecules in adipogenesis and mature adipocytes must be accompanied by other regulators.
Collapse
Affiliation(s)
- Barbora Hanousková
- Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences, Charles University, Hradec Králové, Czech Republic; Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Gabriela Vávrová
- Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences, Charles University, Hradec Králové, Czech Republic
| | - Martin Ambrož
- Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences, Charles University, Hradec Králové, Czech Republic
| | - Iva Boušová
- Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences, Charles University, Hradec Králové, Czech Republic
| | - Tommy A Karlsen
- Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Lenka Skálová
- Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences, Charles University, Hradec Králové, Czech Republic
| | - Petra Matoušková
- Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences, Charles University, Hradec Králové, Czech Republic.
| |
Collapse
|
20
|
Gholaminejad A, Zare N, Dana N, Shafie D, Mani A, Javanmard SH. A meta-analysis of microRNA expression profiling studies in heart failure. Heart Fail Rev 2021; 26:997-1021. [PMID: 33443726 DOI: 10.1007/s10741-020-10071-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 12/20/2022]
Abstract
Heart failure (HF) is a major consequence of many cardiovascular diseases with high rate of morbidity and mortality. Early diagnosis and prevention are hampered by the lack of informative biomarkers. The aim of this study was to perform a meta-analysis of the miRNA expression profiling studies in HF to identify novel candidate biomarkers or/and therapeutic targets. A comprehensive literature search of the PubMed for miRNA expression studies related to HF was carried out. The vote counting and robust rank aggregation meta-analysis methods were used to identify significant meta-signatures of HF-miRs. The targets of HF-miRs were identified, and network construction and gene set enrichment analysis (GSEA) were performed to identify the genes and cognitive pathways most affected by the dysregulation of the miRNAs. The literature search identified forty-five miRNA expression studies related to CHF. Shared meta-signature was identified for 3 up-regulated (miR-21, miR-214, and miR-27b) and 13 down-regulated (miR-133a, miR-29a, miR-29b, miR-451, miR-185, miR-133b, miR-30e, miR-30b, miR-1, miR-150, miR-486, miR-149, and miR-16-5p) miRNAs. Network properties showed miR-29a, miR-21, miR-29b, miR-1, miR-16, miR-133a, and miR-133b have the most degree centrality. GESA identified functionally related sets of genes in signaling and community pathways in HF that are the targets of HF-miRs. The miRNA expression meta-analysis identified sixteen highly significant HF-miRs that are differentially expressed in HF. Further validation in large patient cohorts is required to confirm the significance of these miRs as HF biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Alieh Gholaminejad
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Zare
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical, Isfahan, Iran
| | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical, Isfahan, Iran
| | - Davood Shafie
- Heart Failure Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arya Mani
- Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical, Isfahan, Iran.
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
21
|
The Impact of microRNAs in Renin-Angiotensin-System-Induced Cardiac Remodelling. Int J Mol Sci 2021; 22:ijms22094762. [PMID: 33946230 PMCID: PMC8124994 DOI: 10.3390/ijms22094762] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Current knowledge on the renin-angiotensin system (RAS) indicates its central role in the pathogenesis of cardiovascular remodelling via both hemodynamic alterations and direct growth and the proliferation effects of angiotensin II or aldosterone resulting in the hypertrophy of cardiomyocytes, the proliferation of fibroblasts, and inflammatory immune cell activation. The noncoding regulatory microRNAs has recently emerged as a completely novel approach to the study of the RAS. A growing number of microRNAs serve as mediators and/or regulators of RAS-induced cardiac remodelling by directly targeting RAS enzymes, receptors, signalling molecules, or inhibitors of signalling pathways. Specifically, microRNAs that directly modulate pro-hypertrophic, pro-fibrotic and pro-inflammatory signalling initiated by angiotensin II receptor type 1 (AT1R) stimulation are of particular relevance in mediating the cardiovascular effects of the RAS. The aim of this review is to summarize the current knowledge in the field that is still in the early stage of preclinical investigation with occasionally conflicting reports. Understanding the big picture of microRNAs not only aids in the improved understanding of cardiac response to injury but also leads to better therapeutic strategies utilizing microRNAs as biomarkers, therapeutic agents and pharmacological targets.
Collapse
|
22
|
Leroux AC, Bartels E, Winter L, Mann M, Otte K, Zehe C. Transferability of miRNA-technology to bioprocessing: Influence of cultivation mode and media. Biotechnol Prog 2020; 37:e3107. [PMID: 33300297 PMCID: PMC8244005 DOI: 10.1002/btpr.3107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/30/2020] [Accepted: 11/30/2020] [Indexed: 01/23/2023]
Abstract
The biopharmaceutical industry strives for improvement of their production processes. In recent years, miRNAs have been shown to positively impact the production capacity of recombinant CHO cells, especially with regard to difficult to express proteins. Effective and reliable gene regulation of process relevant target genes by miRNAs is a prerequisite for integrating them into the toolbox of industrial cell engineering strategies. However, most studies rely on transient transfection of miRNA mimics; there is low standardization in evaluation of miRNA function and little knowledge on transferability of effects found during transient expression to stable expression during industry relevant fed‐batch cultivation. In order to provide more insight into this topic, we used the pcDNA6.2 vector for stable miRNA overexpression during batch and fed‐batch cultivation in CHO DG44 cells, optimized the vector, and compared the miRNA levels and effects with those achieved by transfection of miRNA mimics. We found that miR‐1 downregulated TWF1 mRNA in different recombinant CHO DG44 clones in a dose‐dependent manner during transient batch cultivation. Cells stably overexpressing miR‐1 also showed a TWF1 mRNA downregulation when cultivated in batch mode using in‐house medium 1. However, when the cells stably overexpressing miR‐1 were cultivated in fed‐batch mode using in‐house medium 2. Consequently, a change of cultivation mode and medium seems to have an impact on target gene regulation by miRNA. Taken together, our findings highlight the importance to standardize miRNA evaluations and test miRNAs in the final application environment.
Collapse
Affiliation(s)
- Ann-Cathrin Leroux
- Product Development, Sartorius Stedim Cellca GmbH, Ulm, Germany.,Advanced Biotech Applications Corporate Research, Sartorius Stedim Cellca GmbH, Ulm, Germany
| | - Elisabeth Bartels
- Product Development, Sartorius Stedim Cellca GmbH, Ulm, Germany.,Operations, Sartorius Stedim Cellca GmbH, Ulm, Germany
| | - Luise Winter
- Product Development, Sartorius Stedim Cellca GmbH, Ulm, Germany.,Upstream Process Development, Rentschler Biopharma, Laupheim, Germany
| | - Melanie Mann
- Product Development, Sartorius Stedim Cellca GmbH, Ulm, Germany
| | - Kerstin Otte
- Biology, Cell- and Molecular Biology, Biberach University of Applied Sciences, Biberach an der Riß, Germany
| | - Christoph Zehe
- Advanced Biotech Applications Corporate Research, Sartorius Stedim Cellca GmbH, Ulm, Germany
| |
Collapse
|
23
|
Gerasymchuk D, Hubiernatorova A, Domanskyi A. MicroRNAs Regulating Cytoskeleton Dynamics, Endocytosis, and Cell Motility-A Link Between Neurodegeneration and Cancer? Front Neurol 2020; 11:549006. [PMID: 33240194 PMCID: PMC7680873 DOI: 10.3389/fneur.2020.549006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
The cytoskeleton is one of the most mobile and complex cell structures. It is involved in cellular transport, cell division, cell shape formation and adaptation in response to extra- and intracellular stimuli, endo- and exocytosis, migration, and invasion. These processes are crucial for normal cellular physiology and are affected in several pathological processes, including neurodegenerative diseases, and cancer. Some proteins, participating in clathrin-mediated endocytosis (CME), play an important role in actin cytoskeleton reorganization, and formation of invadopodia in cancer cells and are also deregulated in neurodegenerative disorders. However, there is still limited information about the factors contributing to the regulation of their expression. MicroRNAs are potent negative regulators of gene expression mediating crosstalk between different cellular pathways in cellular homeostasis and stress responses. These molecules regulate numerous genes involved in neuronal differentiation, plasticity, and degeneration. Growing evidence suggests the role of microRNAs in the regulation of endocytosis, cell motility, and invasiveness. By modulating the levels of such microRNAs, it may be possible to interfere with CME or other processes to normalize their function. In malignancy, the role of microRNAs is undoubtful, and therefore changing their levels can attenuate the carcinogenic process. Here we review the current advances in our understanding of microRNAs regulating actin cytoskeleton dynamics, CME and cell motility with a special focus on neurodegenerative diseases, and cancer. We investigate whether current literature provides an evidence that microRNA-mediated regulation of essential cellular processes, such as CME and cell motility, is conserved in neurons, and cancer cells. We argue that more research effort should be addressed to study the neuron-specific functions on microRNAs. Disease-associated microRNAs affecting essential cellular processes deserve special attention both from the view of fundamental science and as future neurorestorative or anti-cancer therapies.
Collapse
Affiliation(s)
- Dmytro Gerasymchuk
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | | | - Andrii Domanskyi
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
24
|
Position-specific oxidation of miR-1 encodes cardiac hypertrophy. Nature 2020; 584:279-285. [PMID: 32760005 DOI: 10.1038/s41586-020-2586-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/06/2020] [Indexed: 11/08/2022]
Abstract
In pathophysiology, reactive oxygen species oxidize biomolecules that contribute to disease phenotypes1. One such modification, 8-oxoguanine2 (o8G), is abundant in RNA3 but its epitranscriptional role has not been investigated for microRNAs (miRNAs). Here we specifically sequence oxidized miRNAs in a rat model of the redox-associated condition cardiac hypertrophy4. We find that position-specific o8G modifications are generated in seed regions (positions 2-8) of selective miRNAs, and function to regulate other mRNAs through o8G•A base pairing. o8G is induced predominantly at position 7 of miR-1 (7o8G-miR-1) by treatment with an adrenergic agonist. Introducing 7o8G-miR-1 or 7U-miR-1 (in which G at position 7 is substituted with U) alone is sufficient to cause cardiac hypertrophy in mice, and the mRNA targets of o8G-miR-1 function in affected phenotypes; the specific inhibition of 7o8G-miR-1 in mouse cardiomyocytes was found to attenuate cardiac hypertrophy. o8G-miR-1 is also implicated in patients with cardiomyopathy. Our findings show that the position-specific oxidation of miRNAs could serve as an epitranscriptional mechanism to coordinate pathophysiological redox-mediated gene expression.
Collapse
|
25
|
Tang R, Long T, Lui KO, Chen Y, Huang ZP. A Roadmap for Fixing the Heart: RNA Regulatory Networks in Cardiac Disease. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 20:673-686. [PMID: 32380417 PMCID: PMC7210385 DOI: 10.1016/j.omtn.2020.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/16/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023]
Abstract
With the continuous development of RNA biology and massive genome-wide transcriptome analysis, more and more RNA molecules and their functions have been explored in the last decade. Increasing evidence has demonstrated that RNA-related regulatory networks play an important role in a variety of human diseases, including cardiovascular diseases. In this review, we focus on RNA regulatory networks in heart disease, most of which are devastating conditions with no known cure. We systemically summarize recent discoveries of important new components of RNA regulatory networks, including microRNAs, long non-coding RNAs, and circular RNAs, as well as multiple regulators that affect the activity of these networks in cardiac physiology and pathology. In addition, this review covers emerging micropeptides, which represent short open reading frames (sORFs) in long non-coding RNA transcripts that may modulate cardiac physiology. Based on the current knowledge of RNA regulatory networks, we think that ongoing discoveries will not only provide us a better understanding of the molecular mechanisms that underlie heart disease, but will also identify novel biomarkers and therapeutic targets for the diagnosis and treatment of cardiac disease.
Collapse
Affiliation(s)
- Rong Tang
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Tianxin Long
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Kathy O Lui
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR 999077, China
| | - Yili Chen
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Zhan-Peng Huang
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
26
|
MicroRNA-29a attenuates angiotensin-II induced-left ventricular remodeling by inhibiting collagen, TGF-β and SMAD2/3 expression. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2020; 17:96-104. [PMID: 32165882 PMCID: PMC7051875 DOI: 10.11909/j.issn.1671-5411.2020.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background Left ventricular (LV) remodeling is the most common target organ damage in hypertension. Previously, our study found that plasma microRNA-29a (miR-29a) level was associated with the LV remodeling in hypertensive patients. However, the causal relationship between miR-29a and LV remodeling remains unknown. Thus, the aim of this study was to investigate the regulation mechanism of miR-29a in LV remodeling. Methods & Results Overexpression and knockdown miR-29a mice were generated by tail-intravenous injection of miR-29a-mimic and inhibitor lentivirus for one week respectively. Then the mice were subjected to angiotensin-II (AngII) induced LV remodeling by subcutaneous AngII capsule osmotic pumping into AngII for four weeks. AngII-induced LV remodeling mice as the model group (n = 9). Age-matched male SPF C57/BL6J mice (6-8 weeks old) were treated with the pumping of saline as a vehicle (n = 6). In vivo, overexpression miR-29a ameliorated AngII-induced LV remodeling, while knockdown miR-29a deteriorated LV remodeling. Simultaneously, we observed that overexpression miR-29a mice inhibited but knockdown miR-29a mice increased cardiac cross-sectional area, indicating that miR-29a has an antagonistic effect on cardiac hypertrophy. Further studies found that overexpression miR-29a inhibited the content of the LV collagen including collagen I and III. Moreover, the expression of transforming growth factor-β (TGF-β) and phosphorylated SMAD2/3 decreased with the down-regulation of collagen I and III in overexpression miR-29a mice. Conclusions Our finding indicates that overexpression miR-29a attenuates LV remodeling by inhibiting collagen deposition, TGF-β, and phosphorylated SMAD2/3 expression. Thus, intervention miR-29a may be a therapeutic target for attenuating LV remodeling.
Collapse
|
27
|
Sun LL, Cheng M, Xu XD. MicroRNA-30c inhibits pancreatic cancer cell proliferation by targeting twinfilin 1 and indicates a poor prognosis. World J Gastroenterol 2019; 25:6311-6321. [PMID: 31754292 PMCID: PMC6861845 DOI: 10.3748/wjg.v25.i42.6311] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/16/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Studies have reported that microRNA-30c (miR-30c) has vital functions in the development and progression of multiple cancers.
AIM To investigate the clinical significance and role of miR-30c in pancreatic cancer.
METHODS MiR-30c and twinfilin 1 (TWF1) expression levels were analyzed in Gene Expression Omnibus datasets and validated in human pancreatic cancer by quantitative real-time polymerase chain reaction (RT-qPCR). The effects of miR-30c on pancreatic cancer cell growth, apoptosis, and cell cycle were evaluated by CCK-8 and flow cytometry assays. Furthermore, the in vivo effects were investigated using a subcutaneous xenograft experiment. Target gene prediction software and luciferase reporter assays were used to identify TWF1 as a direct target of miR-30c.
RESULTS The expression of miR-30c was significantly decreased in pancreatic cancer tissues and associated with survival. Gain- and loss-of-function assays showed that miR-30c suppressed pancreatic cancer cell proliferation in vitro and in vivo. RT-qPCR, Western blot, and luciferase reporter assays showed that miR-30c directly targeted TWF1. The expression level of miR-30c was negatively correlated with TWF1 expression in pancreatic cancer tissues. Furthermore, the effects of ectopic miR-30c were rescued by TWF1 overexpression.
CONCLUSION Our results identified the role of the miR-30c/TWF1 axis in pancreatic cancer progression and demonstrated that miR-30c might serve as a prognostic biomarker and therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Lu-Lu Sun
- Department of Ultrasonography, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Ming Cheng
- Department of Information, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Xiao-Dong Xu
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan Province, China
| |
Collapse
|
28
|
MicroRNAs in Cardiac Hypertrophy. Int J Mol Sci 2019; 20:ijms20194714. [PMID: 31547607 PMCID: PMC6801828 DOI: 10.3390/ijms20194714] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 12/17/2022] Open
Abstract
Like other organs, the heart undergoes normal adaptive remodeling, such as cardiac hypertrophy, with age. This remodeling, however, is intensified under stress and pathological conditions. Cardiac remodeling could be beneficial for a short period of time, to maintain a normal cardiac output in times of need; however, chronic cardiac hypertrophy may lead to heart failure and death. MicroRNAs (miRNAs) are known to have a role in the regulation of cardiac hypertrophy. This paper reviews recent advances in the field of miRNAs and cardiac hypertrophy, highlighting the latest findings for targeted genes and involved signaling pathways. By targeting pro-hypertrophic genes and signaling pathways, some of these miRNAs alleviate cardiac hypertrophy, while others enhance it. Therefore, miRNAs represent very promising potential pharmacotherapeutic targets for the management and treatment of cardiac hypertrophy.
Collapse
|
29
|
Szelenberger R, Kacprzak M, Saluk-Bijak J, Zielinska M, Bijak M. Plasma MicroRNA as a novel diagnostic. Clin Chim Acta 2019; 499:98-107. [PMID: 31499022 DOI: 10.1016/j.cca.2019.09.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are small, single-stranded, endogenous, non-coding RNAs necessary for proper gene expression. Their mechanism of action controls translation by base-pairing with target messenger RNA (mRNAs) thus leading to translation blockage or mRNA degradation. Many studies have shown that miRNAs play pivotal roles in cancer, cardiovascular disease and neurodegenerative disorders. The lack of blood-derived biomarkers and those markers of poor specificity and sensitivity significantly impact the ability to diagnose in general and at early disease stage specifically. As such, new, non-invasive and quantifiable biomarkers are needed. As post-transcriptional regulators of gene expression, miRNAs have been confirmed to be notably stable in cells, tissues and body fluids. These and other advantages make miRNAs ideal candidates as potential biomarkers and early experimental findings support this finding. This review examines the use of miRNAs as biomarkers in cancer, neurodegenerative, cardiovascular and liver disease and viral infection.
Collapse
Affiliation(s)
- Rafal Szelenberger
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Michal Kacprzak
- Intensive Cardiac Therapy Clinic, Medical University of Lodz, Pomorska 251, 91-213 Lodz, Poland
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Marzenna Zielinska
- Intensive Cardiac Therapy Clinic, Medical University of Lodz, Pomorska 251, 91-213 Lodz, Poland
| | - Michal Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
30
|
Gan J, Tang FMK, Su X, Lu G, Xu J, Lee HSS, Lee KKH. microRNA-1 inhibits cardiomyocyte proliferation in mouse neonatal hearts by repressing CCND1 expression. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:455. [PMID: 31700891 DOI: 10.21037/atm.2019.08.68] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background The functions of microRNA-1 (miR-1) in cardiac hypertrophy, and cardiomyocyte differentiation have been investigated. However, the mechanism on how miR-1 could repress cardiomyocyte proliferation has not been fully elucidated. Methods We address this issue by investigating whether miR-1 affected the proliferation of neonatal cardiomyocyte and identify some of the genes targeted by miR-1. miR-1 was over-expressed in neonatal cardiomyocytes and the effect on cell cycle and growth were analyzed by flow cytometry and Brdu-incorporation assay. Relevant vectors carrying the luciferase reporter were constructed for validation of miR-1 binding to its matching sites on the 3'-untranslated region of the predicated target mRNAs. Cardiomyocytes were co-transfected with the vectors and miR-1 mimics, then luciferase reporter assay was performed. Lastly, we examined the expression of target genes in cardiomyocytes after transfection with miR-1 mimics, as well as their normal expression pattern in 2- and 13-day-old mice hearts. Results We have demonstrated that miR-1 was the most significantly upregulated miRNA in 13-day-old mouse hearts compared with 2-day-old hearts. We also showed that miR-1 could repress cardiomyocyte G1/S phase transition, proliferation and viability. IGF1 and CCND1 were identified as candidate target genes regulated by miR-1. In addition, overexpression of miR-1 could suppress the expression of these two genes at the mRNA level. It could also correspondingly inhibit CCND1 expression at the protein level but not for IGF1. Conclusions Our results suggest that miR-1 plays an important role in inhibiting cardiomyocyte proliferation in the developing neonatal mouse heart by directly suppressing the cell-cycle regulator, CCND1.
Collapse
Affiliation(s)
- Jingyi Gan
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Basic Medicine, School of Medicine, Xi'an International University, Xi'an 710077, China
| | - Florence Mei Kuen Tang
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xianwei Su
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jing Xu
- Department of Basic Medicine, School of Medicine, Xi'an International University, Xi'an 710077, China
| | - Henry Siu Sum Lee
- Botnar Research Centre, NIHR Oxford Biomedical Research Unit, University of Oxford, Oxford, UK
| | - Kenneth Ka Ho Lee
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Chinese University of Hong Kong-University of Southampton Joint Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
31
|
He R, Ding C, Yin P, He L, Xu Q, Wu Z, Shi Y, Su L. MiR-1a-3p mitigates isoproterenol-induced heart failure by enhancing the expression of mitochondrial ND1 and COX1. Exp Cell Res 2019; 378:87-97. [PMID: 30853447 DOI: 10.1016/j.yexcr.2019.03.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/21/2019] [Accepted: 03/06/2019] [Indexed: 02/05/2023]
Abstract
MicroRNAs (miRNAs) have become potential targets for the treatment of heart failure (HF). It has been shown that miR-1 can reverse cardiac hypertrophy during the compensatory phase of HF development, but it is unknown whether miR-1 can still reverse cardiac dysfunction and improve cardiac remodeling after HF progresses to the decompensation stage. We established a mouse model of isoproterenol-induced HF and then injected miR-1a-3p agomir (agomir-1) into the tail vein. Echocardiography showed that the mice treated with agomir-1 had significantly increased ejection fraction and fractional shortening. These mice also showed a decrease in the N-terminal pro-B type natriuretic peptide (NT-proBNP) levels, but this remained higher than in controls. Cardiac hypertrophy, myocardial fibrosis, apoptosis, and glycogen deposition were reduced in mice treated with agomir-1. Furthermore, we found that supplementation of agomir-1 increased the expression of two mitochondrial DNA-encoded proteins, mitochondrially encoded NADH dehydrogenase 1 (ND1) and mitochondrially encoded cytochrome c oxidase I (COX1). In conclusion, our study found that miR-1a-3p alleviated the symptoms of ISO-induced HF in mice by enhancing mitochondrial ND1 and COX1. The results of this work may provide new therapeutic strategies for the treatment of HF patients.
Collapse
Affiliation(s)
- Rui He
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Chang Ding
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Ping Yin
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Li He
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Qing Xu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhenru Wu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yujun Shi
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Su
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
32
|
Kura B, Parikh M, Slezak J, Pierce GN. The Influence of Diet on MicroRNAs that Impact Cardiovascular Disease. Molecules 2019; 24:molecules24081509. [PMID: 30999630 PMCID: PMC6514571 DOI: 10.3390/molecules24081509] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022] Open
Abstract
Food quality and nutritional habits strongly influence human health status. Extensive research has been conducted to confirm that foods rich in biologically active nutrients have a positive impact on the onset and development of different pathological processes, including cardiovascular diseases. However, the underlying mechanisms by which dietary compounds regulate cardiovascular function have not yet been fully clarified. A growing number of studies confirm that bioactive food components modulate various signaling pathways which are involved in heart physiology and pathology. Recent evidence indicates that microRNAs (miRNAs), small single-stranded RNA chains with a powerful ability to influence protein expression in the whole organism, have a significant role in the regulation of cardiovascular-related pathways. This review summarizes recent studies dealing with the impact of some biologically active nutrients like polyunsaturated fatty acids (PUFAs), vitamins E and D, dietary fiber, or selenium on the expression of many miRNAs, which are connected with cardiovascular diseases. Current research indicates that the expression levels of many cardiovascular-related miRNAs like miRNA-21, -30 family, -34, -155, or -199 can be altered by foods and dietary supplements in various animal and human disease models. Understanding the dietary modulation of miRNAs represents, therefore, an important field for further research. The acquired knowledge may be used in personalized nutritional prevention of cardiovascular disease or the treatment of cardiovascular disorders.
Collapse
Affiliation(s)
- Branislav Kura
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovak Republic.
| | - Mihir Parikh
- Institute of Cardiovascular Sciences and the Canadian Centre for Agri-food Research in Health and Medicine (CCARM), Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H2A6, Canada.
- Department of Physiology and Pathophysiology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E0W3, Canada.
| | - Jan Slezak
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovak Republic.
| | - Grant N Pierce
- Institute of Cardiovascular Sciences and the Canadian Centre for Agri-food Research in Health and Medicine (CCARM), Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H2A6, Canada.
- Department of Physiology and Pathophysiology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E0W3, Canada.
| |
Collapse
|
33
|
Kaishang Z, Xue P, Shaozhong Z, Yingying F, Yan Z, Chanjun S, Zhenzhen L, Xiangnan L. Elevated expression of Twinfilin-1 is correlated with inferior prognosis of lung adenocarcinoma. Life Sci 2018; 215:159-169. [PMID: 30391462 DOI: 10.1016/j.lfs.2018.10.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023]
Abstract
AIM Twinfilin-1 (TWF1) has been implicated in cell motility, invasion and migration. However, its exact role in lung cancer progression is still unclear. In the present study, we explored clinical and prognostic relevance of Twinfilin-1 (TWF1) levels for non-small cell lung carcinoma (NSCLC). MAIN METHODS The Cancer Genome Atlas (TCGA) dataset was analyzed for possible association between TWF1 expressions in NSCLC tissues and patient prognosis. The meta-analysis data was validated in our clinical study through techniques of immunoblotting, expression analysis and immunohistochemistry. KEY FINDINGS Lung adenocarcinoma (LUAD) as well as lung squamous cell carcinoma (LUSC) showed significantly elevated expression of TWF1 compared to normal lung tissues. Univariate Cox regression analysis showed high expression of TWF1 to be independent prognostic indicator involved in overall survival (hazard ratio: 1.636; 95% CI: 1.223-2.189) and recurrence-free survival (hazard ratio: 1.551; 95% CI: 1.158-2.077) in LUAD, but not in LUSC. Similar trend was found in our clinical study. LUAD tissues reflected TWF1 overexpression to be positively correlated with grade of tumor, size and lymph node metastasis. Enhanced TWF1 expression was identified to be an independent predictor for the disadvantageous prognosis of LUAD through simultaneously both univariate as well as multivariate Cox regression analyses (both p < 0.05). Kaplan-Meier survival graphs further corroborated that poor disease prediction in the patients with LUAD was indicated through high TWF1 expression (p = 0.028). SIGNIFICANCE Robustness and poor prognosis in LUAD correlated with TWF1 levels thus making it a suitable therapeutic target against LUAD.
Collapse
Affiliation(s)
- Zhang Kaishang
- Thoracic Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pan Xue
- Thoracic Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zheng Shaozhong
- Thoracic Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fan Yingying
- Thoracic Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhang Yan
- Thoracic Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sun Chanjun
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Zhenzhen
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Li Xiangnan
- Thoracic Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
34
|
Mohseni Z, Spaanderman MEA, Oben J, Calore M, Derksen E, Al-Nasiry S, de Windt LJ, Ghossein-Doha C. Cardiac remodeling and pre-eclampsia: an overview of microRNA expression patterns. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2018; 52:310-317. [PMID: 28466998 DOI: 10.1002/uog.17516] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 03/13/2017] [Accepted: 03/31/2017] [Indexed: 06/07/2023]
Abstract
Pre-eclampsia (PE) is strongly associated with heart failure (HF) later in life. During PE pregnancy, the left ventricle undergoes concentric remodeling which often persists after delivery. This aberrant remodeling can induce a molecular signature that can be evaluated in terms of microRNAs (miRNAs) and which may help to explain the associated increased risk of HF. For this review, we performed a literature search of PubMed (National Center for Biotechnology Information), identifying studies on miRNA expression in concentric remodeling and on miRNA expression in PE. The miRNA data were stratified based on origin (isolated from humans or animals and from tissue or the circulation) and both datasets compared in order to generate a list of miRNA expression patterns in concentric remodeling and in PE. The nine miRNAs identified in both concentric remodeling and PE-complicated pregnancy were: miR-1, miR-18, miR-21, miR-29b, miR-30, miR-125b, miR-181b, miR-195 and miR-499-5p. We found five of these miRNAs (miR-18, miR-21, miR-125b, miR-195 and miR-499-5p) to be upregulated in both PE pregnancy and cardiac remodeling and two (miR-1 and miR-30) to be downregulated in both; the remaining two miRNAs (miR-29b and miR-181b) showed upregulation during PE but downregulation in cardiac remodeling. This innovative approach may be a step towards finding relevant biomarkers for complicated pregnancy and elucidating their relationship with remote cardiovascular disease. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Z Mohseni
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - M E A Spaanderman
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - J Oben
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - M Calore
- Department of Cardiology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - E Derksen
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - S Al-Nasiry
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - L J de Windt
- Department of Cardiology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - C Ghossein-Doha
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| |
Collapse
|
35
|
Li Y, Liang Y, Zhu Y, Zhang Y, Bei Y. Noncoding RNAs in Cardiac Hypertrophy. J Cardiovasc Transl Res 2018; 11:439-449. [PMID: 30171598 DOI: 10.1007/s12265-018-9797-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/19/2018] [Indexed: 01/07/2023]
Abstract
Cardiac hypertrophy is classified as pathological and physiological hypertrophy. Pathological hypertrophy typically precedes the onset of heart failure, one of the largest contributors to disease burden and deaths worldwide. In contrast, physiological hypertrophy is an adaptive response and protects against adverse cardiac remodeling. Noncoding RNAs (ncRNAs) have drawn significant attention over the last couple of decades, and their dysregulation is increasingly being linked to cardiac hypertrophy and cardiovascular diseases. In this review, we will summarize the profiling, function, and molecular mechanism of microRNAs, long noncoding RNAs, and circular RNAs in pathological cardiac hypertrophy. Additionally, we also review microRNAs responsible for physiological hypertrophy. With better understanding of ncRNAs in cardiac hypertrophy, manipulation of the important ncRNAs will offer exciting avenues for the prevention and therapy of heart failure.
Collapse
Affiliation(s)
- Yongqin Li
- Cardiac Regeneration and Ageing Lab, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| | - Yajun Liang
- Cardiac Regeneration and Ageing Lab, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| | - Yujiao Zhu
- Cardiac Regeneration and Ageing Lab, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| | - Yuhui Zhang
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Bei Li Tu Road, Beijing, 100037, China.
| | - Yihua Bei
- Cardiac Regeneration and Ageing Lab, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China.
| |
Collapse
|
36
|
Kokkonen-Simon KM, Saberi A, Nakamura T, Ranek MJ, Zhu G, Bedja D, Kuhn M, Halushka MK, Lee DI, Kass DA. Marked disparity of microRNA modulation by cGMP-selective PDE5 versus PDE9 inhibitors in heart disease. JCI Insight 2018; 3:121739. [PMID: 30089721 DOI: 10.1172/jci.insight.121739] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/26/2018] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRs) posttranscriptionally regulate mRNA and its translation into protein, and are considered master controllers of genes modulating normal physiology and disease. There is growing interest in how miRs change with drug treatment, and leveraging this for precision guided therapy. Here we contrast 2 closely related therapies, inhibitors of phosphodiesterase type 5 or type 9 (PDE5-I, PDE9-I), given to mice subjected to sustained cardiac pressure overload (PO). Both inhibitors augment cyclic guanosine monophosphate (cGMP) to activate protein kinase G, with PDE5-I regulating nitric oxide (NO) and PDE9-I natriuretic peptide-dependent signaling. While both produced strong phenotypic improvement of PO pathobiology, they surprisingly showed binary differences in miR profiles; PDE5-I broadly reduces more than 120 miRs, including nearly half those increased by PO, whereas PDE9-I has minimal impact on any miR (P < 0.0001). The disparity evolves after pre-miR processing and is organ specific. Lastly, even enhancing NO-coupled cGMP by different methods leads to altered miR regulation. Thus, seemingly similar therapeutic interventions can be barcoded by profound differences in miR signatures, and reversing disease-associated miR changes is not required for therapy success.
Collapse
Affiliation(s)
- Kristen M Kokkonen-Simon
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.,Cellular and Molecular Medicine Graduate Program, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amir Saberi
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Taishi Nakamura
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Mark J Ranek
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Guangshuo Zhu
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Djahida Bedja
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Marc K Halushka
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dong Ik Lee
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - David A Kass
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
37
|
Wang C, Jing Q. Non-coding RNAs as biomarkers for acute myocardial infarction. Acta Pharmacol Sin 2018; 39:1110-1119. [PMID: 29698386 DOI: 10.1038/aps.2017.205] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 12/25/2017] [Indexed: 12/13/2022]
Abstract
Acute myocardial infarction (AMI) is a main threat to human lives worldwide. Early and accurate diagnoses warrant immediate medical care, which would reduce mortality and improve prognoses. Circulating non-coding RNAs have been demonstrated to serve as competent biomarkers for various diseases. Following the identification of cardiac-specific microRNA miR-208a in circulation, more non-coding RNAs (miR-1, miR-499 and miR-133) have been identified as biomarkers not only for the diagnosis of AMI but also for prognosis post infarction. Here, we summarized recent findings on non-coding RNAs as biomarkers for early diagnosis of ST-segment elevation myocardial infarction and for disease monitoring of myocardial infarction. In addition, the prognostic potential of non-coding RNAs in patients treated with percutaneous coronary intervention was also described. We also include studies based on biobanks, and build a miRNA release spectrum after AMI, which provides quantitative and time-lapse monitoring of AMI progress. With this spectrum, we are able to customize personal medical care, which prevents further damage. By constructing a network of circulating non-coding RNAs with high specificity and sensitivity, detailed diagnostic information was provided for personalized medicine. Unveiling the roles and kinetics of circulating non-coding RNAs may lead to a revolution in clinical diagnosis.
Collapse
|
38
|
Plasma miR-451 with echocardiography serves as a diagnostic reference for pulmonary hypertension. Acta Pharmacol Sin 2018; 39:1208-1216. [PMID: 29795360 DOI: 10.1038/aps.2018.39] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/13/2018] [Indexed: 02/06/2023]
Abstract
Due to the lack of typical clinical symptoms, the average delay time for diagnosis of pulmonary hypertension (PH) is longer than 2 years. It is urgent to find biomarkers for PH diagnosis. In this study we investigated whether plasma microRNAs (miRNAs) can be used as biomarkers for PH diagnosis. We used microarray to identify dynamic miRNAs between PH and non-PH patients. The candidate miRNAs were verified using qRT-PCR in a mouse model of PH, which was induced by monocrotaline (MCT) injection. We observed that miR-21, miR-126, miR-145, miR-191 and miR-150 had no differences between control mice and MCT-treated mice; but plasma miR-451 was significantly decreased in the 2wk-MCT group, with no further decrease in the 4wk-MCT group. Plasma miR-451 was also markedly decreased in PH patients, whereas miR-21, miR-126, miR-150 and miR-320 did not show differences between 53 PH patients and 54 non-PH patients. Receiver operating characteristic curves (ROCs) were constructed from the patient data to assess the clinical diagnostic values of circulating miR-451 and Doppler echocardiography (D-ECHO). The areas under the curve (AUCs) of ROCs for miR-451 and D-ECHO were 0.710 and 0.766, respectively. Combination of miR-451 and D-ECHO with AUC of 0.825 was superior to the use of either miR-451 or D-ECHO alone for PH diagnosis. In conclusion, plasma miR-451 has a moderate diagnostic value in PH comparable to that of D-ECHO, and the combination of miR-451 with D-ECHO has better diagnostic value than either method alone, which may have implications for PH diagnosis.
Collapse
|
39
|
Dong Y, Xu S, Liu J, Ponnusamy M, Zhao Y, Zhang Y, Wang Q, Li P, Wang K. Non-coding RNA-linked epigenetic regulation in cardiac hypertrophy. Int J Biol Sci 2018; 14:1133-1141. [PMID: 29989099 PMCID: PMC6036733 DOI: 10.7150/ijbs.26215] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/04/2018] [Indexed: 12/11/2022] Open
Abstract
Cardiac hypertrophy is an adaptive enlargement of myocardium in response to pressure overload caused various pathological insults, which is accompanied by alteration of a complex cascade of signaling pathways. During the hypertrophy process, many changes occur at cellular level including gene reprogramming by turning off chromatin regulators. Studies from the past decade have demonstrated that the abnormal epigenetic modifications, such as DNA methylation, histone modification, and oxidative modification of nucleic acid, could lead to changes in chromosome structure and cardiac dysfunction. Increasing evidence indicates that non-coding RNAs (ncRNAs) have functional significance in modulating the gene expression during those pathological events in the heart. Emerging evidences have highlighted that ncRNAs might serve as a signal for changing the state of chromatin, however, the knowledge about the ncRNA-linked epigenetic regulatory mechanisms in cardiac pathologies is still largely unexplored. In this review, we summarize the current information on association between ncRNAs and epigenetic modifications in cardiac hypertrophy, and we have discussed their crosstalk. In addition, this review provides insights into their therapeutic and diagnostic potential for treating hypertrophic heart disease.
Collapse
Affiliation(s)
- Yanhan Dong
- Institute for Translational Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Sheng Xu
- Institute for Translational Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Jing Liu
- Institute for Translational Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Murugavel Ponnusamy
- Institute for Translational Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Yanfang Zhao
- Institute for Translational Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Yanhui Zhang
- Institute for Translational Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Qi Wang
- Institute for Translational Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Kun Wang
- Institute for Translational Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| |
Collapse
|
40
|
Hilton DM, Aguilar RM, Johnston AB, Goode BL. Species-Specific Functions of Twinfilin in Actin Filament Depolymerization. J Mol Biol 2018; 430:3323-3336. [PMID: 29928893 DOI: 10.1016/j.jmb.2018.06.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/28/2018] [Accepted: 06/12/2018] [Indexed: 11/16/2022]
Abstract
Twinfilin is a highly conserved member of the actin depolymerization factor homology (ADF-H) protein superfamily, which also includes ADF/Cofilin, Abp1/Drebrin, GMF, and Coactosin. Twinfilin has a unique molecular architecture consisting of two ADF-H domains joined by a linker and followed by a C-terminal tail. Yeast Twinfilin, in conjunction with yeast cyclase-associated protein (Srv2/CAP), increases the rate of depolymerization at both the barbed and pointed ends of actin filaments. However, it has remained unclear whether these activities extend to Twinfilin homologs in other species. To address this, we purified the three mouse Twinfilin isoforms (mTwf1, mTwf2a, mTwf2b) and mouse CAP1, and used total internal reflection fluorescence microscopy assays to study their effects on filament disassembly. Our results show that all three mouse Twinfilin isoforms accelerate barbed end depolymerization similar to yeast Twinfilin, suggesting that this activity is evolutionarily conserved. In striking contrast, mouse Twinfilin isoforms and CAP1 failed to induce rapid pointed end depolymerization. Using chimeras, we show that the yeast-specific pointed end depolymerization activity is specified by the C-terminal ADF-H domain of yeast Twinfilin. In addition, Tropomyosin decoration of filaments failed to impede depolymerization by yeast and mouse Twinfilin and Srv2/CAP, but inhibited Cofilin severing. Together, our results indicate that Twinfilin has conserved functions in regulating barbed end dynamics, although its ability to drive rapid pointed end depolymerization appears to be species-specific. We discuss the implications of this work, including that pointed end depolymerization may be catalyzed by different ADF-H family members in different species.
Collapse
Affiliation(s)
- Denise M Hilton
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Rey M Aguilar
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Adam B Johnston
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Bruce L Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
41
|
Qipshidze Kelm N, Piell KM, Wang E, Cole MP. MicroRNAs as predictive biomarkers for myocardial injury in aged mice following myocardial infarction. J Cell Physiol 2018; 233:5214-5221. [PMID: 29150941 DOI: 10.1002/jcp.26283] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 11/13/2017] [Indexed: 12/23/2022]
Abstract
The occurrence of myocardial infarction (MI) increases appreciably with age. In the Framingham Heart Study, the incidence of MI more than doubles for men and increases more than five-fold in women (ages 55-64 years compared to 85-94 years). MicroRNAs (miRNAs) quantitatively regulate their target's expression post-transcriptionally by either silencing action through binding at the 3'UTR domains or degrading the messages at their coding regions. In either case, these regulations affect the cardiac transcriptional output and cardiac function. Among the known cardiac associated miRNA, miRNA-1, miRNA-133a, and miRNA-34a have been shown to induce adverse structural remodeling to impair cardiac contractile function. In the present study, an in vivo model of MI in young (3 month) and old (22 month) mice is used to investigate the possible role whereby these three miRNAs exert negative effects on heart function following MI. Herein we demonstrate that in older mouse heart, all three microRNAs show increased levels of expression, while miRNA-1 shows a further increase in old mouse heart following MI, which corresponds to left ventricular (LV) wall thinning. These structural changes in cardiac tissue may causes downstream LV dilation and subsequent LV dysfunction. Results presented here suggest that significantly elevated levels of miRNA-1 in post-MI old heart could be predictive of cardiac injury in older mice as the high risk biomarker for MI in older individuals.
Collapse
Affiliation(s)
- Natia Qipshidze Kelm
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, Kentucky.,Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Kellianne M Piell
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, Kentucky.,Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Eugenia Wang
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, Kentucky.,Gheens Center on Aging, University of Louisville School of Medicine, Louisville, Kentucky
| | - Marsha P Cole
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, Kentucky.,Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, Kentucky.,Gheens Center on Aging, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
42
|
MicroRNA-145-5p and microRNA-320a encapsulated in endothelial microparticles contribute to the progression of vasculitis in acute Kawasaki Disease. Sci Rep 2018; 8:1016. [PMID: 29343815 PMCID: PMC5772486 DOI: 10.1038/s41598-018-19310-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/28/2017] [Indexed: 12/12/2022] Open
Abstract
Kawasaki Disease (KD) is an acute inflammatory disease that takes the form of systemic vasculitis. Endothelial microparticles (EMPs) have been recognized as an important transcellular delivery system. We hypothesized whether EMPs are involved in vasculitis in acute KD. Fifty patients with acute KD were enrolled, divided into two subgroups: those with coronary artery lesions (CAL) (n = 5) and those without CAL (NCAL) (n = 45). EMPs were measured using flow cytometry, and microRNA (miR) expression profiling was performed by microRNA array. The percentage of EMPs in acute KD was significantly higher than in controls (P < 0.0001). EMPs in patients with CAL rapidly increased after the initial treatment, and was significantly higher than those in NCAL (P < 0.001). In patients with CAL, we identified 2 specific miRs encapsulated in EMPs, hsa-miR-145-5p and hsa-miR-320a, which are predicted to affect monocyte function using in silico analysis, and were demonstrated to upregulate inflammatory cytokine mRNAs in THP-1 monocytes. In situ hybridization confirmed that hsa-miR-145-5p was preferentially expressed in CAL. EMPs may serve as a sensitive marker for the severity of vasculitis in acute KD. Moreover, these 2 specific miRs encapsulated in EMPs might be involved in inflammatory cytokine regulation and the pathogenesis of vasculitis in acute KD.
Collapse
|
43
|
Dong J, Bao J, Feng R, Zhao Z, Lu Q, Wang G, Li H, Su D, Zhou J, Jing Q, Jing Z. Circulating microRNAs: a novel potential biomarker for diagnosing acute aortic dissection. Sci Rep 2017; 7:12784. [PMID: 28986538 PMCID: PMC5630636 DOI: 10.1038/s41598-017-13104-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/19/2017] [Indexed: 11/25/2022] Open
Abstract
Acute aortic dissection (AAD) is a catastrophic emergency with high mortality and misdiagnosis rate. We aimed to determine whether circulating microRNAs allow to distinguish AAD from healthy controls and chest pain patients without AAD (CP). Plasma microRNAs expression were determined in 103 participants, including 37 AAD patients, 26 chronic aortic dissection patients, 17 healthy volunteers, 23 patients without AAD. We selected 16 microRNAs from microarray screening as candidates for further testing via qRT-PCR. The results showed that plasma miR-15a in patients with AAD (n = 37) had significantly higher expression levels than it from control group (n = 40; P = 0.008). By receiver operating characteristic curve analysis, the sensitivity was 75.7%; the specificity was 82.5%; and the AUC was 0.761 for detection of AAD. Furthermore, 37 patients with AAD had significantly higher plasma expression levels of let-7b, miR-15a, miR-23a and hcmv-miR-US33-5p compared with 14 CP patients of 40 controls (P = 0.000, 0.000, 0.026 and 0.011, respectively). The corresponding sensitivity were 79.4%, 75.7%, 91.9% and 73.5%, respectively; the specificity were 92.9%, 100%, 85.7% and 85.7%, respectively; and the AUCs of these microRNAs were 0.887, 0.855, 0.925 and 0.815, respectively. These data indicate that plasma miR-15a and miR-23a have promising clinical value in diagnosing AAD.
Collapse
Affiliation(s)
- Jian Dong
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Junmin Bao
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Rui Feng
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhiqing Zhao
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China.,Department of Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qingsheng Lu
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Guokun Wang
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Key Laboratory of Stem Cell Biology and Laboratory of Nucleic Acid and Molecular Medicine, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Haiyan Li
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Dingfeng Su
- Department of Pharmacology, Second Military Medical University, Shanghai, 200433, China
| | - Jian Zhou
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China.
| | - Qing Jing
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, China. .,Key Laboratory of Stem Cell Biology and Laboratory of Nucleic Acid and Molecular Medicine, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
| | - Zaiping Jing
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
44
|
Twinfilin 2a regulates platelet reactivity and turnover in mice. Blood 2017; 130:1746-1756. [PMID: 28743718 DOI: 10.1182/blood-2017-02-770768] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/21/2017] [Indexed: 01/22/2023] Open
Abstract
Regulated reorganization of the actin cytoskeleton is a prerequisite for proper platelet production and function. Consequently, defects in proteins controlling actin dynamics have been associated with platelet disorders in humans and mice. Twinfilin 2a (Twf2a) is a small actin-binding protein that inhibits actin filament assembly by sequestering actin monomers and capping filament barbed ends. Moreover, Twf2a binds heterodimeric capping proteins, but the role of this interaction in cytoskeletal dynamics has remained elusive. Even though Twf2a has pronounced effects on actin dynamics in vitro, only little is known about its function in vivo. Here, we report that constitutive Twf2a-deficient mice (Twf2a-/-) display mild macrothrombocytopenia due to a markedly accelerated platelet clearance in the spleen. Twf2a-/- platelets showed enhanced integrin activation and α-granule release in response to stimulation of (hem) immunoreceptor tyrosine-based activation motif (ITAM) and G-protein-coupled receptors, increased adhesion and aggregate formation on collagen I under flow, and accelerated clot retraction and spreading on fibrinogen. In vivo, Twf2a deficiency resulted in shortened tail bleeding times and faster occlusive arterial thrombus formation. The hyperreactivity of Twf2a-/- platelets was attributed to enhanced actin dynamics, characterized by an increased activity of n-cofilin and profilin 1, leading to a thickened cortical cytoskeleton and hence sustained integrin activation by limiting calpain-mediated integrin inactivation. In summary, our results reveal the first in vivo functions of mammalian Twf2a and demonstrate that Twf2a-controlled actin rearrangements dampen platelet activation responses in a n-cofilin- and profilin 1-dependent manner, thereby indirectly regulating platelet reactivity and half-life in mice.
Collapse
|
45
|
Kura B, Babal P, Slezak J. Implication of microRNAs in the development and potential treatment of radiation-induced heart disease. Can J Physiol Pharmacol 2017; 95:1236-1244. [PMID: 28679064 DOI: 10.1139/cjpp-2016-0741] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Radiotherapy is the most commonly used methodology to treat oncological disease, one of the most widespread causes of death worldwide. Oncological patients cured by radiotherapy applied to the mediastinal area have been shown to suffer from cardiovascular disease. The increase in the prevalence of radiation-induced heart disease has emphasized the need to seek new therapeutic targets to mitigate the negative impact of radiation on the heart. In this regard, microRNAs (miRNAs) have received considerable interest. miRNAs regulate post-transcriptional gene expression by their ability to target various mRNA sequences because of their imperfect pairing with mRNAs. It has been recognized that miRNAs modulate a diverse spectrum of cardiac functions with developmental, pathophysiological, and clinical implications. This makes them promising potential targets for diagnosis and treatment. This review summarizes the recent findings about the possible involvement of miRNAs in radiation-induced heart disease and their potential use as diagnostic or treatment targets in this respect.
Collapse
Affiliation(s)
- Branislav Kura
- a Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05, Bratislava, Slovak Republic
| | - Pavel Babal
- b Institute of Pathological Anatomy, Faculty of Medicine, Comenius University in Bratislava and University Hospital Bratislava, Sasinkova 4, 811 08 Bratislava, Slovak Republic
| | - Jan Slezak
- a Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05, Bratislava, Slovak Republic
| |
Collapse
|
46
|
Sánchez-Gómez MC, García-Mejía KA, Pérez-Díaz Conti M, Díaz-Rosas G, Palma-Lara I, Sánchez-Urbina R, Klünder-Klünder M, Botello-Flores JA, Balderrábano-Saucedo NA, Contreras-Ramos A. MicroRNAs Association in the Cardiac Hypertrophy Secondary to Complex Congenital Heart Disease in Children. Pediatr Cardiol 2017; 38:991-1003. [PMID: 28382463 DOI: 10.1007/s00246-017-1607-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/20/2017] [Indexed: 12/14/2022]
Abstract
Complex congenital heart disease (CHD) affects cardiac blood flow, generating a pressure overload in the compromised ventricles and provoking hypertrophy that over time will induce myocardial dysfunction and cause a potential risk of imminent death. Therefore, the early diagnosis of complex CHD is paramount during the first year of life, with surgical treatment of patients favoring survival. In the present study, we analyzed cardiac tissue and plasma of children with cardiac hypertrophy (CH) secondary to CHD for the expression of 11 miRNAs specific to CH in adults. The results were compared with the miRNA expression patterns in tissue and blood of healthy children. In this way, we determined that miRNAs 1, 18b, 21, 23b, 133a, 195, and 208b constitute the expression profile of the cardiac tissue of children with CHD. Meanwhile, miRNAs 21, 23a, 23b, and 24 can be considered specific biomarkers for the diagnosis of CH in infants with CHD. These results suggest that CH secondary to CHD in children differs in its mechanism from that described for adult hypertrophy, offering a new perspective to study the development of this pathology and to determine the potential of hypertrophic miRNAs to be biomarkers for early CH.
Collapse
Affiliation(s)
- Ma C Sánchez-Gómez
- Laboratory of Developmental Biology Research and Experimental Teratogenicity, Children's Hospital of Mexico Federico Gomez (HIMFG), CP 06720, Mexico City, Mexico.,School of Medicine, National Polytechnic Institute (IPN), Mexico City, Mexico
| | - K A García-Mejía
- Laboratory of Developmental Biology Research and Experimental Teratogenicity, Children's Hospital of Mexico Federico Gomez (HIMFG), CP 06720, Mexico City, Mexico
| | | | - G Díaz-Rosas
- Laboratory of Developmental Biology Research and Experimental Teratogenicity, Children's Hospital of Mexico Federico Gomez (HIMFG), CP 06720, Mexico City, Mexico
| | - I Palma-Lara
- School of Medicine, National Polytechnic Institute (IPN), Mexico City, Mexico
| | - R Sánchez-Urbina
- Laboratory of Developmental Biology Research and Experimental Teratogenicity, Children's Hospital of Mexico Federico Gomez (HIMFG), CP 06720, Mexico City, Mexico
| | | | - J A Botello-Flores
- Laboratory of Developmental Biology Research and Experimental Teratogenicity, Children's Hospital of Mexico Federico Gomez (HIMFG), CP 06720, Mexico City, Mexico
| | | | - A Contreras-Ramos
- Laboratory of Developmental Biology Research and Experimental Teratogenicity, Children's Hospital of Mexico Federico Gomez (HIMFG), CP 06720, Mexico City, Mexico.
| |
Collapse
|
47
|
Meyer HJ, Reilly D, Martin SE, Wong AW. Identification of a novel miRNA that increases transient protein expression in combination with valproic acid. Biotechnol Prog 2017; 33:1139-1145. [DOI: 10.1002/btpr.2488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/18/2017] [Indexed: 12/29/2022]
Affiliation(s)
| | - Dorothea Reilly
- Dept. of Early Stage Cell Culture; 1 DNA Way South San Francisco CA 94080
| | - Scott E. Martin
- Department of Discovery Oncology; Genentech; 1 DNA Way South San Francisco CA 94080
| | - Athena W. Wong
- Dept. of Early Stage Cell Culture; 1 DNA Way South San Francisco CA 94080
| |
Collapse
|
48
|
Kim YY, Min H, Kim H, Choi YM, Liu HC, Ku SY. Differential MicroRNA Expression Profile of Human Embryonic Stem Cell-Derived Cardiac Lineage Cells. Tissue Eng Regen Med 2017; 14:163-169. [PMID: 30603473 PMCID: PMC6171578 DOI: 10.1007/s13770-017-0051-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 01/31/2017] [Accepted: 02/12/2017] [Indexed: 01/23/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that participate in transcriptional and post-transcriptional regulation of gene expression. miRNAs have numerous roles in cellular function including embryonic development. Human embryonic stem cells (hESCs) are capable of self-renewal and can differentiate into most of cell types including cardiomyocytes (CMs). These characteristics of hESCs make them considered as an important model for studying human embryonic development and tissue specific differentiation. In this study, we tried to demonstrate the profile of miRNA expression in cardiac differentiation from hESCs. To induce differentiation, we differentiated hESCs into CMs by direct differentiation method and characterized differentiated cells. To analyze the expression of miRNAs, we distinguished (days 4, 8, 12, 16, 20, 24, 28) and isolated RNAs from each differentiation stage. miRNA specific RT-qPCR was performed and the expression profile of miR-1, -30d, -133a, -143, -145, -378a, -499a was evaluated. The expression of all miRs was up-regulated at day 8. miR-143 and -145 expression was also up-regulated at the later stage of differentiation. Only miR-378a expression returned to undifferentiated hESC levels at the other stages of differentiation. In conclusion, we elucidated the expression profile of miRNAs during differentiation into cardiomyocytes from hESCs. Our findings demonstrate the expression of miRNAs was stage-dependent during differentiation and suggest that the differentiation into CMs can be regulated by miRNAs through direct or indirect pathway.
Collapse
Affiliation(s)
- Yoon Young Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| | - Harry Min
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| | - Hoon Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| | - Young Min Choi
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| | - Hung Ching Liu
- Center for Reproductive Medicine and Infertility, Cornell Weill Medical College, New York, NY 10021 USA
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| |
Collapse
|
49
|
Hoelscher SC, Doppler SA, Dreßen M, Lahm H, Lange R, Krane M. MicroRNAs: pleiotropic players in congenital heart disease and regeneration. J Thorac Dis 2017; 9:S64-S81. [PMID: 28446969 DOI: 10.21037/jtd.2017.03.149] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Congenital heart disease (CHD) is the leading cause of infant death, affecting approximately 4-14 live births per 1,000. Although surgical techniques and interventions have improved significantly, a large number of infants still face poor clinical outcomes. MicroRNAs (miRs) are known to coordinately regulate cardiac development and stimulate pathological processes in the heart, including fibrosis or hypertrophy and impair angiogenesis. Dysregulation of these regulators could therefore contribute (I) to the initial development of CHD and (II) at least partially to the observed clinical outcomes of many CHD patients by stimulating the aforementioned pathways. Thus, miRs may exhibit great potential as therapeutic targets in regenerative medicine. In this review we provide an overview of miR function and elucidate their role in selected CHDs, including hypoplastic left heart syndrome (HLHS), tetralogy of Fallot (TOF), ventricular septal defects (VSDs) and Holt-Oram syndrome (HOS). We then bridge this knowledge to the potential usefulness of miRs and/or their targets in therapeutic strategies for regenerative purposes in CHDs.
Collapse
Affiliation(s)
- Sarah C Hoelscher
- Division of Experimental Surgery, Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany
| | - Stefanie A Doppler
- Division of Experimental Surgery, Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany
| | - Martina Dreßen
- Division of Experimental Surgery, Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany
| | - Harald Lahm
- Division of Experimental Surgery, Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany
| | - Rüdiger Lange
- Division of Experimental Surgery, Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany.,DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Markus Krane
- Division of Experimental Surgery, Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany.,DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
50
|
Wang H, Cai J. The role of microRNAs in heart failure. Biochim Biophys Acta Mol Basis Dis 2016; 1863:2019-2030. [PMID: 27916680 DOI: 10.1016/j.bbadis.2016.11.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/26/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022]
Abstract
MicroRNAs are small non-coding RNA molecules that regulate gene expression by inhibiting mRNA translation and/or inducing mRNA degradation. In the past decade, many in vitro and in vivo studies have explored the involvement of microRNAs in various cardiovascular diseases. In this paper, studies focused upon the target genes and functionality of miRNAs in the pathophysiological processes of heart failure are reviewed. The selected miRNAs are categorized according to the biological relevance of their target genes in relation to four cardiovascular pathologies, namely angiogenesis, cardiac hypertrophy, fibrosis and apoptosis. This review illustrates the involvement of miRNAs in different biological signaling pathways and provides an overview of current understanding of the roles of miRNAs in cardiovascular health and diseases. This article is part of a Special Issue entitled: Genetic and epigenetic control of heart failure - edited by Jun Ren & Megan Yingmei Zhang.
Collapse
Affiliation(s)
- Hongjiang Wang
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| | - Jun Cai
- State Key Laboratory of Cardiovascular Disease of China, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Hypertension Center, Fuwai Hospital, Xicheng District, North Lishi Road No. 167, Beijing 100037, China.
| |
Collapse
|